WorldWideScience

Sample records for cadmium mercury oxides

  1. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  2. Mercury Cadmium Selenide for Infrared Detection

    Science.gov (United States)

    2013-06-01

    were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell

  3. Determination of cadmium, lead and mercury residual levels in meat ...

    African Journals Online (AJOL)

    Determination of cadmium, lead and mercury residual levels in meat of canned light tuna ( Katsuwonus pelamis and Thunnus albacares ) and fresh little tunny ( Euthynnus alletteratus ) in Libya. ... Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety.

  4. Mercury, arsenic and cadmium in the unfried and fried fish

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1978-01-01

    Determination of mercury, arsenic and cadmium in unfried and fried fish samples has been carried out by neutron activation followed by chemical separation to remove the interfering activies of copper, zinc etc. This paper presents results of finding on losses of mercury, arsenic and cadmium in the unfried and fried fish. (author)

  5. Study on damage of DNA in mice induced by mercury cadmium and/or lead

    International Nuclear Information System (INIS)

    Hu Xiaopan; Zhou Jianhua; Shi Xijing; Yan Liping

    2004-01-01

    Objective: To explore the joint injury actions of mercury, cadmium and/or lead on DNA in peripheral blood lymphocytes of mice. Methods: The blood specimens were obtained from mice at the 2 day after the peritoneal injections. DNA damages were determined by single cell gel electrophoresis (SCGE) and 3 H-TdR incorporation. Results: Acquired by SCGE technique, tail movement of DNA in mercury-cadmium-lead group was significantly greater than that in the single exposure group, the difference was significant too between mercury-cadmium group and cadmium group, cadmium-lead group and cadmium group. The results of 3 H-TdR incorporation showed: the values of DPM in mercury-cadmium group and cadmium-lead group were lower than that in the single exposure group and the value of DPM lowered more significantly after exposure to mercury-cadmium-lead. Conclusion: The combined effects of mercury, cadmium, lead on DNA damage are more significant. (author)

  6. Lead, mercury, and cadmium in breast milk

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2015-10-01

    Full Text Available Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in order to meet increased calcium needs of the fetus in pregnant women and for the calcium needs in human milk during lactation. Human fetus and infants are susceptible to heavy metal toxicity passing through placenta and breastmilk due to rapid growth and development of organs and tissues, especially central nervous system. However most of the damage is already done by the time the infant is born. Intrauterine lead exposure can cause growth retardation, cognitive dysfunction, low IQ scores on ability tests, and low performance in school. Biological samples, such as umbilical cord blood and breast milk, and less commonly infant hair, are used for biomonitoring of intra-uterine exposure to these toxic chemicals. Although toxic metals and other pollutants may be excreted into breast milk, their effects are unknown and this topic is subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. In fact, the species-specific components present in breast milk protect infants against infections; promote immune and neurologic system development; and may decrease the risk of disease, including allergies, obesity, insulin-dependent diabetes mellitus, inflammatory bowel disease, and sudden infant death syndrome. Breastfeeding also facilitates maternal-infant attachment. The potential risk of environmental contaminants that can be transferred from

  7. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  8. Mercury and cadmium concentrations in milk in Puerto Rico

    International Nuclear Information System (INIS)

    Chellapan, S.; Pedersen, K.B.; Plaza, H.

    1976-01-01

    Milk was collected over a four-month period from three representative sectors of Puerto Rico. Instrumental neutron activation analysis (INAA) performed on the samples showed that the mercury concentration was slightly higher than safe upper limit set by the World Health Organization on food products. The values reported here for mercury concentrations are very similar to those found for dairy products in the Toronto area of Canada in 1970, but considerably higher than some reported from the United States in 1964. Mean cadmium concentrations were found to be higher than the values reported in the literature. Some variations in cadmium concentrations were observed areawide as well as a function of time. MURTHY et al reported the cadmium concentration in milk to be 0.018 to 0.03 ppm in the United States in the year 1967; this is about one sixth of the concentrations found in this study for Puerto Rico. In addition to INAA atomic absorption photospectrometry was used on a smaller number of samples to verify the concentration levels of cadmium. For this determination nine milk samples and two blanks were analyzed. The concentrations were found to vary between 0.01 and 0.06 ppm. These values are in better agreement with the values reported for the United States than are the ones obtained from using INAA; however, their spread is much greater. (T.G.)

  9. Cadmium and mercury exposure over time in Swedish children

    Energy Technology Data Exchange (ETDEWEB)

    Lundh, T., E-mail: Thomas.Lundh@med.lu.se [Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE−22185 Lund (Sweden); Axmon, A., E-mail: Anna.Axmon@med.lu.se [Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE−22185 Lund (Sweden); Skerfving, S., E-mail: Staffan.Skerfving@med.lu.se [Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE−22185 Lund (Sweden); Broberg, K., E-mail: Karin.Broberg@ki.se [Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE−22185 Lund (Sweden); Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77 Stockholm (Sweden)

    2016-10-15

    Purpose: Knowledge about changes in exposure to toxic metals over time remains very sparse, in particular for children, the most vulnerable group. Here, we assessed whether a reduction in environmental pollution with cadmium (Cd) and mercury (Hg) caused a change in exposure over time. In total, 1257 children (age 4–9) in two towns in Sweden were sampled once in 1986–2013. Blood concentrations of Cd (b-Cd; n=1120) and Hg (b-Hg; n=560) were determined. Results: The median b-Cd was 0.10 (geometric mean 0.10; range 0.010–0.61) μg/L and b-Hg was 0.91 (geometric mean 0.83; range 0.021–8.2) μg/L. Children living close to a smelter had higher b-Cd and b-Hg than those in urban and rural areas. There was no sex difference in b-Cd or b-Hg, and b-Cd and b-Hg showed no significant accumulation by age. b-Cd decreased only slightly (0.7% per year, p<0.001) over the study period. In contrast, b-Hg did show a clear decrease over the study period (3% per year, p<0.001). Conclusions: The exposure to Cd was very low but still might increase the risk of disease later in life. Moreover, b-Cd only showed a minor decrease, indicating that Cd pollution should be further restricted. b-Hg was relatively low and decreasing, probably because of reduced use of dental amalgam and lower Hg intake from fish. The b-Cd and b-Hg levels decreased much less than the levels of lead in the blood as previously found in the same children. - Highlights: • There are few studies of time trends for exposure to toxic metals, except for lead. • 1986–2013 we studied blood levels of cadmium and mercury in 1257 Swedish children. • The median blood concentration of cadmium was 0.10 μg/L, of mercury 0.83 μg/L. • Cadmium perhaps decreased by 0.7% per year, mercury by 3% per year. • Cadmium accumulation may result in toxic levels in elderly women.

  10. Survey of mercury, cadmium and lead content of household batteries

    Energy Technology Data Exchange (ETDEWEB)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  11. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  12. Isolation and characterization of chromium, mercury and cadmium resistant bacteria

    International Nuclear Information System (INIS)

    Bhatti, K.P.; Noor, A.R.

    2009-01-01

    Ten heavy metal resistant strains were isolated from samples of soil, water and rhizosphere of plant Cynadon Dectylon of Kasur sector. Among these bacteria, four strains Cr-l, Cr- 2, Cr-3 and Cr-4 were showed the resistant to chromium up to 300 mg/L, two strains Cd-1 and Cd-2 resisted cadmium up to 100 mg/L, two strains Cd-3 and Cd-4 resisted cadmium up to 50 mg/L and two strains (Hg-l, Hg-2) were observed resistant to mercury up to 100 mg/L. Their morphological and colonial characteristics were investigated. The families of isolated bacteria are reported i.e. Azotobacteriaceae(C r-l), Enterobacteriacea(eC r-2, Cr-3, Cr-4, Hg-2) and Neisseriaceae(Cd-I, Cd-2, Cd-3, Cd-4, Hg-2). (author)

  13. Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2012-01-01

    Full Text Available Arsenic, cadmium, lead, and mercury exposures are ubiquitous. These toxic elements have no physiological benefits, engendering interest in minimizing body burden. The physiological process of sweating has long been regarded as “cleansing” and of low risk. Reports of toxicant levels in sweat were sought in Medline, Embase, Toxline, Biosis, and AMED as well as reference lists and grey literature, from inception to March 22, 2011. Of 122 records identified, 24 were included in evidence synthesis. Populations, and sweat collection methods and concentrations varied widely. In individuals with higher exposure or body burden, sweat generally exceeded plasma or urine concentrations, and dermal could match or surpass urinary daily excretion. Arsenic dermal excretion was severalfold higher in arsenic-exposed individuals than in unexposed controls. Cadmium was more concentrated in sweat than in blood plasma. Sweat lead was associated with high-molecular-weight molecules, and in an interventional study, levels were higher with endurance compared with intensive exercise. Mercury levels normalized with repeated saunas in a case report. Sweating deserves consideration for toxic element detoxification. Research including appropriately sized trials is needed to establish safe, effective therapeutic protocols.

  14. Cadmium, mercury, zinc and selenium in ringed seals (Phoca hispida from Greenland and Svalbard

    Directory of Open Access Journals (Sweden)

    Run Dietz

    1998-06-01

    Full Text Available Muscle, liver, and kidney tissue from 456 ringed seals (Phoca hispida from eight areas in Greenland were analysed for cadmium, mercury, zinc and selenium. In general, cadmium concentrations were high in liver and kidney tissue, with geometric means of 7.79 and 33.5 μg/g (all data on wet weight basis, respectively. Muscle levels were considerably lower, at 0.067 μg/g. The concentration of mercury was relatively high in liver tissue with a geometric mean of 2.59 μg/g. Muscle and kidney mercury levels were somewhat lower, with geometric means of 0.210 and 0.956 μg/g, respectively. Cadmium and mercury levels were strongly dependent upon age and sampling area, as well as the interaction combinations, indicating that the accumulation of cadmium and mercury varies with age and area. Mercury accumulated in all three tissues throughout life, whereas cadmium in liver and kidneys peaked in the age group 5-10 years old where after it dropped significantly. Cadmium levels showed a tendency towards higher concentrations in the northern municipalities, which may be due to the higher cadmium levels in certain prey items in the northern areas. Mercury levels were higher in seals from East Greenland compared to West Greenland. Variations in feeding habits probably explain some of the differences in levels of cadmium and mercury in ringed seals from different geographical areas. Cadmium concentrations were correlated (both pairwise and partial in the three organs. This was true for mercury as well, whereas only half of the combinations were significant for zinc and selenium. Cadmium was strongly correlated to mercury in all three tissues and zinc only in liver and kidneys. Mercury was only correlated to selenium in liver and not to zinc. High concentrations of cadmium were found in the bile from 58 ringed seals, and were about 10-fold higher than in muscle. The concentration of mercury in bile was relatively low, being only one third of the

  15. Cadmium, lead and mercury exposure in non smoking pregnant women

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Callan, A.C.; Ramalingam, M.; Boyce, M.; Heyworth, J.; McCafferty, P.; Odland, J.Ø.

    2013-01-01

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  16. Cadmium, lead and mercury exposure in non smoking pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Callan, A. C.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J. Ø. [Department of Community Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2013-10-15

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  17. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  18. Cadmium, mercury and selenium concentrations in mink (Mustela vison) from Yukon, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gamberg, Mary [Gamberg Consulting, Box 10460, Whitehorse, Yukon, Y1A 7A1 (Canada)]. E-mail: mary.gamberg@northwestel.net; Boila, Gail [Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6 (Canada); Stern, Gary [Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6 (Canada); Roach, Patrick [Department of Indian and Northern Affairs, Suite 300, 300 Main Street, Whitehorse, Yukon, Y1A 2B5 (Canada)

    2005-12-01

    Mercury (total and methyl), cadmium and selenium concentrations were measured in liver, kidney and brain tissue from mink trapped from the Yukon Territory from 2001-2002. None of these metals was found at levels of toxicological concern. Total mercury averaged 0.66, 0.92 and 0.22 {mu}g g{sup -1} in mink kidney, liver and brain tissue respectively, while methyl mercury averaged 0.77, 0.85 and 0.21 {mu}g g{sup -1} in the same tissues. Selenium averaged 2.07, 1.40 and 0.39 {mu}g g{sup -1} in mink kidney, liver and brain tissue, while cadmium was only measured in kidneys and averaged 0.22 {mu}g g{sup -1}. All element concentrations are presented on a wet weight basis. Concentrations of total mercury in all tissues were significantly higher in female than male mink, possibly reflecting proportionally greater food consumption by the smaller females. Total mercury concentrations were inversely related to the proportion of mercury present as methylmercury, and positively related to concentrations of selenium, consistent with increasing demethylation of methylmercury, and the formation of mercuric selenide as total concentrations of mercury increased. This relationship was seen most strongly in mink liver, less so in kidneys and not at all in brains where most of the mercury was maintained in the methyl form. There did not appear to be any geographical areas in which mink had obviously higher concentrations of mercury, and there was frequently a relatively large range of mercury levels found in mink from a given trapline. Mink diet may be a factor in this variation. Local environmental levels of cadmium were not reflected in cadmium concentrations in mink tissues. Mercury, cadmium and selenium do not appear to constitute environmental hazards to mink in the Yukon.

  19. Cadmium, mercury and selenium concentrations in mink (Mustela vison) from Yukon, Canada

    International Nuclear Information System (INIS)

    Gamberg, Mary; Boila, Gail; Stern, Gary; Roach, Patrick

    2005-01-01

    Mercury (total and methyl), cadmium and selenium concentrations were measured in liver, kidney and brain tissue from mink trapped from the Yukon Territory from 2001-2002. None of these metals was found at levels of toxicological concern. Total mercury averaged 0.66, 0.92 and 0.22 μg g -1 in mink kidney, liver and brain tissue respectively, while methyl mercury averaged 0.77, 0.85 and 0.21 μg g -1 in the same tissues. Selenium averaged 2.07, 1.40 and 0.39 μg g -1 in mink kidney, liver and brain tissue, while cadmium was only measured in kidneys and averaged 0.22 μg g -1 . All element concentrations are presented on a wet weight basis. Concentrations of total mercury in all tissues were significantly higher in female than male mink, possibly reflecting proportionally greater food consumption by the smaller females. Total mercury concentrations were inversely related to the proportion of mercury present as methylmercury, and positively related to concentrations of selenium, consistent with increasing demethylation of methylmercury, and the formation of mercuric selenide as total concentrations of mercury increased. This relationship was seen most strongly in mink liver, less so in kidneys and not at all in brains where most of the mercury was maintained in the methyl form. There did not appear to be any geographical areas in which mink had obviously higher concentrations of mercury, and there was frequently a relatively large range of mercury levels found in mink from a given trapline. Mink diet may be a factor in this variation. Local environmental levels of cadmium were not reflected in cadmium concentrations in mink tissues. Mercury, cadmium and selenium do not appear to constitute environmental hazards to mink in the Yukon

  20. Selective extraction of trace mercury and cadmium from drinking water sources.

    Science.gov (United States)

    Zhao, Xuan; Zhao, Gang; Wang, Jianlong; Yun, Guichun

    2005-01-01

    In this paper, a new alternative method, i.e., selective extraction by weakly basic anion exchange resin, has been developed for the removal of trace cadmium and mercury ions from drinking water sources. The mechanism of heavy metal removal is based on selective extraction as the results of LEWIS-base-acid interactions. Transfer of trace mercury species from liquid to resin phase coincides well with the performance of film diffusion. The results demonstrated that the presence of chlorine has a negligible influence on the removal of mercury. However, humic acids can strongly bind mercury by the formation of complex compounds and therefore become the obstacle in the diffusion progress. At neutral or base pH, the resin material exhibits the favorable uptake of heavy metals. In filter experiments, the studied resin material offers favorable properties in the selective extraction of trace mercury and cadmium.

  1. Mercury, cadmium and arsenic contents of calcium dietary supplements.

    Science.gov (United States)

    Kim, Meehye

    2004-08-01

    The cadmium (Cd) and arsenic (As) contents of calcium (Ca) supplements available on the Korean market were determined by a graphite furnace atomic absorption spectrometer using Zeeman background correction and peak area mode after microwave digestion. The mercury (Hg) content of the supplements was measured using an Hg analyser. Recoveries ranged from 92 to 98% for Hg, Cd and As analyses. Fifty-five brands of Ca supplements were classified into seven categories based on the major composite: bone, milk, oyster/clam shell, egg shell, algae, shark cartilage and chelated. The means of Hg, Cd and As in Ca supplements were 0.01, 0.02, and 0.48 mg kg(-1), respectively. Ca supplements made of shark cartilage had the highest means of Hg (0.06 mg kg(-1)) and Cd (0.13 mg kg(-1)). The mean daily intakes of Hg and Cd from the supplement were estimated as about 0.1-0.2 microg, with both contributing less than 0.4% of provisional tolerable daily intakes set by the Food and Agricultural Organization/World Health Organization Joint Food Additive and Contaminants Committee.

  2. The determination of levels of mercury, cadmium and lead in water samples from Naivasha area, Kenya

    International Nuclear Information System (INIS)

    Muigai, P.G.; Kamau, G.N.; Kinyua, A.M.

    1995-01-01

    The analysis of mercury, cadmium and lead in water samples from different environments (Lake Naivasha, River Malewa boreholes and Olkaria geothermal wells) in Naivasha region and their possible origins are reported. The levels of mercury and lead in the water samples were above the maximum permissible limits of 0.005 mg/1 and 0.1 mg/1 respectively, as stipulated by the WHO. On the other hand, 83.3% of the samples had cadmium levels above the maximum permissible limit of 0.01mg/1 in drinking water by WHO. The mercury and lead levels were also higher than those previously obtained from different regions of Kenya, while those for cadmium were within the corresponding range. Possible sources of elevated values were the geology of the surrounding area, sewage treatment works, use of phosphate rock fertilizers and lead fuels.(author)

  3. In vivo monitoring of heavy metals in man: cadmium and mercury

    International Nuclear Information System (INIS)

    Ellis, K.J.; Vartsky, D.; Cohn, S.H.

    1982-01-01

    Direct in vivo measurements of selected heavy metals is possible by nuclear analytical techniques. In particular, cadmium and mercury are retained in the body in sufficient quantities for their detection by neutron activation analysis. Autopsy data on cadmium of adult male non-smokers living in the US indicates an average body burden of 30 mg by age 50. The distribution of cadmium in the body, however, is nonuniform, approximately 50% being located in the kidneys and liver. The increased concentration of cadmium within these organs has made possible the direct in vivo measurements of this metal by prompt-gamma neutron activation analysis (PGNAA). At present, in vivo determinations of mercury have been performed on phantoms only. These in vivo techniques provide a unique method of obtaining accurate organ burden data in humans that can be related to the toxicological effects of these metals

  4. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].

    Science.gov (United States)

    Han, Zhiping; Hu, Xiaobin; Hu, Zhenghai

    2005-05-01

    With a pot culture of simulated mercury (Hg) and cadmium (Cd)-polluted wetland, this paper studied the capability of Arundo donax in accumulating these heavy metals, and their distribution in the plant. The results showed that after grown in a 101 mg.kg(-1) Hg-polluted wetland for 8 months, the Hg-concentrating capability of Arundo donax was in order of root > stem > leaf, and the Hg concentration in its aboveground parts was 200 +/- 20 mg.kg(-1) (DW); while in the case of 115 mg.kg(-1) Cd-pollution, the Cd-concentrating capability was in order of leaf > root > stem, and the Cd concentration in leaf was 160 +/- 26 mg.kg(-1) (DW). The heavy metals concentration in Arundo donax organs increased with its growth time, being 30%-50% higher for 8 months than for 4 months. The BCF (Bio-concentration factor) decreased with increasing heavy metals concentration. In polluted wetland, the BCFs of Hg by the leaf and stem were 1.9 and 2.1, and those of Cd were 1.5 and 0.3, respectively; while in unpolluted wetland, the concentration of Hg and Cd was 6.8 and 8.5 mg.kg(-1), the BCFs of Hg by the leaf and stem were 6.8 and 12.2, and those of Cd were 7.0 and 2.7, respectively. It was indicated that Arundo donax not only had the characters of large biomass, exuberant root, and good adaptability, but also exhibited high tolerance and concentrating capability to Cd and Hg.

  5. Current transport mechanisms in mercury cadmium telluride diode

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Li, Qing; He, Jiale; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); He, Kai; Lin, Chun [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-08-28

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  6. Enzymatic oxidation of mercury vapor by erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, S; Clarkson, T W

    1978-01-01

    The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuouus infusion of diluted H/sub 2/O/sub 2/ was used to maintain steady concentrations of complex I. 1% red cell suspensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H/sub 2/O/sub 2/-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H/sub 2/O/sub 2/ reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.

  7. A rugged and transferable method for determining blood cadmium, mercury, and lead with inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    McShane, William J.; Pappas, R. Steven; Wilson-McElprang, Veronica; Paschal, Dan

    2008-01-01

    A simple, high-throughput method for determining total cadmium, mercury, and lead in blood in cases of suspected exposure, using inductively coupled plasma-mass spectrometry (ICP-MS), has been developed and validated. One part matrix-matched standards, blanks, or aliquots of blood specimens were diluted with 49 parts of a solution containing 0.25% (w/w) tetramethylammonium hydroxide; 0.05% v/v Triton X-100 (blood cell membranes and protein solubilization); 0.01% (w/v) ammonium pyrolidinedithiocarbamate (mercury memory effect prevention and oxidation state stabilization, solubilization by complexation of all three metals); 1% v/v isopropanol (signal enhancement); and 10 μg/L iridium (internal standard). Thus the final dilution factor is 1 + 49. The method provides the basis for the determination of total cadmium, mercury, and lead for assessment of environmental, occupational, accidental ingestion or elevated exposures from other means. Approximately 80 specimens, including blanks, calibration standards, and quality control materials can be processed in an 8-h day. The method has been evaluated by examining reference materials from the National Institute of Standards and Technology, as well as by participation in six rounds of proficiency testing intercomparisons led by the Wadsworth Center of the New York State Department of Health. This method was developed for the purpose of increasing U.S. emergency response laboratory capacity. To this end, 33 U.S. state, and 1 district health department laboratories have validated this method in their own laboratories

  8. A rugged and transferable method for determining blood cadmium, mercury, and lead with inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McShane, William J. [Battelle-Centers for Disease Control and Prevention, Division of Laboratory Sciences, Emergency Response and Air Toxicants Branch, 4770 Buford Highway, MS F-44, Atlanta, GA 30341 (United States)], E-mail: WMcShane@cdc.gov; Pappas, R. Steven [Centers for Disease Control and Prevention, Division of Laboratory Sciences, Emergency Response and Air Toxicants, 4770 Buford Highway, MS F-44, Atlanta, GA 30341 (United States)], E-mail: RPappas@cdc.gov; Wilson-McElprang, Veronica [Battelle-Centers for Disease Control and Prevention, Division of Laboratory Sciences, Emergency Response and Air Toxicants Branch, 4770 Buford Highway, MS F-44, Atlanta, GA 30341 (United States)], E-mail: VWilsonMcelprang@cdc.gov; Paschal, Dan [Centers for Disease Control and Prevention, Division of Laboratory Sciences, Emergency Response and Air Toxicants, 4770 Buford Highway, MS F-44, Atlanta, GA 30341 (United States)], E-mail: DPaschal@cdc.gov

    2008-06-15

    A simple, high-throughput method for determining total cadmium, mercury, and lead in blood in cases of suspected exposure, using inductively coupled plasma-mass spectrometry (ICP-MS), has been developed and validated. One part matrix-matched standards, blanks, or aliquots of blood specimens were diluted with 49 parts of a solution containing 0.25% (w/w) tetramethylammonium hydroxide; 0.05% v/v Triton X-100 (blood cell membranes and protein solubilization); 0.01% (w/v) ammonium pyrolidinedithiocarbamate (mercury memory effect prevention and oxidation state stabilization, solubilization by complexation of all three metals); 1% v/v isopropanol (signal enhancement); and 10 {mu}g/L iridium (internal standard). Thus the final dilution factor is 1 + 49. The method provides the basis for the determination of total cadmium, mercury, and lead for assessment of environmental, occupational, accidental ingestion or elevated exposures from other means. Approximately 80 specimens, including blanks, calibration standards, and quality control materials can be processed in an 8-h day. The method has been evaluated by examining reference materials from the National Institute of Standards and Technology, as well as by participation in six rounds of proficiency testing intercomparisons led by the Wadsworth Center of the New York State Department of Health. This method was developed for the purpose of increasing U.S. emergency response laboratory capacity. To this end, 33 U.S. state, and 1 district health department laboratories have validated this method in their own laboratories.

  9. Ethanol dehydration on doped cadmium oxide

    International Nuclear Information System (INIS)

    Abd El-Salaam, K.M.

    1975-01-01

    The vapour phase catalytic dehydration of ethanol over Fe impregnated cadmium oxide was investigated between 200-450 0 C in atmospheric pressure. Electron transfer mechanisms involved in adsorption and catalytic dehydration reaction were investigated. The change in electrical conductivity of the catalyst resulting from calcination, adsorption and surface reaction processes were studied. Adsorption conductivity at low temperature ( 0 C) indicates that ethanol adsorbs as an electron donor. A mechanism of creation of interstitial Cd atoms responsible for the catalytic dehydration of ethanol on the catalyst surface was suggested. (orig.) [de

  10. Wild Boar Tissue Levels of Cadmium, Lead and Mercury in Seven Regions of Continental Croatia

    Science.gov (United States)

    Sedak, Marija; Đokić, Maja; Šimić, Branimir

    2010-01-01

    Concentrations of cadmium, mercury and lead were analysed by atomic absorption spectrometry in the kidney and muscle of free-living wild boar (n = 169) from hunting grounds in seven counties of continental Croatia. Mean levels of metals (mg/kg) in muscle and kidney of boars ranged as follows: Cd: 0.005–0.016 and 0.866–4.58, Pb: 0.033–0.15 and 0.036–0.441, Hg: 0.004–0.012 and 0.04–0.152. In all seven regions, concentrations exceeded the permitted values (muscle and kidney mg/kg: cadmium 0.05/1; lead 0.1/0.5; mercury 0.03/0.1) in 13.6% and 71.6% of samples (muscle and kidney, respectively) for cadmium; 13.6% and 8.9% for lead; 19.5% and 2.4% for mercury. There were significant differences among the regions. Vukovar-Srijem and Virovitica-Podravina Counties were highly contaminated with cadmium, Sisak-Moslavina and Virovitica-Podravina Counties with lead and Brod-Posavina County had highest mercury concentrations. These results suggest a detailed investigation of physiological and environmental factors contributing to accumulation of metals in boars. PMID:20405101

  11. Assessment of air quality for arsenic, cadmium, mercury and nickel in the Netherlands

    NARCIS (Netherlands)

    Buijsman E; LLO

    The presence of arsenic, cadmium, mercury and nickel in air in the Netherlands has been investigated. Using measurement data, a limited supplemental monitoring effort and the results of modelling calculations, it has been possible to obtain a realistic picture of air quality in the Netherlands with

  12. Mushroom contamination by mercury, cadmium and lead; Contaminazione di funghi commestibili con mercurio, cadmio e piombo

    Energy Technology Data Exchange (ETDEWEB)

    Dojmi Di Delupis, G.; Dojmi Di Delupis, F. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1996-12-01

    Occurrence and bioaccumulation of mercury, cadmium and lead were found in mushrooms by various researchers. Such mushrooms were often found in polluted areas. Pollution was mainly caused by industrial or mining plants, by some agricultural treatments and by road traffic. Considerations and recommendations concerning food consumption are made.

  13. Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring

    International Nuclear Information System (INIS)

    Brender, Jean D.; Suarez, Lucina; Felkner, Marilyn; Gilani, Zunera; Stinchcomb, David; Moody, Karen; Henry, Judy; Hendricks, Katherine

    2006-01-01

    Arsenic, cadmium, lead, and mercury are neurotoxins, and some studies suggest that these elements might also be teratogens. Using a case-control study design, we investigated the relation between exposure to these heavy metals and neural tube defects (NTDs) in offspring of Mexican-American women living in 1 of the 14 Texas counties bordering Mexico. A total of 184 case-women with NTD-affected pregnancies and 225 control-women with normal live births were interviewed about their environmental and occupational exposures during the periconceptional period. Biologic samples for blood lead and urinary arsenic, cadmium, and mercury were also obtained for a subset of these women. Overall, the median levels of these biomarkers for heavy metal exposure did not differ significantly (P>0.05) between case- and control-women. However, among women in the highest income group, case-women were nine times more likely (95% confidence interval (CI) 1.4-57) than control-women to have a urinary mercury >=5.62μg/L. Case-women were 4.2 times more likely (95% CI 1.1-16) to report burning treated wood during the periconceptional period than control-women. Elevated odds ratios (ORs) were observed for maternal and paternal occupational exposures to arsenic and mercury, but the 95% CIs were consistent with unity. The 95% CIs of the ORs were also consistent with unity for higher levels of arsenic, cadmium, lead, and mercury in drinking water and among women who lived within 2 miles at the time of conception to industrial facilities with reported emissions of any of these heavy metals. Our findings suggest that maternal exposures to arsenic, cadmium, or lead are probably not significant risk factors for NTDs in offspring. However, the elevated urinary mercury levels found in this population and exposures to the combustion of treated wood may warrant further investigation

  14. Determination of mercury, lead and cadmium in water by the CRA-atomic absorption spectrophotometry with solvent extraction

    International Nuclear Information System (INIS)

    Shim, Y.B.; Won, M.S.; Kim, C.J.

    1980-01-01

    The method of CRA-atomic absorption spectrophotometer with solvent extraction for the determination of mercury, lead and cadmium in water was studied. The optimum extracting conditions for CRA-atomic absorption spectrophotometry were the following: the complexes of mercury, lead and cadmium with dithizone were separated from the aqueous solution and concentrated into the 10 ml chloroform solution. Back extraction was performed; the concentrated mercury, lead and cadmium was extracted from the chloroform solution into the 10 ml 6-normal aqueous hydrochloric acid solution. In this case, recovery ratios were the following: mercury was 94.7%, lead 97.7% and cadmium 103.6%. The optimum operating conditions for the determination of mercury, lead and cadmium by the CRA-atomic absorption spectrophotometry also were investigated to test the dry step, ash step and atomization step for each metal. The experimental results of standard addition method were the following: the determination limit of each metal within 6% relative deviation was that lead was 0.04 ppb, and cadmium 0.01 ppb. Especially, mercury has been known impossible to determine by CRA-atomic absorption spectrophotometry until now. But in this study, mercury can be determined with CRA-atomic absorption spectrophotometer. Its determination limit was 4 ppb within 8% relative deviation. (author)

  15. Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea.

    Science.gov (United States)

    Hwang, Y O; Park, S G; Park, G Y; Choi, S M; Kim, M Y

    2010-01-01

    Total arsenic, mercury, lead, and cadmium contents were determined in 426 samples of seaweed sold in Korea in 2007-08. The average concentrations, expressed in mg kg(-1), dry weight, were: total arsenic 17.4 (less than the limit of detection [LOD] to 88.8), Hg 0.01 (from 0.001 to 0.050), lead 0.7 (less than the LOD to 2.7), and cadmium 0.50 (less than the LOD to 2.9). There were differences in mercury, cadmium, and arsenic content in seaweed between different kinds of products and between coastal areas. The intakes of total mercury, lead, and cadmium for Korean people from seaweed were estimated to be 0.11, 0.65, and 0.45 µg kg(-1) body weight week(-1), respectively. With respect to food safety, consumption of 8.5 g day(-1) of the samples analysed could represent up to 0.2-6.7% of the respective provisional tolerable weekly intakes established by the World Health Organization (WHO). Therefore, even if Korean people have a high consumption of seaweed, this study confirms the low probability of health risks from these metals via seaweed consumption.

  16. Cadmium, lead, mercury and 137cesium in fruticose lichens of northern Quebec

    International Nuclear Information System (INIS)

    Crete, M.; Zikovsky, L.

    1992-01-01

    Cadmium, lead and mercury concentration averaged 0.171, 4.09 and 0.09 μg·g -1 (dry wt.) in terrestrial lichens over a 640000-km 2 study area of northern Quebec; average cesium level reached 378 Bq·kg -1 (dry wt.). Cadmium and lead were the most closely related pollutants in lichens, while there was little relationship between 137 Cs and the 3 trace metals. Distribution of elements over the territory was not uniform and the altitude influenced 3 of them. The cesium concentration increased along with this variable, while lead levels were higher in the middle altitude class (200-400 m) than in the 2 other classes. There was a significant interaction between altitude and biome for mercury concentration, this element being almost twice more abundant in tundra below 400m than in forest tundra and boreal forest. Mercury level was related to percent ground cover by Alectoria ochroleuca, Cornicularia divergens and Cetraria nivalis, 3 lichen species typical of a wind-exposed habitat. Lead concentration was related only to Cornicularia divergens ground cover. In general concentration of cadmium, lead and mercury was higher in the northwest quarter of the study area than elsewhere, while cesium contamination was highest in the southeast quarter. It seems preferable that caribou should be harvested at low elevation when they are taken in winter in order to minimize the risk associated with cesium consumption by humans. (author). 37 refs.; 2 figs.; 5 tabs

  17. Reactions of organic zinc- and cadmium elementoxides with ethylene oxide

    International Nuclear Information System (INIS)

    Dodonov, V.A.; Krasnov, Yu.N.

    1980-01-01

    Studied are reactions of triphenylmethoxy, -triphenylsiloxyethylzinc and -cadmium with ethylene oxide in ratio of 1:1. Reactions have been carried out in tolyene solutions in ampules sealed in argon atmosphere. It is found that interaction of triphenylsiloxy-, triphenylmethoxyethylcadmium and triphenylsiloxyethylzinc with ethylene oxide occurs at the metal-carbon bond with formation of implantation products. Triphenylmethoxyethylzinc reacts with ethylene oxide both at the metal-carbon and metal-oxygen bonds. Alkoxytriphenylsiloxyderivatives of zinc and cadmium are thermally instable and decompose under the conditions of reaction (130 deg C) with migration of phenyl group from silicon to zinc or cadmium, giving alkoxyphenylderivative and with bensene splitting out

  18. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  19. Dielectric properties of some cadmium and mercury amino alcohol complexes at low temperatures

    Directory of Open Access Journals (Sweden)

    ALAA E. ALI

    2002-12-01

    Full Text Available The dielectric properties of some cadmium and mercury amino alcohol complexes were studied within the temperature range of 100–300 K at the frequencies of 100, 300 and 1000 kHz. The polarization mechanisms are suggested and the dependence of both e and tg d on both temperature and frequency are analyzed. The analysis of the data reveals semi-conducting features based mainly on the hopping mechanism.

  20. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Fernanda Maciel [Brazilian Health Surveillance Agency, University of Brasilia, 70910-900 Brasilia, DF (Brazil); Caldas, Eloisa Dutra, E-mail: eloisa@unb.br [Laboratory of Toxicology, Department of Pharmacy, University of Brasilia, 70910-900 Brasilia, DF (Brazil)

    2016-11-15

    Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals in breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515 µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149 µg/L) collected in regions with high arsenic concentrations in water (>10 µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2 µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks. - Highlights: • Review of 75 studies that analyzed arsenic, lead, mercury and/or cadmium levels. • Higher levels of arsenic found in India; of mercury found in Brazil. • Lead was the most

  1. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants

    International Nuclear Information System (INIS)

    Rebelo, Fernanda Maciel; Caldas, Eloisa Dutra

    2016-01-01

    Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals in breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515 µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149 µg/L) collected in regions with high arsenic concentrations in water (>10 µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2 µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks. - Highlights: • Review of 75 studies that analyzed arsenic, lead, mercury and/or cadmium levels. • Higher levels of arsenic found in India; of mercury found in Brazil. • Lead was the most

  2. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    International Nuclear Information System (INIS)

    Dietrich, Grzegorz J.; Dietrich, Mariola; Kowalski, R.K.; Dobosz, Stefan; Karol, Halina; Demianowicz, Wieslaw; Glogowski, Jan

    2010-01-01

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg 2+ /l and 10 mg Cd 2+ /l and hatching rates at 10 mg Hg 2+ /l and 10 mg Cd 2+ /l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  3. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Chigbo, F.E.; Smith, R.W.; Shore, F.L.

    1982-01-01

    The water hyacinth Eichornia crassipes was studied as a pollution monitor for the simultaneous accumulation of arsenic, cadmium, lead and mecury. After cultivation of the plants for 2 days in tanks containing 10 ppm of each of the metals in aqueous solution, the plants were harvested and rinsed with tap water. The leaves and stems were separated and analysed for each of the metals. The ratio of the concentration of arsenic and mercury in the leaves to the concentrations in the stems was found to be 2:1. Cadmium and lead showed a concentration ratio in leaves to stems of about 1:1. The leaf concentration of arsenic was the lowest of the metals of 0.3428 mg g/sup -1/ of dried plant material whilst the leaf concentration of cadmium was highest at 0.5740 mg g/sup -1/ of dried plant material. Control plants were grown in unpolluted water. Plants grown in Bay St. Louis, Mississippi sewage lagoon were also analysed. The mercury concentrations of the leaves of plants grown in the sewage lagoon were significantly different from the control sample which had a concentration of 0.0700 mg g/sup -1/ of dried plant material.

  4. Cadmium, lead and mercury levels in feeding yeast produced in Czechoslovakia.

    Science.gov (United States)

    Cibulka, J; Turecki, T; Miholová, D; Mader, P; Száková, J; Brabec, M

    1992-04-01

    Ninety-six samples of the feeding yeast known as VITEX were analyzed for Cd, Pb and Hg content during 1987-1989. Cadmium content ranged from 0.30 to 5.12 mg/kg(-1), lead content from 0.21 to 3.01 mg/kg(-1) and mercury content from 0.008 to 0.187 mg/kg(-1). Our findings meet the current government standards (max. allowed Pb = 5.00, Cd = 0.50 and Hg = 0.100 mg/kg(-1)) only for lead, and with five exceptions, for mercury. With two exceptions, all cadmium levels found in the samples exceeded the limit. One raw material - the wood chips - was shown to be the main source of cadmium in the technological process. Relatively high Hg contents were measured in the wood chips (up to 0.155 mg/kg(-1)); the highest Hg level (1.105 mg/kg(-1)) however was found in a sample of KOH.

  5. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  6. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  7. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  8. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  9. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  10. Cadmium, lead, and mercury exposure assessment among croatian consumers of free-living game.

    Science.gov (United States)

    Lazarus, Maja; Prevendar Crnić, Andreja; Bilandžić, Nina; Kusak, Josip; Reljić, Slaven

    2014-09-29

    Free-living game can be an important source of dietary cadmium and lead; the question is whether exposure to these two elements is such that it might cause adverse health effects in the consumers. The aim of this study was to estimate dietary exposure to cadmium, lead, and mercury from free-living big game (fallow deer, roe deer, red deer, wild boar, and brown bear), and to mercury from small game (pheasant and hare), hunted in Croatia from 1990 to 2012. The exposure assessment was based on available literature data and our own measurements of metal levels in the tissues of the game, by taking into account different consumption frequencies (four times a year, once a month and once a week). Exposure was expressed as percentage of (provisional) tolerable weekly intake [(P)TWI] values set by the European Food Safety Authority (EFSA). Consumption of game meat (0.002-0.5 % PTWI) and liver (0.005-6 % PTWI) assumed for the general population (four times a year) does not pose a health risk to consumers from the general population, nor does monthly (0.02-6 % PTWI) and weekly (0.1-24 % PTWI) consumption of game meat. However, because of the high percentage of free-living game liver and kidney samples exceeding the legislative limits for cadmium (2-99 %) and lead (1-82 %), people should keep the consumption of certain game species' offal as low as possible. Children and pregnant and lactating women should avoid eating game offal altogether. Free-living game liver could be an important source of cadmium if consumed on a monthly basis (3-74 % TWI), and if consumed weekly (11-297 % TWI), it could even give rise to toxicological concern.

  11. Modelling atmospheric dispersion of mercury, lead and cadmium at european scale

    International Nuclear Information System (INIS)

    Roustan, Yelva

    2005-01-01

    Lead, mercury and cadmium are identified as the most worrying heavy metals within the framework of the long range air pollution. Understanding and modeling their transport and fate allow for making effective decisions in order to reduce their impact on people and their environment. The first two parts of this thesis relate to the modeling of these trace pollutants for the impact study at the European scale. While mercury is mainly present under gaseous form and likely to chemically react, the other heavy metals are primarily carried by the fine particles and considered as inert. The third part of this thesis presents a methodological development based on an adjoint approach. It has been used to perform a sensitivity analysis of the model and to carry out inverse modeling to improve boundary conditions which are crucial with a restricted area model. (author) [fr

  12. Heterogeneous oxidation of mercury in simulated post combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec [Iowa State University, Ames, IA (United States). Center for Sustainable Environmental Technologies

    2003-01-01

    Heterogeneous mercury oxidation was studied by exposing whole fly ash samples and magnetic, nonmagnetic, and size-classified fly ash fractions to elemental mercury vapor in simulated flue gas streams. Fly ash from sub-bituminous Wyodak-Anderson PRB coal and bituminous Blacksville coal were used. Scanning electron microscopy, X-ray diffraction, thermogravimetric analyses, and BET N{sub 2} isothermal sorption analyses were performed to characterize the fly ash samples. Mercury speciation downstream from the ash was determined using the Ontario Hydro method. Results showed that the presence of fly ash was critical for mercury oxidation, and the surface area of the ash appears to be an important parameter. However, for a given fly ash, there were generally no major differences in catalytic oxidation potential between different fly ash fractions. This includes fractions enriched in unburned carbon and iron oxides. The presence of NO{sub 2}, HCl, and SO{sub 2} resulted in greater levels of mercury oxidation, while NO inhibited mercury oxidation. The gas matrix affected mercury oxidation more than the fly ash composition. 21 refs., 10 figs., 2 tabs.

  13. Lead, cadmium, and mercury contents of fungi in the Helsinki area and in unpolluted control areas

    Energy Technology Data Exchange (ETDEWEB)

    Kuusi, T.; Liukkonen-Lilja, H.; Piepponen, S.; Laaksovirta, K.; Lodenius, M.

    1981-10-01

    More than 40 species of wild-growing fungi in Finland have been investigated with regard to their contents of lead, cadmium and mercury. A total of 326 samples was studied, 242 being from the urban area of Helsinki and 84 from unpolluted rural areas. The lead content ranged from < 0.5 to 78 mg/kg of dry matter. In the control areas the mean contents for the different species ranged from < 0.5 to 13 mg/kg, and in the urban area from 0.5 to 16.8 mg/kg. The cadmium content ranged from < 0.2 to 101 mg/kg of dry matter. In the control areas the mean contents for the different species ranged from < 0.2 to 16.8 mg/kg, and in the urban area from < 0.2 to 17.3 mg/kg. The mercury content ranged from < 0.01 to 95 mg/kg of dry matter. In the rural areas the mean contents for the diferent species ranged from 0.03 to 4.2 mg/kg, and in the urban area from 0.02 to 14.1 mg/kg. In conclusion, consumption of those fungi that grow in unpolluted rural areas carries no risk, particularly when they belong to mycorrhizal species. In urban areas the risk is somewhat greater. The Agaricus species show the highest contents of the metals studied and their use as food requires caution.

  14. Optical characterisation of thin film cadmium oxide prepared by a ...

    African Journals Online (AJOL)

    The optical transmission spectra of transparent conducting cadmium oxide (CdO) thin films deposited by a modified reactive evaporation process onto glass substrates have been measured. The interference fringes were used to calculate the refractive index, thickness variation, average thickness and absorption coefficient ...

  15. In vitro oxidation of mercury by the blood

    International Nuclear Information System (INIS)

    Hursh, J.B.; Sichak, S.P.; Clarkson, T.W.

    1988-01-01

    A method is described for studying the in vitro oxidation of mercury vapour by red blood cells at short times and with diminishing mercury vapour concentrations. It is found that for 40% red blood cell suspensions and 37 deg. C at concentrations greater than about 6 ng mercury vapour/ml, the oxidation rate is zero order, and that at lower concentrations the rate changes to first order. The effect of temperature and of added hydrogen peroxide de are studied. Results a considered in terms of the generally accepted belief that the catalase-compound I system is the main path of oxidation. If the results obtained in vitro in these experiments apply in vivo to man, it follows that inhaled mercury is carried in the blood to the brain and organs primarily as dissolved vapour rather than as inorganic mercury ions. (author)

  16. Heavy metals (copper, cadmium, lead, mercury) in mute swans from Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Elvestad, K.; Karlog, O.; Clausen, B.

    1982-03-01

    During the severe winter of 1978-79, large numbers of mute swans died in coastal areas of Denmark. Of these, 2111 were collected for examination. The analyses confirm previous findings of relatively high copper levels in mute swans (mean for 178 livers was 2680 mg/kg dry weight (Dw) and for 110 kidneys 34 mg/kg Dw) (Table I, Fig. 1). The copper content was not related to sex or age (Table II). The highest liver levels of copper were found in swans from Western Jutland. Cadmium was found at the same relatively low levels as recorded for waterfowl elsewhere (mean for 178 livers was 12 mg/kg Dw, for 110 kidneys 24 mg/kg Dw) (Table I, Fig. 2). The cadmium content was not sex-related, but it increased with age (Table II). The mean mercury content (liver) was 1.4 mg/kg Dw in the 10 birds analysed (Table I). The mean lead content was 15 mg/kg Dw in the 178 livers analysed and 31 mg/kg Dw in 110 sternum (Table I and Fig. 3). The lead content was not sex-related. In sternum, but not in livers, it was related to age (Table II). One third of the swans were found lead-contaminated probably after ingestion of lead pellets. None of the swans carried high levels of both copper, cadmium, and lead (Table III).

  17. Cadmium, lead, mercury and arsenic in animal feed and feed materials – trend analysis of monitoring results

    NARCIS (Netherlands)

    Adamse, Paulien; Fels, van der Ine; Jong, de Jacob

    2017-01-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007–13

  18. Heavy Metals (Mercury, Lead and Cadmium Determination in 17 Species of Fish Marketed in Khorramabad City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ali Mortazavi

    2016-01-01

    Full Text Available Heavy metals entrance to fish body tissues and transferring to human body systems after their consuming makes numerous undesirable effects and health problems. The aim of this study was to determine some heavy metals (lead, cadmium and mercury in fresh fishes marketed in Khorramabad City, west of Iran. In this descriptive study, five samples of 17 fish species with high consumption were purchased randomly in 2014. Measurement of mercury, lead and cadmium was performed using atomic absorption spectrometry. All measurements were performed three times for each sample. Lead mean levels in fish samples was in the range 0.736 -1.005 ppm, cadmium range was from 0.196 to 0.015 ppm and mean content of mercury was  0.431 - 0.107 ppm. At present mean concentration of lead, mercury and cadmium in supplied fishes muscle is lower than maximum recommended levels according to WHO, EC and FDA guidelines. Based on the obtained results of this study and the importance of heavy metals in foods and their impacts on human health, continuous monitoring of heavy metals levels in foods is necessary.

  19. Anodic stripping voltammetry of mercury, zinc, cadmium, and lead in a rice farm ecosystem

    International Nuclear Information System (INIS)

    Del Mundo, F.R.; Vicente-Beckett, V.A.

    1990-01-01

    Analytical procedures based on differential pulse anodic stripping voltammetry were developed and applied to the analysis of some trace metals in a rice farm ecosystem. A gold wire served as working electrode for the analysis of mercury in 0.1M HNO 3 ; a hanging mercury drop electrode was used for the simultaneous analyses of zinc, cadmium, and lead in 0.1M sodium acetate buffer (pH 4.5). Mercury was pre-concentrated for five minutes at + 0.20 V vs SCE. The area of the anodic stripping peaks varied linearly over the concentration range 3x10 -10 -2x10 -8 M Hg(II); the limit of detection was 0.06 ppb or 3x10 -10 M Hg(II). The simultaneous analytical method involved pre-electrolysis at -1.2 V vs SCE for ten minutes. The heights of the individual anodic stripping peaks varied linearly with concentration in a mixture of the ions over the concentration range 0.020-0.10 ppm for each ion; the limits of detection were 0.004 ppm, 0.01 ppm, and 0.01 ppm for Cd, Pb, Zn, respectively. The developed procedures were used to determine the baseline levels of these metals in soil, water, and rice plant samples from a one-hectare traditional rice farm in San Pedro, Laguna. (auth.). 26 refs.; 4 tabs.; 6 figs

  20. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010-2013): Body burden and risk factors.

    Science.gov (United States)

    Kim, Nam-Soo; Ahn, Jaeouk; Lee, Byung-Kook; Park, Jungsun; Kim, Yangho

    2017-07-01

    Limited information is available on the association of age and sex with blood concentrations of heavy metals in teenagers. In addition, factors such as a shared family environment may have an association. We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES, 2010-2013) to determine whether blood levels of heavy metals differ by risk factors such as age, sex, and shared family environment in a representative sample of teenagers. This study used data obtained in the KNHANES 2010-2013, which had a rolling sampling design that involved a complex, stratified, multistage, probability-cluster survey of a representative sample of the non-institutionalized civilian population in South Korea. Our cross-sectional analysis was restricted to teenagers and their parents who completed the health examination survey, and for whom blood measurements of cadmium, lead, and mercury were available. The final analytical sample consisted of 1585 teenagers, and 376 fathers and 399 mothers who provided measurements of blood heavy metal concentrations. Male teenagers had greater blood levels of lead and mercury, but sex had no association with blood cadmium level. There were age-related increases in blood cadmium, but blood lead decreased with age, and age had little association with blood mercury. The concentrations of cadmium and mercury declined from 2010 to 2013. The blood concentrations of lead, cadmium, and mercury in teenagers were positively associated with the levels in their parents after adjustment for covariates. Our results show that blood heavy metal concentrations differ by risk factors such as age, sex, and shared family environment in teenagers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    Zhuang, Ye; Laumb, Jason; Liggett, Richard; Holmes, Mike; Pavlish, John

    2007-01-01

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO 2 , and SO 3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O 2 , CO 2 , H 2 O, NO, NO 2 , and NH 3 , and N 2 . HCl, SO 2 , and SO 3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO 2 and SO 3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO 2 and SO 3 , by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO 2 (2000 ppm), and SO 3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  2. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  3. Studies of cadmium, mercury and lead in man. The value of X-ray fluorescence measurements in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, J

    1996-10-01

    Two XRF methods have been used for in vivo studies of mercury, cadmium and lead. Persons with a history of long-term occupational mercury exposure had elevated mercury concentrations in their kidneys (up to 65 {mu}g/g). The minimum detectable concentration varied between 12 and 45 {mu}g/g. Battery plant workers had elevated cadmium concentrations in their kidneys (up to 350 {mu}g/g) and liver (up to 80 {mu}g/g), with mean values about 3-5 times higher than the general population. The mean ratio between concentrations of cadmium in kidney and liver was 7. Levels in kidney and liver indicated that a simple integration of cadmium in work-place air is not sufficient to describe the body burden. Fingerbone lead in smelters was 6-8 times higher than in members of the general population. The half-time of bone lead in active workers was estimated to about 5 years during the accumulation phase. A model for description of a person`s lead exposure in terms of lead in fingerbone, lead in blood and time of exposure has been developed and can be used, e.g. for retrospective blood lead estimates if the period of exposure and the current fingerbone lead is known. This will be of value for the evaluation of toxic effects of long-term lead exposure when data on previous lead levels are lacking. In total, in vivo measurements of mercury, cadmium and lead give unique information, which has shown to be an important tool for understanding of metal kinetics and toxicity. If the precision and accuracy of the method can be further improved, the technique will also have a given place in the clinical practice. 168 refs, 9 figs, 3 tabs

  4. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    Energy Technology Data Exchange (ETDEWEB)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Fabricius-Lagging, Elisabeth [Department of Nephrology, Sahlgrenska University Hospital and Boras Hospital (Sweden); Lundh, Thomas [Department of Occupational and Environmental Medicine, Lund University Hospital and Lund University (Sweden); Moelne, Johan [Department of Clinical Pathology, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Wallin, Maria [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Olausson, Michael [Department of Transplantation and Liver Surgery, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Modigh, Cecilia; Sallsten, Gerd [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden)

    2010-01-15

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 {mu}g/g (wet weight) for cadmium, 0.21 {mu}g/g for mercury, and 0.08 {mu}g/g for lead. Kidney Cd increased by 3.9 {mu}g/g for a 10 year increase in age, and by 3.7 {mu}g/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 {mu}g/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  5. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    International Nuclear Information System (INIS)

    Barregard, Lars; Fabricius-Lagging, Elisabeth; Lundh, Thomas; Moelne, Johan; Wallin, Maria; Olausson, Michael; Modigh, Cecilia; Sallsten, Gerd

    2010-01-01

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 μg/g (wet weight) for cadmium, 0.21 μg/g for mercury, and 0.08 μg/g for lead. Kidney Cd increased by 3.9 μg/g for a 10 year increase in age, and by 3.7 μg/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 μg/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  6. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Science.gov (United States)

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  7. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2015-04-01

    Full Text Available The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL, 4.4 (2.4 μg/L, 10.9 (9.2 μg/L, and 43.7 (17.7 μg/L, respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01. After controlling for maternal education level and socio-economic status (through ownership of a family car, the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01. Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations.

  8. The contents and distributions of cadmium, mercury, and lead in Usnea antarctica lichens from Solorina Valley, James Ross Island (Antarctica).

    Science.gov (United States)

    Zvěřina, Ondřej; Coufalík, Pavel; Barták, Miloš; Petrov, Michal; Komárek, Josef

    2017-12-11

    Lichens are efficient and cost-effective biomonitors of the environment. Their geographic distribution together with their slow growth rate enable investigation of the deposition patterns of various elements and substances. In this research, levels of cadmium, lead, and mercury in Usnea antarctica lichens in the area of James Ross Island, Antarctica, were investigated. The lichens were microwave-digested, and the metals were determined by means of atomic absorption spectrometry with graphite furnace and a direct mercury analyzer. Median total contents of Cd, Hg, and Pb were 0.04, 0.47, and 1.6 mg/kg in whole lichens, respectively. The bottom-up distributions of these metals in the fruticose lichen thalli were investigated, and it was revealed that the accumulation patterns for mercury and lead were opposite to that for cadmium. The probable reason for this phenomenon may lie in the inner structure of thalli. The total contents of metals were comparable with those published for other unpolluted areas of maritime Antarctica. However, this finding was not expected for mercury, since the sampling locality was close to an area with some of the highest mercury contents published for Antarctic lichens. In short, lichens proved their usability as biological monitors, even in harsh conditions. However, the findings emphasize the need to take into account the distributions of elements both in the environment and in the lichen itself.

  9. Comparative analysis on the effect of Lycopersicon esculentum (tomato) in reducing cadmium, mercury and lead accumulation in liver.

    Science.gov (United States)

    Nwokocha, Chukwuemeka R; Nwokocha, Magdalene I; Aneto, Imaria; Obi, Joshua; Udekweleze, Damian C; Olatunde, Bukola; Owu, Daniel U; Iwuala, Moses O

    2012-06-01

    L. esculentum (tomato) contain compounds with anti-oxidant and anti-inflammatory properties, able to synthesize metal chelating proteins. We examined the ability of fruit extract to protect against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. Rats were fed on tomato mixed with rat chow (10% w/w), while Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) was given in drinking water. Tomato was administered together with the metals (group 2), a week after exposure (group 3) or a week before metal exposure (group 4) for a period of six weeks. The metal accumulations in the liver were determined using AAS. There was a significant (Ptomato to Cd and Hg accumulation but not to Pb (PTomato reduces uptake while enhancing the elimination of these metals in a time dependent manner. The highest hepatoprotective effect was to Cd followed by Hg and least to Pb. Its administration is beneficial in reducing heavy metal accumulation in the liver. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Hair mercury and urinary cadmium levels in Belgian children and their mothers within the framework of the COPHES/DEMOCOPHES projects

    International Nuclear Information System (INIS)

    Pirard, Catherine; Koppen, Gudrun; De Cremer, Koen; Van Overmeire, Ilse; Govarts, Eva; Dewolf, Marie-Christine; Van De Mieroop, Els; Aerts, Dominique; Biot, Pierre; Casteleyn, Ludwine; Kolossa-Gehring, Marike; Schwedler, Gerda

    2014-01-01

    A harmonized human biomonitoring pilot study was set up within the frame of the European projects DEMOCOPHES and COPHES. In 17 European countries, biomarkers of some environmental pollutants, including urinary cadmium and hair mercury, were measured in children and their mothers in order to obtain European-wide comparison values on these chemicals. The Belgian participant population consisted in 129 school children (6–11 years) and their mothers (≤ 45 years) living in urban or rural areas of Belgium. The geometric mean levels for mercury in hair were 0.383 μg/g and 0.204 μg/g for respectively mothers and children. Cadmium in mother's and children's urine was detected at a geometric mean concentration of respectively 0.21 and 0.04 μg/l. For both biomarkers, levels measured in the mothers and their child were correlated. While the urinary cadmium levels increased with age, no trend was found for hair mercury content, except the fact that mothers hold higher levels than children. The hair mercury content increased significantly with the number of dental amalgam fillings, explaining partially the higher levels in the mothers by their higher presence rate of these amalgams compared to children. Fish or seafood consumption was the other main parameter determining the mercury levels in hair. No relationship was found between smoking status and cadmium or mercury levels, but the studied population included very few smokers. Urinary cadmium levels were higher in both mothers and children living in urban areas, while for mercury this difference was only significant for children. Our small population showed urinary cadmium and hair mercury levels lower than the health based guidelines suggested by the WHO or the JECFA (Joint FAO/WHO Expert Committee on Food Additives). Only 1% had cadmium level slightly higher than the German HBM-I value (1 μg/l for adults), and 9% exceeded the 1 μg mercury/g hair suggested by the US EPA. - Highlights: • Hair mercury and urinary

  11. Hair mercury and urinary cadmium levels in Belgian children and their mothers within the framework of the COPHES/DEMOCOPHES projects

    Energy Technology Data Exchange (ETDEWEB)

    Pirard, Catherine, E-mail: c.pirard@chu.ulg.ac.be [CHU of Liege, Laboratory of Clinical, Forensic and Environmental Toxicology, CHU (B35), 4000 Liege (Belgium); Koppen, Gudrun, E-mail: gudrun.koppen@vito.be [Flemish Institute of Technological Research, Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); De Cremer, Koen, E-mail: Koen.DeCremer@wiv-isp.be [Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); Van Overmeire, Ilse, E-mail: ilse.vanovermeire@wiv-isp.be [Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); Govarts, Eva, E-mail: eva.govarts@vito.be [Flemish Institute of Technological Research, Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Dewolf, Marie-Christine, E-mail: marie_christine.dewolf@hainaut.be [Provincial Institute Hainaut Vigilance Sanitaire — Hainaut Hygiène Publique en (HVS-HPH), Boulevard Sainctelette, 55, 7000 Mons (Belgium); Van De Mieroop, Els, E-mail: Els.VanDeMieroop@pih.provant.be [Provincial Institute for Hygiene (PIH), Boomgaardstraat 22 bus 1, 2600 Antwerpen (Belgium); Aerts, Dominique, E-mail: dominique.aerts@milieu.belgie.be [Federal Public Service Health, Food Chain Safety and Environment, Place Victor Horta 40/10, 1060 Brussels (Belgium); Biot, Pierre, E-mail: pierre.biot@environnement.belgique.be [Federal Public Service Health, Food Chain Safety and Environment, Place Victor Horta 40/10, 1060 Brussels (Belgium); Casteleyn, Ludwine, E-mail: Ludwine.Casteleyn@med.kuleuven.be [University of Leuven, Center for Human Genetics, Herestraat 49, 3000 Leuven (Belgium); Kolossa-Gehring, Marike, E-mail: marike.kolossa@uba.de [Federal Environment Agency, Corrensplatz 1, 14195 Berlin (Germany); Schwedler, Gerda, E-mail: Gerda.Schwedler@uba.de [Federal Environment Agency, Corrensplatz 1, 14195 Berlin (Germany); and others

    2014-02-01

    A harmonized human biomonitoring pilot study was set up within the frame of the European projects DEMOCOPHES and COPHES. In 17 European countries, biomarkers of some environmental pollutants, including urinary cadmium and hair mercury, were measured in children and their mothers in order to obtain European-wide comparison values on these chemicals. The Belgian participant population consisted in 129 school children (6–11 years) and their mothers (≤ 45 years) living in urban or rural areas of Belgium. The geometric mean levels for mercury in hair were 0.383 μg/g and 0.204 μg/g for respectively mothers and children. Cadmium in mother's and children's urine was detected at a geometric mean concentration of respectively 0.21 and 0.04 μg/l. For both biomarkers, levels measured in the mothers and their child were correlated. While the urinary cadmium levels increased with age, no trend was found for hair mercury content, except the fact that mothers hold higher levels than children. The hair mercury content increased significantly with the number of dental amalgam fillings, explaining partially the higher levels in the mothers by their higher presence rate of these amalgams compared to children. Fish or seafood consumption was the other main parameter determining the mercury levels in hair. No relationship was found between smoking status and cadmium or mercury levels, but the studied population included very few smokers. Urinary cadmium levels were higher in both mothers and children living in urban areas, while for mercury this difference was only significant for children. Our small population showed urinary cadmium and hair mercury levels lower than the health based guidelines suggested by the WHO or the JECFA (Joint FAO/WHO Expert Committee on Food Additives). Only 1% had cadmium level slightly higher than the German HBM-I value (1 μg/l for adults), and 9% exceeded the 1 μg mercury/g hair suggested by the US EPA. - Highlights: • Hair mercury and

  12. Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: Influence of reproductive stage

    International Nuclear Information System (INIS)

    Wayland, Mark; Gilchrist, H. Grant; Neugebauer, Ewa

    2005-01-01

    Concentrations and total organ content of mercury, selenium and cadmium, as well as liver, kidney and body mass were determined in female common eiders from 1997 to 2000 at the East Bay Migratory Bird Sanctuary in the eastern Canadian arctic. In 1997 and 1999, female eiders were collected during the pre-nesting period when they eat copious amounts of food and gain substantial weight in preparation for the rigours of nesting. In 1998 and 1999, female eiders were collected during the mid to late stages of the nesting period when they eat very little, if at all, and, as a consequence undergo dramatic weight loss. Total body mass, liver mass and kidney mass were highest in pre-nesting birds, especially in 1997. They were significantly lower in nesting birds collected in 1998 and 2000. In contrast, mercury and cadmium concentrations were lowest in pre-nesting birds collected in 1997 and 1999 and increased to significantly higher concentrations in nesting birds collected in 1998 and 2000. In contrast to these results, the total contents of mercury in liver and cadmium in kidney did not change significantly over the 4-year period. Hepatic selenium concentrations were relatively stable over the 4-year study period while changes in the total content of selenium in the liver paralleled changes in liver mass and body mass. The results suggest that mercury and cadmium concentrations in female common eiders change in response to normal changes in body and organ mass that occur during the reproductive period. Thus, it may be important to consider body condition or reproductive stage when using common eiders (and perhaps other species of sea ducks) in biomonitoring studies or when interpreting concentrations of metals in tissues in terms of the risk they pose to these ducks

  13. Red coloration by heat treatment of the coprecipitate of cadmium sulfide and mercury(II) sulfide prepared from the nitrates

    International Nuclear Information System (INIS)

    Nakahara, Fujiya

    1979-01-01

    The effects of starting salts on the color, particle size and crystal structure of mercury-cadmium-sulfide pigments were investigated. The coprecipitate (N-S) of cadmium sulfide and mercury (II) sulfide was prepared by adding sodium sulfide solution to a mixed cadmium-mercury (II) nitrate solution. The coprecipitate (C-S) of cadmium sulfide and mercury (II) sulfide was also prepared from the mixed solution of their chlorides by the same method as described above. The coprecipitated products were heat-treated (calcination or hydrothermal treatment) at 350 0 C for 2 hours and subsequent changes in powder properties of both products were compared from each other. The powder properties of N-S, C-S and their heat-treated products were investigated by spectral reflectance, electron microscopy, X-ray diffraction and specific surface area measurements. Sample (N-C) obtained by the calcination of N-S was brown, indicating no red coloration, but the calcined product (C-C) of C-S developed a red color. Cl - and hot water were found to be effective for the red color development of the pigment. The effectiveness was confirmed by calcining N-S in the presence of NaCl or by treating it hydrothermally. It was found that halides other than NaCl, (e.g., NH 4 Cl, KCl, KBr and KI), were also effective for the color development of the pigment. The red samples are solid solutions with a basically hexagonal CdS structure, and it appears that CdS takes up HgS without any apparent structural changes. The particle size of the red samples are larger than those of the non red samples. (author)

  14. Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: influence of reproductive stage.

    Science.gov (United States)

    Wayland, Mark; Gilchrist, H Grant; Neugebauer, Ewa

    2005-12-01

    Concentrations and total organ content of mercury, selenium and cadmium, as well as liver, kidney and body mass were determined in female common eiders from 1997 to 2000 at the East Bay Migratory Bird Sanctuary in the eastern Canadian arctic. In 1997 and 1999, female eiders were collected during the pre-nesting period when they eat copious amounts of food and gain substantial weight in preparation for the rigours of nesting. In 1998 and 1999, female eiders were collected during the mid to late stages of the nesting period when they eat very little, if at all, and, as a consequence undergo dramatic weight loss. Total body mass, liver mass and kidney mass were highest in pre-nesting birds, especially in 1997. They were significantly lower in nesting birds collected in 1998 and 2000. In contrast, mercury and cadmium concentrations were lowest in pre-nesting birds collected in 1997 and 1999 and increased to significantly higher concentrations in nesting birds collected in 1998 and 2000. In contrast to these results, the total contents of mercury in liver and cadmium in kidney did not change significantly over the 4-year period. Hepatic selenium concentrations were relatively stable over the 4-year study period while changes in the total content of selenium in the liver paralleled changes in liver mass and body mass. The results suggest that mercury and cadmium concentrations in female common eiders change in response to normal changes in body and organ mass that occur during the reproductive period. Thus, it may be important to consider body condition or reproductive stage when using common eiders (and perhaps other species of sea ducks) in biomonitoring studies or when interpreting concentrations of metals in tissues in terms of the risk they pose to these ducks.

  15. Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: Influence of reproductive stage

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, Mark [Environment Canada, Prairie and Northern Wildlife Research Centre, 115 Perimeter Rd., Saskatoon, SK, S7N 0X4 (Canada)]. E-mail: mark.wayland@ec.gc.ca; Gilchrist, H. Grant [Canadian Wildlife Service, Prairie and Northern Region, Suite 301, 5204-50th St., Yellowknife, NT, X1A 1E2 (Canada); Neugebauer, Ewa [Environment Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6 (Canada)

    2005-12-01

    Concentrations and total organ content of mercury, selenium and cadmium, as well as liver, kidney and body mass were determined in female common eiders from 1997 to 2000 at the East Bay Migratory Bird Sanctuary in the eastern Canadian arctic. In 1997 and 1999, female eiders were collected during the pre-nesting period when they eat copious amounts of food and gain substantial weight in preparation for the rigours of nesting. In 1998 and 1999, female eiders were collected during the mid to late stages of the nesting period when they eat very little, if at all, and, as a consequence undergo dramatic weight loss. Total body mass, liver mass and kidney mass were highest in pre-nesting birds, especially in 1997. They were significantly lower in nesting birds collected in 1998 and 2000. In contrast, mercury and cadmium concentrations were lowest in pre-nesting birds collected in 1997 and 1999 and increased to significantly higher concentrations in nesting birds collected in 1998 and 2000. In contrast to these results, the total contents of mercury in liver and cadmium in kidney did not change significantly over the 4-year period. Hepatic selenium concentrations were relatively stable over the 4-year study period while changes in the total content of selenium in the liver paralleled changes in liver mass and body mass. The results suggest that mercury and cadmium concentrations in female common eiders change in response to normal changes in body and organ mass that occur during the reproductive period. Thus, it may be important to consider body condition or reproductive stage when using common eiders (and perhaps other species of sea ducks) in biomonitoring studies or when interpreting concentrations of metals in tissues in terms of the risk they pose to these ducks.

  16. ARSENIC, CADMIUM, CHROMIUM, LEAD, MERCURY, AND SELENIUM LEVELS IN BLOOD OF FOUR SPECIES OF TURTLES FROM THE AMAZON IN BRAZIL

    OpenAIRE

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Po...

  17. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  18. Lead, cadmium and mercury in the blood of the blue-footed booby (Sula nebouxii) from the coast of Sinaloa, Gulf of California, Mexico

    International Nuclear Information System (INIS)

    Lerma, Miriam; Castillo-Guerrero, José Alfredo; Ruelas-Inzunza, Jorge; Fernández, Guillermo

    2016-01-01

    We used blood samples of the Blue-footed Booby, considering sex (female and male) and age-class (adult and chick) of individuals at different breeding stages during two breeding seasons (2010–2011 and 2011–2012) in Isla El Rancho, Sinaloa, to determine lead, cadmium, and mercury concentrations. Lead and cadmium concentrations were below our detection limit (0.05 and 0.36 ppm, respectively). A higher concentration of mercury was found in early stages of breeding, likely related to changes in mercury environmental availability. Mercury concentrations in adults did not relate with their breeding output. Males and adults had higher mercury concentration than females and chicks. We provide information of temporal, sex and age-related variations in the concentrations of mercury in blood of the Blue-footed Booby. - Highlights: • We obtain baseline blood concentrations of mercury of the Blue-footed Booby breeding at Isla El Rancho, Sinaloa, Mexico. • Mercury concentrations decreased gradually as the breeding season progressed, possibly due to changes in mercury environmental availability. • Adult males had higher mercury concentration than adult females throughout the breeding season. • Pre-fledging chicks had lower mercury concentration than adults, without sex-related differences.

  19. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  20. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  1. Molecular mechanisms of plasmid-determined mercury and cadmium resistances in bacteria

    International Nuclear Information System (INIS)

    Nucifora, G.

    1989-01-01

    The structural basis for induction of the broad spectrum mercurial resistance operon of pDU1358 with inorganic mercury and with phenylmercury acetate was addressed by DNA sequencing analysis (that showed that a major difference occurred in the 3' 29 base pairs of the ital merR gene compared to the merR genes of Tn501 and R100) and by lac-fusion transcription experiments regulated by merR in trans. The lac-fusion results were compared with those from a narrow spectrum operon, and the pDU1358 merR deleted at the 3' end. A hybrid mer operon containing the merR gene from pDU1358 and lacking the merB gene was inducible by both phenylmercury and inorganic Hg 2+ , showing that organomercurial lyase is not needed for induction by organomercurials. A mutant form of pDU1358 merR missing the C-terminal 17 amino acids responded to inorganic Hg 2+ but not to phenylmercury, indicating that the C-terminal region of the MerR protein of the pDU1358 mer operon is required for the recognition of phenylmercury acetate. The down regulation of the mer operon by the merD gene was also measured in trans with complementing mer operons of pDU1358 or R100 or merD - mutants. In the presence of the merD gene, beta-galactosidase activity was lowered by 2 to 4 fold. The merD gene gene product was visualized by autoradiography. The Cd 2+ resistance determinant cadA of S. aureus was investigated. The nucleotide sequence of the DNA fragment containing the cadA determinant revealed two open reading frames the larger one of which is essential for expression of cadmium resistance

  2. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  3. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  4. In situ reduction and functionalization of graphene oxide with l-cysteine for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii), and mercury(ii) ions

    KAUST Repository

    Muralikrishna, S. N.; Sureshkumar, K.; Varley, Thomas Stephen; Nagaraju, Doddahalli H.; Ramakrishnappa, Thippeswamy

    2014-01-01

    One pot reduction and functionalization of graphene oxide (GO) with l-cysteine (l-cys-rGO) at the edges and basal planes of the carbon layers are presented. The l-cys-rGO was characterized by X-ray diffraction studies (XRD), X-ray photoelectron spectroscopy (XPS), attenuated infrared spectroscopy (ATIR), and Raman spectroscopy. The surface morphology was studied by scanning electron microscopy (SEM) and transmittance electron microscopy (TEM). The l-cys-rGO was further utilized for the simultaneous electrochemical quantification of environmentally harmful metal ions such as, Cd2+, Pb2+, Cu2+ and Hg2+. Detection limits obtained for these metal ions were 0.366, 0.416, 0.261 and 1.113 μg L-1 respectively. The linear range obtained for Cd2+, Cu2+ and Hg2+ was 0.4 to 2.0 μM and for Pb2+ was 0.4 to 1.2 μM. The detection limits were found to be less than the World Health Organization (WHO) limits. The developed protocol was applied for the determination of the above metal ions in various environmental samples and the results obtained were validated by atomic absorption spectroscopy (AAS). This journal is

  5. Mercury and cadmium in ringed seals in the Canadian Arctic: Influence of location and diet

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Tanya M., E-mail: tanya.brown@mun.ca [Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X9 (Canada); Fisk, Aaron T. [Great Lakes Institute of Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4 (Canada); Wang, Xiaowa [Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7R 4A6 (Canada); Ferguson, Steven H. [Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6 (Canada); Young, Brent G. [University of Manitoba, 500 University Crescent, Winnipeg, Manitoba R3T 2N2 (Canada); Reimer, Ken J. [Environmental Sciences Group, Royal Military College of Canada, PO Box 17000, Stn Forces, Kingston, Ontario K7K 7B4 (Canada); Muir, Derek C.G. [Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7R 4A6 (Canada)

    2016-03-01

    Concentrations of total mercury (THg) and total cadmium (TCd) were determined in muscle and liver of ringed seals (Pusa hispida) from up to 14 locations across the Canadian Arctic. Location, trophic position (TP) and relative carbon source best predicted the THg and TCd concentrations in ringed seals. THg concentrations in ringed seals were highest in the western Canadian Arctic (Beaufort Sea), whereas TCd was highest in the eastern Canadian Arctic (Hudson Bay and Labrador). A positive relationship between THg and TP and a negative relationship between THg and relative carbon source contributed to the geographical patterns observed and elevated THg levels at certain sites. In contrast, a negative relationship between TCd and TP was found, indicating that high TCd concentrations are related to seals feeding more on invertebrates than fish. Feeding ecology appears to play an important role in THg and TCd levels in ringed seals, with biomagnification driving elevated THg levels and a dependence on low-trophic position prey resulting in high TCd concentrations. The present study shows that both natural geological differences and diet variability among regions explain the spatial patterns for THg and TCd concentrations in ringed seals. - Highlights: • Diet and location influenced THg and Cd in ringed seals across the Canadian Arctic. • Biomagnification processes contribute to elevated THg levels in the western Arctic. • Consuming low-trophic position prey explains high Cd levels in the eastern Arctic.

  6. Mercury and cadmium in ringed seals in the Canadian Arctic: Influence of location and diet

    International Nuclear Information System (INIS)

    Brown, Tanya M.; Fisk, Aaron T.; Wang, Xiaowa; Ferguson, Steven H.; Young, Brent G.; Reimer, Ken J.; Muir, Derek C.G.

    2016-01-01

    Concentrations of total mercury (THg) and total cadmium (TCd) were determined in muscle and liver of ringed seals (Pusa hispida) from up to 14 locations across the Canadian Arctic. Location, trophic position (TP) and relative carbon source best predicted the THg and TCd concentrations in ringed seals. THg concentrations in ringed seals were highest in the western Canadian Arctic (Beaufort Sea), whereas TCd was highest in the eastern Canadian Arctic (Hudson Bay and Labrador). A positive relationship between THg and TP and a negative relationship between THg and relative carbon source contributed to the geographical patterns observed and elevated THg levels at certain sites. In contrast, a negative relationship between TCd and TP was found, indicating that high TCd concentrations are related to seals feeding more on invertebrates than fish. Feeding ecology appears to play an important role in THg and TCd levels in ringed seals, with biomagnification driving elevated THg levels and a dependence on low-trophic position prey resulting in high TCd concentrations. The present study shows that both natural geological differences and diet variability among regions explain the spatial patterns for THg and TCd concentrations in ringed seals. - Highlights: • Diet and location influenced THg and Cd in ringed seals across the Canadian Arctic. • Biomagnification processes contribute to elevated THg levels in the western Arctic. • Consuming low-trophic position prey explains high Cd levels in the eastern Arctic.

  7. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods.

    Science.gov (United States)

    Perelló, Gemma; Martí-Cid, Roser; Llobet, Juan M; Domingo, José L

    2008-12-10

    The effects of cooking processes commonly used by the population of Catalonia (Spain) on total arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) concentrations in various foodstuffs were investigated. All food samples were randomly acquired in local markets, big supermarkets, and grocery stores of Reus (Catalonia). Foods included fish (sardine, hake, and tuna), meat (veal steak, loin of pork, breast and thigh of chicken, and steak and rib of lamb), string bean, potato, rice, and olive oil. For each food item, two composite samples were prepared for metal analyses, whose levels in raw and cooked (fried, grilled, roasted, and boiled) samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The highest concentrations of As, Hg, and Pb (raw and cooked samples) were mainly found in fish, with a clear tendency, in general, to increase metal concentrations after cooking. However, in these samples, Cd levels were very close to their detection limit. In turn, the concentrations of metals in raw and cooked meat samples were detected in all samples (As) or only in a very few samples (Cd, Hg, and Pb). A similar finding corresponded to string beans, rice, and olive oil, while in potatoes, Hg could not be detected and Pb only was detected in the raw samples. In summary, the results of the present study show that, in general terms, the cooking process is only of a very limited value as a means of reducing metal concentrations. This hypothetical reduction depends upon cooking conditions (time, temperature, and medium of cooking).

  8. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  9. Ethnic Kawasaki Disease Risk Associated with Blood Mercury and Cadmium in U.S. Children

    Science.gov (United States)

    Yeter, Deniz; Portman, Michael A.; Aschner, Michael; Farina, Marcelo; Chan, Wen-Ching; Hsieh, Kai-Sheng; Kuo, Ho-Chang

    2016-01-01

    Kawasaki disease (KD) primarily affects children <5 years of age (75%–80%) and is currently the leading cause of acquired heart disease in developed nations. Even when residing in the West, East Asian children are 10 to 20 times more likely to develop KD. We hypothesized cultural variations influencing pediatric mercury (Hg) exposure from seafood consumption may mediate ethnic KD risk among children in the United States. Hospitalization rates of KD in US children aged 0–4 years (n = 10,880) and blood Hg levels in US children aged 1–5 years (n = 713) were determined using separate US federal datasets. Our cohort primarily presented with blood Hg levels <0.1 micrograms (µg) per kg bodyweight (96.5%) that are considered normal and subtoxic. Increased ethnic KD risk was significantly associated with both increasing levels and detection rates of blood Hg or cadmium (Cd) in a linear dose-responsive manner between ethnic African, Asian, Caucasian, and Hispanic children in the US (p ≤ 0.05). Increasing low-dose exposure to Hg or Cd may induce KD or contribute to its later development in susceptible children. However, our preliminary results require further replication in other ethnic populations, in addition to more in-depth examination of metal exposure and toxicokinetics. PMID:26742052

  10. Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.).

    Science.gov (United States)

    Jiang, Shuli; Shi, Chunhai; Wu, Jianguo

    2012-06-01

    The contents of arsenic, mercury, lead and cadmium in milled rice were determined. Among 216 genotypes, the As, Hg, Pb and Cd contents were ranged from 5.06 to 296.45, 2.46 to 65.85, 4.16 to 744.95 and 5.91 to 553.40 ng/g, respectively. Six genotypes with lower contents of toxic metal elements were selected. The averages of As and Pb contents for indica rice were higher than those of japonica rice, while the averages of Hg and Cd contents were in contrast. Compared with white brown rice, the milled rice from black and red brown rice contained lower contents of four elements. Significant negative correlation was found between As content and alkaline spread value. Significant correlations were observed between As and aspartic acid (Asp) content, Hg and Asp or leucine contents, Pb and cysteine or methionine contents. Cd content was significantly negatively correlated with protein and 14 amino acid contents.

  11. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  12. Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination

    Directory of Open Access Journals (Sweden)

    Jeane A. Almeida

    Full Text Available The objective of this study was to investigate the possible link between cadmium exposure, hepatic markers of oxidative stress and aggressive behavior in Nile tilapia (Oreochromis niloticus. Fish were first exposed to 0.75 mg/L CdCl2 for 15 days (12 isolated fish for each group and afterward a behavioral test was performed. Fish from the control and cadmium-exposed groups were paired for 1 h (6 pairs of fish per group for determination of aggressiveness parameters. Immediately after the behavioral test, the animals were sacrificed and the liver was used to determine biochemical parameters. Cadmium decreased aggression in Nile tilapia. Subordinate animals exposed to cadmium showed decreased glutathione peroxidase (GSH-Px activity compared to dominant ones. No alterations were observed in selenium-dependent glutathione peroxidase Se-GSH-P and Cu-Zn superoxide dismutase activities, but total superoxide dismutase activity was increased in subordinate animals exposed to cadmium compared to subordinate control. Catalase activity was increased in cadmium-exposed fish. Lipoperoxide concentrations also increased in cadmium exposed fish indicating that cadmium toxicity may affect oxidative stress biomarkers in Nile tilapia. Social stress induced lipoperoxidation in Nile tilapia, and subordinate animals exposed to cadmium responded with lower activities of liver antioxidant enzymes compared to dominant fish. The present study shows that cadmium exposure is capable of inducing changes in the social status and oxidative stress parameters in this species.

  13. Quaternary oxide halides of group 15 with zinc and cadmium

    International Nuclear Information System (INIS)

    Rueck, Nadia

    2014-01-01

    The present thesis ''Quaternary oxide halides of group 15 with zinc and cadmium'' deals with the chemical class of oxide halides, which contain d-block element cations and pnicogens. Over the past few years compounds containing pnicogene cations are intensively investigated. The reason for this is the free electron pair of the Pn"3"+ cation, which is responsible for some interesting properties. Free electron pairs do not only impact the spatial structure of molecules but also the properties of materials. The object of this work was the synthesis and characterization of compounds containing Pn"3"+ cations with free electron pairs. Due to the structure-determining effect of these free electron pairs and in combination with halides it is possible to synthesize compounds with low-dimensional structures like chains and layers. In these compounds the structure is separated into halophilic and chalcophilic sub-structures, which are held together only by weak Van der Waals forces.

  14. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    Science.gov (United States)

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment

    Energy Technology Data Exchange (ETDEWEB)

    Balmuri, Sricharani Rao [Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Selvaraj, Uthra [Department of Biotechnology, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Kumar, Vadivel Vinod [Department of Chemistry, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Anthony, Savarimuthu Philip, E-mail: philip@biotech.sastra.edu [Department of Chemistry, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Tsatsakis, Aristides Michael [Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003 (Greece); Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690990 (Russian Federation); Golokhvast, Kirill Sergeevich [Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690990 (Russian Federation); Raman, Thiagarajan, E-mail: raman@biotech.sastra.edu [Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India)

    2017-01-15

    Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH){sub 2} without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare the toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd{sup 2+} ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd{sup 2+} ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd{sup 2+} from sources such as cigarette smoke. - Highlights:

  16. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment

    International Nuclear Information System (INIS)

    Balmuri, Sricharani Rao; Selvaraj, Uthra; Kumar, Vadivel Vinod; Anthony, Savarimuthu Philip; Tsatsakis, Aristides Michael; Golokhvast, Kirill Sergeevich; Raman, Thiagarajan

    2017-01-01

    Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH) 2 without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare the toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd 2+ ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd 2+ ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd 2+ from sources such as cigarette smoke. - Highlights: • Toxicity of Cd

  17. Impact of synbiotic diets including inulin, Bacillus coagulans and Lactobacillus plantarum on intestinal microbiota of rat exposed to cadmium and mercury

    Directory of Open Access Journals (Sweden)

    Dornoush Jafarpour

    2015-09-01

    Full Text Available The aim of this study was to investigate the efficacy of two probiotics and a prebiotic (inulin on intestinal microbiota of rats exposed to cadmium and mercury. Fifty-four male Wistar rats were randomly divided into nine groups. All groups except control group were fed standard rat chow with 5% inulin and treated as follows: i control (standard diet, ii Lactobacillus plantarum- treated group (1×109 CFU/day, iii Bacillus coagulans-treated group (1×109 spores/day, iv cadmium-treated group (200 μg/rat/day, v L. plantarum and cadmium-treated group, vi B. coagulans and cadmium-treated group, vii mercury-treated group (10 μg/rat/day, viii L. plantarum and mercurytreated group, ix B. coagulans and mercurytreated group. Cadmium, mercury and probiotics were daily gavaged to individual rats for 42 days. Treatment effects on intestinal microbiota composition of rats were determined. Data showed that cadmium and mercury accumulation in rat intestine affected the gastrointestinal tract and had a reduction effect on all microbial counts (total aerobic bacteria, total anaerobic bacteria, total Lactic acid bacteria, L. plantarum and B. coagulans counts compared to the control group. It was also observed that application of synbiotics in synbiotic and heavy metals-treated groups had a significant effect and increased the number of fecal bacteria compared to the heavy metals groups. Based on our study, it can be concluded that L. plantarum and B. coagulans along with prebiotic inulin play a role in protection against cadmium and mercury inhibitory effect and have the potential to be a beneficial supplement in rats’ diets.

  18. Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays

    International Nuclear Information System (INIS)

    Ooi, Michelle S.M.; Townsend, Kathy A.; Bennett, Michael B.; Richardson, Anthony J.; Fernando, Daniel; Villa, Cesar A.; Gaus, Caroline

    2015-01-01

    Highlights: • Branchial plate and muscle tissue from mobulid rays were analysed for certain metals. • Mean concentrations of cadmium in Mobula japanica were above the EC ML. • Mean inorganic arsenic concentration in Mobula japanica muscle equalled the FSANZ ML. • Mean concentration of lead in Manta alfredi muscle tissue exceeded EC and Codex MLs. • There were significant correlations between the types of tissues for some metals. - Abstract: Mobulid rays are targeted in fisheries for their branchial plates, for use in Chinese medicine. Branchial plate and muscle tissue from Mobula japanica were collected from fish markets in Sri Lanka, and muscle tissue biopsies from Manta alfredi in Australia. These were analysed for arsenic, cadmium, lead and mercury and compared to maximum levels (MLs) set by Food Standards Australia and New Zealand (FSANZ), European Commission (EC) and Codex Alimentarius Commission. The estimated intake for a vulnerable human age group was compared to minimal risk levels set by the Agency for Toxic Substances and Disease Registry. The mean inorganic arsenic concentration in M. japanica muscle was equivalent to the FSANZ ML while cadmium exceeded the EC ML. The mean concentration of lead in M. alfredi muscle tissue exceeded EC and Codex MLs. There were significant positive linear correlations between branchial plate and muscle tissue concentrations for arsenic, cadmium and lead

  19. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Tadjarodi, A., E-mail: tajarodi@iust.ac.ir [Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Imani, M. [Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. {yields} Mechanochemical method is a simple and low-cost to synthesize nanomaterials. {yields} The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. {yields} SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. {yields} The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 {sup o}C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  20. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    International Nuclear Information System (INIS)

    Tadjarodi, A.; Imani, M.

    2011-01-01

    Highlights: → A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. → Mechanochemical method is a simple and low-cost to synthesize nanomaterials. → The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. → SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. → The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 o C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  1. Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura city, Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Mortada, Waelin I.; Sobh, Mohamed A.; El-Defrawy, Mohamed M.; Farahat, Sami E.

    2002-01-01

    A random sample of 68 males and 25 females who reside in Mansoura city, Egypt, was examined for concentrations of cadmium, lead, and mercury in blood, urine, hair, and nails. The effect of gender and smoking on such levels was studied. The influence of dental amalgam on the levels of mercury in these biological samples were also examined. The results obtained show that only blood lead, which increased among males, was affected by gender. Blood levels of cadmium and lead as well as hair lead appeared to increase with smoking habit. Mercury levels in blood and urine were related to the presence of dental amalgam fillings. International comparisons between our results and the corresponding levels in other localities in the world showed that there ere environmentally related variations in terms of cadmium levels in hair, lead levels in blood, urine, hair, and nails, and mercury levels in blood, air, and nails. In conclusion, reference intervals of cadmium, lead, and mercury in the biological samples are environmentally related parameters. Some factors, such as gender, smoking habit, and the presence of dental amalgam fillings, may affect such levels and therefore should be considered

  2. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    International Nuclear Information System (INIS)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-01-01

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure

  3. Arsenic, cadmium, lead and mercury in canned sardines commercially available in eastern Kentucky, USA

    International Nuclear Information System (INIS)

    Shiber, John G.

    2011-01-01

    Research highlights: → Total As, Cd, Pb and Hg in canned sardines within ranges of other studies. → As highest in samples from Norway (1.87 μg/g) and Thailand (1.63 μg/g). → Cd highest in Moroccan (0.07 μg/g), Pb in Canadian (0.27 μg/g); Hg not detected. → Lack of established limits for As and Cd in fish restricts interpretation of results. → Rise of small pelagics in human diet warrants more scrutiny on their metal content. - Abstract: Seventeen samples of canned sardines, originating from six countries and sold in eastern Kentucky, USA, were analyzed in composites of 3-4 fish each for total arsenic (As), cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrophotometry (AAS) and for mercury (Hg) by thermal decomposition amalgamation and AAS. Results in μg/g wet: As 0.49-1.87 (mean: 1.06), Cd < 0.01-0.07 (0.03), Pb < 0.06-0.27 (0.11), Hg ND < 0.09. Values fall generally within readings reported by others, but no internationally agreed upon guidelines have yet been set for As or Cd in canned or fresh fish. The incidence of cancers and cardiovascular diseases associated with As ingestion is extraordinarily high here. With the role of food-borne As in human illness presently under scrutiny and its maximum allowable limits in fish being reviewed, more studies of this nature are recommended, especially considering the potential importance of small pelagic fishes as future seafood of choice.

  4. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  5. Total mercury, cadmium and lead levels in main export fish of Sri Lanka.

    Science.gov (United States)

    Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I

    2014-01-01

    Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb.

  6. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stephani [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Arora, Monica [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States); Fernandez, Cristina [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States); Landero, Julio; Caruso, Joseph [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States); Chen, Aimin, E-mail: aimin.chen@uc.edu [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)

    2013-10-15

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.

  7. Time trends in burdens of cadmium, lead, and mercury in the population of northern Sweden

    International Nuclear Information System (INIS)

    Wennberg, Maria; Lundh, Thomas; Bergdahl, Ingvar A.; Hallmans, Goeran; Jansson, Jan-Hakan; Stegmayr, Birgitta; Custodio, Hipolito M.; Skerfving, Staffan

    2006-01-01

    The time trends of exposure to heavy metals are not adequately known. This is a worldwide problem with regard to the basis for preventive actions and evaluation of their effects. This study addresses time trends for the three toxic elements cadmium (Cd), mercury (Hg), and lead (Pb). Concentrations in erythrocytes (Ery) were determined in a subsample of the population-based MONICA surveys from 1990, 1994, and 1999 in a total of 600 men and women aged 25-74 years. The study took place in the two northernmost counties in Sweden. To assess the effect of changes in the environment, adjustments were made for life-style factors that are determinants of exposure. Annual decreases of 5-6% were seen for Ery-Pb levels (adjusted for age and changes in alcohol intake) and Ery-Hg levels (adjusted for age and changes in fish intake). Ery-Cd levels (adjusted for age) showed a similar significant decrease in smoking men. It is concluded that for Pb and maybe also Hg the actions against pollution during recent decades have caused a rapid decrease of exposure; for Hg the decreased use of dental amalgam may also have had an influence. For Cd, the decline in Ery-Cd was seen only in smokers, indicating that Cd exposure from tobacco has decreased, while other environmental sources of Cd have not changed significantly. To further improve the health status in Sweden, it is important to decrease the pollution of Cd, and actions against smoking in the community are important

  8. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    Science.gov (United States)

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  9. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children.

    Science.gov (United States)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-10-01

    There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5-8, 9-12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07-5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. © 2013 Published by Elsevier Inc.

  10. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children

    Science.gov (United States)

    Chen, Zhu; Myers, Robert; Wei, Taiyin; Bind, Eric; Kassim, Prince; Wang, Guoying; Ji, Yuelong; Hong, Xiumei; Caruso, Deanna; Bartell, Tami; Gong, Yiwei; Strickland, Paul; Navas-Acien, Ana; Guallar, Eliseo; Wang, Xiaobin

    2015-01-01

    There is an emerging hypothesis that exposure to cadmium (Cd), mercury (Hg), lead (Pb), and selenium (Se) in utero and early childhood could have long-term health consequences. However, there are sparse data on early life exposures to these elements in US populations, particularly in urban minority samples. This study measured levels of Cd, Hg, Pb, and Se in 50 paired maternal, umbilical cord, and postnatal blood samples from the Boston Birth Cohort (BBC). Maternal exposure to Cd, Hg, Pb, and Se was 100% detectable in red blood cells (RBCs), and there was a high degree of maternal–fetal transfer of Hg, Pb, and Se. In particular, we found that Hg levels in cord RBCs were 1.5 times higher than those found in the mothers. This study also investigated changes in concentrations of Cd, Hg, Pb, and Se during the first few years of life. We found decreased levels of Hg and Se but elevated Pb levels in early childhood. Finally, this study investigated the association between metal burden and preterm birth and low birthweight. We found significantly higher levels of Hg in maternal and cord plasma and RBCs in preterm or low birthweight births, compared with term or normal birthweight births. In conclusion, this study showed that maternal exposure to these elements was widespread in the BBC, and maternal–fetal transfer was a major source of early life exposure to Hg, Pb, and Se. Our results also suggest that RBCs are better than plasma at reflecting the trans-placental transfer of Hg, Pb, and Se from the mother to the fetus. Our study findings remain to be confirmed in larger studies, and the implications for early screening and interventions of preconception and pregnant mothers and newborns warrant further investigation. PMID:24756102

  11. Absorption and excretion of zinc, cadmium and mercury in the gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, H [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-10-01

    The absorption and excretion of inorganic zinc, cadmium and mercury in the gastrointestinal tract were compared using /sup 65/Zn, /sup 109/Cd and /sup 203/Hg. A single dose of /sup 65/Zn, /sup 109/Cd or /sup 203/Hg was administered orally or injected intravenously to investigate the distribution, excretion into bile and excretion into feces or urine. Absorption and excretion through the gastrointestinal tract of mice were studied by the tied loop method. Groups of eight mice or rats were used to measure the radioactivity in sample with a scintillation counter. Most of the orally administered /sup 65/Zn, /sup 109/Cd or /sup 203/Hg was excreted into feces and was less absorbed by the gastrointestinal tract, respectively. Absorption rate in the gastrointestinal tract was as follows: /sup 203/Hg>/sup 65/Zn>/sup 109/Cd. Intravenously injected /sup 65/Zn, /sup 109/Cd or /sup 203/Hg was escreted into the gastrointestinal tract through the gastrointestinal wall and bile duct, respectively. Excretion rate in the gastrointestinal tract was as follows: /sup 65/Zn>/sup 203/Hg>/sup 109/Cd. When comparing the absorption and excretion in each gastrointestinal tract divided into 10 parts, /sup 65/Zn, and /sup 109/Cd were relatively well absorbed from the upper and lower part of small intestine and excreted into the upper, middle, lower part. /sup 203/Hg was relatively well absorbed from the upper, lower part of small intestine and excreted into the stomach and the caecum. The major organs that accumulated absorbed /sup 65/Zn, /sup 109/Cd or /sup 203/Hg were the pancreas and liver, liver and kidney, kidney and liver, respectively.

  12. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed; Dakhel, A; El-Hilo, : Mohammad; Anjum, Dalaver H.; Kanoun, Mohammed Benali; Goumri-Said, Souraya

    2015-01-01

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves

  13. Association of lead, cadmium and mercury with paraoxonase 1 activity and malondialdehyde in a general population in Southern Brazil.

    Science.gov (United States)

    Almeida Lopes, Ana Carolina Bertinde; Urbano, Mariana Ragassi; Souza-Nogueira, André de; Oliveira-Paula, Gustavo H; Michelin, Ana Paula; Carvalho, Maria de Fátima H; Camargo, Alissana Ester Iakmiu; Peixe, Tiago Severo; Cabrera, Marcos Aparecido Sarria; Paoliello, Monica Maria Bastos

    2017-07-01

    Metal exposure is associated with increased oxidative stress (OS), which is considered an underlying mechanism of metal-induced toxicity. Malondialdehyde (MDA) is a final product of lipid peroxidation, and it has been extensively used to evaluate metal-induced OS. Pro-oxidant effects produced by metals can be mitigated by paraoxonase 1 (PON1), an antioxidant enzyme known to prevent cardiovascular disease and atherosclerosis. Among other factors, the Q192R polymorphism and the exposure to heavy metals have been known to alter PON1 activity. Here, we evaluated the association of blood lead (Pb), cadmium (Cd) and mercury (Hg) levels with PON1 activity, and with MDA concentrations in a randomly selected sample of Brazilian adults aged 40 years or older, living in an urban area in Southern Brazil. A total of 889 subjects were evaluated for blood Pb and Cd levels, and 832 were tested for Hg. Geometric mean of blood Pb, Cd and Hg was 1.93μg/dL, 0.06μg/L and 1.40μg/L, respectively. PON1 activity was significantly different among various genotypes: QQ (PON1=121.4U/mL), QR (PON1=87.5U/mL), and RR (PON1=55.2U/mL), p<0.001. PON1 genotypes were associated only with Cd blood levels. Those with QR genotype had Cd concentrations higher (0.07μg/L) than those with the RR genotype (0.04μg/L) with p=0.034. However, PON1 activity was not significantly associated with metal concentrations. Cluster analysis showed that men who reported to be current smokers and drinkers with higher blood Pb and Cd levels, had significantly lower PON1 activity than non-smokers or -drinkers, and women with lower Pb and Cd levels. RR genotype carriers had lower PON1 activity than those with the QR genotype, and had higher levels of Pb and Cd compared with other genotype carriers. For blood Hg, no association with PON1 activity or genotype was noted. We found low levels of Pb, Cd and Hg in environmentally exposed Brazilian adults. Cd concentrations were increased in subjects with QR genotype. Those with

  14. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  15. Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): a cross-sectional study

    Science.gov (United States)

    Fontaine, Julie; Dewailly, Éric; Benedetti, Jean-Louis; Pereg, Daria; Ayotte, Pierre; Déry, Serge

    2008-01-01

    Background Arctic populations are exposed to mercury, lead and cadmium through their traditional diet. Studies have however shown that cadmium exposure is most often attributable to tobacco smoking. The aim of this study is to examine the trends in mercury, lead and cadmium exposure between 1992 and 2004 in the Inuit population of Nunavik (Northern Québec, Canada) using the data obtained from two broad scale health surveys, and to identify sources of exposure in 2004. Methods In 2004, 917 adults aged between 18 and 74 were recruited in the 14 communities of Nunavik to participate to a broad scale health survey. Blood samples were collected and analysed for metals by inductively coupled plasma mass spectrometry, and dietary and life-style characteristics were documented by questionnaires. Results were compared with data obtained in 1992, where 492 people were recruited for a similar survey in the same population. Results Mean blood concentration of mercury was 51.2 nmol/L, which represent a 32% decrease (p < 0.001) between 1992 and 2004. Mercury blood concentrations were mainly explained by age (partial r2 = 0.20; p < 0.0001), and the most important source of exposure to mercury was marine mammal meat consumption (partial r2 = 0.04; p < 0.0001). In 2004, mean blood concentration of lead was 0.19 μmol/L and showed a 55% decrease since 1992. No strong associations were observed with any dietary source, and lead concentrations were mainly explained by age (partial r2 = 0.20.; p < 0.001). Blood cadmium concentrations showed a 22% decrease (p < 0.001) between 1992 and 2004. Once stratified according to tobacco use, means varied between 5.3 nmol/L in never-smokers and 40.4 nmol/L in smokers. Blood cadmium concentrations were mainly associated with tobacco smoking (partial r2 = 0.56; p < 0.0001), while consumption of caribou liver and kidney remain a minor source of cadmium exposure among never-smokers. Conclusion Important decreases in mercury, lead and cadmium exposure

  16. Isolation, identification and cadmium adsorption of a high cadmium ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 1School of Minerals Processing and Bioengineering, Central South University, Changsha, ... Cadmium is a non-essential ... (1994) reported that cadmium might interact ... uptake of cadmium, lead and mercury (Svecova et al.,.

  17. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    International Nuclear Information System (INIS)

    Tsipoura, Nellie; Burger, Joanna; Newhouse, Michael; Jeitner, Christian; Gochfeld, Michael; Mizrahi, David

    2011-01-01

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean ±SE 4.29±0.30 μg/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161±36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910±386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249±44.7 ng/g) and eggs (161±36.7 ng/g) may pose a risk if consumed

  18. Investigation of the lead-, mercury- and cadmium concentration found in red deer, deer and chamois in an tyrolian preserve

    International Nuclear Information System (INIS)

    Bischof, E.

    1984-05-01

    The concentrations of heavy metals, lead, mercury and cadmium were tested in liver, kidney and rib samples taken from 43 red deer, 24 deer and 42 chamois between June 1982 and June 1983. Since the free living animals aquire the damaging substances through food, water and air intake, the determined sediments found in the bodies give information on the environmental pollution. The lead content in liver and kidney showed minimal values averraging between 0.001 and 0.014 ppm in all three animal types. Ribs, as well as all bones, due to the effect of time, served as reservoirs for lead with average values of 0.2-0.4ppm. In two chamois livers the maximal values of 3.007 and 1.006 ppm were detected and can be accounted for in a secondary contaminated originating from the lethal projectile. In reference to age and sex, no differences could be seen. A seasonal dependency was determined such that the concentration increased in spring and summer in examined livers and kidneys. The rumen content and grazing habit analysis showed minimal residue amounts as in the indicator organs. This lies in connection with the locality of the hunting grounds compared to the road. The mercury content in liver and kidney was of the maximal value 0.449 ppm. Deer showed the greatest contamination in the kidneys, which were surprisingly high in the fall. After rumen content and grazing analysis, the high value can be accounted for the deer's preference to eat mushrooms in the fall which contained an average 1.029 ppm Hg. Changes in concentrations could not be determined to be sex and age dependet. The cadmium concentration was highest in the kidney cortex in all three animal types. A highly significant dependency should be observed in the cadmium concentration. Deer showed the greatest amounts in each age class, which can be referred back to the grazing habits, to the preferred herbs and mushrooms which have high cadmium contents. Due to the strong influence of the age factor in cadmium storage

  19. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  20. Hair mercury and urinary cadmium levels in Belgian children and their mothers within the framework of the COPHES/DEMOCOPHES projects

    DEFF Research Database (Denmark)

    Pirard, Catherine; Koppen, Gudrun; De Cremer, Koen

    2014-01-01

    A harmonized human biomonitoring pilot study was set up within the frame of the European projects DEMOCOPHES and COPHES. In 17 European countries, biomarkers of some environmental pollutants, including urinary cadmium and hair mercury, were measured in children and their mothers in order to obtai...

  1. Role of oxidative stress in cadmium toxicity and carcinogenesis

    International Nuclear Information System (INIS)

    Liu Jie; Qu Wei; Kadiiska, Maria B.

    2009-01-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-κB, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  2. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2016-01-01

    Full Text Available Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg, and cadmium plus CNFE (0.5, 1, 2 g/kg for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis.

  3. Estimation of Seasonal Risk Caused by the Intake of Lead, Mercury and Cadmium through Freshwater Fish Consumption from Urban Water Reservoirs in Arid Areas of Northern Mexico

    Directory of Open Access Journals (Sweden)

    Myrna Nevárez

    2015-02-01

    Full Text Available Bioavailability and hence bioaccumulation of heavy metals in fish species depends on seasonal conditions causing different risks levels to human health during the lifetime. Mercury, cadmium and lead contents in fish from Chihuahua (Mexico water reservoirs have been investigated to assess contamination levels and safety for consumers. Muscle samples of fish were collected across the seasons. Lead and cadmium were analyzed by inductively coupled plasma-optical emission spectrometry, and mercury by cold-vapor atomic absorption spectrometry. The highest concentrations of cadmium (0.235 mg/kg, mercury (0.744 mg/kg and lead (4.298 mg/kg exceeded the maximum levels set by European regulations and Codex Alimentarius. Lead concentrations found in fish from three water reservoirs also surpassed the limit of 1 mg/kg established by Mexican regulations. The provisional tolerable weekly intake (PTWI suggested by the World Health Organization for methyl mercury (1.6 µg/kg bw per week was exceeded in the spring season (1.94 µg/kg bw per week. This might put consumers at risk of mercury poisoning.

  4. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  5. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.

  6. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  7. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  8. The determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium and thallium in six NIMROC reference materials

    International Nuclear Information System (INIS)

    Lee, A.F.

    1981-01-01

    A previously reported procedure has been extended to include the determination of thallium. In samples where thallium occurred in the presence of relatively high concentrations of cadmium, the stripping peak for cadmium was first suppressed with non-ionic surface-active agent, Triton X-100. Cadmium and thallium were determined directly in six NIMROC reference materials without interference from iron(III), in a reducing electrolyte, which is also a complexing agent, consisting of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. Interelement interferences were eliminated by the use of a mercury-film electrode of adequate thickness. The limits of detection for cadmium were 10ng/g and those for thallium 20ng/g

  9. Growth, optical, electrical and photoconductivity studies of a novel nonlinear optical single crystal: Mercury cadmium chloride thiocyanate

    Science.gov (United States)

    Kumar, S. M. Ravi; Selvakumar, S.; Sagayaraj, P.; Anbarasi, A.

    2015-02-01

    SCN- ligand based organometallic non-linear optical mercury cadmium chloride thiocyanate (MCCTC) crystals are grown from water plus methanol mixed solvent by slow evaporation technique. The grown crystals are confirmed by single crystal X-ray diffraction analysis which reveals that the MCCTC belongs to rhombohedral system with R3c space group. MCCTC exhibits a SHG efficiency which is nearly 17 times more than that of KDP. The dielectric constant, dielectric loss measurements of the sample have been carried out for different frequencies (100 Hz to 5 MHz) and, temperatures (308 to 388 K) and the results are discussed. Photoconductivity study confirms that the title compound possesses negative photoconducting nature. The surface morphology of MCCTC was also investigated

  10. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China.

    Science.gov (United States)

    Fang, Yong; Sun, Xinyang; Yang, Wenjian; Ma, Ning; Xin, Zhihong; Fu, Jin; Liu, Xiaochang; Liu, Meng; Mariga, Alfred Mugambi; Zhu, Xuefeng; Hu, Qiuhui

    2014-03-15

    In this study, four common heavy metals, lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) in rice and edible mushrooms of China were studied to evaluate contamination level and edible safety. Ninety two (92) rice samples were collected from the main rice growing regions in China, and 38 fresh and 21 dry edible mushroom samples were collected from typical markets in Nanjing City. The analyzed metal concentrations were significantly different between rice and edible mushroom samples (price samples respectively, were above maximum allowable concentration (MAC). In fresh edible mushroom, Pb and Hg contents in 2.6% samples were above MAC, respectively. However, only Hg content in 4.8% dry edible mushroom samples was above its MAC. Therefore, more than 95% rice and edible mushroom samples in our test had high edible safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mercury, arsenic, cadmium, chromium lead, and selenium in feathers of pigeon guillemots (Cepphus columba) from Prince William Sound and the Aleutian Islands of Alaska

    International Nuclear Information System (INIS)

    Burger, Joanna; Gochfeld, Michael; Sullivan, Kelsey; Irons, David

    2007-01-01

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of pigeon guillemots (Cepphus columba) from breeding colonies in Prince William Sound and in the Aleutian Islands (Amchitka, Kiska) to test the null hypothesis that there were no differences in metal levels as a function of location, gender, or whether the birds were from oiled or unoiled areas in Prince William Sound. Birds from locations with oil from the Exxon Valdez Oil Spill in the environment had higher levels of cadmium and lead than those from unoiled places in Prince William Sound, but otherwise there were no differences in metal levels in feathers. The feathers of pigeon guillemots from Prince William Sound had significantly higher levels of cadmium and manganese, but significantly lower levels of mercury than those from Amchitka or Kiska in the Aleutians. Amchitka had the lowest levels of chromium, and Kiska had the highest levels of selenium. There were few gender-related differences, although females had higher levels of mercury and selenium in their feathers than did males. The levels of most metals are below the known effects levels, except for mercury and selenium, which are high enough to potentially pose a risk to pigeon guillemots and to their predators

  12. Comparative analysis of concentrations of lead, cadmium and mercury in cord blood, maternal blood, and breast milk, as well as persistent chlorinated hydrocarbons in maternal milk samples from Germany and Iran

    International Nuclear Information System (INIS)

    Javanmardi, F.

    2001-01-01

    The concentration of the heavy metals lead, cadmium and mercury in cord blood, maternal blood and breast milk has been studied. Lead and cadmium were analyzed by atomic absorption spectrometry. Mercury was determined using the flow-injection hydride technique. According to the concentrations of heavy metals and chlorinated hydrocarbons we ascertained for the region of Rendsburg, the toxic risk for infants relative to the consumption of contaminated maternal milk can be viewed as very slight. (orig.) [de

  13. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.

    Science.gov (United States)

    Park, Jiyoung; Song, Won-Yong; Ko, Donghwi; Eom, Yujin; Hansen, Thomas H; Schiller, Michaela; Lee, Tai Gyu; Martinoia, Enrico; Lee, Youngsook

    2012-01-01

    Heavy metals such as cadmium (Cd) and mercury (Hg) are toxic pollutants that are detrimental to living organisms. Plants employ a two-step mechanism to detoxify toxic ions. First, phytochelatins bind to the toxic ion, and then the metal-phytochelatin complex is sequestered in the vacuole. Two ABCC-type transporters, AtABCC1 and AtABCC2, that play a key role in arsenic detoxification, have recently been identified in Arabidopsis thaliana. However, it is unclear whether these transporters are also implicated in phytochelatin-dependent detoxification of other heavy metals such as Cd(II) and Hg(II). Here, we show that atabcc1 single or atabcc1 atabcc2 double knockout mutants exhibit a hypersensitive phenotype in the presence of Cd(II) and Hg(II). Microscopic analysis using a Cd-sensitive probe revealed that Cd is mostly located in the cytosol of protoplasts of the double mutant, whereas it occurs mainly in the vacuole of wild-type cells. This suggests that the two ABCC transporters are important for vacuolar sequestration of Cd. Heterologous expression of the transporters in Saccharomyces cerevisiae confirmed their role in heavy metal tolerance. Over-expression of AtABCC1 in Arabidopsis resulted in enhanced Cd(II) tolerance and accumulation. Together, these results demonstrate that AtABCC1 and AtABCC2 are important vacuolar transporters that confer tolerance to cadmium and mercury, in addition to their role in arsenic detoxification. These transporters provide useful tools for genetic engineering of plants with enhanced metal tolerance and accumulation, which are desirable characteristics for phytoremediation. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. Investigate of atmospheric arsenic, cadmium, chromium, lead, and mercury levels in moss species found around Zilkale, by EDXRF Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Akçay, Nilay, E-mail: nilay.akcay@erdogan.edu.tr [Recep Tayyip Erdoğan University, Faculty of Art and Science, Department of Physics, Rize (Turkey); Batan, Nevzat, E-mail: nbatan@ktu.edu.tr [Karadeniz Technical University, Maçka Vocational School, Trabzon (Turkey); Çinar, Yunus, E-mail: yunus.cinar@erdogan.edu.tr [Recep Tayyip Erdoğan University, Vocational School of Technical Studies, Rize (Turkey)

    2016-04-18

    Zilkale is a castle located in Fırtına Valley and it is one of the most important historical structures in Çamlihemşin district of Rize Province in the Black Sea Region of Turkey. The castle surrounded by very high mountains that poke up into the clouds, and it rains here all year round. Tourism businesses or industrial plants are not so much there yet. In recent years, Zilkale region has begun the attract tourist, people on treaking holidays in the Kaçkar. But many domestic and foreign tourists come to this region by own car or tour buses. The aim of this study is to investigate the atmospheric concentrations of arsenic, cadmium, chromium, lead, and mercury levels in five different moss species collected around Zilkale by using Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometry. The average concentrations of heavy metals in moss samples ranged from 0.79-4.63 ppm for arsenic, 54.47-143.39 ppm for chromium, 39.97-81.03 ppm for lead. The values of cadmium and mercury were found below the detection limit. This study has shown that Hypnum cupressiforme, Abietinella abietina, Rhytidium rugosum, Plagiomnium undulate, and Thuidium tamariscinum samples collected around Zilkale were used to assess the potential contamination of atmospheric As, Cd, Cr, Pb, Hg contamination in the region and made important contributions toward the understanding of atmospheric As, Cd, Cr, Pb, Hg baseline data can be used for identification of changes in the levels of these heavy metals in the studied area.

  15. Expression of Leaf Proteins in Two Cultivars of Bread Wheat under Cadmium and Mercury Stress Using Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    S. Y. Raeesi Sadati

    2016-02-01

    Full Text Available Wheat is an important source of human food. Cadmium and mercury bind to sulfhydryl groups of structural proteins and enzymes and cause inhibition in activity and decrease in protein production or interfere with the regulation of the enzymes. To study the effect of protein expression under different levels of cadmium and mercury, the experiment was conducted in a completely randomized design with three replications in Mohaghegh Ardabili University, Ardabil, Iran. Experimental factors consisted of two Gonbad and Tajan bread what cultivars, heavy metals in seven levels (four concentrations of mercuric chloride in 5, 10, 15 and 20 µM and cadmium chloride at two concentrations of 0.25 and 0.5 mM and sampling time after 8 and 16 hours of treatment. The Bradford method was used for quantitative analysis of proteins and 12% SDS-PAGE and two dimensional electrophorese techniques were hired for analysis of their expression. The results showed that under cadmium and mercury stresses, the total protein content increased compared to the control. Two-dimensional electrophoresis of proteins under cadmium stress showed differential expression of the protein spots on the plant leaves, than the control. In general, changes in the expression of proteins under the effect of cadmium stress were divided into two main categories: Spots 9, 10, 13, 14 and 16 belonged to proteins with reduced expression and the spots 1, 2, 8, 19 and 20 belonged to proteins with increased expression, in comparison to non-stressed control. These spots of up regulated proteins were directly related to the defense system against the heavy metal stress.

  16. Cadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, Brazil.

    Science.gov (United States)

    de Paiva, Esther Lima; Morgano, Marcelo Antonio; Milani, Raquel Fernanda

    2017-09-01

    The objective of this work was to determine levels of inorganic contaminants in 30 samples of five commercial brands of canned tuna, acquired on the local market in Campinas, São Paulo, Brazil, in the year of 2015. Total mercury and methylmercury (MeHg+) were determined by atomic absorption with thermal decomposition and amalgamation; and cadmium, lead, and tin were determined by inductively coupled plasma optical emission spectrometry. Results indicated that 20% of the tuna samples surpassed limits determined by the Brazilian and European Commission legislation for cadmium; for lead, the maximum value found was 59 µg kg -1 and tin was not detected in any samples. The maximum values found for total Hg and MeHg+ were 261 and 258 µg kg -1 , respectively. As from the results obtained, it was estimated that the consumption of four cans per week (540 g) of tuna canned in water could surpass the provisional tolerable monthly intake for MeHg + by 100%.

  17. Bioassessment of mercury, cadmium, polychlorinated biphenyls, and pesticides in the Upper Mississippi River with zebra mussels (Dreissena polymorpha)

    Energy Technology Data Exchange (ETDEWEB)

    Cope, W.G.; Bartsch, M.R.; Rada, R.G.; Balogh, S.J.; Rupprecht, J.E.; Young, R.D.; Johnson, D.K.

    1999-12-15

    Zebra mussels (Dreissena polymorpha) were sampled from artificial substrates deployed from May 30 to October 19, 1995, at 19 locks and dams from Minneapolis, MN, to Muscatine, IA. Analyses of composite tissue samples of zebra mussels revealed accumulation of mercury (Hg), cadmium (Cd), and polychlorinated biphenyls (PCBs) during a 143-d exposure period. Concentrations of total Hg ranged from 2.6 to 6.1 ng/g wet weight and methylmercury (CH{sub 3}Hg) from 1.0 to 3.3 ng/g wet weight. About 50% of the mean total Hg in zebra mussels was CH{sub 3}Hg. Cadmium ranged from 76 to 213 ng/g wet weight. Concentrations of total PCBs in zebra mussels varied longitudinally, but the composition of PCB congeners was similar throughout the river. Chlordane and dieldrin were the only two pesticides detected of the 15 analyzed. Zebra mussels are sentinels of contaminant bioavailability in the Upper Mississippi River and may be an important link in the trophic transfer of contaminants in the river because of their increasing importance in the diets of certain fish and waterfowl.

  18. Computational analysis of interfacial attachment kinetics and transport phenomena during liquid phase epitaxy of mercury cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, Igal; Brandon, Simon [Dept. of Chemical Engineering, Technion, Haifa 32000 (Israel); Ben Dov, Anne; Grimberg, Ilana; Klin, Olga; Weiss, Eliezer [SCD-Semi-Conductor Devices, P.O. Box 2250/99, Haifa 31021 (Israel)

    2010-07-01

    Deposition of mercury cadmium telluride (MCT) thin films, on lattice matched cadmium zinc telluride substrates, is often achieved via Liquid Phase Epitaxy (LPE). The yield and quality of these films, required for the production of infrared detector devices, is to a large extent limited by lack of knowledge regarding details of physical phenomena underlying the deposition process. Improving the understanding of these phenomena and their impact on the quality of the resultant films is therefore an important goal which can be achieved through relevant computational and/or experimental studies. We present a combined computational and experimental effort aimed at elucidating physical phenomena underlying the LPE of MCT via a slider growth process. The focus of the presentation will be results generated by a time-dependent three-dimensional model of mass transport, fluid flow, and interfacial attachment kinetics, which we have developed and applied in the analysis of this LPE process. These results, combined with experimental analyses, lead to an improved understanding of the role of different transport and kinetic phenomena underlying this growth process.

  19. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    Science.gov (United States)

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  20. Mercury removal in wastewater by iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Vélez, E; Campillo, G E; Morales, G; Hincapié, C; Osorio, J; Arnache, O; Uribe, J I; Jaramillo, F

    2016-01-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λ max ∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements. (paper)

  1. Concentrations of Mercury, Lead, Chromium, Cadmium, Arsenic and Aluminum in Irrigation Water Wells and Wastewaters Used for Agriculture in Mashhad, Northeastern Iran

    Directory of Open Access Journals (Sweden)

    SR Mousavi

    2013-04-01

    Full Text Available Background: Contamination of water by toxic chemicals has become commonly recognized as an environmental concern. Based on our clinical observation in Mashhad, northeastern Iran, many people might be at risk of exposure to high concentrations of toxic heavy metals in water. Because wastewater effluents as well as water wells have been commonly used for irrigation over the past decades, there has been some concern on the toxic metal exposure of crops and vegetables irrigated with the contaminated water. Objective: To measure the concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Methods: 36 samples were taken from irrigation water wells and a wastewater refinery in North of Mashhad at four times—May 2008, March 2009, and June and July 2010. Atomic absorption spectrometry was used to measure the concentration of toxic metals. Graphite furnace was used for the measurement of lead, chromium, cadmium and aluminum. Mercury and arsenic concentrations were measured by mercury/hydride system. Results: Chromium, cadmium, lead and arsenic concentrations in the samples were within the standard range. The mean±SD concentration of mercury in irrigation wells (1.02±0.40 μg/L exceeded the FAO maximum permissible levels. The aluminum concentration in irrigation water varied significantly from month to month (p=0.03. All wastewater samples contained high mercury concentrations (6.64±2.53 μg/L. Conclusion: For high mercury and aluminum concentrations, the water sources studied should not be used for agricultural use. Regular monitoring of the level of heavy metals in water and employing the necessary environmental interventions in this area are strongly recommended.

  2. Dry deposition of gaseous oxidized mercury in Western Maryland.

    Science.gov (United States)

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  4. Structural information on the coordination compounds formed by manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and mercury(II) thiocyanates with 4-cyanopyridine N-oxide from their magnetic moments, electronic and infrared spectra

    Science.gov (United States)

    Ahuja, I. S.; Yadava, C. L.; Singh, Raghuvir

    1982-05-01

    Coordination compounds formed by the interaction of 4-cyanopyridine. N-oxide (4-CPO), a potentially bidentate ligand, with manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and rnercury(II) thiocyanates have been prepared and characterized from their elemental analyses, magnetic susceptibilities, electronic and infrared spectral studies down to 200 cm -1 in the solid state. The compounds isolated are: Mn(4-CPO) 2(NCS) 2, Co(4-CPO) 2(NCS) 2,Ni(4-CPO) 2(NCS) 2,Zn(4-CPO) 2(NCS) 2, Cd(4-CPO)(NCS) 2 and Hg(4-CPO) 2(SCN) 2. It is shown that 4-CPO acts as a terminal N-oxide oxygen bonded monodentate ligand in all the metal(II) thiocyanate complexes studied. Tentative stereochemistries of the complexes in the solid state are discussed. The ligand field parameters 10 Dq, B, β and λ calculated for the manganese(II), cobalt(II) and nickel(II) complexes are consistent with their proposed stereochemistries.

  5. Defects and properties of cadmium oxide based transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Detert, D. M.; Dubon, O. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Chen, Guibin [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department and Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, Huaiyin Normal University, Jiangsu 223300 (China); Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Chaoping [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Grankowska, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institute of Experimental Physics (IEP UW), Warsaw University, Warsaw (Poland); Hsu, L. [Department of Postsecondary Teaching and Learning, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10{sup 20}/cm{sup 3} and mobility in the range of 40–100 cm{sup 2}/V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O{sub 2} partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10{sup −4} to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10{sup 21 }cm{sup −3} and electron mobility higher than 120 cm{sup 2}/V s can be achieved. Thermal annealing of doped CdO films in N{sub 2} ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited

  6. Defects and properties of cadmium oxide based transparent conductors

    International Nuclear Information System (INIS)

    Yu, Kin Man; Detert, D. M.; Dubon, O. D.; Chen, Guibin; Zhu, Wei; Liu, Chaoping; Grankowska, S.; Hsu, L.; Walukiewicz, Wladek

    2016-01-01

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10 20 /cm 3 and mobility in the range of 40–100 cm 2 /V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O 2 partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10 −4 to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10 21  cm −3 and electron mobility higher than 120 cm 2 /V s can be achieved. Thermal annealing of doped CdO films in N 2 ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of

  7. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

    Directory of Open Access Journals (Sweden)

    Liliana Lazar

    2012-02-01

    Full Text Available The removal of mercury from flue gases in scrubbers is greatly facilitated if the mercury is present as water-soluble oxidized species. Therefore, increased mercury oxidation upstream of scrubber devices will improve overall mercury removal. For this purpose heterogeneous catalysts have recently attracted a great deal of interest. Selective catalytic reduction (SCR, noble metal and transition metal oxide based catalysts have been investigated at both the laboratory and plant scale with this objective. A review article published in 2006 covers the progress in the elemental mercury (Hgel catalytic oxidation area. This paper brings the review in this area up to date. To this end, 110 papers including several reports and patents are reviewed. For each type of catalyst the possible mechanisms as well as the effect of flue gas components on activity and stability are examined. Advantages and main problems are analyzed. The possible future directions of catalyst development in this environmental research area are outlined.

  8. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  9. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  10. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kerdsomboon, Kittikhun; Tatip, Supinda; Kosasih, Sattawat; Auesukaree, Choowong

    2016-05-01

    Moringa oleifera leaves are a well-known source of antioxidants and traditionally used for medicinal applications. In the present study, the protective action of soluble M. oleifera leaf extract (MOLE) against cadmium toxicity was investigated in the model eukaryote Saccharomyces cerevisiae. The results showed that this extract exhibited a protective effect against oxidative stress induced by cadmium and H2O2 through the reduction of intracellular reactive oxygen species. Interestingly, not only the co-exposure of soluble MOLE with cadmium but also pretreatment of this extract prior to cadmium exposure significantly reduced the cadmium uptake through an inhibition of Fet4p, a low-affinity iron(II) transporter. In addition, the supplementation of soluble MOLE significantly reduced intracellular iron accumulation in a Fet4p-independent manner. Our findings suggest the potential use of soluble extract from M. oleifera leaves as a dietary supplement for protection against cadmium accumulation and oxidative stress. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Evaluations of Effective Factors on Efficiency Zinc Oxides Nanoparticles in Cadmium Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-09-01

    Results: The results indicated that the adsorption process is affected by different parameters such as initial pollutant concentrations, adsorbent dose, pH, and contact time and Cadmiumremoval efficiency increases with increasing adsorbent dose and reaction time and decreases with increasing initial concentration of Cadmium. Therefore, it is observed that by raising the initial Cadmium concentration, the adsorption rate increases. The maximum efficiency of adsorptionin pH=7amounted to 89.6%. Conclusion: It is concluded that Zinc Oxide nanoparticles have proper efficiency in removal of Cadmium from aqueous solutions and can be used in the treatment of wastewater that contains ion Cadmium. However, its efficiency is deeply dependent on ion strength and the interaction of other metals in wastewater.

  12. Determination of lead, mercury and cadmium concentrations in different organs of Barbus grypus and Liza abu of Karoon River in 2011

    Directory of Open Access Journals (Sweden)

    A ghorbani ranjbary

    2013-02-01

    Full Text Available Accumulation of heavy metals in fish body causes the destruction of soft tissues and suppression of immune system. Moreover, consumption of contaminated fish causes several consequences in humans. This survey was conducted to determine the concentration of lead, mercury and cadmium in muscle tissue, gill as well as liver of Barbus grypus and Liza abu. These two species are native fishes of Karoon River in Ahvaz area. A total number of 80 sample was obtained during the winter of 2010. After preparation and chemical digestion of fish samples, the amounts of heavy metals were determined by spectrophotometer method. According to the results, the overall lead concentration in different organs of the two species was more than mercury and cadmium concentrations. Furthermore, the accumulation of heavy elements in gills was estimated higher than the other organs. Although a significant difference (P

  13. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...... are still under development and are investigated in this work. A commercial red brass converter was tested at 180°C and it was found that the red brass chips work in nitrogen atmosphere only, but do not work properly under simulated cement kiln flue gas conditions. Test of the red brass converter using only...... elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...

  14. Biomonitoring of Lead, Cadmium, Total Mercury, and Methylmercury Levels in Maternal Blood and in Umbilical Cord Blood at Birth in South Korea

    Science.gov (United States)

    Kim, Yu-Mi; Chung, Jin-Young; An, Hyun Sook; Park, Sung Yong; Kim, Byoung-Gwon; Bae, Jong Woon; Han, Myoungseok; Cho, Yeon Jean; Hong, Young-Seoub

    2015-01-01

    With rising concerns of heavy metal exposure in pregnancy and early childhood, this study was conducted to assess the relationship between the lead, cadmium, mercury, and methylmercury blood levels in pregnancy and neonatal period. The study population included 104 mothers and their children pairs who completed both baseline maternal blood sampling at the second trimester and umbilical cord blood sampling at birth. The geometric mean maternal blood levels of lead, cadmium, total mercury, and methylmercury at the second trimester were 1.02 ± 1.39 µg/dL, 0.61 ± 1.51 µg/L, 2.97 ± 1.45 µg/L, and 2.39 ± 1.45 µg/L, respectively, and in the newborns, these levels at birth were 0.71 ± 1.42 µg/dL, 0.01 ± 5.31 µg/L, 4.44 ± 1.49 µg/L, and 3.67 ± 1.51 µg/L, respectively. The mean ratios of lead, cadmium, total mercury, and methylmercury levels in the newborns to those in the mothers were 0.72, 0.04, 1.76, and 1.81, respectively. The levels of most heavy metals in pregnant women and infants were higher in this study than in studies from industrialized western countries. The placenta appears to protect fetuses from cadmium; however, total mercury and methylmercury were able to cross the placenta and accumulate in fetuses. PMID:26516876

  15. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.

    Science.gov (United States)

    Rangel-Mendez, J R; Streat, M

    2002-03-01

    The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.

  16. Prenatal lead, cadmium and mercury exposure and associations with motor skills at age 7 years in a UK observational birth cohort.

    Science.gov (United States)

    Taylor, Caroline M; Emond, Alan M; Lingam, Raghu; Golding, Jean

    2018-08-01

    Lead and mercury are freely transferred across the placenta, while cadmium tends to accumulate in the placenta. Each contributes to adverse neurological outcomes for the child. Although prenatal heavy metal exposure has been linked with an array of neurodevelopmental outcomes in childhood, its association with the development of motor skills in children has not been robustly studied. The aim of the present study was to investigate the association between prenatal exposure to lead, cadmium and mercury, measured as maternal blood concentrations during pregnancy, and motor skills, measured as subtests of the Movement Assessment Battery for Children (Movement ABC) at age 7 years in a large sample of mother-child pairs enrolled in a UK observational birth cohort study (Avon Longitudinal Study of Parents and Children, ALSPAC). Whole blood samples from pregnant women enrolled in ALSPAC were analysed for lead, cadmium and mercury. In a complete case analysis (n = 1558), associations between prenatal blood concentrations and child motor skills assessed by Movement ABC subtests of manual dexterity, ball skills and balance at 7 years were examined in adjusted regression models. Associations with probable developmental coordination disorder (DCD) were also investigated. The mean prenatal blood levels were: lead 3.66 ± 1.55 μg/dl; cadmium 0.45 ± 0.54 μg/l; mercury 2.23 ± 1.14 μg/l. There was no evidence for any adverse associations of prenatal lead, cadmium or mercury exposure with motor skills measured at age 7 years with Movement ABC subtests in adjusted regression models. Further, there were no associations with probable DCD. There was no evidence to support a role of prenatal exposure to heavy metals at these levels on motor skills in the child at age 7 years measured using the Movement ABC. Early identification of symptoms of motor skills impairment is important, however, to enable investigation, assessment and treatment. Copyright

  17. Geochemical background of zinc, cadmium and mercury in anthropically influenced soils in a semi-arid zone (SE, Spain)

    Science.gov (United States)

    García-Lorenzo, M. L.; Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; Molina, J.; Tudela, M. L.; Hernández-Córdoba, M.

    2009-04-01

    This work seeks to establish the geochemical background for three potentially toxic trace elements (Zn, Cd and Hg) in a pilot zone included in the DesertNet project in the province of Murcia. The studied area, known as Campo de Cartagena, Murcia (SE Spain) is an area of intensive agriculture and has been much affected over the years by anthropic activity. The zone can be considered an experimental pilot zone for establishing background levels in agricultural soils. Sixty four samples were collected and corresponded to areas subjected to high and similar agricultural activity or soils with natural vegetation, which correspond to abandoned agricultural areas. The Zn content was determined by flame atomic absorption spectrometry. The Cd content was determined by electrothermal atomization atomic absorption spectrometry and mercury content was determined by atomic fluorescence spectrometry. Geostatistical analysis consisting of kriging and mapping was performed using the geostatistical analyst extension of ArcGIS 8.3. Zinc values ranged from 10 mg kg-1 to 151 mg kg-1, with an average value of 45 mg kg-1. Cadmium values ranged between 0.1 mg kg-1 and 0.9mg kg-1, with a mean value of 0.3 mg kg-1 and mercury values ranged from 0.1 mg kg-1 to 2.3 mg kg-1, with a mean value of 0.5 mg kg-1. At a national level, the Spanish Royal Decree 9/2005 proposes toxicological and statistical approaches to establish background values. According to the statistical approach, background values consist of the median value for the selected element. The background values for Zn, Cd and Hg in the studied area were 40 mg kg-1 for Zn, 0.3 mg kg-1 for Cd and 0.4 mg kg-1 for Hg.

  18. Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Razinger, Jaka [Department for Environmental Technologies and Biomonitoring, Institute of Physical Biology, Veliko Mlacevo 59, SI-1290 Grosuplje (Slovenia)], E-mail: jaka@ifb.si; Dermastia, Marina [National Institute of Biology, Vecna pot 111, p.p. 141, SI-1001 Ljubljana (Slovenia); Biotechnical Faculty, Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Koce, Jasna Dolenc [Biotechnical Faculty, Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Zrimec, Alexis [Department for Environmental Technologies and Biomonitoring, Institute of Physical Biology, Veliko Mlacevo 59, SI-1290 Grosuplje (Slovenia)

    2008-06-15

    The mechanisms of plant defence against cadmium toxicity have been studied by short-term exposure of Lemna minor L. (common duckweed) to concentrations of CdCl{sub 2} ranging from 0 to 500 {mu}M. High accumulation of cadmium was observed (12,320 {+-} 2155 {mu}g g{sup -1} at 500 {mu}M CdCl{sub 2}), which caused a gradual decrease of plant growth, increased lipid peroxidation, and weakened the entire antioxidative defence. Total glutathione concentration decreased significantly; however, the concentration of oxidized glutathione remained stable. The responses of four antioxidant enzymes showed that catalase was the most inhibited after CdCl{sub 2} exposure, ascorbate peroxidase and guaiacol peroxidase moderately, and glutathione reductase least. The total antioxidative potential revealed an induced antioxidative network at 0.1 {mu}M CdCl{sub 2} (137 {+-} 13.2% of the control) and its reduction to only 47.4 {+-} 4.0% of the control at higher cadmium concentrations. The possible application of the examined biomarkers in ecotoxicological research is discussed. - The increase of total antioxidative potential at low cadmium concentration is one of the mechanisms that helps duckweed to cope with cadmium-induced oxidative stress.

  19. Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure

    International Nuclear Information System (INIS)

    Razinger, Jaka; Dermastia, Marina; Koce, Jasna Dolenc; Zrimec, Alexis

    2008-01-01

    The mechanisms of plant defence against cadmium toxicity have been studied by short-term exposure of Lemna minor L. (common duckweed) to concentrations of CdCl 2 ranging from 0 to 500 μM. High accumulation of cadmium was observed (12,320 ± 2155 μg g -1 at 500 μM CdCl 2 ), which caused a gradual decrease of plant growth, increased lipid peroxidation, and weakened the entire antioxidative defence. Total glutathione concentration decreased significantly; however, the concentration of oxidized glutathione remained stable. The responses of four antioxidant enzymes showed that catalase was the most inhibited after CdCl 2 exposure, ascorbate peroxidase and guaiacol peroxidase moderately, and glutathione reductase least. The total antioxidative potential revealed an induced antioxidative network at 0.1 μM CdCl 2 (137 ± 13.2% of the control) and its reduction to only 47.4 ± 4.0% of the control at higher cadmium concentrations. The possible application of the examined biomarkers in ecotoxicological research is discussed. - The increase of total antioxidative potential at low cadmium concentration is one of the mechanisms that helps duckweed to cope with cadmium-induced oxidative stress

  20. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals

    Science.gov (United States)

    Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...

  1. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  2. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  3. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada

    International Nuclear Information System (INIS)

    Butler Walker, Jody; Houseman, Jan; Seddon, Laura; McMullen, Ed; Tofflemire, Karen; Mills, Carole; Corriveau, Andre; Weber, Jean-Philippe; LeBlanc, Alain; Walker, Mike; Donaldson, Shawn G.; Van Oostdam, Jay

    2006-01-01

    Maternal and umbilical cord blood levels of mercury (Hg), lead (Pb), cadmium (Cd), and the trace elements copper (Cu), zinc (Zn), and selenium (Se) are reported for Inuit, Dene/Metis, Caucasian, and Other nonaboriginal participants from Arctic Canada. This is the first human tissue monitoring program covering the entire Northwest Territories and Nunavut for multiple contaminants and establishes a baseline upon which future comparisons can be made. Results for chlorinated organic pesticides and PCBs for these participants have been reported elsewhere. Between May 1994 and June 1999, 523 women volunteered to participate by giving their written informed consent, resulting in the collection of 386 maternal blood samples, 407 cord samples, and 351 cord:maternal paired samples. Geometric mean (GM) maternal total mercury (THg) concentrations ranged from 0.87μg/L (SD=1.95) in the Caucasian group of participants (n=134) to 3.51μg/L (SD=8.30) in the Inuit group (n=146). The GM of the Inuit group was 2.6-fold higher than that of the Dene/Metis group (1.35μg/L, SD=1.60, n=92) and significantly higher than those of all other groups (P 8 cigarettes/day) was 7.4-fold higher and 12.5-fold higher, respectively, than in nonsmokers. The high percentage of smokers among Inuit (77%) and Dene/Metis (48%) participants highlights the need for ongoing public health action directed at tobacco prevention, reduction, and cessation for women of reproductive age. Pb and THg were detected in more than 95% of all cord blood samples, with GMs of 21 μg/L and 2.7μg/L, respectively, and Cd was detected in 26% of all cord samples, with a GM of 0.08μg/L. Cord:maternal ratios from paired samples ranged from 0.44 to 4.5 for THg, from 0.5 to 10.3 for MeHg, and 0.1 to 9.0 for Pb. On average, levels of THg, MeHg, and Zn were significantly higher in cord blood than in maternal blood (P<0.0001), whereas maternal Cd, Pb, Se, and Cu levels were significantly higher than those in cord blood (P<0

  4. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    International Nuclear Information System (INIS)

    Gopal, Vishnu; Qiu, WeiCheng; Hu, Weida

    2014-01-01

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I excess  = I r0  + K 1 exp (K 2 V), where I r0 , K 1 , and K 2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers

  5. Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil.

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Podocnemis erythrocephala), big-headed Amazon (river) turtle (Peltocephalus dumerilianus), and matamata turtle (Chelus fimbriatus). Blood samples were taken from the vein in the left hind leg of each turtle. There were significant interspecific differences in the sizes of the turtles from the Rio Negro, and in concentrations of Pb, Hg, and Se; the smallest species (red-headed turtles) had the highest levels of Pb in their blood, while Se levels were highest in big-headed turtles and lowest in red-headed turtles. Hg in blood was highest in matamata, intermediate in big-headed, and lowest in the other two turtles. Even though females were significantly larger than males, there were no significant differences in metal levels as a function of gender, and the only relationship of metals to size was for Cd. Variations in metal levels among species suggest that blood may be a useful bioindicator. Metal levels were not high enough to pose a health risk to the turtles or to consumers, such as humans.

  6. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    International Nuclear Information System (INIS)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu; Jia Xiuying

    2012-01-01

    Highlights: ► Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. ► Cd can result in oxidative stress in the frog testes. ► Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. ► Cd can cause apoptosis in the testes of male R. limnocharis. ► Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose–effect relationship. Moreover, the same dosages of Cd 2+ solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5–7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a scientific basis accounting for the global population decline in amphibian species.

  7. Comparative study of the influence of antimony oxide additives (III) and nickel hydroxide (II) on electrochemical behavior of cadmium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kadnikova, N.V.; Lvova, L.A.; Ryabskaya, I.A.

    1983-01-01

    Comparative study of the influence of additives indicated that with partial or complete replacement in the active mass of the cadmium electrode of nickel hydroxide (II) by antimony oxide (III), the electrochemical characteristics do not significantly change. During prolonged storage of charged cadmium electrodes the presence of nickel hydroxide (II) and intermetal compound (IMC) of cadmium with nickel is formed and the specific surface increases. In the case of adding antimony (III) formation of noticeable quantities of IMC of cadmium with antimony is not observed. The specific surface is reduced during storage.

  8. Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of Black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Joanna [Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854-8082 (United States); Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Piscataway, New Jersey 08854 (United States); Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey 08854 (United States)], E-mail: burger@biology.rutgers.edu; Gochfeld, Michael [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Piscataway, New Jersey 08854 (United States); Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey 08854 (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 (United States); Sullivan, Kelsey [U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska 99503 (United States); P.O. Box 801, Bethel, Maine, 04217 (United States); Irons, David [U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska 99503 (United States); McKnight, Aly [P.O. Box 801, Bethel, Maine, 04217 (United States)

    2008-07-15

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of Black-legged Kittiwakes (Rissa tridactyla) from Shoup Bay in Prince William Sound, Alaska to determine if there were age-related differences in metal levels, and in Black Oystercatchers (Haematopus bachmani)) from the same region to determine if there were differences in oiled and unoiled birds. Except for mercury, there were no age-related differences in metals levels in the feathers of kittiwakes. Kittiwakes over 13 years of age had the highest levels of mercury. There were no differences in levels of metals in the feathers of oystercatchers from oiled and unoiled regions of Prince William Sound. Except for mercury, the feathers of oystercatchers had significantly higher levels of all metals than those of kittiwakes. Levels of mercury in kittiwake feathers (mean of 2910 ng/g [ppb]) were within the range of many species of seabirds reported for other studies, and were generally below adverse effects levels.

  9. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    Science.gov (United States)

    Teixeira, Francisco B; de Oliveira, Ana C A; Leão, Luana K R; Fagundes, Nathália C F; Fernandes, Rafael M; Fernandes, Luanna M P; da Silva, Márcia C F; Amado, Lilian L; Sagica, Fernanda E S; de Oliveira, Edivaldo H C; Crespo-Lopez, Maria E; Maia, Cristiane S F; Lima, Rafael R

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  10. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    Directory of Open Access Journals (Sweden)

    Francisco B. Teixeira

    2018-05-01

    Full Text Available Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2, an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  11. Mercury

    Science.gov (United States)

    ... that mercuric chloride and methylmercury are possible human carcinogens. top How does mercury affect children? Very young ... billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum ...

  12. Effect of irradation on liver and kidney functions in rat subjected to cadmium or mercury ingestion

    International Nuclear Information System (INIS)

    Refaie, F.M.; Maharem, T.M.; Yousri, R.M.; Omeran, M.F.; Abdel-Hamid, F.M.

    1993-01-01

    Male albino rats were orally administered a single dose of cadmium chloride or mercuric acetate 5-days before exposure to whole body gamma irradiation at the dose levels 3 and 6 Gy. The biochemical analyses were carried out 3-days post irradiation. The data revealed that radiation exposure and/or Cd or Hg treatment resulted in significant increase in serum aminotransferases (ALT and AST) while SALP and SCHE showed statistical significant decrease as compared with the control group. Gamma irradiation (3 and 6 Gy) induced no changes in serum levels of urea and creatinine while significant increase was observed when the animals were administered Cd or Hg 5-days before gamma-irradiation. Significant decrease in urea and creatinine clearance and TPR could be recorded due to radiation exposure. Level of serum protein was not affected in all animal groups over the experimentation period. 2 tab

  13. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    International Nuclear Information System (INIS)

    Migliaccio, Oriana; Castellano, Immacolata; Romano, Giovanna; Palumbo, Anna

    2014-01-01

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos

  14. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, Oriana; Castellano, Immacolata [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Romano, Giovanna [Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Palumbo, Anna, E-mail: anna.palumbo@szn.it [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy)

    2014-11-15

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.

  15. The direct determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium, lead and copper

    International Nuclear Information System (INIS)

    Lee, A.F.

    1981-01-01

    This report describes the development and application of a voltammetric procedure for the direct, simultaneous determination of cadmium, lead, and copper in three SAROC reference materials (carbonatite, magnesite, and quartz). The electrolyte was a mixture of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. No interferences were encountered from Fe(III), As(III), Sb(V), Tl(I), or In(III) at the concentrations present in the samples. Intermetallic interferences were eliminated by the use of thin mercury-film electrodes not less than 80nm thick. Limits of detection were determined by the degree to which the supporting electrolyte could be purified, and were estimated to be 10ng/g, 250ng/g, and 150ng/g for cadmium, lead, and copper respectively

  16. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07

    Energy Technology Data Exchange (ETDEWEB)

    Zamil, Sheikh Shawkat; Choi, Mun Hwan; Song, Jung Hyun; Park, Hyunju; Xu, Ju; Yoon, Sung Chul [Gyeongsang National Univ., Jinju (Korea). Nano-Biomaterials Science Lab.; Chi, Ki-Whan [Ulsan Univ. (Korea). Dept. of Chemistry

    2008-09-15

    The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain {proportional_to}50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 C but trace amount at high (30 C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 C and 10 C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q{sub max}) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 C and 10 C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season. (orig.)

  17. ASSESSMENT OF POSSIBLE INDIRECT RISK OF NATURALLY OCCURING MERCURY AND CADMIUM THROUGH Mugil Sp. AND Geloina sp. CONSUMPTION IN SEGARA ANAKAN ESTUARINE ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Sri Noegrohati

    2010-06-01

    Full Text Available Estuarine ecosystem of Segara Anakan is located in south coast of Central Java, shielded from Indian Ocean by Nusakambangan island. The ecosystem of Segara Anakan estuary, Central Java, Indonesia, is influenced by fresh water inflow from Citanduy river basin and Indian sea water mostly by tidal actions through the western opening. The runoff materials continuously entering Segara Anakan from Citanduy catchment area, which geologically consist of weathering products of quarternary volcanic rocks from Galunggung mountain, West Java. Therefore various natural heavy metal contaminants are bound to the estuarine sediments, redistributed and accumulated within the ecosystem. In the present work, the effects of environmental stresses to mercury and cadmium abiotic distribution, and their availability to biotic ecosystems were studied, and consumers indirect risk assesment was carried out. In the laboratory scale studies on the distribution of mercury and cadmium in an estuarine simulation of water-field sediment, it was observed that the metal distribution coefficient decreases as the salinity and the acidity of the medium increases. Monitoring results confirmed that the highest levels of Hg and Cd in water and sediment samples were obtained in dry season. Consequently, the highest levels of Hg and Cd in biotic ecosystem, represented by Mugil sp. and Geloina sp., also obtained in dry season. The body burden of Hg in people of Segara Anakan villages, as indicated by the levels in hair and mother milk samples, taken at the end of the study (dry season 2004, were relatively low, but the levels of Cd in mother milk samples were significantly higher than that of control samples of Jogyakarta (P = 0.05. Consequently, the risk quotient for babies were exceeding the FAO/WHO PTWI. Based on the risk assessment carried out for babies and adults, at the present time it is advisable to consume Mugil sp. and Geloina sp., taken in wet season only and not in dry

  18. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure...... of generation of ROS in this pathway remains unclear.     The aim of the present study was to monitor, in real time, the rates of ROS generation to be able to directly determine their production dynamics in living cells in response to drugs. Initial studies were planed in to use 2,7-dichlorofluorescein...... production from mitochondria due to an increase in the intracellular calcium concentration. Visual inspection of cultured cells showed that the Cd induced destruction of the cell membrane after three hours was abolished when cells were pretreated with N-acetylcysteine or CCCP, indicating that ROS generation...

  19. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham [University of North Dakota, Grand Forks, ND (United States). Department of Chemical Engineering

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  20. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  1. Preparation, infrared, raman and nmr spectra of N,N'-diethylthiourea complexes with zinc(II), cadmium(II) and mercury(II) halides

    Energy Technology Data Exchange (ETDEWEB)

    Marcotrigiano, G [Bari Univ. (Italy). Cattedra di Chimica, Facolta di Medicina-Veterinaria

    1976-05-01

    Several complexes of N,N'-diethylthiourea (Dietu) with zinc(II), cadmium(II) and mercury(II) halides were prepared and characterized by i.r. (4000-60 cm/sup -1/), raman (400-60 cm/sup -1/), in the solid state and n.m.r. and conductometric methods in solution. The complexes Zn(Dietu)/sub 2/X/sub 2/, Cd(Dietu)/sub 2/X/sub 2/ (X=Cl, Br, I) and Hg(Dietu)/sub 2/X/sub 2/ (X=Br, I) are tetrahedral species in which intramolecular -NH...X interactions have been observed. The 1:1 mercury(II) complexes, Hg(Dietu)X/sub 2/ (X=Cl, Br), appear to have a dimeric tetrahedral halide-bridged structure in the solid state. In all these complexes N,N'-diethylthiourea is sulphur-bonded to the metal.

  2. Spatial patterns in PCBs, pesticides, mercury and cadmium in the common sole in the NW Mediterranean Sea, and a novel use of contaminants as biomarkers

    International Nuclear Information System (INIS)

    Dierking, J.; Wafo, E.; Schembri, T.; Lagadec, V.; Nicolas, C.; Letourneur, Y.; Harmelin-Vivien, M.

    2009-01-01

    We assessed spatial patterns in 37 PCB congeners, eight pesticides, and the heavy metals mercury and cadmium in the flatfish Solea solea at four sites in the Gulf of Lions (NW Mediterranean). Overall contaminant concentrations generally exceeded those reported for S. solea elsewhere, but fell into the range of other Gulf fishes, testifying of a relatively high contaminant load of this area. Spatial patterns in all three contaminant classes were highly significant, but differed among classes. PCB congener and chlorination class profiles also differed among sites. The observed patterns would be consistent with (1) PCB point-sources in the Eastern Gulf (Marseille, Rhone River) versus dominance of atmospheric input in the West, (2) pesticide input by the Rhone and from agricultural fields in the West, and (3) mercury point-sources near Marseille. The unique, site-specific contaminant profiles prove to be a powerful tool to differentiate between S. solea populations from different sites.

  3. Predictors of mercury, lead, cadmium and antimony status in Norwegian never-pregnant women of fertile age.

    Directory of Open Access Journals (Sweden)

    Christina Herland Fløtre

    Full Text Available The toxic trace elements mercury (Hg, lead (Pb, cadmium (Cd and antimony (Sb are transferred over the placenta to the fetus and secreted into the breastmilk. All four elements bioaccumulate in the body and as maternal age at delivery is increasing in industrialized countries, the burden of toxic trace elements in never-pregnant women of fertile age is of concern.Healthy, never-pregnant women aged 18 to 40 years (n = 158 were recruited between June 2012 and March 2015 in Bergen, Norway. Clinical data were collected and non-fasting venous blood samples were analyzed for whole blood Hg, Pb and Cd and serum Sb by ICP-MS and related to diet and life style factors.In a multiple linear regression model, increasing age was associated with higher levels of Hg and Sb, but diet and life style factors were more important predictors. Median whole blood Hg was increased by a factor of 70 in women who had fish for dinner ≥1/week, compared to women who rarely or never ate fish (p<0.001. Alcohol intake was the strongest predictor for whole blood Pb, while use of tobacco was the strongest predictor for whole blood Cd. Being a vegetarian was associated with lower levels of both Hg and Sb.As toxic trace elements tend to bioaccumulate in the body, increasing maternal age at delivery may represent a threat to the next generation. In a group of healthy Norwegian never-pregnant women, age contributed to Hg and Sb levels, but diet and life style factors were stronger determinants of whole blood Hg, Pb, Cd and serum Sb levels. Continuous public actions are needed to reduce modifiable and preventable sources of potentially deleterious toxins to minimize the exposure in children and fertile women.

  4. Factors Influencing Blood Cadmium and Mercury Concentrations in Residents of Agro-Industries along Nam Phong River, Thailand

    Directory of Open Access Journals (Sweden)

    Wannanapa Srathonghon

    2016-07-01

    Full Text Available This cross-sectional analytical study aimed to determine the blood levels of cadmium (B-Cd and mercury (B-Hg and identify the factors influencing heavy metal accumulation in residents of Agro-Industries along the Nam Phong River. Quantitative data were collected, and systematic random sampling was used to obtain 420 samples for questionnaire interview and serum heavy metal testing for B-Cd and B-Hg. Multiple regression analysis was used to identify factors influencing the accumulation of heavy metals in the population and report mean differences, 95% confidence intervals and p-values. The results indicated that B-Cd levels were within the recommended safety limits for human health (5 µg/dL. However, 4.29% of respondents had Hg levels higher than the recommended safety limits for human health (10 µg/dL. Factors influencing Cd levels included sex (mean difference=0.13 µg/L, 95% CI: 0.03-0.24, p-value=0.02 and smoking (mean difference=0.14 µg/L, 95% CI: 0.09-0.19, p-value<0.001. Factors influencing Hg levels included smoking (mean difference=1.06 µg/L, 95% CI: 0.52-1.61, p-value<0.001, fish consumption (mean difference=1.11 µg/L, 95% CI: 0.22-2.01, p-value=0.01 and river snail consumption (mean difference=0.56 µg/L, 95% CI: 0.03-0.19, p-value=0.03.

  5. Structural, Optical, and Morphological Properties of the Cadmium Oxide Thin Film Taif S. Almaadhede

    Directory of Open Access Journals (Sweden)

    Taif S. Almaadhede

    2018-04-01

    Full Text Available Cadmium oxide nanoparticles CdO NPS has been prepared by laser ablation in ethanol at 600 pulses and 600 mJ as laser energy. The structural, optical, and morphological properties of the cadmium oxide CdO thin film deposited on a glass substrate have been studied. X-ray diffrac-tometer (XRD 6000, Shimadzu, X-ray, diffractometer with Cukα radiation at a wavelength of ( = 0.154056 nm was utilized to investigate the structural properties of CdO NPs. The optical absorption of colloidal CdO NPs was measured using a spectrophotometer (Cary, 100 cans plus, UV-Vis-NIR, Split Beam Optics, Dual detectors in the range of (200–900 nm. The morpholo-gy of the CdO NPs was investigated by using AFM (AA 3000 Scanning Probe Microscope. The thickness of the films was measured using ellipsometer (Angstrom sun Technologies Ins.

  6. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.

    Science.gov (United States)

    Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan

    2016-11-01

    In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Morphological Changes of Yeast Cells due to Oxidative Stress by Mercury and Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hyoun; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The yeast Saccharomyces cerevisiae is one of the most important microorganisms employed in industry. Growth rate, mutation, and environmental conditions affect yeast size and shape distributions but, in general, the influence of spatial variations in large-scale bioreactors is not considered. Ionizing radiation induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm, and nucleus. Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. As a metal ion, it induces an oxidative stress or predisposes cells to an oxidative stress, with considerable damage to proteins, lipids and DNA. In this work, we investigated to effect of ionizing radiation (IR) and mercury chloride (II) on cell morphology.

  8. Mercury

    CERN Document Server

    Mahoney, T J

    2014-01-01

    This gazetteer and atlas on Mercury lists, defines and illustrates every named (as opposed to merely catalogued) object and term as related to Mercury within a single reference work. It contains a glossary of terminology used, an index of all the headwords in the gazetteer, an atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer, and appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets. This book is useful for the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature.

  9. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  10. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    Czech Academy of Sciences Publication Activity Database

    Dumková, J.; Vrlíková, Lucie; Večeřa, Zbyněk; Putnová, Barbora; Dočekal, Bohumil; Mikuška, Pavel; Fictum, P.; Hampl, A.; Buchtová, Marcela

    2016-01-01

    Roč. 17, č. 6 (2016), s. 874-893 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GAP503/11/2315; GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985904 ; RVO:68081715 Keywords : nanoparticles * cadmium oxide * electron microscopy Subject RIV: EB - Genetics ; Molecular Biology; CB - Analytical Chemistry , Separation (UIACH-O) Impact factor: 3.226, year: 2016

  11. Quaternary oxide halides of group 15 with zinc and cadmium; Quaternaere Oxidhalogenide der Gruppe 15 mit Zink und Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rueck, Nadia

    2014-07-30

    The present thesis ''Quaternary oxide halides of group 15 with zinc and cadmium'' deals with the chemical class of oxide halides, which contain d-block element cations and pnicogens. Over the past few years compounds containing pnicogene cations are intensively investigated. The reason for this is the free electron pair of the Pn{sup 3+} cation, which is responsible for some interesting properties. Free electron pairs do not only impact the spatial structure of molecules but also the properties of materials. The object of this work was the synthesis and characterization of compounds containing Pn{sup 3+} cations with free electron pairs. Due to the structure-determining effect of these free electron pairs and in combination with halides it is possible to synthesize compounds with low-dimensional structures like chains and layers. In these compounds the structure is separated into halophilic and chalcophilic sub-structures, which are held together only by weak Van der Waals forces.

  12. The transformation to cadmium oxide through annealing of cadmium oxide hydroxide deposited by ammonia-free SILAR method and the photocatalytic properties

    International Nuclear Information System (INIS)

    Chávez Urbiola, I.R.; Ramírez Bon, R.; Vorobiev, Y.V.

    2015-01-01

    Cadmium oxide-hydroxide films were prepared on glass substrates from aqueous alkaline solution at room temperature which was prepared by a more simple and economic version of chemical bath deposition — SILAR (successive ionic layer adsorption and reaction) method. The films obtained were converted to polycrystalline cadmium oxide by annealing treatment at different temperatures. It was found that the annealing temperature affects the grain size and films' density. The morphology, crystallinity, optical and electrical properties of the material obtained confirms its high quality. Finally its photocatalytical effect on methylene blue colorant was observed and analyzed. We expect that this method of CdO films preparation might be of interest for applications in solar energy converter and photocatalytical reactors. - Highlights: • Original SILAR production of Cd(O_2)_0_._8_8(OH)_0_._2_4 and its conversion to CdO were found. • Crystalline structure of CdO obtained is not different from that in bulk crystals. • The thickness of the film is controlled with the number of cycles. • The CdO and Cd(O_2)_0_._8_8(OH)_0_._2_4 has a similar photocatalytic effect • The properties of the CdO films are influenced by annealing process.

  13. The transformation to cadmium oxide through annealing of cadmium oxide hydroxide deposited by ammonia-free SILAR method and the photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chávez Urbiola, I.R., E-mail: ichavez@qro.cinvestav.mx; Ramírez Bon, R.; Vorobiev, Y.V.

    2015-10-01

    Cadmium oxide-hydroxide films were prepared on glass substrates from aqueous alkaline solution at room temperature which was prepared by a more simple and economic version of chemical bath deposition — SILAR (successive ionic layer adsorption and reaction) method. The films obtained were converted to polycrystalline cadmium oxide by annealing treatment at different temperatures. It was found that the annealing temperature affects the grain size and films' density. The morphology, crystallinity, optical and electrical properties of the material obtained confirms its high quality. Finally its photocatalytical effect on methylene blue colorant was observed and analyzed. We expect that this method of CdO films preparation might be of interest for applications in solar energy converter and photocatalytical reactors. - Highlights: • Original SILAR production of Cd(O{sub 2}){sub 0.88}(OH){sub 0.24} and its conversion to CdO were found. • Crystalline structure of CdO obtained is not different from that in bulk crystals. • The thickness of the film is controlled with the number of cycles. • The CdO and Cd(O{sub 2}){sub 0.88}(OH){sub 0.24} has a similar photocatalytic effect • The properties of the CdO films are influenced by annealing process.

  14. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters

    International Nuclear Information System (INIS)

    Chen Jinlong; Gao Yingchun; Xu, ZhiBing; Wu, GenHua; Chen, YouCun; Zhu, ChangQing

    2006-01-01

    Mono-disperse CdSe nanoclusters have been prepared facilely and functionalized with L-cysteine through two steps by using safe and low cost substances. They are water-soluble and biocompatible. Especially these functionalized quantum dots can be stably soluble in water more than for 30 days, and the intensity of fluorescence and absorbance was decreased less than 15% of fresh prepared CdSe colloids. These functionalized CdSe QDs exhibited strong specific affinity for mercury (II) through QDs interface functional groups. Based on the quenching of fluorescence signals of functionalized CdSe QDs at 530 nm and no obvious wavelength shift or no new emission band in present of Hg (II) at pH 7.75 of phosphate buffer solution, a simple, rapid and specific array for Hg (II) was proposed. In comparison with conventional organic fluorophores, these nanoparticles are brighter, more stable against photobleaching, and do not suffer from blinking. Under optimum conditions, the response of linearly proportional to the concentration of Hg (II) between 0 and 2.0 x 10 -6 mol L -1 , and the limit of detection is 6.0 x 10 -9 mol L -1 . The relative standard deviation of six replicate measurements is 1.8% for 1.0 x 10 -7 mol L -1 Hg (II). The mechanism of reaction is also discussed. The proposed method was successfully applied for Hg (II) detection in four real samples with a satisfactory result that was obtained by cold vapor atomic fluorescence spectrometry (CV-AFS)

  15. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  16. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  17. Bioaccumulation of lead, mercury, and cadmium in the greater white-toothed shrew, Crocidura russula, from the Ebro Delta (NE Spain); Sex- and age-dependent variation

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Chardi, Alejandro [Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain)]. E-mail: a.sanchez.chardi@ub.edu; Lopez-Fuster, Maria Jose [Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Nadal, Jacint [Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain)

    2007-01-15

    We quantified bioaccumulation of lead, mercury, and cadmium in bones from 105 greater white-toothed shrews (Crocidura russula) collected at the Ebro Delta, a polluted area, and the Medas Islands, a control site. Lead and mercury levels varied with site, age, and sex, although statistical significances depended on each factor. Globally, shrews from the polluted area exhibited significantly higher concentrations of Pb and Hg. Increment of Pb with age was particularly remarkable in wetland animals and was interpreted in relation to human activities, namely hunting. Unlike males, females from the Ebro Delta maintained low Hg levels, which were associated with gestation and lactation. Cadmium levels did not differ between sites, sexes, or ages. This study provides the first data on heavy metals in mammals from this wetland and suggests that C. russula is a good bioindicator of metal pollution. We concluded that sex and age may represent an important source of variation in the bioaccumulation of these metals in wild populations. - Bioaccumulation patterns of Pb and Hg reveal sex and age-related differences in the large bones of the greater white-toothed shrew from a polluted Mediterranean wetland.

  18. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    Science.gov (United States)

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  20. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China); Jia Xiuying, E-mail: hznujiaxiuying@126.com [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. Black-Right-Pointing-Pointer Cd can result in oxidative stress in the frog testes. Black-Right-Pointing-Pointer Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. Black-Right-Pointing-Pointer Cd can cause apoptosis in the testes of male R. limnocharis. Black-Right-Pointing-Pointer Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose-effect relationship. Moreover, the same dosages of Cd{sup 2+} solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5-7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a

  1. Cadmium, mercury and lead in the blood of urban women in Croatia, the Czech Republic, Poland, Slovakia, Slovenia, Sweden, China, Ecuador and Morocco

    Directory of Open Access Journals (Sweden)

    Natalia Pawlas

    2013-02-01

    Full Text Available Objectives: The aim of the study was to make an international comparison of blood levels of cadmium (B-Cd, lead (BPb and mercury (B-Hg of women in seven European, and three non-European cities, and to identify determinants. Materials and Methods: About 50 women (age: 46–62 from each city were recruited (totally 480 in 2006–2009. Interview and questionnaire data were obtained. Blood samples were analysed in one laboratory to avoid interlaboratory variation. Results: Between the European cities, the B-Pb and B-Cd results vary little (range of geometric means: 13.5–27.0 μg/l and 0.25–0.65 μg/l, respectively; the variation of B-Hg was larger (0.40–1.38 μg/l. Between the non-European cities the results for B-Pb, B-Cd and B-Hg were 19.2–68.0, 0.39–0.99 and 1.01–2.73 μg/l, respectively. Smoking was a statistically signifi cant determinant for B-Cd, while fi sh and shellfi sh intakes contributed to B-Hg and B-Pb, amalgam fi llings also contributed to B-Hg. Conclusions: The present results confi rm the previous results from children; the exposure to lead and cadmium varies only little between different European cities suggesting that other factors than the living area are more important. The study also confi rms the previous fi ndings of higher cadmium and lead levels in some non-European cities. The geographical variation for mercury is signifi cant.

  2. Mercury, Lead, Cadmium, Arsenic, Chromium and Selenium in Feathers of Shorebirds during Migrating through Delaware Bay, New Jersey: Comparing the 1990s and 2011/2012

    Directory of Open Access Journals (Sweden)

    Joanna Burger

    2015-02-01

    Full Text Available Understanding temporal changes in contaminant levels in coastal environments requires comparing levels of contaminants from the same species from different time periods, particularly if species are declining. Several species of shorebirds migrating through Delaware Bay have declined from the 1980s to the present. To evaluate some contaminants as cause for the declines, we examine levels of mercury, lead, cadmium, arsenic, chromium and selenium in feathers of red knot (Calidris canutus, N = 46 individuals, semipalmated sandpiper (Calidris pusilla, N = 70 and sanderling (Calidris alba, N = 32 migrating through Delaware Bay, New Jersey, USA, from 1991 to 1992 (N = 40, 1995 (N = 28, and 2011–2012 (N = 80 to determine if levels have changed. We found: (1 arsenic, chromium, and lead increased in red knot and decreased in semipalmated sandpiper; (2 cadmium decreased in semipalmated sandpipers; (3 mercury decreased in red knot and sanderlings; (4 selenium decreased in red knot and increased in semipalmated sandpipers. In 2011/2012 there were significant interspecific differences for arsenic, mercury and selenium. Except for selenium, the element levels were well below levels reported for feathers of other species. The levels in feathers in red knots, sanderling, and semipalmated sandpipers from Delaware Bay in 2011/2012 were well below levels in feathers that are associated with effect levels, except for selenium. Selenium levels ranged from 3.0 µg·g−1 dry weight to 5.8 µg·g−1 (semipalmated sandpiper, within the range known to cause adverse effects, suggesting the need for further examination of selenium levels in birds. The levels of all elements were well below those reported for other marine species, except for selenium, which was near levels suggesting possible toxic effects.

  3. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Wenwen; Xu, Wenzhong; Xu, Hua; Chen, Yanshan; He, Zhenyan; Ma, Mi

    2010-07-01

    Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.

  4. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: a pilot evaluation.

    Science.gov (United States)

    Pastorelli, A A; Baldini, M; Stacchini, P; Baldini, G; Morelli, S; Sagratella, E; Zaza, S; Ciardullo, S

    2012-01-01

    The presence of selected toxic heavy metals, such as cadmium (Cd), lead (Pb) and mercury (Hg), was investigated in fish and seafood products, namely, blue mussel, carpet shell clam, European squid, veined squid, deep-water rose shrimp, red mullet, European seabass, gilthead seabream, Atlantic cod, European hake, Atlantic bluefin tuna and swordfish so as to assess their human exposure through diet. Metals were detected by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and hydride generation atomic absorption spectrometry (Hg-AAS). Measurements of Cd, Pb and Hg were performed by means of analytical methods validated in compliance with UNI CEI EN ISO/IEC 17025 [2005. General requirements for the competence of testing and calibration laboratories. Milano (Italy): UNI Ente Nazionale Italiano di Unificazione]. The exposure assessment was undertaken matching the levels of Cd, Pb and total Hg with consumption data related to fish and seafood products selected for this purpose. In order to establish human health implications, the estimated weekly intakes (EWIs) for Cd, Pb and Hg were compared with the standard tolerable weekly intakes (TWI) for Cd and provisional tolerable weekly intakes (PTWIs) for Pb and Hg stipulated by the European Food Safety Authority (EFSA) and the Food and Agriculture Organization/World Health Organization (FAO/WHO) Joint Expert Committee on Food Additives (JECFA). The found metal concentrations were largely below the maximum levels (MLs) established at the European Union level with the exception of Cd. This metal exceeded the MLs in squid, red mullet, European hake and Atlantic cod. Squid and blue mussel showed the highest Pb concentrations which accounted for 60% and 10% of the MLs, respectively. Highest Hg levels were found in predatory fish. The concentrations of Hg in swordfish, Atlantic bluefin tuna and red mullet accounted for 50%, 30% and 30% of the MLs, respectively. The EWIs for Cd, Pb and Hg related to the consumption

  5. Comparison of oxidative stress in four Tillandsia species exposed to cadmium.

    Science.gov (United States)

    Kováčik, Jozef; Babula, Petr; Klejdus, Bořivoj; Hedbavny, Josef

    2014-07-01

    This is first study comparing four morphologically variable species of the genus Tillandsia and therefore various responses to the cadmium (Cd) action were expected. In accordance, Cd accumulation increased in order Tillandsia fasciculata Tillandsia brachycaulos Tillandsia pruinosa Tillandsia capillaris, reaching 29.6 and 197.4 μg g(-1) DW in first and last species after watering with 2 μM Cd(2+) solution over 30 days. Fluorescence visualization of oxidative stress confirmed increase in ROS and especially elevation in hydroperoxides though no visible symptoms appeared on the plants. At the same time, nitric oxide generation and nitroso-glutathione depletion by Cd treatment were typically observed. Fluorescence staining of Cd using two dyes (PhenGreen and Leadmium) showed that Leadmium fits better with AAS quantification. Macro- and micro-nutrients were not considerably affected except for zinc. Reduced glutathione content was the highest in control T. fasciculata while oxidized glutathione in T. capillaris. Ascorbic acid amount revealed extreme quantitative differences among species and decreased in T. fasciculata only. Free amino acids accumulation was similar among species except for T. capillaris and Cd caused both depletion and increase but without high quantitative differences. Data are explanatively discussed in the context of limited literature related to oxidative stress in epiphytic plants and with general responses of plants to cadmium/heavy metals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haomiao [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yongpeng [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Huang, Wenjun; Mei, Jian; Zhao, Songjian; Qu, Zan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yan, Naiqiang, E-mail: nqyan@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-01-05

    Highlights: • Hg-TPD method was used for speciation of mercury species. • Different elements modified MnO{sub x} have different mercury binding state. • Understanding mercury existed state was beneficial for designing novel materials. - Abstract: Mercury temperature-programmed desorption (Hg-TPD) method was employed to clarify mercury species over Mn-based oxides. The elemental mercury (Hg{sup 0}) removal mechanism over MnO{sub x} was ascribed to chemical-adsorption. HgO was the primary mercury chemical compound adsorbed on the surface of MnO{sub x}. Rare earth element (Ce), main group element (Sn) and transition metal elements (Zr and Fe) were chosen for the modification of MnO{sub x}. Hg-TPD results indicated that the binding strength of mercury on these binary oxides followed the order of Sn-MnO{sub x} < Ce-MnO{sub x} ∼ MnO{sub x} < Fe-MnO{sub x} < Zr-MnO{sub x}. The activation energies for desorption were calculated and they were 64.34, 101.85, 46.32, 117.14, and 106.92 eV corresponding to MnO{sub x}, Ce-MnO{sub x}, Sn-MnO{sub x}, Zr-MnO{sub x} and Fe-MnO{sub x}, respectively. Sn-MnO{sub x} had a weak bond of mercury (Hg-O), while Zr-MnO{sub x} had a strong bond (Hg≡O). Ce-MnO{sub x} and Fe-MnO{sub x} had similar bonds compared with pure MnO{sub x}. Moreover, the effects of SO{sub 2} and NO were investigated based on Hg-TPD analysis. SO{sub 2} had a poison effect on Hg{sup 0} removal, and the weak bond of mercury can be easily destroyed by SO{sub 2}. NO was favorable for Hg{sup 0} removal, and the bond strength of mercury was enhanced.

  7. Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise

    DEFF Research Database (Denmark)

    Lindberg, S. E.; Brooks, S.; Lin, C.-J.

    2002-01-01

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven...... oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated...... rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions. Udgivelsesdato: 2002-Mar-15...

  8. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  9. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    Energy Technology Data Exchange (ETDEWEB)

    John Kramlich; Linda Castiglone

    2007-06-30

    Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting

  10. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    Science.gov (United States)

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  12. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  13. Mercury, Lead, Cadmium, Cobalt, Arsenic and Selenium in the Blood of Semipalmated Sandpipers (Calidris pusilla from Suriname, South America: Age-related Differences in Wintering Site and Comparisons with a Stopover Site in New Jersey, USA

    Directory of Open Access Journals (Sweden)

    Joanna Burger

    2018-05-01

    Full Text Available It is essential to understand contaminant exposure and to compare levels of contaminants in organisms at different ages to determine if there is bioaccumulation, and to compare levels encountered in different geographical areas. In this paper, we report levels of mercury, lead, cadmium, cobalt, arsenic and selenium in the blood of semipalmated sandpipers (Calidris pusilla wintering in Suriname as a function of age, and compare them to blood levels in northbound migrants at a stopover in Delaware Bay, New Jersey. We found (1 young birds had higher levels of cadmium, cobalt, and lead than adults (after second year birds; (2 there were no age-related differences for arsenic, mercury and selenium; (3 only four of the possible 16 inter-metal correlations were significant, at the 0.05 level; (4 the highest correlation was between cadmium and lead (Kendall tau = 0.37; and (5 the adult sandpipers had significantly higher levels of cadmium, mercury and selenium in Suriname than in New Jersey, while the New Jersey birds had significantly higher levels of arsenic. Suriname samples were obtained in April, after both age classes had spent the winter in Suriname, which suggests that sandpipers are accumulating higher levels of trace elements in Suriname than in Delaware Bay. The levels of selenium may be within a range of concern for adverse effects, but little is known about adverse effect levels of trace elements in the blood of wild birds.

  14. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, B.J., E-mail: bjlokhande@yahoo.com [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Ambare, R.C. [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Mane, R.S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  15. Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats.

    Science.gov (United States)

    Omanwar, S; Saidullah, B; Ravi, K; Fahim, M

    2013-01-01

    Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO) bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.). The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh). In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10(-4) M) was significantly increased, and in presence of glybenclamide (10(-5) M), the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF). In addition, superoxide dismutase (SOD) + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS) and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  16. Modulation of Vasodilator Response via the Nitric Oxide Pathway after Acute Methyl Mercury Chloride Exposure in Rats

    Directory of Open Access Journals (Sweden)

    S. Omanwar

    2013-01-01

    Full Text Available Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.. The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh. In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M was significantly increased, and in presence of glybenclamide (10-5 M, the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF. In addition, superoxide dismutase (SOD + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  17. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  18. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period

  19. Seasonal mercury exposure and oxidant-antioxidant status of James Bay sport fishermen.

    Science.gov (United States)

    Bélanger, Marie-Claire; Mirault, Marc-Edouard; Dewailly, Eric; Plante, Michel; Berthiaume, Line; Noël, Micheline; Julien, Pierre

    2008-05-01

    The effects of a moderate seasonal exposure to methylmercury on plasma low-density lipoprotein (LDL) oxidation and cardiovascular risk indices are not known. The objective of the study was to assess the effects of a seasonal exposure to mercury at similar dose reported to increase cardiovascular risk through fish consumption. Effects on lipoprotein cholesterol and fatty acid profiles, LDL oxidation, and blood oxidant-antioxidant balance were to be assessed in sport fishermen presenting normal blood selenium and omega-3 fatty acid contents. Thirty-one healthy James Bay sport fishermen were assessed for within-subject longitudinal seasonal variations in hair and blood mercury, plasma oxidized LDL, lipophilic antioxidants, homocysteine, blood selenium, and glutathione peroxidase and reductase activities determined before and after the fishing season and compared by matched-pair tests. Hair mercury doubled during the fishing season (2.8+/-0.4 microg/g, P<.0001). Baseline blood selenium, homocysteine, and erythrocyte fatty acid profiles did not change. Plasma high-density lipoprotein cholesterol increased (+5%, P=.05), whereas very low-density lipoprotein cholesterol and oxidized LDL decreased (-8%, P=.05; -18%, P=.008). Blood glutathione peroxidase (+9.7%, P=.001), glutathione reductase (+7.2%, P<.0001), and total glutathione (+45% P<.0001) increased during the fishing season. Plasma total coenzyme Q10 (+13%, P=.02), ubiquinone-10 (+67%, P=.03), and beta-carotene (+46%, P=.01) also increased, whereas vitamin E status was unaffected. Pairwise correlations revealed no association between mercury exposure and any of the biomarkers investigated. In contrast, strong predictors of cardiovascular risk such as high-density lipoprotein cholesterol, oxidized LDL, and glutathione peroxidase improved during the fishing season despite elevated methylmercury exposure. The beneficial effects of seasonal fishing activity and fish consumption on cardiovascular health may suppress

  20. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Perturbed angular correlation study of the static and dynamic aspects of cadmium and mercury atoms inside and attached to a C{sub 60} fullerene cage

    Energy Technology Data Exchange (ETDEWEB)

    Das, Satyendra K.; Guin, Rashmohan; Banerjee, Debasish [Variable Energy Cyclotron Centre, Kolkata (India). Accelerator Chemistry Section (Bhabha Atomic Research Centre); Johnston, Karl [CERN, Geneva (Switzerland); Das, Parnika [Variable Energy Cyclotron Centre, Kolkata (India); Butz, Tilman [Leipzig Univ. (Germany). Faculty of Physics and Earth Sciences; Amaral, Vitor S. [Aveiro Univ. (Portugal). Physics Dept.; Aveiro Univ. (Portugal). CICECO; Correia, Joao G.; Barbosa, Marcelo B. [Instituto Tecnologico e Nuclear (ITN), Sacavem (Portugal); CERN, Geneva (Switzerland). ISOLDE

    2014-10-15

    30 keV {sup 111m}Cd and 50 keV {sup 199m}Hg beams from ISOLDE were used to implant on preformed targets of C{sub 60} with a thickness of 1 mg cm{sup -2}. Endofullerene compounds, viz. {sup 111m}Cd rate at C{sub 60} and {sup 199m}Hg rate at C{sub 60} formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151-245keV cascade of {sup 111m}Cd and the 374-158 keV cascade of {sup 199m}Hg on a six LaBr{sub 3}(Ce) detector system coupled with digital electronics. The results for {sup 111m}Cd rate at C{sub 60} indicate a single static component (27 %) and a fast relaxing component (73 %), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C{sub 60} are ω{sub Q} = 8.21(36) Mrad s{sup -1} and η = 0.41(9), respectively. The fast relaxation constant is 0.0031(4) ns{sup -1}. Similarly, mercury atoms also exhibit a single static and a fast component. The static site has a quadrupole frequency ω{sub Q} = 283.0(12.4) Mrad s{sup -1} and η = 0 with a fraction of 30 %. The fast relaxation constant is 0.045(8) ns{sup -1} with a fraction of 70 %, very similar to that of cadmium.

  2. Oxidation of elemental mercury in the atmosphere; Constraints imposed by global scale modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, Torbjoern; Rodhe, Henning [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-05-01

    Based on the global mercury model published by Bergan et al. (1999), we present here further results from simulations where the central theme has been to evaluate the role of ozone and the hydroxyl radical as possible gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates and the flux from land areas is assumed to vary by season. We consider only two mercury reservoirs, elemental mercury, Hg{sup 0}, and the more soluble divalent form, Hgll. Wet and dry deposition of Hgll is explicitly treated. Applying monthly mean fields of ozone for the oxidation of gas phase Hg{sup 0} and using the reaction rate by Hall (1995) yields a global transformation of Hg{sup 0} to Hgll which is too slow to keep the simulated concentration of Hg{sup 0} near observed values. This shows that there are additional important removal processes for Hg{sup 0} or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg{sup 0} was one year and the simulated average concentration of Hg{sup 0} was realistic, produced latitudinal and seasonal variations in Hg{sup 0} that did not support the hypothesis that gas phase reaction with O{sub 3} is the major oxidation process for Hg{sup 0}. Recent studies indicate that OH may be an important gas phase oxidant for Hg{sup 0}. Using OH as the oxidant and applying the preliminary oxidation rate by Sommar et al. (1999) gave an unrealistically large removal of Hg{sup 0} from the atmosphere. From calculations using a slower reaction rate, corresponding to a turn-over time of Hg{sup 0} of one year, we calculated concentrations of both Hg{sup 0} in surface air and Hgll in precipitation which correspond, both in magnitude and temporal variation, to seasonal observations in Europe and North America. This result supports the suggestion that

  3. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  4. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    Eybl, Vladislav; Kotyzova, Dana; Koutensky, Jaroslav

    2006-01-01

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  5. Gaseous Oxidized Mercury Dry Deposition Measurements in Southwestern USA: Comparison between texas, Eastern Oklahoma, and the Four Corners Area

    Science.gov (United States)

    Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012.The purpose of this study was to provide an initial characteriza...

  6. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  7. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  8. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    NARCIS (Netherlands)

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  9. Cadmium toxicity in cultured tomato cells - Role of ethylene, proteases and oxidative stress in cell death signaling

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Kapchina-Toteva, V.M.; Harren, F.J.M.; Cristescu, S.M.

    2008-01-01

    Our aim was to investigate the ability of cadmium to induce programmed cell death in tomato suspension cells and to determine the involvement of proteolysis, oxidative stress and ethylene. Tomato suspension cells were exposed to treatments with CdSO4 and cell death was calculated after fluorescein

  10. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    International Nuclear Information System (INIS)

    Wang He; Jia Yongfeng; Wang Shaofeng; Zhu Huijie; Wu Xing

    2009-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH) 3 > Al 2 O 3 > Fe 3 O 4 > MnO 2 > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH) 3 > Fe 3 O 4 > Al 2 O 3 > FeOOH > MnO 2 , while by citric acid: Al(OH) 3 ≥ Al 2 O 3 > Fe 3 O 4 > FeOOH > MnO 2 . This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH) 3 was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO 2 adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  11. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    Wang He, E-mail: he.wangworld@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Jia Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Wang Shaofeng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Zhu Huijie; Wu Xing [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China)

    2009-08-15

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH){sub 3} > Al{sub 2}O{sub 3} > Fe{sub 3}O{sub 4} > MnO{sub 2} > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH){sub 3} > Fe{sub 3}O{sub 4} > Al{sub 2}O{sub 3} > FeOOH > MnO{sub 2}, while by citric acid: Al(OH){sub 3} {>=} Al{sub 2}O{sub 3} > Fe{sub 3}O{sub 4} > FeOOH > MnO{sub 2}. This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH){sub 3} was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO{sub 2} adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  12. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury.

    Science.gov (United States)

    Saghazadeh, Amene; Rezaei, Nima

    2017-10-03

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0

  13. Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery.

    Directory of Open Access Journals (Sweden)

    Núbia Belem Lemos

    Full Text Available Mercury is an environmental pollutant that reduces nitric oxide (NO bioavailability and increases oxidative stress, having a close link with cardiovascular diseases, as carotid atherosclerosis, myocardial infarction, coronary heart disease and hypertension. One of the main sites affected by oxidative stress, which develops atherosclerosis, is the aorta. Under acute exposure to low mercury concentrations reactive oxygen species (ROS production were only reported for resistance vessels but if low concentrations of mercury also affect conductance arteries it is still unclear. We investigated the acute effects of 6 nM HgCl(2 on endothelial function of aortic rings measuring the reactivity to phenylephrine in rings incubated, or not, with HgCl(2 for 45 min, the protein expression for cyclooxygenase 2 (COX-2 and the AT1 receptor. HgCl(2 increased Rmax and pD2 to phenylephrine without changing the vasorelaxation induced by acetylcholine and sodium nitroprusside. Endothelial damage abolished the increased reactivity to phenylephrine. The increase of Rmax and pD2 produced by L-NAME was smaller in the presence of HgCl(2. Enalapril, losartan, indomethacin, furegrelate, the selective COX-2 inhibitor NS 398, superoxide dismutase and the NADPH oxidase inhibitor apocynin reverted HgCl(2 effects on the reactivity to phenylephrine, COX-2 protein expression was increased, and AT1 expression reduced. At low concentration, below the reference values, HgCl(2 increased vasoconstrictor activity by reducing NO bioavailability due to increased ROS production by NADPH oxidase activity. Results suggest that this is due to local release of angiotensin II and prostanoid vasoconstrictors. Results also suggest that acute low concentration mercury exposure, occurring time to time could induce vascular injury due to endothelial oxidative stress and contributing to increase peripheral resistance, being a high risk factor for public health.

  14. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed

    2015-03-26

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves reveal the appearance of diamagnetic behavior with a ferromagnetic component for all the powders. Powder annealing under vacuum and H2 atmosphere leads to a saturation magnetization 1.15 memu g-1 and 1.2 memu g-1 respectively with an increase by 45% and 16% compared to the one annealed in air. We show that annealing in vacuum produces mainly oxygen vacancies while annealing in H2 gas creates mainly Cd vacancy leading to room temperature ferromagnetic (RTFM) component together with known diamagnetic properties. Ab initio calculations performed on the CdO nanoparticles show that the magnetism is governed by polarized hybrid states of the Cd d and O p orbitals together with the vacancy. © The Royal Society of Chemistry 2015.

  15. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S., E-mail: rozekl@umich.edu

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  16. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    International Nuclear Information System (INIS)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S.

    2014-01-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity

  17. The influence of nitric oxide and mercury chloride on leaf mesophyll structure under natural drought conditions

    Directory of Open Access Journals (Sweden)

    Mykola M. Musiyenko

    2012-03-01

    Full Text Available It is established that under natural drought conditions starch was accumulated in the central part of chloroplasts of mesophyll cells and chloroplasts were localized on the periphery of cells at plasmalemma. After treatment wheat plants by nitric oxide donor the decreasing of starch deposits number and close contacts between chloroplasts were indicated, elongated nucleus was localized in the centre of cells. After treatment wheat plant by mercury chloride chloroplasts in the cells lost their oval shape and contacts, increased eventually deposition of starch, indicating the acceleration of aging tissues. Thus, nitric oxide in drought conditions reduced the destructive effect of drought on mesophyll cells, and mercury chloride caused deformation of the membrane cell.

  18. The Danish contribution to the European DEMOCOPHES project: A description of cadmium, cotinine and mercury levels in Danish mother-child pairs and the perspectives of supplementary sampling and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mørck, Thit A. [Department of Public Health, University of Copenhagen, Copenhagen (Denmark); Nielsen, Flemming [Department of Public Health, University of Southern Denmark, Odense (Denmark); Nielsen, Jeanette K.S.; Jensen, Janne F.; Hansen, Pernille W.; Hansen, Anne K.; Christoffersen, Lea N. [Department of Public Health, University of Copenhagen, Copenhagen (Denmark); Siersma, Volkert D. [The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen (Denmark); Larsen, Ida H.; Hohlmann, Linette K. [Department of Public Health, University of Copenhagen, Copenhagen (Denmark); Skaanild, Mette T. [Danish Environmental Protection Agency (Denmark); Frederiksen, Hanne [Department of Growth and Reproduction, University Hospital, Copenhagen (Denmark); Biot, Pierre [Federal Public Service Health, Food Chain Safety and Environment, Brussels (Belgium); Casteleyn, Ludwine [University of Leuven, Leuven (Belgium); Kolossa-Gehring, Marike; Schwedler, Gerda [Federal Environment Agency (UBA), Berlin (Germany); Castaño, Argelia [Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid (Spain); Angerer, Jürgen; Koch, Holger M. [Institute for Prevention and Occupational Medicine of the German social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum (Germany); Esteban, Marta [Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid (Spain); and others

    2015-08-15

    Human biomonitoring (HBM) is an important tool, increasingly used for measuring true levels of the body burdens of environmental chemicals in the general population. In Europe, a harmonized HBM program was needed to open the possibility to compare levels across borders. To explore the prospect of a harmonized European HBM project, DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) was completed in 17 European countries. The basic measurements performed in all implemented countries of DEMOCOPHES included cadmium, cotinine and phthalate metabolites in urine and mercury in hair. In the Danish participants, significant correlations between mothers and children for mercury in hair and cotinine in urine were found. Mercury in hair was further significantly associated with intake of fish and area of residence. Cadmium was positively associated with BMI in mothers and an association between cadmium and cotinine was also found. As expected high cotinine levels were found in smoking mothers. For both mercury and cadmium significantly higher concentrations were found in the mothers compared to their children. In Denmark, the DEMOCOPHES project was co-financed by the Danish ministries of health, environment and food safety. The co-financing ministries agreed to finance a number of supplementary measurements of substances of current toxicological, public and regulatory interest. This also included blood sampling from the participants. The collected urine and blood samples were analyzed for a range of other persistent and non-persistent environmental chemicals as well as two biomarkers of effect. The variety of supplementary measurements gives the researchers further information on the exposure status of the participants and creates a basis for valuable knowledge on the pattern of exposure to various chemicals. - Highlights: • Levels of cadmium, mercury and cotinine in the Danish subpopulation are comparable to levels in the

  19. The Danish contribution to the European DEMOCOPHES project: A description of cadmium, cotinine and mercury levels in Danish mother-child pairs and the perspectives of supplementary sampling and measurements.

    Science.gov (United States)

    Mørck, Thit A; Nielsen, Flemming; Nielsen, Jeanette K S; Jensen, Janne F; Hansen, Pernille W; Hansen, Anne K; Christoffersen, Lea N; Siersma, Volkert D; Larsen, Ida H; Hohlmann, Linette K; Skaanild, Mette T; Frederiksen, Hanne; Biot, Pierre; Casteleyn, Ludwine; Kolossa-Gehring, Marike; Schwedler, Gerda; Castaño, Argelia; Angerer, Jürgen; Koch, Holger M; Esteban, Marta; Schoeters, Greet; Den Hond, Elly; Exley, Karen; Sepai, Ovnair; Bloemen, Louis; Joas, Reinhard; Joas, Anke; Fiddicke, Ulrike; Lopez, Ana; Cañas, Ana; Aerts, Dominique; Knudsen, Lisbeth E

    2015-08-01

    Human biomonitoring (HBM) is an important tool, increasingly used for measuring true levels of the body burdens of environmental chemicals in the general population. In Europe, a harmonized HBM program was needed to open the possibility to compare levels across borders. To explore the prospect of a harmonized European HBM project, DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) was completed in 17 European countries. The basic measurements performed in all implemented countries of DEMOCOPHES included cadmium, cotinine and phthalate metabolites in urine and mercury in hair. In the Danish participants, significant correlations between mothers and children for mercury in hair and cotinine in urine were found. Mercury in hair was further significantly associated with intake of fish and area of residence. Cadmium was positively associated with BMI in mothers and an association between cadmium and cotinine was also found. As expected high cotinine levels were found in smoking mothers. For both mercury and cadmium significantly higher concentrations were found in the mothers compared to their children. In Denmark, the DEMOCOPHES project was co-financed by the Danish ministries of health, environment and food safety. The co-financing ministries agreed to finance a number of supplementary measurements of substances of current toxicological, public and regulatory interest. This also included blood sampling from the participants. The collected urine and blood samples were analyzed for a range of other persistent and non-persistent environmental chemicals as well as two biomarkers of effect. The variety of supplementary measurements gives the researchers further information on the exposure status of the participants and creates a basis for valuable knowledge on the pattern of exposure to various chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    Science.gov (United States)

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.

    Science.gov (United States)

    Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa

    2007-01-01

    Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.

  2. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-01-01

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd 2+ and Pb 2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I - significantly enhances the stripping peak currents since it induces Cd 2+ and Pb 2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd 2+ from 2.5x10 -8 to 1x10 -5 mol/l and with that of Pb 2+ from 2x10 -8 to 1x10 -5 mol/l. The lowest detectable concentrations of Cd 2+ and Pb 2+ are estimated to be 6x10 -9 and 4x10 -9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd 2+ and Pb 2+ in water samples

  3. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... ... role in the protection of cell membranes aganist oxidative damage .... Differences were calculated using one way analysis of variance (ANOVA) .... via the formation of reactive oxygen species and the perturbation of ...

  4. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  5. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  6. Investigation of interaction between silver oxide electrode and separator hydrated cellulose film in silver-cadmium accumulators

    International Nuclear Information System (INIS)

    Molotkova, E.N.; Yarochkina, E.N.

    1975-01-01

    Oxidation-reduction interaction of the oxysilver electrode with hydrocellulose film during storing charged silver-cadmium accumulators. It was demonstrated that accumulator electric characteristics durinq storing are linearly depending on the capacity of this hydrocellulose film to interact with silver oxide: the more silver is absorbed by film the quicker is the decreasing of the electromotive force and capacity of the accumulators. Preservation of the silver electrode capacity in the silver-cadmium accumulators is determined first of all by hydrocellulose separation film properties and especially by film layer adjacent to positive electrode. The more inert film layer is, regarding to silver oxide in the electrolite, the slower is dissolution of the electrode and also decompousing speed of AgO, the longer is the accumulator preservation time

  7. Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid.

    Science.gov (United States)

    Raghuvanshi, Ruma; Chaudhari, Archana; Kumar, G Naresh

    2016-01-01

    Antioxidants, chelating agents, and probiotics are used to manage the toxic effects of cadmium (Cd) and mercury (Hg). The aim of this study was to investigate the combined effects of antioxidants, chelating agents, and probiotics against heavy metal toxicity. Genetically modified probiotic Escherichia coli Nissle 1917 (EcN-20) producing a potent water soluble antioxidant pyrroloquinoline quinone (PQQ) was supplemented with oral citric acid and compared with another genetically modified probiotic EcN-21 producing PQQ and citric acid against oxidative stress induced by Cd and Hg. Rats were independently given 100 ppm Cd and 80 ppm Hg in drinking water for 4 wk. EcN-20 was found to be more effective than EcN-2 (EcN strain with genomic integration of vgb and gfp genes) with orally given PQQ against oxidative stress induced by Cd and Hg. EcN-20 supplemented with oral citric acid was more effective against Cd and Hg toxicity compared with EcN-2+citric acid (oral), EcN-2+PQQ (oral), EcN-2+PQQ (oral)+citric acid (oral), EcN-20, and EcN-21. However, protection shown by EcN-21 was similar to EcN-20. The combination therapy involving probiotic EcN-20 producing PQQ with citric acid given orally was found to be a moderately effective strategy against toxicity induced by Cd and Hg, whereas the protective effect of EcN-21 was the same as EcN-20. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L.

    Science.gov (United States)

    Horemans, N; Van Hees, M; Van Hoeck, A; Saenen, E; De Meutter, T; Nauts, R; Blust, R; Vandenhove, H

    2015-01-01

    Common duckweed (Lemna minor L.) is ideally suited to test the impact of metals on freshwater vascular plants. Literature on cadmium (Cd) and uranium (U) oxidative responses in L. minor are sparse or, for U, non-existent. It was hypothesised that both metals impose concentration-dependent oxidative stress and growth retardation on L. minor. Using a standardised 7-day growth inhibition test, the adverse impact of these metals on L. minor growth was confirmed, with EC50 values for Cd and U of 24.1 ± 2.8 and 29.5 ± 1.9 μm, respectively, and EC10 values of 1.5 ± 0.2 and 6.5 ± 0.9 μm, respectively. The metal-induced oxidative stress response was compared through assessing the activity of different antioxidative enzymes [catalase, glutathione reductase, superoxide dismutase (SOD), ascorbate peroxidase (APOD), guaiacol peroxidase (GPOD) and syringaldizyne peroxidase (SPOD)]. Significant changes in almost all antioxidative enzymes indicated their importance in counteracting the U- and Cd-imposed oxidative burden. However, some striking differences were also observed. For activity of APODs and SODs, a biphasic but opposite response at low Cd compared to U concentrations was found. In addition, Cd (0.5-20 μm) strongly enhanced plant GPOD activity, whereas U inhibited it. Finally, in contrast to Cd, U up to 10 μm increased the level of chlorophyll a and b and carotenoids. In conclusion, although U and Cd induce similar growth arrest in L. minor, the U-induced oxidative stress responses, studied here for the first time, differ greatly from those of Cd. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Contamination levels of mercury and cadmium in melon-headed whales (Peponocephala electra) from a mass stranding on the Japanese coast

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Tetsuya [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)], E-mail: endotty@hoku-iryo-u.ac.jp; Hisamichi, Yohsuke; Kimura, Osamu [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Haraguchi, Koichi [Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka 815-8511 (Japan); Baker, C. Scott [Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, Newport, Oregon 97365 (United States)

    2008-08-15

    Total mercury (T-Hg), methyl mercury (M-Hg), cadmium (Cd), selenium (Se), zinc (Zn) and copper (Cu) concentrations in the organs of melon-headed whales from a mass stranding on the Japanese coast were analyzed. The mean concentration of T-Hg in the liver (126 {+-} 97 {mu}g/wet g, n = 13) was markedly higher than those in kidney (6.34 {+-} 2.36 {mu}g/wet g, n = 12) and muscle (4.90 {+-} 2.33 {mu}g/wet g, n = 15). In contrast, the mean concentration of M-Hg in the liver (9.08 {+-} 2.24 {mu}g/wet g) was similar to those in the kidney (3.47 {+-} 0.91 {mu}g/wet g) and muscle (3.78 {+-} 1.53 {mu}g/wet g). The mean percentage of M-Hg in the T-Hg found in the liver (13.1 {+-} 10.3) was significantly lower than those in the kidney (58.3 {+-} 15.0) and muscle (78.9 {+-} 8.4). The molar ratio of T-Hg to Se in the liver was effectively 1.0, but those in the kidney and muscle were markedly lower. Conversely, the mean concentration of Cd was markedly higher in the kidney (24.4 {+-} 7.4 {mu}g/wet g) than in the liver (7.24 {+-} 2.08 {mu}g/wet g) and muscle (less than 0.05 {mu}g/wet g). These results suggest that the formation of Hg-Se compounds mainly occurs in the liver after the demethylation of M-Hg, and Cd preferentially accumulates in the kidney of melon-headed whales.

  10. Contamination levels of mercury and cadmium in melon-headed whales (Peponocephala electra) from a mass stranding on the Japanese coast

    International Nuclear Information System (INIS)

    Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi; Baker, C. Scott

    2008-01-01

    Total mercury (T-Hg), methyl mercury (M-Hg), cadmium (Cd), selenium (Se), zinc (Zn) and copper (Cu) concentrations in the organs of melon-headed whales from a mass stranding on the Japanese coast were analyzed. The mean concentration of T-Hg in the liver (126 ± 97 μg/wet g, n = 13) was markedly higher than those in kidney (6.34 ± 2.36 μg/wet g, n = 12) and muscle (4.90 ± 2.33 μg/wet g, n = 15). In contrast, the mean concentration of M-Hg in the liver (9.08 ± 2.24 μg/wet g) was similar to those in the kidney (3.47 ± 0.91 μg/wet g) and muscle (3.78 ± 1.53 μg/wet g). The mean percentage of M-Hg in the T-Hg found in the liver (13.1 ± 10.3) was significantly lower than those in the kidney (58.3 ± 15.0) and muscle (78.9 ± 8.4). The molar ratio of T-Hg to Se in the liver was effectively 1.0, but those in the kidney and muscle were markedly lower. Conversely, the mean concentration of Cd was markedly higher in the kidney (24.4 ± 7.4 μg/wet g) than in the liver (7.24 ± 2.08 μg/wet g) and muscle (less than 0.05 μg/wet g). These results suggest that the formation of Hg-Se compounds mainly occurs in the liver after the demethylation of M-Hg, and Cd preferentially accumulates in the kidney of melon-headed whales

  11. Determination of total and inorganic mercury in fish samples with on-line oxidation coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Shao Lijun; Gan Wuer; Su Qingde

    2006-01-01

    An atomic fluorescence spectrometry system for determination of total and inorganic mercury with electromagnetic induction-assisted heating on-line oxidation has been developed. Potassium peroxodisulphate was used as the oxidizing agent to decompose organomercury compounds. Depending on the temperature selected, inorganic or total mercury could be determined with the same manifold. Special accent was put on the study of the parameters influencing the on-line digestion efficiency. The tolerance to the interference of coexisting ions was carefully examined in this system. Under optimal conditions, the detection limits (3σ) were evaluated to be 2.9 ng l -1 for inorganic mercury and 2.6 ng l -1 for total mercury, respectively. The relative standard deviations for 10 replicate determinations of 1.0 μg l -1 Hg were 2.4 and 3.2% for inorganic mercury and total mercury, respectively. The proposed method was successfully applied to the determination of total and inorganic mercury in fish samples

  12. Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US

    Directory of Open Access Journals (Sweden)

    S. Coburn

    2016-03-01

    Full Text Available The elevated deposition of atmospheric mercury over the southeastern United States is currently not well understood. Here we measure partial columns and vertical profiles of bromine monoxide (BrO radicals, a key component of mercury oxidation chemistry, to better understand the processes and altitudes at which mercury is being oxidized in the atmosphere. We use data from a ground-based MAX-DOAS instrument located at a coastal site ∼  1 km from the Gulf of Mexico in Gulf Breeze, FL, where we had previously detected tropospheric BrO (Coburn et al., 2011. Our profile retrieval assimilates information about stratospheric BrO from the WACCM chemical transport model (CTM, and uses only measurements at moderately low solar zenith angles (SZAs to estimate the BrO slant column density contained in the reference spectrum (SCDRef. The approach has 2.6 degrees of freedom, and avoids spectroscopic complications that arise at high SZA; knowledge about SCDRef further helps to maximize sensitivity in the free troposphere (FT. A cloud-free case study day with low aerosol load (9 April 2010 provided optimal conditions for distinguishing marine boundary layer (MBL: 0–1 km and free-tropospheric (FT: 1–15 km BrO from the ground. The average daytime tropospheric BrO vertical column density (VCD of ∼  2.3  ×  1013 molec cm−2 (SZA  <  70° is consistent with our earlier reports on other days. The vertical profile locates essentially all tropospheric BrO above 4 km, and shows no evidence for BrO inside the MBL (detection limit  <  0.5 pptv. BrO increases to  ∼  3.5 pptv at 10–15 km altitude, consistent with recent aircraft observations. Our case study day is consistent with recent aircraft studies, in that the oxidation of gaseous elemental mercury (GEM by bromine radicals to form gaseous oxidized mercury (GOM is the dominant pathway for GEM oxidation throughout the troposphere above Gulf

  13. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions

    Energy Technology Data Exchange (ETDEWEB)

    Livera, Jennifer de, E-mail: Jennifer.deLivera@adelaide.edu.au [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); McLaughlin, Mike J. [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Hettiarachchi, Ganga M. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Department of Agronomy, Kansas state University, Manhattan, KS (United States); Kirby, Jason K. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Water for a Healthy Country Flagship, Adelaide, SA (Australia); Beak, Douglas G. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia)

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled 'reaction cell' experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. - Research Highlights: {yields} Cd:Fe and Cd:Zn ratios increase in paddy soil solution during oxidation. {yields} Cd:Fe and Cd:Zn ratios increase because Fe and Zn concentrations decrease. {yields} Cd concentrations do not change during oxidation. {yields} Cd:Fe and Cd:Zn ratios in solution decrease when Zn is added to soil. {yields} Metal sulfide precipitation lowers Cd:Fe and Cd:Zn ratios in soil solution.

  14. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Kippler, Maria [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Bakhtiar Hossain, Mohammad [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh); Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Lindh, Christian [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh); Moore, Sophie E. [MRC Keneba, MRC Laboratories (Gambia); Kabir, Iqbal [Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Vahter, Marie [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Broberg, Karin, E-mail: karin.broberg_palmgren@med.lu.se [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh)

    2012-01-15

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11-17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 {mu}g/L, and breast-milk Cd 0.13 {mu}g/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  15. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    International Nuclear Information System (INIS)

    Kippler, Maria; Bakhtiar Hossain, Mohammad; Lindh, Christian; Moore, Sophie E.; Kabir, Iqbal; Vahter, Marie; Broberg, Karin

    2012-01-01

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11–17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 μg/L, and breast-milk Cd 0.13 μg/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  16. Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trout hepatocytes: involvement of oxidative stress

    International Nuclear Information System (INIS)

    Risso-de Faverney, C.; Orsini, N.; Sousa, G. de; Rahmani, R.

    2004-01-01

    Cadmium (Cd) induces oxidative stress and apoptosis in trout hepatocytes. We therefore investigated the involvement of the mitochondrial pathway in the initiation of apoptosis and the possible role of oxidative stress in that process. This study demonstrates that hepatocyte exposure to Cd (2, 5 and 10 μM) triggers significant caspase-3, but also caspase-8 and -9 activation in a dose-dependent manner. Western-blot analysis of hepatocyte mitochondrial and cytosolic fractions revealed that cytochrome c (Cyt c) was released in the cytosol in a dose-dependent manner, whereas the pro-apoptotic protein Bax was redistributed to mitochondria after 24 and 48 h exposure. We also found that the expression of anti-apoptotic protein Bcl-xL, known to be regulated under mild oxidative stress to protect cells from apoptosis, did not change after 3 and 6 h exposure to Cd, then increased after 24 and 48 h exposure to 10 μM Cd. In the second part of this work, two antioxidant agents, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) (100 μM) and N-acetylcysteine (NAC, 100 μM) were used to determine the involvement of reactive oxygen species (ROS) in Cd-induced apoptosis. Simultaneously exposing trout hepatocytes to Cd and TEMPO or NAC significantly reduced caspase-3 activation after 48 h and had a suppressive effect on caspase-8 and -9 also, mostly after 24 h. Lastly, the presence of either one of these antioxidants in the treatment medium also attenuated Cd-induced Cyt c release in cytosol and the level of Bax in the mitochondria after 24 and 48 h, while high Bcl-xL expression was observed. Taken together, these data clearly evidenced the key role of mitochondria in the cascade of events leading to trout hepatocyte apoptosis in response to Cd and the relationship that exists between oxidative stress and cell death

  17. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings.

    Science.gov (United States)

    Saidi, Issam; Chtourou, Yacine; Djebali, Wahbi

    2014-03-01

    The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis.

    Science.gov (United States)

    Poliandri, Ariel H B; Velardez, Miguel O; Cabilla, Jimena P; Bodo, Cristian C A; Machiavelli, Leticia I; Quinteros, Alnilan F; Duvilanski, Beatriz H

    2004-11-01

    Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.

  19. Effects of mercury and selenite on δ-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats

    International Nuclear Information System (INIS)

    Perottoni, Juliano; Lobato, L.P.; Silveira, Aline; Rocha, J.B.T.; Emanuelli, Tatiana

    2004-01-01

    The present study evaluates the effects of Na 2 SeO 3 and HgCl 2 on kidney and liver of adult rats. In vivo, HgCl 2 (17 μmol/kg, sc) reduced ascorbic acid levels in liver (∼15%), whereas in kidney it reduced ALA-D activity (∼60%) and ascorbic acid levels (∼35%) and increased TBARS content (∼50%). Na 2 SeO 3 (17 μmol/kg, sc) exposure increased the content of nonprotein thiol groups in liver (35-60%) and kidney (∼50-160%), partially prevented mercury-induced ALA-D inhibition in kidney, and completely prevented a mercury-induced increase of TBARS content and decrease of ascorbic acid levels in kidney. In vitro, HgCl 2 and Na 2 SeO 3 inhibited renal and hepatic ALA-D, while HgCl 2 increased TBARS in renal and hepatic tissue preparations. Na 2 SeO 3 increased the rate of glutathione oxidation in vitro. Results indicated that Na 2 SeO 3 protected against HgCl 2 effects in vivo (prevention of mercury interaction with thiol groups and of mercury-induced oxidative damage). In vitro, Na 2 SeO 3 did not prevent mercury effects, but potentiated ALA-D inhibition by mercury, probably due to its ability to oxidize thiol groups

  20. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    Science.gov (United States)

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  1. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  2. Consumption of homegrown products does not increase dietary intake of arsenic, cadmium, lead, and mercury by young children living in an industrialized area of Germany

    International Nuclear Information System (INIS)

    Wilhelm, Michael; Wittsiepe, Juergen; Schrey, Petra; Hilbig, Annett; Kersting, Mathilde

    2005-01-01

    The dietary intake of arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) was studied among young German children with different food consumption behaviour (consumption of own grown foodstuffs and of products from the supermarket). The study area comprised an industrialized and a rural area of West Germany. Dietary intake of contaminants was measured by the duplicate method according to the WHO guideline. A total 588 duplicate portions were collected daily from 84 individuals between May and September 1998. Intake of food groups was calculated from dietary records. Determination of As, Cd, Hg, and Pb was performed following high-pressure digestion of lyophilized samples by atomic absorption spectrometry (AAS). Geometric mean weekly intake [μg/(kg bw .week)] was as follows: As 1.4, Cd 2.3, Hg 0.16, and Pb 5.3. Geometric mean intake corresponded to the percentage of the provisional tolerable weekly intake (PTWI) as follows: As 9.7%, Cd 32%, Hg 3.3%, Pb 21%. As and Hg intake were mainly influenced by fish consumption. The amount of cereals and bakery wares mainly determined the Cd and Pb intake. Children living in the industrialized area with a substantial food consumption of own grown vegetables or products from domestic animals products had no increased dietary intake of the metals

  3. Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver, and spleen tissues of a large commercially valuable catfish species from Brazil

    Directory of Open Access Journals (Sweden)

    Fábio P. Arantes

    2016-03-01

    Full Text Available The increasing amounts of heavy metals entering aquatic environments can result in high accumulation levels of these contaminants in fish and their consumers, which pose a serious risk to ecosystems and human health. We investigated the concentrations of mercury (Hg, cadmium (Cd, zinc (Zn, chromium (Cr, and lead (Pb in muscle, liver, and spleen tissues of Pseudoplatystoma corruscans specimens collected from two sites on the Paraopeba River, Brazil. The level of heavy metals concentrations in the tissues was often higher in viscera (i.e. liver and spleen than in muscle, and thus, the viscera should not be considered for human consumption. Correlations between metal concentrations and fish size were not significant. Although the levels of muscle bioaccumulation of Hg, Cd, Zn, Cr, and Pb, generally do not exceed the safe levels for human consumption, the constant presence of heavy metals in concentrations near those limits considered safe for human consumption, is a reason for concern, and populations who constantly consume fish from polluted rivers should be warned. Our findings also indicate that in a river network where certain areas are connected to other areas with high rates of environmental pollutants, people should be cautious about the regular consumption of fish, even when the fish consumed are caught in stretches of the basin where contamination levels are considered low, since many of the freshwater fish with high commercial value, such as the catfish surubim, are migratory.

  4. Cadmium, lead and mercury concentrations and their influence on morphological parameters in blood donors from different age groups from southern Poland.

    Science.gov (United States)

    Janicka, Monika; Binkowski, Łukasz J; Błaszczyk, Martyna; Paluch, Joanna; Wojtaś, Włodzimierz; Massanyi, Peter; Stawarz, Robert

    2015-01-01

    Due to industrial development, environmental contamination with metals increases which leads to higher human exposure via air, water and food. In order to evaluate the level of the present exposition, the concentrations of metals can be measured in such biological materials as human blood. In this study, we assessed the concentrations of cadmium (Cd), mercury (Hg) and lead (Pb) in blood samples from male blood donors from southern Poland (Europe) born in 1994 (n=30) and between 1947 and 1955 (n=30). Higher levels of Pb were seen in the group of older men (4.48 vs 2.48μg/L), whereas the Hg levels were lower (1.78 vs 4.28μg/L). Cd concentrations did not differ between age groups (0.56μg/L). The levels of Cd and Pb in older donors were significantly correlated (Spearman R 0.5135). We also observed a positive correlation between the number of red blood cells (RBC) and Hg concentrations in the older group (Spearman R 0.4271). Additionally, we noted numerous correlations among morphological parameters. Based on our results, we can state that metals influence the blood morphology and their concentrations in blood vary among age groups. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  6. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A. [Univ. of Utah, Salt Lake City, UT (United States); Morrill, Mike [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn S. [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey D. [Univ. of Utah, Salt Lake City, UT (United States)

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  7. Origin of oxidized mercury in the summertime free troposphere over the southeastern US

    Directory of Open Access Journals (Sweden)

    V. Shah

    2016-02-01

    Full Text Available We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg (observations: 1.49 ± 0.16 ng m−3, model: 1.51 ± 0.08 ng m−3, as well as the vertical profile of THg. The majority (65 % of observations of oxidized mercury (Hg(II were below the instrument's detection limit (detection limit per flight: 58–228 pg m−3, consistent with model-calculated Hg(II concentrations of 0–196 pg m−3. However, for observations above the detection limit we find that modeled Hg(II concentrations are a factor of 3 too low (observations: 212 ± 112 pg m−3, model: 67 ± 44 pg m−3. The highest Hg(II concentrations, 300–680 pg m−3, were observed in dry (RH  <  35 % and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0 to Hg(II and lack of Hg(II removal lead to efficient accumulation of Hg(II. We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0 + Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0 + Br, result in 1.5–2 times higher modeled Hg(II concentrations and improved agreement with the observations. The modeled

  8. Preventive effects of β-cryptoxanthin against cadmium-induced oxidative stress in the rat testis

    Directory of Open Access Journals (Sweden)

    Xiao-Ran Liu

    2016-01-01

    Full Text Available β-cryptoxanthin (CRY, a major carotenoid of potential interest for health, is obtained naturally from orange vegetables and fruits. A few research studies have reported that CRY could decrease oxidative stress and germ cell apoptosis. The purpose of this study was to examine the effects of CRY on acute cadmium chloride (CdCl 2 -induced oxidative damage in rat testes. For this study, 24 rats were divided into four groups, one of which serves as a control group that received intraperitoneal (i.p. injections of corn oil and physiological saline. The other rats were i.p. injected with CRY (10 μg kg−1 every 8 h, beginning 8 h before CdCl 2 (2.0 mg kg−1 treatment. The pathological and TUNEL findings revealed that CRY ameliorated the Cd-induced testicular histological changes and germ cell apoptosis in the rats. Furthermore, the Cd-induced decrease in the testicular testosterone (T level was attenuated after CRY administration (P < 0.05. The administration of CRY significantly reversed the Cd-induced increases in the lipid peroxide (LPO and malondialdehyde (MDA levels (P < 0.01. The testicular antioxidants superoxide dismutase (SOD, catalase (CAT and glutathione (GSH were decreased by treatment with Cd alone but were restored by CRY co-treatment. These results demonstrated that the application of CRY can enhance the tolerance of rats to Cd-induced oxidative damage and suggest that it has promised as a pharmacological agent to protect against Cd-induced testicular toxicity.

  9. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants

    Directory of Open Access Journals (Sweden)

    Christophe Loix

    2017-10-01

    Full Text Available Cadmium (Cd pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.

  10. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Pradeepkiran Jangampalli Adi

    Full Text Available This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn or vitamin E (Vit-E on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g (n = 6 control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each or Vit-E (20 mg/kg body weight supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPx, glutathione-S-transferase (GST and lipid peroxidase (LPx were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity. Keywords: Cadmium (Cd, Oxidative stress, Lipid peroxidation, Nephrotoxicity, PAGE analysis

  11. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-08-18

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd{sup 2+} and Pb{sup 2+} first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I{sup -} significantly enhances the stripping peak currents since it induces Cd{sup 2+} and Pb{sup 2+} to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd{sup 2+} from 2.5x10{sup -8} to 1x10{sup -5} mol/l and with that of Pb{sup 2+} from 2x10{sup -8} to 1x10{sup -5} mol/l. The lowest detectable concentrations of Cd{sup 2+} and Pb{sup 2+} are estimated to be 6x10{sup -9} and 4x10{sup -9} mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd{sup 2+} and Pb{sup 2+} in water samples.

  12. Mercury distribution and lipid oxidation in fish muscle: Effects of washing and isoelectric protein precipitation

    Science.gov (United States)

    Gong, Y.; Krabbenhoft, D.P.; Ren, L.; Egelandsdal, B.; Richards, M.P.

    2011-01-01

    Nearly all the mercury (Hg) in whole muscle from whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) was present as methyl mercury (MeHg). The Hg content in whole muscle from whitefish and walleye was 0.04-0.09 and 0.14-0.81 ppm, respectively. The myofibril fraction contained approximately three-fourths of the Hg in whitefish and walleye whole muscle. The sarcoplasmic protein fraction (e.g., press juice) was the next most abundant source of Hg. Isolated myosin, triacylglycerols, and cellular membranes contained the least Hg. Protein isolates prepared by pH shifting in the presence of citric acid did not decrease Hg levels. Addition of cysteine during washing decreased the Hg content in washed muscle probably through the interaction of the sulfhydryl group in cysteine with MeHg. Primary and secondary lipid oxidation products were lower during 2 ??C storage in isolates prepared by pH shifting compared to those of washed or unwashed mince from whole muscle. This was attributed to removing some of the cellular membranes by pH shifting. Washing the mince accelerated lipid peroxide formation but decreased secondary lipid oxidation products compared to that of the unwashed mince. This suggested that there was a lipid hydroperoxide generating system that was active upon dilution of aqueous antioxidants and pro-oxidants. ?? 2011 American Chemical Society.

  13. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    Science.gov (United States)

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  14. Thermometric titration of cadmium with sodium diethyldithiocarbamate, with oxidation by hydrogen peroxide as indicator reaction.

    Science.gov (United States)

    Hattori, T; Yoshida, H

    1987-08-01

    A new method of end-point indication is described for thermometric titration of cadmium with sodium diethyldithiocarbamate (DDTC). It is based on the redox reaction between hydrogen peroxide added to the system before titration, and the first excess of DDTC. Amounts of cadmium in the range 10-50 mumoles are titrated within 1% error.

  15. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  16. Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Maria, Jon-Paul; Keeler, Gordon A.

    2017-08-01

    Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.

  17. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films

    International Nuclear Information System (INIS)

    Hodlur, R. M.; Rabinal, M. K.

    2015-01-01

    Highly conducting transparent cadmium oxide thin films were prepared by the conventional spray pyrolysis technique. The pH of the spray solution is varied by adding ammonia/hydrochloric acid. The effect of pH on the morphology, crystallinity and optoelectronic properties of these films is studied. The structural analysis showed all the films in the cubic phase. For the films with pH < 7 (acidic condition), the preferred orientation is along the (111) direction and for those with pH >7 (alkaline condition), the preferred orientation is along the (200) direction. A lowest resistivity of 9.9 × 10 −4 Ω·cm (with carrier concentration = 5.1 × 10 20 cm −3 , mobility = 12.4 cm 2 /(V·s)) is observed for pH ≈ 12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70%. Thus, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of the spray solution without compromising the optical transparency. (paper)

  18. Optical and Electrical Properties of Tin-Doped Cadmium Oxide Films Prepared by Electron Beam Technique

    Science.gov (United States)

    Ali, H. M.; Mohamed, H. A.; Wakkad, M. M.; Hasaneen, M. F.

    2009-04-01

    Tin-doped cadmium oxide films were deposited by electron beam evaporation technique. The structural, optical and electrical properties of the films were characterized. The X-ray diffraction (XRD) study reveals that the films are polycrystalline in nature. As composition and structure change due to the dopant ratio and annealing temperature, the carrier concentration was varied around 1020 cm-3, and the mobility increased from less than 10 to 45 cm2 V-1 s-1. A transmittance value of ˜83% and a resistivity value of 4.4 ×10-4 Ω cm were achieved for (CdO)0.88(SnO2)0.12 film annealed at 350 °C for 15 min., whereas the maximum value of transmittance ˜93% and a resistivity value of 2.4 ×10-3 Ω cm were obtained at 350 °C for 30 min. The films exhibited direct band-to-band transitions, which corresponded to optical band gaps of 3.1-3.3 eV.

  19. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    Directory of Open Access Journals (Sweden)

    Jana Dumkova

    2016-06-01

    Full Text Available The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  20. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs.

    Science.gov (United States)

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-06-03

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  1. Electrochemical supercapacitors of cobalt hydroxide nanoplates grown on conducting cadmium oxide base-electrodes

    Directory of Open Access Journals (Sweden)

    Kailas K. Tehare

    2017-05-01

    Full Text Available Dopant-free and cost-effective sprayed cadmium oxide (CdO conducting base-electrodes, obtained at different concentrations (0.5, 1 and 1.5 M, characterized for their structures, morphologies and conductivities by using X-ray diffraction, scanning electron microscopy and electrical conductivity measurements, respectively, are employed as base-electrodes for growing cobalt hydroxide (Co(OH2 nanoplates using a simple electrodeposition method which further are envisaged for electrochemical supercapacitor application. Polycrystalline nature and mushroom-like plane-views are confirmed from the structure and morphology analyses. Both CdO and CdO–Co(OH2 electrodes reveal specific capacitances as high as 312 F g−1 and 1119 F g−1, respectively, in 0.1 M KOH electrolyte at 10 mV s−1 sweep rate. Optimized Co(OH2–CdO configuration electrode demonstrates energy density of 98.83 W h kg−1 and power density of 0.75 kW kg−1. In order to investigate the charge transfer kinematics electrochemical impedance measurements are carried out and explored.

  2. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  3. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  4. Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition

    International Nuclear Information System (INIS)

    Singh, Trilok; Pandya, D.K.; Singh, R.

    2011-01-01

    Research highlights: → Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. → X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. → The cut-off wavelength shifted from blue to red on account of the Cd incorporation in the ZnO and the average transmittance decreased by ∼31%. → The bandgap tuning for 4-16 at% Cd in the initial solution was achieved in the range of 3.08-3.32 eV (up to 0.24 eV). - Abstract: Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. Crystalline nanostructures/nanorods with cadmium concentration ranging from 4 to 16 at% in the initial solution were electrodeposited on tin doped indium oxide (ITO) conducting glass substrates at a constant cathodic potential -0.9 V and subsequently annealed in air at 300 deg. C. X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. The elemental composition of nanostructures was confirmed by energy dispersive spectroscopy (EDS). ZnO nanostructures were found to be highly transparent and had an average transmittance of 85% in the visible range of the spectrum. After the incorporation of Cd content into ZnO the average transmittance decreased and the bandgap tuning was also achieved.

  5. Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber.

    Science.gov (United States)

    Nardi, Alessandro; Benedetti, Maura; Fattorini, Daniele; Regoli, Francesco

    2018-03-01

    Ocean acidification (OA) may affect sensitivity of marine organisms to metal pollution modulating chemical bioavailability, bioaccumulation and biological responsiveness of several cellular pathways. In this study, the smooth scallop Flexopecten glaber was exposed to various combinations of reduced pH (pH/pCO 2 7.4/∼3000 μatm) and Cd (20 μg/L). The analyses on cadmium uptake were integrated with those of a wide battery of biomarkers including metallothioneins, single antioxidant defenses and total oxyradical scavenging capacity in digestive gland and gills, lysosomal membrane stability and onset of genotoxic damage in haemocytes. Reduced pH slightly increased concentration of Cd in scallop tissues, but no effects were measured in terms of metallothioneins. Induction of some antioxidants by Cd and/or low pH in the digestive gland was not reflected in variations of the total oxyradical scavenging capacity, while the investigated stressors caused a certain inhibition of antioxidants and reduction of the scavenging capacity toward peroxyl radical in the gills. Lysosomal membrane stability and onset of genotoxic damages showed high sensitivity with possible synergistic effects of the investigated factors. The overall results suggest that indirect effects of ocean acidification on metal accumulation and toxicity are tissue-specific and modulate oxidative balance through different mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  7. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck.

    Science.gov (United States)

    Shi, Lele; Cao, Huabin; Luo, Junrong; Liu, Ping; Wang, Tiancheng; Hu, Guoliang; Zhang, Caiying

    2017-11-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which has toxic effects in animals. To investigate the co-induced toxic effects of Mo and Cd on oxidative damage and kidney apoptosis in duck, 120 ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. Kidney samples were collected on the 60th and 120th days to determine the mRNA expression levels of ceruloplasmin (CP), metallothionein (MT), Bak-1, and Caspase-3 by quantitative RT-PCR. Additionally, we also determined the antioxidant activity indexes and contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) in serum. Meanwhile, ultrastructural changes of the kidney were observed. The results showed that glutathione reductase (GR) activity and CP level in serum were decreased in combination groups. In addition, the antioxidant indexes were decreased in co-treated groups compared with single treated groups. The mRNA expression levels of Bak-1 and Caspase-3 increased in co-treated groups. The mRNA expression level of CP in high-dose combination group was downregulated, while the mRNA expression of MT was upregulated except for low-dose Mo group. Additionally, in the later period the content of Cu in serum decreased in joint groups while the contents of Mo and Cd increased. In addition, ultrastructural changes showed mitochondrial crest fracture, swelling, deformed nuclei, and karyopyknosis in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to oxidative stress, kidney apoptosis and disturb homeostasis of trace elements in duck, and it showed a possible synergistic relationship between the two elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys

    International Nuclear Information System (INIS)

    Thijssen, Sandy; Cuypers, Ann; Maringwa, John; Smeets, Karen; Horemans, Nele; Lambrichts, Ivo; Van Kerkhove, Emmy

    2007-01-01

    Oxidative stress is believed to participate in the early processes of cadmium (Cd)-induced proximal tubular kidney damage. Mice were chronically exposed up to 23 weeks to low Cd concentrations (10 and 100 mg CdCl 2 /l) via the drinking water. Pro- and antioxidant gene expression levels, glutathione, ascorbate and lipid peroxidation levels were measured. Our study provided evidence for an early and a late stress response in the kidney. Metallothioneins were upregulated from 1 week of exposure on and they stayed important during the whole exposure period. After 8 weeks the expression of Bcl2 (anti-apoptotic), Prdx2 and cytosolic superoxide dismutase (Sod1) was reduced in the group exposed to 100 mg CdCl 2 /l, which might indicate a response to Cd-stress. However glutathione, ascorbate and lipid peroxidation levels did not significantly change, and the overall redox balance remained stable. Stable Sod2 transcriptional levels suggested that an increased formation of superoxide anions, which can arise upon Cd-induced mitochondrial free radical generation, was not appearing. A second defence activation was observed after 23 weeks: i.e. an increase of catalase (Cat), glutathione peroxidase 4 (Gpx4) and heme oxygenase 1 (Hmox1), together with NADPH oxidase 4 (Nox4), of which the role has not been studied yet in Cd nephrotoxicity. These findings were in contrast with previous studies, where Cd-induced oxidative stress was detrimental when high Cd concentrations were applied. In conclusion our study provided evidence that a chronic exposure to low Cd concentrations triggered a biphasic defence activation in the kidney that might lead to adaptation and survival

  9. Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium

    Science.gov (United States)

    Hem, J.D.; Lind, Carol J.

    1991-01-01

    Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration

  10. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats.

    Science.gov (United States)

    Milton Prabu, S; Muthumani, M; Shagirtha, K

    2012-04-01

    The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.

  11. Changes in mercury and cadmium concentrations and the feeding behaviour of beluga (Delphinapterus leucas) near Somerset Island, Canada, during the 20th century

    International Nuclear Information System (INIS)

    Outridge, P.M.; Hobson, K.A.; Savelle, J.M.

    2005-01-01

    Beluga (Delphinapterus leucas) continues to be an important food species for Arctic communities, despite concerns about its high mercury (Hg) content. We investigated whether Hg and cadmium (Cd) concentrations had changed during the 20th century in beluga near Somerset Island in the central Canadian Arctic, using well-preserved teeth collected from historical sites (dating to the late 19th century and 1926-1947) and during subsistence hunts in the late 1990s. Mercury concentrations in both historical and modern teeth were correlated with animal age, but 1990s beluga exhibited a significantly more rapid accumulation with age than late 19th century animals, indicating that Hg concentrations or bioavailability in their food chain had increased during the last century. The geometric mean tooth Hg concentration in modern 30 year old animals was 7.7 times higher than in the late 19th century, which corresponds to threefold higher concentrations in muktuk and muscle. Teeth from 1926 to 1947 were similar in Hg content to the late 19th century, suggesting that the increase had occurred sometime after the 1940s. In contrast, tooth Cd was not correlated with animal age and decreased during the last 100 years, indicating that anthropogenic Cd was negligible in this population. Late 19th century beluga displayed a greater range of prey selection (tooth δ 15 N values: 15.6-20.5%o) than modern animals (δ 15 N: 17.2-21.1%o). To prevent this difference from confounding the temporal Hg comparison, the Hg-age relationships discussed above were based on historical animals, which overlapped isotopically with the modern group. Tooth δ 13 C also changed to isotopically more depleted values in modern animals, with the most likely explanation being a significant shift to more pelagic-based feeding. Industrial Hg pollution is a plausible explanation for the recent Hg increase. However, without further investigation of the relationship between the range exploitation of modern beluga and

  12. γ-Oryzanol protects against acute cadmium-induced oxidative damage in mice testes.

    Science.gov (United States)

    Spiazzi, Cristiano C; Manfredini, Vanusa; Barcellos da Silva, Fabiana E; Flores, Erico M M; Izaguirry, Aryele P; Vargas, Laura M; Soares, Melina B; Santos, Francielli W

    2013-05-01

    Cadmium is a non-essential heavy metal that is present at low levels mainly in food and water and also in cigar smoke. The present study evaluated the testicular damage caused by acute cadmium exposure and verified the protective role of γ-oryzanol (ORY). Mice were administrated with a single dose of 2.5mg/kg of CdCl2, and then treated with ORY (50mM in canola oil, 5mL/kg). Testes were removed after 24h and tested for lipid peroxidation (TBARS), protein carbonylation, DNA breakage, ascorbic acid, cadmium and non-proteic thiols contents, and for the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and δ-aminolevulic acid dehydratase (δ-ALA-D). Cadmium presented a significant alteration in all parameters, except GPx and CAT activities. Therapy reduced in a slight degree cadmium concentration in testes (around 23%). ORY restored SOD and GST activities as well as TBARS production to the control levels. Furthermore, ORY partially recovered δ-ALA-D activity inhibited by cadmium. This study provides the first evidence on the therapeutic properties of ORY in protecting against cadmium-induced testicular toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Are plant endogenous factors like ethylene modulators of the early oxidative stress induced by mercury?

    Directory of Open Access Journals (Sweden)

    M Belén eMontero-Palmero

    2014-08-01

    Full Text Available The induction of oxidative stress is one of the quickest symptoms appearing in plants subjected to metal stress. A transcriptional analysis of the early responses of alfalfa (Medicago sativa seedlings to mercury (Hg; 3 µM for 3, 6 and 24 h showed that up-regulation of genes responding to ethylene were up-regulated, a phytohormone known to mediate in the cellular redox homeostasis. In this mini-review we have compared these quick responses with two other concurrent transcriptomic analysis in Barrel medic (Medicago truncatula and barley (Hordeum vulgare under Hg stress. Besides ethylene, ABA and jasmonate related genes were up-regulated, all of them are endogenous factors known to intervene in oxidative stress responses. The information obtained may target future work to understand the cellular mechanisms triggered by Hg, enabling biotechnological approaches to diminish Hg-induced phytotoxicity.

  14. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: Evidence from transcript expression to physiology

    International Nuclear Information System (INIS)

    Vergauwen, Lucia; Hagenaars, An; Blust, Ronny; Knapen, Dries

    2013-01-01

    Standard ecotoxicity tests are performed at species’ specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34 °C for one month, were exposed to 5 μM cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34 °C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12 °C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26 °C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we recognize and this study even confirms the

  15. [Evaluation of human health risk for a population from Cali, Colombia, by exposure to lead, cadmium, mercury, 2,4-dichloro-phenoxyacetic acid and diuron associated with water and food consumption].

    Science.gov (United States)

    Echeverry, Ghisliane; Zapata, Andrés Mauricio; Páez, Martha Isabel; Méndez, Fabián; Peña, Miguel

    2015-08-01

    Exposure to pollutants such as pesticides and heavy metals has been linked to health problems. Several studies have revealed the presence of these contaminants in Cali; however, there is no information available about the main routes of exposure and risk of these contaminants. To estimate the risk associated with the intake of cadmium, lead and mercury, and pesticides 2,4-D and diuron through the consumption of water and food in a population in Cali. Population and environmental data were obtained, and a risk assessment was performed using United States Environmental Protection Agency guidelines. The concentrations of the evaluated pollutants were below permissible levels as established by the Colombian Ministerio de Ambiente, Vivienda y Desarrollo Territorial (3 µg/L -1 of cadmium; 10 µg/L -1 of lead; 1 µg/L -1 of mercury; 1 µg/L -1 of 2,4 D; 1 µg/L -1 of diuron). Salema butterfish ( Peprilus snyderi ) samples contained levels of cadmium between 20 and 80 µg/kg -1 , which are below the permissible limit set by the World Health Organization (100 µg/kg -1 ). The results of the risk assessment indicated that the carcinogenic and non-carcinogenic attributable risk to population health from the intake of food contaminants was below the maximum level permitted by the United States Environmental Protection Agency. It is believed that the findings in previous studies on pollutants may have been due to specific contamination events; therefore, monitoring and early warning about water intake is recommended. Furthermore, the report of cadmium being found in fish consumed as food suggests the need for quality control by regulators.

  16. [A comparative study of cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc in brown rice and fish by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectrometry].

    Science.gov (United States)

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-10-01

    A study was conducted to evaluate the applicability of ICP-MS techniques for determination of metals in brown rice and fish. Cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc were determined by this method. An open digestion with nitric acid (Method A) and a rapid open digestion with nitric acid and hydrochloric acid (Method B) were used to solubilize analytes in samples, and these procedures were followed by ICP-MS analysis. Recovery of certified elements from standard reference materials by Method A and Method B ranged from 92 to 110% except for mercury (70 to 100%). Analytical results of brown rice and fish samples obtained by this ICP-MS agreed with those obtained by atomic absorption spectrometry (AAS). The results of this study demonstrate that quadrupole ICP-MS provides precise and accurate measurements of the elements tested in brown rice and fish samples.

  17. Radioactive zinc ( sup 65 Zn), zinc, cadmium, and mercury in the Pacific Hake, Merluccius productus (Ayres), off the West Coast of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.

    1974-06-01

    The Pacific Hake, Merluccius productus (Ayers) was used to monitor the waters off Puget Sound and the West Coast of the US for zinc(Zn), cadmium(Cd), mercury(Hg) and {sup 65}Zn. The Columbia River is not the source of Zn, Cd or Hg contamination, but is the source of {sup 65}Zn, with the concentration in the Hake reflecting the position of the Columbia River plume. Zn and Cd accumulation in the Hake were fit to the equation Y=B{sub 1}+B{sub 2}e{sup B}{sub 3}X where Y is the concentration of the element and X is the length or weight of the fish. Biological attributes were assigned to the other parameters as follows: B{sub 1} is the asymptotic value for Zn or Cd at chemical maturity; B{sub 2} is the location of the curve with respect to the length or weight of the fish; and B{sub 3} is a constant pertaining to the rate of change of Zn or Cd. Although Zn, Cd and Hg are all Group 2B elements, only the concentrations of Zn and Cd were correlated for all locations; Hg concentrations varied as a function of location. Zn and Cd concentrations increase with fish size and approach an asymptotic value at maturity, while Hg concentrations were linear and the slope is a function of sampling location. Zn and Cd levels are regulated in the adult, while Hg continues to increase with age. It may be significant that the age distribution of fish caught commercially coincides with the maximum concentration of Zn and Cd. 195 refs., 30 figs., 10 tabs. (MHB)

  18. Effects of lead, cadmium, arsenic, and mercury co-exposure on children's intelligence quotient in an industrialized area of southern China.

    Science.gov (United States)

    Pan, Shangxia; Lin, Lifeng; Zeng, Fan; Zhang, Jianpeng; Dong, Guanghui; Yang, Boyi; Jing, You; Chen, Shejun; Zhang, Gan; Yu, Zhiqiang; Sheng, Guoying; Ma, Huimin

    2018-04-01

    Exposure to metal(loid)s can lead to adverse effects on nervous system in children. However, little is known about the possible interaction effects of simultaneous exposure to multiple metal(loid)s on children's intelligence. In addition, relationship between blood lead concentrations (lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) in blood (BPb, BCd, BAs, BHg) and urine (UPb, UCd, UAs, UHg) were assessed, as well as children's intelligence quotient (IQ). A significant decrease in IQ scores was identified in children from the industrialized town (p < .05), who had statistically higher geometric mean concentrations of BPb, BCd, UPb, UCd and UHg (65.89, 1.93, 4.04, 1.43 and 0.37 μg/L, respectively) compared with children from the reference town (37.21, 1.07, 2.14, 1.02 and 0.30 μg/L, respectively, p < .05). After adjusting confounders, only BPb had a significant negative association with IQ (B = -0.10, 95% confidence interval: -0.15 to -0.05, p < .001), which indicated that IQ decreased 0.10 points when BPb increased 1 μg/L. Significant negative interactions between BAs and BHg, positive interaction between UPb and UCd on IQ were observed (p < .10), and BPb <100 μg/L still negatively affected IQ (p < .05). Our findings suggest that although only BPb causes a decline in children's IQ when simultaneously exposed to these four metal(loid)s at relatively low levels, interactions between metal(loid)s on children's IQ should be paid special attention, and the reference standard in China of 100 μg/L BPb for children above 5 years old should be revised. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    International Nuclear Information System (INIS)

    Defo, Michel A.; Bernatchez, Louis; Campbell, Peter G.C.; Couture, Patrice

    2014-01-01

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  20. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Campbell, Peter G.C. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2014-09-15

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  1. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    Science.gov (United States)

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  2. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    Science.gov (United States)

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  3. Gaseous Oxidized Mercury Dry Deposition Measurements in the FourCorners Area and Eastern Oklahoma, U.S.A.

    Science.gov (United States)

    Gaseous oxidized mercury (GOM) dry deposition measurements using surrogate surface passive samplers were collected in the Four Corners area and eastern Oklahoma from August, 2009–August, 2011. Using data from a six site area network, a characterization of the magnitude and spatia...

  4. Cadmium-manganese oxide composite thin films: Synthesis, characterization and photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, M.A. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Faculty of Science, Kuala Lumpur 50603 (Malaysia); Ebadi, M. [Solar Energy Research Institute, University Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Mazhar, M., E-mail: mazhar42pk@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Huang, N.M. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Faculty of Science, Kuala Lumpur 50603 (Malaysia); Mun, L.K.; Misran, M. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology and Catalysis (NanoCat), University Malaya, Kuala Lumpur 50603 (Malaysia)

    2017-01-15

    Ceramic composite CdO–Mn{sub 2}O{sub 3} thin films have been deposited on fluorine doped tin oxide (FTO) coated glass substrates by aerosol assisted chemical vapour deposition (AACVD) using a 1:1 mixture of cadmium complex, [Cd(dmae){sub 2}(OAc){sub 2}]·H{sub 2}O (1) (where dmae = 2-dimethylaminoethanolato and OAc = acetato), and diacetatomanganese (II). The phase purity, stoichiometry and thickness of the films were examined by X-ray diffraction (XRD), Fourier transformed infra-red (FTIR), Raman spectroscopy, field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectroscopy (EDX), UV–Vis spectroscopy and profilometer. The FEG-SEM analysis illustrated that the morphology of the fabricated films was influenced by the type of solvent. The optical direct band gap of the film fabricated from THF solution was 1.95 eV. From the current–voltage characteristics it is evident that the CdO–Mn{sub 2}O{sub 3} composite semiconductor electrode exhibits n-type behaviour and the photocurrent density was found to be dependent on the deposition medium. The film deposited from THF solution displayed maximum photocurrent density of 4.80 mA cm{sup −2} at 0.65 V vs. Ag/AgCl/3 M KCl (∼1.23 V vs. RHE) in 0.5 M NaOH electrolyte. - Highlights: • Single crystal X-ray structure of [Cd(dmae){sub 2}(OAc){sub 2}]·H{sub 2}O (1). • CdO-Mn{sub 2}O{sub 3} composite photoanode thin films. • Optical band gap of CdO-Mn{sub 2}O{sub 3} photoanode. • Photoelectrochemical and EIS studies.

  5. Relationship between genotoxicity and oxidative stress induced by mercury on common carp (Cyprinus carpio) tissues.

    Science.gov (United States)

    García-Medina, Sandra; Galar-Martínez, Marcela; Gómez-Oliván, Leobardo Manuel; Ruiz-Lara, Karina; Islas-Flores, Hariz; Gasca-Pérez, Eloy

    2017-11-01

    Mercury is one of the most toxic metals in aquatic systems since it is able to induce neurobehavioral disorders as well as renal and gastrointestinal tract damage. The common carp Cyprinus carpio is an important species from both an ecological and economic viewpoint as it is consumed in many countries, the top producers being Mexico, China, India and Japan. The present study aimed to evaluate the relation between Hg-induced oxidative stress and genotoxicity in diverse tissues of C. carpio. Specimens were exposed to 0.01mgHg/L (the maximum permissible limit for aquatic life protection), and lipid peroxidation, protein carbonyl content and the activity of antioxidant enzymes were evaluated at 96h. Micronuclei frequency and DNA damage by comet assay were determined at 12, 24, 48, 72 and 96h. Hg induced oxidative stress and genotoxicity on exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, DNA damage and micronuclei frequency occurred. Blood, gill and liver were more susceptible to oxidative stress, while blood were more sensitive to genotoxicity. In conclusion, Hg at concentrations equal to the maximum permissible limit for aquatic life protection induced oxidative stress and genotoxicity on C. carpio, and these two effects prove to be correlated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury

    Directory of Open Access Journals (Sweden)

    Diana M. Narváez

    2017-09-01

    Full Text Available Mercury (Hg exposure is a public health concern due to its persistence in the environment and its high toxicity. Such toxicity has been associated with the generation of oxidative stress in occupationally exposed subjects, such as artisanal gold miners. In this study, we characterize occupational exposure to Hg by measuring blood, urine and hair levels, and investigate oxidative stress and DNA methylation associated with gold mining. To do this, samples from 53 miners and 36 controls were assessed. We show higher levels of oxidative stress marker 8-OHdG in the miners. Differences in LINE1 and Alu(Yb8 DNA methylation between gold miners and control group are present in peripheral blood leukocytes. LINE1 methylation is positively correlated with 8-OHdG levels, while XRCC1 and LINE1 methylation are positively correlated with Hg levels. These results suggest an effect of Hg on oxidative stress and DNA methylation in gold miners that may have an impact on miners’ health.

  7. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  8. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  9. Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks

    Science.gov (United States)

    Hoffman, D.J.; Heinz, G.H.

    1998-01-01

    Earlier studies reported on the toxicity and related oxidative stress of different forms of Se, including seleno-D,L-methionine, in mallards (Anas platyrhynchos). This study compares the effects of Se (seleno-D,L-methionine) and Hg (methylmercury chloride) separately and in combination. Mallard drakes received one of the following diets: untreated feed (controls), or feed containing 10 ppm Se, 10 ppm Hg, or 10 ppm Se in combination with 10 ppm Hg. After 10 weeks, blood, liver, and brain samples were collected for biochemical assays. The following clinical and biochemical alterations occurred in response to mercury exposure: hematocrit and hemoglobin concentrations decreased; activities of the enzymes glutathione (GSH) peroxidase (plasma and liver), glutathione-S-transferase (liver), and glucose-6-phosphate dehydrogenase (G-6-PDH) (liver and brain) decreased; hepatic oxidized glutathione (GSSG) concentration increased relative to reduced glutathione (GSH); and lipid peroxidation in the brain was evident as detected by increased thiobarbituric reactive substances (TBARS). Effects of Se alone included increased hepatic GSSG reductase activity and brain TBARS concentration. Se in combination with Hg partially or totally alleviated effects of Hg on GSH peroxidase, G-6-PDH, and GSSG. These findings are compared in relation to field observations for diving ducks and other aquatic birds. It is concluded that since both Hg and excess Se can affect thiol status, measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. The ability of Se to restore the activities of G-6-PDH, GSH peroxidase, and glutathione status involved in antioxidative defense mechanisms may be crucial to biological protection from the toxic effects of methyl mercury.

  10. Simultaneous determination of oxygen and cadmium in cadmium and cadmium compounds

    International Nuclear Information System (INIS)

    Imaeda, K.; Kuriki, T.; Ohsawa, K.; Ishii, Y.

    1977-01-01

    Cadmium and its compounds were analysed for oxygen and cadmium by a modification of the Schutze-Unterzaucher method. Oxygen in some compounds such as cadmium oxide, nitrate and sulphate could not be determined by the usual method. The method of adding carbon was employed for the determination of total oxygen. Total oxygen could be determined by the addition of 5 mg of carbon to a sample boat and heating at 950 0 . The determination was also carried out by addition of naphthalene (2 mg). It was found that the cadmium powder and cadmium flake used contained ca. 1 and 0.15% oxygen, respectively. Oxygen and cadmium in cadmium and its compounds were simultaneously determined by the addition of 2 mg of naphthalene. Cadmium was determined colorimetrically by use of glyoxal-bis-(2-hydroxyanil). Oxygen and cadmium in the samples could be determined simultaneously with an average error of -0.02 and -0.22%, respectively. (author)

  11. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  12. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    Science.gov (United States)

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  13. Application of Zeeman graphite furnace atomic absorption spectrometry with high-frequency modulation polarization for the direct determination of aluminum, beryllium, cadmium, chromium, mercury, manganese, nickel, lead, and thallium in human blood.

    Science.gov (United States)

    Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A

    2012-10-01

    Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

  14. Ion adsorption on oxides : surface charge formation and cadmium binding on rutile and hematite

    NARCIS (Netherlands)

    Fokkink, L.G.J.

    1987-01-01

    The adsorption of charge-determining (H +and OH -) and cadmium ions on rutile (TiO 2 ) and hematite (α-Fe

  15. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata?

    Energy Technology Data Exchange (ETDEWEB)

    Macías-Mayorga, Dayanara, E-mail: dayanara.macias@uleam.edu.ec [Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain); Departamento Central De Investigación (DCI), Universidad Laica Eloy Alfaro de Manabí, Vía San Mateo, Manta (Ecuador); Laiz, Irene [Departamento de Física Aplicada, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain); Moreno-Garrido, Ignacio; Blasco, Julián [Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain)

    2015-04-15

    Highlights: • The cadmium accumulation in C. angulata tended toward a stationary state. • Metallothionein-like protein (MTLP) is clearly induced by Cd accumulation. • The MTLP detoxification mechanism is affected at high Cd concentrations. • Cadmium toxicity causes GSH levels to decrease and inhibits antioxidant enzymes. - Abstract: The kinetics of cadmium (Cd) accumulation in the gills and digestive gland of Crassotrea angulata at three concentrations of cadmium (0.088 μM, 0.44 μM and 2.22 μM) was monitored for 28 days. The relationship between accumulation and toxicity was studied using metallothionein-like protein (MTLP) concentration and reduced glutathione levels (GSH) as biochemical endpoints. The activity of enzymes which form part of the antioxidant defense system, in particular glutathione reductase (GR), total glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), as enzymatic endpoints, was also assessed. A first order kinetic model demonstrated that the accumulation process does not take place linearly, as the Cd concentration in gills and digestive gland tended toward a stationary state. Metallothionein-like protein is clearly induced by Cd accumulation; however, at high Cd concentrations the detoxification mechanism of this protein is affected. High Cd concentrations (2.22 μM) lead to a decrease in GSH levels, and also inhibit antioxidant enzyme activities, demonstrating the adverse effect of this metal on the antioxidant balance system.

  16. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata?

    International Nuclear Information System (INIS)

    Macías-Mayorga, Dayanara; Laiz, Irene; Moreno-Garrido, Ignacio; Blasco, Julián

    2015-01-01

    Highlights: • The cadmium accumulation in C. angulata tended toward a stationary state. • Metallothionein-like protein (MTLP) is clearly induced by Cd accumulation. • The MTLP detoxification mechanism is affected at high Cd concentrations. • Cadmium toxicity causes GSH levels to decrease and inhibits antioxidant enzymes. - Abstract: The kinetics of cadmium (Cd) accumulation in the gills and digestive gland of Crassotrea angulata at three concentrations of cadmium (0.088 μM, 0.44 μM and 2.22 μM) was monitored for 28 days. The relationship between accumulation and toxicity was studied using metallothionein-like protein (MTLP) concentration and reduced glutathione levels (GSH) as biochemical endpoints. The activity of enzymes which form part of the antioxidant defense system, in particular glutathione reductase (GR), total glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), as enzymatic endpoints, was also assessed. A first order kinetic model demonstrated that the accumulation process does not take place linearly, as the Cd concentration in gills and digestive gland tended toward a stationary state. Metallothionein-like protein is clearly induced by Cd accumulation; however, at high Cd concentrations the detoxification mechanism of this protein is affected. High Cd concentrations (2.22 μM) lead to a decrease in GSH levels, and also inhibit antioxidant enzyme activities, demonstrating the adverse effect of this metal on the antioxidant balance system

  17. To the problem on formation kinetics of absorption and polylayer films in anodic oxidation of cadmium in alkali hydroxides. Kinetics of irreversible absorption of oxide

    International Nuclear Information System (INIS)

    Grachev, D.K.

    1978-01-01

    An attempt is made to substantiate the formation of adsorption and polylayer films on cadmium electrode during its oxidation in KOH diluted solutions based on the interpretation of data from methods of the potential control. Using relaxation methods (voltammetry and chronoammetry) the conditions were determined at which irreversible abd sorption kinetics of the passivating oxide turns out to dominate the anodic dissolution process in the KOH 1-0.1 N solutions. Parts of monolayer and polylayer surface filling are shown. Kinetics of monolayer oxide growth is interpreted based on the Temkin-Zeldovich type equation for irreversible adsorption process. Ways of the kinetic equation precision are discussed for its full correspondence with the experiment obtained

  18. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead

    International Nuclear Information System (INIS)

    Stacchiotti, Alessandra; Morandini, Fausta; Bettoni, Francesca; Schena, Ilaria; Lavazza, Antonio; Grigolato, Pier Giovanni; Apostoli, Pietro; Rezzani, Rita; Aleo, Maria Francesca

    2009-01-01

    A close link between stress protein up-regulation and oxidative damage may provide a novel therapeutic tool to counteract nephrotoxicity induced by toxic metals in the human population, mainly in children, of industrialized countries. Here we analysed the time course of the expression of several heat shock proteins, glucose-regulated proteins and metallothioneins in a rat proximal tubular cell line (NRK-52E) exposed to subcytotoxic doses of inorganic mercury and lead. Concomitantly, we used morphological and biochemical methods to evaluate metal-induced cytotoxicity and oxidative damage. In particular, as biochemical indicators of oxidative stress we detected reactive oxygen species (ROS) and nitrogen species (RNS), total glutathione (GSH) and glutathione-S-transferase (GST) activity. Our results clearly demonstrated that mercury increases ROS and RNS levels and the expressions of Hsp25 and inducible Hsp72. These findings are corroborated by evident mitochondrial damage, apoptosis or necrosis. By contrast, lead is unable to up-regulate Hsp72 but enhances Grp78 and activates nuclear Hsp25 translocation. Furthermore, lead causes endoplasmic reticulum (ER) stress, vacuolation and nucleolar segregation. Lastly, both metals stimulate the over-expression of MTs, but with a different time course. In conclusion, in NRK-52E cell line the stress response is an early and metal-induced event that correlates well with the direct oxidative damage induced by mercury. Indeed, different chaperones are involved in the specific nephrotoxic mechanism of these environmental pollutants and work together for cell survival.

  19. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    Directory of Open Access Journals (Sweden)

    Shaun M. Baesman

    2015-06-01

    Full Text Available The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5 medium via methane oxidation.

  20. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    Science.gov (United States)

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  1. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon

    International Nuclear Information System (INIS)

    Mei Zhijian; Shen Zhemin; Zhao Qingjie; Wang Wenhua; Zhang Yejian

    2008-01-01

    The reusability of Co 3 O 4 (AC-Co), MnO 2 (AC-Mn) and CuCoO 4 (AC-CC) loaded activated carbon (AC) and their element mercury removal efficiency had been studied using a laboratory-scale fixed-bed reactor under simulated flue gas conditions. Tests showed that spent AC-Co could be regenerated through heating at 673 K under N 2 atmosphere and the enrichment regenerated Hg 0 could be collected to eliminate the secondary pollution. Regenerated AC-Mn and AC-CC's Hg 0 removal efficiency decreased greatly due to AC's decomposition and MnO 2 's crystal structure variation. Compared with AC and metal oxides, metal oxide-loaded AC had higher Hg 0 capture ability and capacity due to AC huge surface areas and lots of function groups. TGA analysis results showed that AC-Co and AC-Mn's HgO adsorptive capacity at 523 K reached 19.8 mg g -1 and 5.21 mg g -1 , respectively. High loading values and adsorption temperatures were beneficial to AC-Co's Hg 0 removal efficiency. However, CuCoO 4 and MnO 2 's AC decomposition ability had negative effect on AC-CC and AC-Mn's performance, respectively, especially at high adsorption temperatures and loading values. SO 2 tests showed that AC-CC had higher anti SO 2 -poisoning ability than AC-Co and AC-Mn

  2. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  3. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    International Nuclear Information System (INIS)

    Kumar, Puneet; Prasad, Y.; Patra, A.K.; Ranjan, R.; Swarup, D.; Patra, R.C.; Pal, Satya

    2009-01-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 ± 4 cm and weight of 86 ± 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl 2 .H 2 O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl 2 .H 2 O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and taurine have potential to

  4. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  5. Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassius auratus using oxidative stress biomarkers

    International Nuclear Information System (INIS)

    Chen Fang; Gao Jie; Zhou Qixing

    2012-01-01

    The objective of this study was to assess potential toxic effects of simulated urban runoff on Carassius auratus using oxidative stress biomarkers. The activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the content of malondialdehyde (MDA) in the liver of C. auratus were analyzed after a 7-, 14- and 21-day exposure to simulated urban runoff containing galaxolide (HHCB) and cadmium (Cd). The results showed that the activity of antioxidant enzymes and the content of MDA increased significantly exposed to the simulated urban runoff containing HHCB alone or mixture of HHCB and Cd. The activity of the investigated enzymes and the content of MDA then returned to the blank level over a longer period of exposure. The oxidative stress could be obviously caused in the liver of C. auratus under the experimental conditions. This could provide useful information for toxic risk assessment of urban runoff. - Highlights: ► We assessed potential toxicity of urban runoff containing HHCB and Cd. ► Exposure of simulated urban runoff can caused oxidative stress in C. auratus liver. ► SOD and CAT are more sensitive than POD and more suitable for indicating the toxicity of urban runoff. ► The present study using oxidative stress biomarkers could provide useful information for toxic risk assessment of urban runoff. - Simulated urban runoff containing HHCB and Cd could cause oxidative stress on the liver of Carassius auratus, which could provide useful information for toxic risk assessment of urban runoff.

  6. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  7. Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: Analysis of 2008–2010 Korean National Health and Nutrition Examination Survey data

    International Nuclear Information System (INIS)

    Kim, Yangho; Lee, Byung-Kook

    2012-01-01

    Introduction: The objective of this study was to evaluate associations between blood lead, cadmium, and mercury levels with estimated glomerular filtration rate in a general population of South Korean adults. Methods: This was a cross-sectional study based on data obtained in the Korean National Health and Nutrition Examination Survey (KNHANES) (2008–2010). The final analytical sample consisted of 5924 participants. Estimated glomerular filtration rate (eGFR) was calculated using the MDRD Study equation as an indicator of glomerular function. Results: In multiple linear regression analysis of log2-transformed blood lead as a continuous variable on eGFR, after adjusting for covariates including cadmium and mercury, the difference in eGFR levels associated with doubling of blood lead were −2.624 mL/min per 1.73 m² (95% CI: −3.803 to −1.445). In multiple linear regression analysis using quartiles of blood lead as the independent variable, the difference in eGFR levels comparing participants in the highest versus the lowest quartiles of blood lead was −3.835 mL/min per 1.73 m² (95% CI: −5.730 to −1.939). In a multiple linear regression analysis using blood cadmium and mercury, as continuous or categorical variables, as independent variables, neither metal was a significant predictor of eGFR. Odds ratios (ORs) and 95% CI values for reduced eGFR calculated for log2-transformed blood metals and quartiles of the three metals showed similar trends after adjustment for covariates. Discussion: In this large, representative sample of South Korean adults, elevated blood lead level was consistently associated with lower eGFR levels and with the prevalence of reduced eGFR even in blood lead levels below 10 μg/dL. In conclusion, elevated blood lead level was associated with lower eGFR in a Korean general population, supporting the role of lead as a risk factor for chronic kidney disease.

  8. Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: Analysis of 2008-2010 Korean National Health and Nutrition Examination Survey data

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yangho [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Lee, Byung-Kook, E-mail: bklee@sch.ac.kr [Institute of Environmental and Occupational Medicine, Soonchunhyang University 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of)

    2012-10-15

    Introduction: The objective of this study was to evaluate associations between blood lead, cadmium, and mercury levels with estimated glomerular filtration rate in a general population of South Korean adults. Methods: This was a cross-sectional study based on data obtained in the Korean National Health and Nutrition Examination Survey (KNHANES) (2008-2010). The final analytical sample consisted of 5924 participants. Estimated glomerular filtration rate (eGFR) was calculated using the MDRD Study equation as an indicator of glomerular function. Results: In multiple linear regression analysis of log2-transformed blood lead as a continuous variable on eGFR, after adjusting for covariates including cadmium and mercury, the difference in eGFR levels associated with doubling of blood lead were -2.624 mL/min per 1.73 m Superscript-Two (95% CI: -3.803 to -1.445). In multiple linear regression analysis using quartiles of blood lead as the independent variable, the difference in eGFR levels comparing participants in the highest versus the lowest quartiles of blood lead was -3.835 mL/min per 1.73 m Superscript-Two (95% CI: -5.730 to -1.939). In a multiple linear regression analysis using blood cadmium and mercury, as continuous or categorical variables, as independent variables, neither metal was a significant predictor of eGFR. Odds ratios (ORs) and 95% CI values for reduced eGFR calculated for log2-transformed blood metals and quartiles of the three metals showed similar trends after adjustment for covariates. Discussion: In this large, representative sample of South Korean adults, elevated blood lead level was consistently associated with lower eGFR levels and with the prevalence of reduced eGFR even in blood lead levels below 10 {mu}g/dL. In conclusion, elevated blood lead level was associated with lower eGFR in a Korean general population, supporting the role of lead as a risk factor for chronic kidney disease.

  9. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  10. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-01-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  11. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  12. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    Deng Xiaopeng; Xia Yan; Hu Wei; Zhang Hongxiao; Shen Zhenguo

    2010-01-01

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H 2 O 2 ) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H 2 O 2 and superoxide anion (O 2 · - ), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN 3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H 2 O 2 and O 2 · - , but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  13. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  14. Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A., E-mail: antonio.braga@iit.it [CNR-IDASC SENSOR Lab and Department of Chemistry and Physics, Brescia University, Via Valotti 9, 25131 Brescia (Italy); Baratto, C. [CNR-IDASC SENSOR Lab and Department of Chemistry and Physics, Brescia University, Via Valotti 9, 25131 Brescia (Italy); Bontempi, E. [INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 28, 25133 Brescia (Italy); Colombi, P. [Centro Coating C.S.M.T. Gestione S.c.a.r.l., Via Branze, 45 25123 Brescia (Italy); Sberveglieri, G. [CNR-IDASC SENSOR Lab and Department of Chemistry and Physics, Brescia University, Via Valotti 9, 25131 Brescia (Italy)

    2014-03-31

    A reliable transparent front contact of cadmium stannate (CTO) and titanium oxide (TiO{sub 2}) entirely deposited by magnetron sputtering has been studied and applied to build standard dye-sensitized solar cell. CTO gives very high average optical transmittance (T{sub avg} ≥ 90%) along with competitive sheet resistance (R{sub sheet} ≤ 15 Ω/sq), while a very thin layer of TiO{sub 2} (thickness < 5 nm) acts as buffer layer to prevent charge recombination. The matched materials allow achievement of good performances of the cells, in terms of short circuit current and power conversion efficiency. UV-visible spectrophotometry, glancing incident X-rays diffraction and X-rays reflectivity techniques were used to characterize thin films before cell realization; sealed solar cells were tested under simulated solar irradiance at 1 Sun to determine functional properties. - Highlights: • Double layer cadmium stannate–TiO{sub 2} transparent front contact by sputtering. • Very thin TiO{sub 2} buffer layer for charge recombination prevention. • Application of novel transparent contact in standard dye sensitized solar cells.

  15. Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering

    International Nuclear Information System (INIS)

    Braga, A.; Baratto, C.; Bontempi, E.; Colombi, P.; Sberveglieri, G.

    2014-01-01

    A reliable transparent front contact of cadmium stannate (CTO) and titanium oxide (TiO 2 ) entirely deposited by magnetron sputtering has been studied and applied to build standard dye-sensitized solar cell. CTO gives very high average optical transmittance (T avg ≥ 90%) along with competitive sheet resistance (R sheet ≤ 15 Ω/sq), while a very thin layer of TiO 2 (thickness < 5 nm) acts as buffer layer to prevent charge recombination. The matched materials allow achievement of good performances of the cells, in terms of short circuit current and power conversion efficiency. UV-visible spectrophotometry, glancing incident X-rays diffraction and X-rays reflectivity techniques were used to characterize thin films before cell realization; sealed solar cells were tested under simulated solar irradiance at 1 Sun to determine functional properties. - Highlights: • Double layer cadmium stannate–TiO 2 transparent front contact by sputtering. • Very thin TiO 2 buffer layer for charge recombination prevention. • Application of novel transparent contact in standard dye sensitized solar cells

  16. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys.

    Science.gov (United States)

    Matović, Vesna; Buha, Aleksandra; Ðukić-Ćosić, Danijela; Bulat, Zorica

    2015-04-01

    Besides being important occupational hazards, lead and cadmium are nowadays metals of great environmental concern. Both metals, without any physiological functions, can induce serious adverse health effects in various organs and tissues. Although Pb and Cd are non-redox metals, one of the important mechanisms underlying their toxicity is oxidative stress induction as a result of the generation of reactive species and/or depletion of the antioxidant defense system. Considering that the co-exposure to both metals is a much more realistic scenario, the effects of these metals on oxidative status when simultaneously present in the organism have become one of the contemporary issues in toxicology. This paper reviews short and long term studies conducted on Pb or Cd-induced oxidative stress in blood, liver and kidneys as the most prominent target organs of the toxicity of these metals and proposes the possible molecular mechanisms of the observed effects. The review is also focused on the results obtained for the effects of the combined treatment with Pb and Cd on oxidative status in target organs and on the mechanisms of their possible interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Oxidative stress status, antioxidant metabolism and polypeptide patterns in Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon (Portugal).

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2014-05-01

    This study assessed the oxidative stress status, antioxidant metabolism and polypeptide patterns in salt marsh macrophyte Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon at reference and the sites with highest, moderate and the lowest mercury contamination. In order to achieve these goals, shoot-mercury burden and the responses of representative oxidative stress indices, and the components of both non-glutathione- and glutathione-based H2O2-metabolizing systems were analyzed and cross-talked with shoot-polypeptide patterns. Compared to the reference site, significant elevations in J. maritimus shoot mercury and the oxidative stress indices such as H2O2, lipid peroxidation, electrolyte leakage and reactive carbonyls were maximum at the site with highest followed by moderate and the lowest mercury contamination. Significantly elevated activity of non-glutathione-based H2O2-metabolizing enzymes such as ascorbate peroxidase and catalase accompanied the studied damage-endpoint responses, whereas the activity of glutathione-based H2O2-scavenging enzymes glutathione peroxidase and glutathione sulfo-transferase was inhibited. Concomitantly, significantly enhanced glutathione reductase activity and the contents of both reduced and oxidized glutathione were perceptible in high mercury-exhibiting shoots. It is inferred that high mercury-accrued elevations in oxidative stress indices were obvious, where non-glutathione-based H2O2-decomposing enzyme system was dominant over the glutathione-based H2O2-scavenging enzyme system. In particular, the glutathione-based H2O2-scavenging system failed to coordinate with elevated glutathione reductase which in turn resulted into increased pool of oxidized glutathione and the ratio of oxidized glutathione-to-reduced glutathione. The substantiation of the studied oxidative stress indices and antioxidant metabolism with approximately 53-kDa polypeptide warrants further studies.

  18. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas

    Energy Technology Data Exchange (ETDEWEB)

    An, Jiutao; Shang, Kefeng; Lu, Na [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Jiang, Yuze [Shandong Electric Power Research Institute, Jinan 250002 (China); Wang, Tiecheng [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Li, Jie, E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Wu, Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The use of non-thermal plasma injection approach to oxidize Hg{sup 0} in simulated flue gas at 110 °C was studied. • A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. • Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) contributed to Hg{sup 0} oxidation. • Mercury species mainly existed in the form of HgO(s) adhering to the suspended aerosols in the gas-phase. - Abstract: The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg{sup 0}) in simulated flue gas at 110 °C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg{sup 0} was oxidized and 20.5 μg kJ{sup −1} of energy yield was obtained at a rate of 3.9 J L{sup −1}. A maximal Hg{sup 0} oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) were found to contribute to Hg{sup 0} oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  19. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town.

    Science.gov (United States)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-02-15

    This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both Pnickel (β=0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Dependence of electrical and optical properties of sol-gel prepared undoped cadmium oxide thin films on annealing temperature

    International Nuclear Information System (INIS)

    Santos-Cruz, J.; Torres-Delgado, G.; Castanedo-Perez, R.; Jimenez-Sandoval, S.; Jimenez-Sandoval, O.; Zuniga-Romero, C.I.; Marquez Marin, J.; Zelaya-Angel, O.

    2005-01-01

    The effect of the annealing temperature (T a ) on the optical, electrical and structural properties of the undoped cadmium oxide (CdO) thin films obtained by the sol-gel method, using a simple precursor solution, was studied. All the CdO films annealed in the range from 200 to 450 deg. C are polycrystalline with (111) preferential orientation and present high optical transmission > 85% for wavelengths above 500 nm. The resistivity decreases as T a increases until it reaches a value of 6 x 10 -4 Ω cm for T a 350 deg. C. For higher temperatures the resistivity experiences a slight increase. Images obtained by atomic force microscopy show an evident incremental change of the aggregate size (clusters of grains) as T a increases. The grain size also increases when T a increases as observed in data calculated from X-ray measurements

  1. Optical modeling and electrical properties of cadmium oxide nanofilms: Developing a meta–heuristic calculation process model

    Energy Technology Data Exchange (ETDEWEB)

    Abdolahzadeh Ziabari, Ali, E-mail: ali.abd.ziabari@gmail.com [Nano Research Lab, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan (Iran, Islamic Republic of); Refahi Sheikhani, A. H. [Department of Applied Mathematics, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Nezafat, Reza Vatani [Department of Civil Engineering, Faculty of Technology, University of Guilan, Rasht (Iran, Islamic Republic of); Haghighidoust, Kasra Monsef [Department of Mechanical Engineering, Faculty of Technology, University of Guilan, Rasht (Iran, Islamic Republic of)

    2015-04-07

    Cadmium oxide thin films were deposited onto glass substrates by sol–gel dip-coating method and annealed in air. The normal incidence transmittance of the films was measured by a spectrophotometer. D.C electrical parameters such as carrier concentration and mobility were analyzed by Hall Effect measurements. A combination of Forouhi–Bloomer and standard Drude model was used to simulate the optical constants and thicknesses of the films from transmittance data. The transmittance spectra of the films in the visible domain of wavelengths were successfully fitted by using the result of a hybrid particle swarm optimization method and genetic algorithm. The simulated transmittance is in good accordance with the measured spectrum in the whole measurement wavelength range. The electrical parameters obtained from the optical simulation are well consistent with those measured electrically by Hall Effect measurements.

  2. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There is an abundance of field data for levels of metals from a range of places, but relatively few from the North Pacific Ocean and Bering Sea. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from common eiders (Somateria mollissima), glaucous-winged gulls (Larus glaucescens), pigeon guillemots (Cepphus columba), tufted puffins (Fratercula cirrhata) and bald eagles (Haliaeetus leucocephalus) from the Aleutian Chain of Alaska. Our primary objective was to test the hypothesis that there are no trophic levels relationships for arsenic, cadmium, chromium, lead, manganese, mercury and selenium among these five species of birds breeding in the marine environment of the Aleutians. There were significant interspecific differences in all metal levels. As predicted bald eagles had the highest levels of arsenic, chromium, lead, and manganese, but puffins had the highest levels of selenium, and pigeon guillemot had higher levels of mercury than eagles (although the differences were not significant). Common eiders, at the lowest trophic level had the lowest levels of some metals (chromium, mercury and selenium). However, eiders had higher levels than all other species (except eagles) for arsenic, cadmium, lead, and manganese. Levels of lead were higher in breast than in wing feathers of bald eagles. Except for lead, there were no significant differences in metal levels in feathers of bald eagles nesting on Adak and Amchitka Island; lead was higher on Adak than Amchitka. Eagle chicks tended to have lower levels of manganese than older eagles. PMID:18521716

  3. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  4. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  5. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi, E-mail: zhaoyi9515@163.com; Hao, Runlong; Guo, Qing

    2014-09-15

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg{sup 0} removal was prepared. • A novel integrative process for Hg{sup 0} removal was proposed. • The simultaneous removal efficiencies of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg{sup 0}) removal has been proposed in this paper, in which Hg{sup 0} was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH{sub 3}COOOH) and sodium chloride (NaCl), after which Hg{sup 2+} was absorbed by the resultant Ca(OH){sub 2}. The experimental results indicated that CH{sub 3}COOOH and NaCl were the best additives for Hg{sup 0} oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg{sup 0} removal. The coexisting gases, SO{sub 2} and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg{sup 0} was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references.

  6. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    International Nuclear Information System (INIS)

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-01-01

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg 0 removal was prepared. • A novel integrative process for Hg 0 removal was proposed. • The simultaneous removal efficiencies of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO 2 , NO and Hg 0 was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg 0 ) removal has been proposed in this paper, in which Hg 0 was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH 3 COOOH) and sodium chloride (NaCl), after which Hg 2+ was absorbed by the resultant Ca(OH) 2 . The experimental results indicated that CH 3 COOOH and NaCl were the best additives for Hg 0 oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg 0 removal. The coexisting gases, SO 2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg 0 was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO 2 , NO and Hg 0 was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references

  7. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mei Zhijian [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Shen Zhemin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)], E-mail: pnyql520@hotmail.com; Zhao Qingjie [Shanghai Academy of Environmental Science, 508 Qin-Zhou Road, Shanghai 200233 (China); Wang Wenhua; Zhang Yejian [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-04-01

    The reusability of Co{sub 3}O{sub 4} (AC-Co), MnO{sub 2} (AC-Mn) and CuCoO{sub 4} (AC-CC) loaded activated carbon (AC) and their element mercury removal efficiency had been studied using a laboratory-scale fixed-bed reactor under simulated flue gas conditions. Tests showed that spent AC-Co could be regenerated through heating at 673 K under N{sub 2} atmosphere and the enrichment regenerated Hg{sup 0} could be collected to eliminate the secondary pollution. Regenerated AC-Mn and AC-CC's Hg{sup 0} removal efficiency decreased greatly due to AC's decomposition and MnO{sub 2}'s crystal structure variation. Compared with AC and metal oxides, metal oxide-loaded AC had higher Hg{sup 0} capture ability and capacity due to AC huge surface areas and lots of function groups. TGA analysis results showed that AC-Co and AC-Mn's HgO adsorptive capacity at 523 K reached 19.8 mg g{sup -1} and 5.21 mg g{sup -1}, respectively. High loading values and adsorption temperatures were beneficial to AC-Co's Hg{sup 0} removal efficiency. However, CuCoO{sub 4} and MnO{sub 2}'s AC decomposition ability had negative effect on AC-CC and AC-Mn's performance, respectively, especially at high adsorption temperatures and loading values. SO{sub 2} tests showed that AC-CC had higher anti SO{sub 2}-poisoning ability than AC-Co and AC-Mn.

  8. Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mann, E.A. [Department of Environmental Science, Acadia University, Wolfville, NS (Canada); Environmental Science Programme, Memorial University of Newfoundland, St. John' s, NL (Canada); Mallory, M.L. [Department of Biology, Acadia University, Wolfville, NS (Canada); Ziegler, S.E. [Environmental Science Programme, Memorial University of Newfoundland, St. John' s, NL (Canada); Tordon, R. [Environment Canada, Dartmouth, NS (Canada); O' Driscoll, N.J., E-mail: nelson.odriscoll@acadiau.ca [Department of Environmental Science, Acadia University, Wolfville, NS (Canada)

    2015-03-15

    Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (− 10 °C) and melted (4 °C) snow samples from three Arctic sites were exposed to UV (280–400 nm) radiation (1.26–5.78 W · m{sup −2}), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt. - Highlights: • Mercury photochemical kinetics were studied in frozen and melted Arctic snow. • UV-induced photoreduction and photooxidation rate constants were quantified. • Chloride ion, iron, and DOC influence mercury photoreactions in snow. • Frozen and melted snow have different mercury photoreduction characteristics. • Kinetic information provided can be used to model mercury fate in the Arctic.

  9. Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction

    International Nuclear Information System (INIS)

    Mann, E.A.; Mallory, M.L.; Ziegler, S.E.; Tordon, R.; O'Driscoll, N.J.

    2015-01-01

    Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (− 10 °C) and melted (4 °C) snow samples from three Arctic sites were exposed to UV (280–400 nm) radiation (1.26–5.78 W · m −2 ), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt. - Highlights: • Mercury photochemical kinetics were studied in frozen and melted Arctic snow. • UV-induced photoreduction and photooxidation rate constants were quantified. • Chloride ion, iron, and DOC influence mercury photoreactions in snow. • Frozen and melted snow have different mercury photoreduction characteristics. • Kinetic information provided can be used to model mercury fate in the Arctic

  10. Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death

    Directory of Open Access Journals (Sweden)

    Walessa Alana Bragança Aragão

    2018-01-01

    Full Text Available Mercury (Hg is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl2 to promote hippocampal dysfunction by employing a chronic exposure model. For this, 56 rats were exposed to HgCl2 (0.375 mg/kg/day via the oral route for 45 days. After the exposure period, the animals were submitted to the cognitive test of fear memory. The hippocampus was collected for the measurement of total Hg levels, analysis of oxidative stress, and evaluation of cytotoxicity, apoptosis, and tissue injury. It was observed that chronic exposure to inorganic Hg promotes an increase in mercury levels in this region and damage to short- and long-term memory. Furthermore, we found that this exposure model provoked oxidative stress, which led to cytotoxicity and cell death by apoptosis, affecting astrocytes and neurons in the hippocampus. Our study demonstrated that inorganic Hg, even with its low liposolubility, is able to produce deleterious effects in the central nervous system, resulting in cognitive impairment and hippocampal damage when administered for a long time at low doses in rats.

  11. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Thompson, Jennifer; Doi, Takashi; Power, Eoin; Balasubramanian, Ishwarya; Puri, Prem; Bannigan, John

    2010-01-01

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  12. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata?

    Science.gov (United States)

    Macías-Mayorga, Dayanara; Laiz, Irene; Moreno-Garrido, Ignacio; Blasco, Julián

    2015-04-01

    The kinetics of cadmium (Cd) accumulation in the gills and digestive gland of Crassotrea angulata at three concentrations of cadmium (0.088 μM, 0.44 μM and 2.22 μM) was monitored for 28 days. The relationship between accumulation and toxicity was studied using metallothionein-like protein (MTLP) concentration and reduced glutathione levels (GSH) as biochemical endpoints. The activity of enzymes which form part of the antioxidant defense system, in particular glutathione reductase (GR), total glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), as enzymatic endpoints, was also assessed. A first order kinetic model demonstrated that the accumulation process does not take place linearly, as the Cd concentration in gills and digestive gland tended toward a stationary state. Metallothionein-like protein is clearly induced by Cd accumulation; however, at high Cd concentrations the detoxification mechanism of this protein is affected. High Cd concentrations (2.22 μM) lead to a decrease in GSH levels, and also inhibit antioxidant enzyme activities, demonstrating the adverse effect of this metal on the antioxidant balance system. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of black cumin (Nigella sativa) on cadmium-induced oxidative stress in the blood of rats.

    Science.gov (United States)

    Kanter, Mehmet; Coskun, Omer; Gurel, Ahmet

    2005-12-01

    The protective effect of black cumin (Nigella sativa = NS) on cadmium-induced oxidative stress was studied in rats. The rats were randomly divided into three experimental groups: A (conrol), B (Cd treated), and C (Cd + NS treated), each containing 10 animals. The Cd-treated and Cd + NS-treated groups were injected subcutaneously daily with CdCl2 dissolved in isotonic NaCl in the amount of 2 mL/kg for 30 d, resulting in a dosage of 0.49 mg Cd/kg/d. The control group was injected with only isotonic NaCl (2 mL/kg/d) throughout the experiment (for 30 d). Three days prior to induction of CdCl2, the Cd + NS-treated group received a daily intraperitoneal injection of 0.2 mL/kg NS until the end of the study. Cd treatment increased significantly the malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also increased significantly the antioxidant levels (superoxide dismutase, glutathione peroxidase, and catalase) (p<0.05) compared to the control group. Cd + NS treatment decreased significantly the elevated malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also reduced significantly the enhanced antioxidant levels (p<0.05). Cd treatment increased significantly the activity of iron levels (p<0.05) in the plasma compared to the control group. Cd + NS treatment decreased the activity of iron levels (p<0.05) in the plasma compared to the Cd-treated group. In the control group with no treatment, histology of erythrocytes was normal. In the Cd-treated group, there were remarkable membrane destruction and hemolytic changes in erythrocytes. In the Cd + NS-treated group, these changes were less than in the Cd-treated group. Our results show that N. sativa exerts a protective effect against cadmium toxicity.

  14. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; van Wezel AP; Jager T; Traas TP; CSR

    2000-01-01

    De betekenis van doorvergiftiging voor de Maximum Toelaatbaar Risiconiveau's (MTRs) en Verwaarloosbaar Risiconiveau's (VRs) van cadmium, koper en kwik in water, sediment en bodem is geevalueerd. Veldgegevens met betrekking tot de accumulatie van deze elementen door vissen, mosselen en

  15. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  16. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-15

    Highlights: • Cd induced oxidative stress and immunotoxicity by the generation of ROS. • The toxic effects depended on exposure time and different tissues. • Nrf2 and NF-κB mediated antioxidant and inflammatory responses. • Gene changed at transcriptional, translational, post-translational levels. - Abstract: Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1 mg L{sup −1} Cd for 24 h and 96 h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24 h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained

  17. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-01-01

    Highlights: • Cd induced oxidative stress and immunotoxicity by the generation of ROS. • The toxic effects depended on exposure time and different tissues. • Nrf2 and NF-κB mediated antioxidant and inflammatory responses. • Gene changed at transcriptional, translational, post-translational levels. - Abstract: Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1 mg L"−"1 Cd for 24 h and 96 h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24 h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained

  18. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    International Nuclear Information System (INIS)

    Koutsogiannaki, Sophia; Franzellitti, Silvia; Fabbri, Elena; Kaloyianni, Martha

    2014-01-01

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na + /H + exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca 2+ -dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine

  19. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Franzellitti, Silvia [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-01-15

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na{sup +}/H{sup +} exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca{sup 2+}-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and

  20. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waalkes, Michael P.

    2003-01-01

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  1. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  2. Electrospun metal oxide-TiO{sub 2} nanofibers for elemental mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yuan; Zhao, Yongchun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li, Hailong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Li, Yang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Gao, Xiang [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zheng, Chuguang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang, Junying, E-mail: jyzhang@hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Developed the metal oxides (CuO, In{sub 2}O{sub 3}, V{sub 2}O{sub 5}, WO{sub 3} and Ag{sub 2}O) doped TiO{sub 2} nanofibers. Black-Right-Pointing-Pointer The fibers are applied to control Hg{sup 0} from coal combustion flue gas. Black-Right-Pointing-Pointer WO{sub 3} doped TiO{sub 2} exhibited the highest Hg{sup 0} removal efficiency of 100% under UV irradiation. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} doped TiO{sub 2} greatly enhanced Hg{sup 0} removal under visible light irradiation. Black-Right-Pointing-Pointer TiO{sub 2}-Ag{sub 2}O showed a steady Hg{sup 0} removal efficiency of 95% without any light. - Abstract: Nanofibers prepared by an electrospinning method were used to remove elemental mercury (Hg{sup 0}) from simulated coal combustion flue gas. The nanofibers composed of different metal oxides (MO{sub x}) including CuO, In{sub 2}O{sub 3}, V{sub 2}O{sub 5}, WO{sub 3} and Ag{sub 2}O supported on TiO{sub 2} have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX) and UV-vis spectra. The average diameters of these nanofibers were about 200 nm. Compared to pure TiO{sub 2}, the UV-vis absorption intensity for MO{sub x}-TiO{sub 2} increased significantly and the absorption bandwidth also expanded, especially for Ag{sub 2}O-TiO{sub 2} and V{sub 2}O{sub 5}-TiO{sub 2}. Hg{sup 0} oxidation efficiencies over the MO{sub x}-TiO{sub 2} nanofibers were tested under dark, visible light (vis) irradiation and UV irradiation, respectively. The results showed that WO{sub 3} doped TiO{sub 2} exhibited the highest Hg{sup 0} removal efficiency of 100% under UV irradiation. Doping V{sub 2}O{sub 5} into TiO{sub 2} enhanced Hg{sup 0} removal efficiency greatly from 6% to 63% under visible light irradiation. Ag{sub 2}O doped TiO{sub 2} showed a steady Hg{sup 0} removal efficiency of around 95% without any light due to the formation of silver amalgam. An extended experiment

  3. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  4. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio).

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-01

    Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1mgL -1 Cd for 24h and 96h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained stable at 24 and 96h in the brain. Taken together, we demonstrated Cd-induced oxidative stress and immunotoxicity in fish, possibly through transcriptional regulation of Nrf2 and NF-κB and gene modifications at transcriptional, translational, post-translational levels, which would greatly extend our understanding on the Cd

  5. Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver graphene oxide nanocomposite materials

    International Nuclear Information System (INIS)

    Kamali, Khosro Zangeneh; Pandikumar, Alagarsamy; Jayabal, Subramaniam; Huang, Nay Ming; Ramaraj, Ramasamy; Lim, Hong Ngee; Ong, Boon Hoong; Bien, Chia Sheng Daniel; Kee, Yeh Yee

    2016-01-01

    The article describes a facile method for the preparation of a conjugate composed of silver nanoparticles and graphene oxide (Ag GO) via chemical reduction of silver precursors in the presence of graphene oxide (GO) while sonicating the solution. The Ag GO was characterized by X-ray photoelectron spectroscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. The nanocomposite undergoes a color change from yellow to colorless in presence of Hg(II), and this effect is based on the disappearance of the localized surface plasmon resonance absorption of the AgNPs due to the formation of silver-mercury amalgam. The presence of GO, on the other hand, prevents the agglomeration of the AgNPs and enhances the stability of the nanocomposite material in solution. Hence, the probe represents a viable optical probe for the determination of mercury(II) ions in that it can be used to visually detect Hg(II) concentrations as low as 100 μM. The instrumental LOD is 338 nM. (author)

  6. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences.

    Science.gov (United States)

    Huang, Jiaoyan; Gustin, Mae Sexauer

    2015-05-19

    Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies.

  7. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium

    International Nuclear Information System (INIS)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-01-01

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb , and Cd (0, 0.5, 5, 50 μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers. - Highlights: • Anti-oxidative feedback of Zostera japonica to the heavy metals Cu, Pb, and Cd was determined. • The endangered intertidal seagrass Z. japonica had a high metal accumulation potential. • Z. japonica might be a potential indicator in monitoring programs using SOD, CAT, GPX, POD and MDA as biomarkers.

  8. Oxidative responsiveness to multiple stressors in the key Antarctic species, Adamussium colbecki: Interactions between temperature, acidification and cadmium exposure.

    Science.gov (United States)

    Benedetti, Maura; Lanzoni, Ilaria; Nardi, Alessandro; d'Errico, Giuseppe; Di Carlo, Marta; Fattorini, Daniele; Nigro, Marco; Regoli, Francesco

    2016-10-01

    High-latitude marine ecosystems are ranked to be among the most sensitive regions to climate change since highly stenothermal and specially adapted organisms might be seriously affected by global warming and ocean acidification. The present investigation was aimed to provide new insights on the sensitivity to such environmental stressors in the key Antarctic species, Adamussium colbecki, focussing also on their synergistic effects with cadmium exposure, naturally abundant in this area for upwelling phenomena. Scallops were exposed for 2 weeks to various combinations of Cd (0 and 40 μgL-1), pH (8.05 and 7.60) and temperature (-1 and +1 °C). Beside Cd bioaccumulation, a wide panel of early warning biomarkers were analysed in digestive glands and gills including levels of metallothioneins, individual antioxidants and total oxyradical scavenging capacity, onset of oxidative cell damage like lipid peroxidation, lysosomal stability, DNA integrity and peroxisomal proliferation. Results indicated reciprocal interactions between multiple stressors and their elaboration by a quantitative hazard model based on the relevance and magnitude of effects, highlighted a different sensitivity of analysed tissues. Due to cellular adaptations to high basal Cd content, digestive gland appeared more tolerant toward other prooxidant stressors, but sensitive to variations of the metal. On the other hand, gills were more affected by various combinations of stressors occurring at higher temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  10. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    Science.gov (United States)

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress.

  11. Protective role of cabbage extract versus cadmium-induced oxidative renal and thyroid hormones dysfunctions in rats

    International Nuclear Information System (INIS)

    FARAG, M. F. S.; OSMAN, N. N.; DARWISH, M.M.

    2011-01-01

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd damage. Cabbage is economically an important cole crop grown and consumed worldwide. It belongs the Cruciferous vegetables (Brassica), which have been reported to have a wide range of pharmacological properties. Since kidney is the critical target organ of chronic Cd damage, we carried out this study to investigate the effects of cabbage extract (C.E.) on Cd-induced dysfunction in the kidney of rats. The thyroid hormones values were also determined. Male Wistar rats were provided with cadmium chloride (100 mg/ L water) as the only drinking fluid and/or cabbage extract (C.E.) (5 ml/ kg body weight /day) for 4 weeks. Oral administration of Cd significantly induced the renal damage which was evident from the significantly (p < 0.05) increased levels of serum urea, uric acid and creatinine with a significant (p < 0.05) decrease in creatinine clearance. It also significantly declined the levels of urea, uric acid and creatinine in urine. Intoxication of Cd to rats reduced serum triiodothyronine (T3) and thyroxine (T4) concentrations. Reduced glutathione (GSH), and enzymatic antioxidants (superoxide dismutase (SOD) and catalase (CAT) were also significantly (p < 0.05) depressed with a concomitant marked enhancement in lipid peroxidation marker (thiobarbituric acid reactive substances, TBARS). Co-administration of C.E. along with Cd resulted in a reversal of the Cd-induced biochemical variables in kidney accompanied by a significant reduction in lipid peroxidation and a higher levels of renal antioxidant defense system. However, incorporation of C.E. to rats whether applied alone or in combination with Cd did not reveal any change in the thyroid hormones levels, which reflect significant drop in

  12. Latent effect of soil organic matter oxidation on mercury cycling within a southern boreal ecosystem

    Science.gov (United States)

    Mark Gabriel; Randy Kolka; Trent Wickman; Laurel Woodruff; Ed. Nater

    2012-01-01

    The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to...

  13. Determination of Lead(II), Cadmium(II) and Copper(II) in Waste-Water and Soil Extracts on Mercury Film Screen-Printed Carbon Electrodes Sensor

    International Nuclear Information System (INIS)

    Mohd Fairulnizal Md Noh; Tothill, I.E.

    2011-01-01

    A sensor incorporating a three electrodes configuration have been fabricated using low cost screen-printing technology. These electrodes couples with Square Wave Stripping Voltammetry (SWSV) has provided a convenient screening tool for on-site detection of trace levels of Pb(II), Cd(II) and Cu(II). Modification of the graphite carbon surface based on in situ deposition of mercury film has been carried out. By appropriate choice of supporting medium and optimized parameters setting such as amount of mercury used the deposition potential, deposition time, frequency and scan rate, well resolved and reproducible response for Pb(II), Cd(II) and Cu(II) were obtained. The performance characteristics of the developed mercury film screen printed carbon electrode (MFSPCE) for 120 s deposition time showed that the linear range for Cd(II), Pb(II) and Cu(II) were 10 to 200 μg L -1 . The detection limit recorded for Cd(II), Pb(II) and Cu(II) were 2, 1 and 5 μg L -1 with relative standard deviation (RSD) of 6.5 %, 6.9 % and 7.5 %, respectively. Successful applications of the sensing device to waste-water and extracted soil samples were demonstrated. (author)

  14. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr

    International Nuclear Information System (INIS)

    Berntssen, Marc H.G.; Aatland, Aase; Handy, Richard D.

    2003-01-01

    Atlantic salmon (Salmo salar L.) parr were fed for 4 months on fish meal based diets supplemented with mercuric chloride (0, 10, or 100 mg Hg kg -1 DW) or methylmercury chloride (0, 5, or 10 mg Hg kg -1 DW) to assess the effects of inorganic (Hg) and organic dietary mercury on brain lipid peroxidation and neurotoxicity. Lipid peroxidative products, endogenous anti oxidant enzymes, brain histopathology, and overall behaviour were measured. Methylmercury accumulated significantly in the brain of fish fed 5 or 10 mg kg -1 by the end of the experiment, and inorganic mercury accumulated significantly in the brain only at 100 mg kg -1 exposure levels. No mortality or growth reduction was observed in any of the exposure groups. Fish fed 5 mg kg -1 methylmercury had a significant increase (2-fold) in the antioxidant enzyme super oxide dismutase (SOD) in the brain. At dietary levels of 10 mg kg -1 methylmercury, a significant increase (7-fold) was observed in lipid peroxidative products (thiobarbituric acid reactive substances, TBARS) and a subsequently decrease (1.5-fold) in anti oxidant enzyme activity (SOD and glutathione peroxidase, GSH-Px). Fish fed 10 mg kg -1 methylmercury also had pathological damage (vacoulation and necrosis), significantly reduced neural enzyme activity (5-fold reduced monoamine oxidase, MAO, activity), and reduced overall post-feeding activity behaviour. Pathological injury started in the brain stem and became more widespread in other areas of the brain at higher exposure levels. Fish fed 100 mg Hg kg -1 inorganic mercury had significant reduced neural MAO activity and pathological changes (astrocyte proliferation) in the brain, however, neural SOD and GSH-Px enzyme activity, lipid peroxidative products (TBARS), and post feeding behaviour did not differ from controls. Compared with other organs, the brain is particular susceptible for dietary methylmercury induced lipid peroxidative stress at relative low exposure concentrations. Doses of dietary

  15. Exciting imperfection. Real-structure effects in magnesium-, cadmium-, and zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Schleife, Andre

    2010-07-01

    We employ recent ab-initio methods and theoretical spectroscopy techniques that rely on heavy numerical calculations to describe electronic excitations in non-ideal crystals of three group-II oxides. We study the ideal equilibrium polymorphs of these oxides, for gaining a thorough understanding as well as the necessary confidence in our approaches to generalize and apply them to the electronic excitations in imperfect crystals. As such imperfections we take the influence of strain, the alloying of the different oxides, an intrinsic point defect, and free electrons in the lowest conduction band into account. We employ the DFT results as input in order to compute quasiparticle electronic structures, which are in good agreement with experimental findings. According to Hedin's equations for interacting electrons, the electron-hole interaction is taken into account by solving a Bethe-Salpeter equation for the polarization function. Thereafter the equilibrium polymorphs of ideal bulk MgO, ZnO, and CdO and investigates the structure of their valence and conduction bands are described. We present densities of states and effective masses, as well as natural band discontinuities. Furthermore, our description of the dielectric function, which takes excitonic effects into account, enables us to derive the electron-energy loss function. The influence of uniaxial and biaxial strain on the ordering of the valence bands in ZnO is investigated. In addition, we explore the electronic band structure of the non-equilibrium wurtzite structures of MgO and CdO. We predict valence-band splittings and band gaps as they might occur at interfaces of Mgo or CdO with ZnO substrates. Thereafter we study pseudobinary alloys by means of a cluster expansion method. Due to the different crystal structures of the respective oxides, i.e. rocksalt and wurtzite, the description of their heterostructural combination has to be achieved. The electronic and optical properties of the group-II oxide

  16. Exciting imperfection. Real-structure effects in magnesium-, cadmium-, and zinc-oxide

    International Nuclear Information System (INIS)

    Schleife, Andre

    2010-01-01

    We employ recent ab-initio methods and theoretical spectroscopy techniques that rely on heavy numerical calculations to describe electronic excitations in non-ideal crystals of three group-II oxides. We study the ideal equilibrium polymorphs of these oxides, for gaining a thorough understanding as well as the necessary confidence in our approaches to generalize and apply them to the electronic excitations in imperfect crystals. As such imperfections we take the influence of strain, the alloying of the different oxides, an intrinsic point defect, and free electrons in the lowest conduction band into account. We employ the DFT results as input in order to compute quasiparticle electronic structures, which are in good agreement with experimental findings. According to Hedin's equations for interacting electrons, the electron-hole interaction is taken into account by solving a Bethe-Salpeter equation for the polarization function. Thereafter the equilibrium polymorphs of ideal bulk MgO, ZnO, and CdO and investigates the structure of their valence and conduction bands are described. We present densities of states and effective masses, as well as natural band discontinuities. Furthermore, our description of the dielectric function, which takes excitonic effects into account, enables us to derive the electron-energy loss function. The influence of uniaxial and biaxial strain on the ordering of the valence bands in ZnO is investigated. In addition, we explore the electronic band structure of the non-equilibrium wurtzite structures of MgO and CdO. We predict valence-band splittings and band gaps as they might occur at interfaces of Mgo or CdO with ZnO substrates. Thereafter we study pseudobinary alloys by means of a cluster expansion method. Due to the different crystal structures of the respective oxides, i.e. rocksalt and wurtzite, the description of their heterostructural combination has to be achieved. The electronic and optical properties of the group-II oxide alloys

  17. Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida

    Science.gov (United States)

    Huang, J.; Miller, M. B.; Edgerton, E.; Gustin, M. S.

    2015-04-01

    The highest mercury (Hg) wet deposition in the United States (US) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to its high water solubility and reactivity. Therefore, it is critical to understand the concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry deposition fluxes of GOM were measured at Outlying Landing Field (OLF), Florida, using a Tekran® 2537/1130/1135, and active and passive samplers using cation-exchange and nylon membranes. Relationships with Tekran® derived data must be interpreted with caution, since GOM concentrations can be biased low depending on the chemical compounds in air, and interferences with water vapor and ozone. Only gaseous elemental Hg and GOM are discussed here since the PBM measurement uncertainties are higher. Criteria air pollutants were concurrently measured and Tekran® data were assessed along with these using Principal Component Analysis to identify associations among air pollutants. Based on the diel pattern, high GOM concentrations at this site were associated with fossil fuel combustion and gas phase oxidation during the day, and gas phase oxidation and transport in the free troposphere. The ratio of GEM/CO at OLF (0.008 ng m-3 ppbv-1) was much higher than the numbers reported for the Western United States and central New York for domestic emissions or biomass burning (0.001 ng m-3 ppbv-1), which we suggest is indicative of a marine boundary layer source. Results from nylon membranes with thermal desorption analyses suggest five potential GOM compounds exist in this area, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. This indicates that the site is influenced by different gaseous phase reactions and sources. A~high GOM event related to high CO but average SO2 suggests the air parcels moved from the free troposphere and across

  18. Perturbed Angular Correlation Study of the Static and Dynamic Aspects of Cadmium and Mercury Atoms Inside and Attached to a C60 Fullerene Cage

    CERN Document Server

    Das, Satyendra K; Banerjee, Debasish; Johnston, Karl; Das, Parnika; Butz, Tilman; Amaral, Vitor S; Correia, Joao G; Barbosa, Marcelo B

    2014-01-01

    30 keV Cd-111m and 50 keV Hg-199m beams from ISOLDE were used to implant on preformed targets of C-60 with a thickness of 1 mg cm(-2). Endofullerene compounds, viz. Cd-111m@C-60 and Hg-199m@C-60 formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151-245 keV cascade of Cd-111m and the 374 158 keV cascade of Hg-199m on a six LaBr3(Ce) detector system coupled with digital electronics. The results for 111mCd@C60 indicate a single static component (27\\%) and a fast relaxing component (73\\%), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C60 are omega(Q) = 8.21(36) Mrad s(-1) and eta = 0.41(9), respectively. The fast relaxation con...

  19. Mercury Induced Biochemical Alterations As Oxidative Stress In Mugil Cephalus In Short Term Toxicity Test

    OpenAIRE

    J.S.I Rajkumar; Samuel Tennyson

    2013-01-01

    Mugil cephalus juveniles of size 2.5 ±0.6cm were exposed to mercury in short term chronic toxicity test through static renewal bioassay to detect the possible biochemical agent as biomarkers in aquatic pollution and in estuarine contamination as specific. Lipid peroxidation levels, glutathione S -transferase, catalase, reduced glutathione and acetylcholinesterase were studied as biochemical parameters. Increased thio-barbituric acid reactive substances levels were observed under exposur...

  20. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-01-01

    Highlights: ► Cd reduces endogenous GA levels in Arabidopsis. ► GA exogenous applied decreases Cd accumulation in plant. ► GA suppresses the Cd-induced accumulation of NO. ► Decreased NO level downregulates the expression of IRT1. ► Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd 2+ , GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd 2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd 2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd 2+ uptake related gene-IRT1 in Arabidopsis.

  1. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    Science.gov (United States)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  2. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Jiang, Tao [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Lei, Gui Jie [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cd reduces endogenous GA levels in Arabidopsis. Black-Right-Pointing-Pointer GA exogenous applied decreases Cd accumulation in plant. Black-Right-Pointing-Pointer GA suppresses the Cd-induced accumulation of NO. Black-Right-Pointing-Pointer Decreased NO level downregulates the expression of IRT1. Black-Right-Pointing-Pointer Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 {mu}M for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd{sup 2+}, GA at 5 {mu}M improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd{sup 2+} increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd{sup 2+} absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd{sup 2+} uptake related gene-IRT1 in Arabidopsis.

  3. Method for removal and stabilization of mercury in mercury-containing gas streams

    Science.gov (United States)

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  4. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  5. New process to discharge negative cadmium electrodes for Ni/Cd batteries

    International Nuclear Information System (INIS)

    Stiker, B.; Vignaud, R.

    1984-01-01

    The new process relates to the chemical oxidation (whether partial or total) of cadmium metal negative electrodes, as used in alkaline nickel-cadmium or silver-cadmium batteries. This process concerns all cadmium electrodes but more particularly the electrodeposited cadmium electrode developed by the company LES PILES WONDER and described in this publication

  6. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    Science.gov (United States)

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum

    Energy Technology Data Exchange (ETDEWEB)

    Babula, Petr [Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic); Klejdus, Bořivoj [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); Kovacik, Jozef, E-mail: jozkovacik@yahoo.com [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic); Hedbavny, Josef; Hlavna, Marián [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno (Czech Republic)

    2015-04-09

    Highlights: • Impact of La, Cd and Cd + La on the metabolism of Hypericum perforatum was compared. • La stimulated ROS and suppressed growth and basic antioxidants more than Cd. • Impact of Cd + La was not synergistic including the sod gene expression. • La depleted hypericin and hyp-1 gene expression but amount of hyperforin increased. • La reduced flavonols and procyanidins mainly in the roots and affected anatomy - Abstract: Physiology, oxidative stress and production of metabolites in Hypericum perforatum exposed to moderate Cd and/or La concentration (10 μM) were studied. La evoked increase in reactive oxygen species, malondialdehyde and proline but suppressed growth, tissue water content, glutathione, ascorbic acid and affected mineral nutrient contents more than Cd while the impact of Cd + La was not synergistic. Similar trend was observed at the level of superoxide dismutase gene expression. Shoot Cd amount increased in Cd + La while only root La increased in the same treatment. Extensive quantification of secondary metabolites revealed that La affected phenolic acids more pronouncedly than Cd in shoots and roots. Flavonols were suppressed by La that could contribute to the appearance of oxidative damage. Procyanidins increased in response to La in the shoots but decreased in the roots. Metabolic responses in Cd + La treatment resembled those of La treatment (almost identically in the roots). Phenylalanine ammonia-lyase activity was mainly suppressed by La. The presence of La also depleted amount of hypericin and expression of its putative gene (hyp-1) showed similar trend but accumulation of hyperforin increased under Cd or La excess. Clear differences in the stem and root anatomy in response to Cd or La were also found. Overall, H. perforatum is La-sensitive species and rather Cd ameliorated negative impact of La.

  8. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.

    Science.gov (United States)

    Srivastava, Rajneesh Kumar; Pandey, Poonam; Rajpoot, Ritika; Rani, Anjana; Dubey, R S

    2014-09-01

    Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8-16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙- and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25-40%. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.

  9. Different transport mechanisms for cadmium and mercury in Caco-2 cells: inhibition of Cd uptake by Hg without evidence for reciprocal effects

    International Nuclear Information System (INIS)

    Aduayom, Ismaeel; Campbell, Peter G.C.; Denizeau, Francine; Jumarie, Catherine

    2003-01-01

    Cadmium/Hg interactions have been studied in the TC7 clone of the enterocytic-like Caco-2 cells to test the hypothesis that these metals may compete for intestinal transport. Comparison of the kinetic parameter values for 203 Hg(II) and 109 Cd(II) uptake in a serum-free medium revealed that Hg is accumulated much more rapidly and to higher concentrations. The very rapid uptake/binding step and the initial uptake rate of 109 Cd were both significantly inhibited by an excess of unlabeled Cd or Hg (apparent K i for Hg of 9.3 ± 1.2 μM) without reciprocal effects. 109 Cadmium uptake was highly sensitive to temperature and a significant fraction of accumulation (12%) was EDTA extractable. 203 Hg uptake remained insensitive to temperature or the EDTA washing procedure. However, the uptake of both tracers was half-decreased when an excess of the respective unlabeled metal was added in the stop solution, suggesting an exchange mechanism for adsorption. Cell pretreatment with N-ethylmaleimide (NEM) led to a 30% decrease or a 73% increase in the 3-min specific transport of 109 Cd when NEM was still present in or removed from the uptake medium, respectively. NEM had no effect on 203 Hg uptake. Overall our results suggest the involvement of a saturable specific mechanism for Cd, which is highly sensitive to inhibition by Hg and NEM under some conditions, and a nonspecific passive diffusion for Hg. The Hg- or NEM-induced inhibition of Cd uptake likely involves a thiol-mediated reaction, but our results suggest that NEM pretreatment may activate other cellular mechanisms leading to a stimulatory effect

  10. Cadmium decontamination using in-house resin

    International Nuclear Information System (INIS)

    Pal, Sangita; Thalor, K.L; Prabhakar, S.; Srivastava, V.K.; Goswami, J.L.; Tewari, P.K.; Dhanpal, Pranav; Goswami, J.L.

    2010-01-01

    A selective and strong in-house chelator has been studied w.r.t. basic parameters like concentration, time, and elution. De-contamination of cadmium, mercury, chromium, lead etc by using high uptake values fro cadmium ions proves its selectivity with high elution ratio ensures further decontamination of run-off water during natural calamities. In three step cascade use the concentration of original cadmium solution (500 ppm) decocted to safe disposable attribute. This polymeric ligand exchanger displayed outlet effluent concentration to 1 ppm and less than 200 ppb when treated for inlet feed concentration of 50 ppm and 500 ppm respectively. (author)

  11. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758).

    Science.gov (United States)

    Barboza, Luís Gabriel Antão; Vieira, Luís Russo; Branco, Vasco; Figueiredo, Neusa; Carvalho, Felix; Carvalho, Cristina; Guilhermino, Lúcia

    2018-02-01

    Microplastics pollution is a global paradigm that raises concern in relation to environmental and human health. This study investigated toxic effects of microplastics and mercury in the European seabass (Dicentrarchus labrax), a marine fish widely used as food for humans. A short-term (96 h) laboratory bioassay was done by exposing juvenile fish to microplastics (0.26 and 0.69 mg/L), mercury (0.010 and 0.016 mg/L) and binary mixtures of the two substances using the same concentrations, through test media. Microplastics alone and mercury alone caused neurotoxicity through acetylcholinesterase (AChE) inhibition, increased lipid oxidation (LPO) in brain and muscle, and changed the activities of the energy-related enzymes lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH). All the mixtures caused significant inhibition of brain AChE activity (64-76%), and significant increase of LPO levels in brain (2.9-3.4 fold) and muscle (2.2-2.9 fold) but not in a concentration-dependent manner; mixtures containing low and high concentrations of microplastics caused different effects on IDH and LDH activity. Mercury was found to accumulate in the brain and muscle, with bioaccumulation factors of 4-7 and 25-40, respectively. Moreover, in the analysis of mercury concentrations in both tissues, a significant interaction between mercury and microplastics was found. The decay of mercury in the water increased with microplastics concentration, and was higher in the presence of fish than in their absence. Overall, these results indicate that: microplastics influence the bioaccumulation of mercury by D. labrax juveniles; microplastics, mercury and their mixtures (ppb range concentrations) cause neurotoxicity, oxidative stress and damage, and changes in the activities of energy-related enzymes in juveniles of this species; mixtures with the lowest and highest concentrations of their components induced different effects on some biomarkers. These findings and other published

  12. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  13. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: A study in a rat model of moderate and relatively high human exposure

    International Nuclear Information System (INIS)

    Brzoska, Malgorzata M.; Rogalska, Joanna; Kupraszewicz, Elzbieta

    2011-01-01

    It was investigated whether cadmium (Cd) may induce oxidative stress in the bone tissue in vivo and in this way contribute to skeleton damage. Total antioxidative status (TAS), antioxidative enzymes (glutathione peroxidase, superoxide dismutase, catalase), total oxidative status (TOS), hydrogen peroxide (H 2 O 2 ), lipid peroxides (LPO), total thiol groups (TSH) and protein carbonyl groups (PC) as well as Cd in the bone tissue at the distal femoral epiphysis and femoral diaphysis of the male rats that received drinking water containing 0, 5, or 50 mg Cd/l for 6 months were measured. Cd, depending on the level of exposure and bone location, decreased the bone antioxidative capacity and enhanced its oxidative status resulting in oxidative stress and oxidative protein and/or lipid modification. The treatment with 5 and 50 mg Cd/l decreased TAS and activities of antioxidative enzymes as well as increased TOS and concentrations of H 2 O 2 and PC at the distal femur. Moreover, at the higher exposure, the concentration of LPO increased and that of TSH decreased. The Cd-induced changes in the oxidative/antioxidative balance of the femoral diaphysis, abundant in cortical bone, were less advanced than at the distal femur, where trabecular bone predominates. The results provide evidence that, even moderate, exposure to Cd induces oxidative stress and oxidative modifications in the bone tissue. Numerous correlations noted between the indices of oxidative/antioxidative bone status, and Cd accumulation in the bone tissue as well as indices of bone turnover and bone mineral status, recently reported by us (Toxicology 2007, 237, 89-103) in these rats, allow for the hypothesis that oxidative stress is involved in the mechanisms of damaging Cd action in the skeleton. The paper is the first report from an in vivo study indicating that Cd may affect bone tissue through disorders in its oxidative/antioxidative balance resulting in oxidative stress.

  14. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Science.gov (United States)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  15. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  16. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  17. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    Science.gov (United States)

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  18. Dispersive solid phase micro-extraction of mercury(II from environmental water and vegetable samples with ionic liquid modified graphene oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Nasrollahpour Atefeh

    2017-01-01

    Full Text Available A new dispersive solid phase micro-extraction (dispersive-SPME method for separation and preconcentration of mercury(II using ionic liquid modified magnetic reduced graphene oxide (IL-MrGO nanoparticles, prior to the measurement by cold vapour atomic absorption spectrometry (CV-AAS has been developed. The IL-MrGO composite was characterized by Brunauer– Emmett–Teller method (BET for adsorption-desorption measurement, thermogravimetric analysis (TGA, powder X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The method is based on the sorption of mercury( II on IL-MrGO nanoparticles due to electrostatic interaction and complex formation of ionic liquid part of IL-MrGO with mercury(II. The effect of experimental parameters for preconcentration of mercury(II, such as solution type, concentration and volume of the eluent, pH, time of the sorption and desorption, amount of the sorbent and coexisting ion concentration have been optimized. Under the optimized conditions, a linear response was obtained in the concentration range of 0.08–10 ng mL-1 with a determination coefficient of 0.9995. The limit of detection (LOD of the method at a signal to noise ratio of 3 was 0.01 ng mL-1. Intra-day and inter-day precisions were obtained equal to 3.4 and 4.5 %, respectively. The dispersive solid phase micro-extraction of mercury(II on IL-MrGO nanoparticles coupled with cold vapour atomic absorption spectrometry was successfully used for extraction and determination of mercury(II in water and vegetable samples.

  19. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2.

    Science.gov (United States)

    Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang

    2017-03-01

    A catalyst composed of manganese oxides supported on titania (MnO x /TiO 2 ) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg 0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O 2 and a proper ratio of [NH 3 ]/[NO] are essential for the denitration reaction. Both NO conversion and Hg 0 removal efficiency could reach more than 80% when NO and Hg 0 were removed simultaneously using Mn0.8Ti at 240°C. Hg 0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg 0 removal efficiency. O 2 and HCl had a promotional effect on Hg 0 removal. SO 2 and NH 3 were observed to weaken Hg 0 removal because of competitive adsorption. NO first facilitated Hg 0 removal and then had an inhibiting effect as NO concentration increased without O 2 , and it exhibited weak inhibition of Hg 0 removal efficiency in the presence of O 2 . The oxidation of Hg 0 on MnO x /TiO 2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.

  20. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    Science.gov (United States)

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  1. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Directory of Open Access Journals (Sweden)

    Liming eYang

    2016-02-01

    Full Text Available The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM. A better understanding of the PM proteome in response to environmental stress might provide new insights for improving stress-tolerant crops. Nitric oxide (NO is reported to be involved in the plant response to cadmium (Cd stress. To further investigate how NO modulates protein changes in the plasma membrane during Cd stress, a quantitative proteomics approach based on isobaric tags for relative and absolute quantification (iTRAQ was used to identify differentially regulated proteins from the rice plasma membrane after Cd or Cd and NO treatment. Sixty-six differentially expressed proteins were identified, of which, many function as transporters, ATPases, kinases, metabolic enzymes, phosphatases and phospholipases. Among these, the abundance of phospholipase D (PLD was altered substantially after the treatment of both Cd and Cd and NO. Transient expression of the PLD fused with green fluorescent peptide (GFP in rice protoplasts showed that the Cd and NO treatment promoted the accumulation of PLD in the plasma membrane. Addition of NO also enhanced Cd-induced PLD activity and the accumulation of phosphatidic acid (PA produced through PLD activity. Meanwhile, NO elevated the activities of antioxidant enzymes and caused the accumulation of glutathione both which function to reduce Cd-induced H2O2 accumulation. Taken together, we suggest that NO signaling is associated with the accumulation of antioxidant enzymes, glutathione and PA which increases cadmium tolerance in rice via the antioxidant defense system.

  2. Cadmium Alternatives

    Science.gov (United States)

    2012-08-01

    carcinogenic, leachable Trivalent and non- chrome passivates generally struggle with conductivity Major Differences in Trivalent vs. Hexavalent Passivates...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic, and is classified as a priority...Executive Orders 13514 & 13423 DoD initiatives – Young memo (April 2009) DFAR restricting use of hexavalent chromium Allows the use of hexavalent

  3. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    Science.gov (United States)

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

  4. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish.

    Science.gov (United States)

    Zhu, Qing-Ling; Guo, Sai-Nan; Yuan, Shuang-Shuang; Lv, Zhen-Ming; Zheng, Jia-Lang; Xia, Hu

    2017-10-01

    Environmental stressors such as high temperature and metal exposure may occur sequentially, simultaneously, previously in aquatic ecosystems. However, information about whether responses to high temperature depend on Cd exposure history is still unknown in fish. Zebrafish were exposed to 0 (group 1), 2.5 (group 2) and 5μg/L (group 3) cadmium (Cd) for 10 weeks, and then each group was subjected to Cd-free water maintained at 26°C and 32°C for 7days respectively. 26 indicators were used to compare differences between 26°C and 32°C in the liver of female zebrafish, including 5 biochemical indicators (activity of Cu/Zn-SOD, CAT and iNOS; LPO; MT protein), 8 molecular indicators of oxidative stress (mRNA levels of Nrf2, Cu/Zn-SOD, CAT, HSF1, HSF2, HSP70, MTF-1 and MT), 5 molecular indicators of inflammation (mRNA levels of IL-6, IL-1β, TNF-α, iNOS and NF-κB), 8 molecular indicators of metal transport (mRNA levels of, ZnT1, ZnT5, ZIP8, ZIP10, ATP7A, ATP7B and CTR1). All biochemical indicators were unchanged in group 1 and changed in group 2 and 3. Contrarily, differences were observed in almost all of molecular indicators of inflammation and metal transport in group 1, about half in group 2, and few in group 3. We also found that all molecular indicators of oxidative stress in group 2 and fewer in group 1 and 3 were significantly affected by heat. Our data indicated that heat indicators of oxidative stress, inflammation and metal transport showed dependence of previous cadmium exposure in the liver of zebrafish, emphasizing metal pollution history should be carefully considered when evaluating heat stress in fish. Copyright © 2017. Published by Elsevier B.V.

  5. Structure and properties of YBa2Cu3O7-δ superconductor doped with bulk cadmium oxide

    Directory of Open Access Journals (Sweden)

    A Echresh

    2010-09-01

    Full Text Available In this paper, the Y1-xCdxBa2Cu3O7-δ superconductor with x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 are prepared using the solid state method and the structure, electrical resistance, critical current density and critical temperature of it, have been studied. The results show that these doping do not affect so much on the structure and lattice parameters. The electrical resistance of samples increased with doping. A little amount of doping cadmium improve critical current density such that the sample x=0.1 has a maximum critical current density among the samples. The critical temperature with doping cadmium up to x=0.2 has little fluctuation and its variation can be ignored, but by increasing up to x=0.5 the critical temperature decreases gradually.

  6. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  7. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  8. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    Science.gov (United States)

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  9. Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder ( Paralichthys olivaceus) exposed to mercury

    Science.gov (United States)

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Lin, Longshan; Chen, Quanzhen; Dou, Shuozeng

    2012-07-01

    To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder ( Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 μg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, bone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dosedependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S -transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.

  10. Effects of individual and combined toxicity of bisphenol A, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2 cells.

    Science.gov (United States)

    Li, Xiaohui; Yin, Pinghe; Zhao, Ling

    2017-07-01

    Bisphenol A, dibutyl phthalate and cadmium can be found in environment simultaneously. Several studies suggested that they had genotoxic effect. In this study, mono-exposure and co-exposure treatments, designed by 3 × 3 full factorial, were established to determine the individual toxicity and binary mixtures' combined effects on the oxidative stress and genotoxicity in HepG 2 cells. The highest oxidative damage was observed in the Cd treatments groups. Compared with control groups, the maximum level of reactive oxygen species and malondialdehyde were ∼1.4 fold and ∼2.22 fold respectively. And a minimum level of superoxide dismutase activity was found with the decrease of 43%. The mechanism that excessive oxidative stress led to the DNA damage was inferred. However, cells treated with BPA showed the worst DNA damage rather than Cd, which may because Cd mainly damages DNA repairing mechanism. For the joint effect, different interactions can be found in different biological endpoints for different combinations since different mechanisms have been clarified in mixture toxicity studies. It is sure that the co-exposure groups enhanced cytotoxicity, oxidative stress and genotoxicity compared to the mono-exposures. Synergistic and additive interactions were considered, which means greater threat to organisms when exposed to multiple estrogenic endocrine disruptors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas.

    Science.gov (United States)

    Wang, Lulu; Zhao, Yongchun; Zhang, Junying

    2017-10-01

    Photocatalytic oxidation is an attractive method for Hg-rich flue gas treatment. In the present study, a novel cerium-based TiO 2 nanofibers was prepared and selected as the catalyst to remove mercury in flue gas. Accordingly, physical/chemical properties of those nanofibers were clarified. The effects of some important parameters, such as calcination temperature, cerium dopant content and different illumination conditions on the removal of Hg 0 using the photocatalysis process were investigated. In addition, the removal mechanism of Hg 0 over cerium-based TiO 2 nanofibers focused on UV irradiation was proposed. The results show that catalyst which was calcined at 400 °C exhibited better performance. The addition of 0.3 wt% Ce into TiO 2 led to the highest removal efficiency at 91% under UV irradiation. As-prepared samples showed promising stability for long-term use in the test. However, the photoluminescence intensity of nanofibers incorporating ceria was significantly lower than TiO 2 , which was attributed to better photoelectron-hole separation. Although UV and O 2 are essential factors, the enhancement of Hg 0 removal is more obviously related to the participation of catalyst. The coexistence of Ce 3+ and Ce 4+ , which leads to the efficient oxidation of Hg 0 , was detected on samples. Hg 2+ is the final product in the reaction of Hg 0 removal. As a consequence, the emissions of Hg 0 from flue gas can be significantly suppressed. These indicate that combining photocatalysis technology with cerium-based TiO 2 nanofibers is a promising strategy for reducing Hg 0 efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).

    Science.gov (United States)

    Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2017-09-01

    Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles.

    Science.gov (United States)

    Arshadi, M; Mousavinia, F; Khalafi-Nezhad, A; Firouzabadi, H; Abbaspourrad, A

    2017-11-01

    In this paper, a novel heterogeneous nanodendrimer with generation of G2.0 was prepared by individual grafting of diethylenetriamine, triazine and l-cysteine methyl ester on the modified aluminum-silicate mixed oxides as a potent adsorbent of Hg(II) ions from aqueous media. The prepared nanodendrimer was characterized by nuclear magnetic resonance spectrum ( 1 H NMR and 13 C NMR), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), zeta potential (ζ), inductively coupled plasma atomic emission spectroscopy (ICP-AES), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption experiments at -196°C and elemental analysis. Equilibrium and kinetic models for Hg(II) ions removal were used by investigating the effect of the contact time, adsorbent dosage, initial Hg(II) ions concentrations, effect of solution's temperature, interfering ions, and initial pH. The contact time to approach equilibrium for higher removal was 6min (3232mgg -1 ). The removal of Hg(II) ions has been assessed in terms of pseudo-first- and -second-order kinetics, and the Freundlich, Langmuir and Sips isotherms models have also been applied to the equilibrium removal data. The removal kinetics followed the mechanism of the pseudo-second order equation, where the chemical sorption is the rate-limiting step of removal process and not involving mass transfer in solution, which was further proved by several techniques such as zeta potential, FT-IR and DS UV-vis. The thermodynamic parameters (ΔG, ΔH and ΔS) implied that the removal of mercury ions was feasible, spontaneous and chemically exothermic in nature between 15 and 80°C. The nanodendrimer indicated high reusability due to its high removal ability after 15 adsorption-desorption runs. The adsorption mechanisms of Hg(II) ions onto the nanodendrimer was further studied by diverse techniques such as FTIR, EDS, zeta potential, DR UV-Vis spectroscopy and SEM

  14. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  15. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  16. Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium

    International Nuclear Information System (INIS)

    Bravard, Anne; Campalans, Anna; Vacher, Monique; Gouget, Barbara; Levalois, Celine; Chevillard, Sylvie; Radicella, J. Pablo

    2010-01-01

    The induction of mutations in mammalian cells exposed to cadmium has been associated with the oxidative stress triggered by the metal. There is increasing evidence that the mutagenic potential of Cd is not restricted to the induction of DNA lesions. Cd has been shown to inactivate several DNA repair enzymes. Here we show that exposure of human cells to sub-lethal concentrations of Cd leads to a time- and concentration-dependent decrease in hOGG1 activity, the major DNA glycosylase activity responsible for the initiation of the base excision repair (BER) of 8-oxoguanine, an abundant and mutagenic form of oxidized guanine. Although there is a slight effect on the level of hOGG1 transcripts, we show that the inhibition of the 8-oxoguanine DNA glycosylase activity is mainly associated with an oxidation of the hOGG1 protein and its disappearance from the soluble fraction of total cell extracts. Confocal microscopy analyses show that in cells exposed to Cd hOGG1-GFP is recruited to discrete structures in the cytoplasm. These structures were identified as stress granules. Removal of Cd from the medium allows the recovery of the DNA glycosylase activity and the presence of hOGG1 in a soluble form. In contrast to hOGG1, we show here that exposure to Cd does not affect the activity of the second enzyme of the pathway, the major AP endonuclease APE1.

  17. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  18. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  19. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  20. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    Brzóska, Malgorzata M.; Rogalska, Joanna

    2013-01-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd

  1. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd

  2. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  3. Critical review of animal carcinogenesis by cadmium and its inorganic compounds

    International Nuclear Information System (INIS)

    Maximilien, R.; Dero, B.

    1990-01-01

    Animal carcinogenic biassays relative to 6 inorganic cadmium substances (cadmium metal, cadmium oxide, cadmium sulfide, cadmium sulfate, cadmium chloride and cadmium acetate) are reviewed (speciation). Critical evaluation of literature data on carcinogenicity has been performed by making reference to E.C. guidelines of good laboratory practice. There are few data on routes relevant for human risk assessment: experiments on inhalation demonstrate lung carcinogenicity of cadmium oxide, cadmium sulfide, cadmium sulfate and cadmium chloride in rats but not in mice nor in hamsters; no carcinogenic effects of cadmium compounds are observed following oral administration. For routes of less or no relevance for human risk assessment, some results are clearly positive: subcutaneous injection induces cancers in situ (various cadmium compounds), testicular tumours (cadmium sulfate and cadmium chloride) and prostatic tumours (cadmium chloride) but such effects are not observed using relevant malignancies in rats. With respect to other no relevant routes (intraperitoneal, intrarenal...) tumours are incidentally produced in situ, but not in remote organs. Numerous studies fail to demonstrate cadmium carcinogenicity, but methodologically acceptable negative ones are very limited in number. Accordingly strain dependent effects and dose effect relationship could not be thoroughly assessed

  4. The biochemical effects of occupational exposure to lead and cadmium on markers of oxidative stress and antioxidant enzymes activity in the blood of glazers in tile industry.

    Science.gov (United States)

    Hormozi, Maryam; Mirzaei, Ramazan; Nakhaee, Alireza; Izadi, Shahrokh; Dehghan Haghighi, Javid

    2018-01-01

    The aim of the present study was to evaluate the effects of occupational exposure to lead (Pb) and cadmium (Cd) on markers of oxidative stress in glazers in tile industries. Total antioxidant capacity (TAC), malondialdehyde (MDA), and the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the blood of 80 subjects, including 40 glazers and 40 nonexposed subjects. Mean levels of blood Cd (8.90 ± 2.80 µg/L) and blood Pb (62.90 ± 38.10 µg/L) of glazers showed a significant increase compared with the control group. In the serum of glazers, the level of MDA was significantly higher and the level of TAC was significantly lower than the control group. We have noted a disturbance in the levels of antioxidants by a significant increase in the CAT activity and a significant decrease in the activities of SOD and GPx in the serum of glazers compared with the controls. Correlation analysis demonstrated that the serum MDA level and CAT activity were positively associated with the blood levels of Pb and Cd. Also, GPx and SOD were negatively correlated with blood Cd levels. The study clearly indicated that co-exposure to Cd and Pb can induce oxidative stress in glazers, resulting in increased lipid peroxidation and altered antioxidant enzymes.

  5. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats.

    Science.gov (United States)

    El-Boshy, Mohamed; Ashshi, Ahmad; Gaith, Mazen; Qusty, Naeem; Bokhary, Thalat; AlTaweel, Nagwa; Abdelhady, Mohamed

    2017-05-01

    Our objective was to explore the protective effect of artichoke leaf extract (ALE) against cadmium (Cd) toxicity-induced oxidative organ damage in rats. Male albino Wistar rats were divided into four equal groups of eight animals each. The first group was assigned as a control. Groups 2-4 were orally administered with ALE (300 mg/kg bw), Cd (CdCl 2 , 100 mg/L drinking water), and ALE plus Cd, respectively, daily for 4 weeks. After treatment with Cd, the liver and kidney malondialdehyde (MDA) increased significantly compared with the control rats. The sera interleukin (IL)-1β, tumor necrosis factor (TNF-α), and IL-10, liver transaminase, urea, creatinine, and peripheral neutrophil count were significantly increased in Cd-exposed rats compared to the control group. The reduced glutathione (GSH), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) decreased in the liver and kidney in Cd-exposed group. In combination treatment, Cd and ALE significantly improved immune response, an antioxidant system, and hepatorenal function with a significant decline in MDA. In conclusion, ALE ameliorates the immunosuppressive and hepatorenal oxidative injury stimulated by Cd in rats. These results suggest that artichoke has shown promising effects against adverse effects of Cd toxicity.

  6. Reduced Graphene Oxide-Cadmium Zinc Sulfide Nanocomposite with Controlled Band Gap for Large-Area Thin-Film Optoelectronic Device Application

    Science.gov (United States)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-12-01

    Herein, we report the one pot single step solvothermal synthesis of reduced grapheme oxide-cadmium zinc sulfide (RGO-Cd0.5Zn0.5S) composite. The reduction in graphene oxide (GO), synthesis of Cd0.5Zn0.5S (mentioned as CdZnS in the text) nanorod and decoration of CdZnS nanorods onto RGO sheet were done simultaneously. The structural, morphological and optical properties were studied thoroughly by different techniques, such as XRD, TEM, UV-Vis and PL. The PL intensity of CdZnS nanorods quenches significantly after the attachment of RGO, which confirms photoinduced charge transformation from CdZnS nanorods to RGO sheet through the interface of RGO-CdZnS. An excellent photocurrent generation in RGO-CdZnS thin-film device has been observed under simulated solar light irradiation. The photocurrent as well as photosensitivity increases linearly with the solar light intensity for all the composites. Our study establishes that the synergistic effect of RGO and CdZnS in the composite is capable of getting promising applications in the field of optoelectronic devising.

  7. Global Mercury Pathways in the Arctic Ecosystem

    Science.gov (United States)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  8. Mercury Exposure and Heart Diseases

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  9. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  10. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  11. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining "1H NMR metabolomics and conventional biochemical assays

    International Nuclear Information System (INIS)

    Cappello, Tiziana; Brandão, Fátima; Guilherme, Sofia; Santos, Maria Ana; Maisano, Maria; Mauceri, Angela; Canário, João; Pacheco, Mário; Pereira, Patrícia

    2016-01-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  12. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining {sup 1}H NMR metabolomics and conventional biochemical assays

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Tiziana, E-mail: tcappello@unime.it [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Brandão, Fátima, E-mail: fatimabrandao@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Guilherme, Sofia; Santos, Maria Ana [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Maisano, Maria; Mauceri, Angela [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Canário, João [Centro de Química Estrutural, Instítuto Superíor Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Pacheco, Mário; Pereira, Patrícia [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-04-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  13. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  14. Cadmium, lead and silver adsorption in hydrous niobium oxide(V) prepared by precipitation in homogeneous solution method; Adsorcao de chumbo, cadmio e prata em oxido de niobio(V) hidratado preparado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo V.; Pereira, Paulo Henrique F.; Rodrigues, Liana Alvares; Silva, Maria Lucia Caetano Pinto da, E-mail: fernandes_eng@yahoo.com.b [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica

    2011-07-01

    This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q{sub 0}) for Pb{sup 2+}, Ag{sup +} and Cd{sup 2+} was found to be 452.5, 188.68 and 8.85 mg g{sup -1}, respectively. (author)

  15. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  16. Measurements to understand the role of the sub Arctic environment on boundary layer ozone, gaseous mercury and bromine oxide