WorldWideScience

Sample records for caenorhabditis elegans genes

  1. Number and organization of collagen genes in Caenorhabditis elegans.

    OpenAIRE

    Cox, G N; Kramer, J. M.; Hirsh, D

    1984-01-01

    We analyzed the number and organization of collagen genes in the nematode Caenorhabditis elegans. Genomic Southern blot hybridization experiments and recombinant phage library screenings indicated that C. elegans has between 40 and 150 distinct collagen genes. A large number of recombinant phages containing collagen genes were isolated from C. elegans DNA libraries. Physical mapping studies indicated that most phage contained a single small collagen gene less than 3 kilobases in size. A few p...

  2. Steroid/thyroid hormone receptor genes in Caenorhabditis elegans.

    OpenAIRE

    Kostrouch, Z; Kostrouchova, M; Rall, J. E.

    1995-01-01

    The large family of steroid/thyroid hormone receptor (STR) genes has been extensively studied in vertebrates and insects but little information is available on it in more primitive organisms. All members possess a DNA binding domain of zinc fingers of the C2, C2 type. We have used the polymerase chain reaction with degenerate oligonucleotide primers covering this region to clone three distinct members of this family from the nematode Caenorhabditis elegans. All three belong to the retinoic ac...

  3. Identification of Ciliary and Ciliopathy Genes in Caenorhabditis Elegans through Comparative Genomics

    OpenAIRE

    Chen, Nansheng; Mah, Allan; Oliver E Blacque; Chu, Jeffrey; Phgora, Kiran; Bakhoum, Mathieu W.; Newbury, C. Rebecca Hunt; Khattra, Jaswinder; Chan, Susanna; Efimenko, Evgheni; Johnsen, Robert; Phirke, Prasad; Swoboda, Peter; Marra, Marco; Moerman, Donald

    2006-01-01

    Background The recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes. Results By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditi...

  4. Targeted Heritable Mutation and Gene Conversion by Cas9-CRISPR in Caenorhabditis elegans

    OpenAIRE

    Katic, Iskra; Großhans, Helge

    2013-01-01

    We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion.

  5. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans

    OpenAIRE

    Liu, Huijie; WANG, XUEREN; Wang, Horng-Dar; Wu, JinJing; Ren, Jing; Meng, Lingfeng; Wu, Qingfa; Dong, Hansheng; WU, Jing; Kao, Tzu-Yu; Ge, Qian; Wu, Zheng-xing; Yuh, Chiou-Hwa; Shan, Ge

    2012-01-01

    Food and other environmental factors affect gene expression and behaviour of animals. Differences in bacterial food affect the behaviour and longevity of Caenorhabditis elegans. However, no research has been carried out to investigate whether bacteria could utilize endogenous RNAs to affect C. elegans physiology. Here we show that two Escherichia coli endogenous noncoding RNAs, OxyS and DsrA, impact on the physiology of C. elegans. OxyS downregulates che-2, leading to impairment in C. elegans...

  6. Gene pathways that delay Caenorhabditis elegans reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Meng C Wang

    2014-12-01

    Full Text Available Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.

  7. Comparative genomics and functional study of lipid metabolic genes in Caenorhabditis elegans

    OpenAIRE

    Zhang, Yuru; Zou, Xiaoju; Ding, Yihong; Wang, Haizhen; Wu, Xiaoyun; Liang, Bin

    2013-01-01

    Background Animal models are indispensable to understand the lipid metabolism and lipid metabolic diseases. Over the last decade, the nematode Caenorhabditis elegans has become a popular animal model for exploring the regulation of lipid metabolism, obesity, and obese-related diseases. However, the genomic and functional conservation of lipid metabolism from C. elegans to humans remains unknown. In the present study, we systematically analyzed genes involved in lipid metabolism in the C. eleg...

  8. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    Directory of Open Access Journals (Sweden)

    Sleumer Monica C

    2012-08-01

    Full Text Available Abstract Background Ribosomal protein genes (RPGs are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from

  9. Data in support of genome-wide identification of lineage-specific genes within Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    2015-09-01

    Full Text Available Two sets of LSGs were identified using BLAST: Caenorhabditis elegans species-specific genes (SSGs, 1423, and Caenorhabditis genus-specific genes (GSGs, 4539. The data contained in this article show SSGs and GSGs have significant differences in evolution and that most of them were formed by gene duplication and integration of transposable elements (TEs. Subsequent observation of temporal expression and protein function presents that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are most represented. The data are related to research article “Genome-wide identification of lineage-specific genes within Caenorhabditis elegans” in Journal of Genomics [1].

  10. Effect of Caenorhabditis elegans age and genotype on horizontal gene transfer in intestinal bacteria

    OpenAIRE

    Portal-Celhay, Cynthia; Nehrke, Keith; Martin J. Blaser

    2013-01-01

    Horizontal gene transfer (HGT) between bacteria occurs in the intestinal tract of their animal hosts and facilitates both virulence and antibiotic resistance. A model in which both the pathogen and the host are genetically tractable facilitates developing insight into mechanistic processes enabling or restricting the transfer of antibiotic resistance genes. Here we develop an in vivo experimental system to study HGT in bacteria using Caenorhabditis elegans as a model host. Using a thermosensi...

  11. Intragenic alternative splicing coordination is essential for Caenorhabditis elegans slo-1 gene function

    OpenAIRE

    Glauser, Dominique A; Johnson, Brandon E.; Aldrich, Richard W; Goodman, Miriam B.

    2012-01-01

    Alternative splicing is critical for diversifying eukaryotic proteomes, but the rules governing and coordinating splicing events among multiple alternate splice sites within individual genes are not well understood. We developed a quantitative PCR-based strategy to quantify the expression of the 12 transcripts encoded by the Caenorhabditis elegans slo-1 gene, containing three alternate splice sites. Using conditional probability-based models, we show that splicing events are coordinated acros...

  12. Radiation-induced gene expression in the nematode caenorhabditis elegans

    International Nuclear Information System (INIS)

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by reverse transcription polymerase chain reaction (RT-PCR) differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density. (author)

  13. Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus.

    Directory of Open Access Journals (Sweden)

    Michal Turek

    Full Text Available During their development, Caenorhabditis elegans larvae go through four developmental stages. At the end of each larval stage, nematodes molt. They synthesize a new cuticle and shed the old cuticle. During the molt, larvae display a sleep-like behavior that is called lethargus. We wanted to determine how gene expression changes during the C. elegans molting cycle. We performed transcriptional profiling of C. elegans by selecting larvae displaying either sleep-like behavior during the molt or wake behavior during the intermolt to identify genes that oscillate with the molting-cycle. We found that expression changed during the molt and we identified 520 genes that oscillated with the molting cycle. 138 of these genes were not previously reported to oscillate. The majority of genes that had oscillating expression levels appear to be involved in molting, indicating that the majority of transcriptional changes serve to resynthesize the cuticle. Identification of genes that control sleep-like behavior during lethargus is difficult but may be possible by looking at genes that are expressed in neurons. 22 of the oscillating genes were expressed in neurons. One of these genes, the dopamine transporter gene dat-1, was previously shown in mammals and in C. elegans to control sleep. Taken together, we provide a dataset of genes that oscillate with the molting and sleep-wake cycle, which will be useful to investigate molting and possibly also sleep-like behavior during lethargus.

  14. Dielectrophoresis of Caenorhabditis elegans

    OpenAIRE

    Chuang, Han-Sheng; Raizen, David; Lamb, Annesia; Dabbish, Nooreen; Bau, Haim

    2011-01-01

    We demonstrate for the first time the dielectrophoretic trapping and manipulation of a whole animal, the nematode Caenorhabditis elegans. We studied the effect of the electric field on the nematode as a function of field intensity and frequency. We identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) exhibit behavioral responses to blue light, indicating that at least some...

  15. Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening

    DEFF Research Database (Denmark)

    Schøler, Lone Vedel; Møller, Tine Hørning; Nørgaard, Steffen; Vestergård, Lotte; Olsen, Anders

    The soil nematode Caenorhabditis elegans has become a popular genetic model organism used to study a broad range of complex biological processes, including development, aging, apoptosis, and DNA damage responses. Many genetic tools and tricks have been developed in C. elegans including knock down...... of gene expression via RNA interference (RNAi). In C. elegans RNAi can effectively be administrated via feeding the nematodes bacteria expressing double-stranded RNA targeting the gene of interest. Several commercial C. elegans RNAi libraries are available and hence gene inactivation using RNAi can...

  16. Characterization of Caenorhabditis elegans homologs of the Down syndrome candidate gene DYRK1A.

    OpenAIRE

    Raich, William B; Moorman, Celine; Lacefield, Clay O.; Lehrer, Jonah; Bartsch, Dusan; Plasterk, Ronald H.A.; Kandel, Eric R.; Hobert, Oliver

    2003-01-01

    The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to dis...

  17. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans

    OpenAIRE

    Luteijn, Maartje J.; van Bergeijk, Petra; Kaaij, Lucas J. T.; Almeida, Miguel Vasconcelos; Roovers, Elke F.; Berezikov, Eugene; Ketting, René F.

    2012-01-01

    RNA-induced epigenetic silencing (RNAe) is a new pathway in C. elegans initiated by the Piwi protein PRG-1. RNAe stably silences transgenes over many generations through a nuclear RNAi pathway that induces transcriptional silencing.

  18. Effects of lithium on growth, maturation, reproduction and gene expression in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Inokuchi, Ayako; Yamamoto, Ryoko; Morita, Fumiyo; Takumi, Shota; Matsusaki, Hiromi; Ishibashi, Hiroshi; Tominaga, Nobuaki; Arizono, Koji

    2015-09-01

    Lithium (Li) has been widely used to treat bipolar disorder, and industrial use of Li has been increasing; thus, environmental pollution and ecological impacts of Li have become a concern. This study was conducted to clarify the potential biological effects of LiCl and Li(2)CO(3) on a nematode, Caenorhabditis elegans as a model system for evaluating soil contaminated with Li. Exposure of C. elegans to LiCl and Li(2)CO(3) decreased growth/maturation and reproduction. The lowest observed effect concentrations for growth, maturation and reproduction were 1250, 313 and 10 000 µm, respectively, for LiCl and 750, 750 and 3000 µm, respectively, for Li(2)CO(3). We also investigated the physiological function of LiCl and LiCO(3) in C. elegans using DNA microarray analysis as an eco-toxicogenomic approach. Among approximately 300 unique genes, including metabolic genes, the exposure to 78 µm LiCl downregulated the expression of 36 cytochrome P450, 16 ABC transporter, 10 glutathione S-transferase, 16 lipid metabolism and two vitellogenin genes. On the other hand, exposure to 375 µm Li(2)CO(3) downregulated the expression of 11 cytochrome P450, 13 ABC transporter, 13 lipid metabolism and one vitellogenin genes. No gene was upregulated by LiCl or Li(2)CO(3). These results suggest that LiCl and Li(2)CO(3) potentially affect the biological and physiological function in C. elegans associated with alteration of the gene expression such as metabolic genes. Our data also provide experimental support for the utility of toxicogenomics by integrating gene expression profiling into a toxicological study of an environmentally important organism such as C. elegans. PMID:25644961

  19. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity.

    Directory of Open Access Journals (Sweden)

    Yanqiong Zhang

    Full Text Available Despite rapid development and application of a wide range of manufactured metal oxide nanoparticles (NPs, the understanding of potential risks of using NPs is less completed, especially at the molecular level. The nematode Caenorhabditis elegans (C.elegans has been emerging as an environmental model to study the molecular mechanism of environmental contaminations, using standard genetic tools such as the real-time quantitative PCR (RT-qPCR. The most important factor that may affect the accuracy of RT-qPCR is to choose appropriate genes for normalization. In this study, we selected 13 reference gene candidates (act-1, cdc-42, pmp-3, eif-3.C, actin, act-2, csq-1, Y45F10D.4, tba-1, mdh-1, ama-1, F35G12.2, and rbd-1 to test their expression stability under different doses of nano-copper oxide (CuO 0, 1, 10, and 50 µg/mL using RT-qPCR. Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, were employed to evaluate these 13 candidates expressions. As a result, tba-1, Y45F10D.4 and pmp-3 were the most reliable, which may be used as reference genes in future study of nanoparticle-induced genetic response using C.elegans.

  20. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Directory of Open Access Journals (Sweden)

    Tomoko M Tabuchi

    2011-05-01

    Full Text Available DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  1. Use of a psoralen-induced phenocopy to study genes controlling spermatogenesis in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    In the nematode Caenorhabditis elegans, spermatogenesis represents one of two alternative developmental pathways open to premeiotic germ cells. At least two genes, fem-1 and fem-2, control the initiation of spermatogenesis in XX (hermaphrodite) worms, and the entire spectrum of male differentiation in XO animals. Low-dose irradiation of worms treated with the light-activated DNA crosslinking drug trimethylpsoralen, at levels that do not affect cell division or growth rates, blocks spermatogenesis in C. elegans hermaphrodites and produces an identical phenotype to that of temperature-sensitive mutations in the fem genes. Psoralen treatment does not, however, produce corresponding phenotypes of these mutants in XO animals. The developmental age for phenocopy production is the same as the hermaphrodite temperature-sensitive period of the two mutants. The effects of pulses of restrictive temperature and psoralen treatment on fem-2 mutant hermaphrodites are additive, suggesting that psoralen crosslinking may reduce the level of the fem-2 gene product. Microbeam experiments localize the target for the psoralen effect to the primary germ cells in the first stage larvae, indicating that a critical step occurs in a small number of precursor cells prior to their commitment to spermatogenesis

  2. Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans.

    Science.gov (United States)

    Chen, Xiangyang; Li, Mu; Feng, Xuezhu; Guang, Shouhong

    2015-12-01

    Many genes play essential roles in development and fertility; their disruption leads to growth arrest or sterility. Genetic balancers have been widely used to study essential genes in many organisms. However, it is technically challenging and laborious to generate and maintain the loss-of-function mutations of essential genes. The CRISPR/Cas9 technology has been successfully applied for gene editing and chromosome engineering. Here, we have developed a method to induce chromosomal translocations and produce genetic balancers using the CRISPR/Cas9 technology and have applied this approach to edit essential genes in Caenorhabditis elegans. The co-injection of dual small guide RNA targeting genes on different chromosomes resulted in reciprocal translocation between nonhomologous chromosomes. These animals with chromosomal translocations were subsequently crossed with animals that contain normal sets of chromosomes. The F1 progeny were subjected to a second round of Cas9-mediated gene editing. Through this method, we successfully produced nematode strains with specified chromosomal translocations and generated a number of loss-of-function alleles of two essential genes (csr-1 and mes-6). Therefore, our method provides an easy and efficient approach to generate and maintain loss-of-function alleles of essential genes with detailed genetic background information. PMID:26482793

  3. The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells.

    OpenAIRE

    Lincke, C R; Broeks, A; the, I; Plasterk, R H; Borst, P

    1993-01-01

    P-glycoproteins can cause multidrug resistance in mammalian tumor cells by active extrusion of cytotoxic drugs. The natural function of these evolutionarily conserved, membrane-bound ATP binding transport proteins is unknown. In mammals, P-glycoproteins are abundantly present in organs associated with the digestive tract. We have studied the tissue-specific expression of Caenorhabditis elegans P-glycoprotein genes pgp-1 and pgp-3 by transformation of nematodes with pgp-lacZ gene fusion constr...

  4. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    Science.gov (United States)

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  5. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    Science.gov (United States)

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode. PMID:27117030

  6. Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: Identification of novel gene targets

    OpenAIRE

    Michael A Smith; Zhang, Yanqiong; Polli, Joseph R.; Wu, Hongmei; Zhang, Baohong; Xiao, Peng; Farwell, Mary A.; Pan, Xiaoping

    2013-01-01

    Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24 h) and low nicotine exposure (6.17–194.5 μM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p = 0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes ...

  7. Virulence of Klebsiella pneumoniae isolates harboring bla KPC-2 carbapenemase gene in a Caenorhabditis elegans model.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Lavigne

    Full Text Available Klebsiella pneumoniae carbapenemase (KPC is a carbapenemase increasingly reported worldwide in Enterobacteriaceae. The aim of this study was to analyze the virulence of several KPC-2-producing K. pneumoniae isolates. The studied strains were (i five KPC-2 clinical strains from different geographical origins, belonging to different ST-types and possessing plasmids of different incompatibility groups; (ii seven transformants obtained after electroporation of either these natural KPC plasmids or a recombinant plasmid harboring only the bla KPC-2 gene into reference strains K. pneumoniae ATCC10031/CIP53153; and (iii five clinical strains cured of plasmids. The virulence of K. pneumoniae isolates was evaluated in the Caenorhabditis elegans model. The clinical KPC producers and transformants were significantly less virulent (LT50: 5.5 days than K. pneumoniae reference strain (LT50: 4.3 days (p<0.01. However, the worldwide spread KPC-2 positive K. pneumoniae ST258 strains and reference strains containing plasmids extracted from K. pneumoniae ST258 strains had a higher virulence than KPC-2 strains belonging to other ST types (LT50: 5 days vs. 6 days, p<0.01. The increased virulence observed in cured strains confirmed this trend. The bla KPC-2 gene itself was not associated to increased virulence.

  8. The dyf-3 gene encodes a novel protein required for sensory cilium formation in Caenorhabditis elegans.

    Science.gov (United States)

    Murayama, Takashi; Toh, Yoshihiro; Ohshima, Yasumi; Koga, Makoto

    2005-02-25

    Ciliated neurons in animals are important for the reception of environmental stimuli. To understand the mechanism of cilium morphogenesis in Caenorhabditis elegans, we analyzed dyf-3 mutants that are defective in uptake of a fluorescent dye and abnormal in sensory cilium structure. Expression of green fluorescent protein in sensory neurons of a dyf-3 mutant revealed that the mutant has stunted cilia and abnormal posterior projections in some sensory neurons. The dyf-3 gene encodes three proteins with different N-terminals. The largest DYF-3 protein has 404 amino acid residues that are 38% identical with those of a predicted human protein of unknown function. Expression of a functional dyf-3Colon, two colonsgfp fusion gene is detected in 26 chemosensory neurons, including six IL2 neurons, eight pairs of amphid neurons (ASE, ADF, ASG, ASH, ASI, ASJ, ASK and ADL) and two pairs of phasmid neurons (PHA and PHB). Expression of a dyf-3 cDNA in specific neurons of dyf-3 animals indicated that dyf-3 acts cell-autonomously for fluorescent dye uptake. Reduction of dyf-3Colon, two colonsgfp expression in a daf-19 mutant suggests that dyf-3 expression is regulated by DAF-19 transcription factor, and DYF-3 may be involved in the intraflagellar transport system. PMID:15713455

  9. The Molecular Identities of the Caenorhabditis elegans Intraflagellar Transport Genes dyf-6, daf-10 and osm-1

    OpenAIRE

    Bell, Leslie R.; Stone, Steven; Yochem, John; Shaw, Jocelyn E.; Herman, Robert K.

    2006-01-01

    The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cloning of dyf-6, daf-10, and osm-1 are described here. The daf-10 and osm-1 gene products resemble ea...

  10. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map.

    Science.gov (United States)

    Wicks, S R; Yeh, R T; Gish, W R; Waterston, R H; Plasterk, R H

    2001-06-01

    Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene. PMID:11381264

  11. Cis- and Trans-Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neuron of Caenorhabditis elegans

    OpenAIRE

    González-Barrios, María; Fierro-González, Juan Carlos; Krpelanova, Eva; Mora-Lorca, José Antonio; Pedrajas, José Rafael; Peñate, Xenia; Chavez, Sebastián; Swoboda, Peter; Jansen, Gert; Miranda-Vizuete, Antonio

    2015-01-01

    The identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ, located in the head of the nematode Caenorhabditis elegans. For this purpose, we have dissected the promoters of the only two genes so far reported to be exclusively expressed in ASJ, trx-1 and ssu-1. We her...

  12. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems.

  13. Gait synchronization in Caenorhabditis elegans

    OpenAIRE

    Yuan, Jinzhou; Raizen, David M.; Haim H. Bau

    2014-01-01

    How independent agents interact to form collective behavior is of interest in diverse disciplines. Larger animals coordinate their motions via their nervous systems. However, little is known regarding the mechanisms by which microscopic animals coordinate their gaits. We observed that, when in a swarm, clusters of Caenorhabditis elegans synchronize their swimming gait. To identify the mechanism responsible for this behavior, we devised controlled experiments to examine the interactions betwee...

  14. Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Svendsen Claus

    2010-03-01

    Full Text Available Abstract Background Physiologically based modelling using DEBtox (dynamic energy budget in toxicology and transcriptional profiling were used in Caenorhabditis elegans to identify how physiological modes of action, as indicated by effects on system level resource allocation were associated with changes in gene expression following exposure to three toxic chemicals: cadmium, fluoranthene (FA and atrazine (AZ. Results For Cd, the physiological mode of action as indicated by DEBtox model fitting was an effect on energy assimilation from food, suggesting that the transcriptional response to exposure should be dominated by changes in the expression of transcripts associated with energy metabolism and the mitochondria. While evidence for effect on genes associated with energy production were seen, an ontological analysis also indicated an effect of Cd exposure on DNA integrity and transcriptional activity. DEBtox modelling showed an effect of FA on costs for growth and reproduction (i.e. for production of new and differentiated biomass. The microarray analysis supported this effect, showing an effect of FA on protein integrity and turnover that would be expected to have consequences for rates of somatic growth. For AZ, the physiological mode of action predicted by DEBtox was increased cost for maintenance. The transcriptional analysis demonstrated that this increase resulted from effects on DNA integrity as indicated by changes in the expression of genes chromosomal repair. Conclusions Our results have established that outputs from process based models and transcriptomics analyses can help to link mechanisms of action of toxic chemicals with resulting demographic effects. Such complimentary analyses can assist in the categorisation of chemicals for risk assessment purposes.

  15. The Caenorhabditis elegans ekl (Enhancer of ksr-1 Lethality) Genes Include Putative Components of a Germline Small RNA Pathway

    OpenAIRE

    Rocheleau, Christian E.; Cullison, Kevin; Huang, Kai; Bernstein, Yelena; Spilker, Annina C.; Sundaram, Meera V.

    2008-01-01

    A canonical Ras–ERK signaling pathway specifies the fate of the excretory duct cell during Caenorhabditis elegans embryogenesis. The paralogs ksr-1 and ksr-2 encode scaffolding proteins that facilitate signaling through this pathway and that act redundantly to promote the excretory duct fate. In a genomewide RNAi screen for genes that, like ksr-2, are required in combination with ksr-1 for the excretory duct cell fate, we identified 16 “ekl” (enhancer of ksr-1 lethality) genes that are largel...

  16. The Cation Diffusion Facilitator Gene cdf-2 Mediates Zinc Metabolism in Caenorhabditis elegans

    OpenAIRE

    Davis, Diana E.; Roh, Hyun Cheol; Deshmukh, Krupa; Bruinsma, Janelle J.; Schneider, Daniel L.; Guthrie, James; Robertson, J. David; Kornfeld, Kerry

    2009-01-01

    Zinc is essential for many cellular processes. To use Caenorhabditis elegans to study zinc metabolism, we developed culture conditions allowing full control of dietary zinc and methods to measure zinc content of animals. Dietary zinc dramatically affected growth and zinc content; wild-type worms survived from 7 μm to 1.3 mm dietary zinc, and zinc content varied 27-fold. We investigated cdf-2, which encodes a predicted zinc transporter in the cation diffusion facilitator family. cdf-2 mRNA lev...

  17. Reliable reference miRNAs for quantitative gene expression analysis of stress responses in Caenorhabditis elegans

    OpenAIRE

    Kagias, Konstantinos; Podolska, Agnieszka; Pocock, Roger

    2014-01-01

    Background Quantitative real-time PCR (qPCR) has become the “gold standard” for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data. Results Here we undertook a systematic approach to identify highly stable miRNAs in different stress conditions such as low oxygen (hypoxia), UV-stress and high temperature (heat-stress) in the nematode Caenorhabditis elegans. ...

  18. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis

    OpenAIRE

    Calvo, Dominica; Victor, Martin; Gay, Frédérique; Sui, Guangchao; Luke, Margaret Po-Shan; Dufourcq, Pascale; Wen, Gengyun; Maduro, Morris; Rothman, Joel; Shi, Yang

    2001-01-01

    In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge on end-1, an initial endoderm-determining gene. In the E lineage, an essential function of CBP-1 appe...

  19. Caenorhabditis elegans intersectin: a synaptic protein regulating neurotransmission

    DEFF Research Database (Denmark)

    Rose, Simon; Malabarba, Maria Grazia; Krag, Claudia;

    2007-01-01

    characterization of intersectin function in Caenorhabditis elegans. Nematode intersectin (ITSN-1) is expressed in the nervous system, and it is enriched in presynaptic regions. The C. elegans intersectin gene (itsn-1) is nonessential for viability. In addition, itsn-1-null worms do not display any evident...

  20. Cis- and Trans-Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neuron of Caenorhabditis elegans

    Science.gov (United States)

    González-Barrios, María; Fierro-González, Juan Carlos; Krpelanova, Eva; Mora-Lorca, José Antonio; Pedrajas, José Rafael; Peñate, Xenia; Chavez, Sebastián; Swoboda, Peter; Jansen, Gert; Miranda-Vizuete, Antonio

    2015-01-01

    The identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ, located in the head of the nematode Caenorhabditis elegans. For this purpose, we have dissected the promoters of the only two genes so far reported to be exclusively expressed in ASJ, trx-1 and ssu-1. We hereby identify the ASJ motif, a functional cis-regulatory bipartite promoter region composed of two individual 6 bp elements separated by a 3 bp linker. The first element is a 6 bp CG-rich sequence that presumably binds the Sp family member zinc-finger transcription factor SPTF-1. Interestingly, within the C. elegans nervous system SPTF-1 is also found to be expressed only in ASJ neurons where it regulates expression of other genes in these neurons and ASJ cell fate. The second element of the bipartite motif is a 6 bp AT-rich sequence that is predicted to potentially bind a transcription factor of the homeobox family. Together, our findings identify a specific promoter signature and SPTF-1 as a transcription factor that functions as a terminal selector gene to regulate gene expression in C. elegans ASJ sensory neurons. PMID:25769980

  1. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition

    Czech Academy of Sciences Publication Activity Database

    Hada, K.; Asahina, Masako; Hasegawa, H.; Kanaho, Y.; Slack, F. J.; Niwa, R.

    2010-01-01

    Roč. 344, č. 2 (2010), s. 1100-1109. ISSN 0012-1606 R&D Projects: GA ČR(CZ) GA204/07/0948; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z60220518 Keywords : apl -1 * Caenorhabditis elegans * heterochronic gene * heterochronic gene * let-7 * nuclear receptor * nhr-25 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.094, year: 2010

  2. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  3. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  4. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    Science.gov (United States)

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-01-01

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology. PMID:27490525

  5. New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  6. The genetics of ivermectin resistance in Caenorhabditis elegans

    OpenAIRE

    Dent, Joseph A.; Smith, McHardy M.; Vassilatis, Demetrios K.; Avery, Leon

    2000-01-01

    The ability of organisms to evolve resistance threatens the effectiveness of every antibiotic drug. We show that in the nematode Caenorhabditis elegans, simultaneous mutation of three genes, avr-14, avr-15, and glc-1, encoding glutamate-gated chloride channel (GluCl) α-type subunits confers high-level resistance to the antiparasitic drug ivermectin. In contrast, mutating any two channel genes confers modest or no resistance. We propose a model in which ivermectin sensitivity in C. elegans is ...

  7. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome

    OpenAIRE

    Ma, Xuan; Zhu, Yingjie; Li, Chunfang; Xue, Peng; Zhao, Yanmei; Chen, Shilin; Yang, Fuquan; Miao, Long

    2014-01-01

    Background Although sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome. Results First, sperm transcriptome cons...

  8. Hormetic effect of methylmercury on Caenorhabditis elegans

    OpenAIRE

    Helmcke, Kirsten J.; Aschner, Michael

    2010-01-01

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resi...

  9. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  10. Hitting two birds with one stone: The unforeseen consequences of nested gene knockouts in Caenorhabditis elegans.

    Science.gov (United States)

    Jovelin, Richard; Cutter, Asher D

    2016-01-01

    Nested genes represent an intriguing form of non-random genomic organization in which the boundaries of one gene are fully contained within another, longer host gene. The C. elegans genome contains over 10,000 nested genes, 92% of which are ncRNAs, which occur inside 16% of the protein coding gene complement. Host genes are longer than non-host coding genes, owing to their longer and more numerous introns. Indel alleles are available for nearly all of these host genes that simultaneously alter the nested gene, raising the possibility of nested gene disruption contributing to phenotypes that might be attributed to the host gene. Such dual-knockouts could represent a source of misinterpretation about host gene function. Dual-knockouts might also provide a novel source of synthetic phenotypes that reveal the functional effects of ncRNA genes, whereby the host gene disruption acts as a perturbed genetic background to help unmask ncRNA phenotypes. PMID:27386165

  11. Building a Cell and Anatomy Ontology of Caenorhabditis Elegans

    OpenAIRE

    Raymond Y. N. Lee; Sternberg, Paul W.

    2003-01-01

    We are endowed with a rich knowledge about Caenorhabditis elegans. Its stereotyped anatomy and development has stimulated research and resulted in the accumulation of cell-based information concerning gene expression, and the role of specific cells in developmental signalling and behavioural circuits. To make the information more accessible to sophisticated queries and automated retrieval systems, WormBase has begun to construct a C. elegans cell and anatomy ontology. Here we present our stra...

  12. Gene-environment and protein degradation signatures characterize genomic and phenotypic diversity in wild Caenorhabditis elegans populations

    NARCIS (Netherlands)

    Volkers, J.M.; Snoek, L.B.; Hellenberg Hubar, van C.J.; Coopman, R.; Chen, W.; Yang, Wentao; Sterken, M.G.; Schulenburg, H.; Braeckman, B.; Kammenga, J.E.

    2013-01-01

    Background: Analyzing and understanding the relationship between genotypes and phenotypes is at the heart of genetics. Research on the nematode Caenorhabditis elegans has been instrumental for unraveling genotype-phenotype relations, and has important implications for understanding the biology of ma

  13. Quantitative screening of genes regulating tryptophan hydroxylase transcription in Caenorhabditis elegans using microfluidics and an adaptive algorithm.

    Science.gov (United States)

    Lee, Hyewon; Crane, Matthew M; Zhang, Yun; Lu, Hang

    2013-02-01

    Forward genetic screening via mutagenesis is a powerful method for identifying regulatory factors in target pathways in model organisms such as the soil-dwelling free-living nematode Caenorhabditis elegans (C. elegans). Currently manual microscopy is the standard technique for conducting such screens; however, it is labor-intensive and time-consuming because screening requires imaging thousands of animals. Recently microfluidic chips have been developed to increase the throughput of some of such experiments; nonetheless, most of these chips are multilayer devices and complicated to fabricate and therefore prone to failure during fabrication and operation. In addition, most sorting decisions are made manually and the criteria used for sorting are subjective. To overcome these limitations, we developed a simple single-layer microfluidic device and an adaptive algorithm to make sorting decisions. The one-layer device greatly improves the reliability, while quantitative analysis with the adaptive algorithm allows for the identification of mutations that generate subtle changes in expression, which would have been hard to detect by eye. The screening criterion is set based on the mutagenized population, not separate control populations measured prior to actual screening experiments, to account for stochasticity and day-to-day variations of gene expression in mutagenized worms. Moreover, during each experiment, the threshold is constantly updated to reflect the balance between maximizing sorting rate and minimizing false-positive rate. Using this system, we screened for mutants that have altered expression levels of tryptophan hydroxylase, a key enzyme for serotonin synthesis in a CaMKII gain-of-function background. We found several putative mutants in this screen. Furthermore, this microfluidic system and quantitative analysis can be easily adapted to study other pathways in C. elegans. PMID:23168494

  14. Regulation of Caenorhabditis elegans body size and male tail development by the novel gene lon-8

    Directory of Open Access Journals (Sweden)

    Korswagen Hendrik C

    2007-03-01

    Full Text Available Abstract Background In C. elegans and other nematode species, body size is determined by the composition of the extracellular cuticle as well as by the nuclear DNA content of the underlying hypodermis. Mutants that are defective in these processes can exhibit either a short or a long body size phenotype. Several mutations that give a long body size (Lon phenotype have been characterized and found to be regulated by the DBL-1/TGF-β pathway, that controls post-embryonic growth and male tail development. Results Here we characterize a novel gene affecting body size. lon-8 encodes a secreted product of the hypodermis that is highly conserved in Rhabditid nematodes. lon-8 regulates larval elongation as well as male tail development. In both processes, lon-8 appears to function independently of the Sma/Mab pathway. Rather, lon-8 genetically interacts with dpy-11 and dpy-18, which encode cuticle collagen modifying enzymes. Conclusion The novel gene lon-8 encodes a secreted product of the hypodermis that controls body size and male ray morphology in C. elegans. lon-8 genetically interacts with enzymes that affect the composition of the cuticle.

  15. The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1.

    Science.gov (United States)

    Bell, Leslie R; Stone, Steven; Yochem, John; Shaw, Jocelyn E; Herman, Robert K

    2006-07-01

    The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cloning of dyf-6, daf-10, and osm-1 are described here. The daf-10 and osm-1 gene products resemble each other and contain WD and WAA repeats. DYF-6, the product of a complex locus, lacks known motifs, but orthologs are present in flies and mammals. Phenotypic analysis of dyf-6 mutants expressing an OSM-6::GFP reporter indicates that the cilia of the amphid and phasmid dendritic endings are foreshortened. Consistent with genetic mosaic analysis, which indicates that dyf-6 functions in neurons of the amphid sensilla, DYF-6::GFP is expressed in amphid and phasmid neurons. Movement of DYF-6::GFP within the ciliated endings of the neurons indicates that DYF-6 is involved in IFT. In addition, IFT can be observed in dauer larvae. PMID:16648645

  16. Loss of DNase II function in the gonad is associated with a higher expression of antimicrobial genes in Caenorhabditis elegans.

    Science.gov (United States)

    Yu, Hsiang; Lai, Huey-Jen; Lin, Tai-Wei; Chen, Chang-Shi; Lo, Szecheng J

    2015-08-15

    Three waves of apoptosis shape the development of Caenorhabditis elegans. Although the exact roles of the three DNase II genes (nuc-1, crn-6 and crn-7), which are known to mediate degradation of apoptotic DNA, in the embryonic and larval phases of apoptosis have been characterized, the DNase II acting in the third wave of germ cell apoptosis remains undetermined. In the present study, we performed in vitro and in vivo assays on various mutant nematodes to demonstrate that NUC-1 and CRN-7, but not CRN-6, function in germ cell apoptosis. In addition, in situ DNA-break detection and anti-phosphorylated ERK (extracellular-signal-regulated kinase) staining illustrated the sequential and spatially regulated actions of NUC-1 and CRN-7, at the pachytene zone of the gonad and at the loop respectively. In line with the notion that UV-induced DNA fragment accumulation in the gonad activates innate immunity responses, we also found that loss of NUC-1 and CRN-7 lead to up-regulation of antimicrobial genes (abf-2, spp-1, nlp-29, cnc-2, and lys-7). Our observations suggest that an incomplete digestion of DNA fragments resulting from the absence of NUC-1 or CRN-7 in the gonad could induce the ERK signalling, consequently activating antimicrobial gene expression. Taken together, the results of the present study demonstrate for the first time that nuc-1 and crn-7 play a role in degrading apoptotic DNA in distinct sites of the gonad, and act as negative regulators of innate immunity in C. elegans. PMID:26251453

  17. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    Directory of Open Access Journals (Sweden)

    Fernando Calahorro

    Full Text Available Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C and worm NLG-1 (R437C proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA, both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1 or pan-muscular (myo-3 specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  18. WormBook: the online review of Caenorhabditis elegans biology

    OpenAIRE

    Girard, Lisa R.; Fiedler, Tristan J.; Harris, Todd W.; Carvalho, Felicia; Antoshechkin, Igor; Han, Michael; Sternberg, Paul W.; Stein, Lincoln D; Chalfie, Martin

    2007-01-01

    WormBook (www.wormbook.org) is an open-access, online collection of original, peer-reviewed chapters on the biology of Caenorhabditis elegans and related nematodes. Since WormBook was launched in June 2005 with 12 chapters, it has grown to over 100 chapters, covering nearly every aspect of C.elegans research, from Cell Biology and Neurobiology to Evolution and Ecology. WormBook also serves as the text companion to WormBase, the C.elegans model organism database. Objects such as genes, protein...

  19. Caenorhabditis elegans as a model for obesity research.

    Science.gov (United States)

    Zheng, J; Greenway, F L

    2012-02-01

    Caenorhabditis elegans (C. elegans) is a small nematode that conserves 65% of the genes associated with human disease, has a 21-day lifespan, reproductive cycles of 3 days, large brood sizes, lives in an agar dish and does not require committee approvals for experimentation. Research using C. elegans is encouraged and a Caenorhabditis Genetics Center (CGC, Minnesota) is funded by the National Institutes of Health-National Center for Research Resources. Many genetically manipulated strains of C. elegans are available at nominal cost from the CGC. Studies using the C. elegans model have explored insulin signaling, response to dietary glucose, the influence of serotonin on obesity, satiety, feeding and hypoxia-associated illnesses. C. elegans has also been used as a model to evaluate potential obesity therapeutics, explore the mechanisms behind single gene mutations related to obesity and to define the mechanistic details of fat metabolism. Obesity now affects a third of the US population and is becoming a progressively more expensive public health problem. Faster and less expensive methods to reach more effective treatments are clearly needed. We present this review hoping to stimulate interest in using the C. elegans model as a vehicle to advance the understanding and future treatment of obesity. PMID:21556043

  20. A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans

    OpenAIRE

    Updike, Dustin L.; Strome, Susan

    2009-01-01

    P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and tot...

  1. DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants.

    Directory of Open Access Journals (Sweden)

    Fiona R Savory

    Full Text Available In Caenorhabditis elegans, mutants of the conserved insulin/IGF-1 signalling (IIS pathway are long-lived and stress resistant due to the altered expression of DAF-16 target genes such as those involved in cellular defence and metabolism. The three Δ(9 desaturase genes, fat-5, fat-6 and fat-7, are included amongst these DAF-16 targets, and it is well established that Δ(9 desaturase enzymes play an important role in survival at low temperatures. However, no assessment of cold tolerance has previously been reported for IIS mutants. We demonstrate that long-lived age-1(hx546 mutants are remarkably resilient to low temperature stress relative to wild type worms, and that this is dependent upon daf-16. We also show that cold tolerance following direct transfer to low temperatures is increased in wild type worms during the facultative, daf-16 dependent, dauer stage. Although the cold tolerant phenotype of age-1(hx546 mutants is predominantly due to the Δ(9 desaturase genes, additional transcriptional targets of DAF-16 are also involved. Surprisingly, survival of wild type adults following a rapid temperature decline is not dependent upon functional daf-16, and cellular distributions of a DAF-16::GFP fusion protein indicate that DAF-16 is not activated during low temperature stress. This suggests that cold-induced physiological defences are not specifically regulated by the IIS pathway and DAF-16, but expression of DAF-16 target genes in IIS mutants and dauers is sufficient to promote cross tolerance to low temperatures in addition to other forms of stress.

  2. Caenorhabditis elegans opens up new insights into circadian clock mechanisms.

    Science.gov (United States)

    Hasegawa, Kenji; Saigusa, Tetsu; Tamai, Yoichi

    2005-01-01

    The roundworm, Caenorhabditis elegans, is known to carry homologues of clock genes such as per (=period) and tim (=timeless), which constitute the core of the circadian clock in Drosophila and mammals: lin-42 and tim-1. Analyses using WormBase (C. elegans gene database) have identified with relatively high identity analogous of the clock genes recognized in Drosophila and mammals, with the notable exception of cry (=cryptochrome), which is lacking in C. elegans. All of these C. elegans cognates of the clock genes appear to belong to members of the PAS-superfamily and to participate in development or responsiveness to the environment but apparently are not involved in the C. elegans circadian clock. Nevertheless, C. elegans exhibits convincing circadian rhythms in locomotor behavior in the adult stage and in resistance to hyperosmotic stress in starved larvae (L1) after hatching, indicating that it has a circadian clock with a core design entirely different from that of Drosophila and mammals. Here two possibilities are considered. First, the core of the C. elegans circadian clock includes transcriptional/translational feedback loops between genes and their protein products that are entirely different from those of Drosophila and mammals. Second, a more basic principle such as homeostasis governs the circadian cellular physiology, and was established primarily to minimize the accumulation of DNA damage in response to an environment cycling at 24 h intervals. PMID:15865318

  3. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    Science.gov (United States)

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.

  4. Big Data in Caenorhabditis elegans: quo vadis?

    Science.gov (United States)

    Hutter, Harald; Moerman, Donald

    2015-11-01

    A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. PMID:26543198

  5. Radiation-Sensitive Mutants of CAENORHABDITIS ELEGANS

    OpenAIRE

    Hartman, Philip S.; Herman, Robert K.

    1982-01-01

    Nine rad (for abnormal radiation sensitivity) mutants hypersensitive to ultraviolet light were isolated in the small nematode Caenorhabditis elegans. The mutations are recessive to their wild-type alleles, map to four of the six linkage groups in C. elegans and define nine new games named rad-1 through rad-9. Two of the mutants—rad-1 and rad-2—are very hypersensitive to X rays, and three—rad-2, rad-3 and rad-4—are hypersensitive to methyl methanesulfonate under particular conditions of exposu...

  6. Functional Requirement for Histone Deacetylase 1 in Caenorhabditis elegans Gonadogenesis

    OpenAIRE

    Dufourcq, Pascale; Victor, Martin; Gay, Frédérique; Calvo, Dominica; Hodgkin, Jonathan; Shi, Yang

    2002-01-01

    Histone acetylation and deacetylation have been implicated in the regulation of gene expression. Molecular studies have shown that histone deacetylases (HDACs) function as transcriptional repressors. However, very little is known about their roles during development in multicellular organisms. We previously demonstrated that inhibition of maternal and zygotic expression of histone deacetylase 1 (HDA-1) causes embryonic lethality in Caenorhabditis elegans. Here, we report the identification of...

  7. Fluoxetine-Resistance Genes in Caenorhabditis elegans Function in the Intestine and May Act in Drug Transport

    OpenAIRE

    Choy, Robert K. M.; Kemner, John M; Thomas, James H.

    2006-01-01

    Fluoxetine (Prozac) is one of the most widely prescribed pharmaceuticals, yet important aspects of its mechanism of action remain unknown. We previously reported that fluoxetine and related antidepressants induce nose muscle contraction of C. elegans. We also reported the identification and initial characterization of mutations in seven C. elegans genes that cause defects in this response (Nrf, nose resistant to fluoxetine). Here we present genetic evidence that the known nrf genes can be div...

  8. Regulation of metabolism in Caenorhabditis elegans longevity

    OpenAIRE

    Gallo, Marco; Riddle, Donald L.

    2010-01-01

    The nematode Caenorhabditis elegans is a favorite model for the study of aging. A wealth of genetic and genomic studies show that metabolic regulation is a hallmark of life-span modulation. A recent study in BMC Biology identifying metabolic signatures for longevity suggests that amino-acid pools may be important in longevity. See research article http://www.biomedcentral.com/1741-7007/8/14.

  9. Analysis of apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Lant, Benjamin; Derry, W Brent

    2014-05-01

    The nematode worm Caenorhabditis elegans has provided researchers with a wealth of information on the molecular mechanisms controlling programmed cell death (apoptosis). Its genetic tractability, optical clarity, and relatively short lifespan are key advantages for rapid assessment of apoptosis in vivo. The use of forward and reverse genetics methodology, coupled with in vivo imaging, has provided deep insights into how a multicellular organism orchestrates the self-destruction of specific cells during development and in response to exogenous stresses. Strains of C. elegans carrying mutations in the core elements of the apoptotic pathway, or in tissue-specific regulators of apoptosis, can be used for genetic analyses to reveal conserved mechanisms by which apoptosis is regulated in the somatic and reproductive (germline) tissue. Here we present an introduction to the study of apoptosis in C. elegans, including current techniques for visualization, analysis, and screening. PMID:24786497

  10. The genetics of ivermectin resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Dent, J A; Smith, M M; Vassilatis, D K; Avery, L

    2000-03-14

    The ability of organisms to evolve resistance threatens the effectiveness of every antibiotic drug. We show that in the nematode Caenorhabditis elegans, simultaneous mutation of three genes, avr-14, avr-15, and glc-1, encoding glutamate-gated chloride channel (GluCl) alpha-type subunits confers high-level resistance to the antiparasitic drug ivermectin. In contrast, mutating any two channel genes confers modest or no resistance. We propose a model in which ivermectin sensitivity in C. elegans is mediated by genes affecting parallel genetic pathways defined by the family of GluCl genes. The sensitivity of these pathways is further modulated by unc-7, unc-9, and the Dyf (dye filling defective) genes, which alter the structure of the nervous system. Our results suggest that the evolution of drug resistance can be slowed by targeting antibiotic drugs to several members of a multigene family. PMID:10716995

  11. Biogenic magnetite in the nematode caenorhabditis elegans.

    Science.gov (United States)

    Cranfield, Charles G; Dawe, Adam; Karloukovski, Vassil; Dunin-Borkowski, Rafal E; de Pomerai, David; Dobson, Jon

    2004-01-01

    The nematode Caenorhabditis elegans is widely used as a model system in biological research. Recently, examination of the production of heat-shock proteins in this organism in response to mobile phone-type electromagnetic field exposure produced the most robust demonstration to date of a non-thermal, deleterious biological effect. Though these results appear to be a sound demonstration of non-thermal bioeffects, to our knowledge, no mechanism has been proposed to explain them. We show, apparently for the first time, that biogenic magnetite, a ferrimagnetic iron oxide, is present in C. elegans. Its presence may have confounding effects on experiments involving electromagnetic fields as well as implications for the use of this nematode as a model system for iron biomineralization in multi-cellular organisms. PMID:15801597

  12. Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes.

    OpenAIRE

    Keane, John; Avery, Leon

    2003-01-01

    Mechanical stimulation induces opposite behavioral responses in the adult and dauer pharynx. Tail tap of adults inhibits pharyngeal pumping via a pathway involving the innexin gene unc-7 and components of the glutamatergic pathway encoded by the genes avr-14 and avr-15. Tail tap of dauers stimulates pumping through a mechanism involving G alpha o and G alpha q. The nematocidal drug ivermectin is believed to kill worms by opening a glutamate-gated chloride channel (AVR-15) on pharyngeal muscle...

  13. The temporal scaling of Caenorhabditis elegans ageing

    Science.gov (United States)

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-02-01

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  14. Goalpha regulates volatile anesthetic action in Caenorhabditis elegans.

    OpenAIRE

    van Swinderen, B.; Metz, L B; Shebester, L D; Mendel, J E; Sternberg, P. W.; Crowder, C. M.

    2001-01-01

    To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensi...

  15. Gene Expression Modifications by Temperature-Toxicants Interactions in Caenorhabditis elegans

    NARCIS (Netherlands)

    Vinuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2011-01-01

    Although organophosphorus pesticides (OP) share a common mode of action, there is increased awareness that they elicit a diverse range of gene expression responses. As yet however, there is no clear understanding of these responses and how they interact with ambient environmental conditions. In the

  16. The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing

    OpenAIRE

    Long Ma; Xiaoyang Gao; Jintao Luo; Liange Huang; Yanling Teng; H Robert Horvitz

    2012-01-01

    RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre-mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicin...

  17. Gαo and Gαq regulate the expression of daf-7, a TGFβ-like gene, in Caenorhabditis elegans.

    Science.gov (United States)

    Myers, Edith M

    2012-01-01

    Caenorhabditis elegans enter an alternate developmental stage called dauer in unfavorable conditions such as starvation, overcrowding, or high temperature. Several evolutionarily conserved signaling pathways control dauer formation. DAF-7/TGFβ and serotonin, important ligands in these signaling pathways, affect not only dauer formation, but also the expression of one another. The heterotrimeric G proteins GOA-1 (Gα(o)) and EGL-30 (Gα(q)) mediate serotonin signaling as well as serotonin biosynthesis in C. elegans. It is not known whether GOA-1 or EGL-30 also affect dauer formation and/or daf-7 expression, which are both modulated in part by serotonin. The purpose of this study is to better understand the relationship between proteins important for neuronal signaling and developmental plasticity in both C. elegans and humans. Using promoter-GFP transgenic worms, it was determined that both goa-1 and egl-30 regulate daf-7 expression during larval development. In addition, the normal daf-7 response to high temperature or starvation was altered in goa-1 and egl-30 mutants. Despite the effect of goa-1 and egl-30 mutations on daf-7 expression in various environmental conditions, there was no effect of the mutations on dauer formation. This paper provides evidence that while goa-1 and egl-30 are important for normal daf-7 expression, mutations in these genes are not sufficient to disrupt dauer formation. PMID:22808145

  18. Hormetic effect of methylmercury on Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.

  19. Hormetic effect of methylmercury on Caenorhabditis elegans.

    Science.gov (United States)

    Helmcke, Kirsten J; Aschner, Michael

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis. PMID:20691719

  20. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    OpenAIRE

    Emily R Troemel; Marie-Anne Félix; Whiteman, Noah K.; Antoine Barrière; Ausubel, Frederick M.

    2008-01-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular patho...

  1. PAK1-deficiency/down-regulation reduces brood size, activates HSP16.2 gene and extends lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Yanase, S; Luo, Y; Maruta, H

    2013-02-01

    There is an increasing evidence that the oncogenic kinase PAK1 is responsible not only for malignant transformation, but also for several other diseases such as inflammatory diseases (asthma and arthritis), infectious diseases including malaria, AIDS, and flu, as well as a series of neuronal diseases/disorders (neurofibromatosis, tuberous sclerosis, Alzheimer's diseases, Huntington's disease, epilepsy, depression, learning deficit, etc.) which often cause premature death. Interestingly, a few natural PAK1-blockers such as curcumin, caffeic acid (CA) and rosmarinic acid (RA) extend the lifespan of the nematode Caenorhabditis elegans or fruit flies. Here, to explore the possibility that C. elegans could provide us with a quick and inexpensive in vivo screening system for a series of more potent but safe (non-toxic) PAK1-blocking therapeutics, we examined the effects of PAK1-deficiency or down-regulation on a few selected functions of this worm, including reproduction, expression of HSP16.2 gene, and lifespan. In short, we found that PAK1 promotes reproduction, whereas it inactivates HSP16.2 gene and shortens lifespan, as do PI-3 kinase (AGE-1), TOR, and insulin-like signalling /ILS (Daf-2) in this worm. These findings not only support the "trade-off" theory on reproduction versus lifespan, but also suggest the possibility that the reduced reproduction (or HSP16.2 gene activation) of this worm could be used as the first indicator of extended lifespan for a quick in vivo screening for PAK1-blockers. PMID:23524941

  2. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    Science.gov (United States)

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans. PMID:24219868

  3. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans.

    Science.gov (United States)

    Folick, Andrew; Oakley, Holly D; Yu, Yong; Armstrong, Eric H; Kumari, Manju; Sanor, Lucas; Moore, David D; Ortlund, Eric A; Zechner, Rudolf; Wang, Meng C

    2015-01-01

    Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans. PMID:25554789

  4. Chemotaxis of crawling and swimming Caenorhabditis Elegans

    Science.gov (United States)

    Patel, Amar; Bilbao, Alejandro; Padmanabhan, Venkat; Khan, Zeina; Armstrong, Andrew; Rumbaugh, Kendra; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2012-11-01

    A soil-dwelling nematode Caenorhabditis Elegans efficiently navigates through complex environments, responding to chemical signals to find food or avoid danger. According to previous studies, the nematode uses both gradual-turn and run-and-tumble strategies to move in the direction of the increasing concentration of chemical attractants. We show that both these chemotaxis strategies can be described using our kinematic model [PLoS ONE, 7: e40121 (2012)] in which harmonic-curvature modes represent elementary nematode movements. In our chemotaxis model, the statistics of mode changes is governed by the time history of the chemoattractant concentration at the position of the nematode head. We present results for both nematodes crawling without transverse slip and for swimming nematodes. This work was supported by NSF grant No. CBET 1059745.

  5. Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate α-galactosidase and α-N-acetylgalactosaminidase

    Directory of Open Access Journals (Sweden)

    Kostrouchová Marta

    2005-01-01

    Full Text Available Abstract Background Human α-galactosidase A (α-GAL and α-N-acetylgalactosaminidase (α-NAGA are presumed to share a common ancestor. Deficiencies of these enzymes cause two well-characterized human lysosomal storage disorders (LSD – Fabry (α-GAL deficiency and Schindler (α-NAGA deficiency diseases. Caenorhabditis elegans was previously shown to be a relevant model organism for several late endosomal/lysosomal membrane proteins associated with LSDs. The aim of this study was to identify and characterize C. elegans orthologs to both human lysosomal luminal proteins α-GAL and α-NAGA. Results BlastP searches for orthologs of human α-GAL and α-NAGA revealed a single C. elegans gene (R07B7.11 with homology to both human genes (α-galactosidase and α-N-acetylgalactosaminidase – gana-1. We cloned and sequenced the complete gana-1 cDNA and elucidated the gene organization. Phylogenetic analyses and homology modeling of GANA-1 based on the 3D structure of chicken α-NAGA, rice α-GAL and human α-GAL suggest a close evolutionary relationship of GANA-1 to both human α-GAL and α-NAGA. Both α-GAL and α-NAGA enzymatic activities were detected in C. elegans mixed culture homogenates. However, α-GAL activity on an artificial substrate was completely inhibited by the α-NAGA inhibitor, N-acetyl-D-galactosamine. A GANA-1::GFP fusion protein expressed from a transgene, containing the complete gana-1 coding region and 3 kb of its hypothetical promoter, was not detectable under the standard laboratory conditions. The GFP signal was observed solely in a vesicular compartment of coelomocytes of the animals treated with Concanamycin A (CON A or NH4Cl, agents that increase the pH of the cellular acidic compartment. Immunofluorescence detection of the fusion protein using polyclonal anti-GFP antibody showed a broader and coarsely granular cytoplasmic expression pattern in body wall muscle cells, intestinal cells, and a vesicular compartment of

  6. High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Irimia, Manuel; Mørk, Søren;

    2007-01-01

    Alternative splicing (AS) is an important contributor to proteome diversity and is regarded as an explanatory factor for the relatively low number of human genes compared with less complex animals. To assess the evolutionary conservation of AS and its developmental regulation, we have investigated...... the qualitative and quantitative expression of 21 orthologous alternative splice events through the development of 2 nematode species separated by 85-110 Myr of evolutionary time. We demonstrate that most of these alternative splice events present in Caenorhabditis elegans are conserved in...... the regulatory mechanisms controlling AS are to a large extent conserved during the evolution of Caenorhabditis. This strong conservation indicates that both major and minor splice forms have important functional roles and that the relative quantities in which they are expressed are crucial. Our...

  7. BACTERIAL ATTRACTION AND QUORUM SENSING INHIBITION IN CAENORHABDITIS ELEGANS EXUDATES

    OpenAIRE

    Kaplan, Fatma; BADRI, DAYAKAR V.; Zachariah, Cherian; Ajredini, Ramadan; Sandoval, Francisco J.; Roje, Sanja; Lanfang H Levine; Zhang, Fengli; Robinette, Steven. L.; Alborn, Hans T.; Zhao, Wei; Stadler, Michael; Nimalendran, Rathika; Dossey, Aaron T.; Brüschweiler, Rafael

    2009-01-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to chemically interact with its environment or as defense. C. elegans ex...

  8. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Surasri N Sahu

    Full Text Available Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03% exposure caused stronger global gene expression changes in comparison with low dose (0.003% exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  9. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  10. Characterization of Microsporidia-Induced Developmental Arrest and a Transmembrane Leucine-Rich Repeat Protein in Caenorhabditis elegans

    OpenAIRE

    Luallen, Robert J; Bakowski, Malina A.; Troemel, Emily R.

    2015-01-01

    Microsporidia comprise a highly diverged phylum of intracellular, eukaryotic pathogens, with some species able to cause life-threatening illnesses in immunocompromised patients. To better understand microsporidian infection in animals, we study infection of the genetic model organism Caenorhabditis elegans and a species of microsporidia, Nematocida parisii, which infects Caenorhabditis nematodes in the wild. We conducted a targeted RNAi screen for host C. elegans genes important for infection...

  11. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Aubert Sylvie

    2009-03-01

    Full Text Available Abstract Background Presenilin proteins are part of a complex of proteins that can cleave many type I transmembrane proteins, including Notch Receptors and the Amyloid Precursor Protein, in the middle of the transmembrane domain. Dominant mutations in the human presenilin genes PS1 and PS2 lead to Familial Alzheimer's disease. Mutations in the Caenorhabditis elegans sel-12 presenilin gene cause a highly penetrant egg-laying defect due to reduction of signalling through the lin-12/Notch receptor. Mutations in six spr genes (for suppressor of presenilin are known to strongly suppress sel-12. Mutations in most strong spr genes suppress sel-12 by de-repressing the transcription of the largely functionally equivalent hop-1 presenilin gene. However, how mutations in the spr-2 gene suppress sel-12 is unknown. Results We show that spr-2 mutations increase the levels of sel-12 transcripts with Premature translation Termination Codons (PTCs in embryos and L1 larvae. mRNA transcripts from sel-12 alleles with PTCs undergo degradation by a process known as Nonsense Mediated Decay (NMD. However, spr-2 mutations do not appear to affect NMD. Mutations in the smg genes, which are required for NMD, can restore sel-12(PTC transcript levels and ameliorate the phenotype of sel-12 mutants with amber PTCs. However, the phenotypic suppression of sel-12 by smg genes is nowhere near as strong as the effect of previously characterized spr mutations including spr-2. Consistent with this, we have identified only two mutations in smg genes among the more than 100 spr mutations recovered in genetic screens. Conclusion spr-2 mutations do not suppress sel-12 by affecting NMD of sel-12(PTC transcripts and appear to have a novel mechanism of suppression. The fact that mutations in smg genes can ameliorate the phenotype of sel-12 alleles with amber PTCs suggests that some read-through of sel-12(amber alleles occurs in smg backgrounds.

  12. Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos.

    Science.gov (United States)

    Schmökel, Verena; Memar, Nadin; Wiekenberg, Anne; Trotzmüller, Martin; Schnabel, Ralf; Döring, Frank

    2016-03-01

    Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)-treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L-like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease-causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms. PMID:26773047

  13. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans.

    OpenAIRE

    Zorio, D A; Blumenthal, T

    1999-01-01

    In most species the 3' splice site is recognized initially by an interaction between the two-subunit splicing factor U2AF with the polypyrimidine (poly(Y)) tract that results in recruitment of the U2 snRNP to the branch-point consensus just upstream. In contrast, in Caenorhabditis elegans, both the poly(Y) tract and the branch-point consensus sequences are missing, apparently replaced by the highly conserved U4CAG/R 3' splice site consensus. Nevertheless C. elegans U2AF65 is very similar to i...

  14. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans

    Science.gov (United States)

    Hartman, P. S.; Hlavacek, A.; Wilde, H.; Lewicki, D.; Schubert, W.; Kern, R. G.; Kazarians, G. A.; Benton, E. V.; Benton, E. R.; Nelson, G. A.

    2001-01-01

    The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.

  15. Gαo and Gαq Regulate the Expression of daf-7, a TGFβ-like Gene, in Caenorhabditis elegans

    OpenAIRE

    Myers, Edith M.

    2012-01-01

    Caenorhabditis elegans enter an alternate developmental stage called dauer in unfavorable conditions such as starvation, overcrowding, or high temperature. Several evolutionarily conserved signaling pathways control dauer formation. DAF-7/TGFβ and serotonin, important ligands in these signaling pathways, affect not only dauer formation, but also the expression of one another. The heterotrimeric G proteins GOA-1 (Gαo) and EGL-30 (Gαq) mediate serotonin signaling as well as serotonin biosynthes...

  16. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Eriko Kage-Nakadai

    Full Text Available In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4 is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.

  17. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans.

    Science.gov (United States)

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Breen, Peter; Larkins-Ford, Jonah; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-01

    Translation in eukaryotes is followed to detect toxins and virulence factors and coupled to the induction of defence pathways. Caenorhabditis elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNA interference screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways upstream of MAP kinase to mediate the systemic communication of translation defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from the wild type can also rescue detoxification gene induction in lipid-biosynthesis-defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors. PMID:26322678

  18. Bacteria and the Aging and Longevity of Caenorhabditis elegans

    OpenAIRE

    Kim, Dennis H.

    2013-01-01

    The molecular genetic analysis of longevity of Caenorhabditis elegans has yielded fundamental insights into evolutionarily conserved pathways and processes governing the physiology of aging. Recent studies suggest that interactions between C. elegans and its microbial environment may influence the aging and longevity of this simple host organism. Experimental evidence supports a role for bacteria in affecting longevity through distinct mechanisms—as a nutrient source, as a potential pathogen ...

  19. Undulatory Locomotion of Caenorhabditis elegans on Wet Surfaces

    OpenAIRE

    Shen, X. N.; Sznitman, J.; Krajacic, P.; Lamitina, T.; Arratia, P. E.

    2012-01-01

    The physical and biomechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode Caenorhabditis elegans, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the C. elegans crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating...

  20. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering

    OpenAIRE

    Dickinson, Daniel J.; Goldstein, Bob

    2016-01-01

    The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)–Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome edi...

  1. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  2. Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray

    OpenAIRE

    He, Housheng; Cai, Lun; Skogerbø, Geir; Deng, Wei; Liu, Tao; Zhu, Xiaopeng; Wang, Yudong; Jia, Dong; Zhang, Zhihua; Tao, Yong; Zeng, Haipan; Aftab, Muhammad Nauman; Cui, Yan; Liu, Guozhen; Chen, Runsheng

    2006-01-01

    Small non-coding RNAs (ncRNAs) are encoded by genes that function at the RNA level, and several hundred ncRNAs have been identified in various organisms. Here we describe an analysis of the small non-coding transcriptome of Caenorhabditis elegans, microRNAs excepted. As a substantial fraction of the ncRNAs is located in introns of protein-coding genes in C.elegans, we also analysed the relationship between ncRNA and host gene expression. To this end, we designed a combined microarray, which i...

  3. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  4. Regulation of fat storage and reproduction by Krüppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Jun; Bakheet, Razan; Parhar, Ranjit S; Huang, Cheng-Han; Hussain, M Mahmood; Pan, Xiaoyue; Siddiqui, Shahid S; Hashmi, Sarwar

    2011-08-19

    Coordinated regulation of fat storage and utilization is essential for energy homeostasis, and its disruption is associated with metabolic syndrome and atherosclerosis in humans. Across species, Krüppel-like transcription factors (KLFs) have been identified as key components of adipogenesis. In humans, KLF14 acts as a master transregulator of adipose gene expression in type 2 diabetes and cis-acting expression quantitative trait locus associated with high-density lipoprotein cholesterol. Herein we report that, in Caenorhabditis elegans, mutants in klf-3 accumulate large fat droplets rich in neutral lipids in the intestine; this lipid accumulation is associated with an increase in triglyceride levels. The klf-3 mutants show normal pharyngeal pumping; however, they are sterile or semisterile. We explored important genetic interactions of klf-3 with the genes encoding enzymes involved in fatty acid (FA) β-oxidation in mitochondria or peroxisomes and FA synthesis in the cytosol, namely acyl-CoA synthetase (acs-1 and acs-2), acyl-CoA oxidase (F08A8.1 and F08A8.2), and stearoyl-CoA desaturase (fat-7). We show that mutations or RNA interference in these genes increases fat deposits in the intestine of acs-1, acs-2, F08A8.1, and F08A8 animals. We further show that acs-1 and F08A8.1 influence larval development and fertility, respectively. Thus, KLF3 may regulate FA utilization in the intestine and reproductive tissue. We demonstrate that depletion of F08A8.1 activity, but not of acs-1, acs-2, F08A8.2, or fat-7 activity, enhances the fat phenotype of the klf-3 mutant. Taken together, these results suggest that klf-3 regulates lipid metabolism, along with acs-1, acs-2, F08A8.1, and F08A8.2, by promoting FA β-oxidation and, in parallel, may contribute to normal reproductive behavior and fecundity in C. elegans. PMID:21704635

  5. Anabolic function of phenylalanine hydroxylase in Caenorhabditis elegans.

    Science.gov (United States)

    Calvo, Ana C; Pey, Angel L; Ying, Ming; Loer, Curtis M; Martinez, Aurora

    2008-08-01

    In humans, liver phenylalanine hydroxylase (PAH) has an established catabolic function, and mutations in PAH cause phenylketonuria, a genetic disease characterized by neurological damage, if not treated. To obtain novel evolutionary insights and information on molecular mechanisms operating in phenylketonuria, we investigated PAH in the nematode Caenorhabditis elegans (cePAH), where the enzyme is coded by the pah-1 gene, expressed in the hypodermis. CePAH presents similar molecular and kinetic properties to human PAH [S(0.5)(L-Phe) approximately 150 microM; K(m) for tetrahydrobiopterin (BH(4)) approximately 35 microM and comparable V(max)], but cePAH is devoid of positive cooperativity for L-Phe, an important regulatory mechanism of mammalian PAH that protects the nervous system from excess L-Phe. Pah-1 knockout worms show no obvious neurological defects, but in combination with a second cuticle synthesis mutation, they display serious cuticle abnormalities. We found that pah-1 knockouts lack a yellow-orange pigment in the cuticle, identified as melanin by spectroscopic techniques, and which is detected in C. elegans for the first time. Pah-1 mutants show stimulation of superoxide dismutase activity, suggesting that cuticle melanin functions as oxygen radical scavenger. Our results uncover both an important anabolic function of PAH and the change in regulation of the enzyme along evolution. PMID:18460651

  6. FAMILY OF FLP PEPTIDES IN CAENORHABDITIS ELEGANS AND RELATED NEMATODES

    Directory of Open Access Journals (Sweden)

    Chris eLi

    2014-10-01

    Full Text Available Neuropeptides regulate all aspects of behavior in multicellular organisms. Because of their ability to act at long distances, neuropeptides can exert their effects beyond the conventional synaptic connections, thereby adding an intricate layer of complexity to the activity of neural networks. In the nematode Caenorhabditis elegans, a large number of neuropeptide genes that are expressed throughout the nervous system has been identified. The actions of these peptides supplement the synaptic connections of the 302 neurons, allowing for fine tuning of neural networks and increasing the ways in which behaviors can be regulated. In this review, we focus on a large family of genes encoding FMRFamide-related peptides. These genes, the flp genes, have been used as a starting point to identifying flp genes throughout Nematoda. Nematodes have the largest family of FMRFamide-related peptides described thus far. The challenges in the future are the elucidation of their functions and the identification of the receptors and signaling pathways through which they function.

  7. A Novel Heme-responsive Element Mediates Transcriptional Regulation in Caenorhabditis elegans*

    OpenAIRE

    Sinclair, Jason; Hamza, Iqbal

    2010-01-01

    Hemes are prosthetic groups that participate in diverse biochemical pathways across phylogeny. Although heme can also regulate broad physiological processes by directly modulating gene expression in Metazoa, the regulatory pathways for sensing and responding to heme are not well defined. Caenorhabditis elegans is a heme auxotroph and relies solely on environmental heme for sustenance. Worms respond to heme availability by regulating heme-responsive genes such as hrg-1, an intestinal heme tran...

  8. The Caenorhabditis elegans UNC-87 protein is essential for maintenance, but not assembly, of bodywall muscle

    OpenAIRE

    1994-01-01

    Mutations in the unc-87 gene of Caenorhabditis elegans cause disorganization of the myofilament lattice in adult bodywall muscle. In order to assess the organization of specific bodywall muscle components in the absence of the unc-87 gene product, we examined the bodywall muscles of mutant animals using phalloidin and monoclonal antibodies to various muscle proteins. These studies indicated that the bodywall muscle of unc-87 embryos is initially almost wild type in its organization, but at la...

  9. CMGSDB: integrating heterogeneous Caenorhabditis elegans data sources using compositional data mining

    OpenAIRE

    Pati, Amrita; Jin, Ying; Klage, Karsten; Helm, Richard F.; Lenwood S. Heath; Ramakrishnan, Naren

    2007-01-01

    CMGSDB (Database for Computational Modeling of Gene Silencing) is an integration of heterogeneous data sources about Caenorhabditis elegans with capabilities for compositional data mining (CDM) across diverse domains. Besides gene, protein and functional annotations, CMGSDB currently unifies information about 531 RNAi phenotypes obtained from heterogeneous databases using a hierarchical scheme. A phenotype browser at the CMGSDB website serves this hierarchy and relates phenotypes to other bio...

  10. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Emily R Troemel

    2008-12-01

    Full Text Available For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  11. Genetic analysis of the spindle checkpoint genes san-1, mdf-2, bub-3 and the CENP-F homologues hcp-1 and hcp-2 in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Moore Landon L

    2008-02-01

    Full Text Available Abstract Background The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi to identify genes synthetic lethal with the viable san-1(ok1580 deletion mutant. Results The san-1(ok1580 animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580 embryos is significantly reduced when HCP-1 (CENP-F homologue, MDF-1 (MAD-1 homologue, MDF-2 (MAD-2 homologue or BUB-3 (predicted BUB-3 homologue are reduced by RNAi. Interestingly, the viability of san-1(ok1580 embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580;hcp-1(RNAi embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging. Several of the san-1(ok1580;hcp-1(RNAi animals displayed abnormal kinetochore (detected by MPM-2 and microtubule structure. The survival of mdf-2(RNAi;hcp-1(RNAi embryos but not bub-3(RNAi;hcp-1(RNAi embryos was also compromised. Finally, we found that san-1(ok1580 and bub-3(RNAi, but not hcp-1(RNAi embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. Conclusion Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580;hcp-1(RNAi animals had a severe viability defect whereas in the san-1(ok1580;hcp-2(RNAi and san-1(ok1580;hcp-2(ok1757 animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.

  12. Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes.

    Science.gov (United States)

    Chakrabarti, Shumon; Dicke, Christiane; Kalderis, Dimitrios; Kern, Jürgen

    2015-08-01

    Currently, char substrates gain a lot of interest since soils amended with such substrates are being discussed to increase in fertility and productivity, water retention, and mitigation of greenhouse gases. Char substrates can be produced by carbonization of organic matter. Among different process conditions, temperature is the main factor controlling the occurrence of organic and inorganic contaminants such as phenols and furfurals, which may affect target and non-target organisms. The hydrochar produced at 200 °C contained both furfural and phenol with concentrations of 282 and 324 mg kg(-1) in contrast to the 300 °C hydrochar, which contained only phenol with a concentration of 666 mg kg(-1). By washing with acetone and water, these concentrations were significantly reduced. In this study, the potential toxic effects of hydrochars on the free-living nematode Caenorhabditis elegans were investigated via gene transcription studies using the following four matrices: (i) raw rice husk, (ii) unwashed rice char, (iii) acetone/water washed rice char, and (iv) the wash water of the two rice chars produced at 200 and 300 °C via hydrothermal carbonization (HTC). Furthermore, genetically modified strains, where the green fluorescent protein (GFP) gene sequence is linked to a reporter gene central in specific anti-stress regulations, were also exposed to these matrices. Transgenic worms exposed to hydrochars showed very weak, if any, fluorescence, and expression of the associated RNAs related to stress response and biotransformation genes was surprisingly downregulated. Similar patterns were also found for the raw rice husk. It is hypothesized that an unidentified chemical trigger exists in the rice husk, which is not destroyed during the HTC process. Therefore, the use of GFP transgenic nematode strains cannot be recommended as a general rapid monitoring tool for farmers treating their fields with artificial char. However, it is hypothesized that the observed reduced

  13. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans.

    Science.gov (United States)

    Leighton, Daniel H W; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W

    2014-12-16

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  14. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering

    Science.gov (United States)

    Dickinson, Daniel J.; Goldstein, Bob

    2016-01-01

    The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)–Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome editing, including a discussion of which strategies are best suited to producing different kinds of targeted genome modifications. PMID:26953268

  15. Selective Lineage Specification by Mab-19 during Caenorhabditis Elegans Male Peripheral Sense Organ Development

    OpenAIRE

    Sutherlin, M. E.; Emmons, S W

    1994-01-01

    The action of the gene mab-19 is required for specification of a subset of Caenorhabditis elegans male peripheral sense organ (ray) lineages. Two mab-19 alleles, isolated in screens for ray developmental mutations, resulted in males that lacked the three most posterior rays. Cell lineage alterations of male-specific divisions of the most posterior lateral hypodermal (seam) blast cell, T, resulted in the ray loss phenotype in mab-19 mutant animals. Postembryonic seam lineage defects were limit...

  16. Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project

    OpenAIRE

    Gerstein, Mark B.; Lu, Zhi John; Van Nostrand, Eric L.; Cheng, Chao; Arshinoff, Bradley I.; Liu, Tao; Yip, Kevin Y.; Robilotto, Rebecca; Rechtsteiner, Andreas; Ikegami, Kohta; Alves, Pedro; Chateigner, Aurelien; Perry, Marc; Morris, Mitzi; Auerbach, Raymond K.

    2010-01-01

    We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor–binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of tr...

  17. Hierarchical sparse coding in the sensory system of Caenorhabditis elegans

    OpenAIRE

    Zaslaver, Alon; Liani, Idan; Shtangel, Oshrat; Ginzburg, Shira; Yee, Lisa; Sternberg, Paul W.

    2015-01-01

    Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal expresses a genetically encoded calcium indicator in individual sensory neurons....

  18. Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    OpenAIRE

    Vázquez-Manrique, Rafael P.; Nagy, Anikó I.; Legg, James C.; Bales, Olivia A.M.; Ly, Sung; Baylis, Howard A.

    2008-01-01

    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore sur...

  19. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans

    OpenAIRE

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-01-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role o...

  20. An Agar Mount for Observation of Caenorhabditis elegans Embryos

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Timothy Walston and Jeff Hardin Adapted from [*Imaging in Developmental Biology*](http://www.cshlpress.com/link/imagingdevbiop.htm) (ed. Sharpe and Wong). CSHL Press, Cold Spring Harbor, NY, USA, 2011 (in press). ### INTRODUCTION The *Caenorhabditis elegans* embryo is particularly amenable to microscopy and embryological studies because of its short developmental time, transparent shell, and nonpigmented cells. The agar mount described in this protocol is an easy way to ...

  1. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium

    OpenAIRE

    Pukkila-Worley, Read; Ausubel, Frederick M.

    2012-01-01

    Intestinal epithelial cells provide an essential line of defense for Caenorhabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing stud...

  2. Controlling Interneuron Activity in Caenorhabditis Elegans to Evoke Chemotactic Behaviour

    OpenAIRE

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2012-01-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. Howe...

  3. Fluorodeoxyuridine Improves Caenorhabditis elegans Proteostasis Independent of Reproduction Onset

    OpenAIRE

    Feldman, Naama; Kosolapov, Libby; Ben-Zvi, Anat

    2014-01-01

    Protein homeostasis (proteostasis) networks are dynamic throughout the lifespan of an organism. During Caenorhabditis elegans adulthood, the maintenance of metastable proteins and the activation of stress responses are inversely associated with germline stem cell proliferation. Here, we employed the thymidylate synthase inhibitor 5-fluoro-2′-deoxyuridine (FUdR) to chemically inhibit reproduction, thus allowing for examination of the interplay between reproduction and somatic proteostasis. We ...

  4. Functional aspects of ciliary maintenance in Caenorhabditis elegans

    OpenAIRE

    Mohan, Swetha

    2013-01-01

    Primary cilia are cellular antennae found on many cell types in metazoans. Their biogenesis and maintenance is critical throughout lifespan of an animal to support signal transduction pathways essential for development, and physiological processes such as vision and olfaction. Intraflagellar transport (IFT) is a process that is required to form and maintain cilia. Studies in Chlamydomonas reinhardtii and Caenorhabditis elegans have revealed several components required for ciliogenesis and IFT...

  5. Dauer formation induced by high temperatures in Caenorhabditis elegans.

    OpenAIRE

    Ailion, M; Thomas, J. H.

    2000-01-01

    Dauer formation in Caenorhabditis elegans is regulated by several environmental stimuli, including a pheromone and temperature. Dauer formation is moderately induced as the growth temperature increases from 15 degrees to 25 degrees. Here we show that dauer formation is very strongly induced at a temperature of 27 degrees in both wild-type animals and mutants such as unc-64, unc-31, and unc-3, which do not form dauers at 25 degrees. A 27 degrees temperature stimulus is sufficient to induce dau...

  6. Lysosomal Signaling Molecules Regulate Longevity in Caenorhabditis elegans

    OpenAIRE

    Folick, Andrew; Oakley, Holly Doebbler; Yu, Yong; Armstrong, Eric H.; Kumari, Manju; Sanor, Lucas; Moore, David D.; Ortlund, Eric A.; Zechner, Rudolf; Wang, Meng C.

    2015-01-01

    Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm, Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, consequently promoting longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysi...

  7. Sperm competition in the absence of fertilization in Caenorhabditis elegans.

    OpenAIRE

    Singson, A; Hill, K L; L'Hernault, S. W.

    1999-01-01

    Hermaphrodite self-fertilization is the primary mode of reproduction in the nematode Caenorhabditis elegans. However, when a hermaphrodite is crossed with a male, nearly all of the oocytes are fertilized by male-derived sperm. This sperm precedence during reproduction is due to the competitive superiority of male-derived sperm and results in a functional suppression of hermaphrodite self-fertility. In this study, mutant males that inseminate fertilization-defective sperm were used to reveal t...

  8. Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans.

    OpenAIRE

    LaMunyon, C W; Ward, S.

    1998-01-01

    Sperm competition is generally thought to drive the evolution of sperm miniaturization. Males gain advantage by transferring more sperm, which they produce by dividing limited resources into ever smaller cells. Here, we describe the opposite effect of size on the competitiveness of amoeboid sperm in the hermaphroditic nematode Caenorhabditis elegans. Larger sperm crawled faster and displaced smaller sperm, taking precedence at fertilization. Larger sperm took longer to produce, however, and s...

  9. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hidehito Kuroyanagi

    Full Text Available An enormous number of alternative pre-mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a-4c and 7a-7b, of the Caenorhabditis elegans uncoordinated (unc-32 gene, encoding the a subunit of V0 complex of vacuolar-type H(+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA-binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA-binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive

  10. Chemically defined medium and Caenorhabditis elegans

    Science.gov (United States)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  11. A metabolic signature of long life in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Viney Jonathan M

    2010-02-01

    Full Text Available Abstract Background Many Caenorhabditis elegans mutations increase longevity and much evidence suggests that they do so at least partly via changes in metabolism. However, up until now there has been no systematic investigation of how the metabolic networks of long-lived mutants differ from those of normal worms. Metabolomic technologies, that permit the analysis of many untargeted metabolites in parallel, now make this possible. Here we use one of these, 1H nuclear magnetic resonance spectroscopy, to investigate what makes long-lived worms metabolically distinctive. Results We examined three classes of long-lived worms: dauer larvae, adult Insulin/IGF-1 signalling (IIS-defective mutants, and a translation-defective mutant. Surprisingly, these ostensibly different long-lived worms share a common metabolic signature, dominated by shifts in carbohydrate and amino acid metabolism. In addition the dauer larvae, uniquely, had elevated levels of modified amino acids (hydroxyproline and phosphoserine. We interrogated existing gene expression data in order to integrate functional (metabolite-level changes with transcriptional changes at a pathway level. Conclusions The observed metabolic responses could be explained to a large degree by upregulation of gluconeogenesis and the glyoxylate shunt as well as changes in amino acid catabolism. These responses point to new possible mechanisms of longevity assurance in worms. The metabolic changes observed in dauer larvae can be explained by the existence of high levels of autophagy leading to recycling of cellular components. See associated minireview: http://jbiol.com/content/9/1/7

  12. Dauer formation induced by high temperatures in Caenorhabditis elegans.

    Science.gov (United States)

    Ailion, M; Thomas, J H

    2000-11-01

    Dauer formation in Caenorhabditis elegans is regulated by several environmental stimuli, including a pheromone and temperature. Dauer formation is moderately induced as the growth temperature increases from 15 degrees to 25 degrees. Here we show that dauer formation is very strongly induced at a temperature of 27 degrees in both wild-type animals and mutants such as unc-64, unc-31, and unc-3, which do not form dauers at 25 degrees. A 27 degrees temperature stimulus is sufficient to induce dauer formation in wild-type animals independent of pheromone. Analysis of previously described dauer mutants at 27 degrees reveals a number of surprising results. Several classes of mutants (dyf, daf-3, tax-4, and tax-2) that are defective in dauer formation at lower temperatures reverse their phenotypes at 27 degrees and form dauers constitutively. Epistasis experiments place unc-64 and unc-31 at a different position in the dauer pathway from unc-3. We also uncover new branches of the dauer pathway at 27 degrees that are not detected at 25 degrees. We show that epistatic gene interactions can show both quantitative and qualitative differences depending on environmental conditions. Finally, we discuss some of the possible ecological implications of dauer induction by high temperatures. PMID:11063684

  13. Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhao

    2012-01-01

    Full Text Available All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc. with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control.

  14. The effects of short-term hypergravity on Caenorhabditis elegans

    Science.gov (United States)

    Saldanha, Jenifer N.; Pandey, Santosh; Powell-Coffman, Jo Anne

    2016-08-01

    As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.

  15. Physiological and Immunological Regulations in Caenorhabditis elegans Infected with Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Sivamaruthi, Bhagavathi Sundaram; Balamurugan, Krishnaswamy

    2014-03-01

    Studies pertaining to Salmonella enterica serovar Typhimurium infection by utilizing model systems failed to mimic the essential aspects of immunity induced by Salmonella enterica serovar Typhi, as the determinants of innate immunity are distinct. The present study investigated the physiological and innate immune responses of S. Typhi infected Caenorhabditis elegans and also explored the Ty21a mediated immune enhancement in C. elegans. Ty21a is a known live vaccine for typhoidal infection in human beings. Physiological responses of C. elegans infected with S. Typhi assessed by survival and behavioral assays revealed that S. Typhi caused host mortality by persistent infection. However, Ty21a exposure to C. elegans was not harmful. Ty21a pre-exposed C. elegans, exhibited significant resistance against S. Typhi infection. Elevated accumulation of S. Typhi inside the infected host was observed when compared to Ty21a exposures. Transcript analysis of candidate innate immune gene (clec-60, clec-87, lys-7, ilys-3, scl-2, cpr-2, F08G5.6, atf-7, age-1, bec-1 and daf-16) regulations in the host during S. Typhi infection have been assessed through qPCR analysis to understand the activation of immune signaling pathways during S. Typhi infections. Gene silencing approaches confirmed that clec-60 and clec-87 has a major role in the defense system of C. elegans during S. Typhi infection. In conclusion, the study revealed that preconditioning of host with Ty21a protects against subsequent S. Typhi infection. PMID:24426167

  16. Nucleotide Excision Repair in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Hannes Lans

    2011-01-01

    Full Text Available Nucleotide excision repair (NER plays an essential role in many organisms across life domains to preserve and faithfully transmit DNA to the next generation. In humans, NER is essential to prevent DNA damage-induced mutation accumulation and cell death leading to cancer and aging. NER is a versatile DNA repair pathway that repairs many types of DNA damage which distort the DNA helix, such as those induced by solar UV light. A detailed molecular model of the NER pathway has emerged from in vitro and live cell experiments, particularly using model systems such as bacteria, yeast, and mammalian cell cultures. In recent years, the versatility of the nematode C. elegans to study DNA damage response (DDR mechanisms including NER has become increasingly clear. In particular, C. elegans seems to be a convenient tool to study NER during the UV response in vivo, to analyze this process in the context of a developing and multicellular organism, and to perform genetic screening. Here, we will discuss current knowledge gained from the use of C. elegans to study NER and the response to UV-induced DNA damage.

  17. The novel dipeptide Tyr-Ala (TA) significantly enhances the lifespan and healthspan of Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Z; Zhao, Y; Wang, X; Lin, R; Zhang, Y; Ma, H; Guo, Y; Xu, L; Zhao, B

    2016-04-20

    Food-derived bioactive peptides may have various physiological modulatory and regulatory functions and are now being studied extensively. Recently, the novel dipeptide Tyr-Ala was isolated from hydrolyzed maize protein. Tyr-Ala significantly prolonged the lifespan of wild-type Caenorhabditis elegans and extended the nematode healthspan and lifespan during heat/oxidative stress. Compared with its constituent amino acids, Tyr-Ala was more efficient in enhancing stress resistance. Further studies demonstrated that the significant longevity-extending effects of Tyr-Ala on Caenorhabditis elegans were attributed to its in vitro and in vivo free radical-scavenging effects, in addition to its ability to up-regulate stress resistance-related proteins, such as SOD (Superoxide Dismutase)-3 and HSP (Heat Shock Protein)-16.2. Real-time PCR results showed that the up-regulation of aging-associated genes, such as daf-16, sod-3, hsp-16.2 and skn-1, also contributed to the stress-resistance effect of Tyr-Ala. These results indicate that the novel dipeptide Tyr-Ala can protect against external stress and thus extend the lifespan and healthspan of Caenorhabditis elegans. Thereby, Tyr-Ala could be used as a potential medicine in anti-aging research. PMID:26987062

  18. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans.

    Science.gov (United States)

    Holden-Dye, Lindy; Walker, Robert J

    2014-01-01

    Parasitic nematodes infect many species of animals throughout the phyla, including humans. Moreover, nematodes that parasitise plants are a global problem for agriculture. As such, these nematodes place a major burden on human health, on livestock production, on the welfare of companion animals and on crop production. In the 21st century there are two major challenges posed by the wide-spread prevalence of parasitic nematodes. First, many anthelmintic drugs are losing their effectiveness because nematode strains with resistance are emerging. Second, serious concerns regarding the environmental impact of the nematicides used for crop protection have prompted legislation to remove them from use, leaving agriculture at increased risk from nematode pests. There is clearly a need for a concerted effort to address these challenges. Over the last few decades the free-living nematode Caenorhabditis elegans has provided the opportunity to use molecular genetic techniques for mode of action studies for anthelmintics and nematicides. These approaches continue to be of considerable value. Less fruitful so far, but nonetheless potentially very useful, has been the direct use of C. elegans for anthelmintic and nematicide discovery programmes. Here we provide an introduction to the use of C. elegans as a 'model' parasitic nematode, briefly review the study of nematode control using C. elegans and highlight approaches that have been of particular value with a view to facilitating wider-use of C. elegans as a platform for anthelmintic and nematicide discovery and development. PMID:25517625

  19. Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans.

    Science.gov (United States)

    Sun, Quancai; Yue, Yiren; Shen, Peiyi; Yang, Jeremy J; Park, Yeonhwa

    2016-04-01

    Cranberry phenolic compounds have been linked to many health benefits. A recent report suggested that cranberry bioactives inhibit adipogenesis in 3T3-L1 adipocytes. Thus, we investigated the effects and mechanisms of the cranberry product (CP) on lipid metabolism using the Caenorhabditis elegans (C. elegans) model. CP (0.016% and 0.08%) dose-dependently reduced overall fat accumulation in C. elegans (N2, wild type) by 43% and 74%, respectively, without affecting its pumping rates or locomotive activities. CP decreased fat accumulation in aak-2 (an ortholog of AMP-activated kinase α) and tub-1 (an ortholog of TUBBY) mutants significantly, but only minimal effects were observed in sbp-1 (an ortholog of sterol response element-binding protein-1) and nhr-49 (an ortholog of peroxisome proliferator-activated receptor-α) mutant strains. We further confirmed that CP downregulated sbp-1, cebp, and hosl-1 (an ortholog of hormone-sensitive lipase homolog) expression, while increasing the expression of nhr-49 in wild-type C. elegans. These results suggest that CP could effectively reduce fat accumulation in C. elegans dependent on sbp-1, cebp, and nhr-49, but not aak-2 and tub-1. PMID:26991055

  20. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster

    OpenAIRE

    Deng, Xinxian; Hiatt, Joseph B.; Nguyen, Di Kim; Ercan, Sevinc; Sturgill, David; Hillier, Ladeana W; Schlesinger, Felix; Davis, Carrie A.; Reinke, Valerie J; Gingeras, Thomas R.; Shendure, Jay; Robert H Waterston; Oliver, Brian; Lieb, Jason D.; Disteche, Christine M

    2011-01-01

    Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed ‘Ohno’s hypothesis’). Although this hypothesis is w...

  1. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    Science.gov (United States)

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  2. Angiotensin Converting Enzyme (ACE Inhibitor Extends Caenorhabditis elegans Life Span.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2016-02-01

    Full Text Available Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms

  3. Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yeu-Ching Shi

    Full Text Available BACKGROUND: Monascus-fermented products are mentioned in an ancient Chinese pharmacopoeia of medicinal food and herbs. Monascus-fermented products offer valuable therapeutic benefits and have been extensively used in East Asia for several centuries. Several biological activities of Monascus-fermented products were recently described, and the extract of Monascus-fermented products showed strong antioxidant activity of scavenging DPPH radicals. To evaluate whether Monascus-fermented dioscorea products have potential as nutritional supplements, Monascus-fermented dioscorea's modulation of oxidative-stress resistance and associated regulatory mechanisms in Caenorhabditis elegans were investigated. PRINCIPAL FINDINGS: We examined oxidative stress resistance of the ethanol extract of red mold dioscorea (RMDE in C. elegans, and found that RMDE-treated wild-type C. elegans showed an increased survival during juglone-induced oxidative stress compared to untreated controls, whereas the antioxidant phenotype was absent from a daf-16 mutant. In addition, the RMDE reduced the level of intracellular reactive oxygen species in C. elegans. Finally, the RMDE affected the subcellular distribution of the FOXO transcription factor, DAF-16, in C. elegans and induced the expression of the sod-3 antioxidative gene. CONCLUSIONS: These findings suggest that the RMDE acts as an antioxidative stress agent and thus may have potential as a nutritional supplement. Further studies in C. elegans suggest that the antioxidant effect of RMDE is mediated via regulation of the DAF-16/FOXO-dependent pathway.

  4. Caenorhabditis elegans - A model system for space biology studies

    Science.gov (United States)

    Johnson, Thomas E.; Nelson, Gregory A.

    1991-01-01

    The utility of the nematode Caenorhabditis elegans in studies spanning aspects of development, aging, and radiobiology is reviewed. These topics are interrelated via cellular and DNA repair processes especially in the context of oxidative stress and free-radical metabolism. The relevance of these research topics to problems in space biology is discussed and properties of the space environment are outlined. Exposure to the space-flight environment can induce rapid changes in living systems that are similar to changes occurring during aging; manipulation of these environmental parameters may represent an experimental strategy for studies of development and senescence. The current and future opportunities for such space-flight experimentation are presented.

  5. Quantum algorithm for programmed cell death of Caenorhabditis elegans

    International Nuclear Information System (INIS)

    During the development of Caenorhabditis elegans, through cell divisions, a total of exactly 1090 cells are generated, 131 of which undergo programmed cell death (PCD) to result in an adult organism comprising 959 cells. Of those 131, exactly 113 undergo PCD during embryogenesis, subdivided across the cell lineages in the following fashion: 98 for AB lineage; 14 for MS lineage; and 1 for C lineage. Is there a law underlying these numbers, and if there is, what could it be? Here we wish to show that the count of the cells undergoing PCD complies with the cipher laws related to the algorithms of Shor and of Grover

  6. A pre- and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pooja Jadiya

    Full Text Available BACKGROUND: The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown. METHODOLOGY/PRINCIPAL FINDINGS: Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans. CONCLUSIONS/SIGNIFICANCE: Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.

  7. trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available Mutants of trt-1, the Caenorhabditis elegans telomerase reverse transcriptase, reproduce normally for several generations but eventually become sterile as a consequence of telomere erosion and end-to-end chromosome fusions. Telomere erosion and uncapping do not cause an increase in apoptosis in the germlines of trt-1 mutants. Instead, late-generation trt-1 mutants display chromosome segregation defects that are likely to be the direct cause of sterility. trt-1 functions in the same telomere replication pathway as mrt-2, a component of the Rad9/Rad1/Hus1 (9-1-1 proliferating cell nuclear antigen-like sliding clamp. Thus, the 9-1-1 complex may be required for telomerase to act at chromosome ends in C. elegans. Although telomere erosion limits replicative life span in human somatic cells, neither trt-1 nor telomere shortening affects postmitotic aging in C. elegans. These findings illustrate effects of telomere dysfunction in C. elegans mutants lacking the catalytic subunit of telomerase, trt-1.

  8. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans.

    Science.gov (United States)

    Wilson, Mark A; Shukitt-Hale, Barbara; Kalt, Wilhelmina; Ingram, Donald K; Joseph, James A; Wolkow, Catherine A

    2006-02-01

    The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blueberry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects. PMID:16441844

  9. Mutations in chemosensory cilia cause resistance to paraquat in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Fujii, Michihiko; Matsumoto, Yuki; Tanaka, Nanae; Miki, Kensuke; Suzuki, Toshikazu; Ishii, Naoaki; Ayusawa, Dai

    2004-05-01

    The relationship between oxidative stress and longevity is a matter of concern in various organisms. We isolated mutants resistant to paraquat from nematode Caenorhabditis elegans. One mutant named mev-4 was long-lived and showed cross-resistance to heat and Dyf phenotype (defective in dye filling). Genetic and sequence analysis revealed that mev-4 had a nonsense mutation on the che-11 gene, homologues of which are involved in formation of cilia and flagella in other organisms. The paraquat resistance was commonly observed in various Dyf mutants and did not depend on the daf-16 gene, whereas the extension of life span did depend on it. Expression of antioxidant enzyme genes seemed normal. These results suggest that chemosensory neurons are a target of oxidative stress and influence longevity dependent on the daf-16 signaling in C. elegans. PMID:14982934

  10. Functional characterization in Caenorhabditis elegans of transmembrane worm-human orthologs

    Directory of Open Access Journals (Sweden)

    Baillie David L

    2004-11-01

    Full Text Available Abstract Background The complete genome sequences for human and the nematode Caenorhabditis elegans offer an opportunity to learn more about human gene function through functional characterization of orthologs in the worm. Based on a previous genome-wide analysis of worm-human orthologous transmembrane proteins, we selected seventeen genes to explore experimentally in C. elegans. These genes were selected on the basis that they all have high confidence candidate human orthologs and that their function is unknown. We first analyzed their phylogeny, membrane topology and domain organization. Then gene functions were studied experimentally in the worm by using RNA interference and transcriptional gfp reporter gene fusions. Results The experiments gave functional insights for twelve of the genes studied. For example, C36B1.12, the worm ortholog of three presenilin-like genes, was almost exclusively expressed in head neurons, suggesting an ancient conserved role important to neuronal function. We propose a new transmembrane topology for the presenilin-like protein family. sft-4, the worm ortholog of surfeit locus gene Surf-4, proved to be an essential gene required for development during the larval stages of the worm. R155.1, whose human ortholog is entirely uncharacterized, was implicated in body size control and other developmental processes. Conclusions By combining bioinformatics and C. elegans experiments on orthologs, we provide functional insights on twelve previously uncharacterized human genes.

  11. Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs

    OpenAIRE

    Kudron, Michelle; Niu, Wei; Lu, Zhi; Wang, Guilin; Gerstein, Mark; Snyder, Michael; Reinke, Valerie

    2013-01-01

    Background The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood. Results We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, th...

  12. Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans.

    Science.gov (United States)

    Hall, Julie; Haas, Kathryn L; Freedman, Jonathan H

    2012-08-01

    Cadmium is an environmental toxicant whose exposure is associated with multiple human pathologies. To prevent cadmium-induced toxicity, organisms produce a variety of detoxification molecules. In response to cadmium, the nematode Caenorhabditis elegans increases the steady-state levels of several hundred genes, including two metallothioneins, mtl-1 and mtl-2, and the cadmium-specific response gene, cdr-1. Despite the presumed importance in metal detoxification of mtl-1 and mtl-2, knockdown of their expression does not increase cadmium hypersensitivity, which suggests that these genes are not required for resistance to metal toxicity in C. elegans. To determine whether cdr-1 is critical in metal detoxification and compensates for the loss of mtl-1 and/or mtl-2, C. elegans strains were generated in which one, two, and all three genes were deleted, and the effects of cadmium on brood size, embryonic lethality, the Bag phenotype, and growth were determined. Growth at low cadmium concentrations was the only endpoint in which the triple mutant displayed more sensitivity than the single and double mutants. A lack of hypersensitivity in these strains suggests that other factors may be involved in the response to cadmium. Caenorhabditis elegans produces phytochelatins (PCs) that are critical in the defense against cadmium toxicity. PC levels in wild type, cdr-1 single, mtl-1, mtl-2 double, and triple mutants were measured. PC levels were constitutively higher in the mtl-1, mtl-2 double, and triple mutants compared with wild type. Following cadmium exposure, PC levels increased. The lack of cadmium hypersensitivity when these genes are deleted may be attributed to the compensatory effects of increases in PCs. PMID:22552775

  13. Homologue pairing, recombination and segregation in Caenorhabditis elegans.

    Science.gov (United States)

    Zetka, M

    2009-01-01

    Meiosis in the free-living, hermaphroditic nematode Caenorhabditis elegans is marked by the same highly conserved features observed in other sexually reproducing systems. Accurate chromosome segregation at the meiotic divisions depends on earlier landmark events of meiotic prophase, including the pairing of homologous chromosomes, synapsis between them, and the formation of crossovers. Dissection of these processes has revealed a unique simplification of meiotic mechanisms that impact the interpretation of meiotic chromosome behaviour in more complex systems. Chromosome sites required for chromosome pairing are consolidated to one end of each chromosome, the many sites of recombination initiation are resolved into a single crossover for each chromosome pair, and the diffuse (holocentric) kinetic activity that extends along the length of the mitotic chromosomes is reduced to a single end of each meiotic chromosome. Consequently, studies from the nematode have illuminated and challenged long-standing concepts of homologue pairing mechanisms, crossover interference, and kinetochore structure. Because chromosome pairing, synapsis, and recombination can proceed independently of one another, C. elegans has provided a simplified system for studying these processes and the mechanisms mediating their coordination during meiosis. This review covers the major features of C. elegans meiosis with emphasis on its contributions to understanding essential meiotic processes. PMID:18948706

  14. Research progress in neuro-immune interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jin-ling CAI

    2012-09-01

    Full Text Available The innate immune response may be activated quickly once the organism is invaded by exotic pathogens. An excessive immune response may result in inflammation and tissue damage, whereas an insufficient immune response may result in infection. Nervous system may regulate the intensity of innate immune responses by releasing neurotransmitters, neuropeptides and hormones. Compared with the complicated neuro-immune system in mammals, it is much simpler in Caenorhabditis elegans. Besides, C. elegans is accessible to genetic, molecular biology and behavioral analyses, so it has been used in studies on neuro-immune interactions. It has been revealed recently in the studies with C. elegans that the neuronal pathways regulating innate immune responses primarily include a transforming growth factor-β (TGF-β pathway, an insulin/insulin-like growth factor receptor (IGF pathway and dopaminergic neurotransmission. Since these pathways are evolutionally conservative, so it might be able to provide some new ideas for the research on neuro-immune interactions at molecular levels. The recent progress in this field has been reviewed in present paper.

  15. Pan-neuronal imaging in roaming Caenorhabditis elegans.

    Science.gov (United States)

    Venkatachalam, Vivek; Ji, Ni; Wang, Xian; Clark, Christopher; Mitchell, James Kameron; Klein, Mason; Tabone, Christopher J; Florman, Jeremy; Ji, Hongfei; Greenwood, Joel; Chisholm, Andrew D; Srinivasan, Jagan; Alkema, Mark; Zhen, Mei; Samuel, Aravinthan D T

    2016-02-23

    We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva. PMID:26711989

  16. Tat-mediated protein delivery in living Caenorhabditis elegans

    International Nuclear Information System (INIS)

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm

  17. Amphid defective mutant of Caenorhabditis elegans.

    Science.gov (United States)

    De Riso, L; Ristoratore, F; Sebastiano, M; Bazzicalupo, P

    1994-01-01

    Studies are reported on a chemoreception mutant which arose in a mutator strain. The mutant sensory neurons do not stain with fluoresceine isothiocyanate (Dyf phenotype), hence the name, dyf-1, given to the gene it identifies. The gene maps on LGI, 0.4 map units from dpy-5 on the unc-11 side. The response of mutant worms to various repellents has been studied and shown to be partially altered. Other chemoreception based behaviors are less affected. The cilia of the sensory neurons of the amphid are shorter than normal and the primary defect may be in the capacity of the sheath cells to secrete the matrix material that fills the space between cilia in the amphid channel. Progress toward the molecular cloning of the gene is also reported. Relevant results from other laboratories are briefly reviewed. PMID:7896139

  18. Inducible Systemic RNA Silencing in Caenorhabditis elegans

    OpenAIRE

    Timmons, Lisa; Tabara, Hiroaki; Mello, Craig C.; Fire, Andrew Z.

    2003-01-01

    Introduction of double-stranded RNA (dsRNA) can elicit a gene-specific RNA interference response in a variety of organisms and cell types. In many cases, this response has a systemic character in that silencing of gene expression is observed in cells distal from the site of dsRNA delivery. The molecular mechanisms underlying the mobile nature of RNA silencing are unknown. For example, although cellular entry of dsRNA is possible, cellular exit of dsRNA from normal anim...

  19. Multi-environment model estimation for motility analysis of Caenorhabditis Elegans

    CERN Document Server

    Sznitman, Raphael; Hager, Gregory D; Arratia, Paulo E; Sznitman, Josue

    2010-01-01

    The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and ...

  20. The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure

    Science.gov (United States)

    Jauregui, Andrew R.; Nguyen, Ken C.Q.; Hall, David H.; Barr, Maureen M.

    2008-01-01

    Nephronophthisis (NPHP) is the most common genetic cause of end-stage renal disease in children and young adults. In Chlamydomonas reinhardtii, Caenorhabditis elegans, and mammals, the NPHP1 and NPHP4 gene products nephrocystin-1 and nephrocystin-4 localize to basal bodies or ciliary transition zones (TZs), but their function in this location remains unknown. We show here that loss of C. elegans NPHP-1 and NPHP-4 from TZs is tolerated in developing cilia but causes changes in localization of specific ciliary components and a broad range of subtle axonemal ultrastructural defects. In amphid channel cilia, nphp-4 mutations cause B tubule defects that further disrupt intraflagellar transport (IFT). We propose that NPHP-1 and NPHP-4 act globally at the TZ to regulate ciliary access of the IFT machinery, axonemal structural components, and signaling molecules, and that perturbing this balance results in cell type–specific phenotypes. PMID:18316409

  1. Biochemistry, function, and deficiency of vitamin B12 in Caenorhabditis elegans.

    Science.gov (United States)

    Bito, Tomohiro; Watanabe, Fumio

    2016-09-01

    Caenorhabditis elegans is a nematode that has been widely used as an animal for investigation of diverse biological phenomena. Vitamin B12 is essential for the growth of this worm, which contains two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase. A full complement of gene homologs encoding the enzymes associated with the mammalian intercellular metabolic processes of vitamin B12 is identified in the genome of C elegans However, this worm has no orthologs of the vitamin B12-binders that participate in human intestinal absorption and blood circulation. When the worm is treated with a vitamin B12-deficient diet for five generations (15 days), it readily develops vitamin B12 deficiency, which induces worm phenotypes (infertility, delayed growth, and shorter lifespan) that resemble the symptoms of mammalian vitamin B12 deficiency. Such phenotypes associated with vitamin B12 deficiency were readily induced in the worm. PMID:27486161

  2. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    Science.gov (United States)

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. PMID:25384571

  3. Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda.

    Science.gov (United States)

    Dierking, Katja; Yang, Wentao; Schulenburg, Hinrich

    2016-05-26

    Nematodes and arthropods likely form the taxon Ecdysozoa. Information on antimicrobial effectors from the model nematode Caenorhabditis elegans may thus shed light on the evolutionary origin of these defences in arthropods. This nematode species possesses an extensive armory of putative antimicrobial effector proteins, such as lysozymes, caenopores (or saposin-like proteins), defensin-like peptides, caenacins and neuropeptide-like proteins, in addition to the production of reactive oxygen species and autophagy. As C. elegans is a bacterivore that lives in microbe-rich environments, some of its effector peptides and proteins likely function in both digestion of bacterial food and pathogen elimination. In this review, we provide an overview of C. elegans immune effector proteins and mechanisms. We summarize the experimental evidence of their antimicrobial function and involvement in the response to pathogen infection. We further evaluate the microbe-induced expression of effector genes using WormExp, a recently established database for C. elegans gene expression analysis. We emphasize the need for further analysis at the protein level to demonstrate an antimicrobial activity of these molecules both in vitro and in vivoThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160601

  4. Single-copy insertion of transgenes in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Frøkjaer-Jensen, Christian; Davis, M Wayne; Hopkins, Christopher E; Newman, Blake J; Thummel, Jason M; Olesen, Søren-Peter; Grunnet, Morten; Jorgensen, Erik M

    2008-01-01

    At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have...... developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be...... obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines....

  5. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  6. Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates

    OpenAIRE

    Shoichet, Sarah A.; Malik, Talat H.; Rothman, Joel H.; Shivdasani, Ramesh A.

    2000-01-01

    In ecdysozoan protostomes, including arthropods and nematodes, transcription factors of the GATA family specify the endoderm: Drosophila dGATAb (ABF/Serpent) and Caenorhabditis elegans END-1 play important roles in generating this primary germ layer. end-1 is the earliest expressed endoderm-specific gene known in C. elegans and appears to initiate the program of gene expression required for endoderm differentiation, including a cascade of GATA factors required for development and maintenance ...

  7. SMG-ly knocking out gene expression in specific cells: an educational primer for use with "a novel strategy for cell-autonomous gene knockdown in caenorhabditis elegans defines a cell-specific function for the G-protein subunit GOA-1".

    Science.gov (United States)

    Meneely, Philip M; Bloom, Jordana C

    2013-12-01

    A recent article by Maher et al. in GENETICS introduces an alternative approach to cell-type-specific gene knockdown in Caenorhabditis elegans, using nonsense-mediated decay. This strategy has the potential to be applicable to other organisms (this strategy requires that animals can survive without nonsense-mediated decay-not all can). This Primer article provides a guide and resource for educators and students by describing different gene knockdown methodologies, by assisting with the technically difficult portions of the Maher et al. article, and by providing conceptual questions relating to the article. PMID:24302743

  8. The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hongkyun Kim

    2009-12-01

    Full Text Available Genetic defects in the dystrophin-associated protein complex (DAPC are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.

  9. Neuronal regulation of ascaroside response during mate response behavior in the nematode Caenorhabditis elegans

    Science.gov (United States)

    Small-molecule signaling plays an important role in the biology of Caenorhabditis elegans. We have previously shown that ascarosides, glycosides of the dideoxysugar ascarylose regulate both development and behavior in C. elegans The mating signal consists of a synergistic blend of three dauer-induc...

  10. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Landt Larsen, Ane; Færgeman, Nils J.;

    2010-01-01

    The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method...

  11. FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1

    Science.gov (United States)

    G-protein coupled receptors (GPCRs) are ancient molecules that sense environmental and physiological signals. Currently, the majority of the predicted Caenorhabditis elegans GPCRs are orphan. Here, we describe the characterization of such an orphan C. elegans GPCR, which is categorized in the tachyk...

  12. Neural maintenance roles for the matrix receptor dystroglycan and the nuclear anchorage complex in Caenorhabditis elegans

    NARCIS (Netherlands)

    Johnson, R.P.; Kramer, J.M.

    2012-01-01

    Recent studies in Caenorhabditis elegans have revealed specific neural maintenance mechanisms that protect soma and neurites against mispositioning due to displacement stresses, such as muscle contraction. We report that C. elegans dystroglycan (DG) DGN-1 functions to maintain the position of lumbar

  13. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  14. From modes to movement in the behavior of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Greg J Stephens

    Full Text Available Organisms move through the world by changing their shape, and here we explore the mapping from shape space to movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the trajectories through the correlation functions of the orientation angular velocity, orientation angle and the mean-squared displacement, and we find that the loss of orientational memory has significant contributions from both abrupt, large amplitude turning events and the continuous dynamics between these events. Further, we discover long-time persistence of orientational memory in the intervals between abrupt turns. Building on recent work demonstrating that C. elegans movements are restricted to a low-dimensional shape space, we construct a map from the dynamics in this shape space to the trajectory of the worm along the agar. We use this connection to illustrate that changes in the continuous dynamics reveal subtle differences in movement strategy that occur among mutants defective in two classes of dopamine receptors.

  15. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans

    Science.gov (United States)

    Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan

    2015-01-01

    Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711

  16. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  17. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence

    Directory of Open Access Journals (Sweden)

    Shawn Lewenza

    2014-08-01

    Full Text Available Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. The standard virulence assays rely on the slow and fast killing or paralysis of nematodes but here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. We monitored the food preferences of nematodes fed the wild type PAO1 and mutants in the type III secretion (T3S system, which is a conserved mechanism to inject secreted effectors into the host cell cytosol. A ΔexsEΔpscD mutant defective for type III secretion served as a preferred food source, while an ΔexsE mutant that overexpresses the T3S effectors was avoided. Both food sources were ingested and observed in the gastrointestinal tract. Using the slow killing assay, we showed that the ΔexsEΔpscD had reduced virulence and thus confirmed that preferred food sources are less virulent than the wild type. Next we developed a high throughput feeding behaviour assay with 48 possible food colonies in order to screen a transposon mutant library and identify potential virulence genes. C. elegans identified and consumed preferred food colonies from a grid of 48 choices. The mutants identified as preferred food sources included known virulence genes, as well as novel genes not identified in previous C. elegans infection studies. Slow killing assays were performed and confirmed that several preferred food sources also showed reduced virulence. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for P. aeruginosa PAO1.

  18. Proteome changes of Caenorhabditis elegans upon a Staphylococcus aureus infection

    Directory of Open Access Journals (Sweden)

    Schoofs Liliane

    2010-02-01

    Full Text Available Abstract Background The success of invertebrates throughout evolution is an excellent illustration of the efficiency of their defence strategies. Caenorhabditis elegans has proven to be an appropriate model for transcriptome studies of host-pathogen interactions. The aim of this paper is to complement this knowledge by investigating the worm's response to a Staphylococcus aureus infection through a 2-dimensional differential proteomics approach. Results Different types of growth media in combination with either E. coli OP50 or Staphylococcus aureus were tested for an effect on the worm's lifespan. LB agar was chosen and C. elegans samples were collected 1 h, 4 h, 8 h and 24 h post S. aureus infection or E. coli incubation. Proteomics analyses resulted in the identification of 130 spots corresponding to a total of 108 differentially expressed proteins. Conclusions Exploring four time-points discloses a dynamic insight of the reaction against a gram-positive infection at the level of the whole organism. The remarkable upregulation after 8 h and 24 h of many enzymes involved in the citric acid cycle might illustrate the cost of fighting off an infection. Intriguing is the downregulation of chaperone molecules, which are presumed to serve a protective role. A comparison with a similar experiment in which C. elegans was infected with the gram-negative Aeromonas hydrophila reveals that merely 9% of the identified spots, some of which even exhibiting an opposite regulation, are present in both studies. Hence, our findings emphasise the complexity and pathogen-specificity of the worm's immune response and form a firm basis for future functional research. Reviewers This article was reviewed by Itai Yanai, Dieter Wolf and Torben Luebke (nominated by Walter Lutz.

  19. Multiple subunits of the Caenorhabditis elegans anaphase-promoting complex are required for chromosome segregation during meiosis I.

    OpenAIRE

    Davis, Edward S.; Wille, Lucia; Chestnut, Barry A.; Sadler, Penny L.; Shakes, Diane C; Golden, Andy

    2002-01-01

    Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.

  20. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor

    OpenAIRE

    Hua, Qing-Xin; Nakagawa, Satoe H.; Wilken, Jill; Ramos, Rowena R.; Jia, Wenhua; Bass, Joseph; Weiss, Michael A.

    2003-01-01

    Caenorhabditis elegans contains a family of putative insulin-like genes proposed to regulate dauer arrest and senescence. These sequences often lack characteristic sequence features of human insulin essential for its folding, structure, and function. Here, we describe the structure and receptor-binding properties of INS-6, a single-chain polypeptide expressed in specific neurons. Despite multiple nonconservative changes in sequence, INS-6 recapitulates an insulin-like fold. Although lacking c...

  1. Caveolin-2 Is Required for Apical Lipid Trafficking and Suppresses Basolateral Recycling Defects in the Intestine of Caenorhabditis elegans

    OpenAIRE

    Parker, Scott; Walker, Denise S.; Ly, Sung; Baylis, Howard A.

    2009-01-01

    Caveolins are plasma membrane–associated proteins that colocalize with, and stabilize caveolae. Their functions remain unclear although they are known to be involved in specific events in cell signaling and endocytosis. Caenorhabditis elegans encodes two caveolin genes, cav-1 and cav-2. We show that cav-2 is expressed in the intestine where it is localized to the apical membrane and in intracellular bodies. Using the styryl dye FM4-64 and BODIPY-labeled lactosylceramide, we show that the inte...

  2. Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pan-Young Jeong

    Full Text Available When Caenorhabditis elegans senses dauer pheromone (daumone, signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1 and normal growth media plus liquid culture (Path 2. Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h and is complete at S6 (72 h. Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.

  3. SL1 trans Splicing and 3′-End Formation in a Novel Class of Caenorhabditis elegans Operon

    OpenAIRE

    Williams, Carol; Xu, Lei; Blumenthal, Thomas

    1999-01-01

    Many Caenorhabditis elegans genes exist in operons in which polycistronic precursors are processed by cleavage at the 3′ ends of upstream genes and trans splicing 100 to 400 nucleotides away, at the 5′ ends of downstream genes, to generate monocistronic messages. Of the two spliced leaders, SL1 is trans spliced to the 5′ ends of upstream genes, whereas SL2 is reserved for downstream genes in operons. However, there are isolated examples of what appears to be a different sort of operon, in whi...

  4. Expression of Caenorhabditis elegans-expressed Trans-HPS, partial aminopeptidase H11 from Haemonchus contortus.

    Science.gov (United States)

    Zhou, Qian-Jin; Yang, Yi; Guo, Xiao-Lu; Duan, Li-Jun; Chen, Xue-Qiu; Yan, Bao-Long; Zhang, Hong-Li; Du, Ai-Fang

    2014-10-01

    Aminopeptidase H11 present in the surface of intestine microvilli in Haemonchus contortus was identified as the most effective antigen candidate. However, its recombinant forms produced in Escherichiacoli, insect cells and yeast could not provide promising protection against H. contortus challenge, probably due to the inappropriate glycosylation and/or conformational folding. Herein, partial H11 containing the potential zinc-binding domain and two predicted glycosylation sites (nt 1 bp-1710 bp, Trans-HPS) was subcloned downstream of 5' flanking region of Caenorhabditis elegans cpr-1 gene in pPD95.77 vector, with the deletion of GFP gene. The recombinant was expressed in C. elegans and verified by blotting with anti-H11 and anti-Trans-HPS rabbit polyclonal antibodies and anti-His monoclonal antibody. Stably inherited Trans-HPS in worm descendants was achieved by integration using UV irradiation. Immunization with the crude Trans-HPS extracted from transgenic worms resulted in 37.71% reduction in faecal egg counts (FEC) (Pgoats. These results suggested an apparent delay against H. contortus egg-laying in goats, which differed from that with bacteria-origin form of partial H11 (nt 670 bp-1710 bp, HPS) (26.04% reduction in FEC and 18.46% reduction in worm burden). These findings indicate the feasibility of sufficient C. elegans-expressed H11 for the immunological research and vaccine development. PMID:25128369

  5. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress

    Directory of Open Access Journals (Sweden)

    Wu Yonghong

    2010-09-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is both sensitive and tolerant to hypoxic stress, particularly when the evolutionarily conserved hypoxia response pathway HIF-1/EGL-9/VHL is involved. Hypoxia-induced changes in the expression of a number of genes have been analyzed using whole genome microarrays in C. elegans, but the changes at the protein level in response to hypoxic stress still remain unclear. Results Here, we utilized a quantitative proteomic approach to evaluate changes in the expression patterns of proteins during the early response to hypoxia in C. elegans. Two-dimensional difference gel electrophoresis (2D-DIGE was used to compare the proteomic maps of wild type C. elegans strain N2 under a 4-h hypoxia treatment (0.2% oxygen and under normoxia (control. A subsequent analysis by MALDI-TOF-TOF-MS revealed nineteen protein spots that were differentially expressed. Nine of the protein spots were significantly upregulated, and ten were downregulated upon hypoxic stress. Three of the upregulated proteins were involved in cytoskeletal function (LEV-11, MLC-1, ACT-4, while another three upregulated (ATP-2, ATP-5, VHA-8 were ATP synthases functionally related to energy metabolism. Four ribosomal proteins (RPL-7, RPL-8, RPL-21, RPS-8 were downregulated, indicating a decrease in the level of protein translation upon hypoxic stress. The overexpression of tropomyosin (LEV-11 was further validated by Western blot. In addition, the mutant strain of lev-11(x12 also showed a hypoxia-sensitive phenotype in subsequent analyses, confirming the proteomic findings. Conclusions Taken together, our data suggest that altered protein expression, structural protein remodeling, and the reduction of translation might play important roles in the early response to oxygen deprivation in C. elegans, and this information will help broaden our knowledge on the mechanism of hypoxia response.

  6. Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans

    OpenAIRE

    Murphy, John T; Bruinsma, Janelle J.; Schneider, Daniel L.; Sara Collier; James Guthrie; Asif Chinwalla; J David Robertson; Elaine R Mardis; Kerry Kornfeld

    2011-01-01

    Author Summary Zinc is an essential nutrient that is critical for human health. However, excess zinc can cause toxicity, indicating that regulatory mechanisms are necessary to maintain homeostasis. The analysis of mechanisms that promote zinc homeostasis can elucidate fundamental regulatory processes and suggest new approaches for treating disorders of zinc metabolism. To discover genes that modulate zinc tolerance, we screened for C. elegans mutants that were resistant to zinc toxicity. Here...

  7. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-05-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. PMID:26851980

  8. The Energy Metabolism in Caenorhabditis elegans under The Extremely Low-Frequency Electromagnetic Field Exposure

    Science.gov (United States)

    Shi, Zhenhua; Yu, Hui; Sun, Yongyan; Yang, Chuanjun; Lian, Huiyong; Cai, Peng

    2015-02-01

    A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.

  9. Multi-environment model estimation for motility analysis of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Raphael Sznitman

    Full Text Available The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode 'skeletons' for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and 'skeletonizing' across a wide range of motility assays.

  10. Impact of a Complex Food Microbiota on Energy Metabolism in the Model Organism Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Elena Zanni

    2015-01-01

    Full Text Available The nematode Caenorhabditis elegans is widely used as a model system for research on aging, development, and host-pathogen interactions. Little is currently known about the mechanisms underlying the effects exerted by foodborne microbes. We took advantage of C. elegans to evaluate the impact of foodborne microbiota on well characterized physiological features of the worms. Foodborne lactic acid bacteria (LAB consortium was used to feed nematodes and its composition was evaluated by 16S rDNA analysis and strain typing before and after colonization of the nematode gut. Lactobacillus delbrueckii, L. fermentum, and Leuconostoc lactis were identified as the main species and shown to display different worm gut colonization capacities. LAB supplementation appeared to decrease nematode lifespan compared to the animals fed with the conventional Escherichia coli nutrient source or a probiotic bacterial strain. Reduced brood size was also observed in microbiota-fed nematodes. Moreover, massive accumulation of lipid droplets was revealed by BODIPY staining. Altered expression of nhr-49, pept-1, and tub-1 genes, associated with obesity phenotypes, was demonstrated by RT-qPCR. Since several pathways are evolutionarily conserved in C. elegans, our results highlight the nematode as a valuable model system to investigate the effects of a complex microbial consortium on host energy metabolism.

  11. Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Portal-Celhay Cynthia

    2012-03-01

    Full Text Available Abstract Background A powerful approach to understanding complex processes such as aging is to use model organisms amenable to genetic manipulation, and to seek relevant phenotypes to measure. Caenorhabditis elegans is particularly suited to studies of aging, since numerous single-gene mutations have been identified that affect its lifespan; it possesses an innate immune system employing evolutionarily conserved signaling pathways affecting longevity. As worms age, bacteria accumulate in the intestinal tract. However, quantitative relationships between worm genotype, lifespan, and intestinal lumen bacterial load have not been examined. We hypothesized that gut immunity is less efficient in older animals, leading to enhanced bacterial accumulation, reducing longevity. To address this question, we evaluated the ability of worms to control bacterial accumulation as a functional marker of intestinal immunity. Results We show that as adult worms age, several C. elegans genotypes show diminished capacity to control intestinal bacterial accumulation. We provide evidence that intestinal bacterial load, regulated by gut immunity, is an important causative factor of lifespan determination; the effects are specified by bacterial strain, worm genotype, and biologic age, all acting in concert. Conclusions In total, these studies focus attention on the worm intestine as a locus that influences longevity in the presence of an accumulating bacterial population. Further studies defining the interplay between bacterial species and host immunity in C. elegans may provide insights into the general mechanisms of aging and age-related diseases.

  12. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Marroquin, L D; Elyassnia, D; Griffitts, J S; Feitelson, J S; Aroian, R V

    2000-01-01

    The protein toxins produced by Bacillus thuringiensis (Bt) are the most widely used natural insecticides in agriculture. Despite successful and extensive use of these toxins in transgenic crops, little is known about toxicity and resistance pathways in target insects since these organisms are not ideal for molecular genetic studies. To address this limitation and to investigate the potential use of these toxins to control parasitic nematodes, we are studying Bt toxin action and resistance in Caenorhabditis elegans. We demonstrate for the first time that a single Bt toxin can target a nematode. When fed Bt toxin, C. elegans hermaphrodites undergo extensive damage to the gut, a decrease in fertility, and death, consistent with toxin effects in insects. We have screened for and isolated 10 recessive mutants that resist the toxin's effects on the intestine, on fertility, and on viability. These mutants define five genes, indicating that more components are required for Bt toxicity than previously known. We find that a second, unrelated nematicidal Bt toxin may utilize a different toxicity pathway. Our data indicate that C. elegans can be used to undertake detailed molecular genetic analysis of Bt toxin pathways and that Bt toxins hold promise as nematicides. PMID:10924467

  13. Caenorhabditis elegans Egg-Laying Detection and Behavior Study Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Palm Megan

    2005-01-01

    Full Text Available Egg laying is an important phase of the life cycle of the nematode Caenorhabditis elegans (C. elegans. Previous studies examined egg-laying events manually. This paper presents a method for automatic detection of egg-laying onset using deformable template matching and other morphological image analysis techniques. Some behavioral changes surrounding egg-laying events are also studied. The results demonstrate that the computer vision tools and the algorithm developed here can be effectively used to study C. elegans egg-laying behaviors. The algorithm developed is an essential part of a machine-vision system for C. elegans tracking and behavioral analysis.

  14. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females.

    Directory of Open Access Journals (Sweden)

    Sara Andux

    2008-12-01

    Full Text Available In women, oocytes arrest development at the end of prophase of meiosis I and remain quiescent for years. Over time, the quality and quantity of these oocytes decreases, resulting in fewer pregnancies and an increased occurrence of birth defects. We used the nematode Caenorhabditis elegans to study how oocyte quality is regulated during aging. To assay quality, we determine the fraction of oocytes that produce viable eggs after fertilization. Our results show that oocyte quality declines in aging nematodes, as in humans. This decline affects oocytes arrested in late prophase, waiting for a signal to mature, and also oocytes that develop later in life. Furthermore, mutations that block all cell deaths result in a severe, early decline in oocyte quality, and this effect increases with age. However, mutations that block only somatic cell deaths or DNA-damage-induced deaths do not lower oocyte quality. Two lines of evidence imply that most developmentally programmed germ cell deaths promote the proper allocation of resources among oocytes, rather than eliminate oocytes with damaged chromosomes. First, oocyte quality is lowered by mutations that do not prevent germ cell deaths but do block the engulfment and recycling of cell corpses. Second, the decrease in quality caused by apoptosis mutants is mirrored by a decrease in the size of many mature oocytes. We conclude that competition for resources is a serious problem in aging germ lines, and that apoptosis helps alleviate this problem.

  15. Sex-specific pruning of neuronal synapses in Caenorhabditis elegans.

    Science.gov (United States)

    Oren-Suissa, Meital; Bayer, Emily A; Hobert, Oliver

    2016-05-12

    Whether and how neurons that are present in both sexes of the same species can differentiate in a sexually dimorphic manner is not well understood. A comparison of the connectomes of the Caenorhabditis elegans hermaphrodite and male nervous systems reveals the existence of sexually dimorphic synaptic connections between neurons present in both sexes. Here we demonstrate sex-specific functions of these sex-shared neurons and show that many neurons initially form synapses in a hybrid manner in both the male and hermaphrodite pattern before sexual maturation. Sex-specific synapse pruning then results in the sex-specific maintenance of subsets of these connections. Reversal of the sexual identity of either the pre- or postsynaptic neuron alone transforms the patterns of synaptic connectivity to that of the opposite sex. A dimorphically expressed and phylogenetically conserved transcription factor is both necessary and sufficient to determine sex-specific connectivity patterns. Our studies reveal new insights into sex-specific circuit development. PMID:27144354

  16. Light-controlled intracellular transport in Caenorhabditis elegans.

    Science.gov (United States)

    Harterink, Martin; van Bergeijk, Petra; Allier, Calixte; de Haan, Bart; van den Heuvel, Sander; Hoogenraad, Casper C; Kapitein, Lukas C

    2016-02-22

    To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments [1]. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles [2,3]. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal. PMID:26906482

  17. Evolution of outcrossing in experimental populations of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Henrique Teotonio

    Full Text Available Caenorhabditis elegans can reproduce exclusively by self-fertilization. Yet, males can be maintained in laboratory populations, a phenomenon that continues to puzzle biologists. In this study we evaluated the role of males in facilitating adaptation to novel environments. For this, we contrasted the evolution of a fitness component exclusive to outcrossing in experimental populations of different mating systems. We introgressed a modifier of outcrossing into a hybrid population derived from several wild isolates to transform the wild-type androdioecious mating system into a dioecious mating system. By genotyping 375 single-nucleotide polymorphisms we show that the two populations had similar standing genetic diversity available for adaptation, despite the occurrence of selection during their derivation. We then performed replicated experimental evolution under the two mating systems from starting conditions of either high or low levels of diversity, under defined environmental conditions of discrete non-overlapping generations, constant density at high population sizes (N = 10(4, no obvious spatial structure and abundant food resources. During 100 generations measurements of sex ratios and male competitive performance showed: 1 adaptation to the novel environment; 2 directional selection on male frequency under androdioecy; 3 optimal outcrossing rates of 0.5 under androdioecy; 4 the existence of initial inbreeding depression; and finally 5 that the strength of directional selection on male competitive performance does not depend on male frequencies. Taken together, these results suggest that androdioecious males are maintained at intermediate frequencies because outcrossing is adaptive.

  18. Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism.

    Directory of Open Access Journals (Sweden)

    Ziheng Zhuang

    Full Text Available In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms.

  19. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism

    Science.gov (United States)

    Liu, Haicui; Sun, Lingmei; Gao, Wei; Wang, Dayong

    2014-01-01

    In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms. PMID:24465573

  20. Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method

    Directory of Open Access Journals (Sweden)

    Kage-Nakadai Eriko

    2012-01-01

    Full Text Available Abstract Background Transgenic strains of Caenorhabditis elegans are typically generated by injecting DNA into the germline to form multi-copy extrachromosomal arrays. These transgenes are semi-stable and their expression is silenced in the germline. Mos1 transposon or microparticle bombardment methods have been developed to create single- or low-copy chromosomal integrated lines. Here we report an alternative method using ultraviolet trimethylpsoralen (UV/TMP to generate single/low-copy gene integrations. Results We successfully integrated low-copy transgenes from extrachromosomal arrays using positive selection based on temperature sensitivity with a vps-45 rescue fragment and negative selection based on benzimidazole sensitivity with a ben-1 rescue fragment. We confirmed that the integrants express transgenes in the germline. Quantitative PCR revealed that strains generated by this method contain single- or low-copy transgenes. Moreover, positive selection marker genes flanked by LoxP sites were excised by Cre recombinase mRNA microinjection, demonstrating Cre-mediated chromosomal excision for the first time in C. elegans. Conclusion Our UV/TMP integration method, based on familiar extrachromosomal transgenics, provides a useful approach for generating single/low-copy gene integrations.

  1. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.

    Science.gov (United States)

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J

    2012-01-01

    The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. PMID:22285439

  2. External induction of heat shock stimulates the immune response and longevity of Caenorhabditis elegans towards pathogen exposure.

    Science.gov (United States)

    Prithika, Udayakumar; Deepa, Veerappan; Balamurugan, Krishnaswamy

    2016-08-01

    Heat shock proteins (HSPs) are highly chaperonic molecules that give immediate response during any stress, tissue damage or bacterial infections. In the present study, the role of HSPs upon bacterial encounter is studied by applying external heat induction to live Caenorhabditis elegans Heat shock was observed to increase the life span of wild type C. elegans upon pathogenic encounter, indicating a role of HSPs in bacterial infection and immunity. Similar increase in resistance towards pathogenesis observed in long-lived C. elegans daf-2 mutants and the increase in the lifespan indicated a role for the insulin/IGF-1 signaling (IIS) pathway in HSP-mediated pathogenic resistance. The microscopic observation of C. elegans after external heat induction and sequential exposure of pathogens indicated reduction of egg viability. Results of Real-time PCR and immunoblotting analysis of candidate genes revealed that heat shock and IIS pathways collaborate in the observed pathogenic resistance and further suggested SGK-1 to be the possible factor linking both these pathways. In addition, survival assays carried out using mutants equips us with supporting evidence that HSP and HSF-1 are necessary for the accelerated lifespan of C. elegans Our findings thus confirm that crosstalk between HSPs and SGK-1 influences C. elegans longevity. PMID:27317398

  3. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses.

    Science.gov (United States)

    Kim, Younghoon; Mylonakis, Eleftherios

    2012-07-01

    Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits. PMID:22585961

  4. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Science.gov (United States)

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-01

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling. PMID:26541069

  5. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans.

    Science.gov (United States)

    Putrenko, Igor; Zakikhani, Mahvash; Dent, Joseph A

    2005-02-25

    The genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists. These channels are blocked by d-tubocurarine but not by alpha-bungarotoxin. We provide evidence that two additional subunits, ACC-3 and ACC-4, interact with ACC-1 and ACC-2. The acetylcholine-binding domain of these channels appears to have diverged substantially from the acetylcholine-binding domain of nicotinic receptors. PMID:15579462

  6. 线虫Fat-1基因密码子的优化及其真核表达载体构建%Codon Optimization and Eukaryotic Expression Vector Construction of Fat-1 Gene Coming From Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    张立春; 刘晓辉; 曹阳; 于永生; 朴庆林; 金海国; 王晓阳

    2012-01-01

    Objective: In order to make Fat-1 gene from Caenorhabditis elegans be highly expressed in cattle, the Fat-1 gene was optimized and obtained by nucleotide synthesis, the transgenic vector was constructed in the end. Methods: The codons of Fat-1 gene from C.elegans were optimized by bio-information software according cattle as the expressional host. The optimized Fat-1 gene was named as bFat-1. The bFat-1 was obtained by nucleotide synthesis, and the transgenic vector pcDNA3.1-bFat-l was consturcted in the end. Results: The results showed that some indexes which control the expression level in cattle were significantly improved, including codon adaptation index (CAI), frequency of optimal codons (FOP) and GC content. The results of nucleotide synthesis, gene clone and sequencing aproved the bFat-1 gene was obtained successfully; the results of vector construction and identification showed that the construction of pcDNA3.1-bFat-l was successful. Conclusion: The transgenic vector pcDNA3.1-bFat-l, which expresses optimized Fat-1 gene from C.elegans was successfully established and would be used to construct the Fal-1 transgenic cell lines in follows study.%目的:为使线虫Fat-Ⅰ基因能够在牛中高效表达,通过密码子优化及全基因合成方法制备Fat-1基因,并构建其转基因表达载体.方法:通过生物信息学手段,将来源于线虫的Fat-1基因以牛为表达宿主进行密码子优化,将优化后的Fat-1基因命名为bFat-1;通过全基因合成方法获得bFat-1基因,构建pcDNA3,1-bFat-Ⅰ真核表达载体.结果:通过密码子优化,影响Fat-Ⅰ基因在牛中表达的密码子适应指数、优势密码子频率及GC含量等各项指标均有显著改善;全基因合成、克隆及测序结果显示已获得bFat-1基因;构建并鉴定了pcDNA3.1-bFat-1载体.结论:获得了适合牛体表达的Fat-1基因并构建了其转基因载体,为获得高效表达Fat-1基因的转基因牛细胞系奠定了基础.

  7. Characterization of microsporidia-induced developmental arrest and a transmembrane leucine-rich repeat protein in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robert J Luallen

    Full Text Available Microsporidia comprise a highly diverged phylum of intracellular, eukaryotic pathogens, with some species able to cause life-threatening illnesses in immunocompromised patients. To better understand microsporidian infection in animals, we study infection of the genetic model organism Caenorhabditis elegans and a species of microsporidia, Nematocida parisii, which infects Caenorhabditis nematodes in the wild. We conducted a targeted RNAi screen for host C. elegans genes important for infection and growth of N. parisii, using nematode larval arrest as an assay for infection. Here, we present the results of this RNAi screen, and our analyses on one of the RNAi hits from the screen that was ultimately not corroborated by loss of function mutants. This hit was an RNAi clone against F56A8.3, a conserved gene that encodes a transmembrane protein containing leucine-rich repeats (LRRs, a domain found in numerous pathogen receptors from other systems. This RNAi clone caused C. elegans to be resistant to infection by N. parisii, leading to reduced larval arrest and lower pathogen load. Characterization of the endogenous F56A8.3 protein revealed that it is expressed in the intestine, localized to the membrane around lysosome-related organelles (LROs, and exists in two different protein isoforms in C. elegans. We used the CRISPR-Cas9 system to edit the F56A8.3 locus and created both a frameshift mutant resulting in a truncated protein and a complete knockout mutant. Neither of these mutants was able to recapitulate the infection phenotypes of the RNAi clone, indicating that the RNAi-mediated phenotypes are due to an off-target effect of the RNAi clone. Nevertheless, this study describes microsporidia-induced developmental arrest in C. elegans, presents results from an RNAi screen for host genes important for microsporidian infection, and characterizes aspects of the conserved F56A8.3 gene and its protein product.

  8. Characterization of microsporidia-induced developmental arrest and a transmembrane leucine-rich repeat protein in Caenorhabditis elegans.

    Science.gov (United States)

    Luallen, Robert J; Bakowski, Malina A; Troemel, Emily R

    2015-01-01

    Microsporidia comprise a highly diverged phylum of intracellular, eukaryotic pathogens, with some species able to cause life-threatening illnesses in immunocompromised patients. To better understand microsporidian infection in animals, we study infection of the genetic model organism Caenorhabditis elegans and a species of microsporidia, Nematocida parisii, which infects Caenorhabditis nematodes in the wild. We conducted a targeted RNAi screen for host C. elegans genes important for infection and growth of N. parisii, using nematode larval arrest as an assay for infection. Here, we present the results of this RNAi screen, and our analyses on one of the RNAi hits from the screen that was ultimately not corroborated by loss of function mutants. This hit was an RNAi clone against F56A8.3, a conserved gene that encodes a transmembrane protein containing leucine-rich repeats (LRRs), a domain found in numerous pathogen receptors from other systems. This RNAi clone caused C. elegans to be resistant to infection by N. parisii, leading to reduced larval arrest and lower pathogen load. Characterization of the endogenous F56A8.3 protein revealed that it is expressed in the intestine, localized to the membrane around lysosome-related organelles (LROs), and exists in two different protein isoforms in C. elegans. We used the CRISPR-Cas9 system to edit the F56A8.3 locus and created both a frameshift mutant resulting in a truncated protein and a complete knockout mutant. Neither of these mutants was able to recapitulate the infection phenotypes of the RNAi clone, indicating that the RNAi-mediated phenotypes are due to an off-target effect of the RNAi clone. Nevertheless, this study describes microsporidia-induced developmental arrest in C. elegans, presents results from an RNAi screen for host genes important for microsporidian infection, and characterizes aspects of the conserved F56A8.3 gene and its protein product. PMID:25874557

  9. A Stenotrophomonas maltophilia Strain Evades a Major Caenorhabditis elegans Defense Pathway.

    Science.gov (United States)

    White, Corin V; Darby, Brian J; Breeden, Robert J; Herman, Michael A

    2016-02-01

    Stenotrophomonas maltophilia is a ubiquitous bacterium and an emerging nosocomial pathogen. This bacterium is resistant to many antibiotics, associated with a number of infections, and a significant health risk, especially for immunocompromised patients. Given that Caenorhabditis elegans shares many conserved genetic pathways and pathway components with higher organisms, the study of its interaction with bacterial pathogens has biomedical implications. S. maltophilia has been isolated in association with nematodes from grassland soils, and it is likely that C. elegans encounters this bacterium in nature. We found that a local S. maltophilia isolate, JCMS, is more virulent than the other S. maltophilia isolates (R551-3 and K279a) tested. JCMS virulence correlates with intestinal distension and bacterial accumulation and requires the bacteria to be alive. Many of the conserved innate immune pathways that serve to protect C. elegans from various pathogenic bacteria also play a role in combating S. maltophilia JCMS. However, S. maltophilia JCMS is virulent to normally pathogen-resistant DAF-2/16 insulin-like signaling pathway mutants. Furthermore, several insulin-like signaling effector genes were not significantly differentially expressed between S. maltophilia JCMS and avirulent bacteria (Escherichia coli OP50). Taken together, these findings suggest that S. maltophilia JCMS evades the pathogen resistance conferred by the loss of DAF-2/16 pathway components. In summary, we have discovered a novel host-pathogen interaction between C. elegans and S. maltophilia and established a new animal model with which to study the mode of action of this emerging nosocomial pathogen. PMID:26644380

  10. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    OpenAIRE

    Schroeder Fabian; Muschiol Daniel; Traunspurger Walter

    2009-01-01

    Abstract Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, ...

  11. PUF-8, a Pumilio Homolog, Inhibits the Proliferative Fate in the Caenorhabditis elegans Germline

    OpenAIRE

    Racher, Hilary; Hansen, Dave

    2012-01-01

    Stem cell populations are maintained by keeping a balance between self-renewal (proliferation) and differentiation of dividing stem cells. Within the Caenorhabditis elegans germline, the key regulator maintaining this balance is the canonical Notch signaling pathway, with GLP-1/Notch activity promoting the proliferative fate. We identified the Pumilio homolog, PUF-8, as an inhibitor of the proliferative fate of stem cells in the C. elegans germline. puf-8(0) strongly enhances overproliferatio...

  12. Topological Cluster Analysis Reveals the Systemic Organization of the Caenorhabditis elegans Connectome

    OpenAIRE

    Sohn, Yunkyu; Choi, Myung-Kyu; Ahn, Yong-Yeol; Lee, Junho; Jeong, Jaeseung

    2011-01-01

    The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elegans) and to investigate their topological properties. Incorporating bilateral symmetry of the network...

  13. Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans

    OpenAIRE

    Flibotte Stephane; Edgley Mark L; Lorch Adam; Maydan Jason S; Moerman Donald G

    2010-01-01

    Abstract Background Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these ...

  14. Shotgun Cloning of Transposon Insertions in the Genome of Caenorhabditis elegans

    OpenAIRE

    Plasterk, Ronald H.A.; van der Linden, Alexander M.

    2006-01-01

    We present a strategy to identify and map large numbers of transposon insertions in the genome of Caenorhabditis elegans. Our approach makes use of the mutator strain mut-7, which has germline-transposition activity of the Tc1/mariner family of transposons, a display protocol to detect new transposon insertions, and the availability of the genomic sequence of C. elegans. From a pilot insertional mutagenesis screen, we have obtained 351 new Tc1 transposons inserted in or near 219 predicted C. ...

  15. Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans

    OpenAIRE

    Horikawa, Makoto; Sakamoto, Kazuichi

    2009-01-01

    Fatty acids are the major components of the phospholipid bilayer and are involved in several functions of cell membrane. We previously reported that fatty-acid metabolism is involved in the regulation of DAF-2/insulin signal in Caenorhabditis elegans. In this study, we investigate the role of fatty-acid metabolism in stress resistance with respect to daf-16 in nematode. We found that fatty-acid metabolism regulates heat, osmotic, and oxidative-stress resistance in C. elegans. RNA interference...

  16. Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination

    OpenAIRE

    Chen, C.; Fenk, L. A.; Bono, M.

    2013-01-01

    Cas9 is an RNA-guided double-stranded DNA nuclease that participates in clustered regularly interspaced short palindromic repeats (CRISPR)-mediated adaptive immunity in prokaryotes. CRISPR–Cas9 has recently been used to generate insertion and deletion mutations in Caenorhabditis elegans, but not to create tailored changes (knock-ins). We show that the CRISPR–CRISPR-associated (Cas) system can be adapted for efficient and precise editing of the C. elegans genome. The targeted double-strand bre...

  17. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    OpenAIRE

    Jennifer L. Watts

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction a...

  18. Candida albicans Hyphal Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model ▿

    OpenAIRE

    Pukkila-Worley, Read; Peleg, Anton Y.; Tampakakis, Emmanouil; Mylonakis, Eleftherios

    2009-01-01

    Candida albicans colonizes the human gastrointestinal tract and can cause life-threatening systemic infection in susceptible hosts. We study here C. albicans virulence determinants using the nematode Caenorhabditis elegans in a pathogenesis system that models candidiasis. The yeast form of C. albicans is ingested into the C. elegans digestive tract. In liquid media, the yeast cells then undergo morphological change to form hyphae, which results in aggressive tissue destruction and death of th...

  19. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Martine eTherrien

    2014-04-01

    Full Text Available Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS and frontotemporal degeneration (FTD. Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.

  20. Detecting Autophagy in Caenorhabditis elegans Embryos Using Markers of P Granule Degradation.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-01-01

    Autophagy plays an active role during the early stages of embryogenesis in the nematode Caenorhabditis elegans. Although their exact function is unknown, P granules are ribonucleoprotein particles that play a role in germ cell specification. The localization of P granules is restricted to the germline precursor cells in wild-type embryos, as a result of their degradation in the somatic cell lineage. Autophagy is known to be required for the degradation of P granules, as mutations in various autophagy genes, including those encoding the adaptor SEPA-1 and the p62-like adaptor SQST-1, result in the accumulation of the P granule components PGL-1 and PGL-3 (termed PGL granules) in the somatic cells of C. elegans embryos. In this protocol, we present a methodology for using fusion reporters of SEPA-1, SQST-1, and PGL-1 that have aided in the identification of new genes for normal autophagy activity by screening for mutant animals that lack the degradation of these autophagy substrates. PMID:26729906

  1. Clone mapper: an online suite of tools for RNAi experiments in Caenorhabditis elegans.

    Science.gov (United States)

    Thakur, Nishant; Pujol, Nathalie; Tichit, Laurent; Ewbank, Jonathan J

    2014-11-01

    RNA interference (RNAi), mediated by the introduction of a specific double-stranded RNA, is a powerful method to investigate gene function. It is widely used in the Caenorhabditis elegans research community. An expanding number of laboratories conduct genome-wide RNAi screens, using standard libraries of bacterial clones each designed to produce a specific double-stranded RNA. Proper interpretation of results from RNAi experiments requires a series of analytical steps, from the verification of the identity of bacterial clones, to the identification of the clones' potential targets. Despite the popularity of the technique, no user-friendly set of tools allowing these steps to be carried out accurately, automatically, and at a large scale, is currently available. We report here the design and production of Clone Mapper, an online suite of tools specifically adapted to the analysis pipeline typical for RNAi experiments with C. elegans. We show that Clone Mapper overcomes the limitations of existing techniques and provide examples illustrating its potential for the identification of biologically relevant genes. The Clone Mapper tools are freely available via http://www.ciml.univ-mrs.fr/EWBANK_jonathan/software.html. PMID:25187039

  2. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.

    Directory of Open Access Journals (Sweden)

    Raj Kumar Pan

    Full Text Available One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. The coordination of many different co-occurring processes at this level underlies the command and control of overall network activity. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations such as, optimizing for resource constraints (viz., total wiring cost and communication efficiency (i.e., network path length. Even including information about the genetic relatedness of the cells cannot account for the observed modular structure. Comparison with other complex networks designed for efficient transport (of signals or resources implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including

  3. Biochemistry and molecular biology of the Caenorhabditis elegans dauer larva

    International Nuclear Information System (INIS)

    Biochemical and molecular techniques have been used to study the formation and recovery of the developmentally arrested, non-feeding dauer stage of the nematode Caenorhabditis elegans. While investigating developmental transitions in energy metabolism, a major metabolite isolated from perchloric acid extracts has been identified as a modified uridine nucleotide. The compound was isolated by gel filtration and ion-exchange chromatography and its structure was determined by 1H NMR and 13C NMR spectroscopy. This compound is the most abundant metabolite detected in 31PMR spectra of perchloric acid extracts from growing larvae. In the absence of phosphoarginine or phosphocreatine, this modified nucleotide may have an important function in the nematode's energy metabolism, and it may also be found in several other invertebrates. During recovery from the dauer stage, metabolic activation is accompanied by a decrease in intracellular pH (pHi). Although metabolic activation has been associated with an alkaline pHi shift in other organisms, in vivo 31P NMR analysis of recovering dauer larvae shows a pHi decrease from ∼7.3 to ∼6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and coincides with, or soon follows, the development commitment to recover from the dauer stage, suggesting that control of pHi may be important in the regulation of larval development in nematodes. A library enriched for sequences expressed specifically during the L2d (predauer) stage was made by selecting plaques from a genomic lambda library that hybridized to subtracted L2d cDNA probes. Ultimately, three clones that were shown to hybridize only to L2d RNA were selected

  4. Artemisia annua increases resistance to heat and oxidative stresses, but has no effect on lifespan in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il OH

    2016-01-01

    Full Text Available Abstract It is suggested that oxidative stress induced by cellular reactive oxygen species is one of the major causal factors of aging. The effect of dietary supplementation of anti-oxidants on response to environmental stressors and lifespan has been studied in various model organisms. In the present study, we examine the effect of Artemisia annua extract on resistance to oxidative, heat, and ultraviolet stresses in the nematode Caenorhabditis elegans. Artemisia annua significantly increases survival under oxidative and heat stresses, however has no effects in response to ultraviolet stress. Then, we measured the in vivo changes in expression of stress-responsive genes by Artemisia annua using green fluorescence protein. The expression of hsp-16.2, known to be involved in response to heat stress, is significantly increased by Artemisia annua supplementation. An anti-oxidant gene, sod-3, was also up-regulated by Artemisia annua. However, both mean and maximum lifespan of Caenorhabditis elegans was not altered by dietary supplementation of Artemisia annua. These findings indicate that Artemisia annua confers health-promoting effects through increasing the resistance to environmental stressors and has no effect on lifespan in C. elegans. Our study suggests that Artemisia annua can be used for the development of novel natural therapeutics for diseases caused by environmental stressors.

  5. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray.

    Science.gov (United States)

    Reichert, Kerstin; Menzel, Ralph

    2005-10-01

    The soil nematode Caenorhabditis elegans is frequently used in ecotoxicological studies due to its wide distribution in terrestrial habitats, its easy handling in the laboratory, and its sensitivity against different kinds of stress. Since its genome has been completely sequenced, more and more studies are investigating the functional relation of gene expression and phenotypic response. For these reasons C. elegans seems to be an attractive animal for the development of a new, genome based, ecotoxicological test system. In recent years, the DNA array technique has been established as a powerful tool to obtain distinct gene expression patterns in response to different experimental conditions. Using a C. elegans whole genome DNA microarray in this study, the effects of five different xenobiotics on the gene expression of the nematode were investigated. The exposure time for the following five applied compounds beta-NF (5 mg/l), Fla (0.5 mg/l), atrazine (25 mg/l), clofibrate (10 mg/l) and DES (0.5 mg/l) was 48+/-5 h. The analysis of the data showed a clear induction of 203 genes belonging to different families like the cytochromes P450, UDP-glucoronosyltransferases (UDPGT), glutathione S-transferases (GST), carboxylesterases, collagenes, C-type lectins and others. Under the applied conditions, fluoranthene was able to induce most of the induceable genes, followed by clofibrate, atrazine, beta-naphthoflavone and diethylstilbestrol. A decreased expression could be shown for 153 genes with atrazine having the strongest effect followed by fluoranthene, diethylstilbestrol, beta-naphthoflavone and clofibrate. For upregulated genes a change ranging from approximately 2.1- till 42.3-fold and for downregulated genes from approximately 2.1 till 6.6-fold of gene expression could be affected through the applied xenobiotics. The results confirm the applicability of the gene expression for the development of an ecotoxicological test system. Compared to classical tests the main

  6. Microgravity increases DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight

    Science.gov (United States)

    Gao, Ying; Sun, Yeqing; Xu, Dan; Zhao, Lei; Xu, Jiamin

    DNA damage response (DDR) plays an important role in genome maintenance through cell cycle arrest followed by DNA repair and/or apoptosis. Perturbing DDR may elicit genomic instability, carcinogenesis, even cell death. Space radiation and microgravity both have been reported to cause DDR in mammal cells,while, in the space environment, the interaction of space radiation and microgravity on DDR is still controversial. To clarify the interaction, dauer larva of Caenorhabditis elegans were employed in Shenzhou-8 space mission and suffered space synthetic environment (RM) and space radiation (R) during 16.5-day spaceflight. mRNA microarray, qPCR and miRNA microarray were performed individually to detect the differences of transcriptome and microRNome affected by two environments. The results showed that, two fold genes were regulated more significantly by RM than by R. These regulated genes were involved in different physiological activities from each environment, which mainly involve in protein metabolic and modification processes in RM, and energy metabolic process in R. 21 of 500 DDR genes were extracted as significantly different expression in two space environments. DNA repair and apoptosis were enhanced by microgravity, since 18 of 21 genes were altered by RM specifically, including six “Response to DNA damage stimulus” genes, four “DNA repair” genes and eight “apoptosis process” genes. miRNAome also showed changes in response to microgravity. miRNA-81, 82, 124 and 795 were predicted to respond to RM and regulate DDR in C.elegans for the first time. These results suggest that microgravity increases the physiological activities to the space environment, especially enhance DNA damage response on transcription and post-transcriptional regulation in metazoan. We expect the finding provides new informations on synergetic effects between microgravity and radiation, and may be helpful for space risk assessment.

  7. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans.

    Science.gov (United States)

    Nakagawa, Hisako; Shiozaki, Takuya; Kobatake, Eiji; Hosoya, Tomohiro; Moriya, Tomohiro; Sakai, Fumihiko; Taru, Hidenori; Miyazaki, Tadaaki

    2016-04-01

    Lactic-acid bacteria are widely recognized beneficial host associated groups of the microbiota of humans and animals. Some lactic-acid bacteria have the ability to extend the lifespan of the model animals. The mechanisms behind the probiotic effects of bacteria are not entirely understood. Recently, we reported the benefit effects of Lactobacillus gasseriSBT2055 (LG2055) on animal and human health, such as preventing influenza A virus, and augmentation of IgA production. Therefore, it was preconceived that LG2055 has the beneficial effects on longevity and/or aging. We examined the effects of LG2055 on lifespan and aging of Caenorhabditis elegans and analyzed the mechanism of prolongevity. Our results demonstrated that LG2055 has the beneficial effects on longevity and anti-aging of C. elegans. Feeding with LG2055 upregulated the expression of the skn-1 gene and the target genes of SKN-1, encoding the antioxidant proteins enhancing antioxidant defense responses. We found that feeding with LG2055 directly activated SKN-1 activity via p38 MAPK pathway signaling. The oxidative stress response is elicited by mitochondrial dysfunction in aging, and we examined the influence of LG2055 feeding on the membrane potential of mitochondria. Here, the amounts of mitochondria were significantly increased by LG2055 feeding in comparison with the control. Our result suggests that feeding with LG2055 is effective to the extend lifespan in C. elegans by a strengthening of the resistance to oxidative stress and by stimulating the innate immune response signaling including p38MAPK signaling pathway and others. PMID:26710940

  8. Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity

    Czech Academy of Sciences Publication Activity Database

    Pellis-van Berkel, W.; Verheijen, M. H. G.; Cuppen, E.; Asahina, Masako; de Rooij, J.; Jansen, G.; Plasterk, R. H. A.; Bos, J. L.; Zwartkruis, F. J. T.

    2005-01-01

    Roč. 16, č. 1 (2005), s. 106-116. ISSN 1059-1524 R&D Projects: GA AV ČR KJB5022303 Institutional research plan: CEZ:AV0Z60220518 Keywords : Rap signaling pathway * epidermis * Caenorhabditis elegans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.520, year: 2005

  9. Biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) chitinase against Caenorhabditis elegans (Rhabditida: Rhabditidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Yu, J.; Xie, Y.; Lin, H.; Huang, Z.; Xu, L.; Gelbič, Ivan; Guan, X.

    2014-01-01

    Roč. 107, č. 2 (2014), s. 551-558. ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * Caenorhabditis elegans * chitinase Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/pdf/10.1603/EC13201

  10. Analyzing Defects in the "Caenorhabditis Elegans" Nervous System Using Organismal and Cell Biological Approaches

    Science.gov (United States)

    Guziewicz, Megan; Vitullo, Toni; Simmons, Bethany; Kohn, Rebecca Eustance

    2002-01-01

    The goal of this laboratory exercise is to increase student understanding of the impact of nervous system function at both the organismal and cellular levels. This inquiry-based exercise is designed for an undergraduate course examining principles of cell biology. After observing the movement of "Caenorhabditis elegans" with defects in their…

  11. C. elegans Metabolic Gene Regulatory Networks Govern the Cellular Economy

    Science.gov (United States)

    Watson, Emma; Walhout, Albertha J.M.

    2014-01-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by microRNAs, and feedback between metabolic genes and their regulators. PMID:24731597

  12. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  13. ace-3 plays an important role in phoxim resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Han, Yan; Song, Shaojuan; Guo, Yaping; Zhang, Jianzhen; Ma, Enbo

    2016-05-01

    Organophosphorus and carbamate are widely used in agricultural production. Caenorhabditis elegans is a model organism that is widely used in various toxicology studies. To understand the effects of two types of commonly used pesticides, phoxim (organophosphorus) and carbaryl (carbamate), we determined the activities of acetylcholinesterases (AChEs) and detected the expression of four ace genes by RT-qPCR in C. elegans following treatment with these pesticides. The results showed that phoxim and carbaryl could reduce acetylcholinesterase activities and up-regulate the ace-3 mRNA expression levels. We also detected the toxic effects of these pesticides on the ace-3 deletion mutant dc-2, and found that some characteristics, including LC50, development, movement, reproduction and lifespan, were reduced in the dc-2 mutant. However, the toxic effects of carbaryl were weaker than those of phoxim. Carbaryl treatment did not significantly affect the LC50, movement ability or lifespan. Interestingly, body and brood size increased with carbaryl treatment at low concentrations. These data showed that both phoxim and carbaryl could inhibit AChE but that the ace-3 was necessary for phoxim detoxification. The LC50 of phoxim and carbaryl in wild type N2 and the ace-3 deletion mutant dc-2. **Higher significant differences (P < 0.01). PMID:26947509

  14. Riboflavin transporter-2 (rft-2) of Caenorhabditis elegans: Adaptive and developmental regulation

    Indian Academy of Sciences (India)

    Krishnan Gandhimathi; Sellamuthu Karthi; Paramasivam Manimaran; Perumal Varalakshmi; Balasubramaniem Ashokkumar

    2015-06-01

    Riboflavin transporter (rft-1 and rft-2), orthologous to human riboflavin transporter-3 (hR VFT-3), are identified and characterized in Caenorhabditis elegans. However, studies pertaining to functional contribution of rft-2 in maintaining body homeostatic riboflavin levels and its regulation are very limited. In this study, the expression pattern of rft-2 at different life stages of C. elegans was studied through real-time PCR, and found to be consistent from larval to adult stages that demonstrate its involvement in maintaining the body homeostatic riboflavin levels at whole animal level all through its life. A possible regulation of rft-2 expression at mRNA levels at whole animal was studied after adaptation to low and high concentrations of riboflavin. Abundance of rft-2 transcript was upregulated in riboflavin-deficient conditions (10 nM), while it was downregulated with riboflavin-supplemented conditions (2 mM) as compared with control (10 M). Further, the 5′-regulatory region of the rft-2 gene was cloned, and transgenic nematodes expressing transcriptional rft-2 promoter::GFP fusion constructs were generated. The expression of rft-2 was found to be adaptively regulated in vivo when transgenic worms were maintained under different extracellular riboflavin levels, which was also mediated partly via changes in the rft-2 levels that directs towards the possible involvement of transcriptional regulatory events.

  15. Ultraviolet-A triggers photoaging in model nematode Caenorhabditis elegans in a DAF-16 dependent pathway.

    Science.gov (United States)

    Prasanth, Mani Iyer; Santoshram, Gunasekaran Santhi; Bhaskar, James Prabhanand; Balamurugan, Krishnaswamy

    2016-02-01

    Ultraviolet radiations (UV) are the primary causative agent for skin aging (photoaging) and cancer, especially UV-A. The mode of action and the molecular mechanism behind the damages caused by UV-A is not well studied, in vivo. The current study was employed to investigate the impact of UV-A exposure using the model organism, Caenorhabditis elegans. Analysis of lifespan, healthspan, and other cognitive behaviors were done which was supported by the molecular mechanism. UV-A exposure on collagen damages the synthesis and functioning which has been monitored kinetically using engineered strain, col-19:: GFP. The study results suggested that UV-A accelerated the aging process in an insulin-like signaling pathway dependent manner. Mutant (daf-2)-based analysis concrete the observations of the current study. The UV-A exposure affected the usual behavior of the worms like pharyngeal movements and brood size. Quantitative PCR profile of the candidate genes during UV-A exposure suggested that continuous exposure has damaged the neural network of the worms, but the mitochondrial signaling and dietary restriction pathway remain unaffected. Western blot analysis of HSF-1 evidenced the alteration in protein homeostasis in UV-A exposed worms. Outcome of the current study supports our view that C. elegans can be used as a model to study photoaging, and the mode of action of UV-A-mediated damages can be elucidated which will pave the way for drug developments against photoaging. PMID:26873884

  16. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour.

    Science.gov (United States)

    Gomez-Marin, Alex; Stephens, Greg J; Brown, André E X

    2016-08-01

    Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans. PMID:27581484

  17. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.

    Science.gov (United States)

    McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A

    2016-05-01

    The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757

  18. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. PMID:26297616

  19. Validated Liquid Culture Monitoring System for Lifespan Extension of Caenorhabditis elegans through Genetic and Dietary Manipulations.

    Science.gov (United States)

    Win, Myat Thu Thu; Yamamoto, Yasuhiko; Munesue, Seiichi; Han, Dong; Harada, Shin-Ichi; Yamamoto, Hiroshi

    2013-08-01

    Nutritional and genetic factors influence aging and life expectancy. The reduction of food intake without malnutrition, referred to caloric restriction (CR), has been shown to increase lifespan in a wide variety of species. The nematode Caenorhabditis elegans (C. elegans) is one of the principle models with which to study the biology of aging and search for anti-aging compounds. In this study, we validated and optimized a high-throughput liquid culture system to monitor C. elegans lifespan with minimized mechanical stress. We used alive and ultraviolet (UV)-killed Escherichia coli (E. coli) OP50 at 10(8) or 10(9) colony-forming units (cfu)/ml to feed Bristol N2 wild-type (WT) and mutant worms of a well-characterized insulin/insulin-like growth factor signaling (ILS) pathway: the insulin receptor homolog daf-2 (e1370), phosphatidylinositol 3-kinase age-1 (hx546), and transcriptional factor FOXO homolog daf-16 (mu86 and mgDf50). Compared with alive E. coli at 10(9) cfu/ml, supplementations of alive E. coli at 10(8) cfu/ml or UV-killed E. coli at 10(9) cfu/ml dramatically prolonged lifespan in WT and age-1 mutants, and to a lesser extent, in daf-2 and daf-16 mutants, suggesting that signaling pathways in CR and ILS do not overlap fully. Feeding 10(8) cfu/ml UV-killed E. coli, which led to maximally saturated longevity in WT and daf-2 mutant, can prolonged lifespan in age-1, but not daf-16, mutants. This approach will be useful for investigating the biology of aging, physiological responses and gene functions under CR conditions and also for screening pharmacologic compounds to extend lifespan or affect other biologic processes. PMID:23936742

  20. Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yan Qiao

    Full Text Available Genkwa Flos (GF, the dried flower bud from Daphne genkwa Sieb. et Zucc. (Thymelaeaceae, is a well-known and widely used traditional Chinese medicine. However, we know little about the in vivo mechanism of GF toxicity. Nematode Caenorhabditis elegans has been considered as a useful toxicity assay system by offering a system best suited for asking the in vivo questions. In the present study, we employed the prolonged exposure assay system of C. elegans to perform the full in vivo toxicity assessment of raw-processed GF. Our data show that GF exposure could induce the toxicity on lifespan, development, reproduction, and locomotion behavior. GF exposure not only decreased body length but also induced the formation of abnormal vulva. The decrease in brood size in GF exposed nematodes appeared mainly at day-1 during the development of adult nematodes. The decrease of locomotion behavior in GF exposed nematodes might be due to the damage on development of D-type GABAergic motor neurons. Moreover, we observed the induction of intestinal reactive oxygen species (ROS production and alteration of expression patterns of genes required for development of apical domain, microvilli, and apical junction of intestine in GF exposed nematodes, implying the possible dysfunction of the primary targeted organ. In addition, GF exposure induced increase in defecation cycle length and deficits in development of AVL and DVB neurons controlling the defecation behavior. Therefore, our study implies the usefulness of C. elegans assay system for toxicity assessment from a certain Chinese medicine or plant extract. The observed toxicity of GF might be the combinational effects of oxidative stress, dysfunction of intestine, and altered defecation behavior in nematodes.

  1. Visualization and Dissemination of Multidimensional Proteomics Data Comparing Protein Abundance During Caenorhabditis elegans Development

    Science.gov (United States)

    Riffle, Michael; Merrihew, Gennifer E.; Jaschob, Daniel; Sharma, Vagisha; Davis, Trisha N.; Noble, William S.; MacCoss, Michael J.

    2015-11-01

    Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/.

  2. Unexpected Role for Dosage Compensation in the Control of Dauer Arrest, Insulin-Like Signaling, and FoxO Transcription Factor Activity in Caenorhabditis elegans

    OpenAIRE

    Dumas, Kathleen J; Delaney, Colin E.; Flibotte, Stephane; Moerman, Donald G.; Csankovszki, Gyorgyi; Hu, Patrick J.

    2013-01-01

    During embryogenesis, an essential process known as dosage compensation is initiated to equalize gene expression from sex chromosomes. Although much is known about how dosage compensation is established, the consequences of modulating the stability of dosage compensation postembryonically are not known. Here we define a role for the Caenorhabditis elegans dosage compensation complex (DCC) in the regulation of DAF-2 insulin-like signaling. In a screen for dauer regulatory genes that control th...

  3. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yoko Honda

    Full Text Available BACKGROUND: One of the most important challenges in the study of aging is to discover compounds with longevity-promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ has been reported to possess diverse beneficial properties. Furthermore, protease-treated RJ (pRJ has additional pharmacological activities. Exactly how RJ and pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis elegans and to gain insights into the active agents in RJ and their mechanism of action. PRINCIPAL FINDINGS: We found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5. pRJ-Fr.5 increased the animals' lifespan in part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C. elegans by reducing insulin/IGF-1 signaling (IIS. pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA, which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that RJ and its related substances extend lifespan in C. elegans, suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse

  4. SL1 trans-splicing specified by AU-rich synthetic RNA inserted at the 5' end of Caenorhabditis elegans pre-mRNA.

    OpenAIRE

    Conrad, R; Lea, K; Blumenthal, T

    1995-01-01

    In Caenorhabditis elegans, pre-mRNAs of many genes are trans-spliced to one of two spliced leaders, SL1 or SL2. Some of those that receive exclusively SL1 have been characterized as having at their 5' ends outrons, AU-rich sequences similar to introns followed by conventional 3' splice sites. Comparison of outrons from many different SL1-specific C. elegans genes has not revealed the presence of any consensus sequence that might encode SL1-specificity. In order to determine what parameters in...

  5. Reevaluation of whether a soma-to-germ-line transformation extends lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-03-29

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage's immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2's long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2's long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2's long lifespan. PMID:26976573

  6. Altered signalling from germline to intestine pushes daf-2;pept-1 Caenorhabditis elegans into extreme longevity.

    Science.gov (United States)

    Spanier, Britta; Rubio-Aliaga, Isabel; Hu, Hao; Daniel, Hannelore

    2010-08-01

    The insulin-like signalling pathway is a central regulator of development, metabolism, stress resistance and lifespan in eukaryotes. Caenorhabditis elegans daf-2(e1370) animals with a loss-of-function mutation in the insulin-like receptor live twice as long as wild-type animals, and the additional knockout of the intestinal di- and tripeptide transporter pept-1 further increases lifespan by 60%. In assessing the underlying molecular mechanisms for this phenomenon, microarray-based transcriptome data sets of daf-2(e1370) and daf-2(e1370);pept-1(lg601) animals were compared with a focus on genes that showed significantly higher changes in expression levels in daf-2;pept-1 than in daf-2. We identified 187 genes with at least fourfold decreased transcript levels and 170 with more than a fourfold increase. A large fraction of the down-regulated genes encode proteins involved in germline proliferation and reproduction. The DAF-9/DAF-12 signalling cascade was identified as a prime pathway that mediates the longevity of daf-2;pept-1 with a strict dependance on DAF-16. Loss of DAF-9/DAF-12 or KRI-1 reduces the lifespan of daf-2;pept-1 to that of the daf-2 mutant. Amongst the DAF-16 target genes, numerous enzymes involved in the defence of reactive oxygen species were with increased expression level in daf-2;pept-1. On a functional level, it was demonstrated that amongst those, a high de novo synthesis rate of glutathione is most important for the longevity phenotype of this strain. Taken together, a close interdependence of endocrine hormone signalling from germline to intestine was identified as an essential element in the control of the extreme longevity of C. elegans lacking a proper function of the insulin receptor and lacking the intestinal peptide transporter. PMID:20550516

  7. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding

  8. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sunjin [Structural Biochemistry and Molecular Biophysics Lab, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Yong Woo; Kim, Woo Taek [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Structural Biochemistry and Molecular Biophysics Lab, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-01-10

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.

  9. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    Science.gov (United States)

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  10. The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans

    OpenAIRE

    Sarafi-Reinach, Trina R.; Sengupta, Piali

    2000-01-01

    Caenorhabditis elegans responds to its complex chemical environment using a small number of chemosensory neurons. Each of these neurons exhibits a unique sensory response repertoire. The developmental mechanisms that generate this diversity of function are largely unknown. Many C. elegans chemosensory neurons, including the AWA and ASG neurons, arise as lineal sisters of an asymmetric division. Here we describe the gene unc-130, which plays a role in the generation of the AWA and ASG neurons....

  11. Resistance to germline RNA interference in a Caenorhabditis elegans wild isolate exhibits complexity and nonadditivity.

    Science.gov (United States)

    Pollard, Daniel A; Rockman, Matthew V

    2013-06-01

    Resolving the genetic complexity of heritable phenotypic variation is fundamental to understanding the mechanisms of evolution and the etiology of human disease. Trait variation among isolates from genetically efficient model organisms offers the opportunity to dissect genetic architectures and identify the molecular mechanisms of causation. Here we present a genetic analysis of loss of sensitivity to gene knockdown via exogenous RNA interference in the germline of a wild isolate of the roundworm Caenorhabditis elegans. We find that the loss of RNA interference sensitivity in the wild isolate CB4856 is recessive to the sensitivity of the lab strain N2. A cross of the strains produced F2 with intermediate sensitivities, and the segregation of the trait among F2s strongly deviated from a single locus recessive allele expectation. Linkage analysis in recombinant inbred lines derived from CB4856 and N2 identified a single significant locus on chromosome I that includes the argonaute gene ppw-1. The alleles for ppw-1 were unable to explain the sensitivity of 18 (12.1%) of the recombinant inbred lines. Complementation tests and F2 segregation analysis of these recombinant inbred lines revealed cases of complex epistatic suppression and enhancement of the effects of ppw-1. We conclude that the variation in RNA interference sensitivity between CB4856 and N2 likely involves the nonadditive interactions of eight or more genes in addition to ppw-1. PMID:23589516

  12. Mitochondrial superoxide increase is essential for Caenorhabditis elegans against Enterococcus faecalis infection

    Directory of Open Access Journals (Sweden)

    N Feng1

    2015-12-01

    Full Text Available Enterococcus faecalis infection can cause serious diseases including cancer development. Recently it has been reported that mitochondrial reactive oxygen species (mROS are required for host immune defenses against bacteria and many mutations in mitochondrial electron transport chain (mETC genes have an effect on mROS production. To identify the exact role of mROS during E. faecalis infection, we thus decide to knockdown the expression of mev-1 and isp-1 in Caenorhabditis elegans using RNAi. The knockdown of mev-1 and isp-1 causes increased susceptibility and increased resistance to E. faecalis infection, respectively. The mev-1(RNAi can also down-regulate antimicrobial genes (C17H12.8, mtl-1 and bli-3, whereas these antimicrobial genes are up-regulated in isp-1(RNAi animals after bacterial infection. Further, significant increase of mitochondrial superoxide and mitochondrial sod expressions have been observed in isp-1(RNAi animals. Conversely, the mev-1(RNAi worms show a decrease of mitochondrial superoxide and mitochondrial sod expressions. Prooxidant paraquat, which is a mitochondrial superoxide generator, can increase survival rate of mev-1(RNAi animals after E. faecalis infection. All together, the enhancement of mitochondrial superoxide contributes to anti-bacterial immunity and a better knowledge of them should open new avenues for preventive strategies against bacterial infection and also limiting the development of infection-associated cancer.

  13. The nematode Caenorhabditis elegans, stress and aging: Identifying the complex interplay of genetic pathways following the treatment with humic substances

    Directory of Open Access Journals (Sweden)

    Ralph eMenzel

    2012-04-01

    Full Text Available Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d and old adult (11 d nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, TGF- signaling and Insulin-like signaling, lysosomal activities seem to contribute most to HF’s and modified HF’s lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans.

  14. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.

    Science.gov (United States)

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R; Steinberg, Christian E W

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed(®) (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 days) and old adult (11 days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF's and modified HF's lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans. PMID:22529848

  15. Peptides from sesame cake extend healthspan of Caenorhabditis elegans via upregulation of skn-1 and inhibition of intracellular ROS levels.

    Science.gov (United States)

    Wang, Zhuanhua; Ma, Xiaoli; Li, Jiao; Cui, Xiaodong

    2016-09-01

    The peptides from sesame cake (PSC) which are the main by-product of agricultural processing of sesame were prepared. To evaluate benefits of PSC for health and longevity, antioxidant activity and anti-aging effects were studied in vitro and in a Caenorhabditis elegans (C. elegans) model system. PSC exhibited antioxidant activity in vitro, and induced beneficial effects on lifespan and several health parameters of C.elegans, including pharyngeal pumping rate, locomotion and lipofuscin accumulation. In a mev-1 mutant, PSC increased lifespan, and it enhanced oxidative stress tolerance in wild-type nematodes. After treatment with PSC, SOD activity, GSH content, and GSH/GSSG ratio were increased, leading to low intracellular ROS levels in C. elegans. PSC up-regulated skn-1 mRNA, and its target gene gcs-1, and abolished the extension of lifespan in skn-1 mutant, indicating that PSC-mediated longevity is dependent on activation of the skn-1/Nrf-2 transcription factor. Current results warrant research into the use of PSC as nutraceuticals for overall health improvement. PMID:27381188

  16. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available BACKGROUND: The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as "dauer pheromones" because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development. METHODOLOGY/PRINCIPAL FINDINGS: Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone. After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions. CONCLUSIONS/SIGNIFICANCE: Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity and help to determine genetic

  17. A map of terminal regulators of neuronal identity in Caenorhabditis elegans.

    Science.gov (United States)

    Hobert, Oliver

    2016-07-01

    Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In-depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron-type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity-defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the

  18. Inhibition of Fat Accumulation by Hesperidin in Caenorhabditis elegans.

    Science.gov (United States)

    Peng, Huimin; Wei, Zhaohan; Luo, Hujie; Yang, Yiting; Wu, Zhengxing; Gan, Lu; Yang, Xiangliang

    2016-06-29

    Hesperidin, abundant in citrus fruits, has a wide range of pharmacological effects, including anticarcinogenic, anti-inflammatory, antioxidative, radioprotective, and antiviral activities. However, relatively few studies on the effects of hesperidin on lipid metabolism have been reported. Here, using Caenorhaditis elegans as a model animal, we found that 100 μM hesperidin significantly decreased fat accumulation in both high-fat worms cultured in nematode growth medium containing 10 mM glucose (83.5 ± 1.2% versus control by Sudan Black B staining and 87.6 ± 2.0% versus control by Oil Red O staining; p acid/stearic acid (C18:1Δ9/C18:0) (p acid could restore the inhibitory effect of hesperidin on fat accumulation. Hesperidin significantly downregulated the expression of stearoyl-CoA desaturase, fat-6, and fat-7 (p < 0.05), and mutation of fat-6 and fat-7 reversed fat accumulation inhibited by hesperidin. In addition, hesperidin decreased the expression of other genes involved in lipid metabolism, including pod-2, mdt-15, acs-2, and kat-1 (p < 0.05). These results suggested that hesperidin reduced fat accumulation by affecting several lipid metabolism pathways, such as fat-6 and fat-7. This study provided new insights into elucidating the mechanism underlying the regulation of lipid metabolism by hesperidin. PMID:27267939

  19. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics

    DEFF Research Database (Denmark)

    Sidoli, Simone; Vandamme, Julien; Elisabetta Salcini, Anna;

    2016-01-01

    We applied a middle-down proteomics strategy for large scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized post-translational modifications (PTMs) on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval...

  20. The Tc3 Family of Transposable Genetic Elements in Caenorhabditis Elegans

    OpenAIRE

    Collins, J.; Forbes, E.; Anderson, P

    1989-01-01

    We describe genetic and molecular properties of Tc3, a family of transposable elements in Caenorhabditis elegans. About 15 Tc3 elements are present in the genomes of several different wild-type varieties of C. elegans, but Tc3 transposition and excision are not detected in these strains. Tc3 transposition and excision occur at high frequencies, however, in strain TR679, a mutant identified because of its highly active Tc1 elements. In TR679, Tc3 is responsible for several spontaneous mutation...

  1. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L−1), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  2. RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Mihwa; Park, Sangsoon; Nam, Hong Gil; Lee, Seung-Jae V

    2016-07-17

    RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1. PMID:27153157

  3. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    Science.gov (United States)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  4. Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity.

    Science.gov (United States)

    Muñoz, Manuel J; Riddle, Donald L

    2003-01-01

    We developed selective conditions for long-lived mutants of the nematode Caenorhabditis elegans by subjecting the first larval stage (L1) to thermal stress at 30 degrees for 7 days. The surviving larvae developed to fertile adults after the temperature was shifted to 15 degrees. A total of one million F(2) progeny and a half million F(3) progeny of ethyl-methanesulfonate-mutagenized animals were treated in three separate experiments. Among the 81 putative mutants that recovered and matured to the reproductive adult, 63 retested as thermotolerant and 49 (80%) exhibited a >15% increase in mean life span. All the known classes of dauer formation (Daf) mutant that affect longevity were found, including six new alleles of daf-2, and a unique temperature-sensitive, dauer-constitutive allele of age-1. Alleles of dyf-2 and unc-13 were isolated, and mutants of unc-18, a gene that interacts with unc-13, were also found to be long lived. Thirteen additional mutations define at least four new genes. PMID:12586705

  5. Caenorhabditis elegans DYF-2, an Orthologue of Human WDR19, Is a Component of the Intraflagellar Transport Machinery in Sensory Cilia

    OpenAIRE

    Efimenko, Evgeni; Oliver E Blacque; Ou, Guangshuo; Haycraft, Courtney J; Yoder, Bradley K.; Scholey, Jonathan M.; Leroux, Michel R.; Swoboda, Peter

    2006-01-01

    The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mu...

  6. Toward a physical map of the genome of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    A technique for digital characterization and comparison of DNA fragments, using restriction enzymes, is described. The technique is being applied to fragments from the nematode Caenorhabditis elegans (i) to facilitate cross-indexing of clones emanating from different laboratories and (ii) to construct a physical map of the genome. Eight hundred sixty clusters of clones, from 35 to 350 kilobases long and totaling about 60% of the genome, have been characterized

  7. Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain.

    OpenAIRE

    Patel, N; Thierry-Mieg, D.; Mancillas, J R

    1993-01-01

    An additional genetic locus in Caenorhabditis elegans, unc-116, was identified in a screen for mutations resulting in defective locomotion. unc-116 was cloned by use of a transposon insertion mutant and the physical and genetic map of the genome. The cDNA sequence predicts an 815-amino acid protein. Based upon sequence comparison and secondary structure predictions, unc-116 encodes all three domains of the kinesin heavy chain: the motor, stalk, and tail. While the motor and tail domains have ...

  8. Goα regulates olfactory adaptation by antagonizing Gqα-DAG signaling in Caenorhabditis elegans

    OpenAIRE

    Matsuki, Masahiro; Kunitomo, Hirofumi; Iino, Yuichi

    2006-01-01

    The heterotrimeric G protein Go is abundantly expressed in the mammalian nervous system and modulates neural activities in response to various ligands. However, Go's functions in living animals are less well understood. Here, we demonstrate that GOA-1 Goα has a fundamental role in olfactory adaptation in Caenorhabditis elegans. Impairment of GOA-1 Goα function and excessive activation of EGL-30 Gqα cause a defect in adaptation to AWC-sensed odorants. These pathways antagonistically modulate o...

  9. Identification of longevity, fertility and growth-promoting properties of pomegranate in Caenorhabditis elegans

    OpenAIRE

    Kılıçgün, Hasan; Arda, Nazlı; Uçar, Evren Önay

    2015-01-01

    Background: Pomegranate (Punica granatum L.) is commonly consumed as fresh fruit and fruit juice. It is also used in the production of jam, wine, food coloring agent, and flavor enhancer. Objective: The aim of this study was to identify the possible longevity, fertility and growth promoting properties of different ethanolic extract concentrations of pomegranate in Caenorhabditis elegans, which is increasingly popular and has proven to be a very useful experimental model organism for aging stu...

  10. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism

    OpenAIRE

    Zhuang, Ziheng; Zhao, Yunli; Wu, Qiuli; Li, Min; Liu, Haicui; Sun, Lingmei; Gao, Wei; Wang, Dayong

    2014-01-01

    In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure ...

  11. Developmental Defects in a Caenorhabditis elegans Model for Type III Galactosemia

    OpenAIRE

    Brokate-Llanos, Ana M.; Monje, José M.; Murdoch, Piedad del Socorro; Manuel J. Muñoz

    2014-01-01

    Type III galactosemia is a metabolic disorder caused by reduced activity of UDP-galactose-4-epimerase, which participates in galactose metabolism and the generation of various UDP-sugar species. We characterized gale-1 in Caenorhabditis elegans and found that a complete loss-of-function mutation is lethal, as has been hypothesized for humans, whereas a nonlethal partial loss-of-function allele causes a variety of developmental abnormalities, likely resulting from the impairment of the glycosy...

  12. Multigenerational Effects of Heavy Metals on Feeding, Growth, Initial Reproduction and Antioxidants in Caenorhabditis elegans

    OpenAIRE

    ZhenYang Yu; Jing Zhang; DaQiang Yin

    2016-01-01

    Earlier studies showed that toxicities of excessive metals lasted over generations. Yet, these studies mainly employed one-generation exposure, and the effects of multigenerational challenges need further studies. Presently, Caenorhabditis elegans were exposed to cadmium, copper, lead and zinc for four consecutive generations (G1 to G4) at environmental concentrations. The feeding, growth, initial reproduction, superoxide dismutase (SOD) and catalase (CAT) were determined. All data were repre...

  13. Effects of Aldicarb and Fenamiphos on Acetycholinesterase and Motility of Caenorhabditis elegans

    OpenAIRE

    Opperman, C. H.; Chang, S.

    1991-01-01

    The ability of Caenorhabditis elegans to recover from exposure to high doses of aldicarb and fenamiphos was examined at the organismal and biochemical levels by determination of movement and acetylcholinesterase activity. Nematodes recovered rapidly from a 24-hour exposure to both compounds at concentrations that caused complete paralysis. Acetylcholinesterase regained nearly full activity after a 24-hour exposure to aldicarb but only 10% activity after exposure to fenamiphos. The nematodes w...

  14. Adhesion of Conidia of Drechmeria coniospora to Caenorhabditis elegans Wild Type and Mutants

    OpenAIRE

    Jansson, Hans-Börje

    1994-01-01

    Adhesion of conidia of the endoparasitic fungus Drechmeria coniospora to the cuticles of the wild type and four different head defective mutants of Caenorhabditis elegans, and subsequent infection, was studied. The conidia adhered around the sensory structures in the head region, vulva, and occasionally to other parts of the cuticle in both mutant and wild type hosts. Infection took place after adhesion to the head region by penetration through the cuticle, and, following adhesion around the ...

  15. Characterization of Argonaute-related small RNA pathways in Caenorhabditis elegans

    OpenAIRE

    Batista, Pedro Jorge de Oliveira Rodrigues

    2010-01-01

    Tese de doutoramento, Biologia (Genética), Universidade de Lisboa, Faculdade de Ciências, 2011 In Small-RNA-mediated pathways, small RNAs engage a protein of the Argonaute family and utilize base-pairing interactions to identify and regulate complementary genetic information. My research has focused on understanding how diverse classes of small RNAs in the model organism Caenorhabditis elegans interact with specific members of the Argonaute protein family to carry out unique bi...

  16. Specific α- and β-Tubulin Isotypes Optimize the Functions of Sensory Cilia in Caenorhabditis elegans

    OpenAIRE

    Hurd, Daryl D.; Miller, Renee M.; Núñez, Lizbeth; Portman, Douglas S.

    2010-01-01

    Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for t...

  17. On the morphogenesis of glial compartments in the sensory organs of Caenorhabditis elegans

    OpenAIRE

    Oikonomou, Grigorios; Shaham, Shai

    2012-01-01

    Glial cells surround neuronal endings and isolate them within specialized compartments. This architecture is found at synapses in the central nervous system, as well as at receptive endings of sensory neurons. Recent studies are beginning to uncover the contributions of glial compartments to the functions of the ensheathed neurons. However, the cellular and molecular processes that guide compartment morphogenesis remain unknown. The main sensory organ of Caenorhabditis elegans, the amphid, pr...

  18. Analyzing Defects in the Caenorhabditis elegans Nervous System Using Organismal and Cell Biological Approaches

    OpenAIRE

    Guziewicz, Megan; Vitullo, Toni; Simmons, Bethany; Kohn, Rebecca Eustance

    2002-01-01

    The goal of this laboratory exercise is to increase student understanding of the impact of nervous system function at both the organismal and cellular levels. This inquiry-based exercise is designed for an undergraduate course examining principles of cell biology. After observing the movement of Caenorhabditis elegans with defects in their nervous system, students examine the structure of the nervous system to categorize the type of defect. They distinguish between defects in synaptic vesicle...

  19. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    OpenAIRE

    Saini AkalRachna K; Tyler Robert T; Shim Youn; Reaney Martin JT

    2011-01-01

    Abstract Background Allyl isothiocyanate (AITC) from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP) 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard ...

  20. EHBP-1 Functions with RAB-10 during Endocytic Recycling in Caenorhabditis elegans

    OpenAIRE

    Shi, Anbing; Chen, Carlos Chih-Hsiung; Banerjee, Riju; Glodowski, Doreen; Audhya, Anjon; Rongo, Christopher; Grant, Barth D.

    2010-01-01

    Caenorhabditis elegans RAB-10 functions in endocytic recycling in polarized cells, regulating basolateral cargo transport in the intestinal epithelia and postsynaptic cargo transport in interneurons. A similar role was found for mammalian Rab10 in MDCK cells, suggesting that a conserved mechanism regulates these related pathways in metazoans. In a yeast two-hybrid screen for binding partners of RAB-10 we identified EHBP-1, a calponin homology domain (CH) protein, whose mammalian homolog Ehbp1...

  1. Dual Excitatory and Inhibitory Serotonergic Inputs Modulate Egg Laying in Caenorhabditis elegans

    OpenAIRE

    Hapiak, Vera M.; Hobson, Robert J.; Hughes, Lindsay; Smith, Katherine; Harris, Gareth; Condon, Christina; Komuniecki, Patricia; Komuniecki, Richard W.

    2009-01-01

    Serotonin (5-HT) regulates key processes in both vertebrates and invertebrates. Previously, four 5-HT receptors that contributed to the 5-HT modulation of egg laying were identified in Caenorhabditis elegans. Therefore, to assess potential receptor interactions, we generated animals containing combinations of null alleles for each receptor, especially animals expressing only individual 5-HT receptors. 5-HT-stimulated egg laying and egg retention correlated well with different combinations of ...

  2. Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity.

    OpenAIRE

    Manuel J. Muñoz; Donald L Riddle

    2003-01-01

    We developed selective conditions for long-lived mutants of the nematode Caenorhabditis elegans by subjecting the first larval stage (L1) to thermal stress at 30 degrees for 7 days. The surviving larvae developed to fertile adults after the temperature was shifted to 15 degrees. A total of one million F(2) progeny and a half million F(3) progeny of ethyl-methanesulfonate-mutagenized animals were treated in three separate experiments. Among the 81 putative mutants that recovered and matured to...

  3. Intraflagellar transport in Caenorhabditis elegans: identification of novel proteins and behavioural functions

    OpenAIRE

    Inglis, Peter Nicholas

    2009-01-01

    Intraflagellar transport (IFT) is the dynamic bidirectional process required for the biogenesis and maintenance of eukaryotic cilia. Landmark studies exploiting the model organism Chlamydomonas reinhardtii have provided a basic mechanism for the process, although recent research examining IFT in the nematode Caenorhabditis elegans has revealed a greater complexity to the original model of IFT described in Chlamydomonas, which includes the orthologues of several human proteins involved in cili...

  4. Uncoupling of longevity and paraquat resistance in mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Fujii, Michihiko; Tanaka, Nanae; Miki, Kensuke; Hossain, Mohammad Nazir; Endoh, Morio; Ayusawa, Dai

    2005-10-01

    To analyze the relationship between resistance to oxidative stress and longevity, we isolated three novel paraquat-resistant mutants, mev-5, mev-6, and mev-7, from the nematode Caenorhabditis elegans. They all showed the Dyf (defective in dye filling) phenotype, but not always resistance to heat or UV. Life-span extension was observed only in the mev-5 mutant at 26 degrees C. These results indicate that longevity is uncoupled with the phenotype of paraquat resistance. PMID:16244463

  5. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model

    OpenAIRE

    Dirksen, Philipp; Marsh, Sarah Arnaud; Braker, Ines; Heitland, Nele; Wagner, Sophia; Nakad, Rania; Mader, Sebastian; Petersen, Carola; Kowallik, Vienna; Rosenstiel, Philip; Félix, Marie-Anne; Schulenburg, Hinrich

    2016-01-01

    Background Host-microbe associations underlie many key processes of host development, immunity, and life history. Yet, none of the current research on the central model species Caenorhabditis elegans considers the worm’s natural microbiome. Instead, almost all laboratories exclusively use the canonical strain N2 and derived mutants, maintained through routine bleach sterilization in monoxenic cultures with an E. coli strain as food. Here, we characterize for the first time the native microbio...

  6. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model.

    OpenAIRE

    Dirksen, P.; Marsh, S.; Braker, I.; Heitland, N.; S. Wagner; Nakad, R.; Mader, S; Petersen, C.; Kowallik, V.; Rosenstiel, P.; M. Felix; Schulenburg, H.

    2016-01-01

    BACKGROUND: Host-microbe associations underlie many key processes of host development, immunity, and life history. Yet, none of the current research on the central model species Caenorhabditis elegans considers the worm's natural microbiome. Instead, almost all laboratories exclusively use the canonical strain N2 and derived mutants, maintained through routine bleach sterilization in monoxenic cultures with an E. coli strain as food. Here, we characterize for the first time the native microbi...

  7. Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms

    OpenAIRE

    Martinez-Finley, Ebany J.; Michael Aschner

    2011-01-01

    Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elega...

  8. Acacetin promotes healthy aging by altering stress response in Caenorhabditis elegans.

    Science.gov (United States)

    Asthana, Jyotsna; Mishra, B N; Pandey, Rakesh

    2016-08-01

    The progression in lifespan has been associated with elevated intracellular reactive oxygen species (ROS) and oxidative stress level which contributes to development of age related disorders. The discovery of lifespan modulating phytomolecules may promote development of natural therapies against age related afflictions. Acacetin (5,7-dihydroxy-4-methoxyflavone), is a naturally occurring flavonoid known to possess therapeutic properties. To this end, the present study evaluates effect of acacetin (AC) on lifespan, stress and neurotoxicity for the first time by using well-established free living, multicellular Caenorhabditis elegans model system. The 25 μM dose of AC significantly prolonged the mean lifespan of worms by 27.31% in comparison to untreated control and other tested doses of AC. Additionally, AC enhanced stress resistance against oxidative and thermal stress in worms. Furthermore, AC attenuated age related intracellular ROS level, aggregation of age pigment lipofuscin and increased the mean survival in stress hypersensitive mev-1 mutant by 40.5%. AC supplementation also reduced the alpha synuclein aggregation in transgenic worm model of Parkinson's disease. The enhanced stress resistance, lifespan and alleviation of age related pathology can be attributed to increment in stress modulatory enzymes like superoxide dismutase (SOD) and catalase (CAT) level. Altogether the results suggest AC exposure maintains stress level, health span and extends mean lifespan of C. elegans. The longevity promoting and neuromodulatory effects of AC are mediated by up regulation of the stress response genes sod-3 and gst-4. The present finding gives new insights of natural remedies and their future prospects in developing therapeutic interventions for managing age related diseases. PMID:27150237

  9. Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1.

    Directory of Open Access Journals (Sweden)

    Matthew A Schreiber

    2010-05-01

    Full Text Available Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline.

  10. Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach

    Science.gov (United States)

    Szewczyk, N. J.; Kozak, E.; Conley, C. A.

    2003-01-01

    C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  11. Administration with Bushenkangshuai Tang alleviates UV irradiation- and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    Qi RUI; Qin LU; Dayong WANG

    2009-01-01

    During normal metabolism, oxidative bypro-ducts will inevitably generate and damage molecules thereby impairing their biological functions, including the is a traditional Chinese medicine widely used for clini-cally treating premature ovarian failure. In the present study, BT administration at high concentrations signifi-cantly increased lifespan, slowed aging-related decline, and delayed accumulation of aging-related cellular damage in wild-type Caenorhabditis elegans. BT admin-istration could further largely alleviate the aging defects induced by UV and oxidative stresses, and BT administra-tion at different concentrations could largely rescue the aging defects in mev-1 mutant animals. The protective effects of BT administration on aging process were at least partially dependent on the Ins/IGF-like signaling pathway. Moreover, BT administration at different concentrations obviously altered the expression patterns of antioxidant genes and suppressed the severe stress responses induced by UV and oxidative stresses, suggesting that BT-induced tolerance to UV or oxidative stress might result from reactive oxygen species scavenging. BT administration during development was not necessarily a requirement for UV and oxidative stress resistance, and the concentrations of administrated BT examined were not toxic for nematodes. Therefore, BT administration could effectively retrieve the aging defects induced by UV irradiation and oxidative stress in Caenorhabditis elegans.

  12. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans

    Science.gov (United States)

    Wu, Qiuli; Zhao, Yunli; Li, Yiping; Wang, Dayong

    2014-09-01

    Both in vitro and in vivo studies have demonstrated the toxic effects of graphene oxide (GO). However, the molecular basis for the translocation and toxicity of GO is still largely unclear. In the present study, we employed an in vivo Caenorhabditis elegans assay system to identify molecular signals involved in the control of the translocation and toxicity of GO. We identified 7 genes whose mutations altered both the translocation and toxicity of GO. Mutations of the hsp-16.48, gas-1, sod-2, sod-3, and aak-2 genes caused greater GO translocation into the body and toxic effects on both primary and secondary targeted organs compared with wild type; however, mutations of the isp-1 and clk-1 genes resulted in significantly decreased GO translocation into the body and toxicity on both primary and secondary targeted organs compared with wild-type. Moreover, mutations of the hsp-16.48, gas-1, sod-2, sod-3, and aak-2 genes caused increased intestinal permeability and prolonged mean defecation cycle length in GO-exposed nematodes, whereas mutations of the isp-1 and clk-1 genes resulted in decreased intestinal permeability in GO-exposed nematodes. Therefore, for the underlying mechanism, we hypothesize that both intestinal permeability and defecation behavior may have crucial roles in controlling the functions of the identified molecular signals. The molecular signals may further contribute to the control of transgenerational toxic effects of GO. Our results provide an important insight into understanding the molecular basis for the in vivo translocation and toxicity of GO.Both in vitro and in vivo studies have demonstrated the toxic effects of graphene oxide (GO). However, the molecular basis for the translocation and toxicity of GO is still largely unclear. In the present study, we employed an in vivo Caenorhabditis elegans assay system to identify molecular signals involved in the control of the translocation and toxicity of GO. We identified 7 genes whose mutations

  13. Toxicogenomic effects of nano- and bulk-TiO2 particles in the soil nematode Caenorhabditis elegans.

    Science.gov (United States)

    Rocheleau, Sylvie; Arbour, Mélanie; Elias, Miria; Sunahara, Geoffrey I; Masson, Luke

    2015-05-01

    The toxicity and toxicogenomics of selected anatase and rutile nanoparticles (NP) and bulk titanium dioxide (TiO2) particles were evaluated in the soil nematode Caenorhabditis elegans. Results indicated that bulk or nano-TiO2 particles were slightly toxic to soil nematode C. elegans, as measured by reproduction EC50 values ranging from 4 to 32 mg/L. Whole-genome microarray results indicated that the regulation of glutathione-S-transferase gst-3, cytochrome P450 cypp33-c11, stress resistance regulator scl-1, oxidoreductase wah-1 and embryonic development pod-2 genes were significantly affected by nano-sized and bulk-TiO2 particles. More specifically, it was determined that anatase particles exerted a greater effect on metabolic pathways, whereas rutile particles had a greater effect on developmental processes. The up-regulation of the pod-2 gene corroborated the phenotypic effect observed in the reproduction test. Our results demonstrated that C. elegans is a good genomic model for nano-TiO2 toxicity assessment. PMID:25211548

  14. A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans

    Science.gov (United States)

    Kimura, Yoshishige; Corcoran, Ethan E.; Eto, Koh; Gengyo-Ando, Keiko; Muramatsu, Masa-aki; Kobayashi, Ryoji; Freedman, Jonathan H.; Mitani, Shohei; Hagiwara, Masatoshi; Means, Anthony R.; Tokumitsu, Hiroshi

    2002-01-01

    Calcium (Ca2+) signals regulate a diverse set of cellular responses, from proliferation to muscular contraction and neuro-endocrine secretion. The ubiquitous Ca2+ sensor, calmodulin (CaM), translates changes in local intracellular Ca2+ concentrations into changes in enzyme activities. Among its targets, the Ca2+/CaM-dependent protein kinases I and IV (CaMKs) are capable of transducing intraneuronal signals, and these kinases are implicated in neuronal gene regulation that mediates synaptic plasticity in mammals. Recently, the cyclic AMP response element binding protein (CREB) has been proposed as a target for a CaMK cascade involving not only CaMKI or CaMKIV, but also an upstream kinase kinase that is also CaM regulated (CaMKK). Here, we report that all components of this pathway are coexpressed in head neurons of Caenorhabditis elegans. Utilizing a transgenic approach to visualize CREB-dependent transcription in vivo, we show that this CaMK cascade regulates CRE-mediated transcription in a subset of head neurons in living nematodes. PMID:12231504

  15. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes.

    Science.gov (United States)

    Nikolaou, S; Gasser, R B

    2007-04-01

    Signal transduction molecules play key roles in the regulation of developmental processes, such as morphogenesis, organogenesis and cell differentiation in all organisms. They are organized into 'pathways' that represent a coordinated network of cell-surface receptors and intracellular molecules, being involved in sensing environmental stimuli and transducing signals to regulate or modulate cellular processes, such as gene expression and cytoskeletal dynamics. A particularly important group of molecules implicated in the regulation of the cytoskeleton for the establishment and maintenance of cell polarity is the PAR proteins (derived from partition defective in asymmetric cell division). The present article reviews salient aspects of PAR proteins involved in the early embryonic development and morphogenesis of the free-living nematode Caenorhabditis elegans and some other organisms, with an emphasis on the molecule PAR-1. Recent advances in the knowledge and understanding of PAR-1 homologues from the economically important parasitic nematode, Haemonchus contortus, of small ruminants is summarized and discussed in the context of exploring avenues for future research in this area for parasitic nematodes. PMID:17107637

  16. WormGender - Open-Source Software for Automatic Caenorhabditis elegans Sex Ratio Measurement.

    Directory of Open Access Journals (Sweden)

    Marta K Labocha

    Full Text Available Fast and quantitative analysis of animal phenotypes is one of the major challenges of current biology. Here we report the WormGender open-source software, which is designed for accurate quantification of sex ratio in Caenorhabditis elegans. The software functions include, i automatic recognition and counting of adult hermaphrodites and males, ii a manual inspection feature that enables manual correction of errors, and iii flexibility to use new training images to optimize the software for different imaging conditions. We evaluated the performance of our software by comparing manual and automated assessment of sex ratio. Our data showed that the WormGender software provided overall accurate sex ratio measurements. We further demonstrated the usage of WormGender by quantifying the high incidence of male (him phenotype in 27 mutant strains. Mutants of nine genes (brc-1, C30G12.6, cep-1, coh-3, him-3, him-5, him-8, skr-1, unc-86 showed significant him phenotype. The WormGender is written in Java and can be installed and run on both Windows and Mac platforms. The source code is freely available together with a user manual and sample data at http://www.QuantWorm.org/. The source code and sample data are also available at http://dx.doi.org/10.6084/m9.figshare.1541248.

  17. UNC-41/stonin functions with AP2 to recycle synaptic vesicles in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Gregory P Mullen

    Full Text Available The recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2 have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ∼50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the µ2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as µ2 adaptin.

  18. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans.

    Science.gov (United States)

    Miller, Jacqueline G; Liu, Yan; Williams, Christopher W; Smith, Harold E; O'Connell, Kevin F

    2016-01-01

    Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly. PMID:26772748

  19. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jacqueline G. Miller

    2016-03-01

    Full Text Available Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  20. μHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans.

    Science.gov (United States)

    Wong, Alan; Li, Xiaonan; Molin, Laurent; Solari, Florence; Elena-Herrmann, Bénédicte; Sakellariou, Dimitris

    2014-06-17

    Analysis of model organisms, such as the submillimeter-size Caenorhabditis elegans, plays a central role in understanding biological functions across species and in characterizing phenotypes associated with genetic mutations. In recent years, metabolic phenotyping studies of C. elegans based on (1)H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy have relied on the observation of large populations of nematodes, requiring labor-intensive sample preparation that considerably limits high-throughput characterization of C. elegans. In this work, we open new platforms for metabolic phenotyping of C. elegans mutants. We determine rich metabolic profiles (31 metabolites identified) from samples of 12 individuals using a (1)H NMR microprobe featuring high-resolution magic-angle coil spinning (HR-MACS), a simple conversion of a standard HR-MAS probe to μHR-MAS. In addition, we characterize the metabolic variations between two different strains of C. elegans (wild-type vs slcf-1 mutant). We also acquire a NMR spectrum of a single C. elegans worm at 23.5 T. This study represents the first example of a metabolomic investigation carried out on a small number of submillimeter-size organisms, demonstrating the potential of NMR microtechnologies for metabolomics screening of small model organisms. PMID:24897622

  1. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution.

    Science.gov (United States)

    Clavijo, Araceli; Kronberg, María Florencia; Rossen, Ariana; Moya, Aldana; Calvo, Daniel; Salatino, Santa Esmeralda; Pagano, Eduardo Antonio; Morábito, José Antonio; Munarriz, Eliana Rosa

    2016-11-01

    Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring. PMID:27343944

  2. Radiation biology of Caenorhabditis elegans. Germ cell response, aging and behavior

    International Nuclear Information System (INIS)

    The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good 'in vivo' model system in the field of radiation biology. (author)

  3. Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network

    CERN Document Server

    Varier, Sreedevi; 10.1371/journal.pcbi.1001044

    2011-01-01

    The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than late...

  4. Acquisition of 4D DIC microscopic data to determine cell contacts in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Walston, Timothy; Hardin, Jeff

    2010-12-01

    The Caenorhabditis elegans embryo is particularly amenable to microscopy and embryological studies because of its short developmental time, transparent shell, and nonpigmented cells. Acquisition of stacks of images throughout the thickness of the embryo over time is a crucial method for identifying the positions and contacts between cells. Such four-dimensional (4D) microscopy is a routine tool in laboratories that study early C. elegans development. Differential interference contrast (DIC) microscopy is the focus here because of its broad availability, common use for C. elegans imaging, and wide applicability to microscopic analysis of embryos of other organisms. This protocol describes the use of a custom script within μManager's Beanshell scripting language. The script is helpful for reducing the number of shutter open/close events during 4D acquisition. PMID:21123428

  5. Topological cluster analysis reveals the systemic organization of the Caenorhabditis elegans connectome.

    Directory of Open Access Journals (Sweden)

    Yunkyu Sohn

    2011-05-01

    Full Text Available The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome of Caenorhabditis elegans (C. elegans and to investigate their topological properties. Incorporating bilateral symmetry of the network as an important cue for proper cluster assignment, we identified anatomical clusters in the C. elegans connectome, including a body-spanning cluster, which correspond to experimentally identified functional circuits. Moreover, the hierarchical organization of the five clusters explains the systemic cooperation (e.g., mechanosensation, chemosensation, and navigation that occurs among the structurally segregated biological circuits to produce higher-order complex behaviors.

  6. Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms

    Directory of Open Access Journals (Sweden)

    Ebany J. Martinez-Finley

    2011-01-01

    Full Text Available Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans, contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.

  7. Caenorhabditis elegans glia modulate neuronal activity and behavior

    Directory of Open Access Journals (Sweden)

    Randy F Stout

    2014-03-01

    Full Text Available Glial cells of C. elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived GLR glia appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are an extension of those experimental assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general.

  8. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    Science.gov (United States)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  9. The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations.

    Science.gov (United States)

    Zhou, Dong; Yang, Jie; Li, Hui; Cui, Changzheng; Yu, Yunjiang; Liu, Yongdi; Lin, Kuangfei

    2016-07-01

    To investigate biological effects of bisphenol A (BPA) over the long term, the model animal Caenorhabditis elegans was used to conduct the chronic exposure. C. elegans were exposed to BPA (0.0001-10 μM) from L4 larvae to day-10 adult in the present chronic toxicity assay system. Multiple endpoints at the physiological (growth, locomotion behaviors and lifespan), biochemical (lipofuscin accumulation), molecular (stress-related genes expressions), and population (population size) levels were examined. At the physiological level, BPA exposure induced significant negative effects on the indicators. Among the endpoints, head thrash was most sensitive and the detection limit was 0.001 μM. At the biochemical level, BPA exposure induced no significant effects on lipofuscin accumulation. At the molecular level, BPA induced strong stress responses in vivo. At the population level, the population size was significantly decreased in the treatment groups from 0.1 to 10 μM. Compared to the previous short-term toxicity evaluation, long-term exposure to BPA induced a more obvious response at the same concentration, and the phenomenon might be due to cumulative toxic effects. By the Pearson correlation analyses, cep-1 was speculated to act as an important role in BPA-induced chronic toxicity on C. elegans. PMID:27085314

  10. Vampiric Isolation of Extracellular Fluid from Caenorhabditis elegans

    OpenAIRE

    Banse, Stephen A.; Hunter, Craig P.

    2012-01-01

    The genetically tractable model organism C. elegans has provided insights into a myriad of biological questions, enabled by its short generation time, ease of growth and small size. This small size, though, has disallowed a number of technical approaches found in other model systems. For example, blood transfusions in mammalian systems and grafting techniques in plants enable asking questions of circulatory system composition and signaling. The circulatory system of the worm, the pseudocoelom...

  11. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Sunhee; Lee, Hyoung-Joo; Hahm, Jeong-Hoon; Jeong, Seul-Ki; Park, Don-Ha; Hancock, William S; Paik, Young-Ki

    2016-02-01

    When Caenorhabditis elegans encounters unfavorable growth conditions, it enters the dauer stage, an alternative L3 developmental period. A dauer larva resumes larval development to the normal L4 stage by uncharacterized postdauer reprogramming (PDR) when growth conditions become more favorable. During this transition period, certain heterochronic genes involved in controlling the proper sequence of developmental events are known to act, with their mutations suppressing the Muv (multivulva) phenotype in C. elegans. To identify the specific proteins in which the Muv phenotype is highly suppressed, quantitative proteomic analysis with iTRAQ labeling of samples obtained from worms at L1 + 30 h (for continuous development [CD]) and dauer recovery +3 h (for postdauer development [PD]) was carried out to detect changes in protein abundance in the CD and PD states of both N2 and lin-28(n719). Of the 1661 unique proteins identified with a < 1% false discovery rate at the peptide level, we selected 58 proteins exhibiting ≥2-fold up-regulation or ≥2-fold down-regulation in the PD state and analyzed the Gene Ontology terms. RNAi assays against 15 selected up-regulated genes showed that seven genes were predicted to be involved in higher Muv phenotype (p < 0.05) in lin-28(n791), which is not seen in N2. Specifically, two genes, K08H10.1 and W05H9.1, displayed not only the highest rate (%) of Muv phenotype in the RNAi assay but also the dauer-specific mRNA expression, indicating that these genes may be required for PDR, leading to the very early onset of dauer recovery. Thus, our proteomic approach identifies and quantitates the regulatory proteins potentially involved in PDR in C. elegans, which safeguards the overall lifecycle in response to environmental changes. PMID:26751275

  12. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity

    International Nuclear Information System (INIS)

    Fifteen organic phosphate pesticides were tested by computer tracking for their acute behavioral toxicity with the nematode Caenorhabditis elegans. Thirteen of these 15 chemicals are used as insecticides and are anticholesterase agents. The other two chemicals are used as herbicides. EC50 values for each chemical were compared to the corresponding LD50 acute lethality value in rats and mice. Order of toxicity was found to be significantly correlated in comparisons of C. elegans to both rats and mice. Mechanistic investigations were conducted by assaying 8 of the 15 chemicals for anticholinesterase activity in C. elegans. Significant cholinesterase inhibition was confirmed for five chemicals that had displayed high behavioral toxicity, while three chemicals of low behavioral toxicity showed no significant decrease in cholinesterase activity. Toxicity for two chemicals that do not inhibit cholinesterase in mammals was linked to pH effects. Detailed comparison of individual chemicals and metabolic issues are discussed. These results have positive implications for the use of C. elegans as a mammalian neurological model and support the use of C. elegans in early rounds of chemical toxicity screening

  13. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  14. A highly accurate inclusive cancer screening test using Caenorhabditis elegans scent detection.

    Science.gov (United States)

    Hirotsu, Takaaki; Sonoda, Hideto; Uozumi, Takayuki; Shinden, Yoshiaki; Mimori, Koshi; Maehara, Yoshihiko; Ueda, Naoko; Hamakawa, Masayuki

    2015-01-01

    Early detection and treatment are of vital importance to the successful eradication of various cancers, and development of economical and non-invasive novel cancer screening systems is critical. Previous reports using canine scent detection demonstrated the existence of cancer-specific odours. However, it is difficult to introduce canine scent recognition into clinical practice because of the need to maintain accuracy. In this study, we developed a Nematode Scent Detection Test (NSDT) using Caenorhabditis elegans to provide a novel highly accurate cancer detection system that is economical, painless, rapid and convenient. We demonstrated wild-type C. elegans displayed attractive chemotaxis towards human cancer cell secretions, cancer tissues and urine from cancer patients but avoided control urine; in parallel, the response of the olfactory neurons of C. elegans to the urine from cancer patients was significantly stronger than to control urine. In contrast, G protein α mutants and olfactory neurons-ablated animals were not attracted to cancer patient urine, suggesting that C. elegans senses odours in urine. We tested 242 samples to measure the performance of the NSDT, and found the sensitivity was 95.8%; this is markedly higher than that of other existing tumour markers. Furthermore, the specificity was 95.0%. Importantly, this test was able to diagnose various cancer types tested at the early stage (stage 0 or 1). To conclude, C. elegans scent-based analyses might provide a new strategy to detect and study disease-associated scents. PMID:25760772

  15. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    International Nuclear Information System (INIS)

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. (author)

  16. Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Fabien Duveau

    2012-01-01

    Full Text Available Robust biological systems are expected to accumulate cryptic genetic variation that does not affect the system output in standard conditions yet may play an evolutionary role once phenotypically expressed under a strong perturbation. Genetic variation that is cryptic relative to a robust trait may accumulate neutrally as it does not change the phenotype, yet it could also evolve under selection if it affects traits related to fitness in addition to its cryptic effect. Cryptic variation affecting the vulval intercellular signaling network was previously uncovered among wild isolates of Caenorhabditis elegans. Using a quantitative genetic approach, we identify a non-synonymous polymorphism of the previously uncharacterized nath-10 gene that affects the vulval phenotype when the system is sensitized with different mutations, but not in wild-type strains. nath-10 is an essential protein acetyltransferase gene and the homolog of human NAT10. The nath-10 polymorphism also presents non-cryptic effects on life history traits. The nath-10 allele carried by the N2 reference strain leads to a subtle increase in the egg laying rate and in the total number of sperm, a trait affecting the trade-off between fertility and minimal generation time in hermaphrodite individuals. We show that this allele appeared during early laboratory culture of N2, which allowed us to test whether it may have evolved under selection in this novel environment. The derived allele indeed strongly outcompetes the ancestral allele in laboratory conditions. In conclusion, we identified the molecular nature of a cryptic genetic variation and characterized its evolutionary history. These results show that cryptic genetic variation does not necessarily accumulate neutrally at the whole-organism level, but may evolve through selection for pleiotropic effects that alter fitness. In addition, cultivation in the laboratory has led to adaptive evolution of the reference strain N2 to the

  17. Caenorhabditis elegans: a model to monitor bacterial air quality

    Directory of Open Access Journals (Sweden)

    Duclairoir Poc Cécile

    2011-11-01

    Full Text Available Abstract Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France. With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test.

  18. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods.

    Directory of Open Access Journals (Sweden)

    Kelvin Yen

    Full Text Available The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor, rict-1 (rictor and sgk-1 (serum glucocorticoid kinase. CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead

  19. Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans.

    Science.gov (United States)

    Garcia, Anastacia M; Ladage, Mary L; Dumesnil, Dennis R; Zaman, Khadiza; Shulaev, Vladimir; Azad, Rajeev K; Padilla, Pamela A

    2015-05-01

    Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases. PMID:25762526

  20. A Cultivated Form of a Red Seaweed (Chondrus crispus), Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans.

    Science.gov (United States)

    Sangha, Jatinder Singh; Wally, Owen; Banskota, Arjun H; Stefanova, Roumiana; Hafting, Jeff T; Critchley, Alan T; Prithiviraj, Balakrishnan

    2015-10-01

    We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS). PMID:26492254

  1. A Cultivated Form of a Red Seaweed (Chondrus crispus, Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jatinder Singh Sangha

    2015-10-01

    Full Text Available We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE, delayed β-amyloid-induced paralysis, whereas the water extract (CCW was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS.

  2. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Roz Laing

    Full Text Available The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid

  3. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    International Nuclear Information System (INIS)

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system. (paper)

  4. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans

    OpenAIRE

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-01-01

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi...

  5. A second trans-spliced RNA leader sequence in the nematode Caenorhabditis elegans.

    OpenAIRE

    Huang, X Y; Hirsh, D

    1989-01-01

    In the nematode Caenorhabditis elegans, the 22-nucleotide RNA sequence called the spliced leader (SL) is trans-spliced from the 100-nucleotide-long SL RNA to some mRNAs. We have identified a trans-spliced leader (SL2) whose sequence differs from that of the original spliced leader (SL1), although both are 22 nucleotides long. By primer-extension sequencing, SL2 but not SL1 was shown to be present at the 5' end of the mRNA encoded by one of the four glyceraldehyde-3-phosphate dehydrogenase gen...

  6. Developmental defects in a Caenorhabditis elegans model for type III galactosemia.

    Science.gov (United States)

    Brokate-Llanos, Ana M; Monje, José M; Murdoch, Piedad Del Socorro; Muñoz, Manuel J

    2014-12-01

    Type III galactosemia is a metabolic disorder caused by reduced activity of UDP-galactose-4-epimerase, which participates in galactose metabolism and the generation of various UDP-sugar species. We characterized gale-1 in Caenorhabditis elegans and found that a complete loss-of-function mutation is lethal, as has been hypothesized for humans, whereas a nonlethal partial loss-of-function allele causes a variety of developmental abnormalities, likely resulting from the impairment of the glycosylation process. We also observed that gale-1 mutants are hypersensitive to galactose as well as to infections. Interestingly, we found interactions between gale-1 and the unfolded protein response. PMID:25298520

  7. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans

    OpenAIRE

    Zhendong Yang; Kathy S. Xue; Xiulan Sun; Lili Tang; Jia-Sheng Wang

    2015-01-01

    Aflatoxins B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 toxin (T-2), and zearalenone (ZEA) are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg...

  8. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Uhlin, Ulla; Munch-Petersen, Birgitte

    2012-01-01

    ligands. To improve our understanding of TK1 substrate specificity, we performed a detailed, mutation-based comparative structure-function study of the active sites of two thymidine kinases: HuTK1 and Caenorhabditis elegans TK1 (CeTK1). Specifically, mutations were introduced into the hydrophobic pocket...... surrounding the substrate base. In CeTK1, some of these mutations led to increased activity with deoxycytidine and deoxyguanosine, two unusual substrates for TK1-like kinases. In HuTK1, mutation of T163 to S resulted in a kinase with a 140-fold lower K(m) for the antiviral nucleoside analogue 3'-azido-3...

  9. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans

    OpenAIRE

    Nehammer, C.; Podolska, A; Mackowiak, S.D.; Kagias, K.; Pocock, R

    2015-01-01

    The ability of animals to sense and respond to elevated temperature is essential for survival. Transcriptional control of the heat stress response has been much studied, whereas its posttranscriptional regulation by microRNAs (miRNAs) is not well understood. Here we analyzed the miRNA response to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmenta...

  10. SGCEdb: a flexible database and web interface integrating experimental results and analysis for structural genomics focusing on Caenorhabditis elegans

    OpenAIRE

    David H Johnson; Tsao, Jun; Luo, Ming; Carson, Mike

    2005-01-01

    The SGCEdb () database/interface serves the primary purpose of reporting progress of the Structural Genomics of Caenorhabditis elegans project at the University of Alabama at Birmingham. It stores and analyzes results of experiments ranging from solubility screening arrays to individual protein purification and structure solution. External databases and algorithms are referenced and evaluated for target selection in the human, C.elegans and Pneumocystis carinii genomes. The flexible and reusa...

  11. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans

  12. PUF-8, a Pumilio homolog, inhibits the proliferative fate in the Caenorhabditis elegans germline.

    Science.gov (United States)

    Racher, Hilary; Hansen, Dave

    2012-10-01

    Stem cell populations are maintained by keeping a balance between self-renewal (proliferation) and differentiation of dividing stem cells. Within the Caenorhabditis elegans germline, the key regulator maintaining this balance is the canonical Notch signaling pathway, with GLP-1/Notch activity promoting the proliferative fate. We identified the Pumilio homolog, PUF-8, as an inhibitor of the proliferative fate of stem cells in the C. elegans germline. puf-8(0) strongly enhances overproliferation of glp-1(gf) mutants and partially suppresses underproliferation of a weak glp-1(lf) mutant. The germline tumor that is formed in a puf-8(0); glp-1(gf) double mutant is due to a failure of germ cells to enter meiotic prophase. puf-8 likely inhibits the proliferative fate through negatively regulating GLP-1/Notch signaling or by functioning parallel to it. PMID:23050230

  13. Transgenically expressed Parascaris P-glycoprotein-11 can modulate ivermectin susceptibility in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    I. Jana I. Janssen

    2015-08-01

    Full Text Available P-glycoproteins (Pgps are suspected to mediate drug extrusion in nematodes contributing to macrocyclic lactone resistance. This association was recently shown for Parascaris Pgp-11. Ivermectin resistance was correlated with the presence of three pgp-11 single nucleotide polymorphisms and/or increased pgp-11 mRNA levels. In the present study, the ability of Pgp-11 to modulate ivermectin susceptibility was investigated by its expression in a pgp-11-deficient Caenorhabditis elegans strain. Expression of Parascaris pgp-11 in two transgenic lines significantly decreased ivermectin susceptibility in a motility (thrashing assay conducted in liquid medium. The EC50 values increased by 3.2- and 4.6-fold in the two lines relative to a transgenic control strain. This is the first report on the successful functional analysis of a parasitic nematode Pgp in the model organism C. elegans.

  14. Maple Syrup Decreases TDP-43 Proteotoxicity in a Caenorhabditis elegans Model of Amyotrophic Lateral Sclerosis (ALS).

    Science.gov (United States)

    Aaron, Catherine; Beaudry, Gabrielle; Parker, J Alex; Therrien, Martine

    2016-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing death of the motor neurons. Proteotoxicity caused by TDP-43 protein is an important aspect of ALS pathogenesis, with TDP-43 being the main constituent of the aggregates found in patients. We have previously tested the effect of different sugars on the proteotoxicity caused by the expression of mutant TDP-43 in Caenorhabditis elegans. Here we tested maple syrup, a natural compound containing many active molecules including sugars and phenols, for neuroprotective activity. Maple syrup decreased several age-dependent phenotypes caused by the expression of TDP-43(A315T) in C. elegans motor neurons and requires the FOXO transcription factor DAF-16 to be effective. PMID:27071850

  15. Combination of thioridazine and dicloxacillin combats Methicillin-resistant Staphylococcus aureus infections in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Poulsen, Marianne Ø; Schøler, Lone Vedel; Nielsen, Anette;

    2014-01-01

    The shortage of drugs active against meticillin-resistant Staphylococcus aureus (MRSA) is a growing clinical problem. In vitro studies indicate that the phenothiazine thioridazine (TZ) might enhance the activity of the β-lactam antibiotic dicloxacillin (DCX) to a level where MRSA is killed......, but experiments in simple animal models have not been performed. In the present study, we introduced Caenorhabditis elegans infected by S. aureus as an in vivo model to test the effect of TZ as a helper drug in combination with DCX. Because TZ is an anthelmintic, initial experiments were carried out to define......) was selected for further analyses. In a final experiment, full-grown C. elegans were exposed to the test strain for 3 days and subsequently treated with 8 mg DCX l−1 and 8 mg TZ l−1 for 2 days. This resulted in a 14-fold reduction in the intestinal MRSA load as compared with untreated controls. Each drug alone...

  16. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.

    Science.gov (United States)

    Leinwand, Sarah G; Chalasani, Sreekanth H

    2013-10-01

    Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic, but the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, used BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large, but not small, changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switched the AWC olfactory sensory neuron into an interneuron in the salt circuit. Worms with disrupted insulin signaling had deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results indicate that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition. PMID:24013594

  17. 秀丽线虫的蛋白质组学研究%Proteomic Research of Caenorhabditis Elegans

    Institute of Scientific and Technical Information of China (English)

    李华玲; 陈文飞; 高玉晓; 王凯; 秦燕; 刘丹丹; 张成岗

    2012-01-01

    The nematode Caenorhabditis elegans_ (C. elegans) has been used in many researches on biological processes. Although mostly known for its research value on modern developmental biology, behavior and neurobiology, genomics, powerful forward and reverse genetics, this model organism has developed into a respectable system for proteomics studies as well and used to complement genetic and RNA interference-based studies of gene function. A number of focused comparative studies contributed to a better understanding of differential gene expression under different temperatures and during development stages, revealed the mechanism of Parkinson, Alzheimer, aging and longevity, insulin signaling related to the human neuro-disease. In addition, C.elegans subproteomes and posttranslational modifications like glycosylation and phosphorylation have been identified and the database are endlessly consummate. Here we describe the history of C.elegans proteomics, especially in neuroscience, and the status of establishment of post-translation modification. Therefore, C.elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions. These studies suggest that C.elegans will be a rich trove for "worm proteomicists".%作为模式生物,秀丽线虫(Caenorhabditis elegans)已经成功地用于许多生命过程的研究,尤其被广泛应用于现代发育生物学、行为与神经生物学、基因组学、正向和反向的遗传学研究中,近年来,秀丽线虫更成为了一个进行蛋白质组学研究的优良体系,诠释了基于基因组学和RNA干涉研究中的基因功能.许多比较蛋白质组学表达谱的建立可以更好地理解线虫在不同发育阶段、不同温度下基因的表达,在与人类神经疾病相关的疾病研究中,线虫对帕金森疾病、阿尔茨海默症、衰老与寿命、胰岛素通路都有所揭示.另外,线虫的亚

  18. Globin-like proteins in Caenorhabditis elegans: in vivo localization, ligand binding and structural properties

    Directory of Open Access Journals (Sweden)

    Van Doorslaer Sabine

    2010-04-01

    Full Text Available Abstract Background The genome of the nematode Caenorhabditis elegans contains more than 30 putative globin genes that all are transcribed. Although their translated amino acid sequences fit the globin fold, a variety of amino-acid substitutions and extensions generate a wide structural diversity among the putative globins. No information is available on the physicochemical properties and the in vivo expression. Results We expressed the globins in a bacterial system, characterized the purified proteins by optical and resonance Raman spectroscopy, measured the kinetics and equilibria of O2 binding and determined the crystal structure of GLB-1* (CysGH2 → Ser mutant. Furthermore, we studied the expression patterns of glb-1 (ZK637.13 and glb-26 (T22C1.2 in the worms using green fluorescent protein technology and measured alterations of their transcript abundances under hypoxic conditions.GLB-1* displays the classical three-over-three α-helical sandwich of vertebrate globins, assembled in a homodimer associated through facing E- and F-helices. Within the heme pocket the dioxygen molecule is stabilized by a hydrogen bonded network including TyrB10 and GlnE7.GLB-1 exhibits high ligand affinity, which is, however, lower than in other globins with the same distal TyrB10-GlnE7 amino-acid pair. In the absence of external ligands, the heme ferrous iron of GLB-26 is strongly hexacoordinated with HisE7, which could explain its extremely low affinity for CO. This globin oxidizes instantly to the ferric form in the presence of oxygen and is therefore incapable of reversible oxygen binding. Conclusion The presented data indicate that GLB-1 and GLB-26 belong to two functionally-different globin classes.

  19. The control of cell growth and body size in Caenorhabditis elegans.

    Science.gov (United States)

    Tuck, Simon

    2014-02-01

    One of the most important ways in which animal species vary is in their size. Individuals of the largest animal ever thought to have lived, the blue whale (Balaenoptera musculus), can reach a weight of 190 t and a length of over 30 m. At the other extreme, among the smallest multicellular animals are males of the parasitic wasp, Dicopomorpha echmepterygis, which even as adults are just 140 μm in length. In terms of volume, these species differ by more than 14 orders of magnitude. Since size has such profound effects on an organism's ecology, anatomy and physiology, an important task for evolutionary biology and ecology is to account for why organisms grow to their characteristic sizes. Equally, a full description of an organism's development must include an explanation of how its growth and body size are regulated. Here I review research on how these processes are controlled in the nematode, Caenorhabditis elegans. Analyses of small and long mutants have revealed that in the worm, DBL-1, a ligand in the TGFβ superfamily family, promotes growth in a dose-dependent manner. DBL-1 signaling affects body size by stimulating the growth of syncytial hypodermal cells rather than controlling cell division. Signals from chemosensory neurons and from the gonad also modulate body size, in part, independently of DBL-1-mediated signaling. Organismal size and morphology is heavily influenced by the cuticle, which acts as the exoskeleton. Finally, I summarize research on several genes that appear to regulate body size by cell autonomously regulating cell growth throughout the worm. PMID:24262077

  20. pix-1 controls early elongation in parallel with mel-11 and let-502 in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    Full Text Available Cell shape changes are crucial for metazoan development. During Caenorhabditis elegans embryogenesis, epidermal cell shape changes transform ovoid embryos into vermiform larvae. This process is divided into two phases: early and late elongation. Early elongation involves the contraction of filamentous actin bundles by phosphorylated non-muscle myosin in a subset of epidermal (hypodermal cells. The genes controlling early elongation are associated with two parallel pathways. The first one involves the rho-1/RHOA-specific effector let-502/Rho-kinase and mel-11/myosin phosphatase regulatory subunit. The second pathway involves the CDC42/RAC-specific effector pak-1. Late elongation is driven by mechanotransduction in ventral and dorsal hypodermal cells in response to body-wall muscle contractions, and involves the CDC42/RAC-specific Guanine-nucleotide Exchange Factor (GEF pix-1, the GTPase ced-10/RAC and pak-1. In this study, pix-1 is shown to control early elongation in parallel with let-502/mel-11, as previously shown for pak-1. We show that pix-1, pak-1 and let-502 control the rate of elongation, and the antero-posterior morphology of the embryos. In particular, pix-1 and pak-1 are shown to control head, but not tail width, while let-502 controls both head and tail width. This suggests that let-502 function is required throughout the antero-posterior axis of the embryo during early elongation, while pix-1/pak-1 function may be mostly required in the anterior part of the embryo. Supporting this hypothesis we show that low pix-1 expression level in the dorsal-posterior hypodermal cells is required to ensure high elongation rate during early elongation.

  1. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria.

    Science.gov (United States)

    Antunes, Camila Azevedo; Clark, Laura; Wanuske, Marie-Therès; Hacker, Elena; Ott, Lisa; Simpson-Louredo, Liliane; de Luna, Maria das Gracas; Hirata, Raphael; Mattos-Guaraldi, Ana Luíza; Hodgkin, Jonathan; Burkovski, Andreas

    2016-01-01

    Caenorhabditis elegans is one of the major model systems in biology based on advantageous properties such as short life span, transparency, genetic tractability and ease of culture using an Escherichia coli diet. In its natural habitat, compost and rotting plant material, this nematode lives on bacteria. However, C. elegans is a predator of bacteria, but can also be infected by nematopathogenic coryneform bacteria such Microbacterium and Leucobacter species, which display intriguing and diverse modes of pathogenicity. Depending on the nematode pathogen, aggregates of worms, termed worm-stars, can be formed, or severe rectal swelling, so-called Dar formation, can be induced. Using the human and animal pathogens Corynebacterium diphtheriae and Corynebacterium ulcerans as well as the non-pathogenic species Corynebacterium glutamicum, we show that these coryneform bacteria can also induce star formation slowly in worms, as well as a severe tail-swelling phenotype. While C. glutamicum had a significant, but minor influence on survival of C. elegans, nematodes were killed after infection with C. diphtheriae and C. ulcerans. The two pathogenic species were avoided by the nematodes and induced aversive learning in C. elegans. PMID:26490043

  2. Material properties of of Caenorhabditis elegans swimming at low Reynolds number

    CERN Document Server

    Sznitman, Josue; Krajacic, Predrag; Lamitina, Todd; Arratia, Paulo E

    2009-01-01

    Undulatory locomotion, as seen in the nematode \\emph{Caenorhabditis elegans}, is a common swimming gait of organisms in the low Reynolds number regime, where viscous forces are dominant. While the nematode's motility is expected to be a strong function of its material properties, measurements remain scarce. Here, the swimming behavior of \\emph{C.} \\emph{elegans} are investigated in experiments and in a simple model. Experiments reveal that nematodes swim in a periodic fashion and generate traveling waves which decay from head to tail. The model is able to capture the experiments' main features and is used to estimate the nematode's Young's modulus $E$ and tissue viscosity $\\eta$. For wild-type \\emph{C. elegans}, we find $E\\approx 3.77$ kPa and $\\eta \\approx-860$ Pa$\\cdot$s; values of $\\eta$ for live \\emph{C. elegans} are negative because the tissue is generating rather than dissipating energy. Results show that material properties are sensitive to changes in muscle functional properties, and are useful quanti...

  3. Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings.

    Science.gov (United States)

    Braungart, Evelyn; Gerlach, Manfred; Riederer, Peter; Baumeister, Ralf; Hoener, Marius C

    2004-01-01

    The neurotoxin MPTP and its active metabolite MPP+ cause Parkinson's disease (PD)-like symptoms in vertebrates by selectively destroying dopaminergic neurons in the substantia nigra. MPTP/MPP+ models have been established in rodents to screen for pharmacologically active compounds. In addition to being costly and time consuming, these animal models are not suitable for large scale testings using compound libraries. We present a novel MPP+-based model for high-throughput screenings using the nematode Caenorhabditis elegans. Incubation of C. elegans with MPTP or its active metabolite MPP+ resulted in strong symptomatic defects including reduced mobility and increased lethality, and is correlated with a specific degeneration of the dopaminergic neurons. The phenotypic consequences of MPTP/MPP+ treatments were recorded using automated hardware and software for quantification. Incubation of C. elegans with a variety of pharmacologically active components used in PD treatment reduced the MPP+-induced defects. Our data suggest that the C. elegans MPTP/MPP+ model can be used for the quantitative evaluation of anti-PD drugs. PMID:16908987

  4. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging

    Indian Academy of Sciences (India)

    Jin Il Lee; Sutapa Mukherjee; Kyoung–Hye Yoon; Meenakshi Dwivedi; Jaya Bandyopadhyay

    2013-06-01

    Calcineurin, a well-conserved protein phosphatase 2B (PP2B), is a Ca2+-calmodulin–dependent serine/threonine protein phosphatase that is known to be involved in a myriad of cellular processes and signal transduction pathways. The biological role of calcineurin has been extensively studied in diverse groups of organisms. Homologues of mammalian and Drosophila calcineurin subunits exist in the nematode, Caenorhabditis elegans. The C. elegans counterpart of the catalytic subunit, calcineurin A, cna-1/tax-6, and the regulatory subunit, calcineurin B, cnb-1, are known to express ubiquitously in multiple tissues including neurons. The characterization of C. elegans calcineurin mutants facilitates identification of its physiological functions and signaling pathways. Genetic interactions between cna-1/tax-6 and cnb-1 mutants with a number of mutants involved in several signaling pathways have exemplified the pivotal role of calcineurin in regulating nematode development, behaviour and lifespan (aging). The present review has been aimed to provide a succinct summary of the multiple functions of calcineurin in C. elegans relating to its development, fertility, proliferation, behaviour and lifespan. Analyses of cna-1/tax-6 and cnb-1 interacting proteins and regulators of the phosphatase in this fascinating worm model have an immense scope to identify potential drug targets in various parasitic nematodes, which cause many diseases inflicting huge economic loss; and also for many human diseases, particularly neurodegenerative and myocardial diseases.

  5. Behavioral and metabolic effects of the atypical antipsychotic ziprasidone on the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Priscila Gubert

    Full Text Available Atypical antipsychotics are associated with metabolic syndrome, primarily associated with weight gain. The effects of Ziprasidone, an atypical antipsychotic, on metabolic syndrome has yet to be evaluated. Here in, we evaluated lipid accumulation and behavioral changes in a new experimental model, the nematode Caenorhabditis elegans (C. elegans. Behavioral parameters in the worms were evaluated 24 h after Ziprasidone treatment. Subsequently, lipid accumulation was examined using Nile red, LipidTox green and BODIPY labeling. Ziprasidone at 40 µM for 24 h effectively decreased the fluorescence labeling of all markers in intestinal cells of C. elegans compared to control (0.16% dimethyl sulfoxide. Ziprasidone did not alter behaviors related to energetic balance, such as pharynx pumping, defecation cycles and movement. There was, however, a reduction in egg-production, egg-laying and body-length in nematodes exposed to Ziprasidone without any changes in the progression of larval stages. The serotoninergic pathway did not appear to modulate Ziprasidone's effects on Nile red fluorescence. Additionally, Ziprasidone did not alter lipid accumulation in daf-16 or crh-1 deletion mutants (orthologous of the transcription factors DAF-16 and CREB, respectively. These results suggest that Ziprasidone alters reproductive behavior, morphology and lipid reserves in the intestinal cells of C. elegans. Our results highlight that the DAF-16 and CREB transcription factors are essential for Ziprasidone-induced fat store reduction.

  6. Exercise in an electrotactic flow chamber ameliorates age-related degeneration in Caenorhabditis elegans.

    Science.gov (United States)

    Chuang, Han-Sheng; Kuo, Wan-Jung; Lee, Chia-Lin; Chu, I-Hua; Chen, Chang-Shi

    2016-01-01

    Degeneration is a senescence process that occurs in all living organisms. Although tremendous efforts have been exerted to alleviate this degenerative tendency, minimal progress has been achieved to date. The nematode, Caenorhabditis elegans (C. elegans), which shares over 60% genetic similarities with humans, is a model animal that is commonly used in studies on genetics, neuroscience, and molecular gerontology. However, studying the effect of exercise on C. elegans is difficult because of its small size unlike larger animals. To this end, we fabricated a flow chamber, called "worm treadmill," to drive worms to exercise through swimming. In the device, the worms were oriented by electrotaxis on demand. After the exercise treatment, the lifespan, lipofuscin, reproductive capacity, and locomotive power of the worms were analyzed. The wild-type and the Alzheimer's disease model strains were utilized in the assessment. Although degeneration remained irreversible, both exercise-treated strains indicated an improved tendency compared with their control counterparts. Furthermore, low oxidative stress and lipofuscin accumulation were also observed among the exercise-treated worms. We conjecture that escalated antioxidant enzymes imparted the worms with an extra capacity to scavenge excessive oxidative stress from their bodies, which alleviated the adverse effects of degeneration. Our study highlights the significance of exercise in degeneration from the perspective of the simple life form, C. elegans. PMID:27305857

  7. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)

    Science.gov (United States)

    Szewczyk, N. J.; Tillman, J.; Conley, C. A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.

    2008-09-01

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.

  8. Combination therapy with thioridazine and dicloxacillin combats meticillin-resistant Staphylococcus aureus infection in Caenorhabditis elegans.

    Science.gov (United States)

    Poulsen, Marianne Ø; Schøler, Lone; Nielsen, Anette; Skov, Marianne N; Kolmos, Hans Jørn; Kallipolitis, Birgitte H; Olsen, Anders; Klitgaard, Janne K

    2014-09-01

    The shortage of drugs active against meticillin-resistant Staphylococcus aureus (MRSA) is a growing clinical problem. In vitro studies indicate that the phenothiazine thioridazine (TZ) might enhance the activity of the β-lactam antibiotic dicloxacillin (DCX) to a level where MRSA is killed, but experiments in simple animal models have not been performed. In the present study, we introduced Caenorhabditis elegans infected by S. aureus as an in vivo model to test the effect of TZ as a helper drug in combination with DCX. Because TZ is an anthelmintic, initial experiments were carried out to define the thresholds of toxicity, determined by larval development, and induction of stress-response markers. No measurable effects were seen at concentrations of less than 64 mg TZ l(-1). Seven different MRSA strains were tested for pathogenicity against C. elegans, and the most virulent strain (ATCC 33591) was selected for further analyses. In a final experiment, full-grown C. elegans were exposed to the test strain for 3 days and subsequently treated with 8 mg DCX l(-1) and 8 mg TZ l(-1) for 2 days. This resulted in a 14-fold reduction in the intestinal MRSA load as compared with untreated controls. Each drug alone resulted in a two- to threefold reduction in MRSA load. In conclusion, C. elegans can be used as a simple model to test synergy between DCX and TZ against MRSA. The previously demonstrated in vitro synergy can be reproduced in vivo. PMID:24913562

  9. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans.

    Science.gov (United States)

    Su, Shan; Wink, Michael

    2015-09-01

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites, which have a wide range of bioactivities. Yet, their antiaging potential has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The antioxidant and antiaging properties of the isolated lignans were studied using Caenorhabditis elegans as a relevant animal model. All lignans at concentrations of 10 and 100 μM significantly extended the mean life span of C. elegans. The strongest effect was observed with matairesinol, which at a concentration of 100 μM extended the life span of worms by 25%. Additionally, we observed that five lignans are strong free radical-scavengers in vitro and in vivo and all lignans can improve survival of C. elegans under oxidative stress. Furthermore, the lignans can induce the nuclear translocation of the transcription factor DAF-16 and up-regulate its expression, suggesting that a possible underlying mechanism of the observed longevity-promoting activity of lignans depends on DAF-16 mediated signaling pathway. All lignans up-regulated the expression of jnk-1, indicating that lignans may promote the C. elegans longevity and stress resistance through a JNK-1-DAF-16 cascade. Our study reports new antiaging activities of lignans, which might be candidates for developing antiaging agents. PMID:26141518

  10. Genome-Wide Gene Expression Analysis in Response to Organophosphorus Pesticide Chlorpyrifos and Diazion in C.Elegans

    OpenAIRE

    Viñuela Rodriguez, A.; Snoek, L. B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    pesticides (OPs) were originally designed to affect the nervous system by inhibiting the enzyme acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Over the past years evidence is mounting that these compounds affect many other processes. Little is known, however, about gene expression responses against OPs in the nematode Caenorhabditis elegans. This is surprising because C. elegans is extensively used as a model species in toxicity studies. To address this qu...

  11. Genome-Wide Gene Expression Analysis in Response to Organophosphorus Pesticide Chlorpyrifos and Diazinon in C. elegans

    OpenAIRE

    Viñuela, Ana; Snoek, L Basten; Joost A. G. Riksen; Kammenga, Jan E

    2010-01-01

    Organophosphorus pesticides (OPs) were originally designed to affect the nervous system by inhibiting the enzyme acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Over the past years evidence is mounting that these compounds affect many other processes. Little is known, however, about gene expression responses against OPs in the nematode Caenorhabditis elegans. This is surprising because C. elegans is extensively used as a model species in toxicity studies. T...

  12. Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sgro Jean-Yves

    2006-11-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs, but the GPCR(s critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR exist in C. elegans. Results Our sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs and corazonin receptors of arthropods. Conclusion This is the first report of a GnRHR orthologue in C. elegans, which

  13. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans

    OpenAIRE

    Imanikia, Soudabeh; Galea, Francesca; Nagy, Eszter; Phillips, David H.; Stürzenbaum, Stephen R; Arlt, Volker M.

    2016-01-01

    This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C. elegans (wild-type [WT]; N2, Bristol) after 48 h exposure (0 to 40 μM). Induction of comets by BaP was concentration-dependent up to 20 μM; comet % tail DNA was ∼30% at 20 μM BaP and...

  14. Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    OpenAIRE

    Coskun, Ahmet F.; Sencan, Ikbal; Su, Ting-wei; Ozcan, Aydogan

    2011-01-01

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occu...

  15. Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    OpenAIRE

    Coskun, Ahmet F; Ikbal Sencan; Ting-Wei Su; Aydogan Ozcan

    2011-01-01

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2-8 cm(2) with a spatial resolution of ∼10 µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection o...

  16. DAF-16/FoxO Directly Regulates an Atypical AMP-Activated Protein Kinase Gamma Isoform to Mediate the Effects of Insulin/IGF-1 Signaling on Aging in Caenorhabditis elegans

    OpenAIRE

    Tullet, J. M.; Araiz, C.; Sanders, M J; Au, C.; Benedetto, A.; Papatheodorou, I.; Clark, E.; Schmeisser, K.; Jones, D.; Schuster, E F; Thornton, J M; Gems, D.

    2014-01-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  17. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    OpenAIRE

    Tullet, Jennifer M. A.; Caroline Araiz; Sanders, Matthew J.; Catherine Au; Alexandre Benedetto; Irene Papatheodorou; Emily Clark; Kathrin Schmeisser; Daniel Jones; Eugene F Schuster; Thornton, Janet M.; David Gems

    2014-01-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  18. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct.

    Science.gov (United States)

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah; Taubert, Stefan

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  19. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Fierro-Gonzalez, Juan Carlos [Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, S-141 83 Huddinge (Sweden); Gonzalez-Barrios, Maria [Centro Andaluz de Biologia del Desarrollo (CABD-CSIC), Departamento de Fisiologia, Anatomia y Biologia Celular, Universidad Pablo de Olavide, E-41013 Sevilla (Spain); Miranda-Vizuete, Antonio, E-mail: amirviz@upo.es [Centro Andaluz de Biologia del Desarrollo (CABD-CSIC), Departamento de Fisiologia, Anatomia y Biologia Celular, Universidad Pablo de Olavide, E-41013 Sevilla (Spain); Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, E-41013 Sevilla (Spain); Swoboda, Peter, E-mail: peter.swoboda@ki.se [Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, S-141 83 Huddinge (Sweden)

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  20. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Highlights: → First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. → Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. → trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. → Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. → trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1

  1. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Adam Pluskota

    Full Text Available While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the 'bag of worms' phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production.

  2. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Research highlights: → Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. → Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. → fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. → Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  3. Effects of ginsenosides, the active ingredients of Panax ginseng, on development, growth, and life span of Caenorhabditis elegans

    Science.gov (United States)

    Ginsenosides, the active ingredients of Panax ginseng, are saponins derived from sterols. The free-living nematode Caenorhabditis elegans is a well-established model for biochemical and genetic studies in animals. Although cholesterol is an essential requirement for the growth and development of C. ...

  4. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs

    Directory of Open Access Journals (Sweden)

    Zheng Haixia

    2008-08-01

    Full Text Available Abstract Background Noncoding RNAs (ncRNAs play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3. Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1 can drive the expression of green fluorescent protein (GFP, and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves.

  5. Cell-nonautonomous inhibition of radiation-induced apoptosis by dynein light chain 1 in Caenorhabditis elegans.

    Science.gov (United States)

    Morthorst, T H; Olsen, A

    2013-01-01

    The evolutionarily conserved process of programmed cell death, apoptosis, is essential for development of multicellular organisms and is also a protective mechanism against cellular damage. We have identified dynein light chain 1 (DLC-1) as a new regulator of germ cell apoptosis in Caenorhabditis elegans. The DLC-1 protein is highly conserved across species and is a part of the dynein motor complex. There is, however, increasing evidence for dynein-independent functions of DLC-1, and our data describe a novel dynein-independent role. In mammalian cells, DLC-1 is important for cellular transport, cell division and regulation of protein activity, and it has been implicated in cancer. In C. elegans, we find that knockdown of dlc-1 by RNA interference (RNAi) induces excessive apoptosis in the germline but not in somatic cells during development. We show that DLC-1 mediates apoptosis through the genes lin-35, egl-1 and ced-13, which are all involved in the response to ionising radiation (IR)-induced apoptosis. In accordance with this, we show that IR cannot further induce apoptosis in dlc-1(RNAi) animals. Furthermore, we find that DLC-1 is functioning cell nonautonomously through the same pathway as kri-1 in response to IR-induced apoptosis and that DLC-1 regulates the levels of KRI-1. Our results strengthen the notion of a highly dynamic communication between somatic cells and germ cells in regulating the apoptotic process. PMID:24030151

  6. VHA-19 is essential in Caenorhabditis elegans oocytes for embryogenesis and is involved in trafficking in oocytes.

    Directory of Open Access Journals (Sweden)

    Alison J Knight

    Full Text Available There is an urgent need to develop new drugs against parasitic nematodes, which are a significant burden on human health and agriculture. Information about the function of essential nematode-specific genes provides insight to key nematode-specific processes that could be targeted with drugs. We have characterized the function of a novel, nematode-specific Caenorhabditis elegans protein, VHA-19, and show that VHA-19 is essential in the germline and, specifically, the oocytes, for the completion of embryogenesis. VHA-19 is also involved in trafficking the oocyte receptor RME-2 to the oocyte plasma membrane and is essential for osmoregulation in the embryo, probably because VHA-19 is required for proper eggshell formation via exocytosis of cortical granules or other essential components of the eggshell. VHA-19 may also have a role in cytokinesis, either directly or as an indirect effect of its role in osmoregulation. Critically, VHA-19 is expressed in the excretory cell in both larvae and adults, suggesting that it may have a role in osmoregulation in C. elegans more generally, probably in trafficking or secretion pathways. This is the first time a role for VHA-19 has been described.

  7. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles.

    Science.gov (United States)

    Ou, Guangshuo; Koga, Makato; Blacque, Oliver E; Murayama, Takashi; Ohshima, Yasumi; Schafer, Jenny C; Li, Chunmei; Yoder, Bradley K; Leroux, Michel R; Scholey, Jonathan M

    2007-05-01

    Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis. PMID:17314406

  8. Ilex paraguariensis Extract Increases Lifespan and Protects Against the Toxic Effects Caused by Paraquat in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Maria E. Lima

    2014-09-01

    Full Text Available Recent studies have shown that phenolic compounds present in yerba mate have antioxidant defense properties. To verify whether Ilex paraguariensis extracts are capable of increasing the lifespan of an organism, we have used the free-living nematode Caenorhabditis elegans. Notably, this is the first study that analyzes the effects of the extracts of yerba mate obtained from an extraction method that mimics the manner that the plant is consumed by the population by using a live organism. Yerba mate was purchased from commercial markets from Argentina, Brazil, and Uruguay. Ilex paraguariensis extracts significantly increased the life span of C. elegans. Moreover, the extracts reduced the ROS levels per se, and protected from the reduced survival and reproduction rate induced by paraquat exposure. Considering molecular aspects, we observed that the worms pretreated with the extracts depicted higher translocation of the transcription factor DAF-16::GFP to the nucleus. However, there was no increase in the levels of the DAF-16 target genes, SOD-3 and catalase. Our results suggest that the increase of lifespan caused by the different extracts is associated to the antioxidant potential of yerba mate, however this effect is not completely mediated by daf-16.

  9. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants.

    Directory of Open Access Journals (Sweden)

    Changchun Chen

    2009-07-01

    Full Text Available Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5'methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development.

  10. Radioadaptive Response for Reproductive Cell Death Demonstrated in In Vivo Tissue Model of Caenorhabditis elegans.

    Science.gov (United States)

    Tang, Huangqi; Chen, Liangwen; Liu, Jialu; Shi, Jue; Li, Qingqing; Wang, Ting; Wu, Lijun; Zhan, Furu; Bian, Po

    2016-04-01

    Reproductive cell death (RCD) occurs after one or more cell divisions resulting from an insult such as radiation exposure or other treatments with carcinogens or mutagens. The radioadaptive response for RCD is usually investigated by in vitro or in vivo clonogenic assay. To date, this has not been demonstrated in the vulval tissue in Caenorhabditis elegans ( C. elegans ), which is a well established in vivo model for radiation-induced RCD. In this study to determine whether radioadaptive response occurs in the vulval tissue model of C. elegans , early larval worms were gamma irradiated with lower adaptive doses, followed by higher challenge doses. The ratio of protruding vulva was used to assess the RCD of vulval cells. The results of this study showed that the radioadaptive response for RCD in this vulval tissue model could be well induced by dose combinations of 5 + 75 Gy and 5 + 100 Gy at the time point of 14-16 h in worm development. In addition, the time course analysis indicated that radioresistance in vulval cells developed within 1.75 h after an adaptive dose and persisted for only a short period of time (2-4 h). DNA damage checkpoint and non-homologous end joining were involved in the radioadaptive response, exhibiting induction of protruding vulva in worms deficient in these two pathways similar to their controls. Interestingly, the DNA damage checkpoint was not active in the somatic vulval cells, and it was therefore suggested that the DNA damage checkpoint might mediate the radioadaptive response in a cell nonautonomous manner. Here, we show evidence of the occurrence of a radioadaptive response for RCD in the vulval tissue model of C. elegans . This finding provides a potential opportunity to gain further insight into the underlying mechanisms of the radioadaptive response for RCD, in view of the abundant genetic resources of C. elegans . PMID:27023260

  11. Trans-cellular introduction of HIV-1 protein Nef induces pathogenic response in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Aamir Nazir

    Full Text Available BACKGROUND: Caenorhabditis elegans has emerged as a very powerful model for studying the host pathogen interactions. Despite the absence of a naturally occurring viral infection for C. elegans, the model is now being exploited experimentally to study the basic aspects of virus-host interplay. The data generated from recent studies suggests that the virus that infects mammalian cells does infect, replicate and accumulate in C. elegans. METHODOLOGY/PRINCIPAL FINDINGS: We took advantage of the easy-to-achieve protein introduction in C. elegans and employing the methodology, we administered HIV-1 protein Nef into live worms. Nef is known to be an important protein for exacerbating HIV-1 pathogenesis in host by enhancing viral replication. The deletion of nef from the viral genome has been reported to inhibit its replication in the host, thereby leading to delayed pathogenesis. Our studies, employing Nef introduction into C. elegans, led to creation of an in-vivo model that allowed us to study, whether or not, the protein induces effect in the whole organism. We observed a marked lipodystrophy, effect on neuromuscular function, impaired fertility and reduced longevity in the worms exposed to Nef. The observed effects resemble to those observed in Nef transgenic mice and most interestingly the effects also relate to some of the pathogenic aspects exhibited by human AIDS patients. CONCLUSIONS/SIGNIFICANCE: Our studies underline the importance of this in vivo model for studying the interactions of Nef with host proteins, which could further be used for identifying possible inhibitors of such interactions.

  12. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome

    Science.gov (United States)

    Kim, Seongkyun; Kim, Hyoungkyu; Kralik, Jerald D.; Jeong, Jaeseung

    2016-01-01

    Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism’s goals. To determine this, the nematode roundworm Caenorhabditis elegans is an attractive model system. Progress has been made in delineating the behavioral circuits of the C. elegans, however, many details are unclear, including the specific functions of every neuron and synapse, as well as the extent the behavioral circuits are separate and parallel versus integrative and serial. Network analysis provides a normative approach to help specify the network design. We investigated the vulnerability of the Caenorhabditis elegans connectome by performing computational experiments that (a) “attacked” 279 individual neurons and 2,990 weighted synaptic connections (composed of 6,393 chemical synapses and 890 electrical junctions) and (b) quantified the effects of each removal on global network properties that influence information processing. The analysis identified 12 critical neurons and 29 critical synapses for establishing fundamental network properties. These critical constituents were found to be control elements—i.e., those with the most influence over multiple underlying pathways. Additionally, the critical synapses formed into circuit-level pathways. These emergent pathways provide evidence for (a) the importance of backward locomotion, avoidance behavior, and social feeding behavior to the organism; (b) the potential roles of specific neurons whose functions have been unclear; and (c) both parallel and serial design elements in the connectome—i.e., specific evidence for a mixed architectural design. PMID:27540747

  13. Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial-microbial interactions in the gut.

    Science.gov (United States)

    Gerbaba, Teklu K; Gupta, Pratyush; Rioux, Kevin; Hansen, Dave; Buret, Andre G

    2015-03-15

    Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota. PMID:25573177

  14. Pathogen-nematode interaction: Nitrogen supply of Listeria monocytogenes during growth in Caenorhabditis elegans.

    Science.gov (United States)

    Kern, Tanja; Kutzner, Erika; Eisenreich, Wolfgang; Fuchs, Thilo M

    2016-02-01

    Listeria monocytogenes is a Gram-positive facultatively intracellular human pathogen. Due to its saprophytic lifestyle, L. monocytogenes is assumed to infect and proliferate within soil organisms such as Caenorhabditis elegans. However, little is known about the nutrient usages and metabolite fluxes in this bacterium-nematode interaction. Here, we established a nematode colonization model for L. monocytogenes and a method for the efficient separation of the pathogen from the nematodal gut. Following (15) N labelling of C. elegans and gas chromatography-mass spectrometry-based (15) N isotopologue analysis, we detected a high basal metabolic rate of the nematode, and observed a significant metabolic flux from nitrogenous compounds of the nematode to listerial proteins during proliferation of the pathogen in the worm's intestine. For comparison, we also measured the N fluxes from the gut content into listerial proteins using completely (15) N-labelled Escherichia coli OP50 as food for C. elegans. In both settings, L. monocytogenes prefers the direct incorporation of histidine, arginine and lysine over their de novo biosynthesis. Our data suggest that colonization of nematodes is a strategy of L. monocytogenes to increase its access to N-rich nutrients. PMID:26478569

  15. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jennifer L. Watts

    2016-02-01

    Full Text Available The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.

  16. Effects of ionizing radiation on locomotory behavior and mechanosensation in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Locomotory behavior (motility) and mechanosensation are of vital importance in animals. We examined the effects of ionizing radiation (IR) on locomotory behavior and mechanosensation using a model organism, the nematode Caenorhabditis elegans. Bacterial mechanosensation in C. elegans induces the dopamine-mediated slowing of locomotion in the presence of bacteria (food), known as the basal slowing response. We previously reported an IR-induced reduction of locomotory rate in the absence of food. In the present study, we observed a similar IR-induced reduction of locomotory rate in the cat-2 mutant, which is defective in bacterial mechanosensation. The dose response pattern of the locomotory rate in the presence of food was relatively flat in wild-type animals, but not in cat-2 mutants. This suggests that the dopamine system, which is related to bacterial mechanosensation in C. elegans, might have a dominant effect on locomotory rate in the presence of food, which masks the effects of other stimuli. Moreover, we found that the behavioral responses of hydrogen peroxide-exposed wild-type animals are similar to those of IR-exposed animals. Our findings suggest that the IR-induced reduction of locomotory rate in the absence of food is mediated by a different pathway from that for bacterial mechanosensation, at least partially through IR-produced hydrogen peroxide. (author)

  17. Linking Subcellular Disturbance to Physiological Behavior and Toxicity Induced by Quantum Dots in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Qin; Zhou, Yanfeng; Song, Bin; Zhong, Yiling; Wu, Sicong; Cui, Rongrong; Cong, Haixia; Su, Yuanyuan; Zhang, Huimin; He, Yao

    2016-06-01

    The wide-ranging applications of fluorescent semiconductor quantum dots (QDs) have triggered increasing concerns about their biosafety. Most QD-related toxicity studies focus on the subcellular processes in cultured cells or global physiological effects on whole animals. However, it is unclear how QDs affect subcellular processes in living organisms, or how the subcellular disturbance contributes to the overall toxicity. Here the behavior and toxicity of QDs of three different sizes in Caenorhabditis elegans (C. elegans) are systematically investigated at both the systemic and the subcellular level. Specifically, clear size-dependent distribution and toxicity of the QDs in the digestive tract are observed. Short-term exposure of QDs leads to acute toxicity on C. elegans, yet incurring no lasting, irreversible damage. In contrast, chronic exposure of QDs severely inhibits development and shortens lifespan. Subcellular analysis reveals that endocytosis and nutrition storage are disrupted by QDs, which likely accounts for the severe deterioration in growth and longevity. This work reveals that QDs invasion disrupts key subcellular processes in living organisms, and may cause permanent damage to the tissues and organs over long-term retention. The findings provide invaluable information for safety evaluations of QD-based applications and offer new opportunities for design of novel nontoxic nanoprobes. PMID:27121203

  18. Dynamic energy-based modeling of uranium and cadmium joint toxicity to Caenorhabditis elegans.

    Science.gov (United States)

    Margerit, Adrien; Gomez, Elena; Gilbin, Rodolphe

    2016-03-01

    Toxicokinetic - toxicodynamic energy-based models offer new alternatives to the commonly used approaches for the analysis of mixture toxicity data. Based on the Dynamic Energy Budget theory, DEBtox models enable the description of several endpoints over time simultaneously under the same framework. However, such model still has to be faced with experimental data in a multi-contamination context. In this study, the predictive capacities of a DEBtox model to describe the uranium and cadmium joint toxicity over the entire growth and reproduction period of the soil nematode Caenorhabditis elegans was examined. The two reference additivity approaches, Concentration Addition and Response addition, implemented in the DEBtox model were tested. Assuming no interaction between the two toxicants through Response addition, the DEBtox model allowed a rather accurate fit of the U and Cd joint effects on the growth and reproduction of C. elegans: an interaction between the two metals at the toxicokinetic or toxicodynamic level seems thus unlikely or has only minor consequences. Interestingly, this study underlines that even if the compounds of a mixture share the same DEBtox physiological mode of action (in this case a decrease in assimilation), the Response addition approach may provide a better fit of joint toxicity data than the Concentration addition approach. Moreover, the present work highlighted limitations in the model predictions which are related to the simplifications of the DEBtox framework and its adaptations to the physiology of C. elegans and which lead to an overestimation of the U and Cd joint toxicity in some cases. PMID:26741545

  19. Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Ewbank Jonathan J

    2004-11-01

    Full Text Available Abstract Background Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Results Our analysis reveals the presence of i significant variation in host susceptibility, ii significant variation in pathogen virulence, and iii significant strain- and genotype-specific interactions between the two species. Conclusions The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts.

  20. Enrichment of humic material with hydroxybenzene moieties intensifies its physiological effects on the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Menzel, Ralph; Menzel, Stefanie; Tiedt, Sophie; Kubsch, Georg; Stösser, Reinhardt; Bährs, Hanno; Putschew, Anke; Saul, Nadine; Steinberg, Christian E W

    2011-10-15

    Dissolved humic substances are taken up by organisms and interact on various molecular and biochemical levels. In the nematode Caenorhabditis elegans, such material can promote longevity and increase its reproductive capacity; moreover, the worms tend to stay for longer in humic-enriched environments. Here, we tested the hypothesis that the chemical enrichment of humic substances with hydroxybenzene moieties intensifies these physiological effects. Based on the leonardite humic acid HuminFeed (HF), we followed a polycondensation reaction in which this natural humic substance and a dihydroxybenzene (hydroquinone or benzoquinone) served as reaction partners. Several analytical methods showed the formation of the corresponding copolymers. The chemical modification boosted the antioxidant properties of HF both in vitro and in vivo. Humic substances enriched with hydroxybenzene moieties caused a significantly increased tolerance to thermal stress in C. elegans and extended its lifespan. Exposed nematodes showed delayed linear growth and onset of reproduction and a stronger pumping activity of the pharynx. Thus, treated nematodes act younger than they really are. In this feature the modified HF replicated the biological impact of hydroquinone-homopolymers and various plant polyphenol monomers, thereby supporting the hydroxybenzene moieties of humic substances as major effective structures for the physiological effects observed in C. elegans. PMID:21902274

  1. Cyanobacterial xenobiotics as evaluated by a Caenorhabditis elegans neurotoxicity screening test.

    Science.gov (United States)

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E W

    2014-05-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  2. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    Directory of Open Access Journals (Sweden)

    Jingjuan Ju

    2014-04-01

    Full Text Available In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs and anatoxin-a (ANA. ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation and sensory (thermal, chemical, and mechanical sensory perception functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis. These results show the suitability of this assay for environmental cyanotoxin-containing samples.

  3. Locomotion-learning behavior relationship in Caenorhabditis elegans following γ-ray irradiation

    International Nuclear Information System (INIS)

    Learning impairment following ionizing radiation (IR) exposure is an important potential risk in manned space missions. We previously reported the modulatory effects of IR on salt chemotaxis learning in Caenorhabditis elegans. However, little is known about the effects of IR on the functional relationship in the nervous system. In the present study, we investigated the effects of γ-ray exposure on the relationship between locomotion and salt chemotaxis learning behavior. We found that effects of pre-learning irradiation on locomotion were significantly correlated with the salt chemotaxis learning performance, whereas locomotion was not directly related to chemotaxis to NaCl. On the other hand, locomotion was positively correlated with salt chemotaxis of animals which were irradiated during learning, and the correlation disappeared with increasing doses. These results suggest an indirect relationship between locomotion and salt chemotaxis learning in C. elegans, and that IR inhibits the innate relationship between locomotion and chemotaxis, which is related to salt chemotaxis learning conditioning of C. elegans. (author)

  4. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    Science.gov (United States)

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs. PMID:27166662

  5. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16

    Directory of Open Access Journals (Sweden)

    Wim Wätjen

    2013-06-01

    Full Text Available Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue and SKN-1 (Nrf2 homologue, which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038. Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.

  6. Evaluation of the fluids mixing enclosure system for life science experiments during a commercial Caenorhabditis elegans spaceflight experiment

    Science.gov (United States)

    Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.

    2013-06-01

    The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.

  7. Cratoxylum formosum Extract Protects against Amyloid-Beta Toxicity in a Caenorhabditis elegans Model of Alzheimer's Disease.

    Science.gov (United States)

    Keowkase, Roongpetch; Weerapreeyakul, Natthida

    2016-04-01

    Amyloid-β, one of the hallmarks of Alzheimer's disease, is toxic to neurons and causes cell death in the brain. Oxidative stress is known to play an important role in Alzheimer's disease, and there is strong evidence linking oxidative stress to amyloid-β. The herbal plant "Tiew kon" (Cratoxylum formosum ssp. pruniflorum) is an indigenous vegetable that is grown in Southeast Asia. Many reports suggested that the twig extract from C. formosum possesses an antioxidant property. The purpose of this study was to investigate the protective effect of the twig extract from C. formosum against amyloid-β toxicity using the transgenic Caenorhabditis elegans model. This study demonstrated that the extract significantly delayed amyloid-β-induced paralysis in the C. elegans model of Alzheimer's disease. Using a genetic approach, we found that DAF-16/FOXO transcription factor, heat shock factor 1, and SKN-1 (Nrf2 in mammals) were required for the extract-mediated delayed paralysis. The extract ameliorated oxidative stress by reducing the level of H2O2, which appeared to account for the protective action of the extract. The extract possesses antioxidant activity against juglone-induced oxidative stress as it was shown to increase survival of the stressed worms. In addition, C. formosum decreased the expression of the heat shock protein-16.2 gene which was induced by thermal stress, indicating its ability to reduce cellular stress. The results from this study support the C. elegans model in the search for disease-modifying agents to treat Alzheimer's disease and indicate the potential of the extract from C. formosum ssp. pruniflorum as a source for the development of anti-Alzheimer's drugs. PMID:26845710

  8. A bow-tie genetic architecture for morphogenesis suggested by a genome-wide RNAi screen in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Matthew D Nelson

    2011-03-01

    Full Text Available During animal development, cellular morphogenesis plays a fundamental role in determining the shape and function of tissues and organs. Identifying the components that regulate and drive morphogenesis is thus a major goal of developmental biology. The four-celled tip of the Caenorhabditis elegans male tail is a simple but powerful model for studying the mechanism of morphogenesis and its spatiotemporal regulation. Here, through a genome-wide post-embryonic RNAi-feeding screen, we identified 212 components that regulate or participate in male tail tip morphogenesis. We constructed a working hypothesis for a gene regulatory network of tail tip morphogenesis. We found regulatory roles for the posterior Hox genes nob-1 and php-3, the TGF-β pathway, nuclear hormone receptors (e.g. nhr-25, the heterochronic gene blmp-1, and the GATA transcription factors egl-18 and elt-6. The majority of the pathways converge at dmd-3 and mab-3. In addition, nhr-25 and dmd-3/mab-3 regulate each others' expression, thus placing these three genes at the center of a complex regulatory network. We also show that dmd-3 and mab-3 negatively regulate other signaling pathways and affect downstream cellular processes such as vesicular trafficking (e.g. arl-1, rme-8 and rearrangement of the cytoskeleton (e.g. cdc-42, nmy-1, and nmy-2. Based on these data, we suggest that male tail tip morphogenesis is governed by a gene regulatory network with a bow-tie architecture.

  9. Mutations affecting the chemosensory neurons of Caenorhabditis elegans.

    Science.gov (United States)

    Starich, T A; Herman, R K; Kari, C K; Yeh, W H; Schackwitz, W S; Schuyler, M W; Collet, J; Thomas, J H; Riddle, D L

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filing defective mutants are important for the differentiation of amphid and phasmid chemosensilla. PMID:7705621

  10. Exposure to pairs of Aeromonas strains enhances virulence in the Caenorhabditis elegans infection model

    Directory of Open Access Journals (Sweden)

    Thomas eMosser

    2015-11-01

    Full Text Available Aeromonad virulence remains poorly understood, and is difficult to predict from strain characteristics. In addition, infections are often polymicrobial (i.e., are mixed infections, and 5-10% of such infections include two distinct aeromonads, which has an unknown impact on virulence. In this work, we studied the virulence of aeromonads recovered from human mixed infections. We tested them individually and in association with other strains with the aim of improving our understanding of aeromonosis. Twelve strains that were recovered in pairs from six mixed infections were tested in a virulence model of the worm Caenorhabditis elegans. Nine isolates were weak worm killers (median time to death, TD50, ≥7 days when administered alone. Two pairs showed enhanced virulence, as indicated by a significantly shortened TD50 after co-infection versus infection with a single strain. Enhanced virulence was also observed for five of the 14 additional experimental pairs, and each of these pairs included one strain from a natural synergistic pair. These experiments indicated that synergistic effects were frequent and were limited to pairs that were composed of strains belonging to different species. The genome content of virulence-associated genes failed to explain virulence synergy, although some virulence-associated genes that were present in some strains were absent from their companion strain (e.g., T3SS. The synergy observed in virulence when 2 Aeromonas isolates were co-infected stresses the idea that consideration should be given to the fact that infection does not depend only on single strain virulence but is instead the result of a more complex interaction between the microbes involved, the host and the environment. These results are of interest for other diseases in which mixed infections are likely and in particular for water-borne diseases (e.g., legionellosis, vibriosis, in which pathogens may display enhanced virulence in the presence of the

  11. The effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans during Shenzhou-8 mission

    Science.gov (United States)

    Xu, Dan; Sun, Yeqing; Gao, Ying; Xing, Yanfang

    microRNAs (miRNAs) is reported to be sensitive to radiation exposure and altered gravity, involved in a variety of biological processes through negative regulation of gene expression. Dystrophin-like dys-1 gene is expressed and required in muscle tissue, which plays a vital role in mechanical transduction when gravity varies. In the present study, we investigated the effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans (C. elegans) under space radiation associated with microgravity (R+M) and radiation alone (R) environment during Shenzhou-8 mission. We performed miRNA microarray analysis in dys-1 mutant and wide-type (WT) of dauer larvae and found that 27 miRNAs changed in abundance after spaceflight. Compared with WT, there was different miRNA expression pattern in different treatments in dys-1 mutant. Cel-miR-796 and miR-124 were reversely expressed under R+M and R environment in WT and dys-1 mutant, respectively, indicating they might be affected by microgravity. Mutation of dys-1 remarkably reduced the number of altered miRNAs under space environment, resulting in the decrease of genes in biological categories of “body morphogenesis”, “behavior”, “cell adhesion” and so on. Particularly, we found that those genes controlling regulation of locomotion in WT were lost in dys-1 mutant, while genes in positive regulation of developmental process only existed in dys-1 mutant. miR-796 was predicted to target genes ace-1 and dyc-1 that are functionally linked to dys-1. Integration analysis of miRNA and mRNA expression profile revealed that miR-56 and miR-124 were involved in behavior and locomotion by regulating different target genes under space environment, among which nep-11, deb-1, C07H4.1 and F11H8.2 might be associated with neuromuscular system. Our findings suggest that dys-1 could cause alteration of miRNAs and target genes, involved in regulating the response of C. elegans to space microgravity in neuromuscular system. This

  12. The secretory pathway calcium ATPase PMR-1/SPCA1 has essential roles in cell migration during Caenorhabditis elegans embryonic development.

    Directory of Open Access Journals (Sweden)

    Vida Praitis

    2013-05-01

    Full Text Available Maintaining levels of calcium in the cytosol is important for many cellular events, including cell migration, where localized regions of high calcium are required to regulate cytoskeletal dynamics, contractility, and adhesion. Studies show inositol-trisphosphate receptors (IP3R and ryanodine receptors (RyR, which release calcium into the cytosol, are important regulators of cell migration. Similarly, proteins that return calcium to secretory stores are likely to be important for cell migration. The secretory protein calcium ATPase (SPCA is a Golgi-localized protein that transports calcium from the cytosol into secretory stores. SPCA has established roles in protein processing, metal homeostasis, and inositol-trisphosphate signaling. Defects in the human SPCA1/ATP2C1 gene cause Hailey-Hailey disease (MIM# 169600, a genodermatosis characterized by cutaneous blisters and fissures as well as keratinocyte cell adhesion defects. We have determined that PMR-1, the Caenorhabditis elegans ortholog of SPCA1, plays an essential role in embryogenesis. Pmr-1 strains isolated from genetic screens show terminal phenotypes, such as ventral and anterior enclosure failures, body morphogenesis defects, and an unattached pharynx, which are caused by earlier defects during gastrulation. In Pmr-1 embryos, migration rates are significantly reduced for cells moving along the embryo surface, such as ventral neuroblasts, C-derived, and anterior-most blastomeres. Gene interaction experiments show changing the activity of itr-1/IP3R and unc-68/RyR modulates levels of embryonic lethality in Pmr-1 strains, indicating pmr-1 acts with these calcium channels to regulate cell migration. This analysis reveals novel genes involved in C. elegans cell migration, as well as a new role in cell migration for the highly conserved SPCA gene family.

  13. Automated Lineage and Expression Profiling in Live Caenorhabditis elegans Embryos

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: John Isaac Murray and Zhirong Bao Adapted from [*Imaging in Developmental Biology*](http://www.cshlpress.com/link/imagingdevbiop.htm)(ed. Sharpe and Wong). CSHL Press, Cold Spring Harbor, NY, USA, 2011. ### Abstract Describing gene expression during animal development requires a way to quantitatively measure expression levels with cellular resolution and to describe how expression changes with time. Fluorescent protein reporters make it possible to measure expression dyna...

  14. Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging

    OpenAIRE

    Hou, Nicole Shangming; Taubert, Stefan

    2012-01-01

    Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefiting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in c...

  15. Function and regulation of lipid biology in Caenorhabditis elegans aging

    OpenAIRE

    Nicole Shangming Hou; Stefan eTaubert

    2012-01-01

    Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in ...

  16. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mark D Mathew

    Full Text Available BACKGROUND: There are four main phenotypes that are assessed in whole organism studies of Caenorhabditis elegans; mortality, movement, fecundity and size. Procedures have been developed that focus on the digital analysis of some, but not all of these phenotypes and may be limited by expense and limited throughput. We have developed WormScan, an automated image acquisition system that allows quantitative analysis of each of these four phenotypes on standard NGM plates seeded with E. coli. This system is very easy to implement and has the capacity to be used in high-throughput analysis. METHODOLOGY/PRINCIPAL FINDINGS: Our system employs a readily available consumer grade flatbed scanner. The method uses light stimulus from the scanner rather than physical stimulus to induce movement. With two sequential scans it is possible to quantify the induced phototactic response. To demonstrate the utility of the method, we measured the phenotypic response of C. elegans to phosphine gas exposure. We found that stimulation of movement by the light of the scanner was equivalent to physical stimulation for the determination of mortality. WormScan also provided a quantitative assessment of health for the survivors. Habituation from light stimulation of continuous scans was similar to habituation caused by physical stimulus. CONCLUSIONS/SIGNIFICANCE: There are existing systems for the automated phenotypic data collection of C. elegans. The specific advantages of our method over existing systems are high-throughput assessment of a greater range of phenotypic endpoints including determination of mortality and quantification of the mobility of survivors. Our system is also inexpensive and very easy to implement. Even though we have focused on demonstrating the usefulness of WormScan in toxicology, it can be used in a wide range of additional C. elegans studies including lifespan determination, development, pathology and behavior. Moreover, we have even adapted the

  17. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Maimaiti, Sainawaer [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Department of Psychotherapy, The Fourth People' s Hospital of Urumqi, Urumqi 830000 (China); Kuroyanagi, Hidehito [Laboratory of Gene Expression, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Kawano, Shodai; Inami, Kazutoshi; Timalsina, Shikshya; Ikeda, Mitsunobu; Nakagawa, Kentaro [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Hata, Yutaka, E-mail: yuhammch@tmd.ac.jp [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan)

    2013-04-15

    The mammalian Hippo pathway comprises mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2). LATS1/2, which are activated by MST1/2, phosphorylate a transcriptional co-activator, yes-associated protein (YAP), and induce the recruitment of YAP by 14-3-3 to cytoplasm, so that the TEAD-dependent gene transcriptions are turned off. Although the core components of the Hippo pathway are well conserved in metazoans, it has been discussed that Caenorhabditis elegans lacks YAP ortholog, we found that F13E6.4 gene encodes a protein that shows sequence similarities to YAP in the N-terminal TEAD-binding domain and in the WW domain. We designated this gene as yap-1. YAP-1 is widely expressed in various cells such as epithelial cells, muscles, hypodermal cells, gonadal sheath cells, spermatheca, and hypodermal cells. YAP-1 is distributed in cytoplasm and nuclei. wts-1 (LATS ortholog) and ftt-2 (14-3-3 ortholog) knockdowns cause nuclear accumulation of YAP-1, supporting that the subcellular localization of YAP-1 is regulated in a similar way as that of YAP. Heat shock also causes the nuclear accumulation of YAP-1 but after heat shock, YAP-1 translocates to cytoplasm. Knockdowns of DAF-21 (HSP90 ortholog) and HSF-1block the nuclear export of YAP-1 during this recovery. YAP-1 overexpression is beneficial for thermotolerance, whereas YAP-1 hyperactivity induced by wts-1 and ftt-2 knockdowns is deleterious on thermal response and yap-1 deficiency promotes health aging. In short, YAP-1 partially shares basal characters with mammalian YAP and plays a role in thermal stress response and healthy aging. - Highlights: ► We named Caenorhabditis elegans F13E6.4 gene yap-1 as a putative YAP homolog. ► The localization of YAP-1 is regulated by WTS-1 and FTT-2. ► YAP-1 is involved in healthy aging and thermosensitivity.

  18. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    The mammalian Hippo pathway comprises mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2). LATS1/2, which are activated by MST1/2, phosphorylate a transcriptional co-activator, yes-associated protein (YAP), and induce the recruitment of YAP by 14-3-3 to cytoplasm, so that the TEAD-dependent gene transcriptions are turned off. Although the core components of the Hippo pathway are well conserved in metazoans, it has been discussed that Caenorhabditis elegans lacks YAP ortholog, we found that F13E6.4 gene encodes a protein that shows sequence similarities to YAP in the N-terminal TEAD-binding domain and in the WW domain. We designated this gene as yap-1. YAP-1 is widely expressed in various cells such as epithelial cells, muscles, hypodermal cells, gonadal sheath cells, spermatheca, and hypodermal cells. YAP-1 is distributed in cytoplasm and nuclei. wts-1 (LATS ortholog) and ftt-2 (14-3-3 ortholog) knockdowns cause nuclear accumulation of YAP-1, supporting that the subcellular localization of YAP-1 is regulated in a similar way as that of YAP. Heat shock also causes the nuclear accumulation of YAP-1 but after heat shock, YAP-1 translocates to cytoplasm. Knockdowns of DAF-21 (HSP90 ortholog) and HSF-1block the nuclear export of YAP-1 during this recovery. YAP-1 overexpression is beneficial for thermotolerance, whereas YAP-1 hyperactivity induced by wts-1 and ftt-2 knockdowns is deleterious on thermal response and yap-1 deficiency promotes health aging. In short, YAP-1 partially shares basal characters with mammalian YAP and plays a role in thermal stress response and healthy aging. - Highlights: ► We named Caenorhabditis elegans F13E6.4 gene yap-1 as a putative YAP homolog. ► The localization of YAP-1 is regulated by WTS-1 and FTT-2. ► YAP-1 is involved in healthy aging and thermosensitivity

  19. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    Directory of Open Access Journals (Sweden)

    Schroeder Fabian

    2009-05-01

    Full Text Available Abstract Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK and MY6 (Münster, Germany were compared at 20°C with 5 × 109 Escherichia coli ml-1 as food source. Results High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69, the intrinsic rate of natural increase (rmd-1, calculated according to the Lotka equation, was 1.375, the net reproductive rate (R0 291, the mean generation time (T 90 h, and the minimum generation time (Tmin 73.0 h. The corresponding values for strain MY6 (n = 72 were rm = 1.460, R0 = 289, T = 84 h, and Tmin = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d-1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days

  20. Investigating the biological impacts of nanoengineered materials in Caenorhabditis elegans and in vitro

    Science.gov (United States)

    Contreras, Elizabeth Quevedo

    In nematode Caenorhabditis elegans, the chronic and multi-generational toxicological effects of commercially relevant engineered nanoparticles (ENPs), such as quantum dots (QDs) and silver (AgNP) caused significant changes in a number of physiological endpoints. The increased water-solubility of ENPs in commercial products, for example, makes them increasingly bioavailable to terrestrial organisms exposed to pollution and waste in the soil. Since 2008, attention to the toxicology of nanomaterials in C. elegans continues to grow. Quantitative data on multiple physiological endpoints paired with metal analysis show the uptake of QDs and AgNPs, and their effects on nematode fitness. First, C. elegans were exposed for four generations through feeding to amphiphilic polymer coated CdSe/ZnS (core-shell QDs), CdSe (core QDs), and different sizes of AgNPs. These ENPs were readily ingested. QDs were qualitatively imaged in the digestive tract using a fluorescence microscopy and their and AgNP uptake quantitatively measured using ICP-MS. Each generation was analyzed for changes in lifespan, reproduction, growth and motility using an automated computer vision system. Core-shell QDs had little impact on C. elegans due to its metal shell coating. In contrast, core QDs lacked a metal shell coating, which caused significant changes to nematode physiology. iii In the same way, at high concentrations of 100 ppm, AgNP caused the most adverse effect to lifespan and reproduction related to particle size, but its adverse effect to motility had no correlation to particle size. Using C. elegans as an animal model allowed for a better understanding of the negative impacts of ENPs than with cytotoxicity tests. Lastly, to test the toxicity of water-dispersed fullerene (nanoC60) using human dermal fibroblast cells, this thesis investigated a suite of assays and methods in order to establish a standard set of cytotoxicity tests. Ten assays and methods assessed nanoC60 samples of different

  1. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    Science.gov (United States)

    Nelson, G. A.; Schubert, W. W.; Marshall, T. M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space.

  2. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    International Nuclear Information System (INIS)

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represents a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space. (author)

  3. Microfluidic devices for analysis of spatial orientation behaviors in semi-restrained Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Kathryn E McCormick

    Full Text Available This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans. Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities.

  4. The antioxidant activities effect of neutral and acidic polysaccharides from Epimedium acuminatum Franch. on Caenorhabditis elegans.

    Science.gov (United States)

    Xu, Zhou; Feng, Shiling; Shen, Shian; Wang, Handong; Yuan, Ming; Liu, Jing; Huang, Yan; Ding, Chunbang

    2016-06-25

    A neutral polysaccharide (EAP-1N) and an acidic polysaccharide (EAP-2A) were purified from Epimedium acuminatum by DEAE-52 cellulose anion-exchange chromatography and gel-filtration chromatography. Their structures were characterized by chemical composition analysis, high-performance size exclusion chromatography (HPSEC), Fourier transform infrared spectrometry (FT-IR), and gas chromatography-mass spectrometry (GC-MS). Further, their antioxidant activities were investigated both in vitro and in vivo. Results showed that EAP-2A had higher uronic acid content and larger average molecular weight than EAP-1N. Compared with EAP-1N, EAP-2A exhibited significantly scavenging activities against free radical in vitro, as well as strongly stimulating effect on antioxidant enzyme activities (including superoxide dismutases (SOD), catalases (CAT), and glutathione peroxidases (GSH-PX)) and preferably inhibitory effect on lipid peroxidation and protein carboxyl in the mode of Caenorhabditis elegans. PMID:27083801

  5. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    Science.gov (United States)

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  6. Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans.

    Science.gov (United States)

    Akhoon, Bashir Akhlaq; Pandey, Swapnil; Tiwari, Sudeep; Pandey, Rakesh

    2016-06-01

    Withanolide A (steroidal lactone) forms the major constituent of the most popular herbal drug in Ayurvedic medicine, Ashwagandha. It has been used since ancient times as an alternative medicine for the treatment of a variety of age related disorders. Here we provide multiple lines of evidence indicating that Withanolide A improves healthspan, delays age-associated physiological changes and also extends the lifespan of Caenorhabditis elegans. We also report several neuroprotective benefits of this natural product, including its anti-amyloidogenic effects, alleviation of α-synuclein aggregation and neuroprotection through modulation of neural mediators like acetylcholine. We observed that Withanolide A mediates lifespan extension and promotes stress resistance via insulin/insulin-like growth factor signaling pathway. Such findings could be helpful to develop a therapeutic medicine from this natural product for the prevention or reversal of age-related ailments and to improve the survival of patients suffering from Alzheimer's or Parkinson's disease. PMID:26956478

  7. Phase-contrast x-ray imaging and tomography of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    We have analyzed the model organism Caenorhabditis elegans with the help of phase-contrast x-ray tomography. This work combines techniques from x-ray imaging studies of single biological cells by in-line holography with three-dimensional reconstruction and furthermore extends these studies to the multicellular level. To preserve the sub-cellular ultrastructure of the nematodes, we used the near-native sample preparation of high-pressure freezing as commonly used in the field of electron microscopy. For the presented samples, a standard, non-magnifying parallel-beam setting, as well as a magnifying, divergent-beam setting using nanofocusing optics is evaluated based on their tomographic reconstruction potential. In this paper, we address difficulties in sample preparation and issues of image processing. By experimental refinement and through optimized reconstruction procedures, we were able to perform x-ray imaging studies on a living specimen. (paper)

  8. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans.

    Science.gov (United States)

    Salzberg, Yehuda; Díaz-Balzac, Carlos A; Ramirez-Suarez, Nelson J; Attreed, Matthew; Tecle, Eillen; Desbois, Muriel; Kaprielian, Zaven; Bülow, Hannes E

    2013-10-10

    Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously. PMID:24120132

  9. Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Thioredoxin reductase-1 (TRXR-1 is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se were identical to selenite, but selenate was 1/4(th as toxic (LC50 0.95 mM Se as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.

  10. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor.

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  11. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt–29 biosensor

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host’s attempt to clear bacterial toxic molecules. One of these genes, ugt–29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt–29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt–29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT–29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt–29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  12. LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans.

    Science.gov (United States)

    Matsuura, Rieko; Ashikawa, Tomoko; Nozaki, Yuka; Kitagawa, Daiju

    2016-03-01

    During oogenesis, two successive meiotic cell divisions occur without functional centrosomes because of the inactivation and subsequent elimination of maternal centrosomes during the diplotene stage of meiosis I. Despite being a conserved phenomenon in most metazoans, the means by which this centrosome behavior is controlled during female meiosis remain elusive. Here, we conducted a targeted RNAi screening in the Caenorhabditis elegans gonad to identify novel regulators of centrosome behavior during oogenesis. We screened 513 genes known to be essential for embryo production and directly visualized GFP-γ-tubulin to monitor centrosome behavior at all stages of oogenesis. In the screening, we found that RNAi-mediated inactivation of 33 genes delayed the elimination of GFP-γ-tubulin at centrosomes during oogenesis, whereas inactivation of nine genes accelerated the process. Depletion of the TRIM-NHL protein LIN-41 led to a significant delay in centrosome elimination and to the separation and reactivation of centrosomes during oogenesis. Upon LIN-41 depletion, meiotic chromosomes were abnormally condensed and pulled toward one of the two spindle poles around late pachytene even though the spindle microtubules emanated from both centrosomes. Overall, our work provides new insights into the regulation of centrosome behavior to ensure critical meiotic events and the generation of intact oocytes. PMID:26764090

  13. Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans

    International Nuclear Information System (INIS)

    The effects of chronic exposure to 137Cs gamma radiation (dose rate ranging from 6.6 to 42.7 mGy h−1) on growth and reproductive ability were carried out over three generations of Caenorhabditis elegans (F0, F1, and F2). Exposure began at the egg stage for the first generation and was stopped at the end of laying of third-generation eggs (F2). At the same time, the two subsequent generations from parental exposure were returned to the control conditions (F1’ and F2’). There was no radiation-induced significant effect on growth, hatchability, and cumulative number of larvae within generations. Moreover, no significant differences were found in growth parameters (hatching length, maximal length, and a constant related to growth rate) among the generations. However, a decrease in the cumulative number of larvae across exposed generations was observed between F0 and F2 at the highest dose rate (238.8 ± 15.4 and 171.2 ± 13.1 number of larvae per individual, respectively). Besides, the F1′ generation was found to lay significantly fewer eggs than the F1 generation for tested dose rates 6.6, 8.1, 19.4, and 28.1 mGy h−1. Our results confirmed that reproduction (here, cumulative number of larvae) is the most sensitive endpoint affected by chronic exposure to ionizing radiation. The results obtained revealed transgenerational effects from parental exposure in the second generation, and the second non-exposed generation was indeed more affected than the second exposed generation. - Highlights: • Chronic exposure to γ-radiation is studied using 3 generations of Caenorhabditis elegans. • Reproduction is the most sensitive endpoint affected by exposure to gamma radiation. • The results obtained revealed transgenerational effects from parental exposure

  14. Insulin/IGF-1 and hypoxia signaling act in concert to regulate iron homeostasis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel Ackerman

    Full Text Available Iron plays an essential role in many biological processes, but also catalyzes the formation of reactive oxygen species (ROS, which can cause molecular damage. Iron homeostasis is therefore a critical determinant of fitness. In Caenorhabditis elegans, insulin/IGF-1 signaling (IIS promotes growth and reproduction but limits stress resistance and lifespan through inactivation of the DAF-16/FoxO transcription factor (TF. We report that long-lived daf-2 insulin/IGF-1 receptor mutants show a daf-16-dependent increase in expression of ftn-1, which encodes the iron storage protein H-ferritin. To better understand the regulation of iron homeostasis, we performed a TF-limited genetic screen for factors influencing ftn-1 gene expression. The screen identified the heat-shock TF hsf-1, the MAD bHLH TF mdl-1, and the putative histone acetyl transferase ada-2 as activators of ftn-1 expression. It also revealed that the HIFα homolog hif-1 and its binding partner aha-1 (HIFβ are potent repressors of ftn-1 expression. ftn-1 expression is induced by exposure to iron, and we found that hif-1 was required for this induction. In addition, we found that the prolyl hydroxylase EGL-9, which represses HIF-1 via the von Hippel-Lindau tumor suppressor VHL-1, can also act antagonistically to VHL-1 in regulating ftn-1. This suggests a novel mechanism for HIF target gene regulation by these evolutionarily conserved and clinically important hydroxylases. Our findings imply that the IIS and HIF pathways act together to regulate iron homeostasis in C. elegans. We suggest that IIS/DAF-16 regulation of ftn-1 modulates a trade-off between growth and stress resistance, as elevated iron availability supports growth but also increases ROS production.

  15. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans.

    Science.gov (United States)

    Feng, Likui; Shou, Qingyao; Butcher, Rebecca A

    2016-06-01

    L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting. PMID:27009306

  16. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  17. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd2+. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals

  18. UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Komal Safdar

    2016-07-01

    Full Text Available Notch-type signaling mediates cell−cell interactions important for animal development. In humans, reduced or inappropriate Notch signaling activity is associated with various developmental defects and disease states, including cancers. Caenorhabditis elegans expresses two Notch-type receptors, GLP-1 and LIN-12. GLP-1 mediates several cell-signaling events in the embryo and promotes germline proliferation in the developing and adult gonad. LIN-12 acts redundantly with GLP-1 in certain inductive events in the embryo and mediates several cell−cell interactions during larval development. Recovery of genetic suppressors and enhancers of glp-1 or lin-12 loss- or gain-of-function mutations has identified numerous regulators of GLP-1 and LIN-12 signaling activity. Here, we report the molecular identification of sog-1, a gene identified in screens for recessive suppressors of conditional glp-1 loss-of-function mutations. The sog-1 gene encodes UBR-5, the sole C. elegans member of the UBR5/Hyd family of HECT-type E3 ubiquitin ligases. Molecular and genetic analyses indicate that the loss of ubr-5 function suppresses defects caused by reduced signaling via GLP-1 or LIN-12. In contrast, ubr-5 mutations do not suppress embryonic or larval lethality associated with mutations in a downstream transcription factor, LAG-1. In the gonad, ubr-5 acts in the receiving cells (germ cells to limit GLP-1 signaling activity. SEL-10 is the F-box component of SCFSEL-10 E3 ubiquitin–ligase complex that promotes turnover of Notch intracellular domain. UBR-5 acts redundantly with SEL-10 to limit Notch signaling in certain tissues. We hypothesize that UBR-5 activity limits Notch-type signaling by promoting turnover of receptor or limiting its interaction with pathway components.

  19. A Caenorhabditis elegans Host Model Correlates with Invasive Disease Caused by Staphylococcus aureus Recovered during an Outbreak in Neonatal Intensive Care

    Directory of Open Access Journals (Sweden)

    Kaiyu Wu

    2012-01-01

    Full Text Available BACKGROUND: Caenorhabditis elegans has previously been used as a host model to determine the virulence of clinical methicillin-resistant Staphylococcus aureus isolates. In the present study, methicillin-susceptible S aureus (MSSA strains associated with an outbreak in a neonatal intensive care unit (NICU were investigated using the C elegans model.

  20. Discovery of a Natural Microsporidian Pathogen with a Broad Tissue Tropism in Caenorhabditis elegans.

    Science.gov (United States)

    Luallen, Robert J; Reinke, Aaron W; Tong, Linda; Botts, Michael R; Félix, Marie-Anne; Troemel, Emily R

    2016-06-01

    Microbial pathogens often establish infection within particular niches of their host for replication. Determining how infection occurs preferentially in specific host tissues is a key aspect of understanding host-microbe interactions. Here, we describe the discovery of a natural microsporidian parasite of the nematode Caenorhabditis elegans that displays a unique tissue tropism compared to previously described parasites of this host. We characterize the life cycle of this new species, Nematocida displodere, including pathogen entry, intracellular replication, and exit. N. displodere can invade multiple host tissues, including the epidermis, muscle, neurons, and intestine of C. elegans. Despite robust invasion of the intestine very little replication occurs there, with the majority of replication occurring in the muscle and epidermis. This feature distinguishes N. displodere from two closely related microsporidian pathogens, N. parisii and N. sp. 1, which exclusively invade and replicate in the intestine. Comparison of the N. displodere genome with N. parisii and N. sp. 1 reveals that N. displodere is the earliest diverging species of the Nematocida genus. Over 10% of the proteins encoded by the N. displodere genome belong to a single species-specific family of RING-domain containing proteins of unknown function that may be mediating interactions with the host. Altogether, this system provides a powerful whole-animal model to investigate factors responsible for pathogen growth in different tissue niches. PMID:27362540

  1. Effects of gravity on meiosis, fertilization and early embryogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Sasagawa, Y.; Saito, Y.; Shimizu, M.; Ishioka, N.; Yamashita, M.; Takahashi, H.; Higashitani, A.

    The embryonic development of the nematode Caenorhabditis elegans was examined under different gravitational conditions. The first cleavage plane in the 1-cell embryo was slid to some extent by re-orientation of liquid culture vessel, but the pattern and timing of cleavages were not affected. Under 100G of hypergravity condition with swing-centrifuge, the number of eggs laid from an adult hermaphrodite decreased and their hatching rate was drastically reduced. On the other hand, the embryonic development after fertilization normally occurred and grew to adulthood at more than 100G of hypergravity. When the adult hermaphrodites cultured under 100G of hypergravity transferred to a ground condition (1G), the newly fertilized embryos normally developed and their hatching rate was fully recovered. These results indicated that the reproductive process except spermatogenesis, oogenesis and embryogenesis after fertilization is impaired under 100G of hypergravity condition, and the effect is transient. Namely, the fertilization process including meiotic divisions I and II is sensitive to hypergravity in the nematode C. elegans.

  2. TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Alexandra Vaccaro

    2012-07-01

    Full Text Available TDP-43 is a multifunctional nucleic acid binding protein linked to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS and Frontotemporal Dementia. To learn more about the normal biological and abnormal pathological role of this protein, we turned to Caenorhabditis elegans and its orthologue TDP-1. We report that TDP-1 functions in the Insulin/IGF pathway to regulate longevity and the oxidative stress response downstream from the forkhead transcription factor DAF-16/FOXO3a. However, although tdp-1 mutants are stress-sensitive, chronic upregulation of tdp-1 expression is toxic and decreases lifespan. ALS-associated mutations in TDP-43 or the related RNA binding protein FUS activate the unfolded protein response and generate oxidative stress leading to the daf-16-dependent upregulation of tdp-1 expression with negative effects on neuronal function and lifespan. Consistently, deletion of endogenous tdp-1 rescues mutant TDP-43 and FUS proteotoxicity in C. elegans. These results suggest that chronic induction of wild-type TDP-1/TDP-43 by cellular stress may propagate neurodegeneration and decrease lifespan.

  3. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application.

    Science.gov (United States)

    Simonetta, Sergio H; Golombek, Diego A

    2007-04-15

    Automation of simple behavioral patterns, such as locomotor activity, is fundamental for pharmacological and genetic screening studies. Recently, circadian behaviors in locomotor activity and stress responses were reported in the nematode Caenorhabditis elegans, a well-known model in genetics and developmental studies. Here we present a new method for long-term recordings of C. elegans (as well as other similar-sized animals) locomotor activity based on an infrared microbeam scattering. Individual nematodes were cultured in a 96-well microtiter plate; we tested L15, CeMM and E. coli liquid cultures in long-term activity tracking experiments, and found CeMM to be the optimal medium. Treatment with 0.2% azide caused an immediate decrease in locomotor activity as recorded with our system. In addition to the validation of the method (including hardware and software details), we report its application in chronobiological studies. Circadian rhythms in animals entrained to light-dark and constant dark conditions (n=48 and 96 worms, respectively) at 16 degrees C, were analyzed by LS periodograms. We obtained a 24.2+/-0.44 h period (52% of significantly rhythmic animals) in LD, and a 23.1+/-0.40 h period (37.5% of significantly rhythmic animals) under DD. The system is automateable using microcontrollers, of low-cost construction and highly reproducible. PMID:17207862

  4. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  5. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments.

    Science.gov (United States)

    Berg, Maureen; Stenuit, Ben; Ho, Joshua; Wang, Andrew; Parke, Caitlin; Knight, Matthew; Alvarez-Cohen, Lisa; Shapira, Michael

    2016-08-01

    It is now well accepted that the gut microbiota contributes to our health. However, what determines the microbiota composition is still unclear. Whereas it might be expected that the intestinal niche would be dominant in shaping the microbiota, studies in vertebrates have repeatedly demonstrated dominant effects of external factors such as host diet and environmental microbial diversity. Hypothesizing that genetic variation may interfere with discerning contributions of host factors, we turned to Caenorhabditis elegans as a new model, offering the ability to work with genetically homogenous populations. Deep sequencing of 16S rDNA was used to characterize the (previously unknown) worm gut microbiota as assembled from diverse produce-enriched soil environments under laboratory conditions. Comparisons of worm microbiotas with those in their soil environment revealed that worm microbiotas resembled each other even when assembled from different microbial environments, and enabled defining a shared core gut microbiota. Community analyses indicated that species assortment in the worm gut was non-random and that assembly rules differed from those in their soil habitat, pointing at the importance of competitive interactions between gut-residing taxa. The data presented fills a gap in C. elegans biology. Furthermore, our results demonstrate a dominant contribution of the host niche in shaping the gut microbiota. PMID:26800234

  6. Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection.

    Science.gov (United States)

    Niu, Qiuhong; Zhang, Lin; Zhang, Keqin; Huang, Xiaowei; Hui, Fengli; Kan, Yunchao; Yao, Lunguang

    2016-01-01

    The effect of pathogenic bacteria on a host and its symbiotic microbiota is vital and widespread in the biotic world. The soil-dwelling opportunistic bacterium Bacillus nematocida B16 uses a "Trojan horse" mechanism to kill Caenorhabditis elegans. The alterations in the intestinal microflora that occur after B16 infection remain unknown. Here, we analyzed the intestinal bacteria presented in normal and infected worms. The gut microbial community experienced a complex change after B16 inoculation, as determined through marked differences in species diversity, structure, distribution and composition between uninfected and infected worms. Regardless of the worm's origin (i.e., from soil or rotten fruits), the diversity of the intestinal microbiome decreased after infection. Firmicutes increased sharply, whereas Proteobacteria, Actinobacteria, Cyanobacteria and Acidobacteria decreased to different degrees. Fusobacteria was only present 12 h post-infection. After 24 h of infection, 1228 and 1109 bacterial species were identified in the uninfected and infected groups, respectively. The shared species reached 21.97%. The infected group had a greater number of Bacillus species but a smaller number of Pediococcus, Halomonas, Escherichia and Shewanella species (P microbiota using C. elegans as the model species. PMID:26830015

  7. Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host.

    Directory of Open Access Journals (Sweden)

    XiaoHui Sem

    Full Text Available Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2',7'-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hypodermal tissues of the nematode. Still, we could not detect invasion beyond the nematode's intestinal epithelium at any stage of the infection. A similar dispersion of oxidative response was also noted in nematodes infected with S. Dublin, but not with non-pathogenic Escherichia coli or the defined pathogen Burkholderia thailandensis. Addition of catalase or the reductant ascorbic acid significantly restored the lifespan of S. Typhimurium-infected nematodes. Mutational inactivation of the bacterial thioredoxin 1 resulted in total ablation of the hypodermal oxidative response to infection, and in a strong attenuation of virulence. Virulence of the thioredoxin 1 mutant was restored by trans-complementation with redox-active variants of thioredoxin 1 or, surprisingly, by exposing the thioredoxin 1 mutant to sublethal concentrations of the disulphide catalyst copper chloride prior to infection. In summary, our observations define a new aspect in virulence of S. enterica that apparently does not involve the classical invasive or intracellular phenotype of the pathogen, but that depends on the ability to provoke overwhelming systemic oxidative stress in the host through the redox activity of bacterial thioredoxin 1.

  8. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans.

    Science.gov (United States)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D; Kagias, Konstantinos; Pocock, Roger

    2015-01-01

    The ability of animals to sense and respond to elevated temperature is essential for survival. Transcriptional control of the heat stress response has been much studied, whereas its posttranscriptional regulation by microRNAs (miRNAs) is not well understood. Here we analyzed the miRNA response to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress signaling that enables animals to robustly respond to the changing environment. PMID:25746291

  9. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Maurer, Laura L; Yang, Xinyu; Schindler, Adam J; Taggart, Ross K; Jiang, Chuanjia; Hsu-Kim, Heileen; Sherwood, David R; Meyer, Joel N

    2016-09-01

    We used the nematode Caenorhabditis elegans to study the roles of endocytosis and lysosomal function in uptake and subsequent toxicity of silver nanoparticles (AgNP) in vivo. To focus on AgNP uptake and effects rather than silver ion (AgNO3) effects, we used a minimally dissolvable AgNP, citrate-coated AgNPs (CIT-AgNPs). We found that the clathrin-mediated endocytosis inhibitor chlorpromazine reduced the toxicity of CIT-AgNPs but not AgNO3. We also tested the sensitivity of three endocytosis-deficient mutants (rme-1, rme-6 and rme-8) and two lysosomal function deficient mutants (cup-5 and glo-1) as compared to wild-type (N2 strain). One of the endocytosis-deficient mutants (rme-6) took up less silver and was resistant to the acute toxicity of CIT-AgNPs compared to N2s. None of those mutants showed altered sensitivity to AgNO3. Lysosome and lysosome-related organelle mutants were more sensitive to the growth-inhibiting effects of both CIT-AgNPs and AgNO3. Our study provides mechanistic evidence suggesting that early endosome formation is necessary for AgNP-induced toxicity in vivo, as rme-6 mutants were less sensitive to the toxic effects of AgNPs than C. elegans with mutations involved in later steps in the endocytic process. PMID:26559224

  10. Effect of structurally related flavonoids from Zuccagnia punctata Cav. on Caenorhabditis elegans.

    Science.gov (United States)

    D'Almeida, Romina E; Alberto, María R; Morgan, Phillip; Sedensky, Margaret; Isla, María I

    2014-03-01

    Zuccagnia punctata Cav. (Fabaceae), commonly called jarilla macho or pus-pus, is being used in traditional medicine as an antiseptic, anti-inflammatory and to relieve muscle and bone pain. The aim of this work was to study the anthelmintic effects of three structurally related flavonoids present in aerial parts of Z. punctata Cav. The biological activity of the flavonoids 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2´,4´-dihydroxychalcone (DHC) was examined in the free-living nematode Caenorhabditis elegans. Our results showed that among the assayed flavonoids, only DHC showed an anthelmintic effect and alteration of egg hatching and larval development processes in C. elegans. DHC was able to kill 50% of adult nematodes at a concentration of 17 μg/mL. The effect on larval development was observed after 48 h in the presence of 25 and 50 μg/mL DHC, where 33.4 and 73.4% of nematodes remained in the L3 stage or younger. New therapeutic drugs with good efficacy against drug-resistant nematodes are urgently needed. Therefore, DHC, a natural compound present in Z. punctata, is proposed as a potential anthelmintic drug. PMID:26204036

  11. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans.

    Science.gov (United States)

    Wojtovich, Andrew P; Wei, Alicia Y; Sherman, Teresa A; Foster, Thomas H; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the 'singlet oxygen generator' miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  12. A closed conformation of the Caenorhabditis elegans separase-securin complex.

    Science.gov (United States)

    Bachmann, Gudrun; Richards, Mark W; Winter, Anja; Beuron, Fabienne; Morris, Edward; Bayliss, Richard

    2016-04-01

    The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase-securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21-24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase-securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change. PMID:27249343

  13. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans.

    Science.gov (United States)

    Reis Rodrigues, Pedro; Kaul, Tiffany K; Ho, Jo-Hao; Lucanic, Mark; Burkewitz, Kristopher; Mair, William B; Held, Jason M; Bohn, Laura M; Gill, Matthew S

    2016-01-01

    Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans. PMID:27172180

  14. Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies.

    Science.gov (United States)

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos Efstathios, S

    2014-10-01

    Collapse of proteostasis and accumulation of damaged macromolecules have been recognized as hallmarks of aging and age-related diseases. The proteasome is the major cellular protease responsible for intracellular protein degradation, having an impaired function during aging. We have previously shown that proteasome activation through overexpression of β5 proteasome subunit delays replicative senescence and confers resistance to oxidative stress in primary fibroblasts. Herein, we have investigated the impact of enhanced proteasome function on organismal longevity and aggregation-related pathologies by employing Caenorhabditis elegans as a model system. We have found that overexpression of a core 20S proteasome subunit in wild type worms extends lifespan, healthspan and survival under proteotoxic conditions. The longevity prolonging effect of the proteasome subunit overexpression was found to depend on the FOXO transcription factor DAF-16 and was associated with its elevated transcriptional activity. We have also uncovered a major role of enhanced proteasome activity in aggregation-related pathologies underlying neurodegenerative diseases. Genetic activation of the proteasome minimized the detrimental effect of polyglutamine-induced toxicity mimicking Huntington's disease, whereas knock-down of the proteasome component exaggerated the disease phenotypes. Similar results were obtained by using a C.elegans model of Amyloid beta (Αβ) -induced toxicity mimicking Alzheimer's disease. Collectively, these findings demonstrate that enhanced proteasome function alleviates proteotoxicity and promotes longevity in synergy with other nodes of lifespan regulation in C.elegans. Understanding the mechanism by which preservation of proteostasis via enhancement of proteasome function, decelerates the aging process and alleviates age-related pathologies may assist in the rational design of therapeutic and anti-aging interventions. PMID:26461298

  15. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations.

    Science.gov (United States)

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M; Yang, Liwei; LaRocque, Jeannine R; Hall, Julie; Miska, Eric A; Ahmed, Shawn

    2014-10-14

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing. PMID:25258416

  16. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  17. Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans

    Science.gov (United States)

    Zhao, Yunli; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2016-04-01

    Graphene oxide (GO) has been shown to cause multiple toxicities in various organisms. However, the underlying molecular mechanisms for GO-induced shortened longevity are still unclear. We employed Caenorhabditis elegans to investigate the possible involvement of insulin signaling pathway in the control of GO toxicity and its underlying molecular mechanisms. Mutation of daf-2, age-1, akt-1, or akt-2 gene induced a resistant property of nematodes to GO toxicity, while mutation of daf-16 gene led to a susceptible property of nematodes to GO toxicity, suggesting that GO may dysregulate the functions of DAF-2/IGF-1 receptor, AGE-1, AKT-1 and AKT-2-mediated kinase cascade, and DAF-16/FOXO transcription factor. Genetic interaction analysis suggested the involvement of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the control of GO toxicity on longevity. Moreover, intestinal RNA interference (RNAi) analysis demonstrated that GO reduced longevity by affecting the functions of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the intestine. DAF-16 could also regulate GO toxicity on longevity by functioning upstream of SOD-3, which encodes an antioxidation system that prevents the accumulation of oxidative stress. Therefore, intestinal insulin signaling may encode two different molecular mechanisms responsible for the GO toxicity in inducing the shortened longevity. Our results highlight the key role of insulin signaling pathway in the control of GO toxicity in organisms.

  18. Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism.

    Science.gov (United States)

    Wu, Qiuli; Zhi, Lingtong; Qu, Yangyang; Wang, Dayong

    2016-07-01

    Caenorhabditis elegans is a useful model animal for fat storage study. In nematodes, CdTe quantum dots (QDs) induced an increase in fat storage in intestine that is partially due to prolonged defecation cycle length, and not attributed to altered feeding or cadmium ion released from CdTe QDs. Moreover, CdTe QDs altered the molecular basis of both synthesis and degradation of fatty acid; however, CdTe QDs did not influence that of degradation of phospholipids. CdTe QDs increased expression of fasn-1 and pod-2 genes encoding enzymes required for fatty acid synthesis, and decreased expression of acs-2 and ech-1 genes encoding enzymes required for fatty acid β-oxidation. The altered molecular basis of fatty acid synthesis or degradation by CdTe QDs acted in intestine to regulate fat storage. Our study highlights the potential of CdTe QDs in influencing lipid metabolism in certain organs or tissues in animals. PMID:26956412

  19. Caenorhabditis elegans ciliary protein NPHP-8, the homologue of human RPGRIP1L, is required for ciliogenesis and chemosensation.

    Science.gov (United States)

    Liu, Lin; Zhang, Mingshu; Xia, Zhiping; Xu, Pingyong; Chen, Liangyi; Xu, Tao

    2011-07-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage renal failure in children and young adults. NPHP8/RPGRIP1L is a novel ciliary gene that, when mutated, in addition to causing NPHP, also causes Joubert syndrome (JBTS) and Meckel syndrome (MKS). The exact function of NPHP8 and how defects in NPHP8 lead to human diseases are poorly understood. Here, we studied the Caenorhabditis elegans homolog nphp-8 (C09G5.8) and explored the possible function of NPHP-8 in ciliated sensory neurons. We determined the gene structure of nphp-8 through rapid amplification of cDNA ends (RACE) analysis and discovered an X-box motif that had been previously overlooked. Moreover, NPHP-8 co-localized with NPHP-4 at the transition zone at the base of cilia. Mutation of nphp-8 led to abnormal dye filling (Dyf) and shorter cilia lengths in a subset of ciliary neurons. In addition, chemotaxis to several volatile attractants was significantly impaired in nphp-8 mutants. Our data suggest that NPHP-8/RPGRIP1L plays an important role in cilia formation and cilia-mediated chemosensation in a cell type-specific manner. PMID:21689635

  20. FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Matthew D Nelson

    Full Text Available Neuropeptides signal through G-protein coupled receptors (GPCRs to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF motif or an amidated valine-arginine-phenylalanine (VRF motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence.

  1. Evolutionary patterns of RNA-based gene duplicates in Caenorhabditis nematodes coincide with their genomic features

    Directory of Open Access Journals (Sweden)

    Zou Ming

    2012-08-01

    Full Text Available Abstract Background RNA-based gene duplicates (retrocopies played pivotal roles in many physiological processes. Nowadays, functional retrocopies have been systematically identified in several mammals, fruit flies, plants, zebrafish and other chordates, etc. However, studies about this kind of duplication in Caenorhabditis nematodes have not been reported. Findings We identified 43, 48, 43, 9, and 42 retrocopies, of which 6, 15, 18, 3, and 13 formed chimeric genes in C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. At least 5 chimeric types exist in Caenorhabditis species, of which retrocopy recruiting both N and C terminus is the commonest one. Evidences from different analyses demonstrate many retrocopies and almost all chimeric genes may be functional in these species. About half of retrocopies in each species has coordinates in other species, and we suggest that retrocopies in closely related species may be helpful in identifying retrocopies for one certain species. Conclusions A number of retrocopies and chimeric genes exist in Caenorhabditis genomes, and some of them may be functional. The evolutionary patterns of these genes may correlate with their genomic features, such as the activity of retroelements, the high rate of mutation and deletion rate, and a large proportion of genes subject to trans-splicing.

  2. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans.

    Science.gov (United States)

    Dupuy, Denis; Bertin, Nicolas; Hidalgo, César A; Venkatesan, Kavitha; Tu, Domena; Lee, David; Rosenberg, Jennifer; Svrzikapa, Nenad; Blanc, Aurélie; Carnec, Alain; Carvunis, Anne-Ruxandra; Pulak, Rock; Shingles, Jane; Reece-Hoyes, John; Hunt-Newbury, Rebecca; Viveiros, Ryan; Mohler, William A; Tasan, Murat; Roth, Frederick P; Le Peuch, Christian; Hope, Ian A; Johnsen, Robert; Moerman, Donald G; Barabási, Albert-László; Baillie, David; Vidal, Marc

    2007-06-01

    Differential regulation of gene expression is essential for cell fate specification in metazoans. Characterizing the transcriptional activity of gene promoters, in time and in space, is therefore a critical step toward understanding complex biological systems. Here we present an in vivo spatiotemporal analysis for approximately 900 predicted C. elegans promoters (approximately 5% of the predicted protein-coding genes), each driving the expression of green fluorescent protein (GFP). Using a flow-cytometer adapted for nematode profiling, we generated 'chronograms', two-dimensional representations of fluorescence intensity along the body axis and throughout development from early larvae to adults. Automated comparison and clustering of the obtained in vivo expression patterns show that genes coexpressed in space and time tend to belong to common functional categories. Moreover, integration of this data set with C. elegans protein-protein interactome data sets enables prediction of anatomical and temporal interaction territories between protein partners. PMID:17486083

  3. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans

    Science.gov (United States)

    Wu, Qiuli; Yin, Li; Li, Xing; Tang, Meng; Zhang, Tao; Wang, Dayong

    2013-09-01

    Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged exposure to 0.5-100 mg L-1 of GO caused damage on functions of both primary (intestine) and secondary (neuron and reproductive organ) targeted organs. In the intestine, ROS production was significantly correlated with the formation of adverse effects on functions of both primary and secondary targeted organs. GO could be translocated into intestinal cells with loss of microvilli, and distributed to be adjacent to or surrounding mitochondria. Prolonged exposure to GO resulted in a hyper-permeable state of the intestinal barrier, an increase in mean defecation cycle length, and alteration of genes required for intestinal development and defecation behavior. Thus, our data suggest that prolonged exposure to GO may cause potential risk to environmental organisms after release into the environment. GO toxicity may be due to the combinational effects of oxidative stress in the intestinal barrier, enhanced permeability of the biological barrier, and suppressed defecation behavior in C. elegans.Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged

  4. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty.

    OpenAIRE

    Glenn, Charles F.; Chow, David K.; Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B.; Wolkow , Catherine A.; David, Lawrence; Goldberg, Ilya G.; Cooke, Carol A.

    2004-01-01

    Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits upon behavior have not been clearly defined. Here, we examined the effects of aging on behavior in the nematode, Caenorhabditis elegans. As animals aged, mild locomotory deficits appeared that were sufficient to impair behavioral responses to sensory cues. In c...

  5. Phthalates Induce Neurotoxicity Affecting Locomotor and Thermotactic Behaviors and AFD Neurons through Oxidative Stress in Caenorhabditis elegans

    OpenAIRE

    Tseng, I-Ling; Yang, Ying-Fei; Yu, Chan-Wei; Li, Wen-Hsuan; Liao, Vivian Hsiu-Chuan

    2013-01-01

    Background Phthalate esters are ubiquitous environmental contaminants and numerous organisms are thus exposed to various levels of phthalates in their natural habitat. Considering the critical, but limited, research on human neurobehavioral outcomes in association with phthalates exposure, we used the nematode Caenorhabditis elegans as an in vivo model to evaluate phthalates-induced neurotoxicity and the possible associated mechanisms. Principal Findings Exposure to phthalates (DEHP, DBP, and...

  6. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans.

    OpenAIRE

    Malik, H S; Eickbush, T H

    2000-01-01

    Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon th...

  7. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling

    OpenAIRE

    PASTUHOV, Strahil Iv.; Fujiki, Kota; Nix, Paola; Kanao, Shuka; Bastiani, Michael; Matsumoto, Kunihiro; Hisamoto, Naoki

    2012-01-01

    The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandami...

  8. Non-stringent tissue-source requirements for BMP ligand expression in regulation of body size in Caenorhabditis elegans

    OpenAIRE

    Savage-Dunn, Cathy; Yu, Ling; Gill, Kwesi; Awan, Muhammad; Fernando, Thilini

    2011-01-01

    In Caenorhabditis elegans, the Bone Morphogenetic Protein (BMP)-related ligand Dpp- and BMP-like-1 (DBL-1) regulates body size by promoting the larval and adult growth of the large epidermal syncytium hyp7 without affecting cell division. This system provides an excellent model for dissecting the growth-promoting activities of BMP ligands, since in this context the growth and differentiation functions of DBL-1 are naturally uncoupled. dbl-1 is expressed primarily in neurons and the DBL-1 liga...

  9. Effects of the marine natural products tropodithietic acid and dimethylsulphoniopropionate on neuronal and oligodendroglial cells as well as Caenorhabditis elegans

    OpenAIRE

    Wichmann, Heidi

    2015-01-01

    This thesis addresses the pharmacological potential of the marine natural products tropodithietic acid (TDA) and dimethylsulphoniopropionate (DMSP). For a broader overview of the possible effects of TDA and DMSP on mammalian brain cells, we have chosen N2a cells as a model for neurons and OLN-93 as a model for glial cells to determine their cytotoxic or protective capabilities on the cellular level. In addition, the whole model organism Caenorhabditis elegans was investigated, particularly in...

  10. The nematode Caenorhabditis elegans, stress and aging: Identifying the complex interplay of genetic pathways following the treatment with humic substances

    OpenAIRE

    Ralph eMenzel; Stefanie eMenzel; Swain, Suresh C.; Kerstin ePietsch; Sophie eTiedt; Jördis eWitczak; Sturzenbaum, Stephen R.; Steinberg, Christian E. W.

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biolo...

  11. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances

    OpenAIRE

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C.; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R; Steinberg, Christian E. W.

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological...

  12. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths

    OpenAIRE

    Cheng, Chen; Shtessel, Ludmila; Brady, Megan M.; Ahmed, Shawn

    2012-01-01

    Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome f...

  13. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans

    OpenAIRE

    Hilliard, Massimo A; Bergamasco, Carmela; Arbucci, Salvatore; Plasterk, Ronald HA; Bazzicalupo, Paolo

    2004-01-01

    An animal's ability to detect and avoid toxic compounds in the environment is crucial for survival. We show that the nematode Caenorhabditis elegans avoids many water-soluble substances that are toxic and that taste bitter to humans. We have used laser ablation and a genetic cell rescue strategy to identify sensory neurons involved in the avoidance of the bitter substance quinine, and found that ASH, a polymodal nociceptive neuron that senses many aversive stimuli, is the principal player in ...

  14. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation

    OpenAIRE

    Parrish, Jay Z.; Yang, Chonglin; Shen, Binghui; Xue, Ding

    2003-01-01

    Oligonucleosomal fragmentation of chromosomes in dying cells is a hallmark of apoptosis. Little is known about how it is executed or what cellular components are involved. We show that crn-1, a Caenorhabditis elegans homologue of human flap endonuclease-1 (FEN-1) that is normally involved in DNA replication and repair, is also important for apoptosis. Reduction of crn-1 activity by RNA interference resulted in cell death phenotypes similar to those displayed by a mutant lacking the mitochondr...

  15. Regulation of Heterochromatin Assembly on Unpaired Chromosomes during Caenorhabditis elegans Meiosis by Components of a Small RNA-Mediated Pathway

    OpenAIRE

    Xingyu She; Xia Xu; Alexander Fedotov; Kelly, William G; Maine, Eleanor M.

    2009-01-01

    Many organisms have a mechanism for down regulating the expression of non-synapsed chromosomes and chromosomal regions during meiosis. This phenomenon is thought to function in genome defense. During early meiosis in Caenorhabditis elegans, unpaired chromosomes (e.g., the male X chromosome) become enriched for a modification associated with heterochromatin and transcriptional repression, dimethylation of histone H3 on lysine 9 (H3K9me2). This enrichment requires activity of the cellular RNA-d...

  16. Identification of Distinct Bacillus thuringiensis 4A4 Nematicidal Factors Using the Model Nematodes Pristionchus pacificus and Caenorhabditis elegans

    OpenAIRE

    Igor Iatsenko; Angel Nikolov; Sommer, Ralf J.

    2014-01-01

    Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thu...

  17. Identification of Store-independent and Store-operated Ca2+ Conductances in Caenorhabditis elegans Intestinal Epithelial Cells

    OpenAIRE

    Estevez, Ana Y.; Roberts, Randolph K.; Strange, Kevin

    2003-01-01

    The nematode Caenorhabditis elegans offers significant experimental advantages for defining the genetic basis of diverse biological processes. Genetic and physiological analyses have demonstrated that inositol-1,4,5-trisphosphate (IP3)–dependent Ca2+ oscillations in intestinal epithelial cells play a central role in regulating the nematode defecation cycle, an ultradian rhythm with a periodicity of 45–50 s. Patch clamp studies combined with behavioral assays and forward and reverse genetic sc...

  18. Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord

    OpenAIRE

    Gharib Shahla; Thum Jian; Whittaker Allyson J; Schindelman Gary; Sternberg Paul W

    2006-01-01

    Abstract Background The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. Results Based on observation of...

  19. Sensory Ciliogenesis in Caenorhabditis elegans: Assignment of IFT Components into Distinct Modules Based on Transport and Phenotypic Profiles

    OpenAIRE

    Ou, Guangshuo; Koga, Makato; Oliver E Blacque; Murayama, Takashi; Ohshima, Yasumi; Schafer, Jenny C.; LI, Chunmei; Yoder, Bradley K.; Leroux, Michel R.; Scholey, Jonathan M.

    2007-01-01

    Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2–dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into grou...

  20. The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in Caenorhabditis elegans

    OpenAIRE

    Bacaj, Taulant; Lu, Yun; Shaham, Shai

    2008-01-01

    Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentra...

  1. Vitamin B12 deficiency in Caenorhabditis elegans results in loss of fertility, extended life cycle, and reduced lifespan ☆

    OpenAIRE

    Bito, Tomohiro; Matsunaga, Yohei; Yabuta, Yukinori; Kawano, Tsuyoshi; Watanabe, Fumio

    2013-01-01

    Vitamin B12 (B12) deficiency has been linked to developmental disorders, metabolic abnormalities, and neuropathy; however, the mechanisms involved remain poorly understood. Caenorhabditis elegans grown under B12-deficient conditions for five generations develop severe B12 deficiency associated with various phenotypes that include decreased egg-laying capacity (infertility), prolonged life cycle (growth retardation), and reduced lifespan. These phenotypes resemble the consequences of B12 defic...

  2. A Bow-Tie Genetic Architecture for Morphogenesis Suggested by a Genome-Wide RNAi Screen in Caenorhabditis elegans

    OpenAIRE

    Nelson, Matthew D.; Elinor Zhou; Karin Kiontke; Hélène Fradin; Grayson Maldonado; Daniel Martin; Khushbu Shah; Fitch, David H. A.

    2011-01-01

    During animal development, cellular morphogenesis plays a fundamental role in determining the shape and function of tissues and organs. Identifying the components that regulate and drive morphogenesis is thus a major goal of developmental biology. The four-celled tip of the Caenorhabditis elegans male tail is a simple but powerful model for studying the mechanism of morphogenesis and its spatiotemporal regulation. Here, through a genome-wide post-embryonic RNAi-feeding screen, we identified 2...

  3. Caenorhabditis elegans Decapping Proteins: Localization and Functional Analysis of Dcp1, Dcp2, and DcpS during Embryogenesis

    OpenAIRE

    Lall, Sabbi; Piano, Fabio; Davis, Richard E.

    2005-01-01

    Though posttranscriptional regulation is important for early embryogenesis, little is understood regarding control of mRNA decay during development. Previous work defined two major pathways by which normal transcripts are degraded in eukaryotes. However it is not known which pathways are key in mRNA decay during early patterning or whether developmental transcripts are turned over via specific pathways. Here we show that Caenorhabditis elegans Dcp2 is localized to distinct foci during embryog...

  4. Enrichment of H3K9me2 on Unsynapsed Chromatin in Caenorhabditis elegans Does Not Target de Novo Sites.

    Science.gov (United States)

    Guo, Yiqing; Yang, Bing; Li, Yini; Xu, Xia; Maine, Eleanor M

    2015-09-01

    Many organisms alter the chromatin state of unsynapsed chromosomes during meiotic prophase, a phenomenon hypothesized to function in maintaining germline integrity. In Caenorhabditis elegans, histone H3 lysine 9 dimethylation (H3K9me2) is detected by immunolabeling as enriched on unsynapsed meiotic chromosomes. Loss of the SET domain protein, MET-2, greatly reduces H3K9me2 abundance and results in germline mortality. Here, we used him-8 mutations to disable X chromosome synapsis and performed a combination of molecular assays to map the sites of H3K9me2 accumulation, evaluate H3K9me2 abundance in germline vs. whole animals, and evaluate the impact of H3K9me2 loss on the germline transcriptome. Our data indicate that H3K9me2 is elevated broadly across the X chromosome and at defined X chromosomal sites in him-8 adults compared with controls. H3K9me2 levels are also elevated to a lesser degree at sites on synapsed chromosomes in him-8 adults compared with controls. These results suggest that MET-2 activity is elevated in him-8 mutants generally as well as targeted preferentially to the unsynapsed X. Abundance of H3K9me2 and other histone H3 modifications is low in germline chromatin compared with whole animals, which may facilitate genome reprogramming during gametogenesis. Loss of H3K9me2 has a subtle impact on the him-8 germline transcriptome, suggesting H3K9me2 may not be a major regulator of developmental gene expression in C. elegans. We hypothesize H3K9me2 may have a structural function critical for germline immortality, and a greater abundance of these marks may be required when a chromosome does not synapse. PMID:26156747

  5. Cranberry extract standardized for proanthocyanidins promotes the immune response of Caenorhabditis elegans to Vibrio cholerae through the p38 MAPK pathway and HSF-1.

    Directory of Open Access Journals (Sweden)

    Jessica Dinh

    Full Text Available Botanicals are rich in bioactive compounds, and some offer numerous beneficial effects to animal and human health when consumed. It is well known that phytochemicals in cranberries have anti-oxidative and antimicrobial activities. Recently, an increasing body of evidence has demonstrated that cranberry phytochemicals may have potential benefits that promote healthy aging. Here, we use Caenorhabditis elegans as a model to show that water-soluble cranberry extract standardized to 4.0% proanthocyanidins (WCESP, a major component of cranberries, can enhance host innate immunity to resist against Vibrio cholerae (V. cholerae; wild type C6706 (O1 El Tor biotype infection. Supplementation of WCESP did not significantly alter the intestinal colonization of V. cholerae, but upregulated the expression of C. elegans innate immune genes, such as clec-46, clec-71, fmo-2, pqn-5 and C23G10.1. Additionally, WCESP treatment did not affect the growth of V. cholerae and expression of the major bacterial virulence genes, and only slightly reduced bacterial colonization within C. elegans intestine. These findings indicate that the major components of WCESP, including proanthocyanidins (PACs, may play an important role in enhancing the host innate immunity. Moreover, we engaged C. elegans mutants and identified that the p38 MAPK signaling, insulin/IGF-1 signaling (IIS, and HSF-1 play pivotal roles in the WCESP-mediated host immune response. Considering the level of conservation between the innate immune pathways of C. elegans and humans, the results of this study suggest that WCESP may also play an immunity-promoting role in higher order organisms.

  6. A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans.

    Science.gov (United States)

    Sarasija, Shaarika; Norman, Kenneth R

    2015-12-01

    Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria. PMID:26500256

  7. Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Denise S Walker

    2009-09-01

    Full Text Available When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP(3R, encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cbeta (EGL-8 and phospholipase Cgamma (PLC-3, which catalyse the production of IP(3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch-induced Ca(2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP(3R in two specific responses mediated by ASH.

  8. The Caenorhabditis elegans protein CTBP-1 defines a new group of THAP domain-containing CtBP corepressors.

    Science.gov (United States)

    Nicholas, Hannah R; Lowry, Jason A; Wu, Tina; Crossley, Merlin

    2008-01-01

    The C-terminal binding proteins (CtBPs) play roles in diverse cellular processes including transcriptional regulation, Golgi membrane fission, and synaptic ribbon formation. In the context of transcriptional regulation, they function as corepressors, interacting with promoter-bound transcription factors and recruiting a large protein complex that contains chromatin-modifying enzymes. We recently described the structure of a Thanatos-associated protein (THAP) domain that is found in a new member of the CtBP family, the Caenorhabditis elegans CTBP-1 protein. We have identified additional THAP domain-containing CtBPs in the nematode, echinoderm, and cephalochordate lineages. The distribution of these lineages within the animal kingdom suggests that the ancestral form of the animal CtBPs may have contained a THAP domain that was subsequently lost in the vertebrate and arthropod lineages. We also provide functional data indicating that CTBP-1 represses gene expression and homodimerizes and interacts with PXDLS-containing partner proteins, three key features of the previously characterized animal CtBPs. CTBP-1 is therefore the founding member of a new subgroup within the CtBP corepressor family, the THAP domain-containing CtBPs. PMID:18005989

  9. Association of the Matrix Attachment Region Recognition Signature with coding regions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Blaxter Mark

    2007-11-01

    Full Text Available Abstract Background Matrix attachment regions (MAR are the sites on genomic DNA that interact with the nuclear matrix. There is increasing evidence for the involvement of MAR in regulation of gene expression. The unsuitability of experimental detection of MAR for genome-wide analyses has led to the development of computational methods of detecting MAR. The MAR recognition signature (MRS has been reported to be associated with a significant fraction of MAR in C. elegans and has also been found in MAR from a wide range of other eukaryotes. However the effectiveness of the MRS in specifically and sensitively identifying MAR remains unresolved. Results Using custom software, we have mapped the occurrence of MRS across the entire C. elegans genome. We find that MRS have a distinctive chromosomal distribution, in which they appear more frequently in the gene-rich chromosome centres than in arms. Comparison to distributions of MRS estimated from chromosomal sequences randomised using mono-, di- tri- and tetra-nucleotide frequency patterns showed that, while MRS are less common in real sequence than would be expected from nucleotide content alone, they are more frequent than would be predicted from short-range nucleotide structure. In comparison to the rest of the genome, MRS frequency was elevated in 5' and 3' UTRs, and striking peaks of average MRS frequency flanked C. elegans coding sequence (CDS. Genes associated with MRS were significantly enriched for receptor activity annotations, but not for expression level or other features. Conclusion Through a genome-wide analysis of the distribution of MRS in C. elegans we have shown that they have a distinctive distribution, particularly in relation to genes. Due to their association with untranslated regions, it is possible that MRS could have a post-transcriptional role in the control of gene expression. A role for MRS in nuclear scaffold attachment is not supported by these analyses.

  10. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Shu, Chengjie; Sun, Lingmei; Zhang, Weiming

    2016-08-01

    The Caenorhabditis elegans model can be used to study Candida albicans virulence and host immunity, as well as to identify plant-derived natural products to use against C. albicans. Thymol is a hydrophobic phenol compound from the aromatic plant thyme. In this study, the in vitro data demonstrated concentration-dependent thymol inhibition of both C. albicans growth and biofilm formation during different developmental phases. With the aid of the C. elegans system, we performed in vivo assays, and our results further showed the ability of thymol to increase C. elegans life span during infection, inhibit C. albicans colony formation in the C. elegans intestine, and increase the expression levels of host antimicrobial genes. Moreover, among the genes that encode the p38 MAPK signaling pathway, mutation of the pmk-1 or sek-1 gene decreased the beneficial effects of thymol's antifungal activity against C. albicans and thymol's maintenance of the innate immune response in nematodes. Western blot data showed the level of phosphorylation of pmk-1 was dramatically decreased against C. albicans. In nematodes, treatment with thymol recovered the dysregulation of pmk-1 and sek-1 gene expressions, the phosphorylation level of PMK-1 caused by C. albicans infection. Therefore, thymol may act, at least in part, through the function of the p38 MAPK signaling pathway to protect against C. albicans infection and maintain the host innate immune response to C. albicans. Our results indicate that the p38 MAPK signaling pathway plays a crucial role in regulating the beneficial effects observed after nematodes infected with C. albicans were treated with thymol. PMID:26783030

  11. Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.

    Science.gov (United States)

    McClendon, T Brooke; Sullivan, Meghan R; Bernstein, Kara A; Yanowitz, Judith L

    2016-05-01

    Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability. PMID:26936927

  12. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  13. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine.

    Science.gov (United States)

    Jahnel, Oliver; Hoffmann, Bernd; Merkel, Rudolf; Bossinger, Olaf; Leube, Rudolf E

    2016-01-01

    It is commonly accepted that intermediate filaments have an important mechanical function. This function relies not only on intrinsic material properties but is also determined by dynamic interactions with other cytoskeletal filament systems, distinct cell adhesion sites, and cellular organelles which are fine-tuned by multiple signaling pathways. While aspects of these properties and processes can be studied in vitro, their full complexity can only be understood in a viable tissue context. Yet, suitable and easily accessible model systems for monitoring tissue mechanics at high precision are rare. We show that the dissected intestine of the genetic model organism Caenorhabditis elegans fulfills this requirement. The 20 intestinal cells, which are arranged in an invariant fashion, are characterized by a dense subapical mesh of intermediate filaments that are attached to the C. elegans apical junction. We present procedures to visualize details of the characteristic intermediate filament-junctional complex arrangement in living animals. We then report on methods to prepare intestines with a fully intact intermediate filament cytoskeleton and detail procedures to assess their viability. A dual micropipette assay is described to measure mechanical properties of the dissected intestine while monitoring the spatial arrangement of the intermediate filament system. Advantages of this approach are (i) the high reproducibility of measurements because of the uniform architecture of the intestine and (ii) the high degree of accessibility allowing not only mechanical manipulation of an intact tissue but also control of culture medium composition and addition of drugs as well as visualization of cell structures. With this method, examination of worms carrying mutations in the intermediate filament system, its interacting partners and its regulators will become feasible. PMID:26795489

  14. Evaluation of head movement periodicity and irregularity during locomotion of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ryuzo eShingai

    2013-03-01

    Full Text Available Caenorhabditis elegans is suitable for studying the nervous system, which controls behavior. C. elegans shows sinusoidal locomotion on an agar plate. The head moves not only sinusoidally but also more complexly, which reflects regulation of the head muscles by the nervous system. The head movement becomes more irregular with senescence. To date, the head movement complexity has not been quantitatively analyzed. We propose two simple methods for evaluation of the head movement regularity on an agar plate using image analysis. The methods calculate metrics that are a measure of how the head end movement is correlated with body movement. In the first method, the length along the trace of the head end on the agar plate between adjacent intersecting points of the head trace and the quasi-midline of the head trace, which was made by sliding an averaging window of 1/2 the body wavelength, was obtained. Histograms of the lengths showed periodic movement of the head and deviation from it. In the second method, the intersections between the trace of the head end and the trace of the 5 (near the pharynx or 50% (the mid-body point from the head end in the centerline length of the worm image were marked. The length of the head trace between adjacent intersections was measured, and a histogram of the lengths was produced. The histogram for the 5% point showed deviation of the head end movement from the movement near the pharynx. The histogram for the 50% point showed deviation of the head movement from the sinusoidal movement of the body center. Application of these methods to wild type and several mutant strains enabled evaluation of their head movement periodicity and irregularity, and revealed a difference in the age-dependence of head movement irregularity between the strains. A set of five parameters obtained from the histograms reliably identifies differences in head movement between strains.

  15. Manipulation of Karyotype in Caenorhabditis elegans Reveals Multiple Inputs Driving Pairwise Chromosome Synapsis During Meiosis.

    Science.gov (United States)

    Roelens, Baptiste; Schvarzstein, Mara; Villeneuve, Anne M

    2015-12-01

    Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination. PMID:26500263

  16. Reliable Screening of Dye Phototoxicity by Using a Caenorhabditis elegans Fast Bioassay.

    Directory of Open Access Journals (Sweden)

    Javier Ignacio Bianchi

    Full Text Available Phototoxicity consists in the capability of certain innocuous molecules to become toxic when subjected to suitable illumination. In order to discover new photoactive drugs or characterize phototoxic pollutants, it would be advantageous to use simple biological tests of phototoxicy. In this work, we present a pilot screening of 37 dyes to test for phototoxic effects in the roundworm Caenorhabditis elegans. Populations of this nematode were treated with different dyes, and subsequently exposed to 30 min of white light. Behavioral outcomes were quantified by recording the global motility using an infrared tracking device (WMicrotracker. Of the tested compounds, 17 dyes were classified as photoactive, being phloxine B, primuline, eosin Y, acridine orange and rose Bengal the most phototoxic. To assess photoactivity after uptake, compounds were retested after washing them out of the medium before light irradiation. Dye uptake into the worms was also analyzed by staining or fluorescence. All the positive drugs were incorporated by animals and produced phototoxic effects after washing. We also tested the stress response being triggered by the treatments through reporter strains. Endoplasmic reticulum stress response (hsp-4::GFP strain was activated by 22% of phototoxic dyes, and mitochondrial stress response (hsp-6::GFP strain was induced by 16% of phototoxic dyes. These results point to a phototoxic perturbation of the protein functionality and an oxidative stress similar to that reported in cell cultures. Our work shows for the first time the feasibility of C. elegans for running phototoxic screenings and underscores its application on photoactive drugs and environmental pollutants assessment.

  17. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    Directory of Open Access Journals (Sweden)

    Sang-Kyu Jung

    Full Text Available Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  18. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  19. Mitochondrial changes in ageing Caenorhabditis elegans--what do we learn from superoxide dismutase knockouts?

    Directory of Open Access Journals (Sweden)

    Jan Gruber

    Full Text Available One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA. The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA. Within the mFRTA, the "vicious cycle" theory further proposes that reactive oxygen species (ROS promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD. Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the "vicious cycle" theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the "vicious cycle" theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed.

  20. Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood.

    Science.gov (United States)

    Shemesh, Netta; Shai, Nadav; Ben-Zvi, Anat

    2013-10-01

    All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC-dependent modulation of proteostasis requires several different signaling pathways, including hsf-1 and daf-16/kri-1/tcer-1, daf-12, daf-9, daf-36, nhr-80, and pha-4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma. PMID:23734734

  1. BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans.

    Science.gov (United States)

    Boulton, Simon J; Martin, Julie S; Polanowska, Jolanta; Hill, David E; Gartner, Anton; Vidal, Marc

    2004-01-01

    Inherited germline mutations in the tumor suppressor gene BRCA1 predispose individuals to early onset breast and ovarian cancer. BRCA1 together with its structurally related partner BARD1 is required for homologous recombination and DNA double-strand break repair, but how they perform these functions remains elusive. As part of a comprehensive search for DNA repair genes in C. elegans, we identified a BARD1 ortholog. In protein interaction screens, Ce-BRD-1 was found to interact with components of the sumoylation pathway, the TACC domain protein TAC-1, and most importantly, a homolog of mammalian BRCA1. We show that animals depleted for either Ce-brc-1 or Ce-brd-1 display similar abnormalities, including a high incidence of males, elevated levels of p53-dependent germ cell death before and after irradiation, and impaired progeny survival and chromosome fragmentation after irradiation. Furthermore, depletion of ubc-9 and tac-1 leads to radiation sensitivity and a high incidence of males, respectively, potentially linking these genes to the C. elegans BRCA1 pathway. Our findings support a shared role for Ce-BRC-1 and Ce-BRD-1 in C. elegans DNA repair processes, and this role will permit studies of the BRCA1 pathway in an organism amenable to rapid genetic and biochemical analysis. PMID:14711411

  2. Cell cycle checkpoints in Caenorhabditis elegans: the 14-3-3 gene par-5 is required for germline development and DNA damage response / Checkpoints del ciclo celular en Caenorhabditis elegans: el gen 14-3-3, par-5, es necesario para el desarrollo y respuesta al daño genómico de la línea germinal

    OpenAIRE

    Aristizábal Corrales, David

    2012-01-01

    [spa] Las proteínas 14-3-3 han sido ampliamente estudiadas desde levadura hasta mamíferos y han sido asociadas con múltiples roles en procesos como ciclo celular, apoptosis y la respuesta al estrés. Así mismo estas proteínas se han visto involucradas en enfermedades neurodegenerativas y cáncer. De hecho, las proteínas 14-3-3 han sido propuestas como posibles agentes terapéuticos en el tratamiento contra el cáncer. En mamíferos existen 7 genes que codifican para proteínas 14-3-3, mientras en C...

  3. Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family

    Directory of Open Access Journals (Sweden)

    Vinogradov Serge

    2007-10-01

    Full Text Available Abstract Background The emergence of high throughput genome sequencing facilities and powerful high performance bioinformatic tools has highlighted hitherto unexpected wide occurrence of globins in the three kingdoms of life. In silico analysis of the genome of C. elegans identified 33 putative globin genes. It remains a mystery why this tiny animal might need so many globins. As an inroad to understanding this complexity we initiated a structural and functional analysis of the globin family in C. elegans. Results All 33 C. elegans putative globin genes are transcribed. The translated sequences have the essential signatures of single domain bona fide globins, or they contain a distinct globin domain that is part of a larger protein. All globin domains can be aligned so as to fit the globin fold, but internal interhelical and N- and C-terminal extensions and a variety of amino acid substitutions generate much structural diversity among the globins of C. elegans. Likewise, the encoding genes lack a conserved pattern of intron insertion positioning. We analyze the expression profiles of the globins during the progression of the life cycle, and we find that distinct subsets of globins are induced, or repressed, in wild-type dauers and in daf-2(e1370/insulin-receptor mutant adults, although these animals share several physiological features including resistance to elevated temperature, oxidative stress and hypoxic death. Several globin genes are upregulated following oxygen deprivation and we find that HIF-1 and DAF-2 each are required for this response. Our data indicate that the DAF-2 regulated transcription factor DAF-16/FOXO positively modulates hif-1 transcription under anoxia but opposes expression of the HIF-1 responsive globin genes itself. In contrast, the canonical globin of C. elegans, ZK637.13, is not responsive to anoxia. Reduced DAF-2 signaling leads to enhanced transcription of this globin and DAF-16 is required for this effect

  4. CPNA-1, a copine domain protein, is located at integrin adhesion sites and is required for myofilament stability in Caenorhabditis elegans.

    Science.gov (United States)

    Warner, Adam; Xiong, Ge; Qadota, Hiroshi; Rogalski, Teresa; Vogl, A Wayne; Moerman, Donald G; Benian, Guy M

    2013-03-01

    We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an N-terminal predicted transmembrane domain and a C-terminal copine domain and binds to the M-line/dense body protein PAT-6 (actopaxin) and the M-line proteins UNC-89 (obscurin), LIM-9 (FHL), SCPL-1 (SCP), and UNC-96. Proper CPNA-1 localization is dependent upon PAT-6 in embryonic and adult muscle. Nematodes lacking cpna-1 arrest elongation at the twofold stage of embryogenesis and display disruption of the myofilament lattice. The thick-filament component myosin heavy chain MYO-3 and the M-line component UNC-89 are initially localized properly in cpna-1-null embryos. However, in these embryos, when contraction begins, MYO-3 and UNC-89 become mislocalized into large foci and animals die. We propose that CPNA-1 acts as a linker between an integrin-associated protein, PAT-6, and membrane-distal components of integrin adhesion complexes in the muscle of C. elegans. PMID:23283987

  5. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Asthana, Jyotsna; Yadav, Deepti; Pant, Aakanksha; Yadav, A K; Gupta, M M; Pandey, Rakesh

    2016-09-01

    The advancements in the field of gerontology have unraveled the signaling pathways that regulate life span, suggesting that it might be feasible to modulate aging. To this end, we isolated a novel phytomolecule Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside (ARX) from Premna integrifolia and evaluated its antiaging effects in Caenorhabditis elegans The spectral data analysis revealed the occurrence of a new compound ARX. Out of the three tested pharmacological doses of ARX, viz. 5, 25, and 50 µM, the 25-µM dose was able to extend life span in C. elegans by more than 39%. The present study suggests that ARX affects bacterial metabolism, which in turn leads to dietary restriction (DR)-like effects in the worms. The effect of ARX on worms with mutations (mev-1, eat-2, sir-2.1, skn-1, daf-16, and hsf-1) indicates that ARX-mediated life-span extension involves mechanisms associated with DR and maintenance of cellular redox homeostasis. This study is the first time report on longevity-promoting activity of ARX in C. elegans mediated by stress and DR-regulating genes. This novel phytomolecule can contribute in designing therapeutics for managing aging and age-related diseases. PMID:26433219

  6. The novel hydroxylamine derivative NG-094 suppresses polyglutamine protein toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Haldimann, Pierre; Muriset, Maude; Vígh, László; Goloubinoff, Pierre

    2011-05-27

    Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases. PMID:21471208

  7. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans.

    Science.gov (United States)

    Narayan, Anusha; Venkatachalam, Vivek; Durak, Omer; Reilly, Douglas K; Bose, Neelanjan; Schroeder, Frank C; Samuel, Aravinthan D T; Srinivasan, Jagan; Sternberg, Paul W

    2016-03-01

    Animals find mates and food, and avoid predators, by navigating to regions within a favorable range of available sensory cues. How are these ranges set and recognized? Here we show that male Caenorhabditis elegans exhibit strong concentration preferences for sex-specific small molecule cues secreted by hermaphrodites, and that these preferences emerge from the collective dynamics of a single male-specific class of neurons, the cephalic sensory neurons (CEMs). Within a single worm, CEM responses are dissimilar, not determined by anatomical classification and can be excitatory or inhibitory. Response kinetics vary by concentration, suggesting a mechanism for establishing preferences. CEM responses are enhanced in the absence of synaptic transmission, and worms with only one intact CEM show nonpreferential attraction to all concentrations of ascaroside for which CEM is the primary sensor, suggesting that synaptic modulation of CEM responses is necessary for establishing preferences. A heterogeneous concentration-dependent sensory representation thus appears to allow a single neural class to set behavioral preferences and recognize ranges of sensory cues. PMID:26903633

  8. Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans.

    Science.gov (United States)

    Wei, Yuehua; Kenyon, Cynthia

    2016-05-17

    In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H2S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H2S and ROS. These kri-1-dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H2S and, remarkably, kri-1-dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1-dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity. PMID:27140632

  9. Long astral microtubules and RACK-1 stabilize polarity domains during maintenance phase in Caenorhabditis elegans embryos.

    Directory of Open Access Journals (Sweden)

    Erkang Ai

    Full Text Available Cell polarity is a very well conserved process important for cell differentiation, cell migration, and embryonic development. After the establishment of distinct cortical domains, polarity cues have to be stabilized and maintained within a fluid and dynamic membrane to achieve proper cell asymmetry. Microtubules have long been thought to deliver the signals required to polarize a cell. While previous studies suggest that microtubules play a key role in the establishment of polarity, the requirement of microtubules during maintenance phase remains unclear. In this study, we show that depletion of Caenorhabditis elegans RACK-1, which leads to short astral microtubules during prometaphase, specifically affects maintenance of cortical PAR domains and Dynamin localization. We then investigated the consequence of knocking down other factors that also abolish astral microtubule elongation during polarity maintenance phase. We found a correlation between short astral microtubules and the instability of PAR-6 and PAR-2 domains during maintenance phase. Our data support a necessary role for astral microtubules in the maintenance phase of cell polarity.

  10. Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae.

    Directory of Open Access Journals (Sweden)

    Paola V Castro

    Full Text Available The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%; higher concentrations to 68 mM (0.4% did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.

  11. Multigenerational Effects of Heavy Metals on Feeding, Growth, Initial Reproduction and Antioxidants in Caenorhabditis elegans.

    Science.gov (United States)

    Yu, ZhenYang; Zhang, Jing; Yin, DaQiang

    2016-01-01

    Earlier studies showed that toxicities of excessive metals lasted over generations. Yet, these studies mainly employed one-generation exposure, and the effects of multigenerational challenges need further studies. Presently, Caenorhabditis elegans were exposed to cadmium, copper, lead and zinc for four consecutive generations (G1 to G4) at environmental concentrations. The feeding, growth, initial reproduction, superoxide dismutase (SOD) and catalase (CAT) were determined. All data were represented in the percentage of that in control (POC), and POC in the control was normalized to 100%. In G1 and G2, the POC values in feeding, growth and initial reproduction were generally within 10% of the control (100%), indicating non-significant effects. The POC values in SOD and CAT were significantly higher than 100%, showing stimulatory effects. In G3 and G4, the POC values in feeding, growth and initial reproduction were significantly lower than 100%, showing inhibitory effects which were more severe in G4 than in G3. Meanwhile, SOD and CAT continuously showed stimulatory effects, and the stimulatory effects on SOD increased from G1 to G4. The effects with multigenerational challenges were different from those in one-generation exposure. The effects in later generations demonstrated the importance of multigenerational challenges in judging long-term influences of metals. PMID:27116222

  12. Multigenerational Effects of Heavy Metals on Feeding, Growth, Initial Reproduction and Antioxidants in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    ZhenYang Yu

    Full Text Available Earlier studies showed that toxicities of excessive metals lasted over generations. Yet, these studies mainly employed one-generation exposure, and the effects of multigenerational challenges need further studies. Presently, Caenorhabditis elegans were exposed to cadmium, copper, lead and zinc for four consecutive generations (G1 to G4 at environmental concentrations. The feeding, growth, initial reproduction, superoxide dismutase (SOD and catalase (CAT were determined. All data were represented in the percentage of that in control (POC, and POC in the control was normalized to 100%. In G1 and G2, the POC values in feeding, growth and initial reproduction were generally within 10% of the control (100%, indicating non-significant effects. The POC values in SOD and CAT were significantly higher than 100%, showing stimulatory effects. In G3 and G4, the POC values in feeding, growth and initial reproduction were significantly lower than 100%, showing inhibitory effects which were more severe in G4 than in G3. Meanwhile, SOD and CAT continuously showed stimulatory effects, and the stimulatory effects on SOD increased from G1 to G4. The effects with multigenerational challenges were different from those in one-generation exposure. The effects in later generations demonstrated the importance of multigenerational challenges in judging long-term influences of metals.

  13. The Mitochondrial Unfolded Protein Response Protects against Anoxia in Caenorhabditis elegans

    Science.gov (United States)

    Peña, Salvador; Sherman, Teresa; Brookes, Paul S.; Nehrke, Keith

    2016-01-01

    The mitochondrial unfolded protein response (UPRmt) is a surveillance pathway that defends proteostasis in the “powerhouse” of the cell. Activation of the UPRmt protects against stresses imposed by reactive oxygen species, respiratory chain deficits, and pathologic bacteria. Consistent with the UPRmt’s role in adaption, we found that either its pharmacological or genetic activation by ethidium bromide (EtBr) or RNAi of the mitochondrial AAA-protease spg-7 was sufficient to reduce death in an anoxia-based Caenorhabditis elegans model of ischemia-reperfusion injury. The UPRmt-specific transcription factor atfs-1 was necessary for protection and atfs-1 gain-of-function (gf) mutants were endogenously protected from both death and dysfunction. Neurons exhibited less axonal degeneration following non-lethal anoxia-reperfusion (A-R) when the UPRmt was pre-activated, and consistent with the concept of mitochondrial stress leading to cell non-autonomous (ie. “remote”) effects, we found that restricted activation of the UPRmt in neurons decreased A-R death. However, expression of the atfs-1(gf) mutant in neurons, which resulted in a robust activation of a neuronal UPRmt, did not upregulate the UPRmt in distal tissues, nor did it protect the worms from A-R toxicity. These findings suggest that remote signaling requires additional component(s) acting downstream of de facto mitochondrial stress. PMID:27459203

  14. Multiplexed measurement of protein diffusion in Caenorhabditis elegans embryos with SPIM-FCS

    Science.gov (United States)

    Struntz, Philipp; Weiss, Matthias

    2016-02-01

    Quantifying the diffusion behavior of proteins in different environments, e.g. on cellular membranes, is a key step in uncovering the vital action of protein networks in living organisms. While several established techniques for local diffusion measurements exist, the life sciences are currently in need of a multiplexed, i.e. spatially parallelized, data acquisition that allows for obtaining diffusion maps with high spatiotemporal resolution. Following this demand, the combination of camera-based single-plane illumination microscopy (SPIM) and fluorescence correlation spectroscopy (FCS) has recently emerged as a promising approach. So far, SPIM-FCS has mainly been used to assess the diffusion of soluble particles and proteins in vitro and in culture cells, but due to a particularly low photobleaching and -toxicity the method is also well applicable to developmental organisms. Here, we have probed the performance of SPIM-FCS on an established developmental model organism, the small nematode Caenorhabditis elegans. In particular, we have quantified the diffusion of the peripheral membrane protein PLC1δ 1 in the embryo’s cytoplasm and on the plasma membrane. As a result, we were able to derive diffusion maps of PLC1δ 1 in both compartments in multiple individuals, showing the spatially varying diffusion coefficients across the embryo. Our data also report on the dissociation kinetics of PLC1δ 1 from the plasma membrane, hence underlining that SPIM-FCS can be used to explore key features of peripheral membrane proteins in fragile developmental model organisms.

  15. A multilayer protein-protein interaction network analysis of different life stages in Caenorhabditis elegans

    Science.gov (United States)

    Shinde, Pramod; Jalan, Sarika

    2015-12-01

    Molecular networks act as the backbone of cellular activities, providing an excellent opportunity to understand the developmental changes in an organism. While network data usually constitute only stationary network graphs, constructing a multilayer PPI network may provide clues to the particular developmental role at each stage of life and may unravel the importance of these developmental changes. The developmental biology model of Caenorhabditis elegans analyzed here provides a ripe platform to understand the patterns of evolution during the life stages of an organism. In the present study, the widely studied network properties exhibit overall similar statistics for all the PPI layers. Further, the analysis of the degree-degree correlation and spectral properties not only reveals crucial differences in each PPI layer but also indicates the presence of the varying complexity among them. The PPI layer of the nematode life stage exhibits various network properties different to the rest of the PPI layers, indicating the specific role of cellular diversity and developmental transitions at this stage. The framework presented here provides a direction to explore and understand the developmental changes occurring in the different life stages of an organism.

  16. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage.

    Science.gov (United States)

    Guo, Xiaoying; Li, Qingqing; Shi, Jue; Shi, Liulin; Li, Buqing; Xu, An; Zhao, Guoping; Wu, Lijun

    2016-07-01

    Perfluorooctane sulfonate (PFOS), a common persistent organic pollutant, has been reported to show potential developmental toxicity in many animal studies. However, little was known about its effects on reproductive tissues, especially in the germ line. In the present study, Caenorhabditis elegans was used as an in vivo experimental model to study the developmental toxicity caused by PFOS exposure, especially in the gonads. Our results showed that PFOS exposure significantly retarded gonadal development, as shown by the increased number of worms that remained in the larval stages after hatched L1-stage larvae were exposed to PFOS for 72 h. Investigation of germ line proliferation following PFOS exposure showed that the number of total germ cells reduced in a dose-dependent manner when L1-stage larvae were exposed to 0-25.0 μM PFOS. PFOS exposure induced transient mitotic cell cycle arrest and apoptosis in the germ line. Quantification of DNA damage in proliferating germ cells and production of reactive oxygen species (ROS) showed that distinct foci of HUS-1:GFP and ROS significantly increased in the PFOS-treated groups, whereas the decrease in mitotic germ cell number and the enhanced apoptosis induced by PFOS exposure were effectively rescued upon addition of dimethyl sulfoxide (DMSO) and mannitol (MNT). These results suggested that ROS-induced DNA damage might play a pivotal role in the impairment of gonadal development indicated by the reduction in total germ cells, transient mitotic cell cycle arrest, and apoptosis. PMID:27108369

  17. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sérgio M Pinto

    Full Text Available The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  18. Interstrain crosses enhance excision of Tc1 transposable elements in Caenorhabditis elegans.

    Science.gov (United States)

    Mori, I; Moerman, D G; Waterston, R H

    1990-01-01

    We report here an unusual activation of the Tc1 transposable element system in Caenorhabditis elegans. Germline Tc1 activity, as measured by reversion of unc-22::Tc1 alleles, is elevated 50- to 100-fold by certain crosses. For example, unc-22::Tc1 reversion is 1 x 10(-3) in a mut-6 IV strain and less than 1 x 10(-6) in a non-mutator strain, but in the unc-22::Tc1 progeny of a cross between mut-6 hermaphrodites and non-mutator males, reversion is 10(-1). The reciprocal cross does not induce this enhancement of reversion. Results similar to those for mut-6 were obtained using a mut-5 II strain. The mutator hermaphrodite by nonmutator male cross per se is not required for the enhancement of reversion, as mut-5 hermaphrodites x mut-6/+ males also induce unc-22 revertants at an elevated frequency. This reversion enhancement appears to depend on a maternal component inherited from a mutator strain, suggesting that the regulation of Tc1 activity may be complex. PMID:2157953

  19. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans.

    Science.gov (United States)

    Xu, Lu; Choi, Sunju; Xie, Yusu; Sze, Ji Ying

    2015-09-01

    Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. PMID:26402365

  20. Detection of Autophagy in Caenorhabditis elegans by Western Blotting Analysis of LGG-1.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-01-01

    A common way to measure the induction of autophagy in yeast and mammalian cells is to compare the amount of Atg8/LC3-I with that of Atg8-PE/LC3-II by using western blot analysis. This is because changes in the amount of LC3-II correlate closely with changes in the number of autophagosomes present in cells. Atg8/LC3 is initially synthesized as an unprocessed form, which is proteolytically processed to form Atg8/LC3-I, and then this is modified into the phosphatidylethanolamine (PE)-conjugated Atg8-PE/LC3-II form. Atg8/LC3-II is membrane bound, whereas Atg8-PE/LC3-I is cytosolic. By associating with both the inner and outer membranes of the autophagosome, Atg8-PE/LC3-II is the only autophagy reporter that is reliably associated with completed autophagosomes. In the nematode Caenorhabditis elegans, the ortholog of Atg8/LC3 is LGG-1. Here, we discuss how changes in the levels of LGG-1-II (and the paralog LGG-2) protein can, with appropriate controls, be used to monitor autophagy activity in nematodes and present a protocol for monitoring changes in the protein levels of different forms of LGG-1 by western blotting. PMID:26832685