WorldWideScience

Sample records for cadmium ion biosorption

  1. BIOSORPTION STUDIES OF CADMIUM (II IONS FROM AQUEOUS SOLUTIONS ONTO ORANGE RIND (CITRUS SINENSIS L. OSBECK

    Directory of Open Access Journals (Sweden)

    Satish A. Bhalerao

    2015-03-01

    Full Text Available The biosorption studies for effective removal of cadmium (II ions from aqueous solutions using orange rind (Citrus sinensis L. Osbeck, cost effective biosorbent, was carried out in batch system. FTIR analysis of biosorbent confirmed that carboxyl, hydroxyl, carbonyl group which was responsible for biosorption of cadmium (II ions. The SEM represents porous structure with surface area. The effects of operational factors including solution pH, biosorbent dose, initial cadmium (II ions concentration, contact time and temperature were studied. The optimum solution pH for cadmium (II ions biosorption by biosorbent was 7.0 with the optimal removal 80.30 %. The biosorbent dose 5 mg/ml was enough for optimal removal of 65.15 %. The biosorption process was relatively fast and equilibrium was achieved after 90 minutes of contact. The experimental equilibrium biosorption data were analysed by four widely used two-parameters Langmuir, Freundlich, Dubinin-Kaganer-Redushkevich (DKR and Temkin isotherm models. Langmuir isotherm model provided a better fit with the experimental data than Freundlich, Temkin and Dubinin-Kaganer-Redushkevich (DKR isotherm models by high correlation coefficient value (R2 = 0.911. The maximum adsorption capacity determined from Langmuir isotherm was found to be 83.33 mg/g of biosorbent. Simple kinetic models such as pseudo-first-order, pseudo-second-order, Elovich equation and Weber and Morris intra-particle diffusion rate equation were employed to determine the adsorption mechanism. Results clearly indicates that the pseudo-second-order kinetic model (R2 = 0.998 was found to be correlate the experimental data strongest than other three kinetic models and this suggests that chemical adsorption process was more dominant. Thermodynamic study revealed that the biosorption process was spontaneous, endothermic and increasing randomness of the solid solution interfaces. Orange rind (Citrus sinensis L. Osbeck was successfully used for the

  2. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  3. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus

    Science.gov (United States)

    Hetzer, Adrian; Daughney, Christopher J.; Morgan, Hugh W.

    2006-01-01

    This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 μM). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ complexation by functional groups within and on the cell wall. Distinct one-site SCMs described the extent of cadmium ion adsorption by both studied Geobacillus sp. strains over a range of pH values and metal/bacteria concentration ratios. The results indicate that a functional group with a deprotonation constant pK value of approximately 3.8 accounts for 66% and 80% of all titratable sites for G. thermocatenulatus and G. stearothermophilus, respectively, and is dominant in Cd2+ adsorption reactions. The results suggest a different type of functional group may be involved in cadmium biosorption for both thermophilic strains investigated here, compared to previous reports for mesophilic bacteria. PMID:16751511

  4. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Montazer-Rahmati, Mohammad Mehdi, E-mail: mrahmati@ut.ac.ir [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran 4563 (Iran, Islamic Republic of); Rabbani, Parisa; Abdolali, Atefeh [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran 4563 (Iran, Islamic Republic of); Keshtkar, Ali Reza [Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Research highlights: {yields} The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl{sub 2}) and hydrochloric acid (HCl). From the results obtained, chemically modification leads to higher capacity of biosorption. {yields} The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. {yields} One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. {yields} The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model describes best the biosorption of cadmium, nickel and lead ions. - Abstract: The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl{sub 2}) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical

  5. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae.

    Science.gov (United States)

    Montazer-Rahmati, Mohammad Mehdi; Rabbani, Parisa; Abdolali, Atefeh; Keshtkar, Ali Reza

    2011-01-15

    The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl(2)) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model best describes the biosorption of cadmium, nickel and lead ions.

  6. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  7. Biosorption of cadmium(Ⅱ) and lead(Ⅱ) ions from aqueous solutions onto dried activated sludge

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-jiang; XIA Si-qing; CHEN Ling; ZHAO Jian-fu; CHOVELON Jean-marc; NICOLE Jaffrezic-renault

    2006-01-01

    The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.

  8. Immobilization of Trichosporon cutaneum R 57 Cells onto Methylcellulose/SiO2 Hybrids and Biosorption of Cadmium and Copper Ions

    Directory of Open Access Journals (Sweden)

    Georgieva N.

    2009-12-01

    Full Text Available Methylcellulose/Silica (MC/SiO2 hybrids were synthesized via poly step sol-gel method. SiO2 was included into the hybrids from two silica precursors - methyltriethoxysilane (MTES and ethyltrimethoxysilane (ETMS with different quantity of organic part-5, 20 and 50 wt.%. The filamentous yeasts Trichosporon cutaneum strain R 57 was immobilized onto the synthesized MC/SiO2 hybrids. After immobilization the hybrid materials were used in the processes of sorption of cadmium and copper ions. The obtained results of protein content analysis indicated that the amount of protein increased with increasing of MC in the hybrids. It was established that the maximal efficiency of copper and cadmium removal were observed for hybrid materials containing MTES and 50 wt.% MC - 66% and 26% respectively. For ETMS and 50 wt.% MC a high value of copper removal was 56% and for cadmium - 45% removal, respectively. FTIR analysis of free and immobilized cells with metal ions was conducted. SEM images showed successful immobilization of the yeasts cells. Second order model was employed in order to investigate the kinetics of copper and cadmium biosorption.

  9. Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds.

    Science.gov (United States)

    Ma, Xiaoming; Cui, Weigang; Yang, Lin; Yang, Yuanyuan; Chen, Huifeng; Wang, Kui

    2015-06-01

    The functionalized Saccharomyces cerevisiae cell with biogenic intracellular CaCO3 mineral scaffold, synthesized via a simple and environmentally friendly approach, was efficient for removing lead (II) and cadmium (II) ions from aqueous solutions. The CaCO3 mineral scaffold could promote the uptake of the heavy metal ions and increase the biosorption capabilities of the adsorbent. Compared with the Freundlich isotherm, Langmuir model more fitted the equilibrium data. The maximum removal capacity of functionalized cells for Pb(II) and Cd(II) was 116.69 and 42.63mgg(-1), respectively. Further investigation showed that the adsorbent had high removal efficiency for trace amount of heavy metal ions. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicated that pseudo-second-order kinetic equation and intra-particle diffusion model could better describe the adsorption kinetics. The heavy metal ions might be removed by functionalized cells via membrane transport of metal ions and precipitation transformation.

  10. Equilibrium and kinetic modelling of cadmium (II) biosorption by Dried Biomass Aphanothece sp. from aqueous phase

    Science.gov (United States)

    Awalina; Harimawan, A.; Haryani, G. S.; Setiadi, T.

    2017-05-01

    The Biosorption of cadmium (II) ions on dried biomass of Aphanothece sp.which previously grown in a photobioreactor system with atmospheric carbon dioxide fed input, was studied in a batch system with respect to initial pH, biomass concentration, contact time, and temperature. The biomass exhibited the highest cadmium (II) uptake capacity at 30ºC, initial pH of 8.0±0.2 in 60 minute and initial cadmium (II) ion concentration of 7.76 mg/L. Maximum biosorption capacities were 16.47 mg/g, 54.95 mg/g and 119.05 mg/g at range of initial cadmium (II) 0.96-3.63 mg/L, 1.99-8.10 mg/L and 6.48-54.38 mg/L, respectively. Uptake kinetics follows the pseudo-second order model while equilibrium is best described by Langmuir isotherm model. Isotherms have been used to determine thermodynamic parameter process (free energy change, enthalpy change and entropy change). FTIR analysis of microalgae biomass revealed the presence of amino acids, carboxyl, hydroxyl, sulfhydryl and carbonyl groups, which are responsible for biosorption of metal ions. During repeated sorption/desorption cycles, the ratio of Cd (II) desorption to biosorption decreased from 81% (at first cycle) to only 27% (at the third cycle). Nevertheless, due to its higher biosorption capability than other adsorbent, Aphanothece sp appears to be a good biosorbent for removing metal Cd (II) ions from aqueous phase.

  11. Biosorption of cadmium using the fungus Aspergillus niger

    Directory of Open Access Journals (Sweden)

    L.M. Barros Júnior

    2003-09-01

    Full Text Available Sorption experiments using the Aspergillus niger fungus for cadmium removal were carried out to study the factors influencing and optimizing the biosorption of this metal. The effects of pH, time, biomass concentration, and initial concentration of the heavy metal on the rate of metallic biosorption were examined. An experimental design was also used to determine the values of the under study variables that provided the greatest biosorption efficiency. A technique for biomass recovery was also developed with the objective of determining the capacity of the regenerated biomass to biosorb the metals in solution. This research proved that with a pH of 4.75, a biomass concentration of 0.7 g/L, and a heavy metal concentration varying between 5 and 10 mg/L a biosorption process of biosorption with Aspergillus niger could be successfully used for heavy metal removal from oil field water in the oil industry.

  12. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Vimala, R., E-mail: vimararagu@yahoo.co.in [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India); Das, Nilanjana [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India)

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q{sub max} 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q{sub max} 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  13. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study.

    Science.gov (United States)

    Vimala, R; Das, Nilanjana

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q(max) 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q(max) 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  14. KINETIC AND EQUILIBRIUM STUDIES OF LEAD AND CADMIUM BIOSORPTION FROM AQUEOUS SOLUTIONS BY SARGASSUM SPP. BIOMASS

    Directory of Open Access Journals (Sweden)

    R. Nabizadeh, K. Naddafi, R. Saeedi, A. H. Mahvi, F. Vaezi, K. Yaghmaeian and S. Nazmara

    2005-07-01

    Full Text Available Contamination of the aqueous environment by heavy metals is a worldwide environmental problem. Biosorption of lead (II and cadmium (II from aqueous solutions by brown algae Sargassum spp.biomass was studied in a batch system. The heavy metals uptake was found to be rapid and reached to 88-96% of equilibrium capacity of biosorption in 15min. The pseudo second-order and saturation rate equations were found in the best fitness with the kinetic data (R2 > 0.99. The data obtained from experiments of single-component biosorption isotherm were analyzed using the Freundlich, Langmuir, Freundlich-Langmuir and Redlich-Peterson isotherm models. The Redlich-Peterson equation described the biosorption isotherm of Pb2+ and Cd2+ with high correlation coefficient (R2 > 0.99 and better than the other equations. The effect of Na+, K+, Mg2+ and Ca2+ on the biosorption of Pb2+ was not significant, but the metal ions affected the biosorption of Cd2+ considerably. According to the Langmuir model, the maximum uptake capacities (qm of Sargassum spp. for Pb2+ and Cd2+ were obtained as 1.70 and 1.02mmol/g, respectively. Although the Sargassum spp. used in this study can be classified as an efficient biosorbent.

  15. Biosorption of Cadmium by Fungal Biomass of Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    QI YANG; JIAN-LONG WANG; ZHI XING

    2005-01-01

    Objective To investigate the removal of cadmium from aqueous solution by waste fungal biomass of Aspergillus niger, originated from citric acid fermentation industry. Methods Batch adsorption test was used to study the biosorption equilibrium and isotherm. The Cd2+ concentration was measured with atomic adsorption spectrophotometer (AAS) HITACHI 180-80. Results The biosorption achieved equilibrium within 30 min. The adsorption isotherm could be described by Freundlich adsorption model, and the constants KF and 1/n were determined to be 2.07 and 0.18, respectively, and the correlation efficiency was 0.97. The optimal pH for Cd adsorption was 6.0. The cadmium-laden biomass could be effectively regenerated using 0.1 N HCl. Conclusion The waste biomass of Aspergillus niger, a by-product of fermentation industry, is a potential biosorbent for the removal of cadmium from aqueous solution.

  16. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  17. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine.

    Science.gov (United States)

    Park, Jin Hee; Chon, Hyo-Taek

    2016-06-01

    Bacteria have the ability to bind heavy metals on their cell wall. Biosorption is a passive and energy-independent mechanism to adsorb heavy metals. The efficiency of heavy metal biosorption can vary depending on several factors such as the growth phase of bacteria, solution pH, and existence of competitive heavy metals. In this study, Exiguobacterium sp. isolated from farmland soil near a mine site were used, and optimal conditions for Cd biosorption in solution were investigated. As bacterial growth progressed, Cd biosorption increased, which is attributed to changes in the structure and composition of the cell wall during bacterial growth. The biosorption process was rapid and was completed within 30 min. Cadmium biosorption was highest at pH 7 due to the dissociation of hydrogen ions and the increase of negative charges with increasing pH. In the mixed metal solution of Cd, Pb, and Zn, the amount of biosorption was in the order of Pb>Cd>Zn while in a single metal solution, the order was Cd≥Pb>Zn. The maximum adsorption capacity for Cd by the isolated bacteria was 15.6 mg/g biomass, which was calculated from the Langmuir isotherm model. Different adsorption efficiencies under various environmental conditions indicate that, to control metal mobility, the conditions for biosorption should be optimized before applying bacteria. The results showed that the isolated bacteria can be used to immobilize metals in metal-contaminated wastewater.

  18. Efficiency Study of Nickel (II and Cadmium (II Biosorption by Powder of Waste Activated Sludge from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    A.A Ebrahimi

    2011-01-01

    Full Text Available "n "n "nBackground and Objective: Nickel (II and cadmium (II are important in environmental pollutant. Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions because of the decrease in sludge problems, economical issues, high efficiency and compatibility with the environment."nMaterials and Methods: power of wasted activated sludge have been contact with nickel (II and cadmium (II solutions in 0.25 and 0.75 milli molar invarious pHs and mixing pace, at 24-26 0C temperature on batch reactor system .After two hours (continuously 5-420 min in kinetic study samples were analyzed with atomic absorption spectrophotometer."nResults:The kinetic study results show that equilibrium adsorption time for nickel (II and cadmium"n(II reached within 2 hr, but the profile curve of cadmium (II biosorption was smoother than nickel (II biosorption. Both metals adsorption followed the Langmuir model and the maximum adsorption capacity (qmax for nickel (II and cadmium (II was 0.195 and 0.37 milli mole per gram respectively. The increase in pH resulted in adsorption increase for both metals. For cadmium (II at 0.25 and 0.75 mMinitial concentration there was no adsorption at pH 2 where as nickel (0.25 mM adsorption was observed at the same pH. The optimum mixing rate for both metals was 200 rpm and this effect was more obviously in greater concentration."nConclusion: Like othe biosorbents ,wasted activated sludge showed greater capacity for cadmium(II biosorption than nickel (II. Cadmium (II in modeling and biosorption characteristics study had more conformity than nickel (II.

  19. Cadmium biosorption by Aspergillus niger; Biossorcao de cadmio pelo Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.P.; Barros Junior, L.M.; Duarte, M.M.L.; Macedo, G.R. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil)]. E-mail: edmilson@eq.ufrn.br

    2003-07-01

    Biosorption is a property of certain types of inactive, dead, microbial biomass to bind and concentrate heavy metals from even very dilute aqueous solutions. Biomass exhibits this property, acting just as a chemical substance, as an ion exchanger of biological origin. It is particularly the cell wall structure of certain algae, fungi and bacteria which was found responsible for this phenomenon. Some of the biomass types come as a waste by-product of large-scale industrial fermentations (the mold Rhizopus or the bacterium Bacillus subtilis). Other metal-binding biomass types, certain abundant seaweeds (particularly brown algae e.g. Sargassum, Ecklonia), can be readily collected from the oceans. These biomass types, serving as a basis for metal biosorption processes, can accumulate in excess of 25% of their dry weight in deposited heavy metals: Pb, Cd, U, Cu, Zn, even Cr and others. Sorption experiments using the Aspergillus niger fungus for cadmium removal were carried out to study the factors influencing and optimizing the biosorption of this metal. The effects of pH, time, biomass concentration, and initial concentration of the heavy metal on the rate of metallic biosorption were examined. (author)

  20. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Blazquez, M.L. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd {approx} Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  1. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu>Cd approximately Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb>Cu>Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  2. Cadmium ion removal using biosorbents derived from fruit peel wastes

    Directory of Open Access Journals (Sweden)

    Wanna Saikaew

    2009-11-01

    Full Text Available The ability of fruit peel wastes, corn, durian, pummelo, and banana, to remove cadmium ions from aqueous solution by biosorption were investigated. The experiments were carried out by batch method at 25oC. The influence of particle sizes, solution pH, and initial cadmium ion concentrations were evaluated on the biosorption studies. The result showed that banana peel had the highest cadmium ions removal followed by durian, pummelo, and corn peels at cadmium ions removal of 73.15, 72.17, 70.56, and 51.22%, respectively. There was a minimal effect when using different particle sizes of corn peel as biosorbent, while the particle size of the others had no influence on the removal of cadmium ions. The cadmium ions removal increased significantly as the pH of the solution increased rapidly from 1 to 5. At pH 5, the cadmium ions removal reached a maximum value. The equilibrium process was best described by the Langmuir isotherms, with maximum biosorption capacities of durian, pummelo, and banana peel of 18.55, 21.83, and 20.88 mg/g respectively. Fourier Transform Infrared Spectroscopy revealed that carboxyl, hydroxyl, and amide groups on the fruit peels’ surface and these groups were involved in the adsorption of the cadmium ions.

  3. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase.

    Science.gov (United States)

    Gupta, V K; Rastogi, A

    2008-05-01

    The biosorption of cadmium(II) ions on Oedogonium sp. is studied in a batch system with respect to initial pH, algal dose, contact time and the temperature. The algal biomass exhibited the highest cadmium(II) uptake capacity at 25 degrees C, at the initial pH value of 5.0 in 55 min and at the initial cadmium(II) ion concentration of 200 mg L(-1). Biosorption capacity decreased from 88.9 to 80.4 mg g(-1) with an increase in temperature from 25 to 45 degrees C at this initial cadmium(II) concentration. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. Acid pretreatments did not substantially increase metal sorption capacity but alkali like NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles at the end of fifth cycle, Cd(II) sorption decreased by 18%, with 15-20% loss of biomass. Nevertheless, Oedogonium sp. appears to be a good sorbent for removing metal Cd(II) from aqueous phase.

  4. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-05-01

    The biosorption of cadmium(II) ions on Oedogonium sp. is studied in a batch system with respect to initial pH, algal dose, contact time and the temperature. The algal biomass exhibited the highest cadmium(II) uptake capacity at 25 deg. C, at the initial pH value of 5.0 in 55 min and at the initial cadmium(II) ion concentration of 200 mg L{sup -1}. Biosorption capacity decreased from 88.9 to 80.4 mg g{sup -1} with an increase in temperature from 25 to 45 deg. C at this initial cadmium(II) concentration. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. Acid pretreatments did not substantially increase metal sorption capacity but alkali like NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles at the end of fifth cycle, Cd(II) sorption decreased by 18%, with 15-20% loss of biomass. Nevertheless, Oedogonium sp. appears to be a good sorbent for removing metal Cd(II) from aqueous phase.

  5. Biosorption of cadmium(II) ions by citrus peels in a packed bed column: effect of process parameters and comparison of different breakthrough curve models

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhijit; Schiewer, Silke [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK (United States)

    2011-09-15

    The efficiency of low cost citrus peels as biosorbents for removal of cadmium ions from aqueous solution was investigated in a fixed bed column, a process that could be applied to treat industrial wastewaters similar to commonly used ion exchange columns. Effluent concentration versus time profiles (i.e., breakthrough curves) were experimentally determined in a laboratory-scale packed bed column for varying operational parameters such as flow rate (2, 9, and 15.5 mL/min), influent cadmium concentration (5, 10, and 15 mg/L), and bed height (24, 48, and 72 cm) at pH 5.5. Column operation was most efficient for empty bed contact times of at least 10 min, which were apparently necessary for mass transfer. While the sorption capacity was largely unaffected by operational variables, the Thomas (Th) rate constant increased with the flow rate, and slightly decreased with increasing column length. Three widely used semi-mechanistic models (Th, Bohart-Adams, and Yoon-Nelson) were shown to be equivalent and the generalized model was compared with a two-parameter empirical model (dose-response). The latter was found to be able to better simulate the breakthrough curve in the region of breakthrough and saturation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. [University of Nottingham Malaysia Campus, Semenyih, Selangor (Malaysia)

    2012-04-15

    Biosorption of cadmium(II) ions (Cd{sup 2+}) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd{sup 2+} uptake was highly dependent on the initial pH and Cd{sup 2+} removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd{sup 2+} concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd{sup 2+} from aqueous solution. (orig.)

  7. Cadmium biosorption by ozonized activated sludge: The role of bacterial flocs surface properties and mixed liquor composition

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Julien, E-mail: jlaurent@me.com [Groupement de Recherche Eau Sol Environnement, Universite de Limoges, ENSIL, 16 rue Atlantis, Parc ESTER Technopole, 87068 Limoges Cedex (France); Casellas, Magali, E-mail: casellas@ensil.unilim.fr [Groupement de Recherche Eau Sol Environnement, Universite de Limoges, ENSIL, 16 rue Atlantis, Parc ESTER Technopole, 87068 Limoges Cedex (France); Pons, Marie-Noelle, E-mail: marie-noelle.pons@ensic.inpl-nancy.fr [Laboratoire des Sciences du Genie Chimique, CNRS, Nancy Universite, INPL, 1 rue Granville, BP 451, F-54001 Nancy (France); Dagot, Christophe, E-mail: dagot@ensil.unilim.fr [Groupement de Recherche Eau Sol Environnement, Universite de Limoges, ENSIL, 16 rue Atlantis, Parc ESTER Technopole, 87068 Limoges Cedex (France)

    2010-11-15

    Cadmium uptake by activated sludge was studied following modifications of sludge composition and surface properties induced by ozone treatment. Ozone leads to the solubilization of sludge compounds as well as their mineralization, especially humic like substances. Small particles were formed following floc disintegration, leading to a decrease of average floc size. The study of surface properties underlined the mineralization as the number of surface binding sites decreased with the increase of ozone dose. Depending on ozone dose, cadmium uptake by activated sludge flocs was either increased or decreased. Different mechanisms were involved: below 10 mg O{sub 3}/g TS, the increase of floc specific surface area following floc size decrease as well as the release of phosphate ions yielded an increase by 75% of cadmium uptake, due to the better availability of biosorption sites and the increase of precipitation. Inversely, at higher ozone doses, the number of biosorption sites decreased due to oxidation by ozone. Moreover, dissolved organic matter concentration increased and provided ligands for metal complexation. Cadmium uptake was therefore limited for ozone doses ranging from 10 to 16.8 mg O{sub 3}/g TS.

  8. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-04-30

    This paper determines the effect of immobilized brown alga Fucus vesiculosus in the biosorption of heavy metals with alginate xerogels. Immobilization increased the kinetic uptakes and intraparticle diffusion rates of the three metals. The Langmuir maximum biosorption capacity increased twofold for cadmium, 10 times for lead, and decreased by half for copper. According to this model, the affinity of the metals for the biomass was as follows: Cu>Pb>Cd without alga and Pb>Cu>Cd with alga. FITR confirmed that carboxyl groups were the main groups involved in the metal uptake. Calcium in the gels was displaced by heavy metals from solution according to the "egg-box" model. The restructured gel matrix became more uniform and organized as shown by scanning electron microscopy (SEM) characterization. F. vesiculosus immobilized in alginate xerogels constitutes an excellent biosorbent for cadmium, lead and copper, sometimes surpassing the biosorption performance of alginate alone and even the free alga.

  9. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Blazquez, M.L. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-04-30

    This paper determines the effect of immobilized brown alga Fucus vesiculosus in the biosorption of heavy metals with alginate xerogels. Immobilization increased the kinetic uptakes and intraparticle diffusion rates of the three metals. The Langmuir maximum biosorption capacity increased twofold for cadmium, 10 times for lead, and decreased by half for copper. According to this model, the affinity of the metals for the biomass was as follows: Cu > Pb > Cd without alga and Pb > Cu > Cd with alga. FITR confirmed that carboxyl groups were the main groups involved in the metal uptake. Calcium in the gels was displaced by heavy metals from solution according to the 'egg-box' model. The restructured gel matrix became more uniform and organized as shown by scanning electron microscopy (SEM) characterization. F. vesiculosus immobilized in alginate xerogels constitutes an excellent biosorbent for cadmium, lead and copper, sometimes surpassing the biosorption performance of alginate alone and even the free alga.

  10. Biosorption potential of cerium ions usingSpirulina biomass

    Institute of Scientific and Technical Information of China (English)

    David Sadovsky; Asher Brenner; Boaz Astrachan; Boaz Asaf; Raphael Gonen

    2016-01-01

    Two types of cyanobacteria of the genusArthrospira (commonly known asSpirulina) were tested for biosorption of ce-rium(III) ions from aqueous solutions. An endemic type (ES) found in the northern Negev desert, Israel, and a commercial powder (CS) were used in this study. Biosorption was evaluated as a function of pH, contact time, initial metal concentration, number of sorp-tion-desorption cycles, and salt concentration. The optimum pH range for biosorption was found to be 5.0–5.5. The kinetic character-istics of bothSpirulina types were found to be highly compatible with a pseudo-second order kinetic model. The adsorption isotherms of both types were found to be well-suited to Langmuir and Freundlich adsorption isotherms. Maximum biosorption uptakes, accord-ing to the Langmuir model, were 18.1 and 38.2 mg/g, for ES and CS, respectively. Sodium chloride concentrations of up to 5 g/L had a minor effect on cerium biosorption. Desorption efficiency was found to be greater than 97% with 0.1 mol/L HNO3 after three sorp-tion-desorption cycles, without significant loss in the biosorption capacity. The results indicated the feasibility of cerium recovery from industrial wastes usingSpirulina biomass.

  11. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas

    Energy Technology Data Exchange (ETDEWEB)

    Masoudzadeh, Nasrin [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Department of Biology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zakeri, Fardideh [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); National Radiation Protection Department - Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Lotfabad, Tayebe bagheri [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Sharafi, Hakimeh [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Department of Biology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Masoomi, Fatemeh; Zahiri, Hoseein Shahbani; Ahmadian, Gholamreza [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Noghabi, Kambiz Akbari, E-mail: Akbari@nigeb.ac.ir [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Isolation and characterization of a novel cadmium-biosorbent (Brevundimonas sp. ZF12) from high background radiation areas. Black-Right-Pointing-Pointer Brevundimonas sp. ZF12 caused 50% removal of cadmium at the concentration level of 250 ppm. Black-Right-Pointing-Pointer Solution pH values used for the reusability study have powerful desorptive features to recover Cd ions sorbed onto the biomass. Black-Right-Pointing-Pointer This is the first study carried out so far for the cadmium removal from aqueous solutions by a novel biosorbent Brevundimonas sp. ZF12. Black-Right-Pointing-Pointer In our opinion, the isolate can be an attractive alternative to remove the cadmium-containing wastewaters. - Abstract: The aim of this study is to screen cadmium biosorbing bacterial strains isolated from soils and hot-springs containing high concentrations of radium ({sup 226}Ra) in Ramsar using a batch system. Brevundimonas sp. ZF12 strain isolated from the water with high {sup 226}Ra content caused 50% removal of cadmium at a concentration level of 250 ppm. The biosorption equilibrium data are fitted well by the Langmuir adsorption isotherm and kinetic studies indicated that the biosorption follows pseudo second-order model. The effect of different physico-chemical parameters like biomass concentration, pH, cadmium concentration, temperature and contact time on cadmium sorption was also investigated using FTIR, SEM and XRD analytical techniques. A high desorption efficiency (above 90%) was obtained using a pH range of 2.0-4.0. Reusability of the biomass was examined under consecutive biosorption-desorption cycles repeated thrice. In conclusion, Brevundimonas sp. ZF12 is proposed as an excellent cadmium biosorbent that may have important applications in Cd removal from wastewaters.

  12. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass

    Directory of Open Access Journals (Sweden)

    Azza M. Abdel -Aty

    2013-07-01

    Full Text Available The present work represents the biosorption of Cd(II and Pb(II from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II and Pb(II follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D–R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II and Pb(II by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II and Pb(II. The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II and Pb(II from aqueous solutions.

  13. Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain.

    Science.gov (United States)

    Kim, Su Young; Jin, Mi Ra; Chung, Chang Ho; Yun, Yeoung-Sang; Jahng, Kwang Yeop; Yu, Kang-Yeol

    2015-04-01

    Biosorption of heavy metals and dyes is a promising technology that involves the removal of toxic metals from industrial wastes. The present study aims to screen the bacterial strains isolated from soils and polluted pond for their potential biosorption of both cationic dye and cadmium. Bacillus catenulatus JB-022 strain removed 58% and 66% of cationic basic blue 3 (BB3) and cadmium (Cd(II)) at the respective concentrations of 2000 mg/L and 150 mg/L. The biosorption equilibrium data were well fitted by the Langmuir adsorption isotherm, and the kinetic studies indicated that the biosorption followed the pseudo-second-order model. The biosorption kinetics showed that the equilibrium was reached within 10 min and 5 min for BB3 and Cd(II), respectively. According to the Langmuir model, the maximum uptakes of BB3 and Cd(II) by the JB-022 biomass were estimated to be 139.74 and 64.28 mg/g, respectively. To confirm the surface morphology and functional groups, field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffraction, and Fourier transform infrared spectroscopy analyses were carried out, and the results revealed that the biomass of JB-022 has carboxyl and phosphonate groups as potential surface functional groups capable of binding to cationic pollutants. In conclusion, B. catenulatus JB-022 is proposed as an excellent biosorbent with potentially important applications in removal of cationic pollutants from wastewaters. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Biosorption of lead ions from aqueous effluents by rapeseed biomass.

    Science.gov (United States)

    Morosanu, Irina; Teodosiu, Carmen; Paduraru, Carmen; Ibanescu, Dumitrita; Tofan, Lavinia

    2017-10-25

    Lead, as well as other heavy metals, is regarded as priority pollutant due to its non-biodegradability, toxicity and persistence in the environment. In this study, rapeseed biomass was used in the biosorption of Pb(II) ions in batch and dynamic conditions, as well as with tests for industrial wastewater. The influence of initial concentration (5-250mg/L), pH and contact time (0.5-6h) was investigated. The kinetic data modeling resulted in good correlations with the pseudo-second order and intraparticle diffusion models. The maximum sorption capacities of Pb(II) were 18.35, 21.29 and 22.7mg/L at 4, 20 and 50°C, respectively. Thermodynamic parameters indicated the spontaneity and endothermic nature of lead biosorption on rapeseed biomass. The biosorption mechanism involves both physical and chemical interactions. The breakthrough curves at 50 and 100mg/L were determined and evaluated under dynamic conditions. The breakthrough time lowered with increasing the influent Pb(II) concentration. The experimental data obtained from fixed-bed column tests were well fitted by Thomas and Yoon-Nelson models. The calculated sorption capacities were in good agreement with the uptake capacity of Langmuir model. The applicability of rapeseed to be used as a sorbent for Pb(II) ions from real wastewater was tested, and Pb(II) removal efficiency of 94.47% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    Science.gov (United States)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  16. Biosorption of Cd(Ⅱ)and Pb(Ⅱ)Ions by Aqueous Solutions of Novel Alkalophillic Streptomyces VITSVK5 spp.Biomass

    Institute of Scientific and Technical Information of China (English)

    Kumar Saurav; Krishnan Kannabiran

    2011-01-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment.Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution.The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species.The biosorption property of Streptomyces VITSVK5 spp.was investigated by absorbing heavy metals Cadmium(Cd)and Lead(Pb).Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L·1,cadmium 3.1±0.3 μg L·1,zinc 8.4±2.6μg L·1 and copper 0.3±0.1μg L·1,whereas mercury was well below the detection limit.The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated.The optimum pH for maximal biosorption was4.0 for Cd(Ⅱ)and 5.0 for Pb(Ⅱ)with 41% and 84% biosorption respectively.The biosorbent dosage was optimized as 3 g L-1 for both the trace metals.Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl(-COOH),hydroxyl(-CHOH)and amine(-NH2)groups of biomass with the metal ions.This could be mainly involved in the biosorption of Cd(Ⅱ)and Pb(Ⅱ)onto Streptomyces VITSVK5 spp.The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  17. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fan Ting [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Liu Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)], E-mail: Yunguo_Liu@126.com; Feng Baoying; Zeng Guangming; Yang Chunping; Zhou Ming; Zhou Haizhou; Tan Zhenfeng; Wang Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2008-12-30

    The isotherms, kinetics and thermodynamics of Cd(II), Zn(II) and Pb(II) biosorption by Penicillium simplicissimum were investigated in a batch system. The effects of pH, initial metal ions concentration, biomass dose, contact time, temperature and co-ions on the biosorption were studied. Adsorption data were well described by both the Redlich-Peterson and Langmuir model. Chemical ion-exchange was found to be an important process based on free energy value from Dubini-Radushkevich isotherm for all metal ions. The results of the kinetic studies of all metal ions at different temperature showed that the rate of adsorption followed the pseudo second-order kinetics well. The thermodynamics constants {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o} of the adsorption process showed that biosorption of Cd(II), Zn(II) and Pb(II) ions on Penicillium simplicissimum were endothermic and spontaneous.

  18. Biosorption of Cu(II) ions by cellulose of cabbage waste as biosorbent from agricultural waste

    Science.gov (United States)

    Heraldy, Eddy; Wireni, Lestari, Witri Wahyu

    2016-02-01

    Biosorption on lignocellulosic wastes has been identified as an appropriate alternative technology to remove heavy metal ions from wastewater. The purpose of this research was to study the ability of cabbage waste biosorbent prepared from agricultural waste on biosorption of Cu(II). Cabbage waste biosorbent was activated with sodium hydroxide at concentration 0.1 M. The biosorption optimum conditions were studied with initial pH (2-8), biosorbent dosage (0.2-1) g/L, contact time (15-90) minutes, and metal ion concentrations (10-100) mg/L by batch method. Experimental data were analyzed in terms of two kinetic models such as pseudo-first-order and pseudo-second-order models. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The results showed that cabbage biosorbent activated by 0.1 M sodium hydroxide enhanced the biosorption capacity from 9,801 mg/g to 12,26 mg/g. The FTIR spectra have shown a typical absorption of cellulose and typical absorption of lignin decrease after activation process. The kinetic biosorption was determined to be appropriate to the pseudo-second order model with constant rate of 0,091 g/mg.min, and the biosorption equilibrium was described well by the Langmuir isotherm model with maximum biosorption capacity of 37.04 mg/g for Cu(II) at pH 5, biosorption proses was spontaneous in nature with biosorption energy 25.86 kJ/mol at 302 K.

  19. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water.

    Directory of Open Access Journals (Sweden)

    Yunnan Hou

    Full Text Available In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II and Mn(II was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II and Mn(II, respectively. Two models were investigated to compare the cells' capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water.

  20. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng [Department of Chemical and Petroleum Engineering, University of Uyo, Uyo (Nigeria); Aluyor, E.; Audu, T. [Department of Chemical Engineering, University of Uyo, BeninCity, BeninCity (Nigeria)

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  1. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies

    Energy Technology Data Exchange (ETDEWEB)

    Puranik, P.R.; Paknikar, K.M. [Agharkar Research Inst., Pune (India). Div. of Microbial Sciences

    1999-03-01

    The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature. Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCm B-181 was a fast process, requiring < 20 min to achieve > 90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11.8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co{sup 2+} < Ni{sup 2+} < Cd{sup 2+} < Cu{sup 2+}, Zn{sup 2+} < Pb{sup 2+}. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time.

  2. Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass

    Institute of Scientific and Technical Information of China (English)

    Li Li; Qing Hu; Jinghai Zeng; Hongyan Qi; Guoqiang Zhuang

    2011-01-01

    Biosorption of silver ions onto Bacillus cereus biomass was investigated.Overall kinetic experiments were performed for the determination of the necessary contact time for the attainment of equilibrium.It was found that the overall biosorption process was best described by pseudo second-order kinetic model.The crystals detected by scanning electron microscope and X-ray photoelectron spectroscopy suggested the precipitation was a possible mechanism of biosorption.The molecular genetics of silver resistance of B.cereus biomass was also detected and illustrated by a whole cell sensor tool.

  3. Cadmium biosorption properties of the metal-resistant ochrobactrum cytisi Azn6.2

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Llorente, Ignacio D.; Gamane, Djamila; Lafuente, Alejandro; Dary, Mohammed; El Hamdaoui, Abdelaziz; Delgadillo, Julian; Doukkali, Bouchra; Caviedes, Miguel A.; Pajuelo, Eloisa [Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, Sevilla (Spain)

    2010-02-15

    The aim of this work was to establish the conditions for using Ochrobactrum cytisi Azn6.2 as a metal biosorbent. Azn6.2 is a novel strain from the legume symbiont O. cytisi that has been isolated from nodules of Medicago polymorpha plants grown on heavy metal-polluted soils. Compared with the strain ESC1, Azn6.2 showed some biochemical differences, as well as antibiotic susceptibility, Azn6.2 was multi-resistant to heavy metals, such as Cu, Cd and Zn, and bacterial pellets were able to biosorb high amounts of Cd and Zn. As shown by scanning electron microscopy coupled to energy dispersive X-ray, most of Cd was attached to the cell surface. Optimal conditions for Cd biosorption were established, being 1 mM Cd ions in solution and 2 h of contact with the biosorbent at room temperature. At these conditions, maximal Cd loading capacity reached 32-34 mg/g. Cd desorption from bacterial pellets was achieved after washing with EDTA or, at higher efficiency, at pH 1.0. These results indicated that biosorption/desorption on O. cytisi Azn6.2 biomass should be a cost-effective method for Cd recovery from contaminated solutions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. KINETICS AND EQUILIBRIUM PARAMETERS OF BIOSORPTION AND BIOACCUMULATION OF LEAD IONS FROM AQUEOUS SOLUTIONS BY TRICHODERMA LONGIBRACHIATUM

    Directory of Open Access Journals (Sweden)

    Enitan S. Balogun

    2012-04-01

    Full Text Available Biosorption and bioaccumulation of Lead ions (Pb(II by Trichoderma longibrachiatum were investigated in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and inoculum concerntration on biosorption capacity were also studied. The maximum biosorption capacity of Trichoderma longibrachiatum was at 25 ppm of lead, showed 100 % removal at pH 7 and 25 oC after fifteen days. Biosorption equilibrium was established in 150 minutes. The process fitted well into pseudo second order kinetic model and was best explained by Langmuir isotherm.

  5. Immobilization study of biosorption of heavy metal ions onto activated sludge

    Institute of Scientific and Technical Information of China (English)

    WU Hai-suo; ZHANG Ai-qiang; WANG Lian-sheng

    2004-01-01

    Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10-100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤ 5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pretreated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃.Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.

  6. Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; FAN Ting; ZENG Guang-ming; LI Xin; TONG Qing; YE Fei; ZHOU Ming; XU Wei-hua; HUANG Yu-e

    2006-01-01

    The potential of living Aspergillus niger to remove cadmium and zinc from aqueous solution was investigated. Effects of pH, initial concentration, contact time, temperature and agitation rate on the biosorption of Cd(Ⅱ) and Zn(Ⅱ) ions were studied. The optimum adsorption pH value for Cd(Ⅱ) and Zn(Ⅱ) were 4.0 and 6.0. The best temperature and agitation rate were in the range of 25-30 ℃ and 120 r/min for all metal ions. Under the optimal conditions, the maximum uptake capacities of Cd(Ⅱ) and Zn( Ⅱ ) ions are 15.50 mg/g and 23.70 mg/g at initial concentrations of 75 mg/L and 150 mg/L, respectively. Biosorption equilibrium is established within 24 h for cadmium and zinc ions. The adsorption data provide an excellent fit to Langmuir isotherm model. The results of the kinetic studies show that the rate of adsorption follows the pseudo-second order kinetics.

  7. Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms

    Institute of Scientific and Technical Information of China (English)

    W. S. Wan Ngah; M. A. K. M. Hanafiah

    2008-01-01

    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions fromaqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed,pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increasedwith increase in pH, stirring speed and copper concentration hut decreased with increase in biosorbent dose and ionic strength. Theisotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. Themaximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27~C. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determiningstep in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fouriertransform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the bindingof copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ionexchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na, Ca, andMg) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at>99% using 0.05 mol/L HCI, 0.01mol/L HNO, and 0.01 mol/L EDTA solutions.

  8. Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH

    Science.gov (United States)

    Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.

  9. 运用丝状真菌生物质生物吸附镉(Ⅱ)污染物的研究%Advance in the Biosorption of Cadmium Contaminant Using Filamentous Fungal Biomass

    Institute of Scientific and Technical Information of China (English)

    许爱清; 向言词; 李会东

    2013-01-01

    Filamentous fungal biomass (FFB) is important biomaterial for preparing biosorbents that used for bioremediation of cadmium contaminant. The harmfulness of cadmium and mechanism for mycoremediation of cadmium contaminant were reviewed. A comparative list was done to show the filamentous fungi used for cadmium biosorption, their biosorption capacity and characteristic parameters involved in cadmium biosorption process in the last two decades. An effort was focused on the detailed elucidation upon the techniques and principles in treatment process for cadmium removal by biosorption process and their effects on cadmium biosorption capacity, cadmium removal by the fixed-bed adsorption columns filled with FFB, and the practice effects of cadmium removal from industrial effluent with cadmium contamination were described.%丝状真菌生物质是研制可用作生物修复镉污染的生物吸附剂的重要生物材料.文章首先概述了镉的危害性与镉污染的真菌修复机制;列表比较了近20年研究中用于生物吸附Cd2+的丝状真菌菌种资源、镉吸附量和工艺特性参数;详细阐明了利用丝状真菌生物质生物吸附法除镉工艺过程涉及的技术方法和基本原理,包括丝状真菌生物质材料的预处理方法,分批生物吸附除镉工艺的考虑因素及其影响效应,固定床吸附柱生物吸附除镉工艺,以及生物吸附法去除含镉工业废水中Cd2+的实践效果.

  10. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.

    Science.gov (United States)

    Nongmaithem, Nabakishor; Roy, Ayon; Bhattacharya, Prateek Madhab

    2016-01-01

    Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. The biosorption potential of waste biomass young fruit walnuts for lead ions: Kinetic and equilibrium study

    Directory of Open Access Journals (Sweden)

    Marković Dragana Z.

    2016-01-01

    Full Text Available The biosorption potential of waste biomass young fruit walnuts (YFW as a low-cost biosorbent, processed from liqueur industry, for Pb(II ions from aqueous solution was explored. The structural features of the biosorbent were characterized by FTIR spectroscopy, which indicates the possibility that the different functional groups may be responsible for the binding of Pb(II ions from aqueous solution. The effects of relevant parameters such as pH (2 - 6, contact time (0 - 120 min, biosorbent dosage (2 - 20 g, initial metal ion concentration (10 - 120 mg dm-3, at a temperature of 25(C with stirring (120 rpm and a constant ionic strength of 0,02 mol dm-3 were evaluated in batch experiments. The sorption equilibrium of Pb(II ion (when 84 % of metal ions were sorbed at an initial concentration of 15 mg dm-3 was achieved within the pH range 4 - 5 after 50 min. Kinetic data were best described by the pseudo-second order model. Removal efficiency of Pb(II ion rapidly increased with increasing biosorbent dose from 2.0 to 8.0 g per dm-3 of sorbate. Optimal biosorbent dose was set to 6.0 g per dm3 of sorbate. An increase in the initial metal concentration increases the biosorption capacity. The sorption data of investigated metal ion are fitted to Langmuir, Freundlich and Temkin isotherm models. The equilibrium data were well fitted by the Langmuir isotherm model (R2 ≥ 0.990. The maximum monolayer biosorption capacity of waste biomass YFW for Pb(II ion, at 25.0 ± 0.5°C and pH 4.5, was found to be 19.23 mgg-1. This available waste biomass is efficient in the uptake of Pb(II ions from aqueous solution and could be used as a low-cost and an alternative biosorbent for the treatment of wastewater streams bearing these metal ions.

  12. Artificial intelligence modeling of cadmium(II) biosorption using rice straw

    Science.gov (United States)

    Nasr, Mahmoud; Mahmoud, Alaa El Din; Fawzy, Manal; Radwan, Ahmed

    2017-05-01

    The biosorption efficiency of Cd2+ using rice straw was investigated at room temperature (25 ± 4 °C), contact time (2 h) and agitation rate (5 Hz). Experiments studied the effect of three factors, biosorbent dose BD (0.1 and 0.5 g/L), pH (2 and 7) and initial Cd2+ concentration X (10 and 100 mg/L) at two levels "low" and "high". Results showed that, a variation in X from high to low revealed 31 % increase in the Cd2+ biosorption. However, a discrepancy in pH and BD from low to high achieved 28.60 and 23.61 % increase in the removal of Cd2+, respectively. From 23 factorial design, the effects of BD, pH and X achieved p value equals to 0.2248, 0.1881 and 0.1742, respectively, indicating that the influences are in the order X > pH > BD. Similarly, an adaptive neuro-fuzzy inference system indicated that X is the most influential with training and checking errors of 10.87 and 17.94, respectively. This trend was followed by "pH" with training error (15.80) and checking error (17.39), after that BD with training error (16.09) and checking error (16.29). A feed-forward back-propagation neural network with a configuration 3-6-1 achieved correlation ( R) of 0.99 (training), 0.82 (validation) and 0.97 (testing). Thus, the proposed network is capable of predicting Cd2+ biosorption with high accuracy, while the most significant variable was X.

  13. Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Benaissa, H., E-mail: ho_benaissa@yahoo.fr [Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry, Faculty of Sciences, University of Tlemcen, P.O. Box 119, 13000 Tlemcen (Algeria); Elouchdi, M.A. [Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry, Faculty of Sciences, University of Tlemcen, P.O. Box 119, 13000 Tlemcen (Algeria)

    2011-10-30

    Highlights: {yields} Dried activated sludge has been investigated for the removal of copper ions from aqueous synthetic solutions, in batch conditions. {yields} Copper uptake was time contact, initial copper concentration, initial pH solution and copper salt type dependent. {yields} Maximum copper uptake obtained was q{sub m} = 62.50 mg/g (0.556 mmol/g) under the investigated experimental conditions. - Abstract: In the present work, the usefulness of dried activated sludge has been investigated for the removal of copper ions from synthetic aqueous solutions. Kinetic data and equilibrium sorption isotherm were measured in batch conditions. The influence of some parameters such as: contact time, initial copper concentration, initial pH of solution and copper salt nature on copper biosorption kinetics has been studied. Copper uptake was time contact, initial copper concentration, initial pH solution and copper salt type dependent. Maximum copper sorption was found to occur at initial pH 5. Two simplified kinetic models including a first-order rate equation and a pseudo second-order rate equation were selected to describe the biosorption kinetics. The process followed a pseudo second-order rate kinetics. The process mechanism was found to be complex, consisting of external mass transfer and intraparticle mass transfer diffusion. Copper biosorption process was particle-diffusion-controlled, with some predominance of some external mass transfer at the initial stages for the different experimental parameters studied. Langmuir and Freundlich models were used to describe sorption equilibrium data at natural pH of solution. Results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. Maximum copper uptake obtained was q{sub m} = 62.50 mg/g (0.556 mmol/g) under the investigated experimental conditions. Scanning electron microscopy coupled with X-ray energy dispersed analysis for copper-equilibrated dried activated sludge

  14. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Rafael; Herguedas, Mar; Barrado, Enrique; Vega, Marisol [Departamento de Quimica Analitica, Universidad de Valladolid, Facultad de Ciencias, Prado de la Magdalena, 47005, Valladolid (Spain)

    2003-05-01

    The accumulation of Cd(II), Cu(II), Pb(II) and Zn(II) at mg L{sup -1} concentration levels by inactive freeze-dried biomass of Pseudomonas Putida has been investigated. These metals could be efficiently removed from diluted aqueous solutions. A contact time of 10 min was sufficient to reach equilibrium. The pH has a strong effect on metal biosorption and the optimal pH values were 6.0, 5.0-6.0, 6.0-6.5 and 7.0-7.5 for Cd(II), Cu(II), Pb(II) and Zn(II) respectively. Under these conditions there was 80% removal for all metals studied. The process of biosorption can be described by a Langmuir-type adsorption model. This model accounts for 98% of the data variance. The K{sub A} and q{sub max} parameters for each metal are strongly correlated (at confidence levels greater than 98%) with the metal acidity, quantified by the constant of the corresponding M(OH){sup +} complex, thus confirming previous assertions by other authors. (orig.)

  15. Biosorptive removal of cobalt (II) ions from aqueous solution by ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... ISSN 1684–5315 © 2010 Academic Journals. Full Length Research ... Moreover, contamination of ground water is another major concern .... The residual metallic ion concentrations were also .... Beneficial reuse of chicken ...

  16. Biosorption of hexavalent chromium (chromium (VI) ion from ...

    African Journals Online (AJOL)

    taye

    2015-04-01

    Apr 1, 2015 ... countries for industrial waste water varies from 0.05 to. 0.1 mg/l (Bansal et .... different methods of treatment by physically, chemically and organically .... hydrogen ion concentration is influenced by biological activities. Beside ...

  17. Biosorption characteristics of Aspergillus fumigatus in removal of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi .... experiment to study the reuse of biomass in biosorption. ..... Cadmium biosorption by cells of Spirulina platensis TISTR 8217.

  18. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions

    Institute of Scientific and Technical Information of China (English)

    PAN Jian-hua; LIU Rui-xia; TANG Hong-xiao

    2007-01-01

    In this study, the Fourier transform infrared (FTIR) analytical technique identified the surface chemical functional groups of Bacillus cereus biomass. B. Cereus cells mainly contained carboxyl, hydroxyl, phosphate, amino, and amide functional groups. In order to explain the surface acid-base properties of aqueous B. Cereus biomass, the potentiometric titration was conducted . The computer program FITEQL 4.0 was used to perform the model calculations. The optimization results indicated that three sites-three pKas model, which assumed the cell surface to have three distinct types of surface organic functional groups based on IR analysis results, simulated the experimental results very well. Moreover, batch adsorption experiments were performed to investigate biosorption behavior of Cu (Ⅱ) and Pb (Ⅱ) ions onto the biomass. Obviously, the adsorption equilibrium data for the two ions were reasonably described by typical Langmuir isotherm.

  19. COMPETITIVE BIOSORPTION OF LEAD (II IONS FROM AQUEOUS SOLUTIONS ONTO TERMINALIA CATAPPA L. LEAVES AS A COST EFFECTIVE BIOSORBENT

    Directory of Open Access Journals (Sweden)

    Jagruti N. Jadav

    2015-03-01

    Full Text Available In the present study, the competitive biosorption properties of nonliving biosorbent, Terminalia catappa L. leaves as a cost effective biosorbent for Pb(II ions was investigated using batch technique. FTIR analysis of the biosorbent revealed that hydroxyl, carbonyl and carboxyl groups which are involved in the uptake of lead (II ions. SEM represents porous structure with large surface area. The effects of operational factors including solution pH, biosorbent dose, initial lead (II ions concentration, contact time and temperature on the biosorption efficiency were studied. The optimum solution pH for Pb(II ions adsorption by biosorbent was 6.0 with the optimal removal 82.06%. The biosorbent dose 5 mg/mL was enough for optimal removal of 79.35%. The biosorption process was relatively fast and equilibrium was achieved after 90 minutes of contact time. The experimental equilibrium biosorption data were fitted by four widely used two-parameters Langmuir, Freundlich, Dubinin-Kaganer-Redushkevich (DKR and Temkin isotherm equations. Langmuir isotherm model provided a better fit with the experimental data than Freundlich, Temkin and Dubinin-Kaganer-Redushkevich (DKR adsorption isotherm models by high correlation coefficient value (R2= 0.997. The maximum adsorption capacity determined from Langmuir isotherm was found to be 50.00 mg/g of biosorbent. Simple kinetic models such as pseudo-first-order, pseudo-second-order, Elovich equation and Weber and Morris intraparticle diffusion rate mixing equation were employed to determine the adsorption mechanism. Results indicates that pseudo-second-order kinetic model (R2= 0.999 was found to be correlate the experimental data strongest than other three kinetic models and this suggests that chemical biosorption process was more dominant. Thermodynamic study revealed that the biosorption process was spontaneous, endothermic and increasing randomness of the solid solution interfaces. Tarminalia catappa L. leaves were

  20. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    Science.gov (United States)

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage.

  1. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture.

    Science.gov (United States)

    Lebeau, T; Bagot, D; Jézéquel, K; Fabre, B

    2002-05-27

    Instead of soil clean-up, a process not very technically and economically suited to agricultural soil contaminated by heavy metals (with a low concentration of heavy metals but highly or potentially highly contaminated surfaces), the control of the transfer of cadmium from the soil to the crops may well be a convenient method. We tested the bacterium ZAN-044, the actinomycete R27 and a basidiomycete Fomitopsis pinicola isolated for their ability to biosorb Cd, in order to inoculate agricultural soils afterwards. We then compared the cadmium biosorption by viable microbial cells which were free or immobilised in alginate beads and incubated in a soil extract liquid medium at various pH values (5, 6 and 7) and cadmium concentrations (1 and 10 mg/l). The Cd concentration in the medium had the most important effect on the percentage of Cd biosorbed by the microorganisms, but the culture mode (free or immobilised cells) was not a side effect. In the case of F. pinicola and the actinomycete R27, the percentage of Cd biosorbed by free cells did not decrease when the Cd concentration in the medium increased (6-42% at the lowest Cd concentration to 11-48% at 10 mg Cd/l). On the other hand, with a low Cd concentration (1 mg Cd/l), the percentage of Cd biosorbed by the bacterium ZAN-044 was maximum (69%) at pH 7, while this bacterium did not grow at 10 mg Cd/l and it did not accumulate Cd. For the three micro-organisms tested, relatively low specific biosorptions of Cd were observed, when the microorganisms were cultivated with a soil extract medium ('poor' medium), comparatively to those with a 'rich' medium. Finally, the choice of microorganism for the inoculation of contaminated soils depends on the cadmium level in the medium and on the distribution of the metal between the biomass and the medium.

  2. Determination of model parameters for zinc (II) ion biosorption onto powdered waste sludge (PWS) in a fed-batch system.

    Science.gov (United States)

    Kargi, Fikret; Cikla, Sinem

    2007-12-01

    Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.

  3. Biosorption of Cr(III), Cr(VI), Cu(II) ions by intact cells of Spirulina platensis

    OpenAIRE

    Gelagutashvili, E.; Bagdavadze, N.; Rcheulishvili, A.

    2017-01-01

    The absorption characteristics of Cr(III), Cr(VI), Cu(II) ions on intact living cells Spirulina platensis (pH9.6) were studied by using a UV-VIS spectrophotometer. Also biosorption of these ions with cyanobacteria Spirulina platensis were studied using equilibrium dialysis and atomic absorption analysis.It was shown, that the absorption intensity of Spirulina platensis decreases, when Cr(III), Cr(VI), Cu(II) ions are added. Significant difference between the absorption intensity for Cu(II) Sp...

  4. Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(III ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Lee Ching-Hwa

    2015-09-01

    Full Text Available Gallium (Ga is considered an important element in the semiconducting industry and as the lifespan of electronic products decrease annually Ga-containing effluent has been increasing. The present study investigated the use of biodegradable polymer powders, crab shell and chitosan, in the removal of Ga(III ions from aqueous solution. Ga(III biosorption was modeled to Lagergren-first, pseudo-second order and the Weber-Morris models. Equilibrium data was modeled to the Langmuir, Freundlich and Langmuir-Freundlich adsorption isotherms to determine the probable biosorption behavior of Ga(III with the biosorbents. The biosorbents were investigated by Fourier Transform Infrared Spectroscopy, X-ray Diffraction and Scanning Electron Microscopy/Energy Dispersive Spectra analysis.

  5. BIOSORPTION OF Cr(III) ION ON ALGAE Eucheuma spinosum BIOMASSA

    OpenAIRE

    Sudiarta, I. Wayan; Diantariani, Ni Putu

    2010-01-01

    Studies on biosorption and desorption of Cr(III) on algae (Eucheuma spinosum) adsorbent have been carried out. These studies included determination of biosorbent acidity, optimum pH, contact time of biosorption, isoterm and biosorption capacity, and mechanisms of interaction between Cr(III) and algae (E. spinosum) biosorben. Mechanisms of interaction were evaluated by sequential desorption of Cr(III) on algae biosorben by using aquadest, 1 M HCl and 0.05 M Na2EDTA. The result showed that the ...

  6. Role of HSAB concept in understanding biosorptive behaviour of various metal ions employing green biosorbent - Dry Cow Dung Powder

    Science.gov (United States)

    Bagla, Hemlata; Khilnani, Roshan

    2016-04-01

    Hard & Soft Acid Base concept, HSAB theory given by Pearson, elucidates the crucial role of HSAB characteristics of both pollutants as well as the aqueous milieu. This theory can also explain the biosorptive behaviour of Dry Cow dung Powder, which helps in governing the success of process. The various metal ionic species exhibit a preference for the ligand binding on the biomass based on its chemical coordination characteristics. A comparative batch equilibration biosorptive assay has been carried out employing radiotracer technique for uptake of Cr(III), Cr(VI), Cd(II), Hg(II), Sr(II), Cs(I) and Co(II) at optimum biosorption parameters. To study the effect of interference of different salts on the percentage biosorption of metal ions on DCP, different organic as well as inorganic salts with varying proportion of 10 mg, 25 mg, 50 mg and 100 mg have been studied. The dynamics of the biosorption in terms of the order of the rate constant was studied applying different kinetic models. The best fitting model was Lagergren pseudo second order model. DCP, an eco-friendly humiresin, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid', Fulvic acid and many naturally present functional group such as carboxyl, phenols, quinols, amide etc. of both hard and soft nature, making it 'combo' in nature sorbs both concerned metal ions as well as ligands present in the system. Thus the ligands which were masking the biosorption process of heavy metal ions in this study were treated by mere increase in the dose of DCP, which successfully solves the problem without affecting efficiency of the process. This is exemplified by three very basic interactions happening in multicomponent system i.e. Synergism: Mutual enhancement; Antagonism: Mutual decrement; Non-interaction: Neutral effect. Thus DCP has a great potential in the field of water decontamination, industrial water treatment and in abatement of water pollution. So

  7. Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity.

    Science.gov (United States)

    Torres, Enrique; Mera, Roi; Herrero, Concepción; Abalde, Julio

    2014-11-01

    The biosorption characteristics of Cd (II) ions using the living biomass of the marine diatom Phaeodactylum tricornutum were investigated. This microalga is a highly tolerant species to cadmium toxicity; for this reason, it is interesting to know its potential for use in the removal of this metal. The use of living biomass offers better possibilities than that of dead biomass since cadmium can also be bioaccumulated inside the cells. For this purpose, tolerant species are necessary. P. tricornutum is within this category with an EC50,96h of 19.1 ± 3.5 mg Cd (II)/L, and in the present manuscript, it is demonstrated that this microalga has a very good potential for bioremediation of Cd (II) ions in saline habitats. Cadmium removed by the cells was divided into three fractions: total, intracellular and bioadsorbed. The experiments were conducted for 96 h in natural seawater with a concentration range of 1-100 mg Cd (II)/L. Each fraction was characterized every 24 h by sorption isotherms. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin equations. The biosorption was well described by Langmuir isotherm followed by Freundlich. The worst model was Temkin. The biosorption capacity of this microalga for Cd (II) ions was found to be 67.1 ± 3.2 mg/g after 96 h with approximately 40 % of this capacity in the intracellular fraction. The bioconcentration factor determined was 2,204.7 after 96 h and with an initial Cd (II) concentration of 1 mg/L.

  8. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution.

    Science.gov (United States)

    Akar, Tamer; Tunali, Sibel

    2006-10-01

    The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.

  9. Biosorption of copper(II) ions onto powdered waste sludge in a completely mixed fed-batch reactor: estimation of design parameters.

    Science.gov (United States)

    Pamukoglu, Yunus; Kargi, Fikret

    2007-04-01

    Biosorption of Cu(II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a fed-batch operated completely mixed reactor. Fed-batch adsorption experiments were performed by varying the feed flow rate ( 0.075-0.325 l h(-1)), feed copper (II) ion concentrations (50-300 mg l(-1)) and the amount of adsorbent (1-6 g PWS) using fed-batch operation. Breakthrough curves describing the variations of effluent copper ion concentrations with time were determined for different operating conditions. Percent copper ion removals from the aqueous phase decreased, but the biosorbed (solid phase) copper ion concentrations increased with increasing the feed flow rate and Cu(II) concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS and the rate constant for Cu(II) ion biosorption. Adsorption rate constant in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations while the biosorption capacity of PWS was comparable with powdered activated (PAC) in column operations. Therefore, a completely mixed reactor operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.

  10. Characteristics of copper removal and ion release during copper biosorption by Stenotrophomonas maltophilia in presence of benzo[a]pyrene

    Institute of Scientific and Technical Information of China (English)

    田云; 叶锦韶; 尹华; 彭辉; 李取生; 白洁琼; 谢丹平

    2013-01-01

    The ability of Stenotrophomonas maltophilia was demonstrated to selectively remove Cu2+from Cu(NO3)2 solution under the circumstance that 1 mg/L benzo[a]pyrene(BaP) was either present or not. The removal ratios of 2 and 10 mg/L Cu2+by 0.25 g/L biosorbent are up to 80% and 49% at 10 min, respectively. The biosorption includes ion exchange, NO3 reduction, ion release, and cell oxidation by Cu2+. BaP does not significantly affect Cu2+removal and ion release. Although 2 mg/L Cu2+increases the release of PO4 3, K+, NH4 +and Ca2+, 10 mg/L Cu2+has strong oxidation on cell, and then decreases NO3 reduction and hinders the release of K+, NH4 +and Ca2+. Exogenous cations inhibit the Cu2+biosorption, while additional anions increase the removal ratios of 10 mg/L Cu2+from 52% to 88%.

  11. Applications of Box–Behnken experimental design coupled with artificial neural networks for biosorption of low concentrations of cadmium using Spirulina (Arthrospira spp.

    Directory of Open Access Journals (Sweden)

    R.R. Siva Kiran

    2017-03-01

    Full Text Available The present study deals with the application of artificial intelligence techniques coupled with Box–Behnken (BB design to model the process parameters for biosorption of cadmium using live Spirulina (Arthrospira spp. as adsorbent in open race way pond with Zarrouk medium. The biomass concentration of Spirulina spp. decreased to half at 4 ppm Cd (II after 8 days. Based on the LCt50 values, 3.69 ppm (8th day, Spirulina (Arthospira maxima showed maximum tolerance. Considerable growth and bioaccumulation of Spirulina spp. is observed below 1 ppm and tolerant up to 3 ppm. The cadmium adsorption on Spirulina spp. showed good correlation (R2 = 0.99 when applied to Freundlich equation and data fit into pseudo second order kinetics. A four factorial, three blocks and three level Box–Behnken design with initial concentration (1 ppb to 5 ppb, biosorbant dosage (0.1 gdw to 0.2 gdw, agitation speed (12 rpm to 16 rpm and pH (6 to 8 as independent variables and percentage adsorption as dependent variable were selected for study. The data were further processed using artificial neural network model and DIRECT algorithm for better optimization. The final Cd (II concentration of <0.5 ppb was achieved with 1 ppb initial concentration under optimal conditions. A continuous desorption process was also developed for removal of cadmium from Spirulina (Arthrospira sp.

  12. Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by ...

    African Journals Online (AJOL)

    2010-09-20

    Sep 20, 2010 ... The effects of contact time, initial pH, temperature and stirring ..... tration of 50.0 mg∙ℓ–1, LVB at 4.0 g∙ℓ–1 and initial pH 5.0, are shown in Fig. 1. ...... VOLESKY B AND HOLAN ZR (1995) Biosorption of heavy metals. Biotechnol.

  13. Entrapment of marine microalga, Isochrysis galbana, for biosorption of Cr(III) from aqueous solution: isotherms and spectroscopic characterization

    Science.gov (United States)

    Kadimpati, Kishore Kumar; Mondithoka, Krishna Prasad; Bheemaraju, Sarada; Challa, Venkata Ramachandra Murthy

    2013-03-01

    Microalga, Isochrysis galbana, biomass was entrapped into alginate gel by liquid curing method in the presence of Ca(II) ions. The biosorption of chromium(III) by the entrapped live algal biomass was studied in a batch system. The effect of initial cadmium concentration, pH, temperature and liquid and solid ratio on Cr(III) removal was investigated. The maximum experimental biosorption capacities for entrapped live algal biomass were found to be 335.27 mg Cr(III) g-1 of dry algal biomass. The kinetics of chromium biosorption was slow; approximately 75 % of biosorption took place in 2 h. The percent adsorption increased with increase in pH; pH 5 of the solution was found to favor adsorption very strongly. The equilibrium biosorption data were evaluated by Langmuir and Freundlich isotherm models, and was best described by Langmuir and Freundlich isotherms. The biosorbent was characterized and evaluated, the functional groups -OH, -COOH and C=O were involved in the biosorption process. Since binding capacity was relatively high for immobilized live algal biomass, those algal forms are to be considered as suitable biosorbent for the removal of chromium in wastewater treatment.

  14. Batch and fixed-bed column studies for biosorption of Zn(II) ions onto pongamia oil cake (Pongamia pinnata) from biodiesel oil extraction.

    Science.gov (United States)

    Shanmugaprakash, M; Sivakumar, V

    2015-12-01

    The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater.

  15. A Copper Coordination Compound Produced by a Marine Fungus Fusarium sp. ZZF51 with Biosorption of Cu(Ⅱ) Ions

    Institute of Scientific and Technical Information of China (English)

    TAN Ni; PAN Jia-Hui; PENG Guang-Tian; MOU Cheng-Bo; TAO Yi-Wen; SHE Zhi-Gang; YANG Ze-Liang; ZHOU Shi-Ning; LIN Yong-Cheng

    2008-01-01

    A copper coordination compound ZZF51 (A) named bis(5-butyl-2-pyridinecarboxylato-N1,O2)-copper, the first time found in the nature, was isolated from a marine endophytic fungus Fusarium sp. ZZF51 from the South China Sea coast. Its structure was elucidated using spectroscopic methods and single crystal X-ray diffraction analysis.The antimicrobial cytotoxicity experiments exhibited that ZZF51(A) had mutagenicity activities against four aerobic reference strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella enteritidis with respective MIC values of 12.5, 25, 12.5, and 50 μg/mL. The anti-cancer tests showed that the compound had strong inhibitory activities against three human cancer lines KB, KBv200, and HepG2 with IC50 values of 3.54, 3.68 and 25.12 μg/mL respectively. In the course of investigating the source of ZZF51(A) in biomass, it was found that the output of ZZF51(A) was largely influenced by the amount of CuCl2 in the liquid medium, and the fungus (No.ZZF51) had two notable characteristics: endurance of high concentration Cu(Ⅱ) ions and biosorption of Cu(Ⅱ) ions.

  16. Effect of cadmium ions on cells division in the root meristem of Crepis capillaris (L) Wallr

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, E.N.; Anikeeva, I.D.; Kogan, I.G.

    1978-01-01

    Germination of seeds in cadmium chloride solution resulted in certain disturbances in nuclear division and stopped cytokinesis. Cystein added to cadmium chloride solution decreased the number of these disturbances. The effect of cadmium ions is supposed to be associated with the SH-groups blocking in contractile proteins of cellular spindle or in enzymes responsible for mitosis.

  17. Kinetic modeling of the biosorption of Cd2+ ions from aqueous solutions onto Eichhornia crassipes roots using potentiometry: low-cost alternative to conventional methods

    Directory of Open Access Journals (Sweden)

    Carolina Martínez-Sánchez

    2013-01-01

    Full Text Available This work presents the use of potentiometric measurements for kinetic studies of biosorption of Cd2+ ions from aqueous solutions on Eichhornia crassipes roots. The open circuit potential of the Cd/Cd2+ electrode of the first kind was measured during the bioadsorption process. The amount of Cd2+ ions accumulated was determined in real time. The data were fit to different models, with the pseudo-second-order model proving to be the best in describing the data. The advantages and limitations of the methodology proposed relative to the traditional method are discussed.

  18. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass

    Directory of Open Access Journals (Sweden)

    Ali A. Al-Homaidan

    2014-01-01

    Full Text Available In this study, the economically important micro-alga (cyanobacterium Spirulina platensis was used as biosorbent for the removal of copper from aqueous solutions. The cyanobacterium was exposed to various concentrations of copper and adsorption of copper by the biomass was evaluated under different conditions that included pH, contact time, temperature, concentration of adsorbate and the concentration of dry biomass. Increased adsorption of copper by the non-living biomass was recorded with gradually increasing pH, and a maximal uptake by the biomass was observed at pH 7. The adsorption of copper was found to increase gradually along with decrease in biomass concentration. Biosorption was found to be at a maximum (90.6%, in a solution containing 100 mg copper/L, at pH 7, with 0.050 g dry biomass and at 37 °C with 90 min of contact time. Analysis of the spectrum obtained with atomic absorption spectrophotometer (AAS, indicated that the adsorbent has a great potential to remove copper from aqueous media contributing to an eco-friendly technology for efficient bioremediation in the natural environment.

  19. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies.

    Science.gov (United States)

    Muñoz, Antonio Jesús; Espínola, Francisco; Moya, Manuel; Ruiz, Encarnación

    2015-01-01

    Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process.

  20. Biosorption of Pb(II Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies

    Directory of Open Access Journals (Sweden)

    Antonio Jesús Muñoz

    2015-01-01

    Full Text Available Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process.

  1. Effect of pH on Cadmium Bio-sorption by Myriophyllum spicatum%pH对穗花狐尾藻吸附重金属镉的影响

    Institute of Scientific and Technical Information of China (English)

    李国新; 薛培英; 李庆召; 高亚杰; 颜昌宙

    2009-01-01

    Submerged aquatic plant was used to remediate heavy metal water pollution at low concentrations. Bio-sorption of cadmium by fresh tissues of Myriophyllum spicatum, a submerged aquatic plant, was characterized in an artificial solution system at various initial pH. The results indicated that cadmium bio-sorption was strongly pH dependent, and its isotherms were well described by the Langmuir and extended Langmuir sorption models within the appropriate range. At an initial pH of 3.0-7.0, the Langmuir model had good simulations with measured data with a coefficient of R2>0.9547 (n=21), whereas, at an initial pH of 2.0, the isotherms of cadmium bio-sorption by M. spicatum were unable to be simulated using the Langmuir models. With initial pH of 3.0-6.0 and initial cadmium mass concentration (C_0) of 16-72 mg/L, the predicted equilibrium sorption amount with a relative error of <10% against the experimental equilibrium sorption amount were 38% of predicted data for the Langmuir model and 75% of predicted data for the extended Langmuir model. This suggests that the extended Langmuir model has better simulation for cadmium bio-sorption by M. spicatum than the Langmuir model. On the whole, the optimal initial pH in this study was 5.0.%运用沉水植物修复水体中低浓度重金属污染,研究不同pH条件下,沉水植物--穗花狐尾藻鲜样对重金属镉的吸附特征. 结果表明,pH对吸附结果影响较大,且在适宜的范围内,等温吸附均可用线性Langmuir模型和拓展Langmuir模型来描述. 当初始pH为3.0~7.0时,Langmuir模型的相关系数(R~2)均可达 0.954 7(n=21)以上,但当初始pH为2.0时,穗花狐尾藻对重金属镉的吸附不符合Langmuir模型.当初始pH为3.0~6.0,初始ρ(镉)(即C_0)为16~72 mg/L时,分别有38%的Langmuir模型计算值,75%的拓展Langmuir模型计算值与实测值偏差小于10%,这表明穗花狐尾藻吸附重金属镉时,拓展Langmuir模型比Langmuir模型有更好的拟合效果. 总体

  2. Biosorption of Pb(II) ions by modified quebracho tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Yurtsever, Meral [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)], E-mail: mevci@sakarya.edu.tr; Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)

    2009-04-15

    In this study, the effect of temperature, pH and initial metal concentration on Pb(II) biosorption on modified quebracho tannin resin (QTR) was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate QTR structure and morphology. Besides, the specific BET surface area and zeta-potential of the QTR were analysed. Thermodynamic functions, the change of free energy ({delta}G{sup o}), enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) of Pb adsorption on modified tannin resin were calculated as -5.43 kJ mol{sup -1} (at 296 {+-} 2 K), 31.84 kJ mol{sup -1} and 0.127 J mmol{sup -1} K{sup -1}, respectively, indicating the spontaneous, endothermic and the increased randomness nature of Pb{sup 2+} adsorption. The kinetic data was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R{sup 2} > 0.999) was the best choice among all the kinetic models to describe the adsorption behavior of Pb(II) onto QTR. Langmuir, Freundlich and Tempkin adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity (86.207 mg g{sup -1}) of Pb(II) was obtained at pH 5 and 296 K.

  3. BIOSORPTION OF ALUMINIUM FROM SOLUTION BY DEAD ...

    African Journals Online (AJOL)

    biosorption of aluminium ions from solution was also evaluated. The result ... aqueous solution. The effect of pH on ... identified as Penicillium chrysogenum, Aspergillus niger,. Aspergillus ..... chloride macroquantities on the anion exchanger ...

  4. Predictive approach for simultaneous biosorption of hexavalent ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Key words: Bacillus cereus, Biosorption, Chromium, Heavy metals, Pentachlorophenol. ..... walls are negatively charged under acidic pH conditions and the cell wall ... high affinity for metal ions in solution (Collins and Stotzky,.

  5. Removal of Cadmium Ions from Aqueous Solution by Silicate-incorporated Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    SHI Hebin; ZHONG Hong; LIU Yu; DENG Jinyang

    2007-01-01

    This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepared by coprecipitation and calcining, and silicate was incorporated into the crystal lattice of hydroxyapatite by partial substitution of phosphate. The amount of cadmium ions removed by silicate-incorporated hydroxyapatite was significantly elevated, which was 76% higher than that of pure hydroxyapatite. But the sorption behavior of cadmium ions on silicate-incorporated hydroxyapatite was similar to that of pure hydroxyapatite. Morphological study revealed that silicate incorporation confined the crystal growth and increased the specific surface area of hydroxyapatite,which were in favor of enhancing the cadmium ion sorpfion capacity of the samples. Incorporation of silicate into hydroxyapatite seems to be an effective approach to improve the environmental property of hydroxyapatite on removal of aqueous cadmium ions.

  6. Biosorption of lead from aqueous solutions by ion-imprinted tetraethylenepentamine modified chitosan beads.

    Science.gov (United States)

    Liu, Bingjie; Chen, Wei; Peng, Xiaoning; Cao, Qiqi; Wang, Qianrui; Wang, Dongfeng; Meng, Xianghong; Yu, Guangli

    2016-05-01

    In this paper, the bio-based ion-imprinted tetraethylenepentamine (TEPA) modified chitosan beads using Pb(II) as imprinted ions (Pb-ITMCB) were chemically synthesized, characterized and applied to selectively adsorb Pb(II) ions from aqueous solutions containing other metal ions, which has the same concentration as that of Pb(II) ions. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. FTIR, SEM and TEM technologies were used to elucidate the mechanism of Pb-ITMCB adsorbing Pb(II) ions. The results showed that the adsorption capacity of Pb-ITMCB for Pb(II) ions reached 259.68 mg/g at pH 6, 40 °C. The adsorption data could be fitted well with pseudo-second order kinetics model and Langmuir isotherm model. Compared with other metal cations, Pb(II) ions showed an overall affinity of being adsorbed by Pb-ITMCB. With the participation of active groups including NH2, NH and OH, the adsorption reaction took place both inside and on the surface of Pb-ITMCB. It indicated that Pb-ITMCB is a comparatively promising biosorbent for selective removal of Pb(II) ions from aqueous solutions.

  7. Crystallographic structure of ubiquitin in complex with cadmium ions

    Directory of Open Access Journals (Sweden)

    Cheung Peter

    2009-12-01

    Full Text Available Abstract Background Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. Findings We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. Conclusions The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.

  8. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition.

    Science.gov (United States)

    Pejic, Biljana; Vukcevic, Marija; Kostic, Mirjana; Skundric, Petar

    2009-05-15

    Sorption potential of waste short hemp fibers for Pb(2+), Cd(2+) and Zn(2+) ions from aqueous media was explored. In order to assess the influence of hemp fiber chemical composition on their heavy metals sorption potential, lignin and hemicelluloses were removed selectively by chemical modification. The degree of fiber swelling and water retention value were determined in order to evaluate the change in accessibility of the cell wall components to aqueous solutions due to the fiber modification. The effects of initial ion concentration, contact time and cosorption were studied in batch sorption experiments. The obtained results show that when the content of either lignin or hemicelluloses is progressively reduced by chemical treatment, the sorption properties of hemp fibers are improved. Short hemp fibers are capable of sorbing metal ions (Pb(2+), Cd(2+) and Zn(2+)) from single as well as from ternary metal ion solutions. The maximum total uptake capacities for Pb(2+), Cd(2+) and Zn(2+) ions from single solutions are the same, i.e. 0.078mmol/g, and from ternary mixture 0.074, 0.035 and 0.035mmol/g, respectively.

  10. Biosorption of binary mixtures of Cr(III and Cu(II ions by Sargassum sp

    Directory of Open Access Journals (Sweden)

    Silva E.A.

    2003-01-01

    Full Text Available The adsorption of two metal ions, Cr(III and Cu(II, in single-component and binary systems by Sargassum sp., a brown alga, was studied. Equilibrium batch sorption studies were carried out at 30ºC and pH 3.5. Kinetic tests were done for a binary mixture (chromium + copper for a contact time of 72 hours to guarantee that equilibrium was reached. The monocomponent equilibrium data obtained were analyzed using the Langmuir and Freundlich isotherms. The binary equilibrium data obtained were described using four Langmuir-type and Freundlich isotherms. The F-test showed a statistically significant fit for all binary isotherm models. The parameters for isotherms of the Langmuir-type were used to determine the affinity of one metal for the biosorbent in the presence of another metal. The chromium ion showed a greater affinity for Sargassum sp. than the copper ion.

  11. Biosorption of Heavy Metal Ions from Aqueous Solutions Using a Biomaterial

    Directory of Open Access Journals (Sweden)

    Innocent OBOH

    2009-07-01

    Full Text Available An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. Heavy metals are major toxicants found in industrial wastewaters; they may adversely affect the biological treatment of wastewater. Conventional methods for the removal of heavy metals from waste waters are often cost prohibitive hence, there is a need for cheap methods for effluent treatment. The residual metallic ion concentrations were determined using an Atomic Absorption Spectrophotometer (AAS. The results obtained after contacting for 120 minutes showed that Neem leaves achieved the percent removal of 76.8, 67.5, 58.4 and 41.45 for Cu2+, Ni2+, Zn2+ and Pb2+ ions respectively. The percent removal of Ni2+ ions was 68.75 with an effective dose of 1.0 g of Neem leaves (bioadsorbent. The ability of Neem leaves to absorb metal ions as shown from the results can be used for the development of an efficient, clean and cheap technology for effluent treatment.

  12. Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a ...

    African Journals Online (AJOL)

    ADOWIE PERE

    low cost adsorbent to adsorb Cd(II) and Fe(II) metal ions. ... the removal of heavy metals includes high efficiency in metal recovery, readily available, highly ..... sites and also by the decrease in positive surface charge on the adsorbents, which ...

  13. Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents

    Directory of Open Access Journals (Sweden)

    M. H. Al-Qunaibit

    2009-01-01

    Full Text Available Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I and (II, carboxylate, glucose ring, and metal oxygen upon metal binding in all media. ΔνCOO values (59–69 cm−1 confirmed bidentate metal coordination to carboxylate ligands. The value of νasCOO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M–O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected.

  14. Biosorption effects of copper ions on Candida utilis under negative pressure cavitation

    Institute of Scientific and Technical Information of China (English)

    ZU Yuan-gang; ZHAO Xiu-hua; HU Mao-sheng; REN Yuan; XIAO Peng; ZHU Lei; CAO Yu-jie; ZHANG Yao

    2006-01-01

    Under the optimal condition of copper ions adsorption on yeast, we found some different effects among static adsorption,shaking adsorption and negative pressure cavitation adsorption, and the methods of yeast with different pretreatments also affect adsorption of copper ions. At the same time, the change of intercellular pH before and after adsorption of copper with BCECF was studied. The copper distribution was located by using PhenGreen (dipotassium salt and diacetate), and the surface of yeast was observed by an atomic force microscope. The results showed that negative pressure cavitation can improve bioadsorption capacity of copper ions on yeast. However, the yeasts' pretreatment has a higher effect on bioadsorption. It indicates that heavy metal bioadsorption on yeast has much relation with its cellular molecule basis. With the adsorping, the intercellular pH of yeast increased gradually and changed from acidity to alkalescence. These results may suggest that negative pressure cavitation can compel heavy metals to transfer from the cell surface into inside cell and make the surface of yeast coarse.

  15. Biosorption of Divalent ion onto Treated Prosopis juliflora Bark from Aqueous Solutions - Isothermal and Statistical Analysis

    Directory of Open Access Journals (Sweden)

    N. Muthulakshmi Andal

    2016-05-01

    Full Text Available The present work emphasizes the utilization of Prosopis juliflora bark, an agro waste material for the adsorption of Cu(II. The raw Prosopis juliflora bark (PJB is treated using 0.1N hydrochloric acid to enhance the sorption efficiency. The characterization studies of TPJB using Scanning Electron Microscopy (SEM, Energy Dispersive X-ray Analysis (EDAX, Brunauer-Emmet-Teller(BET and Barrett-Joyner-Halenda (BJH analyses carried out. The batch mode experimental set up is verified to assess the sorption capacity of the chosen material for the operating factors viz., particle sizes/ doses of the sorbent material upon a range of initial concentrations of Cu(II at different temperatures, agitation time and pH of the Cu(II- TPJB system. The amount of Cu(II ion adsorbed on to TPJB surface is found to be 43.11 mg/g (97.4% under optimized conditions, its efficiency 3 fold times more than the Ce values reported by other researchers. The sorption characteristic of TPJB is quantitatively estimated through column experiments based on the Ce value by batch mode. The removal is observed as 98%. Langmuir, Freundlich and Tempkin isothermal curves at various initial concentrations are plotted for Cu(II-TPJB system wherein the straight line fit is best suited for the Freundlich isotherm model. The results show that the response of TPJB in trapping Cu(II ions are influenced by various parameters being statistically verified using SPSS software, indicative of good correlation.

  16. Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha.

    Science.gov (United States)

    Blazhenko, Oleksandra V; Zimmermann, Martin; Kang, Hyun Ah; Bartosz, Grzegorz; Penninckx, Michel J; Ubiyvovk, Vira M; Sibirny, Andriy A

    2006-12-01

    Intracellular cadmium (Cd(2+)) ion accumulation and the ability to produce specific Cd(2+) ion chelators was studied in the methylotrophic yeast Hansenula polymorpha. Only one type of Cd(2+) intracellular chelators, glutathione (GSH), was identified, which suggests that sequestration of this heavy metal in H. polymorpha occurs similarly to that found in Saccharomyces cerevisiae, but different to Schizosaccharomys pombe and Candida glabrata which both synthesize phytochelatins. Cd(2+) ion uptake in the H. polymorpha wild-type strains appeared to be an energy dependent process. It was found that Deltagsh2 mutants, impaired in the first step of GSH biosynthesis, are characterized by increase in net Cd(2+) ion uptake by the cells, whereas Deltagsh1/Deltamet1 and Deltaggt1 mutants impaired in sulfate assimilation and GSH catabolism, respectively, lost the ability to accumulate Cd(2+) intracellularly. Apparently H. polymorpha, similarly to S. cerevisiae, forms a Cd-GSH complex in the cytoplasm, which in turn regulates Cd(2+) uptake. Genes GSH1/MET1 and GGT1 are involved in maturation and metabolism of cellular Cd-GSH complex, respectively. Transport of [(3)H]N-ethylmaleimide-S-glutathione ([(3)H]NEM-SG) conjugate into crude membrane vesicules, purified from the wild-type cells of H. polymorpha appeared to be MgATP dependent, uncoupler insensitive and vanadate sensitive. We suggest that MgATP dependent transporter involved in Cd-GSH uptake in H. polymorpha, is similar to S. cerevisiae Ycf1-mediated vacuolar transporter responsible for accumulation of organic GS-conjugates and Cd-GSH complex.

  17. [Development of conductometric biosensor based on alkaline phosphatase for determining concentration of cadmium ions].

    Science.gov (United States)

    Sosovs'ka, O F; Berezhets'kyĭ, A L

    2007-01-01

    The paper describes a novel conductometric biosensor sensitive to cadmium ions based on alkaline phosphatase immobilized on gold planar microelectrodes used as transducers. Assays have been carried out with paranitrophenyl phosphate as substrate for the immobilized enzyme. Various parameters such as reticulation time, along with pH, ionic strength and buffer concentration of the measuring solution were studied. The optimized biosensor was stable, reproducible and it exhibited a detection limit of 4.45 microM for cadmium ions.

  18. Biosorption and Reclaim of Uranium Ion%铀离子的微生物吸附回收技术

    Institute of Scientific and Technical Information of China (English)

    柏云; 朱晓红; 仲敬荣; 褚明福

    2011-01-01

    Biosorption is a promising technology in uranium-containing wastewater treatment field. Many researches have been done to get better biosorption technology. Penicillium digitatum was chosen as the biosorbent for adsorption of uranium from wastewater. A series of factors, such as the reaction time, Ph and temperature, which might influence the biosorption, were studied syste-maically by static adsorbtion test. The results show that acidity of the solution is the main factor. Its uranium uptake capacity is up to 155 mg/g wet weight (25 ℃) when the initial Ph is 4. The adsorbed uranium can be eluted quantitively with aqueous Na2 CO3 or NaHCO3 solution. It is found ideal results by treating uranium-containing wastewater.%研究了指状青霉菌对溶液中铀离子的生物吸附作用.通过静态吸附实验考察了影响吸附的实验因素,在25℃、pH=4时,指状青霉菌对铀的饱和吸附量可达155mg/g(湿重),溶液的酸度是影响铀离子吸附的主要因素.Na2 CO3和NaHCO3可有效解吸菌体上吸附的铀离子.

  19. Recent progress on biosorption of Heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Vicentius Ochie; Trilestari, Kiki; Indraswati, Nani [Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya (Indonesia); Sunarso, Jaka [Division of Chemical Engineering, The University of Queensland, Brisbane (Australia); Ismadji, Suryadi

    2008-12-15

    A significant number of biosorption studies on the removal of heavy metal from aqueous solutions have been conducted worldwide. Nearly all of them have been directed towards optimizing biosorption parameters to obtain the highest removal efficiency while the rest of them are concerned with the biosorption mechanism. Combinations of FTIR, SEM-EDX, TEM as well as classical methods such as titrations are extremely useful in determining the main processes on the surfaces of biosorbents. Diverse functional groups represented by carboxyl, hydroxyl, sulfate and amino groups play significant roles in the biosorption process. Solution pH normally has a large impact on biosorption performance. In brief, ion exchange and complexation can be pointed out as the most prevalent mechanisms for the biosorption of most heavy metals. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Development of Low Cost Adsorbent from Cow Horn for the Biosorption of Mn (II, Ni (II and Cd (II Ion from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jimoh. O. Tijani

    2014-01-01

    Full Text Available Development of low cost adsorbent from cow horn for the biosorption of Mn (II, Ni (II and Cd (II ion aqueous solution was carried out by batch adsorption experiment at 32°C. Parameters such as pH, contact time, metal ion concentrations as well as temperature were monitored. The residual concentration of Mn (II, Ni (II and Cd (II were determined using Atomic Absorption Spectrophotometer. The results revealed that maximum Ni (II and Cd (II ion removal occurred at pH of 6 while Mn (II ion occurred at pH of 7 respectively. Langmuir and Temkin adsorption isotherm were used to describe the equilibrium data. The equilibrium data fitted well to Langmuir isotherm than Temkin isotherm. Thermodynamic investigation showed that standard Gibbs free energy (∆G˚ was positive indicating the feasibility and non-spontaneous of the process. The positive value of standard Enthalpy (∆H˚ implies that the reaction was endothermic and the negative standard Entropy (∆S˚ signifies decrease in the randomness at the solid/solution interface of the adsorbent during the adsorption process. The kinetic study revealed that adsorption of Mn (II, Ni (II and Cd (II could be best described by pseudo-second model. This study demonstrated that adsorbent developed from cow horn could be used as an alternative to commercial activated carbon in the removal of Mn (II, Ni (II and Cd (II ions from aqueous solution.

  1. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Stoeppler, M. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Piscator, M. (Karolinska Inst., Stockholm (Sweden). Dept. of Environmental Hygiene) (eds.)

    1988-01-01

    The proceedings contain the 18 papers presented at the workshop. They are dealing with the following themes: Toxicity, carcinogenesis and metabolism of cadmium, epidemiology; environmental occurrence; quantitative analysis and quality assessment. (MG) With 57 figs., 79 tabs.

  2. Removal of Cadmium (II from Simulated Wastewater by Ion Flotation Technique

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ghaneian

    2013-02-01

    Full Text Available A separation technique which has recently received a sharp increase in research activities is “ion flotation”. This technique has four important advantages for treating wastewaters: low energy consumption, small space requirements, small volume of sludge and acting selectively. The present study aims to optimize parameters of ion flotation for cadmium removal in simulated wastewater at laboratory scale. It was obtained on the reaction between Cd2+ and sodium dodecylesulfate (SDS collector followed by flotation with ethanol as frother. Test solution was prepared by combining the required amount of cadmium ion, SDS and necessary frother or sodium sulfate solution. All experiments were carried out in a flotation column at laboratory temperature (27°C, adjusted pH = 4 and 120 minutes. The different parameters (namely: flow rate, cadmium, SDS and frother concentrations and ionic strength influencing the flotation process were examined. The best removal efficiency obtained at a collector-metal ratio of 3:1 in 60 min with flow rate of 150 mL/min was 84%. The maximum cadmium removal was 92.1% where ethanol was introduced at a concentration 0.4% to flotation column with above conditions. The obtained results were promising, as both cadmium and collector were effectively removed from wastewater. Hence, the application of ion flotation for metal ions removal from effluents seems to be efficient.

  3. Comparison of biosorption and phytoremediation of cadmium and methyl parathion, a case-study with live Lemna gibba and Lemna gibba powder.

    Science.gov (United States)

    Halaimi, F Z; Kellali, Y; Couderchet, M; Semsari, S

    2014-07-01

    Heavy metals and pesticides can be adsorbed by several biomasses such as living or non-living aquatic plants. In this study adsorption properties of live Lemna gibba and Lemna gibba powder were investigated with regard to cadmium and methyl parathion (MP). Toxicity data (IC50) on live L. gibba indicated that the period of four days was adequate for phytoremediation. Initial adsorption studies showed that both adsorbents were capable of removing cadmium and methyl parathion. Cadmium and methyl parathion adsorption onto L. gibba powder was fast and equilibrium was attained within 120min. The adsorption data could be well interpreted by the Freundlich model. The KF were: 7.8963 (Cd(2+)/ live Lemna); 0.7300 (MP/live Lemna); 11.5813 (Cd(2+)/Lemna powder); 1.1852 (MP/Lemna powder) indicating that Cd(2+) was more efficiently removed by both biosorbents than MP. Adsorption kinetics for cadmium and methyl parathion in both systems and rate constants were determined for each contaminant. It was found that the overall adsorption process was best described by pseudo-second-order kinetics. Boyd model and external mass-transfer expression were tested. It was concluded that cadmium and methyl parathion sorption onto Lemna powder is governed by film diffusion.

  4. Bio-Sensing of Cadmium(II Ions Using Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jindrich Kynicky

    2011-11-01

    Full Text Available Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II ions. We were focused on monitoring the effects of different cadmium(II ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 µg mL−1 on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds—specifically the protein metallothionein (0.79–26.82 mmol/mg of protein, the enzyme glutathione S-transferase (190–5,827 µmol/min/mg of protein, and sulfhydryl groups (9.6–274.3 µmol cysteine/mg of protein. The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-D-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II ion treatment conditions was completed seeking data about the possibility of cadmium(II ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components.

  5. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Science.gov (United States)

    Pu, Jian; Fukushi, Kensuke

    2013-01-01

    In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA) and biopolymer solution extracted from cultivated activated sludge (ASBP). The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE) method (R2 = 0.989 for BSA, 0.985 for ASBP). PMID:24194678

  6. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  7. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    1998-01-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the a

  8. Surface display of monkey metallothionein {alpha} tandem repeats and EGFP fusion protein on Pseudomonas putida X4 for biosorption and detection of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaochuan; Chen, Wenli; Huang, Qiaoyun [Huazhong Agricultural Univ., Wuhan (China). State Key Lab. of Agricultural Microbiology

    2012-09-15

    Monkey metallothionein {alpha} domain tandem repeats (4mMT{alpha}), which exhibit high cadmium affinity, have been displayed for the first time on the surface of a bacterium using ice nucleation protein N-domain (inaXN) protein from the Xanthomonas campestris pv (ACCC - 10049) as an anchoring motif. The shuttle vector pIME, which codes for INAXN-4mMT{alpha}-EGFP fusion, was constructed and used to target 4mMT{alpha} and EGFP on the surface of Pseudomonas putida X4 (CCTCC - 209319). The surface location of the INAXN-4mMT{alpha}-EGFP fusion was further verified by western blot analysis and immunofluorescence microscopy. The growth of X4 showed resistance to cadmium presence. The presence of surface-exposed 4mMT{alpha} on the engineered strains was four times higher than that of the wild-type X4. The Cd{sup 2+} accumulation by X4/pIME was not only four times greater than that of the original host bacterial cells but was also remarkably unaffected by the presence of Cu{sup 2+} and Zn{sup 2+}. Moreover, the surface-engineered strains could effectively bind Cd{sup 2+} under a wide range of pH levels, from 4 to 7. P. putida X4/pIME with surface-expressed 4mMT{alpha}-EGFP had twice the cadmium binding capacity as well as 1.4 times the fluorescence as the cytoplasmic 4mMTa-EGFP. These results suggest that P. putida X4 expressing 4mMT{alpha}-EGFP with the INAXN anchor motif on the surface would be a useful tool for the remediation and biodetection of environmental cadmium contaminants. (orig.)

  9. Kinetic modelling of cadmium and lead removal by aquatic mosses

    Directory of Open Access Journals (Sweden)

    R. J. E. Martins

    2014-03-01

    Full Text Available Because biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In the present study, the performance of the aquatic moss Fontinalis antipyretica for removing cadmium and lead from simulated wastewaters has been evaluated. Five kinetic models (first-order, pseudo-first-order, Elovich, modified Ritchie second-order and pseudo-second-order were fitted to the experimental data and compared. Previously, the effect of parameters such as the initial solution pH, contact time, and initial metal ion concentration on biosorption was investigated. The initial pH of the solution was found to have an optimum value in the range of 4.0-6.0. The equilibrium sorption capacity of cadmium and lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L-1, the uptake capacity of the moss, at equilibrium, is the same for both metals (4.8 mg g-1. Nevertheless, when the initial concentration increases up to 100 mg L-1, the uptake of Pb(II was higher than 78%. The pseudo-second order biosorption kinetics provided the better correlation with the experimental data (R² ≥ 0.999.

  10. Influence cadmium ions on the synthesis of thiol compounds for flax

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-12-01

    Full Text Available Evaluation of the effectiveness of phytoremediation technologies isvery difficult. One way to quickly and inexpensively identifyphytoremediation potential of plants is found easily detectablemarker. In our study, we examined the content of thiol compoundsin plants, of Flax effects of various concentrations of cadmium ions.

  11. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum)

    OpenAIRE

    Wei Gao; Tiegui Nan; Guiyu Tan; Hongwei Zhao; Weiming Tan; Fanyun Meng; Zhaohu Li; Li, Qing X.; Baomin Wang

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanob...

  12. The Substitution of IVD (Ion Vapor Deposition) Aluminum for Cadmium

    Science.gov (United States)

    1989-08-01

    Additional information on the usage of IVU aluminum in contact with fuels , oils, and other fluids is found in Section VIF). Cadmium coatings are also...RESTRICTIVE MARKINGS UNCLASSIFIED 2a. SECUR :7Y CLASSIFICATION AU7-77RI7 3 DiSTRIBUTION , AVAILABILTY OF REPORT Approved for public release. 2b...FiUURES (CUNTINULD) Figure Pa’te 37 IVO Aluminum-Coated Aluminum Alloy Fuel and Pneumatic Line Fittings ............ ............................ 7b 38

  13. Characterisation of biosorption to algae of heavy metals; Charakterisierung der Biosorption von Schwermetallen an Algen

    Energy Technology Data Exchange (ETDEWEB)

    Klimmek, S.

    2003-07-01

    The paper presents fundamental studies on natural biosorption to algae of heavy metals. The investigations were carried out by TU Berlin University in a special research project (Sfb 193, 'Biologische Behandlung industrieller und gewerblicher Abwaesser'). The chlorophyceae C. vulgaris was used as reference alga, and 38 further algae were analzyed with regard to their sorption characteristics for lead, cadmium, nickel and zinc. The most effective algae were the chlorophyceae C. salina, the cyanophyceae S. hofmani and L. taylorii. The biosorption characteristics of C. salina and L. taylorii were investigated in detail. L. taylorii was found to be exploitable successfully in a technical process, so the investigations were extended to include copper. Knowledge about the chemical processes of biosorption is important for any attempt to modify the biosorption characteristics. Experiments on the incorporation of additional functional groups in the cell wall polysaccharides of the algae were carried out with a view to enhancing capacities and influencing selectivities. (orig.) [German] In der vorliegenden Arbeit wurden Grundlagenkenntnisse ueber den natuerlichen Prozess der Biosorption von Schwermetallen an Algen erarbeitet. Die Untersuchungen fanden im Rahmen des Sonderforschungsbereich (Sfb) 193 'Biologische Behandlung industrieller und gewerblicher Abwaesser' der Technischen Universitaet Berlin statt. Ausgangspunkt der Arbeit stellten Untersuchungen an der Chlorophyceae C. vulgaris dar. In einem anschliessendem Screening, das sich aus der Charakterisierung der Biosorption an C. vulgaris ableitete, wurden 30 weitere Algen aus unterschiedlichen taxonomischen Klassen auf ihre Sorptionsfaehigkeiten gegenueber den Schwermetallen Blei, Cadmium, Nickel und Zink untersucht. Die einzelnen Algen zeigten eine grosse Bandbreite in den Biosorptionsleistungen. Zu den leistungsfaehigsten Arten zaehlten die Chlorophyceae C. salina, die Cyanophyceae S. hofmani and L

  14. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, Durali; Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-04-15

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the {mu}g L{sup -1} levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L{sup -1} HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 {mu}g L{sup -1} (cadmium) and 1.60 {mu}g L{sup -1} (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples.

  15. Shellac-coated iron oxide nanoparticles for removal of cadmium(Ⅱ) ions from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Jilai Gong; Long Chen; Guangming Zeng; Fei Long; Jiuhua Deng; Qiuya Niu; Xun He

    2012-01-01

    This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer,a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups,on the surface of iron oxide magnetic nanoparticles.Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm.Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution.Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg/g.SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions,and cadmium could easily be desorbed using mild organic acid solutions at low concentration.

  16. Lead Biosorption by a Moderately Halophile Penicillium sp. Isolated from Çamalti Saltern in Turkey

    OpenAIRE

    AYDIN KURÇ, MİNE; GÜVEN, KIYMET; KORCAN, ELİF; GÜVEN, Alaettin; MALKOC, Semra

    2016-01-01

    Owing the importance of biosorption of heavy metals by different organisms, a moderately halophilic fungus isolated from Çamalti saltern was first time investigated for its potential for biosorption. Different heavy metals namely, lead [(Pb(NO3)2], nickel (NiCl2), chromium (K2CrO4), zinc (ZnCl2), cadmium (CdCl2.H2O), copper (CuSO4) and cobalt (CoCl2.6H2O) were screened for resistance and the most tolerated heavy metal by Penicillium sp. was chosen in biosorption assay.The heavy metal toleranc...

  17. Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment

    Directory of Open Access Journals (Sweden)

    O. V. Blazhenko

    2014-02-01

    Full Text Available In a previous study we cloned GSH2 gene, encoding γ-glutamylcysteine synthetase (γGCS in the yeast Hansenula рolymorpha. In this study an analysis of molecular organisation of the H. рolymorpha GSH2 gene promoter was conducted and the potential binding sites of Yap1, Skn7, Creb/Atf1, and Cbf1 transcription factors were detected. It was established that full regulation of GSH2 gene expression in the response to cadmium and oxidative stress requires the length of GSH2 promoter to be longer than 450 bp from the start of translation initiation. To study the transcriptional regulation of H. polymorpha GSH2 gene recombinant strain, harbouring­ a reporter system, in which 1.832 kb regulatory region of GSH2 gene was fused to structural and terminatory regions of alcohol oxidase gene, was constructed. It was shown that maximum increase in H. polymorpha GSH2 gene transcription by 33% occurs in the rich medium under four-hour incubation with 1 μM concentration of cadmium ions. In the minimal medium the GSH2 gene expression does not correlate with the increased total cellular glutathione levels under cadmium ion treatment. We assume that the increased content of total cellular glutathione under cadmium stress in the yeast H. polymorpha probably is not controlled on the level of GSH2 gene transcription.

  18. Sorption isotherm studies of Cd(II) ions using living cells of the marine microalga Tetraselmis suecica (Kylin) Butch.

    Science.gov (United States)

    Pérez-Rama, M; Torres, E; Suárez, C; Herrero, C; Abalde, J

    2010-10-01

    The present work reports the use of living cells of the marine microalga Tetraselmis suecica for the biosorption of cadmium ions. For a better understanding of the biosorption characteristics, three fractions of removed cadmium (total, bioadsorbed and intracellular) were measured in the cells after 24 and 72 h of exposure to different initial cadmium concentrations (0.6-45 mg L(-1)). Both the Langmuir and Freundlich models were suitable for describing the sorption of cadmium ions by this microalga. The maximum sorption capacity was estimated to be 40.22 mg Cd g(-1) after 72 h using the Langmuir sorption model. In the lower cadmium concentrations, metal removed intracellularly was higher than that removed on the microalgal cell surface. Therefore, the intracellular fraction contributed more to the total removed cadmium than the fraction bioadsorbed to the cellular surface. The results showed that the cadmium removal capacity using living biomass could be much more effective than with non-living biomass due to the intracellular bioaccumulation. According to the microorganism selected and its tolerance to the toxic effect of the metal, the cadmium content in the intracellular fraction can become very significant, just like it happened with Tetraselmis.

  19. Characteristics of Pb2+ biosorption with aerobic granular biomass

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; YE ZhengFang; WANG ZhongYou; NI JinRen

    2008-01-01

    Experimental studies were conducted on the feasibility of aerobic granular biomass as a novel type of biosorbent for Pb2+ removal. The results show that the initial pH, Pb2+ concentration (C0) and biomass concentration (X0) affected the biosorption process significantly. Both the Freundlich and Langmuir isotherm models describe the biosorption process accurately, with correlation coefficients of 0.932 and 0.959 respectively. The Pb2+ biosorption kinetics is interpreted as having two stages, with the second stage described reasonably well by a Lagergren pseudo-second order model. Moreover, the surface change of granular biomass after the Pb2+ biosorption process appears to be caused by ion exchange and metal chelation according to the analysis results of Environmental Scanning Electron Microscopy (ESEM) and Energy Dispersive X-ray Spectroscopy (EDX).

  20. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    Science.gov (United States)

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe(2+), Ca(2+), Cd(2+), and Zn(2+) ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  1. Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation

    OpenAIRE

    Mohsen Hosseinzadeh; Seyyed Ali Seyyed Ebrahimi; Shahram Raygan; Seyed Morteza Masoudpanah

    2016-01-01

    In this study, the removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite was investigated. The nanocrystalline magnetite was synthesized by mechanochemical activation of hematite in a high energy planetary mill in argon atmosphere for 45 hours. The ability of the synthesized nanocrystalline magnetite for removal of Cd(II) and Pb(II) from aqueous solutions was studied in a batch reactor under different experimental conditions with different pHs, contact times, ini...

  2. Ion adsorption on oxides. Surface charge formation and cadmium binding on rutile and hematite.

    NARCIS (Netherlands)

    Fokkink, L.G.J.

    1987-01-01

    The adsorption of charge-determining (H +and OH -) and cadmium ions on rutile (TiO 2 ) and hematite (α-Fe 2 O 3 ) has been studied

  3. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies

    OpenAIRE

    Antonio Jesús Muñoz; Francisco Espínola; Manuel Moya; Encarnación Ruiz

    2015-01-01

    Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overal...

  4. Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Pahlavanzadeh, H., E-mail: pahlavzh@modares.ac.ir [Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of); Keshtkar, A.R.; Safdari, J. [Atomic Energy Organization of Iran, Nuclear Science and Technology Research Institute, P.O. Box 11365, 8486 Tehran (Iran, Islamic Republic of); Abadi, Z. [Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)

    2010-03-15

    The biosorption characteristics of nickel(II) ions using the brown algae (Cystoseria indica, Nizmuddinia zanardini, Sargassum glaucescens and Padina australis) were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, initial metal concentration and temperature were studied. The equilibrium data fitted very well to the Langmuir adsorption model in the concentration range of nickel(II) ions and at all the temperatures studied. Evaluation of the experimental data in terms of biosorption dynamics showed that the biosorption of nickel(II) onto algal biomass followed the pseudo-second-order dynamics well. The calculated thermodynamic parameters ({Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o}) showed that the biosorption of nickel(II) ions were feasible, spontaneous and endothermic at the temperature ranges of 293-313 K.

  5. Surfactant molecules to promote removal of cadmium ions from solid surfaces: A complementary experimental-simulational study

    Science.gov (United States)

    Pacheco-Blas, María del Alba; Dominguez, Hector; Rivera, Margarita

    2017-03-01

    Sodium dodecyl sulfate (SDS) was used to interact with metallic ions to demonstrate the efficiency of surfactant molecules to promote desorption of metals from solid surfaces. Scanning electron and atomic force microscopy were employed to study desorption of cadmium ions from highly oriented pyrolytic graphite (HOPG), as a model to understand the removal of metallic ions from carbon substrates. Contact angle measurements were carried out to investigate the wettability behavior of the surfactant on the contaminated surface. The desorption mechanism from a microscopic level was studied by using molecular dynamic simulations. Density profiles and pair correlation functions were analyzed to determine the cadmium-surface interaction in the presence of surfactant molecules to improve ion detachment. Simulations showed that surfactant molecules moved in between the adsorbed cadmium ions and the graphite surface pushing up the metallic groups to improve metal desorption. The experimental and theoretical results agree with atomic absorption spectroscopy results.

  6. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei, E-mail: chmawv@yahoo.com [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Zong, Panpan; Cheng, Zihong [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Baodong; Sun, Qi [National Institute of Clean-and-low Carbon Energy, Beijing 102209 (China)

    2014-02-15

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O{sub 3}/catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min{sup −1}) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone.

  7. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  8. Loofa sponge immobilized fungal biosorbent: a robust system for cadmium and other dissolved metal removal from aqueous solution.

    Science.gov (United States)

    Iqbal, M; Edyvean, R G J

    2005-10-01

    The potential of loofa sponge discs to immobilize fungal biomass of Phanerochaete chrysosporium (a known biosorbent) was investigated as a low cost biosorbent for the removal of Cd(II) ions from aqueous solution. A comparison of the biosorption of Cd(II) by immobilized and free fungal biomass from 10 to 500 mg l(-1) aqueous solutions showed an increase in uptake of over 19% when the biomass is immobilized (maximum biosorption capacity of 89 and 74 mg Cd(II) g(-1) biomass for immobilized and free biomass respectively at a solution pH of 6). Equilibrium was established within 1h and biosorption was well defined by the Langmuir isotherm model. The immobilized biomass could be regenerated using 50 mM HCl, with up to 99% metal recovery and reused in ten biosorption-desorption cycles without significant loss of capacity. This study suggests that such an immobilized biosorbent system has the potential to be used in the industrial removal/recovery of cadmium and other pollutant metal ions from aqueous solution.

  9. Characteristics of Zn2+ Biosorption by Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the characteristics of Zn2+ biosorption and the release of cations during the process of Zn2+biosorption by intact cells of Saccharomyces cerevisiae. Methods The batch adsorption test was used to study the biosorption equilibrium and isotherm. Zn2+ concentration was measured with atomic adsorption spectrophotometer (AAS) AAS 6.Vario. Results When the initial concentration of Zn2+ ranged between 0.08 and 0.8 mmol/L, the initial pH was natural (about 5.65), the sorbent concentration was about 1 g/L and the capacity of Zn2+ biosorption was from 74.8 to 654.8 μmol/g. The pH value increased by 0.55-1.28 and the intracellular cations (K+, Mg2+, Na+, Ca2+) of the cells were released during the process of Zn2+ biosorption. Conclusion Ion exchange was one of the mechanisms for Zn2+ biosorption. The biomass of Saccharomyces cerevisiae is a potential biosorbent for the removal of Zn2+ from aqueous solution. More work needs to be done before putting it into practical application.

  10. Kinetic and thermodynamic studies on biosorption of Cu(Ⅱ) by chemically modified orange peel

    Institute of Scientific and Technical Information of China (English)

    FENG Ning-chuan; GUO Xue-yi; LIANG Sha

    2009-01-01

    Cu(H) biosorption by orange peel that was chemically modified with sodium hydroxide and calcium chloride was investigated. The effects of temperature, contact time, initial concentration of metal ions and pH on the biosorption of Cu( II) ions were assessed. Thermodynamic parameters including change of free energy(△G~Θ), enthalpy (△H~Θ) and entropy(△S~Θ) during the biosorption were determined. The results show that the biosorption process of Cu( II) ions by chemically treated orange peel is feasible, spontaneous and exothermic under studied conditions. Equilibrium is well described by Langmuir equation with the maximum biosorption capacity(q_m) for Cu( II) as 72.73 mg/g and kinetics is found to fit pseudo-second order type biosorption kinetics. As the temperature increases from 16 ℃ to 60 ℃, copper biosorption decreases. The loaded biosorbent is regenerated using HC1 solution for repeatedly use for five times with little loss of biosorption capacity.

  11. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    Science.gov (United States)

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  12. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  13. PVC Membrane Selective Electrode for Determination of Cadmium(II) Ion in Chocolate Samples

    Institute of Scientific and Technical Information of China (English)

    Sulekh Chandra; Deepshikha Singh; Anjana Sarkar

    2014-01-01

    Benzil bis(carbohydrazone) (BBC) is prepared and explored as new NN Schiff’s base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosphate best performance corresponds to a membrane composition of 30%poly (vinyl chloride), 65%(TEHP), 3.5%BBC and 1.5%tetradodecyl-ammoniumtetrakis(4-chlorophenyl) borate (ETH 500). This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition, selectivity, pH and influence of additive on the response properties of electrode were investigated. The response mechanism was discussed in the view of UV-spectroscopy. The electrode exhibits a Nernstian behavior (with slope of 29.7 mV per decade) over a very wide concentration range from 1.0×10-1 to 1.0×10-8 mol·L-1 with a detection limit of 3.2×10-8 mol·L-1. It shows rela-tively fast response time in whole concentration range (<8 s) and can be used for at least 10 weeks in the pH range of 2.0-9.0. The proposed sensor is successfully used for the determination of cadmium in different chocolate sam-ples and as indicator electrode in titration with ethylene diamine tetraacetate (EDTA).

  14. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    Science.gov (United States)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. 重金属生物吸附的吸附模型%Adsorption models for heavy metal biosorption

    Institute of Scientific and Technical Information of China (English)

    郑成; 虞启明; 尹平和

    2007-01-01

    Heavy metal biosorption is an effective process for the removal and recovery of heavy metal ions.Equilibrium isotherms obtained experimentally are usually correlated empirically with commonly used adsorption models, without considering the underlying mechanisms of biosorption.Commonly used models for correlating biosorption isotherm data are briefly reviewed and the use of the adsorption models in correlating the desorption processes is analysed.A set of biosorption/desorption experiments for a marine alga derived biosorbent are carried out to test the use of the adsorption models in the desorption process.Experimental data indicate that the amount of the heavy metal ions desorbed from the biomass could not be calculated with the adsorption models.This suggests that the empirical use of adsorption models in the correlation may not be valid when the reversibility of the biosorption equlibrium in the desorption process needs to be considered.Therefore, mechanism based biosorption models are needed for better correlation of equilibrium isotherm data.

  16. Biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2 isolated from soil

    Institute of Scientific and Technical Information of China (English)

    兰图; 刘宁; 张东; 杨吉军; 罗顺忠; 安竹; 邬琦琦; 杨远友; 冯更生; 唐军

    2015-01-01

    To develop a microbe-based bioremediation strategy for cleaning up thorium-contaminated sites, we have investigated the biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2, one of the dominant species of bacterial groups isolated from soils in Southwest China. Thorium biosorption depended on the pH of environment, and its rapid biosorption reached a maximum of up to 10.75 mg Th per gram of the bacteria (wet wt.) at pH 3.0. The biosorption agreed bettter with Langmuir isotherm model than Freundlich model, indicating that thorium biosorption was a monolayer adsorption. The thermodynamic parameters, negative change in Gibbs free energy and positive value in enthalpy and entropy, suggested that the biosorption was spontaneous, more favorable at higher temperature and endothermic process with an increase of entropy. Scanning electron microscopy (SEM) indicated that thorium initially binded with the cell surface, while transmission electron microscopy (TEM) revealed that Th deposited in the cytoplasm and served as cores for growth of element precipitation (e.g., phosphate minerals) or by self-precipitation of hydroxides, which is probably controlled by ion-exchange, as evidenced by particle induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Fourier Transform Infrared (FTIR) further indicated that thorium biosorption involved carboxyl and phosphate groups and protein in complexation or electrostatic interaction. Overall results indicated that a combined electrostatic interaction-complexation-ion exchange mechanism could be involved in thorium biosorption by Bacillus sp. dwc-2.

  17. Electron Paramagnetic Resonance and Optical Absorption Studies on Copper Ions in Mixed Alkali Cadmium Phosphate Glasses

    Institute of Scientific and Technical Information of China (English)

    G.Giridhar; M.Rangacharyulu; R.V.S.S.N.Ravikumar; P.Sambasiva Rao

    2009-01-01

    Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Hamiltonian parameters obtained from room temperature EPR spectra are: g||=2.437, g⊥=2.096, A||=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g||=2.441, g⊥=2.088, A||=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2 and g||=2.433, g⊥=2.096, A||=125×10-4 cm-1, A⊥=32×10-4 cm-1 for LiNaCdP3. These EPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.

  18. Solidification and stabilization of cadmium ions in sand-cement-clay mixture.

    Science.gov (United States)

    Shawabkeh, Reyad A

    2005-10-17

    This study was carried out to test the ability of a mixture of sand, cement and clay for immobilizing cadmium ions from leaching out into water resources. Various samples with different mass ratios for this mixture were tested to determine their efficiency for adsorbing cadmium. The compressive test, cation exchange capacity (CEC), adsorption equilibrium and leaching test were applied to each sample. The sample that showed the highest cation exchange capacity with 53.1 meq/100 g and compressive strength with 11.05 N/mm2 consists of 25% sand, 50% cement and 25% clay. The equilibrium data for Cd2+ removal using this sample showed a multilayer adsorption, which could be fitted using Brunauer-Emmett-Teller adsorption isotherm model with a regression coefficient of 0.999. The maximum cadmium uptake obtained from this model was 82.618 mg/g solid. The mobility of Cd2+ in acidic solution drawn-off after 18 h of initial mixing was 66.06 mg when the solid sample initially contains 6.0 g Cd2+. This value decreased to 14.33 mg when only 1.0 g Cd2+ was initially spiked in the sample. Introducing clay into this sample enhanced its sorption capacity while the presence of sand and cement enhanced its compressive strength.

  19. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae

    Energy Technology Data Exchange (ETDEWEB)

    Khani, M.H. [Department of Chemical Engineering, Faculty of Engineering, University of Tarbiat Modares, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of); Nuclear Science Research school, Nuclear Science and Technology Research Institute, P.O. Box 11365, 8486 Tehran (Iran, Islamic Republic of)], E-mail: mhkhani@modares.ac.ir; Keshtkar, A.R.; Ghannadi, M. [Nuclear Science Research school, Nuclear Science and Technology Research Institute, P.O. Box 11365, 8486 Tehran (Iran, Islamic Republic of); Pahlavanzadeh, H. [Department of Chemical Engineering, Faculty of Engineering, University of Tarbiat Modares, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)

    2008-02-11

    Biosorption equilibrium, kinetics and thermodynamics of binding of uranium ions to Cystoseria indica were studied in a batch system with respect to temperature and initial metal ion concentration. Algae biomass exhibited the highest uranium uptake capacity at 15 deg. C at an initial uranium ion concentration of 500 mg l{sup -1} and an initial pH of 4. Biosorption capacity increased from 198 to 233 mg g{sup -1} with an decrease in temperature from 45 to 15 deg. C at this initial uranium concentration. The Langmuir isotherm model were applied to experimental equilibrium data of uranium biosorption depending on temperature. Equilibrium data fitted very well to the Langmuir model C. indica algae in the studied concentration range of Uranium ions at all the temperatures studied. The saturation type kinetic model was applied to experimental data at different temperatures changing from 15 to 45 deg. C to describe the batch biosorption kinetics assuming that the external mass transfer limitations in the system can be neglected and biosorption is chemical sorption controlled. The activation energy of biosorption (E{sub A}) was determined as -6.15 using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption ({delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}) were also evaluated.

  1. Effect of cadmium ion on biodegradation of decabromodiphenyl ether (BDE-209) by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Guangyu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Yin, Hua, E-mail: huayin@scut.edu.cn [Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Ye, Jinshao [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Peng, Hui [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Li, Jun; Luo, Chunling [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China)

    2013-12-15

    Highlights: • BDE-209 degradation by P. aeruginosa in the presence of Cd was investigated. • Degradation was accelerated by the increase of CSH induced by low level of Cd. • Higher membrane permeability caused by low level of Cd promoted degradation. • Depression of cell growth and metabolism by high content Cd inhibited degradation. -- Abstract: The influence of Cd(II) ions on the degradation of decabromodiphenyl ether (BDE-209) by an aerobic degrading strain, Pseudomonas aeruginosa, was investigated. The results demonstrated that the strain P. aeruginosa exhibited a high level of resistance against cadmium toxicity, and Cd(II) ions of different concentrations possessed mixed reactions on BDE-209 bioremoval. The degradation efficiency was stimulated at low concentrations of Cd(II) ions (≤1 mg L{sup −1}) but inhibited at higher levels (≥5 mg L{sup −1}). Subsequent analyses revealed that the increase of cell hydrophobicity and membrane permeability were two main factors for Cd(II) ions of low concentrations to accelerate BDE-209 degradation. However, inhibition effect by high concentrations of Cd(II) ions was mainly attributed to the negative impact of metals on growth and metabolism of the strain. It was also showed through cellular distribution of BDE-209 that different concentration of Cd(II) ions affected the amount of BDE-209 inside or outside the cell at different incubation time.

  2. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, Zuebeyde [Department of Chemistry, Faculty of Science-Art, Dicle University, Diyarbakir (Turkey)], E-mail: zbaysal@dicle.edu.tr; Cinar, Ercan; Bulut, Yasemin; Alkan, Hueseyin; Dogru, Mehmet [Department of Chemistry, Faculty of Science-Art, Dicle University, Diyarbakir (Turkey)

    2009-01-15

    Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30 min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50 {+-} 1.05, 831.26 {+-} 1.30 and 833.33 {+-} 1.12 mg g{sup -1}, respectively, at different temperatures (25, 35 and 45 deg. C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (E{sub a}) was estimated as 59.04 kJ mol{sup -1} from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption ({delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.

  3. Biosorption of uranium by Azolla, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Ludmila C.; Alves, Eliakim G.; Marumo, Julio T., E-mail: lcvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferreira, Rafael V. de P., E-mail: rafael@itatijuca.com [Itatijuca Biotech, Sao Paulo, SP (Brazil); Canevesi, Rafael L.S.; Silva, Edson A., E-mail: edson.silva2@unioeste.br [Universidade Estadual do Oeste Parana (UNIOESTE), Toledo, PR (Brazil)

    2015-07-01

    Radioactive liquid waste needs special attention and requires suitable treatment before deposition. Among the potential technologies under development for the treatment of liquid radioactive wastes the biosorption has been highlighted by being an efficient and low cost technique. Biosorption process involves the exchange of ions contained in the biomass matrix by others present in solution. There are many biomasses that could be applied in treatment of radioactive wastes, for example, agricultural residues and macrophyte. The aim of this study is evaluate the ability of the Azolla sp., a floating aquatic plant, to absorb uranium in solution. Azolla sp. is a macrophyte that has been used to treat effluents containing heavy metals. The biosorption capacity of uranium by Azolla sp. was experimentally determined and modeled by isotherms. Experiments were performed to determine metal uptake, and then the solutions were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The isotherms applied to model the data was Langmuir, Freundlich, Sips Toth, Redlich Peternson, Two-Site-Langmuir, Radke Prausnitz to develop a technique for the treatment of radioactive liquid waste generated at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), Brazil. (author)

  4. Determination of Cadmium (II Ions in Environmental Samples : A Potentiometric Sensor

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2012-12-01

    Full Text Available A sensor electrode was modified by multi-walled carbon nanotubes functionalized by dithizone. The electrode was used for determination of trace amounts of cadmium (II ions. The electrode composition was 67% graphite powder, paraffin 23%, 10% modified MWCNTs (W/W. The linear range for lead (II was 1.8×10-7 to 1.0×10-4 mol L−1 and the limit of detection was obtained1.0×10−7 mol L−1. The lifetime of the electrode was 12 weeks and a fast response time was observed. The electrode was used for determination of trace amounts of Cd(II ions in standard reference materials of water and soil.

  5. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies

    Science.gov (United States)

    Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater. PMID:26352933

  6. Chromium Biosorption from Cr(VI Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies.

    Directory of Open Access Journals (Sweden)

    Alma Rosa Netzahuatl-Muñoz

    Full Text Available The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr ion biosorption from Cr(VI aqueous solutions by Cupressus lusitanica bark (CLB. CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI-contaminated water and wastewater.

  7. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies.

    Science.gov (United States)

    Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1). Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.

  8. Variation in the electrical properties of ion beam irradiated cadmium selenate nanowires

    Science.gov (United States)

    Chauhan, R. P.; Narula, Chetna; Panchal, Suresh

    2016-05-01

    The key feature of nanowires consists in the pronounced change in properties induced by the low dimensionality and high surface to volume ratio. The study of electrical transport properties of nanowires is important for electronic device applications. Energetic ions create changes, which may be structural or chemical, in a material along their track and these changes might alter the material's properties. The demand of the modern technology is to understand the effect of radiation on the different properties of the material for its further applications. The present study is on the high-energy Nickel ion beam (160 MeV Ni+12) induced modifications in the electrical and structural properties of the cadmium selenate nanowires. An enhancement in the electrical conductivity of irradiated wires was observed as the ion fluence was increased especially in the forward I-V characteristics. The creation of defects by ion irradiation and the synergy of the ions during their passage in the sample with the intrinsic charge carriers may be responsible for the variation in the transport properties of the irradiated nanowires.

  9. Biosorption mechanism of Cr (Ⅵ) onto cells of Synechococcus sp.

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; XIA Jin-lan; HE Huan; NIE Zhen-yuan; QIU Guan-zhou

    2007-01-01

    The biosorption mechanism of Cr (Ⅵ) ions on Synechococcus sp. biosorbent was studied by analyzing the biosorption kinetics as well as speciation change and bond formation during the biosorption process. The kinetics study shows that the adsorption process of Cr (Ⅵ) consists of a very fast stage in the first several minutes, in which more than half of the saturation adsorption is attained, and a slower stage that approximately follows the first order kinetic model, basically Freundlich isotherm models were observed. Comparative studies of FT-IR spectra of K2Cr2O7, free cells ofSynechococcus sp, and Cr-bound cells ofSynechococcus sp.show that the speciation of chromium that binds to the cells of Synechococcus sp. is Cr (Ⅲ), instead of Cr (Ⅵ), and the carboxylic,alcoholic, amido and amino groups may be involved in the binding of Cr (Ⅲ). Integrative analyses of the surface electric potential,the effect of pH value on adsorption behavior of Cr (Ⅵ), and the results of FT-IR show that the biosorption of Cr (Ⅵ) follows two subsequent steps, biosorption of Cr2O72- by electrostatical force at the protonated active sites and reduction of Cr2O72- to Cr3+ by the reductive groups on the surface of the biosorbents.

  10. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    Institute of Scientific and Technical Information of China (English)

    DENG Liping; ZHU Xiaobin; SU Yingying; SU Hua; WANG Xinting

    2008-01-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration,initial pH,and co-existing ions were studied.Adsorption equilibrium and biosorption kinetics were established from batch experiments.The adsorption equilibrium was adequately described by the Langmuir isotherm,and biosorption kinetics was in pseudo-second order model.The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions.Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+.With high capacities of metal biosorption and desorption,the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  11. Removal of Cadmium(II and Lead(II ions from aqueous phase on sodic bentonite

    Directory of Open Access Journals (Sweden)

    Luz Stella Gaona Galindo

    2013-04-01

    Full Text Available This paper describes the adsorption of Cd2+and Pb2+ions using sodic bentonite clay type Fluidgel modified. The Fluidgelbefore and after chemical modification and thermal activation was characterized by different techniques including X-ray diffraction, thermal analysis, Fourier transform infrared, surface area, helium pycnometry, cation exchange capacity and scanning electron microscopy. Pseudo-first order, pseudo-second order and intra-particle diffusion models were used to analyze the kinetic curves. Equilibrium data were analyzed using Langmuir and Freundlich models. The thermodynamic study indicated that lead adsorption process is endothermic and interactions between clays and solutions of lead occurred spontaneously, while cadmium adsorption revealed an exothermic and spontaneous nature. The maximum removal efficiencies were 97.62% for Cd(II using Fluidgelmodified chemically and 91.08% for lead by Fluidgel modified chemical and thermally.

  12. Equilibrium and kinetic studies of Cd²⁺ biosorption by the brown algae Sargassum fusiforme.

    Directory of Open Access Journals (Sweden)

    Hui-Xi Zou

    Full Text Available A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters.

  13. Biosorptive behaviour of Mango (Mangifera indica) and Neem (Azadirachta indica) bark for Hg{sup 2+}, Cr{sup 3+} and Cd{sup 2+} toxic ions from aqueous solutions: a radiotracer study

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Diwakar; Mishra, Shuddhodan P. [Nuclear and Radiochemistry Laboratory, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi (India); Mishra, Manisha; Dubey, R.S. [Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi (India)

    1999-04-01

    Biosorption of Hg{sup 2+} and Cr{sup 3+} on dead biomass Mango (Mangifera indica) and Neem (Azadirachta indica) bark has been assessed at micro to tracer level concentrations from aqueous solutions employing the 'radiotracer technique'. A high level of uptake of metal ions on these solid surfaces occurs within ca. 4 h of contact time reaching apparent saturation. The increase of sorptive concentration (10{sup -8} to 10{sup -2} mol dm{sup -3}), temperature (293-323 K) and pH (ca. 3 to 10) favoured the removal process of these ions; but in the case of Hg{sup 2+} on Neem bark, there was seemingly no temperature effect. The uptake process follows first order rate law and obeys the Freundlich adsorption isotherm. Added anions and cations in the bulk solution inhibit to some extent the removal of these toxic ions. Similarly the inhibition in the uptake was also observed when both biomasses were irradiated by neutron and {gamma}-rays prior to being employed as sorbents. No significant sorption of Cd{sup 2+} was observed on these dead biomass solid surfaces under various physical-chemical conditions.

  14. Collinear laser spectroscopy on radioactive praseodymium ions and cadmium ions; Kollineare Laserspektroskopie an radioaktiven Praseodymionen und Cadmiumatomen

    Energy Technology Data Exchange (ETDEWEB)

    Froemmgen, Nadja

    2013-11-21

    Collinear laser spectroscopy is a tool for the model independent determination of spins, charge radii and electromagnetic moments of nuclei in ground and long-lived isomeric states. In the context of this thesis a new offline ion source for high evaporating temperatures and an ion beam analysis system were implemented at the TRIGA-LASER Experiment at the Institute for Nuclear Chemistry at the University of Mainz. The main part of the thesis deals with the determination of the properties of radioactive praseodymium and cadmium isotopes by collinear laser spectroscopy at ISOLDE/CERN. The necessary test measurements for the spectroscopy of praseodymium ions have been conducted with the aforementioned offline ion source at the TRIGA-LASER experiment. The spectroscopy of the praseodymium ions was motivated by the observation of a modulation of the electron capture decay rates of hydrogen-like {sup 140}Pr{sup 58+}. The nuclear magnetic moment of the nucleus is, among others, required for the explanation of the so-called GSI Oscillations and has not been studied experimentally before. Additionally, the determined electron capture decay constant of hydrogen-like {sup 140}Pr{sup 58+} is lower than the one of helium-like {sup 140}Pr{sup 57+}. The explanation of this phenomenon requires a positive magnetic moment. During the experiment at the COLLAPS apparatus the magnetic moments of the neutron-deficient isotopes {sup 135}Pr, {sup 136}Pr and {sup 137}Pr could be determined for the first time. Unfortunately, due to a too low production yield the desired isotope {sup 140}Pr could not be studied.The systematic study of cadmium isotopes was motivated by nuclear physics in the tin region. With Z=48 two protons are missing for the shell closure and the isotopes extend from the magic neutron number N=50 to the magic neutron number N=82. The extracted nuclear properties allow tests of different nuclear models in this region. In this thesis the obtained results of the spectroscopy of

  15. Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation

    Directory of Open Access Journals (Sweden)

    Mohsen Hosseinzadeh

    2016-12-01

    Full Text Available In this study, the removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite was investigated. The nanocrystalline magnetite was synthesized by mechanochemical activation of hematite in a high energy planetary mill in argon atmosphere for 45 hours. The ability of the synthesized nanocrystalline magnetite for removal of Cd(II and Pb(II from aqueous solutions was studied in a batch reactor under different experimental conditions with different pHs, contact times, initial metal ion concentrations and temperatures. The solution’s pH was found to be a key factor in the adsorption of heavy metal ions on Fe3O4. The optimum pH of the solution for adsorption of Cd(II and Pb(II from aqueous solutions was found to be 6.5 and 5.5, respectively. The best models to describe the kinetics and isotherms of single adsorption were both the pseudo first and second-order kinetic models and Langmuir models, respectively, indicating the monolayer chemisorption of Cd(II and Pb(II on Fe3O4 nanoparticles. Moreover, the thermodynamic parameters (i.e., ∆H°, ∆S°, ∆G° were evaluated which indicated that the adsorption was spontaneous and exothermic. The results suggested that the synthesized material (magnetite nanocrystalline particles may be used as effective and economic absorbent for removal of Cd(II and Pb(II from aqueous solutions.

  16. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  17. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus.

    Science.gov (United States)

    Zhao, Changsong; Liu, Jun; Tu, Hong; Li, Feize; Li, Xiyang; Yang, Jijun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Sun, Qun

    2016-12-01

    Uranium(VI) biosorption from aqueous solutions was investigated in batch studies by using fungus Pleurotus ostreatus biomass. The optimal biosorption conditions were examined by investigating the reaction time, biomass dosage, pH, temperature, and uranium initial concentration. The interaction between fungus biomass and uranium was confirmed using Fourier transformed infrared (FT-IR), scanning electronic microscopy energy dispersive X-ray (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) analysis. Results exhibited that the maximum biosorption capacity of uranium on P. ostreatus was 19.95 ± 1.17 mg/g at pH 4.0. Carboxylic, amine, as well as hydroxyl groups were involved in uranium biosorption according to FT-IR analysis. The pseudo-second-order model properly evaluated the U(VI) biosorption on fungus P. ostreatus biomass. The Langmuir equation provided better fitting in comparison with Freundlich isotherm models. The obtained thermodynamic parameters suggested that biosorption is feasible, endothermic, and spontaneous. SEM-EDX and XPS were additionally conducted to comprehend the biosorption process that could be described as a complex process involving several mechanisms of physical adsorption, chemisorptions, and ion exchange. Results obtained from this work indicated that fungus P. ostreatus biomass can be used as potential biosorbent to eliminate uranium or other radionuclides from aqueous solutions.

  19. BIOSORPTION OF LEAD BY AFZELIA AFRICANA

    African Journals Online (AJOL)

    Dr Kalu 2

    2013-08-07

    Aug 7, 2013 ... 2Department of Industrial Chemistry, Ebonyi State University, P.M.B 053, ... of cadmium (II) ion from aqueous solution using low-cost adsorbent of biological ... treatment and when released into the environment ..... removal of metal ions from waste water. ... Okieimen FE, Okundia EU, Ogbeifun DE (1991).

  20. Evaluation of actinide biosorption by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  1. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  2. Bioremediation of Waste Water Containing Hazardous Cadmium Ion with Ion Imprinted Interpenetrating Polymer Networks

    Directory of Open Access Journals (Sweden)

    Girija Parameswaran

    2014-01-01

    Full Text Available A novel Cd(II ion imprinted interpenetrating polymer network (Cd(IIIIP was prepared by free radical polymerization using alginic acid and NNMBA-crosslinked polyacrylamide in presence of initiator potassium persulphate. Cd(IIIIP showed higher capacity and selectivity than the nonimprinted polymer (NIP. The sorption capacities of Cd(IIIIP and NIP for Cd(II ions were 0.886 and 0.663 meqmole-1, respectively. Kinetics studies showed that the sorption process closely agreed with a pseudosecond-order model. The thermodynamic data suggest that the sorption is a spontaneous endothermic process. Equilibrium experiments showed very good fit with the Langmuir isotherm equation for the monolayer sorption process. Cd(IIIIP exhibited good reusability, and the sorption capacity of Cd(IIIIP was stable within the first 4 cycles without obvious decrease. Also Cd(IIIIP showed almost 100% removal efficiency for Cd(II ions in real environmental water samples, indicating that Cd(IIIIP could have wide application prospects in Cd(II ion removal.

  3. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  4. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools.

    Science.gov (United States)

    He, Jinsong; Chen, J Paul

    2014-05-01

    Heavy metals contamination has become a global issue of concern due to their higher toxicities, nature of non-biodegradability, high capabilities in bioaccumulation in human body and food chain, and carcinogenicities to humans. A series of researches demonstrate that biosorption is a promising technology for removal of heavy metals from aqueous solutions. Algae serve as good biosorbents due to their abundance in seawater and fresh water, cost-effectiveness, reusability and high metal sorption capacities. This article provides a comprehensive review of recent findings on performances, applications and chemistry of algae (e.g., brown, green and red algae, modified algae and the derivatives) for sequestration of heavy metals. Biosorption kinetics and equilibrium models are reviewed. The mechanisms for biosorption are presented. Biosorption is a complicated process involving ion-exchange, complexation and coordination. Finally the theoretical simulation tools for biosorption equilibrium and kinetics are presented so that the readers can use them for further studies.

  5. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    Science.gov (United States)

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  6. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC imaging method for cadmium ions (Cd2+ was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  7. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)

    Science.gov (United States)

    Wang, Lin; Li, Yu

    2012-12-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  8. Biosorption Behavior and Mechanism of Lead (Ⅱ) from Aqueous Solution by Aerobic Granules (AG) and Bacterial Alginate (BA)

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LI Yu

    2012-01-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters.To develop appropriate Pb2+ treatment technologies,aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions.The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption.In this paper,the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH,contact time,and initial Pb2+ concentration.The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150mg L-1).The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass).When the initial pH was 5,the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1).During the process of Pb2+ biosorption,K+,Ca2+,and Mg2+ were released.The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA.This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG.At the same optimal pH,AG cultivated with different carbon source has different Pb2+ biosorption capacity.The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  9. Using ICP-OES and SEM-EDX in biosorption studies.

    Science.gov (United States)

    Michalak, Izabela; Chojnacka, Katarzyna; Marycz, Krzysztof

    2011-02-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.

  10. Highlighting inconsistencies regarding metal biosorption.

    Science.gov (United States)

    Robalds, Artis; Naja, Ghinwa Melodie; Klavins, Maris

    2016-03-01

    Thousands of articles have been devoted to examine different types of biosorbents and their use in cleaning polluted waters. An important objective of some studies has been the identification of the biosorption mechanisms. This type of investigation is not always performed, as it can only be done if scientists are aware of all mechanisms that, at least theoretically, control the removal of the target substances. Mistakes are often made, even in highly cited review articles, where biosorption mechanisms are named and/or grouped. The aim of this article is to highlight errors and inaccuracies as well as to discuss different classification systems of the biosorption mechanisms. This article serves as a guide, as well as a platform for discussion among researchers involved in the investigation of biosorbents, in an effort to avoid reproducing errors in subsequent articles.

  11. Polyhydroxyfullerene binds cadmium ions and alleviates metal-induced oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia; Cássio, Fernanda

    2014-09-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter(-1)) in the absence or presence of PHF (≤500 mg liter(-1)) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells.

  12. Effect of Different Exogeneous Compounds on Biosorption of Endosulfan

    Directory of Open Access Journals (Sweden)

    Deepika Dave

    2011-01-01

    Full Text Available Problem statement: Organochlorine pesticide endosulfan is widely used as a replacement for DDT and dieldrin in many parts of the world. Presence of residual pesticides in the water, air and soil environment was confirmed since 1960s. Such Persistent Organic Pollutants (POPs are of concern because of their long-term subtle effects on hormones, the immune system and reproduction. Therefore, it becomes imperative to develop indigenous technologies for remediation of endosulfan in contaminated water and contaminated sites. Comparison to conventional pesticide removal techniques, biosorption is a kind of promising technique that can accumulate organic and inorganic matter from aqueous solution. The presence of exogenous compounds might shows significant influence on the performance of biosorption/adsorption process and it may become necessary to perform certain pretreatment to diminish their impacts. Approach: The effects of pH, size of biosorbent, ionic strength, presence of inorganic substances such as calcium ion, magnesium ions, chloride ions, fertilizers and presence of organic substances such as dissolved organic matter, surfactant and other pesticides on biosorption of endosulfan onto biosorbent prepared from fungal culture Aspergillus Nidulans (ANS was investigated in this study. Results: The removal efficiency was more for fine biosorbent particles. Maximum removal of endosulfan was observed at pH 6.4 and no significant effect was found with variation of ionic strength. The presence of chloride, magnesium and calcium ions and surfactant did not affect the removal significantly. The presence of fertilizers such as Urea and Single Super Phosphate did not affect the removal efficiency significantly. Background dissolved organic matter (as humic and polyacrylic acids was found affecting the removal efficiency of endosulfan significantly. Both the co-sorbents viz. atrazine and monocrotophos almost equally hindered the sorption

  13. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    Science.gov (United States)

    Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.

    2017-03-01

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  14. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    Science.gov (United States)

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  15. Accumulation and tolerance to cadmium heavy metal ions and induction of 14-3-3 gene expression in response to cadmium exposure in Coprinus atramentarius.

    Science.gov (United States)

    Xie, Chengjian; Hu, Liujie; Yang, Yongzhu; Liao, Dunxiu; Yang, Xingyong

    2017-03-01

    Cadmium (Cd), one of the most toxic heavy-metal pollutants, has a strong and irreversible tendency to accumulate. Bioremediation is a promising technology to remedy and control heavy metal pollutants because of its low cost and ability to recycle heavy metals. Coprinus atramentarius is recognized as being able to accumulate heavy metal ions. In this work, C. atramentarius is cultivated on a solid medium containing Cd(2+) ions to analyze its ability to tolerate different concentrations of the heavy metal ion. It is found that the growth of C. atramentarius is not significantly inhibited when the concentration of Cd(2+) is less than 0.6mgL(-1). The accumulation capacity of C. atramentarius at different Cd(2+) concentrations also was determined. The results show that 76% of the Cd(2+) present can be accumulated even when the concentration of the Cd(2+) is 1mgL(-1). The different proteins of C. atramentarius exposed to Cd(2+) were further analyzed using gel electrophoresis. A 14-3-3 protein was identified and shown to be significantly up-regulated. In a further study, a full-length 14-3-3 gene was cloned containing a 759bp open reading frame encoding a polypeptide consisting of 252 amino acids and 3 introns. The gene expression work also showed that the 14-3-3 was significantly induced, and showed coordinated patterns of expression, with Cd(2+) exposure.

  16. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii

    Energy Technology Data Exchange (ETDEWEB)

    Xie Shuibo [Department of Environment Science and Engineering, Tsinghua University, Beijing 100084 (China) and School of Urban Construction, University of South China, Hengyang, Hunan 421001 (China)], E-mail: xiesbmr@263.net; Yang Jing [School of Urban Construction, University of South China, Hengyang, Hunan 421001 (China); Chen Chao; Zhang Xiaojian [Department of Environment Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang Qingliang; Zhang Chun [School of Urban Construction, University of South China, Hengyang, Hunan 421001 (China)

    2008-01-15

    Biosorption has been developed as an effective and economic method to treat wastewater containing low concentrations of metal pollutants. In this study, a bacterium, Citrobacter freudii, was used as a biosorbent to adsorb uranium ions. The thermodynamics and kinetics of this adsorption, as well as its mechanism, were investigated. The results indicated that the biosorption rate could be better described by a pseudo 2nd-order model than a pseudo 1st-order model. The adsorption of U (VI) proceeded very rapidly in the first 30 min and subsequently slowed down continuously for a long period. The biosorption isotherm of uranium by C. freudii could be described well by the Langmuir or Freundlich isotherm, and the latter was better. The thermodynamics parameters, {delta}H{sup o}, {delta}G{sup o}, and {delta}S{sup o} were calculated according to the results of the experiment, which showed this biosorption as being endothermic and spontaneous. The authors investigated the active sites of bacteria for biosorption and the results proved that carboxyl in the cell wall played an important role in biosorption.

  17. Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm

    Energy Technology Data Exchange (ETDEWEB)

    Sag, Y.; Kaya, A.; Kutsal, T. [Dept. of Chemical Engineering, Hacettepe Univ., Beytepe, Ankara (Turkey)

    2000-07-01

    The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calcualted. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. (orig.)

  18. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method

    Energy Technology Data Exchange (ETDEWEB)

    Kong Bo; Tang Biyu; Liu Xiaoying; Zeng Xiandong; Duan Haiyan [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082 (China); Luo Shenglian, E-mail: kongbo2136@163.com [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082 (China); Wei Wanzhi [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082 (China)

    2009-08-15

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd{sup 2+} and Cu{sup 2+} appear at -0.13 and 0.34 V respectively, at the concentration range of 5-50 {mu}M, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd{sup 2+} and Cu{sup 2+} was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (q{sub e}) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  19. Removal of heavy metals from the environment by biosorption

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilescu, M. [Technical University of Iasi, Faculty of Industrial Chemistry, Department of Environmental Engineering, Mangeron Blvd. 71, 6600-Iasi (Romania)

    2004-06-01

    The pollution of the environment with toxic metals is a result of many human activities, such as mining and metallurgy, and the effects of these metals on the ecosystems are of large economic and public-healthsignificance. This paper presents the features and advantages of the unconventional removal method of heavy metals - biosorption - as a part of bioremediation. Bioremediation consists of a group of applications, which involve the detoxification of hazardous substances instead of transferring them from one medium to another, by means of microbes and plants. This process is characterized as less disruptive and can be often carried out on site, eliminating the need to transport the toxic materials to treatment sites. The biosorption (sorption of metallic ions from solutions by live or dried biomass) offers an alternative to the remediation of industrial effluents as well as the recovery of metals contained in other media. Biosorbents are prepared from naturally abundant and/or waste biomass. Due to the high uptake capacity and very cost-effective source of the raw material, biosorption is a progression towards a perspective method. The mechanism by which microorganisms take up metals is relatively unclear, but it has been demonstrated that both living and non-living biomass may be utilized in biosorptive processes, as they often exhibit a marked tolerance towards metals and other adverse conditions. One of their major advantages is the treatment of large volumes of effluents with low concentrations of pollutants. Models developed were presented to determine both the number of adsorption sites required to bind each metal ion and the rate of adsorption, using a batch reactor mass balance and the Langmuir theory of adsorption to surfaces or continuous dynamic systems. Two main categories of bioreactors used in bioremediation - suspended growth and fixed film bioreactors - are discussed. Reactors with varying configurations to meet the different requirements for

  20. BIOSORPTION OF CHROMIUM(Ⅵ) IONS FROM AQUEOUS SOLUTION BY A NOVEL BACTERIAL EXOPOLYMERS%细菌胞外高聚物对水中六价铬的生物吸附特性

    Institute of Scientific and Technical Information of China (English)

    王竞; 陶颖; 周集体; 宫小燕

    2001-01-01

    Biosorption of Chromium(Ⅵ) was investigated by a Novel Bacterial exopolymers from Pseudomonas sp GX4-1. It was found that the optimum initial pH for Cr(Ⅵ) biosorption is 0.5-2.0; the biosorption process may be divided into the following phases:1)a fast biosorption phase with 75% Cr(Ⅵ) uptaken within 5 min: 2)first-order kinetics phase from 10 to 40min; 3)equilibrium phase; and biosorption process is fit for Languir model.%本文研究了一新型细胞外聚合物WJ-I对水中重金属Cr(Ⅵ)的吸附特性。结果表明,WJ-I对Cr(Ⅵ)吸附的最佳pH为0.5~2.0。Cr(Ⅵ)的吸附可分为三个阶段;快速吸附阶段(5min);一级动力学吸附阶段(10~40min);吸附平衡阶段(50min以后)。整个吸附过程符合langmuir吸附模型。

  1. Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants

    Energy Technology Data Exchange (ETDEWEB)

    Borowiak-Resterna, Aleksandra [Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland); Cierpiszewski, Ryszard [Poznan University of Economics, Faculty of Commodity Science, al. Niepodleglosci 10, 61-875 Poznan (Poland); Prochaska, Krystyna, E-mail: Krystyna.Prochaska@put.poznan.pl [Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2010-07-15

    Liquid-liquid extraction of cadmium(II) from acidic chloride solutions was carried out with alkyl derivatives of pyridinecarboxamide in toluene with addition of 2-ethylhexan-1-ol as modifier. Equilibrium as well as kinetic studies was performed. The kinetic studies of a Cd(II) extraction process were carried out with a Lewis cell having a constant interfacial area. Cadmium(II) concentration in the aqueous phases was determined by atomic absorption spectroscopy (Varian SPECTR AA800). The results of equilibrium experiments showed that cadmium(II) was quantitatively extracted with N,N-dihexylpyridine-3-carboxamide whereas the derivative N,N-dihexylpyridine-2-carboxamide was not able to transfer Cd(II) ions from the aqueous phase to the organic one. Thus, the kinetics of extraction and the initial extraction rate were examined only in the systems with N,N-dihexylpyridine-3-carboxamide. The obtained experimental data as well as the calculated values of mass transfer coefficients suggest that the investigated process of extraction of Cd(II) by means of pyridinecarboxamide as extractant occurs in the mixed diffusion-kinetic region. Moreover, the results of adsorption studies indicated that the extraction of Cd(II) with a hydrophobic extractant should be considered as an interfacial process.

  2. Simulation and Optimization of Artificial Neural Network Modeling for Prediction of Sorption Efficiency of Nanocellulose Fibers for Removal of Cd (II Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Abhishek KARDAM

    2014-06-01

    Full Text Available Simulation and optimization of an Artificial Neural Network (ANN for modeling biosorption studies of cadmium removal using nanocellulose fibers (NCFs was carried out. Experimental studies led to the standardization of the optimum conditions for the removal of cadmium ions i.e. biomass dosage (0.5 g, test volume (200 ml, metal concentration (25 mg/l, pH (6.5 and contact time (40 min. A Single layer ANN model was developed to simulate the process and to predict the sorption efficiency of Cd (II ions using NCFs. Different NN architectures were tested by varying network topology, resulting in excellent agreement between experiment outputs and ANN outputs. The findings indicated that ANN provided reasonable predictive performance for training, cross validation and testing data sets (R2 = 0.998, 0.995, 0.992. A sensitivity analysis was carried out to assess the influence of different independent parameters on the biosorption efficiency, and pH > biomass dosage > metal concentration > contact time > test volume were found to be the most significant factors. Simulations based on the developed ANN model can estimate the behavior of the biosorption phenomenon process under different experimental conditions.

  3. Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in aqueous NaCl at different ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Concetta de; Milea, Demetrio; Porcino, Nunziatina; Sammartano, Silvio [Universita di Messina, Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Messina (Italy)

    2006-09-15

    Interactions between myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (phytic acid) and cadmium(II) were studied by using potentiometry (at 25 C with the ISE-H{sup +} glass electrode) in different metal to ligand (Phy) ratios (1:1{<=}Cd{sup 2+}:Phy{<=}4:1) in NaCl{sub aq} at different ionic strengths (0.1{<=}I/mol L{sup -1}{<=}1). Nine Cd{sub i}H{sub j}Phy{sup (12-2i-j)-} species are formed with i=1 and 2 and 4{<=}j{<=}7; and trinuclear Cd{sub 3}H{sub 4}Phy{sup 2-}. Dependence of complex formation constants on ionic strength was modeled by using Specific ion Interaction Theory (SIT) equations. Phytate and cadmium speciation are also dependent on the metal to ligand ratio. Stability of Cd{sub i}H{sub j}Phy{sup (12-2i-j)-} species was modeled as a function of both the ligand protonation step (j) and the number of metal cations bound to phytate (i), and relationships found were used for the prediction of species other than those experimentally determined (mainly di- and tri-protonated complexes), allowing the possibility of modeling Phy and Cd(II) behavior in natural waters and biological fluids. A critical evaluation of phytate sequestering ability toward cadmium(II) has been made under several experimental conditions, and the determination of an empirical parameter has been proposed for an objective ''quantification'' of this ability. A thorough analysis of literature data on phytate-cadmium(II) complexes has been performed. (orig.)

  4. Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haiwei; Wan, Yuxuan; Zhang, Renduo [Sun Yat-sen Univ., Guangzhou (China). School of Environmental Science and Engineering; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou (China); Cao, Lixiang; Wang, Wenfeng [Sun Yat-sen Univ., Guangzhou (China). School of Life Sciences

    2012-11-15

    The aim of this study was to investigate the biosorption characteristics of Cd{sup 2+}, Cu{sup 2+}, and Pb{sup 2+} by the fruiting body of jelly fungus Auricularia polytricha. Batch experiments were conducted to characterize the kinetics, equilibrium, and mechanisms of the biosorption process. Optimum values of pH 5, biomass dosage 4 g L{sup -1}, and contact time 60 min provided maximum biosorption capacities of A. polytricha for Cd{sup 2+}, Cu{sup 2+}, and Pb{sup 2+} of 63.3, 73.7, and 221 mg g{sup -1}, respectively. The maximum desorption was achieved using 0.05 mol L{sup -1} HNO{sub 3} as an elute. The fruiting body was reusable at least for six cycles of operations. The pseudo-second-order model was the best to describe the biosorption processes among the three kinetic models tested. Freundlich and Dubinin-Radushkevich models fitted the equilibrium data well, indicating a heterogeneous biosorbent surface and the favorable chemisorption nature of the biosorption process. A Fourier transform infrared spectroscopy analysis indicated that carboxyl, amine/hydroxyl, amino, phosphoryl, and C-N-C were the main functional groups to affect the biosorption process. Synergistic ion exchange and surface complexation were the dominant mechanisms in the biosorption process. The present work revealed the potential of jelly fungus (fruiting body of A. polytricha) to remove toxic heavy metals from contaminated water. (orig.)

  5. Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Mendil, Durali; Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, Tokat 60250 (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, Kayseri 38039 (Turkey)], E-mail: soylak@erciyes.edu.tr

    2009-03-15

    The biosorption potential of Racomitrium lanuginosum as aquatic moss biosorbent for the removal of Pd(II) from aqueous solution was investigated. The effects of pH, biomass dosage, contact time, and temperature on the biosorption processes were systematically studied. Experimental data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm model (R{sup 2} = 0.994) fitted the equilibrium data better than the Freundlich isotherm model (R{sup 2} = 0.935). The monolayer biosorption capacity of R. lanuginosum biomass for Pd(II) was found to be 37.2 mg/g at pH 5. The mean free energy was calculated as 9.2 kJ/mol using the D-R isotherm model (R{sup 2} = 0.996). This result indicated that the biosorption of Pd(II) was taken place by chemical ion-exchange. The calculated thermodynamic parameters, {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o} showed that the biosorption of Pd(II) on R. lanuginosum biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested using the biosorption kinetic models. The results showed that the biosorption processes of Pd(II) on R. lanuginosum followed well pseudo-second-order kinetics at 20-50 deg. C (R{sup 2} = 0.999)

  6. Kinetic and isotherm studies of Cu(II) biosorption onto valonia tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54100 Sakarya (Turkey)], E-mail: asengil@sakarya.edu.tr; Ozacar, Mahmut [Department of Chemistry, Science and Arts Faculty, Sakarya University, 54100 Sakarya (Turkey); Tuerkmenler, Harun [Institute of Sciences and Technology, Sakarya University, 54040 Sakarya (Turkey)

    2009-03-15

    The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.

  7. Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model.

    Science.gov (United States)

    Zamil, Sheikh Shawkat; Ahmad, Shabir; Choi, Mun Hwan; Park, Joong Yang; Yoon, Sung Chul

    2009-03-01

    Quantitative Ion Character-Activity Relationship (QICAR) was used for correlating metal ionic properties with maximum biosorption capacity (q(max)). Heat inactivated biomass of Staphylococcus saprophyticus BMSZ711 was studied for biosorption of nine metal ions. Influence of contact time and initial pH was checked. q(max) was determined by Langmuir isotherm and followed a descending sequence (in mmol/g): Pb(2+)>Cd(2+)>Cr(3+)>Zn(2+)>Hg(2+)>Cu(2+)>Co(2+)>Ni(2+)>K(+). q(max) values was modeled with 20 metal ionic characteristics, among these covalent index (X(m)(2)r) was best fitted with q(max) for all metal ions tested, in the following model: q(max)=0.09+0.11(X(m)(2)r) (R(2)=0.73, AIC=-4.14). Classification of metal ions according to valence or soft/hard improved QICARs modeling and more characteristics significantly correlated with q(max) which revealed that covalent bonding played major role in biosorption of soft metal ions and ionic bonding for borderline and hard ions. Biosorption capacity was most effectively predicted (R(2)=0.99, AIC=-8.04) with a two variable model containing electro-negativity (X(m)) and softness index (o(rho)(')).

  8. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Wang M

    2016-05-01

    Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of

  9. Biosorption Performance of Encapsulated Candida krusei for the removal of Copper(II).

    Science.gov (United States)

    Luk, Chi Him Jim; Yip, Joanne; Yuen, Chun Wah Marcus; Pang, Siu Kwong; Lam, Kim Hung; Kan, Chi Wai

    2017-05-19

    The use of microorganisms in biosorption is one of the most promising ways to remove trace amounts of heavy metal ions. Nevertheless, the enhancement of the successful removal of heavy metal ions by using different combinations of biosorbents is not generally guaranteed which leaves room to explore the application of the technique. In this study, the performance of free and immobilized forms of a yeast strain, Candida krusei (C. krusei), and calcium alginate (CaAlg) are evaluated for their ability to remove copper(II). Infrared spectroscopy, studies on the effects of pH and temperature, and kinetics and isotherm modelling are carried out to evaluate the biosorption. The infrared spectroscopy shows that the primary biosorption sites on the biosorbents are carboxylate groups. In addition, a higher pH and higher temperatures promote biosorption while a decline in biosorption ability is observed for C. krusei at 50 °C. The kinetics study shows that C. krusei, CaAlg and immobilized C. krusei (MCaAlg) conform with good correlation to pseudo-second order kinetics. MCaAlg and CaAlg fit well to the Langmuir isotherm while C. krusei fits well to the Temkin isotherm. From the experimental data, encapsulating C. krusei showed improved biosoprtion and address clogging in practical applications.

  10. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel A., E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan); Kazi, Tasneem G., E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan); Shah, Abdul Q., E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan); Kandhro, Ghulam A., E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan); Afridi, Hassan I., E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan); Khan, Sumaira, E-mail: skhanzai@gmail.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan); Kolachi, Nida F., E-mail: nidafatima6@gmail.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 76080 (Pakistan)

    2010-06-15

    In present study a biomass derived from the stem of Acacia nilotica has been investigated to remove As ions from surface water samples of different origins (lake, canal and river). The effects of various parameters viz. pH, biosorbent dosage, contact time and temperature on the biosorption processes were systematically studied. Experimental data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. It was observed that As biosorption best fitted to the Langmuir and Freundlich isotherms. The mean sorption energy (E) calculated from D-R model, indicated physico-chemical biosorption. Study of thermodynamic parameters revealed the endothermic, spontaneous and feasible nature of biosorption process. The pseudo-second-order rate equation described better the kinetics of As biosorption with good correlation coefficients than pseudo-first-order equation. The biomass of A. nilotica was found to be effective for the removal of As with 95% sorption efficiency at a concentration of <200 {mu}g/L of As solution, and thus uptake capacity is 50.8 mg As/g of biomass. The A. nilotica biomass could be used as a low-cost biosorbent for As ion removal.

  11. Biosorption kinetics of Cd (II, Cr (III and Pb (II in aqueous solutions by olive stone

    Directory of Open Access Journals (Sweden)

    M. Calero

    2009-06-01

    Full Text Available A by-product from olive oil production, olive stone, was investigated for the removal of Cd (II, Cr (III and Pb (II from aqueous solutions. The kinetics of biosorption are studied, analyzing the effect of the initial concentration of metal and temperature. Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models have been used to represent the kinetics of the process and obtain the main kinetic parameters. The results show that the pseudo-second order model is the one that best describes the biosorption of the three metal ions for all the range of experimental conditions investigated. For the three metal ions, the maximum biosoption capacity and the initial biosorption rate increase when the initial metal concentration rises. However, the kinetic constant decreases when the initial metal concentration increases. The temperature effect on biosorption capacity for Cd (II and Cr (III is less significant; however, for Pb (II the effect of temperature is more important, especially when temperature rises from 25 to 40ºC. The biosorption capacity at mmol/g of olive stone changes in the following order: Cr>Cd>Pb. Thus, for an initial concentration of 220 mg/ℓ, a maximum sorption capacity of 0.079 mmol/g for Cr (III, 0.065 mmol/g for Cd (II and 0.028 mmol/g for Pb (II has been obtained.

  12. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z

    2016-09-01

    Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2).

  13. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  14. Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass.

    Science.gov (United States)

    Bhainsa, Kuber C; D'Souza, Stanislaus F

    2009-06-15

    Thorium biosorption by Aspergillus fumigatus was carried out in a batch reactor to study the effect of initial pH and metal ion concentration, contact time, biomass dose and kinetics and equilibrium Th uptake. Thorium(IV) uptake by A. fumigatus was pH dependent (pH range, 2.0-6.0) and maximum sorption was observed at pH 4.0. The uptake was rapid and the biosorption process reached equilibrium within 2h of contact times at pH 2-4 and initial Th concentration of 50 and 100mg/L. The kinetics data fitted well to Lagergren's pseudo-second-order rate equation (r(2)>0.99). A maximum initial sorption rate of 71.94 (mg/g min) and second-order rate constant of 7.82 x 10(-2) (g/mg min) were observed at pH 4.0, 50 mg Th/L. The observed maximum uptake of thorium was 370 mg Th/g at equilibrium. Biosorption process could be well described by Langmuir isotherm in comparison to Freundlich and Temkin isotherms. Sodium bicarbonate was the most efficient desorbing reagent with desorption efficiency of more than 99%. Environmental scanning electron micrograph (ESEM) showed that the surface of the biomass after desorption was intact.

  15. Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mohammad Zubair [Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh (India); Ahmad, Shamim [Microbiology Division, Institute of Ophthalmology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh (India)

    2011-03-15

    Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM-2 biosorbed maximum amount of Cr{sup 6+} (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr{sup 3+} was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr{sup 6+} and Cr{sup 3+} from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    Science.gov (United States)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  17. Biosorption of Ni(II), Cr(III), and Co(II) from Solutions Using Acalypha hispida Leaf: Kinetics, Equilibrium, and Thermodynamics

    OpenAIRE

    Adesola Babarinde; J. Oyebamiji Babalola; John Adegoke; Osundeko, Adebola O.; Susan Olasehinde; Adetayo Omodehin; Emmanuel Nurhe

    2013-01-01

    Biosorption studies were conducted to study the removal of Ni(II), Cr(III), and Co(II) from aqueous solution of Acalypha hispida leaf. The FTIR spectral characteristics of Acalypha hispida leaf revealed the presence of ioniazable groups that could participate in the binding of metal ions in solution. The kinetic, equilibrium, and thermodynamic studies of the biosorption of the metal ions were investigated using various physicochemical parameters; each parameter was found to affect the biosorp...

  18. Bioaccumulation and biosorption of Cd(2+) and Zn(2+) by bacteria isolated from a zinc mine in Thailand.

    Science.gov (United States)

    Limcharoensuk, Tossapol; Sooksawat, Najjapak; Sumarnrote, Anchana; Awutpet, Thiranun; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Auesukaree, Choowong

    2015-12-01

    The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75 mg g(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)). Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Yus Azila Yahaya [School of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Seberang Prai Selatan, Pulau Pinang (Penang) (Malaysia); Mashitah Mat Don [School of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Seberang Prai Selatan, Pulau Pinang (Penang) (Malaysia)], E-mail: chmashitah@eng.usm.my; Subhash Bhatia [School of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Seberang Prai Selatan, Pulau Pinang (Penang) (Malaysia)

    2009-01-15

    The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76 mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16 kJ/mol) and entropy change (33.78 J/mol K) were determined from the biosorption equilibrium data. The FTIR analysis showed that -OH, -NH, C-H, C=O, -COOH and C-N groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.

  20. Experimental investigation of the effect of sediment transport patterns on the adsorption of cadmium ions onto sediment particles

    Institute of Scientific and Technical Information of China (English)

    HUANG Sui-liang; NG Chiu-on; GUO Qi-zhong

    2007-01-01

    The mechanism of flow turbulence, sediment supply conditions, and sediment transport patterns that affect the adsorption of cadmium ions onto sediment particles in natural waters are experimentally simulated and studied in this study both in batch reactors and in a turbulence simulation tank. By changing the agitation conditions, the sediment transport in batch reactors can be categorized into bottom sediment-dominated sediment and suspended sediment-dominated sediment. It is found that the adsorption rate of bottom sediment is much less than that of suspended sediment, but the sediment transport pattern does not affect the final (equilibrium) concentration of dissolved cadmium. This result indicates that the parameters of an adsorption isotherm are the same regardless of the sediment transport pattern. In the turbulence simulation tank, the turbulence is generated by harmonic grid-stirred motions, and the turbulence intensity is quantified in terms of eddy diffusivity, which is equal to 9.84F(F is the harmonic vibration frequency) and is comparable to natural surface water conditions.When the turbulence intensity of flow is low and sediment particles stay as bottom sediment, the adsorption rate is significantly low, and the adsorption quantity compared with that of suspended sediment is negligible in the 6 h duration of the experiment. This result greatly favors the simplification of the numerical modeling of heavy metal pollutant transformation in natural rivers. When the turbulence intensity is high but bottom sediment persists, the rate and extent of descent of the dissolved cadmium concentration in the tank noticeably increase, and the time that is required to reach adsorption equilibrium also increases considerably due to the continuous exchange that occurs between the suspended sediment and the bottom sediment.A comparison of the results of the experiments in the batch reactor and those in the turbulence simulation tank reveals that the adsorption ability of

  1. Polyvinyl alcohol as an immobilization matrix--a case of gold biosorption.

    Science.gov (United States)

    Khoo, K M; Ting, Y P

    2001-01-01

    The use of polyvinyl alcohol (PVA) as a matrix for cell immobilization has been extensively studied in various biological systems. However, its suitability has not been reported in biosorption studies where inactivated cells are used as biosorbents. In this work, PVA and alginate as immobilization matrices (for the biosorption of gold by a fungal biomass) were investigated by examining their physical and chemical properties. Compared to alginate gels, PVA gels were shown to be more resistant to mechanical abrasion, and more stable over a wide pH range. Although the PVA matrix did not affect the equilibrium uptake in gold biosorption studies, the time required to attain a removal of 80% of the initial metal concentration was 1.7 times that of the freely suspended biosorbent. This contrasts with the alginate immobilized biosorbent which required an increase of well over ten times the duration to attain the same removal efficiency. Results indicated that PVA gels conferred a lower mass transfer resistance than alginate gels. Gold biosorption by the PVA-immobilized fungi followed the commonly used Langmuir and Freundlich adsorption isotherm models although the former gave a better fit. The uptake of gold was dependent on the initial gold concentration and the biomass loading. Using a fungal biosorbent and gold ions as the model system, the results demonstrate the potential in the use of the PVA as a cell immobilisation matrix for biosorption studies.

  2. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China); Su, Haijia, E-mail: suhj@mail.buct.edu.cn [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China); Tan, Tianwei; Xiao, Gang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China)

    2011-10-15

    Based on the integration of biosorption and membrane-separation, a novel biosorption membrane with good mechanical property was prepared by immobilizing Penicillium biomass with cross-linked chitosan on fabric. The ability of the low cost biosorption membrane to remove Cu(II) ions from a solution was studied through batch and continuous experiments. Langmuir adsorption isotherm models were found to accurately fit the batch experimental data (R{sup 2} > 0.99) indicating that sorption was of monolayer-mode. The uptake of Cu(II) could reach 38 mg/g at its initial concentration of 200 mg/L in the solution. Continuous biosorption was investigated in a column and the effects of the height, flow rate and initial concentration of Cu(II) were studied. The Bed Depth Service Time model (BDST) was applied to simulate column adsorption data. The breakthrough time at different flow rates and initial concentrations was accurately predicted by the model (error < 8%). The uptake of Cu(II) could reach 38.3 mg/g at height 30 cm, flow rate 5 mL/min, initial concentration of Cu(II) 200 mg/L. The biosorption membrane was regenerated by washing with 0.05 mol/L solution of HCl, and breakthrough curves remained fairly unchanged after 10 cycles of adsorption-desorption.

  3. Thermodynamics and Kinetics of Cadmium Ion Adsorption onto Lignite-derived Amendments

    Directory of Open Access Journals (Sweden)

    BAO Xiu-li

    2017-06-01

    Full Text Available Adsorption kinetics and thermodynamics of cadmium onto lignite-derived humic acid and lignite-derived active carbon were investigated by batch experiments under different temperatures. The adsorption thermodynamic isotherms were fitted using Langmuir, Freundlich and Temkin models, the adsorption kinetics were fitted to pseudo-first-order, pseudo-second-order, Elovich, fractional power and intraparticle diffusion models. Thermodynamic studies showed that Temkin model displayed the most suitable model to describe adsorption of cadmium onto raw lignite, extracted humic acid and active carbon. Thermodynamic parameters indicated the adsorption process were spontaneous, favourable, and endothermic physical adsorption in nature. The equilibrium adsorption capacity of cadmium obtained from the Langmiur model for humic acid, lignite and active carbon was 36.14~44.09, 29.63~38.20 mg·g-1 and 21.04~30.34 mg·g-1 respectively in the temperature range of 294.55~313.15 K, adsorption capacity magnitudes increased with a rise of temperature, indicating more feasible adsorption at high temperature. Adsorption kinetics parameters showed that the pseudo-second-order model was better than the pseudo-first-order, Elovich, fractional power and the intraparticle diffusion models, this indicated that cadmium adsorption might be a physisorption associated with chemisorption process. According to the adsorption characteristics of kinetics, thermodynamics parameters such as change in free energy(△G, change in enthalpy(△H, and change in entropy(△S, it was concluded that the adsorption process of cadmium onto these different adsorbents were spontaneous, endothermic, simultaneous physisorption and accompanied by chemisorption or alternatively physicochemical process. Adsorbents of humic acid had the great adsorption capacity and adsorption intensity. Temkin isotherm model and pseudo-second-order model could be the suitable models with good fitting for describing the

  4. Biosorption Behavior of Strontium Ions and Mechanism Analysis on Baker's Yeast%面包酵母菌对锶离子的吸附行为及其机理研究

    Institute of Scientific and Technical Information of China (English)

    代群威; 董发勤; 张伟; 李琼芳; 周世平

    2012-01-01

    The baker's yeast was utilized as biosorption material to remove Sr2+ from simulant aquous solution. The effect factors on biosorption were analyzed, which included pH values, initial concentration (c0), adsorbent concentration (pm), and temperature (0. Meanwhile, the correlation biosorption thermodynamics was analyzed and the mechanism of biosorption was researched. The results show that the optimum condition for biosorption is as follows: pH = 4. 5, t = 30 °C , c0 = 1. 0 mmol/L, pm = i. 0 g/L. The isotherm adsorption curve of Sr2+ under different temperatures accords well with the Langmuir and Freunlich absorption models, and both R2 are above 0. 988. The biosorption of Sr2+ by yeast can proceed spontaneously under different temperatures. And the higher temperature is in favour of the spontaneous process of Sr2+biosorption at the range of 10-30 °C. The analysis indicates that there is chemisorption in the course of Sr2+ biosorption by yeast. The components of yeast cell, including polysaccharide and amide protein, are involved in the Sr2+ biosorption. And the principal absorption sites are the active sites on the cell wall surface.%采用面包酵母菌为生物吸附剂,进行了模拟含锶废液中Sr2+的批量吸附实验研究.分析了液相pH、Sr2+初始浓度、菌体加入量、温度等因素对吸附效果的影响,进行了吸附热力学相关分析,并通过红外光谱、扫描电镜等探讨了其吸附机理.结果表明:实验室环境下的最佳吸附条件为pH=4.5,t=30℃,c0=1.0 mmol/L,ρm=4.0 g/L.不同温度下对Sr2-的等温吸附结果均很好地符合了Langmuir和Freunlich两个吸附模型,R2均在0.988以上.不同温度条件下酵母菌对Sr2+的吸附反应均能够自发进行,且在一定温度范围(10~30℃)内提高温度有利于酵母菌对Sr2+吸附反应的自发进行.FTIR与SEM分析结果认为,酵母菌吸附Sr2+的过程的确存在化学吸附过程,酵母菌细胞上的多糖、蛋白质酰胺

  5. Biosorption of lead by phanerochaete chrysosporium in the form of pellets

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The growth of Phanerochaete chrysosporium (ATCC 24725) in pellets was influenced by culture time, medium pH, C/N, surfactant concentration, spore number in inoculum, and shaking rate. The removal of Pb2+ from aqueous solution by this kind of mycelial pellets was studied. The results indicated that many factors affected biosorption. These factors included pH, Pb2+ concentration, co-ion, adsorption time, and chemical pretreatments of biomass. Under optimum biosorption conditions (pH 4.5, 27℃, 16h), the highest lead uptake of 108 mg/g, was observed with mycelial pellets of 1.5-1.7 mm in diameter which were treated with 0.1 mol/L NaOH solution before adsorption. Pretreatment of biomass with NaOH further increased its biosorption capacity.

  6. Ternary biosorption studies of Cd(II), Cr(III) and Ni(II) on shelled Moringa oleifera seeds.

    Science.gov (United States)

    Sharma, Parul; Kumari, Pushpa; Srivastava, M M; Srivastava, Shalini

    2007-01-01

    Competitive biosorption of Cd(II), Cr(III) and Ni(II) on unmodified shelled Moringa oleifera seeds (SMOS) present in ternary mixture were compared with the single metal solution. The extent of adsorption capacity of the ternary metal ions tested on unmodified SMOS was low (10-20%) as compared to single metal ions. SMOS removed the target metal ions in the selectivity order of Cd(II) > Cr(III) > Ni(II). Sorption equilibria, calculated from adsorption data, explained favorable performance of biosorption system. Regeneration of exhausted biomass was also attempted for several cycles with a view to restore the sorbent to its original state.

  7. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  8. Rice Husk Ash Derived Zeolite Blended with Water Hyacinth Ash for Enhanced Adsorption of Cadmium Ions

    OpenAIRE

    G. W. Mbugua; H. M. Mbuvi; J. W. Muthengia

    2014-01-01

    In order to helpcurtail or imposesustained control to the offensive water hyacinth plant,it is essential to explore ways of generatingwater remediation materials from it. In the current study, the capacity and efficacy of water hyacinth ash (WHA),its insoluble residue (WHAR) and rice husk ash (RHA)to remove cadmium ionsand methylene blue from contaminated water was investigated. Mixtures of the two ashes were used to formulatezeolitic materialsby hydrothermal reactions. Material A, ZMA was pr...

  9. Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation

    Science.gov (United States)

    Prasad Mandal, Ranju; Sekh, Sanoyaz; Sarkar, Neera Sen; Chattopadhyay, Dipankar; De, Swati

    2016-05-01

    The present work is a study on the biological synthesis of cadmium sulphide (CdS) nanoparticles using blue-green algae that is popularly used as a food supplement. This synthesis is unique in the sense that no external sulphur precursor is required, the CdS nanoparticles are synthesized in situ in the algal medium. The CdS nanoparticles thus synthesized are photoluminescent and can act as highly efficient photocatalysts for degradation of the dye pollutant malachite green. Thus the CdS nanoparticles synthesized in situ in the algae conform to the desired criteria of waste water treatment i.e. biosorption of the pollutant and its subsequent degradation. The novelty of this work also lies in its potential for use in bioremediation by conversion of the toxic Cd(II) ion to less toxic CdS nanoparticles within the algal framework.

  10. Study of physical chemistry on biosorption of zinc by using Chlorella pyrenoidosa

    Science.gov (United States)

    Rezaei, Hassan; Kulkarni, Satish D.; Saptarshi, Praveen G.

    2012-08-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. Presence of heavy metals in the aquatic system is posing serious problems. Zinc has been used in many industries and removal of Zn ions from waste water is significant. Biosorption is one of the economic methods used for removal of heavy metals. In the present study, the biomass obtained from the dried Chlorella pyrenoidosa was used for evaluating the biosorption characteristics of Zn ions in aqueous solutions. Batch adsorption experiments were performed with this material and it was found that the amount of metal ions adsorbed increased with the increase in the initial metal ion concentration. In this study effect of agitation time, initial metal ion concentration, temperature, pH and biomass dosage were studied. Maximum metal uptake ( q max) observed at pH 5 was 101.11 mg/g. The biosorption followed both Langmuir and Freundlich isotherm model. The adsorption equilibrium was reached in about 1 h. The kinetic of biosorption followed the second-border rate. The biomass could be regenerated using 0.1 M HNO3. A positive value of Δ H° indicated the endothermic nature of the process. A negative value of the free energy (Δ G°) indicated the spontaneous nature of the adsorption process. A positive value of Δ S° showed increased randomness at solid-liquid interface during the adsorption of heavy metals, it also suggests some structural changes in the adsorbate and the adsorbent. FTIR Spectrums of Chlorella pyrenoidosa revealed the presence of hydroxyl, amino, carboxylic and carbonyl groups. The scanning electron micrograph clearly revealed the surface texture and morphology of the biosorbent.

  11. Biosorption of Cr (Ⅵ), Cr (Ⅲ), Pb (Ⅱ) and Cd (Ⅱ) from Aqueous Solutions by Sargassum wightii and Caulerpa racemosa Algal Biomass

    Institute of Scientific and Technical Information of China (English)

    Narayanaswamy Tamilselvan; Kumar Saurav; Krishnan Kannabiran

    2012-01-01

    Heavy metal pollution is one of the most important environmental problems today.Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake.Even though several physical and chemical methods are available for removal of heavy metals,currently many biological materials such as bacteria,algae,yeasts and fungi have been widely used due to their good performance,low cost and large quantity of availability.The aim of the present study is to explore the biosorption of toxic heavy metals,Cr(Ⅵ),Cr(Ⅲ),Pb(Ⅱ) and Cd(Ⅱ) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green).Biosorption of algal biomass was found to be biomass concentration- and pH-dependent,while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mgL-1.S.wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1,followed by C.racemosa with the maximal biosorption at 30gL1.S.wightii showed 78% biosorption of Cr(Ⅵ),Cr(Ⅲ),Pb(Ⅱ) and Cd(Ⅱ) ions.C.racemosa exhibited 85% biosorption of Cd(Ⅱ) and Cr(Ⅵ),and 50% biosorption of Cr(Ⅲ) and Pb(Ⅱ).The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  12. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite.

    Science.gov (United States)

    Zheng, Xin-Yan; Wang, Xiao-Yu; Shen, Yang-Hao; Lu, Xia; Wang, Tie-Shan

    2017-05-01

    Biosorption of heavy metal elements including radionuclides by microorganisms is a promising and effective method for the remediation of the contaminated places. The responses of live Saccharomyces cerevisiae in the toxic uranium solutions during the biosorption process and the mechanism of uranium biomineralization by cells were investigated in the present study. A novel experimental phenomenon that uranium concentrations have negative correlation with pH values and positive correlation with phosphate concentrations in the supernatant was observed, indicating that hydrogen ions, phosphate ions and uranyl ions were involved in the chernikovite precipitation actively. During the biosorption process, live cells desorb deposited uranium within the equilibrium state of biosorption system was reached and the phosphorus concentration increased gradually in the supernatant. These metabolic detoxification behaviours could significantly alleviate uranium toxicity and protect the survival of the cells better in the environment. The results of microscopic and spectroscopic analysis demonstrated that the precipitate on the cell surface was a type of uranium-phosphate compound in the form of a scale-like substance, and S. cerevisiae could transform the uranium precipitate into crystalline state-tetragonal chernikovite [H2(UO2)2(PO4)2·8H2O]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism.

    Science.gov (United States)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Lan, Tu; Li, Feize; Zhang, Dong; Yang, Jijun; Yang, Yuanyou; Luo, Shunzhong; Tang, Jun; Liu, Ning

    2014-09-01

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process.

  14. Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: a statistical design approach.

    Science.gov (United States)

    Pamukoglu, M Yunus; Kargi, Fikret

    2009-04-01

    Biological treatment of synthetic wastewater containing Cu(II) ions was realized in an activated sludge unit with pre-adsorption of Cu(II) onto powdered waste sludge (PWS). Box-Behnken experimental design method was used to investigate Cu(II), chemical oxygen demand (COD) and toxicity removal performance of the activated sludge unit under different operating conditions. The independent variables were the solids retention time (SRT, 5-30 d), hydraulic residence time (HRT, 5-25 h), feed Cu(II) concentration (0-50 mg L(-1)) and PWS loading rate (0-4 g h(-1)) while percent Cu(II), COD, toxicity (TOX) removals and the sludge volume index (SVI) were the objective functions. The data were correlated with a quadratic response function (R2=0.99). Cu(II), COD and toxicity removals increased with increasing PWS loading rate and SRT while decreasing with the increasing feed Cu(II) concentration and HRT. Optimum conditions resulting in maximum Cu(II), COD, toxicity removals and SVI values were found to be SRT of 30 d, HRT 15 h, PWS loading rate 3 g h(-1) and feed Cu(II) concentration of less than 30 mg L(-1).

  15. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Omidi, Fariborz [Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud (Iran, Islamic Republic of); Behbahani, Mohammad, E-mail: mohammadbehbahai89@yahoo.com [Department of Chemistry, Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of); Kalate Bojdi, Majid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Shahtaheri, Seyed Jamaleddin [Department of Occupational Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe{sub 3}O{sub 4}@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe{sub 3}O{sub 4}@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe{sub 3}O{sub 4}@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe{sub 3}O{sub 4}@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L{sup –1} and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g{sup −1}. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results. - Highlights: • The introducing of modified magnetic mesoporous silica as a novel magnetic sorbent. • Trace monitoring of cadmium ions. • The limit of detection (LOD) by the proposed solid phase extraction method was 0.04 ng mL{sup −1} for the cadmium ions. • High surface areas and magnetic characteristic of the sorbent. • Maximum adsorption capacity of the sorbent was 154 mg g{sup −1}.

  16. Removing cadmium from electroplating wastewater by waste saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    DAI Shu-juan; WEI De-zhou; ZHOU Dong-qin; JIA Chun-yun; WANG Yu-juan; LIU Wen-gang

    2008-01-01

    The appropriate condition and scheme of removing cadmium from electroplating wastewater were investigated by adsorption-precipitation method using waste saccharomyces cerevisiae(WSC) as sorbent. Effect factors on biosorption of cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae and precipitation process of waste saccharomyces cerevisiae after adsorbing cadmium were studied. The results show that removal rate of cadmium is over 88% after 30 min adsorbing under the condition of cadmium concentration 26 mg/L, the dosage of waste saccharomyces cerevisiae 16.25 g/L, temperature 18 ℃, pH 6.0 and precipitation time 4 h. Biosorption-precipitation method is effective to remove cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae. The SEM, infrared spectroscopy and Zeta-potential of the cells show that chemical chelating is the main adsorption form; electrostatic attraction, hydrogen bonding and van der Waals force all function in adsorption process; and ―NH2―,―C=O―,―C=O―NH―,―CH3, ―OH are the main adsorption groups.

  17. Biosorption of Ni(II, Cr(III, and Co(II from Solutions Using Acalypha hispida Leaf: Kinetics, Equilibrium, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Adesola Babarinde

    2013-01-01

    Full Text Available Biosorption studies were conducted to study the removal of Ni(II, Cr(III, and Co(II from aqueous solution of Acalypha hispida leaf. The FTIR spectral characteristics of Acalypha hispida leaf revealed the presence of ioniazable groups that could participate in the binding of metal ions in solution. The kinetic, equilibrium, and thermodynamic studies of the biosorption of the metal ions were investigated using various physicochemical parameters; each parameter was found to affect the biosorption process. The kinetic studies showed that the biosorption process was best represented by pseudo-second-order kinetics among four kinetic models tested. Equilibrium data were better represented by Freundlich isotherm among Langmuir and Freundlich adsorption isotherms. The study on the effect of dosage showed that the dosage of the biomass significantly affected the uptake of the metal ions from solution. Thermodynamic parameters such as standard Gibbs-free energy (, standard enthalpy (, standard entropy (, and the activation energy were calculated. The order of spontaneity of the biosorption process was found to be Cr(III > Ni(II > Co(II. The activation energy for the biosorption of each of the metal ions was less than 42 kJmol−1 at 323 K indicating that each was a diffusion-controlled process.

  18. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Fadel

    2017-04-01

    Full Text Available Heavy metal pollution has become one of the most serious environmental problems today. Biological methods such as biosorption or bioaccumulation strategies for the removal of metals ions may provide an attractive alternative to existing technologies. Microorganisms, as heavy metal bioadsorbents, offer a new alternative for removal of toxic or valuable metals in water. Saccharomyces cerevisiae has received increasing attention due to its unique nature and capacity for metal sorption. It is one of the most promising biosorbents capable of removing metal ions from aqueous solution. Manganese occurs naturally in many surface water and groundwater sources and in soils that may erode into this water. Eleven S. cerevisiae yeast strains in alive and dead forms were screened for biosorption and bioaccumulation of manganese from artificial aqueous solution. S. cerevisiae F-25 in alive form was found to be highly biosorbent for Mn+2 and biosorbed 22.5 mg Mn+2/gm yeast biomass. Optimization of environmental conditions reveals that optimum concentrations for maximum Mn2+ biosorption by S. cerevisiae F-25 in alive form were 4.8 mg Mn2+/l after 30 min at pH 7, agitation 150 rpm and yeast biomass concentration 0.1 gm/l at 30 °C. Competition of Mn+2 with other heavy metals shows that Mn+2 in control sample without, any other heavy metals added in solution at 4.8 mg/l of the biosorbed Mn+2 was 41.3 mg/g biomass. Addition of other heavy metals affects the percent of biosorbed Mn+2.

  19. Application of artificial neural network (ANN in Biosorption modeling of Chromium (VI from aqueous solutions

    Directory of Open Access Journals (Sweden)

    F Mohammadi

    2016-03-01

    Full Text Available Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated. Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN. Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized. Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984 with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results. Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be

  20. Equilibrium, kinetic and thermodynamic studies on aluminum biosorption by a mycelial biomass (Streptomyces rimosus)

    Energy Technology Data Exchange (ETDEWEB)

    Tassist, Amina, E-mail: aminatassist@yahoo.fr [Laboratory of Environmental Biotechnologies and Process Engineering, BIOGEP, Polytechnic National School of Algiers, Hacen Badi, El Harrach, Algiers (Algeria); Lounici, Hakim; Abdi, Nadia; Mameri, Nabil [Laboratory of Environmental Biotechnologies and Process Engineering, BIOGEP, Polytechnic National School of Algiers, Hacen Badi, El Harrach, Algiers (Algeria)

    2010-11-15

    This work focused on kinetic, equilibrium and thermodynamic studies on aluminum biosorption by Streptomyces rimosus biomass. Infrared spectroscopy analysis shows that S. rimosus present some groups: hydroxyl, methyl, carboxyl, amine, thiol and phosphate. The maximum biosorption capacity of S. rimosus biomass was found to be 11.76 mg g{sup -1} for the following optimum conditions: particle size,]250-560] {mu}m, pH 4-4.25, biomass content of 25 g L{sup -1}, agitation of 250 rpm and temperature of 25 deg. C. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms at free pH (pH{sub i} 4) and fixed pH (pH{sub f} 4). Langmuir model is the most adequate. With fixed pH, the maximum biosorption capacity is enhanced from 6.62 mg g{sup -1} to 11.76 mg g{sup -1}. The thermodynamic parameters ({Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o}) showed the feasibility, endothermic and spontaneous nature of the biosorption at 10-80 deg. C. The activation energy (Ea) was determined as 52.18 kJ mol{sup -1} using the Arrhenius equation and the rate constant of pseudo-second-order model (the most adequate kinetic model). The mean free energy was calculated as 12.91 kJ mol{sup -1} using the D-R isotherm model. The mechanism of Al(III) biosorption on S. rimosus could be a chemical ion exchange and carboxyl groups are mainly involved in this mechanism.

  1. Equilibrium, kinetic and thermodynamic studies on aluminum biosorption by a mycelial biomass (Streptomyces rimosus).

    Science.gov (United States)

    Tassist, Amina; Lounici, Hakim; Abdi, Nadia; Mameri, Nabil

    2010-11-15

    This work focused on kinetic, equilibrium and thermodynamic studies on aluminum biosorption by Streptomyces rimosus biomass. Infrared spectroscopy analysis shows that S. rimosus present some groups: hydroxyl, methyl, carboxyl, amine, thiol and phosphate. The maximum biosorption capacity of S. rimosus biomass was found to be 11.76 mg g(-1) for the following optimum conditions: particle size, [250-560] μm, pH 4-4.25, biomass content of 25 g L(-1), agitation of 250 rpm and temperature of 25 °C. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms at free pH (pH(i) 4) and fixed pH (pH(f) 4). Langmuir model is the most adequate. With fixed pH, the maximum biosorption capacity is enhanced from 6.62 mg g(-1) to 11.76 mg g(-1). The thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed the feasibility, endothermic and spontaneous nature of the biosorption at 10-80 °C. The activation energy (Ea) was determined as 52.18 kJ mol(-1) using the Arrhenius equation and the rate constant of pseudo-second-order model (the most adequate kinetic model). The mean free energy was calculated as 12.91 kJ mol(-1) using the D-R isotherm model. The mechanism of Al(III) biosorption on S. rimosus could be a chemical ion exchange and carboxyl groups are mainly involved in this mechanism.

  2. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  3. Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism.

    Science.gov (United States)

    Jin, Yu; Wang, Xin; Zang, Tingting; Hu, Yang; Hu, Xiaojing; Ren, Guangming; Xu, Xiuhong; Qu, Juanjuan

    2016-08-28

    In the present work, Arthrobacter sp. 25, a lead-tolerant bacterium, was assayed to remove lead(II) from aqueous solution. The biosorption process was optimized by response surface methodology (RSM) based on the Box-Behnken design. The relationships between dependent and independent variables were quantitatively determined by second-order polynomial equation and 3D response surface plots. The biosorption mechanism was explored by characterization of the biosorbent before and after biosorption using atomic force microscopy (AFM), scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the maximum adsorption capacity of 9.6 mg/g was obtained at the initial lead ion concentration of 108.79 mg/l, pH value of 5.75, and biosorbent dosage of 9.9 g/l (fresh weight), which was close to the theoretically expected value of 9.88 mg/g. Arthrobacter sp. 25 is an ellipsoidalshaped bacterium covered with extracellular polymeric substances. The biosorption mechanism involved physical adsorption and microprecipitation as well as ion exchange, and functional groups such as phosphoryl, hydroxyl, amino, amide, carbonyl, and phosphate groups played vital roles in adsorption. The results indicate that Arthrobacter sp. 25 may be potentially used as a biosorbent for low-concentration lead(II) removal from wastewater.

  4. Synthesis And Characterization Of An Ion Imprinted Polymer For Cadmium Using Quinaldic Acid As Complexing Agent And Applying By Microwave

    Directory of Open Access Journals (Sweden)

    Asmawati

    2015-01-01

    Full Text Available Abstract A Cd2 Ion Imprinted Polymer Cd-IIP has been synthesized by copolymerizaton of cadmium ion quinaldic acid complexing agent 4-vynil pyridine monomer dimethyl sulfoxide solvent ethyleneglycoldimethacrylate EGDMA cross-linker and 22-azobis-isobutyronitrile AIBN initiator. Polymerization was conducted using a microwave at a temperature of 70 oC with heating times of 45 minutes. The template Cd2 was removed by leaching the template with ethanol and 4 M HCl washed by aquabidest and dried in an oven at the temperature of 60oC. The polymer particles imprinted and nonimprinted were characterized using fourir transform infrared FTIR spectroscopy scanning electron microscopy SEM and energy dispersive spectroscopy EDS. The result showed that using heating time 45 minutes at temperature 70 oC the particle morphology is viewed like as the large homogeneous. So the imprinted polymer had bands at 3483 cm-1 1726 cm-1 and 1155 cm-1 indicating the presence of OH CO and C-O respectively.

  5. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea, Republic of)], E-mail: jchoi@kist.re.kr; Lee, Ju Young; Yang, Jung-Seok [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2009-01-15

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI) > Pb > Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.

  6. New Hydrodynamic Electrochemical Arrangement for Cadmium Ions Detection Using Thick-Film Chemical Sensor Electrodes

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2006-11-01

    Full Text Available Miniaturization and integration of chemical devices into modules that aredimensionally comparable with electronic chips (Lab on Chip is nowadays developingworldwide. The aim of our work was to suggest and optimize the best conditions forfabrication of TFT sensor due to its sensitivity and low experimental deviations. Newelectrochemical analytical device was developed to ensure certain known mass transport toelectrodes, which is the most limiting process that influencing the response quality of thesensor. The device consists from rotating conic vessel for measured sample and stick-inthick-film sensor. The sensors responses were tested under trace analysis of cadmium.Measurements were done also with the others electrochemical arrangements to comparewith the new one. The sensor output current response dependence on the liquid velocity andgeometrical arrangement within using standard electrochemical couple of potassiumferrocyanide-ferricyanide is presented. We found out that the new device with controlledflow of electrolyte to sensor worked properly and gave satisfactory results.

  7. Biosorption of Nickel from Industrial Wastewater using Zygnema sp.

    Science.gov (United States)

    Sivaprakash, Kanchana; Blessi T. L., Adlin; Madhavan, Jeyanthi

    2015-12-01

    Contamination of water sources with heavy metals is a very important pollution problem in the current scenario. Biosorption is an effective method for the removal of heavy metal ions from wastewaters. In this study, the removal of Nickel(II) ions from electroplating industrial wastewater using biosorbent prepared from fresh water algal biomass Zygnema was investigated under batch mode. The sorption efficiency of nickel on Zygnema sp. was evaluated as a function of time, pH and sorbent dosage. The Nickel(II) uptake was dependent on initial pH with pH 3 being the optimum value. For 100 mg/L initial Nickel(II) concentration, sorption equilibrium was attained at a contact time of 100 min. The sorbent dosage affected the biosorption efficiency and maximum removal of 76.4 % was obtained at a dosage of 7.5 g/L. From the performance studies, algal biosorbent Zygnema is found to be a valuable material for the removal of Nickel from industrial wastewater and a better substitute for the conventional adsorbents.

  8. Incorporation of sulfide ions into the cadmium(II) thiolate cluster of Cicer arietinum metallothionein2.

    Science.gov (United States)

    Wan, Xiaoqiong; Freisinger, Eva

    2013-01-18

    The plant metallothionein2 from Cicer arietinum (chickpea), cic-MT2, is known to coordinate five divalent metal ions such as Zn(II) or Cd(II), which are arranged in a single metal thiolate cluster. When the Zn(II) form of the protein is titrated with Cd(II) ions in the presence of sulfide ions, an increased Cd(II) binding capacity and concomitant incorporation of sulfide ions into the cluster are observed. The exact stoichiometry of this novel cluster, its spectroscopic properties, and the significantly increased pH stability are analyzed with different techniques, including UV and circular dichroism spectroscopy and colorimetric assays. Limited proteolytic digestion provides information about the spacial arrangement of the cluster within the protein. Increasing the Cd(II) scavenging properties of a metallothionein by additionally recruiting sulfide ions might be an economic and very efficient detoxification strategy for plants.

  9. Biosorption of heavy metals by free and immobilised biomass

    Energy Technology Data Exchange (ETDEWEB)

    Beolchini, F. [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli studi de L' Aquila (Italy); Pagnanelli, F.; Toro, L. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' ' La Sapienza' ' , Roma (Italy); Esposito, A.; Veglio, F. [Dipartimento di Ingegneria Chimica e di Processo ' ' G.B. Bonino' ' , Universita degli Studi di Genova, Genova (Albaro) (Italy)

    2000-07-01

    A review of the research activities carried out by the authors on biosorption of heavy metals is reported in this work. In particular, biomass characterisation, biosorption equilibrium with single metal system, biomass immobilisation in polymeric matrix and related kinetics, biosorption in membrane reactor systems are the main aspects reported in the paper. (orig.)

  10. Heavy Metal Biosorption Sites Studies of Laminaria japonica

    Institute of Scientific and Technical Information of China (English)

    QIAN Aihong; WANG Xian; DENG Yongzhi; CHEN Lidan

    2005-01-01

    The role played by the functional groups of Laminaria japonica treated by methanol and formaldehyde in biosorption of the heavy metals was investigated.Infrared spectroscopy analysis and biosorption experiments show that both carboxyl and amino groups join in the sorption; chemical treatment decreased the biosorption efficiency of the heavy metals.

  11. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline

    Institute of Scientific and Technical Information of China (English)

    JIANG Kan; SUN Tie-heng; SUN Li-na; LI Hai-bo

    2006-01-01

    The adsorption characteristics of heavy metals: Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently fiom aqueous solution with selectivity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Cd(Ⅱ)>Zn(Ⅱ).The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium.Tourmaline could also increase pH value of metal solution. Themaximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ), respectively. The temperature (25-55℃) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb>Cu>Zn>Cd and inhibition dominance observed in two metal systems was Pb>Cu, Pb>Zn, Pb>Cd, Cu>Zn, Cu>Cd, and Cd>Zn.

  12. Biosorption of nanoparticles to heterotrophic wastewater biomass.

    Science.gov (United States)

    Kiser, Mehlika A; Ryu, Hodon; Jang, Hyunyoung; Hristovski, Kiril; Westerhoff, Paul

    2010-07-01

    Sorption to activated sludge is a major removal mechanism for pollutants, including manufactured nanoparticles (NPs), in conventional activated sludge wastewater treatment plants. The objectives of this work were to (1) image sorption of fluorescent NPs to wastewater biomass; (2) quantify and compare biosorption of different types of NPs exposed to wastewater biomass; (3) quantify the effects of natural organic matter (NOM), extracellular polymeric substances (EPS), surfactants, and salt on NP biosorption; and (4) explore how different surface functionalities for fullerenes affect biosorption. Batch sorption isotherm experiments were conducted with activated sludge as sorbent and a total of eight types of NPs as sorbates. Epifluorescence images clearly show the biosorption of fluorescent silica NPs; the greater the concentration of NPs exposed to biomass, the greater the quantity of NPs that biosorb. Furthermore, biosorption removes different types of NPs from water to different extents. Upon exposure to 400 mg/L total suspended solids (TSS) of wastewater biomass, 97% of silver nanoparticles were removed, probably in part by aggregation and sedimentation, whereas biosorption was predominantly responsible for the removal of 88% of aqueous fullerenes, 39% of functionalized silver NPs, 23% of nanoscale titanium dioxide, and 13% of fullerol NPs. Of the NP types investigated, only aq-nC(60) showed a change in the degree of removal when the NP suspension was equilibrated with NOM or when EPS was extracted from the biomass. Further study of carbonaceous NPs showed that different surface functionalities affect biosorption. Thus, the production and transformations in NP surface properties will be key factors in determining their fate in the environment.

  13. Biosorption of uranium in radioactive liquid organic waste by coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Marumo, Julio Takehiro; Ferreira, Eduardo Gurzoni Alvares; Vieira, Ludmila Cabreira; Ferreira, Rafael Vicente de Padua, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Edson Antonio da, E-mail: edson.silva2@unioeste.br [Universidade Estadual do Oeste do Parana (UNIOESTE), Toledo, PR (Brazil)

    2013-07-01

    Radioactive liquid organic waste needs special attention because the available treatment processes are often expensive and difficult to be managed. Biosorption is a potential technique since it allies low cost with relatively high efficiency. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. Biosorption using vegetable biomass from agricultural waste has become a very attractive technique because it involves the removal of heavy metal ions by low cost biosorbent. This technique could be employed in the treatment of radioactive liquid wastes. Among the biosorbent reported in the literature, coconut fiber (Cocos nucifera L.) is highlighted due to the large number of functional groups in its composition. The aim of this study was to assess the potential of coconut fiber to remove uranium from radioactive liquid organic waste. This work was divided into three stages: 1) Preparation and activation of the coconut fiber; 2) Physical characterization of the biomass, 3) Batch biosorption experiments. Two forms of coconut fiber were tested, raw and activated. The activation was performed with dilute HNO3 and NaOH solutions. The parameters evaluated for physical characterization of biomass were morphological characteristics of coconut fiber, real and apparent density and surface area. The biomass was suspended in 10 ml of solutions prepared with distillate water and radioactive liquid waste for 2 hours in the proportion of 0.2% w/v. After the contact time, the coconut fiber was removed by filtration and the supernatant, analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES).The results were evaluated using Langmuir and Freundlich isotherms. The maximum capacity for the raw coconut fiber was lower than the activated one, removing only 1.14mg/g against 2.61mg/g. These results suggest that biosorption with coconut fiber in activated form can be applied in the

  14. Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II and Cd(II ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Sadia Waseem

    2014-12-01

    Full Text Available In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°, enthalpy change (ΔH° and entropy change (ΔS° have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.

  15. Biosorption of Am-241 and Cs-137 by radioactive liquid waste by coffee husk

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi; Bellini, Maria Helena; Marumo, Julio Takehiro, E-mail: jtmarumo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Radioactive Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP, has stored many types of radioactive liquid wastes, including liquid scintillators, mixed wastes from chemical analysis and spent decontamination solutions. These wastes need special attention, because the available treatment processes are often expensive and difficult to manage. Biosorption using biomass of vegetable using agricultural waste has become a very attractive technique because it involves the removal of heavy metals ions by low cost biossorbents. The aim of this study is to evaluate the potential of the coffee husk to remove Am-241 and Cs-137 from radioactive liquid waste. The coffee husk was tested in two forms, treated and untreated. The chemical treatment of the coffee husk was performed with HNO{sub 3} and NaOH diluted solutions. The results showed that the coffee husk did not showed significant differences in behavior and capacity for biosorption for Am-241 and Cs-137 over time. Coffee husk showed low biosorption capacity for Cs-137, removing only 7.2 {+-} 1.0% in 4 hours of contact time. For Am-241, the maximum biosorption was 57,5 {+-} 0.6% in 1 hours. These results suggest that coffee husk in untreated form can be used in the treatment of radioactive waste liquid containing Am-241. (author)

  16. Adsorption studies of cadmium ions on alginate-calcium carbonate composite beads

    Science.gov (United States)

    Mahmood, Zahid; Amin, Athar; Zafar, Uzma; Raza, Muhammad Amir; Hafeez, Irfan; Akram, Adnan

    2017-05-01

    Alginate-calcium carbonate composite material was prepared in the form of beads and characterized using Fourier transform infra red (FT-IR) spectroscopy and scanning electron microscope (SEM) techniques. The adsorption of Cd2+ ions was studied through batch experiments. The adsorption parameters such as contact time (120 min), adsorbent dose (1.5 g), initial metal ion concentration(10 mg/L), pH (6) and agitation speed (150 rpm) were optimized at room temperature. Langmuir and Freundlich isotherms were applied to the data and it was noted that the adsorption of Cd2+ ions is better explained by Freundlich model. The kinetic studies showed that the adsorption of Cd2+ ions followed pseudo-first order kinetics. Thermodynamic parameters like ∆ G 0, ∆ H 0 and ∆ S 0 were calculated and on the basis of these values it was established that the adsorption process is feasible and endothermic in nature. It was concluded from the study that the composite material of alginate and calcium carbonate can effectively be used to recover Cd2+ ions from wastewater.

  17. Adsorptive removal of lead and cadmium ions using Cross -linked CMC Schiff base: Isotherm, Kinetics and Catalytic Activity

    Directory of Open Access Journals (Sweden)

    P. Moganavally

    2016-03-01

    Full Text Available Water plays a vital role to human and other living organisms. Due to the effluent coming from chemical industries, the industrial activity, contamination of ground water level is goes on increasing nowadays. Therefore, there is a need to develop technologies that can remove toxic pollutants in wastewater. Hence the cross linked Carboxymethyl chitosan(CMC/ 2,3-dimethoxy Benzaldehyde Schiff base complex has been synthesized and characterized by using FT-IR and SEM analysis. All these results revealed that cross linked Schiff base has formed with high adsorption capacity. The prepared effective adsorbent used for the removal of heavy metals like lead (II and cadmium (II ions from aqueous solution and the adsorption data follow the Freundlich model, which follows pseudo first order kinetics. Effect of various parameters like solution pH, adsorbent dose and contact time for the removal of heavy metals has been studied. The synthesized sample undergoes catalytic oxidation process significantly at 24 hrs. The results showed that cross linked Schiff base is an effective, eco-friendly, low-cost adsorbent.

  18. Biphasic effect of cadmium ions on the secretion of leukotriene B{sub 4} in rabbit alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Naomi [Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-01 (Japan)]|[Faculty of Pharmaceutical Sciences, Josai University, Keyakidai 1-1, Sakado, Saitama 350-02 (Japan); Nakagawa, Yasuhito [School of Pharmaceutical Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108 (Japan); Waku, Keizo [Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-01 (Japan)

    1996-10-01

    One major role of alveolar macrophages is the production of eicosanoids, which modulate immune and inflammatory processes in the lung. In this study, the effects were investigated of cadmium ions on the secretion of leukotriene (LT)B{sub 4} and prostaglandin (PG)E{sub 2}, predominant products of lipoxygenase and cyclooxygenase, respectively. Cd{sup 2+} had an inhibitory effect on the secretion of LTB{sub 4} and PGE{sub 2} in response to A23187 stimulation at concentrations >3 x 10{sup -5} M. This effect can be explained by the inhibition of arachidonic acid (20 : 4) liberation from membrane phospholipids by Cd{sup 2+}, because Cd{sup 2+} inhibits both [{sup 3}H]arachidonic acid (20 : 4) liberation from [{sup 3}H]20 : 4-prelabeled macrophages and the cytosolic phospholipase A{sub 2} activity. At concentrations <3 x 10{sup -5} M, Cd{sup 2+} had no effect on PGE{sub 2} secretion but showed an augmentation of LTB{sub 4} secretion. In vitro study using macrophage lysate showed enhanced LTB{sub 4} synthesis from arachidonic acid by Cd{sup 2+}, which could be responsible for the augmentation of LTB{sub 4} secretion in cells. These results indicate that Cd{sup 2+} may increase inflammation by increasing LTB{sub 4} production in lung. (orig.). With 5 figs., 2 tabs.

  19. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    Science.gov (United States)

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h.

  20. Recovery of rare earth metals through biosorption:An overview

    Institute of Scientific and Technical Information of China (English)

    Nilanjana Das; Devlina Das

    2013-01-01

    Rare earth metals (REMs) are a series of 17 elements that have widespread and unique applications in high technology, power generation, communications, and defense industries. These resources are also pivotal to emergent sustainable energy and car-bon alternative technologies. Recovery of REMs is interesting due to its high market prices along with various industrial applications. Conventional technologies, viz. precipitation, filtration, liquid-liquid extraction, solid-liquid extraction, ion exchange, super critical extraction, electrowinning, electrorefining, electroslag refining, etc., which have been developed for the recovery of REMs, are not economically attractive. Biosorption represents a biotechnological innovation as well as a cost effective excellent tool for the recovery of rare earth metals from aqueous solutions. A variety of biomaterials such as algae, fungi, bacteria, resin, activated carbon, etc., have been reported to serve as potential adsorbents for the recovery of REMs. The metal binding mechanisms, as well as the parameters in-fluencing the uptake of rare earth metals and isotherm modeling are presented here. This article provides an overview of past achievements and current scenario of the biosorption studies carried out using some promising biosorbents which could serve as an economical means for recovering REMs. The experimental findings reported by different workers will provide insights into this re-search frontier.

  1. Sawdust-A green and economical sorbent for the removal of cadmium (II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Memon, Saima Q. [M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro (Pakistan)]. E-mail: msaima77@gmail.com; Memon, Najma [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro (Pakistan); Shah, S.W. [School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan (Malaysia); Khuhawar, M.Y. [M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro (Pakistan); Bhanger, M.I. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro (Pakistan)

    2007-01-02

    The ability of sawdust (treated and untreated) waste, a waste material derived from the commercial processing of cedrus deodar wood for furniture production, to remove/preconcentrate Cd(II) ions from aqueous solution was determined. Sorption was found to be rapid ({approx}97% within 8 min). The binding of metal ions was found to be pH dependent, optimal sorption accruing at around pH 4-8. Potentiometric titrations of sawdust revealed two distinct pK {sub a} values, the first having the value similar to carboxylic groups (3.3-4.8) and second comparable with that of amines (8.53-10.2) with the densities 1.99 x 10{sup -4} and 7.94 x 10{sup -5}, respectively. Retained Cd(II) ions were eluted with 5 ml of 0.1 mol l{sup -1} HCl. Detection limit of 0.016 {mu}g ml{sup -1} was achieved with enrichment factors of 120. Recovery was quantitative using sample volume of 600 ml. The Langmuir and D-R isotherm equations were used to describe partitioning behavior for the system at different temperatures. Kinetic and thermodynamic behavior of sawdust for Cd(II) ions removal was also studied.

  2. Biosorption of Ni(II, Pb(II and Zn(II on calcium alginate beads: equilibrium, kinetic and mechanism studies

    Directory of Open Access Journals (Sweden)

    Nastaj Józef

    2016-09-01

    Full Text Available The biosorption process of three divalent metal ions – nickel, lead and zinc- from on calcium alginate from aqueous solution was studied, in single component systems. The biosorbent were investigated by Fourier Transform Infrared Spectroscopy. The batch mode experiments of the adsorption process were carried out as a function of pH, initial metal ions concentration, sorbent dosage and contact time. The adsorption influencing parameters for the maximum removal of metal ions were optimized. The experimental data were analyzed using the Langmuir, Freundlich, Langmuir-Freundlich, Koble-Corrigan and Redlich-Peterson models. The kinetic data of biosorption process were evaluated using pseudo-first and pseudo-second order equations. The Weber and Morris model was employed to interpret the metal ions diffusion in biosorption process.

  3. Influence of Cadmium(II Ions and Brewery Sludge on Metallothionein Level in Earthworms (Eisenia fetida – Bio- transforming of Toxic Wastes

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-02-01

    Full Text Available Metallothioneins belong to a group of intracellular, high molecular andcysteine-rich proteins whose content in an organism increase with increasing concentrationof a heavy metal. The aim of this work was to apply the electrochemical analysis for theanalysis of metallothioneins in earthworms exposed to cadmium ions and brewery sludge.Here we utilized adsorptive transfer technique coupled with differential pulse voltammetryBrdicka reaction to determine metallothionein in different biological samples. By meansthis very sensitive technique it was possible to analyze metallothionein in concentrationsbelow 1 μmol.l-1 with the standard deviation of 4-5%. We found out that the average MTlevel in the non-treated earthworms oscillated between 19 and 48 μmol.l-1. When weanalysed samples of earthworms treated by cadmium, we observed that the MT contentincreased with the exposition length and increase dose of cadmium ions. Finally, weattempted to study and compare the toxicity of the raw sludge and its leach by using ofearthworms. The raw brewery sludge caused the death of the earthworms quickly.Earthworms held in the presence of leach from brewery sludge increased their weight of147 % of their original weight because they ingested the nutrients from the sludge. Themetallothionein level changes markedly with increasing time of exposition and applieddose of toxic compound. It clearly follows from the obtained results that the MT synthesisis insufficient in the first hours of the exposition and increases after more than 24 h.

  4. Biosorption kinetics, thermodynamics and isosteric heat of sorption of Cu(II) onto Tamarindus indica seed powder.

    Science.gov (United States)

    Chowdhury, Shamik; Saha, Papita Das

    2011-12-01

    Biosorption of Cu(II) by Tamarindus indica seed powder (TSP) was investigated as a function of temperature in a batch system. The Cu(II) biosorption potential of TSP increased with increasing temperature. The rate of the biosorption process followed pseudo second-order kinetics while the sorption equilibrium data well fitted to the Langmuir and Freundlich isotherm models. The maximum monolayer Cu(II) biosorption capacity increased from 82.97 mg g(-1) at 303 K to 133.24 mg g(-1) at 333 K. Thermodynamic study showed spontaneous and endothermic nature of the sorption process. Isosteric heat of sorption, determined using the Clausius-Clapeyron equation increased with increase in surface loading showing its strong dependence on surface coverage. The biosorbent was characterized by scanning electron microscopy (SEM), surface area and porosity analyzer, X-ray diffraction (XRD) spectrum and Fourier transform infrared (FTIR) spectroscopy. The results of FTIR analysis of unloaded and Cu(II)-loaded TSP revealed that -NH(2), -OH, -C=O and C-O functional groups on the biosorbent surface were involved in the biosorption process. The present study suggests that TSP can be used as a potential, alternative, low-cost biosorbent for removal of Cu(II) ions from aqueous media.

  5. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2009-04-15

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH{sub 2} groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions.

  6. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions.

    Science.gov (United States)

    Gupta, V K; Rastogi, A

    2009-04-15

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH(2) groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions.

  7. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekyapar, Fatma [Engineering Faculty, Department of Environmental Engineering, Atatuerk University, Erzurum 25240 (Turkey)]. E-mail: fyapar@atauni.edu.tr; Aslan, Ali [Education Faculty, Department of Biology, Atatuerk University, Erzurum 25240 (Turkey); Bayhan, Y. Kemal [Engineering Faculty, Department of Environmental Engineering, Atatuerk University, Erzurum 25240 (Turkey); Cakici, Avni [Engineering Faculty, Department of Environmental Engineering, Atatuerk University, Erzurum 25240 (Turkey)

    2006-09-01

    Biosorption of heavy metals can be an effective process for the removal of heavy metal ions from aqueous solutions. In this study, the adsorption properties of lichen biomass of Cladonia rangiformis hoffm. for copper(II) were investigated by using batch adsorption techniques. The effects of initial metal ion concentration, initial pH, biosorbent concentration, stirring speed and contact time on biosorption efficiency were studied. In the experiments the optimum pH value was found out 5.0 which was the native pH value of solution. The experimental adsorption data were fitted to the Langmuir adsorption model. The highest metal uptake was calculated from Langmuir isotherm and found to be 7.6923 mg Cu(II)/g inactivated lichen at 15 deg. C. The results indicated that the biomass of C. rangiformis is a suitable biosorbent for removing Cu(II) from aqueous solutions.

  8. BIOSORPTION AND RECOVERY OF HEAVY METALS FROM AQUEOUS SOLUTIONS BY EICHHORNIA CRASSIPES (WATER HYACINTH ASH

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood

    2010-04-01

    Full Text Available Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes, was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 µgg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in µgg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash.

  9. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...

  10. Photocatalytic Oxidation of Hydrosulfide Ions by Molecular Oxygen Over Cadmium Sulfide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, A. E., E-mail: photochem@e-mail.ru; Stroyuk, A.L., E-mail: photochem@e-mail.ru; Kuchmii, S.Ya. [National Academy of Sciences of Ukraine, L. V. Pysarzhevsky Institute of Physical Chemistry (Ukraine)], E-mail: photochem@e-mail.ru

    2004-06-15

    Photocatalytic activity of CdS nanoparticles in hydrosulfide-ions air oxidation was revealed and thoroughly investigated. HS{sup -} photooxidation in the presence of CdS nanoparticles results predominantly in the formation of SO{sub 3}{sup 2-} and SO{sub 4}{sup 2-} ions. Photocatalytic activity of ultrasmall CdS crystallites in HS{sup -} photooxidation is much more pronounced as compared to bulk CdS crystals due to high surface area of nanoparticles, their negligible light scattering, improved separation of photogenerated charge carriers etc. It was shown that hydrosulfide ions can be oxidized in two ways. The first is HS{sup -} oxidation by the CdS valence band holes. This process rate depends on the rate of comparatively slow reaction between molecular oxygen and CdS conduction band electrons. The second reaction route is the chain-radical HS{sup -} oxidation induced by photoexcited CdS nanoparticles and propagating in the bulk of a solution. In conditions favourable to chain-radical oxidation of HS{sup -}(i.e. at low light intensities and CdS concentration and high oxygen and Na{sub 2}S concentrations) quantum yields of the photoreaction reach 2.5.

  11. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Science.gov (United States)

    Omidi, Fariborz; Behbahani, Mohammad; Kalate Bojdi, Majid; Shahtaheri, Seyed Jamaleddin

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe3O4@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe3O4@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe3O4@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe3O4@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L-1 and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g-1. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results.

  12. Biosorption of diazinon by a pre-treated alimentary industrial waste: equilibrium and kinetic modeling

    Science.gov (United States)

    Yeddou Mezenner, N.; Lagha, H.; Kais, H.; Trari, M.

    2017-04-01

    This study explores the feasibility of pre-treated coffee waste (PCW) as biosorbent for the removal of diazinon. The effect of the pesticide concentration (6-20 mg L-1), contact time, adsorbent dose (0.2-1.2 g L-1), solution pH (3-11.5), temperature (15-40 °C) and co-existing inorganic ions (H2PO4 -, NO3 -) on the diazinon biosorption over PCW is investigated. The experimental results indicate an optimal pH of 7.3 for the diazinon elimination on PCW (1 g L-1). The Langmuir model describes well the isotherm data with a high regression coefficient (R 2 > 0.990) and a maximum monolayer biosorption capacity of 18.52 mg g-1 at 15 °C. It is also observed that the intra-particle diffusion is not the rate-controlling step. A comparison is evaluated between the pseudo-second-order and intra-particle diffusion kinetic models; the experimental data are well fitted by the pseudo-second-order kinetic model. The biosorption capacity decreases with increasing temperature for a diazinon concentration of 10 mg L-1. The negative enthalpy ΔH° (-63.57 kJ/mol) indicates that the diazinon biosorption onto PCW is exothermic. Under optimal conditions, the biosorption reaches 95% after 90 min. The removal efficiency decreases from 95 to 65.67 and 48.9% for the diazinon alone and in the presence of NO3 - and H2PO4 - (100 mg L-1), respectively.

  13. Bioremediation of cadmium-contaminated water systems using intact and alkaline-treated alga (Hydrodictyon reticulatum) naturally grown in an ecosystem.

    Science.gov (United States)

    Ammari, Tarek G; Al-Atiyat, Marrwa; Abu-Nameh, Eyad S; Ghrair, Ayoup; Jaradat, Da'san; Abu-Romman, Saeid

    2017-05-04

    Cadmium can enter water, soil, and food chain in amounts harmful to human health by industrial wastes. The use of intact and NaOH-treated dried algal tissues (Hydrodictyon reticulatum), a major ecosystem bio-component, for Cd removal from aqueous solutions was characterized. Cadmium biosorption was found to be dependent on solution pH, bioadsorbent dose, the interaction between pH and dose, contact time, and initial Cd concentration. The experimental results indicated that the biosorption performance of alkaline-treated algal tissues was better than that of intact tissues. The maximum biosorption capacities were 7.40 and 12.74 mg g(-1) for intact and alkaline-treated bioadsorbents, respectively, at optimum operating conditions. Biosorption reaches equilibrium after 24 and 240 minutes of contact, respectively, for alkaline-treated and intact bioadsorbents. Cadmium biosorption was best fitted to Langmuir isotherm model (R(2) ≈ 0.99) and the kinetic study obeyed the pseudo-second-order kinetic model, which suggests chemisorption as the rate-limiting step in the biosorption process. Alkaline-treated algal tissues can be used as a new material of low-cost bioadsorbent for continuous flow rate treatment systems.

  14. Neutron activation analysis of cadmium bioremediation by yeast isolated from the fermentation of cachaca

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Frederico H.; Moreira, Luciana M.C.; Porto, Barbara A.A.; Menezes, Maria Angela B.C.; Amaral, Angela M.; Neves, Maria J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: fhr@cdtn.br; Rosa, Carlos A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)], e-mail: carlrosa@icb.ufmg.br

    2009-07-01

    The accumulation of heavy metal in urban environment is a final result of industrial waste discharges. The removal and recovery of heavy metals from contaminated water and wastewater is important in the protection of the environment and human health. There are several chemical technologies used to remove heavy metals. Most of these are ineffective or excessively expensive when the metal concentrations are less than 100 mgL{sup -1}. Biological treatment with bioremediation, is an innovative technology available for heavy metal polluted wastewaters. Brazil has a big production of yeast as a by-product of the fermentation of sugar cane for the production of ethanol or, for the production of artisanal cachaca, notedly in the state of Minas Gerais. Biological organisms remove metals through of two processes: bioaccumulation and biosorption. This research used neutron activation technique to determine the capacity of 10 isolated yeast of the fermentation for the withdrawal of cadmium. The efflux of ions K{sup +}, was also analyzed by the same technique after the incorporation of cadmium by cells. This work showed that the neutron activation analysis is a suitable technique to quantification the metal absorbed from liquid solution and that isolated strains of the fermentation of cachaca are more efficient in removing cadmium of the liquid solution that the laboratorial strain. The influences of the metals on the growth of the cells are also observed. The results obtained were compared with the yeast strain of laboratory, Saccharomyces cerevisiae W303-WT. The tolerance of cadmium to concentration of 100 mgL{sup -1} was evaluated. (author)

  15. Cadmium Alternatives

    Science.gov (United States)

    2012-08-01

    accessories) and be non- reflective Cadmium Replacements – Zinc Nickel Passivated Zinc Nickel Non-hex chrome passivate of high interest, but...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic , and is classified as a priority...including cadmium! Cadmium Replacements (With MIL-DTL-38999 Designations) Zn/Ni (Class Z) Per ASTM B 841, type D (black) Electroless Nickel plus

  16. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    Science.gov (United States)

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process.

  17. Optimization of adsorption process of Cadmium ions from synthetic wastewater using synthesized iron magnetic nanoparticles (Fe3O4

    Directory of Open Access Journals (Sweden)

    Leila Karimi Takanlu

    2014-10-01

    Conclusion: Magnetite nanoparticles exhibit high capability for removal of cadmium. The nanoparticles synthesized could be used at industrial scale because of having the magnetic property, which make them easily recovered from aqueous solution through applying a magnetic field.

  18. Mechanism of thorium biosorption by the cells of the soil fungal isolate Geotrichum sp. dwc-1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Congcong; Feng, Su [Sichuan Univ., Chengdu (China). Key Laboratory of Biological Resource and Ecological Environment; Li, Xiaolong [Sichuan Univ., Chengdu (China). Key Laboratory of Radiation Physics and Technology; and others

    2014-04-01

    In order to understand the impact of microorganisms on the fate of thorium in soils, we investigated the thorium biosorption behavior and the corresponding mechanisms by the cells of Geotrichum sp. dwc-1, one of the dominant species of fungal group isolated from 3.5 m depth soil layer in Southwest China. It was observed that fast thorium adsorption onto cells of G. sp. dwc-1 could take place, with a high distribution coefficient K{sub d} (0.93 mL/mg) obtained, when Geotrichum sp. dwc-1and thorium concentrations were 5 g/L and 10 mg/L, respectively. The thorium biosorption behavior was dependent on the pH value, and the lower pH could disrupt cell membrane of G. sp. dwc-1. At pH 1, thorium was accumulated in the cytoplasmic region of the cells. When pH was higher than 1, thorium was adsorbed on the cell surface of G. sp. dwc-1, like in periplasmic region or in the outer membrane. FTIR study combined with biosorption experiments further indicated that the thorium distribution and binding behavior on cell surface were associated with amino, hydroxyl groups and phosphate or sulphur functional groups, and might also be governed by electrostatic interaction. Moreover, PIXE and EPBS showed that ion-exchange mechanism contributed to the thorium biosorption process, in which the tetravalent thorium ions replaced smaller counter-ions (K{sup +}, Ca{sup 2+} and Fe{sup 3+}) occuring on the cell surface. (orig.)

  19. Review on Biosorption of Radionuclide by Microorganism%微生物吸附放射性核素的研究进展

    Institute of Scientific and Technical Information of China (English)

    曹栩菡; 黄小军; 杨方文; 蒋开勇; 杨迅; 张华芳

    2016-01-01

    Radionuclides pollution has become more and more serious environmental problems today, it needs to be resolved immediately. The recent progress in the field of radioactive waste treatment by means of microorganism was reviewed, which was considered to be an efficient method with low cost and no second pollution. The biosorption capacity of radionuclide by different kids of microbe, mechanisms of biosorption, the influential factors, the regeneration of adsorbent and the biosorption equilibrium isotherm models was analyzed. The biosorption largely depended on parameters such as pH, culture conditions, competitive metal ions in solution and temperature. In addition, the structure of cells, such as active groups on the cell wall and intracellular groups, can also play an important role in the biosorption process. The biosorption capacities of radionuclide by bacteria, actinomycete, fungi and algae were decreased progressively in turn. The biosorption mechanism can separate into two parts. One was extracellular accumulation with high speed, the other was cell surface sorption and intracellular accumulation with low speed. It was considered that the main mechanisms of the biosorption were attributed to the electrostatic sorption, surface complexation, redox, abio-micro-precipitation and enzymatic catalysis, etc. The equilibrium and kinetic models of biosorption systems were also introduced. The commonly used single-component adsorption models have been limited in this paper. In most cases, classic Langmiur model and Freundlich model were widely used to describe single metal biosorption system of equilibrium. And the forecast of the future research direction of biosorption of radionuclides was carried on.%全球核能应用产生的大量废弃放射性核素的累积急待解决,生物吸附法以其原料来源丰富,成本低,无二次污染成为处理该类污染的优选方法。本文综述了生物吸附应用于放射性核素污染处理的研究进展

  20. Multi-instrumental Investigation of Affecting of Early Somatic Embryos of Spruce by Cadmium(II and Lead(II Ions

    Directory of Open Access Journals (Sweden)

    René Kizek

    2007-05-01

    Full Text Available The main aim of this work was to use multi-instrumental analytical apparatus toinvestigate the effects of treatment with cadmium(II and/or lead(II ions (50, 250 and 500μM for twelve days on early somatic spruce embryos (ESEs. Primarily we used imageanalysis for estimation of growth and a fluorimetric sensor for enzymatic detection ofviability of the treated ESEs. It follows from the obtained results that Cd caused highertoxicity to ESEs than Pb. Besides this fundamental finding, we observed that ESEs grewand developed better in the presence of 500 μM of the metal ions than in the presence of250 μM. Based on the results obtained using nuclear magnetic resonance this phenomenonwas related to an increase of the area of ESE clusters by intensive uptake of water from thecultivation medium, due to dilution of the heavy metal concentration inside the cluster. Inaddition we studied the glutathione content in treated ESEs by the adsorptive transferstripping technique coupled with the differential pulse voltammetry Brdicka reaction. GSHcontents increased up to 148 ng/mg (clone 2/32 and 158 ng/mg (clone PE 14 after twelve day long treatment with Cd-EDTA ions. The GSH content was about 150 and 160 % higher in comparison with the ESEs treated with Pb-EDTA ions, respectively. The difference between GSH contents determined in ESEs treated with Pb-EDTA and Cd-EDTA ions correlates with the higher toxicity of cadmium(II ions.

  1. A new and highly selective turn-on fluorescent sensor with fast response time for the monitoring of cadmium ions in cosmetic, and health product samples

    Science.gov (United States)

    Khani, Rouhollah; Ghiamati, Ebrahim; Boroujerdi, Ramin; Rezaeifard, Abdolreza; Zaryabi, Mohadeseh Hosseinpour

    2016-06-01

    Cadmium (Cd) which is an extremely toxic could be found in many products like plastics, fossil fuel combustion, cosmetics, water resources, and wastewaters. It is capable of causing serious environmental and health problems such as lung, prostate, renal cancers and the other disorders. So, the development of a sensor to continually monitor cadmium is considerably demanding. Tetrakis(4-nitrophenyl)porphyrin, T(4-NO2-P)P, was synthesized and used as a new and highly selective fluorescent probe for monitoring cadmium ions in the "turn-on" mode. There was a linear relationship between fluorescence intensity and the concentration of Cd(II) in the range of 1.0 × 10- 6 to 1.0 × 10- 5 mol L- 1 with a detection limit of 0.276 μM. To examine the most important parameters involved and their interactions in the sensor optimization procedure, a four-factor central composite design (CCD) combined with response surface modeling (RSM) was implemented. The practical applicability of the developed sensor was investigated using real cosmetic, and personal care samples.

  2. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    Science.gov (United States)

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.

  3. Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis

    Directory of Open Access Journals (Sweden)

    G. L. Dotto

    2013-03-01

    Full Text Available The equilibrium and thermodynamics of azo dye (tartrazine and allura red biosorption onto Spirulina platensis biomass were investigated. The equilibrium curves were obtained at 298, 308, 318 and 328 K, and four isotherm models were fitted the experimental data. Biosorption thermodynamic parameters (ΔG, ΔH and ΔS were estimated. The results showed that the biosorption was favored by a temperature decrease. For both dyes, the Sips model was the best to represent the equilibrium experimental data (R²>0.99 and ARE<5.0% and the maximum biosorption capacities were 363.2 and 468.7 mg g-1 for tartrazine and allura red, respectively, obtained at 298 K. The negative values of ΔG and ΔH showed that the biosorption of both dyes was spontaneous, favorable and exothermic. The positive values of ΔS suggested that the system disorder increases during the biosorption process.

  4. Biosorption of Microelements by Spirulina: Towards Technology of Mineral Feed Supplements

    Science.gov (United States)

    Chojnacka, Katarzyna

    2014-01-01

    Surface characterization and metal ion adsorption properties of Spirulina sp. and Spirulina maxima were verified by various instrumental techniques. FTIR spectroscopy and potentiometric titration were used for qualitative and quantitative determination of metal ion-binding groups. Comparative FTIR spectra of natural and Cu(II)-treated biomass proved involvement of both phosphoryl and sulfone groups in metal ions sorption. The potentiometric titration data analysis provided the best fit with the model assuming the presence of three types of surface functional groups and the carboxyl group as the major binding site. The mechanism of metal ions biosorption was investigated by comparing the results from multielemental analyses by ICP-OES and SEM-EDX. Biosorption of Cu(II), Mn(II), Zn(II), and Co(II) ions by lyophilized Spirulina sp. was performed to determine the metal affinity relationships for single- and multicomponent systems. Obtained results showed the replacement of naturally bound ions: Na(I), K(I), or Ca(II) with sorbed metal ions in a descending order of Mn(II) > Cu(II) > Zn(II) > Co(II) for single- and Cu(II) > Mn(II) > Co(II) > Zn(II) for multicomponent systems, respectively. Surface elemental composition of natural and metal-loaded material was determined both by ICP-OES and SEM-EDX analysis, showing relatively high value of correlation coefficient between the concentration of Na(I) ions in algal biomass. PMID:25386594

  5. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future.

  6. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Loofa sponge (LS) immobilized biomass of Chlorella sorokiniana (LSIBCS), isolated from industrial wastewater, was investigated as a new biosorbent for the removal of Cr(Ⅲ) from aqueous solution. A comparison of the biosorption of Cr(Ⅲ) by LSIBCS and free biomass of C. sorokiniana (FBCS) from 10-300 mg Cr(Ⅲ)/L aqueous solutions showed an increase in uptake of 17.79% when the microalgal biomass was immobilized onto loofa sponge. Maximum biosorption capacity for LSIBCS and FBCS was found to be 69.26 and 58.80 mg Cr(Ⅲ)/g biosorbent, respectively, whereas the amount of Cr(Ⅲ) ions adsorbed onto naked LS was 4.97 mg/g. The kinetics of Cr(Ⅲ) biosorption was extremely rapid and equilibrium was established in about 15 and 20 min by LSIBCS and FBCS,respectively. The biosorption equilibrium was well defined by Langmuir adsorption isotherm model. The biosorption kinetics followed the pseudo-second order kinetic model. The biosorption was found to be pH dependent and the maximum sorption occurred at the solution pH 4.0. Desorption studies showed that 98% of the adsorbed Cr(Ⅲ) could be desorbed with 0.1 mol/L HNO3, while other desorbing agents were less effective in the order: EDTA > H2SO4 > CH3COOH > HCl. The regenerated LSIBCS retained 92.68% of the initial Cr(Ⅲ) binding capacity up to five cycles of reuse in continuous flow-fixed bed columns. The study revealed that LSIBCS could be used as an effective biosorbent for the removal of Cr(Ⅲ) from wastewater.

  7. Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel

    Energy Technology Data Exchange (ETDEWEB)

    Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54100 Sakarya (Turkey)], E-mail: asengil@sakarya.edu.tr; Ozacar, Mahmut [Department of Chemistry, Science and Arts Faculty, Sakarya University, 54100 Sakarya (Turkey)

    2008-09-15

    The biosorption of Cu(II) from aqueous solutions by mimosa tannin resin (MTR) was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmiur isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, and the Elovich and the intraparticle diffusion equation - to determine the best fit equation for the biosorption of copper ions onto mimosa tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well. Thermodynamic parameters such as the entropy change, enthalpy change and Gibb's free energy change were found out to be 153.0 J mol{sup -1} K{sup -1}, 42.09 kJ mol{sup -1} and -2.47 kJ mol{sup -1}, respectively.

  8. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  9. Electronic Tongue-FIA system for the Monitoring of Heavy Metal Biosorption Processes

    Science.gov (United States)

    Wilson, D.; Florido, A.; Valderrama, C.; de Labastida, M. Fernández; Alegret, S.; del Valle, M.

    2011-09-01

    An automated flow injection potentiometric (FIP) system with electronic tongue detection (ET) was used for the monitoring of biosorption processes of heavy metals on waste biomaterial. Grape stalk wastes were used as biosorbent to remove Cu2+ ions in a fixed-bed column setup. For the monitoring, the used ET employed a sensor array formed by Cu2+ and Ca2+ selective electrodes and two generic heavy-metal electrodes. The subsequent cross-response obtained was processed by a multilayer artificial neural network (ANN) model in order to resolve the concentrations of the monitored species. The coupling of the electronic tongue with the automation features of the flow-injection system (ET-FIP) allowed us to accurately characterize the biosorption process, through obtaining its breakthrough curves. In parallel, fractions of the extract solution were analyzed by atomic absorption spectroscopy in order to validate the results obtained with the reported methodology.

  10. The Biosorption of Cr (VI From Aqueous SolutionUsing Date Palm Fibers (Leef

    Directory of Open Access Journals (Sweden)

    Enas A. Abdulgafoor

    2010-01-01

    Full Text Available The ability of Cr (VI removal from aqueous solution using date palm fibers (leef was investigated .The effects of pH, contact time, sorbets concentration and initial metal ions concentration on the biosorption were investigated.The residual concentration of Cr (VI in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef has a potential effect for the uptake of Cr (VI from industrial waste water.

  11. Enrichment of cadmium in biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Gwenner, C.; Wittig, H.; Glombitza, F.

    1986-01-01

    The uptake of cadmium ions from an aqueous solution by living, resting, and dead biomasses was investigated. The dependence of the uptaked amounts on pH-value of the medium, temperature and concentration of cadmium ions is demonstrated as well as the rate of uptake. Maximum realisable concentrations were 12 mg/g biomass in living cells and about 20 mg/g biomass in resting or dead cells, respectively.

  12. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Folgar, S. [Departamento de Biologia Celular y Molecular, Laboratorio de Microbiologia, Facultad de Ciencias, Universidade da Coruna, Alejandro de la Sota no 1, 15008 La Coruna (Spain); Torres, E., E-mail: torres@udc.es [Departamento de Biologia Celular y Molecular, Laboratorio de Microbiologia, Facultad de Ciencias, Universidade da Coruna, Alejandro de la Sota no 1, 15008 La Coruna (Spain); Perez-Rama, M.; Cid, A.; Herrero, C.; Abalde, J. [Departamento de Biologia Celular y Molecular, Laboratorio de Microbiologia, Facultad de Ciencias, Universidade da Coruna, Alejandro de la Sota no 1, 15008 La Coruna (Spain)

    2009-06-15

    Cadmium tolerance and removal in the marine microalga Dunaliella salina were studied in cultures exposed to different metal concentrations (5-120 mg Cd l{sup -1}) for 96 h. This microalga can be included in the group of microalgal species most tolerant to cadmium due to the high value of EC50 that it possesses (48.9 mg Cd l{sup -1} at 96 h of culture). The greater percentage of cadmium removed was obtained in cultures exposed to 5 mg Cd l{sup -1} at 96 h, but removing only 11.3% of the added cadmium. In all cultures, the quantity of cadmium removed intracellularly was much lower than the bioadsorbed quantity and it was proportional to the sulfhydryl group levels. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of cadmium by living cells of D. salina.

  13. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  14. Comparison of the heavy metal biosorption capacity of active, heat-inactivated and NaOH-treated Phanerochaete chrysosporium biosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Guerisik, E.; Bektas, S.; Genc, Oe. [Hacettepe University, Department of Chemistry, 06532 Beytepe, Ankara (Turkey); Arica, M.Y. [Kirikkale University, Department of Biology, Yahsihan, Kirikkale (Turkey)

    2004-02-05

    Three different kinds of Phanerochaete chrysosporium (NaOH-treated, heat-inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50-700 mg/L. Maximum biosorption capacities of NaOH-treated, heat-inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH-treated > heat-inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH-treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption-desorption cycles without any considerable loss in biosorption capacity. The alkali-treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  15. Biosorption Behavior of Ciprofloxacin onto Enteromorpha prolifera: Isotherm and Kinetic Studies.

    Science.gov (United States)

    Wu, Shaoling; Li, Yanhui; Zhao, Xindong; Du, Qiuju; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2015-01-01

    The studies aimed at the feasibility of using Enteromorpha prolifera for the removal of ciprofloxacin from aqueous solutions. Batch experiments were carried out for the biosorption of ciprofloxacin onto Enteromorpha prolifera. The factors affecting the biosorption process such as the initial concentration, dosage, pH and the contact time were studied. Enteromorpha prolifera exhibited a maximum biosorption capacity of 21.7 mg/g. The pseudo-second-order kinetic model described the ciprofloxacin biosorption process with a good fitting. The optimum pH of ciprofloxacin adsorbed by Enteromorpha prolifera was 10. Biosorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implied a heterogeneous biosorption phenomenon.

  16. Biosorption of americium-241 by Candida sp.

    Energy Technology Data Exchange (ETDEWEB)

    Luo Shunzhong; Zhang Taiming [Inst. of Nuclear Physics and Chemistry, CAEP, Mianyang (China); Liu Ning; Yang Yuanyou; Jin Jiannan; Liao Jiali [Key Lab. of Radiation Physics and Technology of Education Ministry of China, Inst. of Nuclear Science and Technology, Sichuan Univ., Chengdu (China)

    2003-07-01

    As an important radioisotope in nuclear industry and other fields, americium-241 is one of the most serious contamination concerns duo to its high toxicity and long half-life. In this experiment, the biosorption of {sup 241}Am from solution by Candida sp., and the effects of various experimental conditions on the adsorption were investigated. The preliminary results showed that the adsorption of {sup 241}Am by Candida sp. was efficient. {sup 241}Am could be removed by Candida sp. of 0.82 g/L (dry weight) from {sup 241}Am solutions of 5.6-111 MBq/L (44.3-877.2 {mu}g/L)(C{sub 0}), with maximum adsorption rate (R) of 98% and maximum adsorption capacities (W) of 63.5 MBq/g biomass (dry weight) (501.8 {mu}g/g). The biosorption equilibrium was achieved within 4 hour and the optimum pH was pH = 2. No significant differences on {sup 241}Am adsorption were observed at 10 C-45 C, or in solutions containing Au{sup 3+} or Ag{sup +}, even 1500 times or 4500 times above the {sup 241}Am concentration, respectively. The relationship between concentrations and adsorption capacities of {sup 241}Am indicated the biosorption process should be described by a Langmuir adsorption isotherm. (orig.)

  17. Biosorption of Methylene Blue by Chemically Modified Cellulose Waste

    Institute of Scientific and Technical Information of China (English)

    JIN Yanqiao; ZHANG Yizhuan; Lü Qiufeng; CHENG Xiansu

    2014-01-01

    Citric acid modified cellulose waste (CMCW) was prepared via esterification and used as a low-cost biosorbent for the removal of methylene blue (MB) from aqueous solutions. The effects of biosorbent concentration, initial pH of MB solution, biosorption temperature, contact time, and initial MB concentration on the biosorption of MB were investigated using batch biosorption technique under static conditions. The experimental results showed that CMCW exhibited excellent biosorption characteristics for MB. The maximum biosorption capacity of MB was up to 214.5 mg/g at an adsorption temperature of 293 K. The removal rate of MB onto CMCW reached the maximum at pH>4 and the biosorption reached an equilibrium at about 50 min. The kinetic data can be described well with the pseudo-second-order model and the isotherm data was found to fit the Langmuir isotherm with a monolayer adsorption capacity of 211.42 mg/g. The biosorption appears to be controlled by chemisorption and may be involved in surface adsorption and pore diffusion during the whole biosorption process.

  18. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles.

    Science.gov (United States)

    Vijayaraghavan, K; Palanivelu, K; Velan, M

    2006-08-01

    Biosorption of each of the heavy metals, copper(II) and cobalt(II) by crab shell was investigated in this study. The biosorption capacities of crab shell for copper and cobalt were studied at different particle sizes (0.456-1.117 mm), biosorbent dosages (1-10 g/l), initial metal concentrations (500-2000 mg/l) and solution pH values (3.5-6) in batch mode. At optimum particle size (0.767 mm), biosorbent dosage (5 g/l) and initial solution pH (pH 6); crab shell recorded maximum copper and cobalt uptakes of 243.9 and 322.6 mg/g, respectively, according to Langmuir model. The kinetic data obtained at different initial metal concentrations indicated that biosorption rate was fast and most of the process was completed within 2h, followed by slow attainment of equilibrium. Pseudo-second order model fitted the data well with very high correlation coefficients (>0.998). The presence of light and heavy metal ions influenced the copper and cobalt uptake potential of crab shell. Among several eluting agents, EDTA (pH 3.5, in HCl) performed well and also caused low biosorbent damage. The biosorbent was successfully regenerated and reused for five cycles.

  19. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...... leachates showed different Cd speciation patterns as expected. Some leachates were dominated by free divalent Cd (1-70%), some by inorganic complexes (1-87%), and some by organic complexes (7-98%)....

  20. 大蒜及大蒜油与铅镉作用的初步研究%Study on the Action of Gralic and Garlic Oil on Lead and Cadmium Ions

    Institute of Scientific and Technical Information of China (English)

    梁冰; 李晓兵; 覃亮政; 王克勤

    2000-01-01

    The action of garlic and garlic oil on lead and cadmium ions was investigated by using Potentiometric Stripping Analysis. With increasing the amount of garlic's water extract, garlic's ethanol extract, or garlic oil added in a measuring solution containing lead or cadmium ion, the PSA signals due to the free ions of lead or cadmium decreased . It suggests that garlic and garlic oil have some action on lead and cadmium ions.%用电位溶出分析法对大蒜及大蒜油与铅、镉的作用进行了初步研究。实验结果表明,大蒜水浸取液、大蒜乙醇浸取液及大蒜油均会使游离铅镉离子的电位溶出信号下降,提示大蒜及大蒜油与铅镉可能发生了配位作用。

  1. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Directory of Open Access Journals (Sweden)

    Mingxue Liu

    2014-06-01

    Full Text Available Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  2. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Science.gov (United States)

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  3. Kinetics of biosorption of hazardous metals by green soil supplement

    Science.gov (United States)

    Bagla, Hemlata; Khilnani, Roshan

    2016-04-01

    The process of metal retention by soil may include ion exchange, adsorption and precipitation. These reaction mechanisms have been defined through fitting the data into different equilibrium and kinetic models. The natural organic matter in soil consists of various fractions like macro-organic material, plant residues, soil biomass and stable humus. Most of the organic matter is dominated with large amount of humic substances. Humic fractions in soil are known to have indirect and direct effects on plant growth and crop production. Humic substances increase the cation exchange capacity, providing a strong buffer capacity to resist sudden drastic chemical changes in soil which enhance soil fertility and environmental quality. The cation-humic interactions exert control on the reactivity of the cation, influencing its bioavailability in the soil system. The investigation of metal concentrations adsorbed with time can be useful to estimate the metal bioavailability in soil. Understanding how metals interact and compete for adsorption sites is of great interest to those involved in environmental remediation. Cow Dung is bio-organic, complex, polymorphic fecal matter of the bovine species, enriched with 'Humic acid' (HA), 'Fulvic Acid', etc. The HA in Cow Dung has been successfully extracted using neutralization reaction and its presence was confirmed by comparison with FTIR spectra of standard HA (IHSS). Since, dry Cow dung powder (DCP) is being added as a soil supplement to enhance the quality of soil, it is important to understand the kinetics associated with it. This work reports kinetic studies of various toxic and hazardous elements such as Cr(III), Cr(VI), Sr(II), Cd(II), Hg(II) and Co(II) adsorption by dry Cow dung powder. Kinetic experiments demonstrated rapid metal uptake. The Kinetic biosorption data were obtained by Batch experiments to explore the rate of biosorption by DCP at optimum parameters and varying the time of reaction from 1-30 min. The dynamics

  4. Ion Exchange Processed CdS Nanorods in Powder Form Using Cadmium Hydroxide Nanowires By Wet Chemical Route

    Directory of Open Access Journals (Sweden)

    Savita L. Patil

    2010-06-01

    Full Text Available Simple, inexpensive and soft chemical route (wet chemical method was employed for the synthesis of bulk forms of cadmium hydroxide [Cd(OH2] nanowires bundles and their conversion to cadmium sulphide [CdS] nanorods at room temperature by simple anion exchange route. Due to difference in solubility product and diffusion rates of the Cd(OH2 and CdS, the anion exchange reaction was taken place and CdS nanorods were formed. CdS nanorods were characterized by X-ray diffraction (XRD, and scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis. Since CdS is semi-conducting material, it has variety of potential applications, this work demonstrates a cost effective method for the synthesis of CdS nanorods in bulk form like CNT.

  5. Effect of counterions on lanthanum biosorption by Sargassum polycystum.

    Science.gov (United States)

    Diniz, Vivian; Volesky, Bohumil

    2005-06-01

    The effect of the presence of different anions on the biosorption of La(3+) (Lanthanum) using Sargassum polycystum Ca-loaded biomass was studied in this work. Different types of metal salts were used, such as nitrate, sulphate and chloride. The presence of the anion sulphate decreased the metal uptake for tested pH values of 3--5 when compared to the nitrate and chloride systems. The presence of chloride ions did not seem to interfere with the lanthanum removal. The speciation of lanthanum in solution could explain the differences obtained for the different systems and the Mineql+ program was used for the calculations. A monovalent complex with sulphate and lanthanum was formed that had lower apparent affinity towards the biomass compared to the free trivalent metal ion. The La uptake varied from 0.6 to 1.0 mmol g(-1). The Langmuir model was used to describe quantitatively the sorption isotherms. The addition of sulphuric acid for pH adjustment decreased the metal uptake from lanthanum sulphate solutions when compared to the nitric acid addition. The effect was more pronounced with sulphuric acid due to the formation of complexes.

  6. Investigation of zinc biosorption by brewer's yeast cells

    Directory of Open Access Journals (Sweden)

    Dodić Siniša N.

    2005-01-01

    Full Text Available The highest amount of zinc (= 90% is bound after 3 hrs of contact at low initial (total concentrations of zinc in suspension of yeast, 10-100 mg/l at 10-30°C. The equilibrium between bound and free zinc ions is established after 6 hrs of contact time, independently on the total zinc concentration in yeast milk. No bigger changes of content of zinc bound to brewer's yeast cells was determined at temperatures 10°C and 30°C. 40% of bound zinc in the equilibrium state is bound during the first 15 min of contact of zinc ions and brewer's yeast cells at all initial (total zinc concentrations in suspension of yeast both at 10°C and 30°C. The "KEKAM" equation can be used for the description of kinetics of zinc biosorption by waste brewer's yeast cells, for the ranges of zinc concentration 10-100 mg/l at 30°C (mean correlation coefficient 0,96 and 60,0-100 mg/l at 10°C (mean correlation coefficient 0,95.

  7. Biosorption and recycling of gold using various microorganisms.

    Science.gov (United States)

    Tsuruta, Takehiko

    2004-08-01

    In order to obtain basic information on the biosorption and recycling of gold from aqueous systems using microbial cells, the biosorption of gold by various microorganisms was investigated. Of 75 strains of microorganisms tested (25 bacteria, 19 actinomycetes, 17 fungi and 14 yeasts), high abilities of gold biosorption from a solution containing hydrogen tetrachloroaurate (III) were found in some gram-negative bacterial strains, such as Acinetobacter calcoaceticus, Erwinia herbicola, Pseudomonas aeruginosa, and P. maltophilia. Most of the gram-positive bacteria, actinomycetes, fungi and yeasts had a lower ability for gold biosorption than gram-negative bacteria. On the other hand, all of the microorganisms tested adsorbed far smaller amounts of gold from a solution containing gold dicyanoaurate (I). The biosorption of gold from a solution containing hydrogen tetrachloroaurate (III) using P. maltophilia having a high adsorbing ability for gold was very rapid and was affected by the pH of the solution, external gold concentration, and cell amounts. P. maltophilia cells immobilized with polyacrylamide gel also have a high ability for gold biosorption. The gold adsorbed on the immobilized cells is easily desorbed with 0.1 M thiourea solution. The immobilized P. maltophilia cells can be used repeatedly in biosorption-desorption cycles.

  8. Potentiometric electronic tongue-flow injection analysis system for the monitoring of heavy metal biosorption processes

    OpenAIRE

    2012-01-01

    An automated flow injection potentiometric (FIP) system with electronic tongue detection (ET) is used for the monitoring of biosorption processes of heavy metals on vegetable wastes. Grape stalk wastes are used as biosorbent to remove Cu2+ ions in a fixed-bed column configuration. The ET is formed by a 5-sensor array with Cu2+ and Ca2+-selective electrodes and electrodes with generic response to heavy-metals, plus an artificial neural network response model of the sensor's cross-response. The...

  9. Potentiometric electronic tongue-flow injection analysis system for the monitoring of heavy metal biosorption processes.

    Science.gov (United States)

    Wilson, D; del Valle, M; Alegret, S; Valderrama, C; Florido, A

    2012-05-15

    An automated flow injection potentiometric (FIP) system with electronic tongue detection (ET) is used for the monitoring of biosorption processes of heavy metals on vegetable wastes. Grape stalk wastes are used as biosorbent to remove Cu(2+) ions in a fixed-bed column configuration. The ET is formed by a 5-sensor array with Cu(2+) and Ca(2+)-selective electrodes and electrodes with generic response to heavy-metals, plus an artificial neural network response model of the sensor's cross-response. The real-time monitoring of both the Cu(2+) and the cation exchanged and released (Ca(2+)) in the effluent solution is performed by using flow-injection potentiometric electronic tongue system. The coupling of the electronic tongue with automation features of the flow-injection system allows us to accurately characterize the Cu(2+) ion-biosorption process, through obtaining its breakthrough curves, and the profile of the Ca(2+) ion release. In parallel, fractions of the extract solution are analysed by spectroscopic techniques in order to validate the results obtained with the reported methodology. The sorption performance of grape stalks is also evaluated by means of well-established sorption models.

  10. Removal of humic substances by biosorption

    Institute of Scientific and Technical Information of China (English)

    VUKOVI(C) Marija; DOMANOVAC Tomislav; BRI(S)KI Felicita

    2008-01-01

    Fungal pellets of Aspergillus niger 405, Aspergillus ustus 326, and Stachybotrys sp. 1103 were used for the removal of humic substances from aqueous solutions. Batchwise biosorption, carried out at pH 6 and 25℃, was monitored spectrophotometrically and the process described with Freundlich's model. Calculated sorption coefficients K/and n showed that A. niger exhibited the highest efficiency. A good match between the model and experimental data and a high correlation coefficient (R2) pointed out to judicious choice of the mechanism for removal of humic substances from the reaction medium. The sorption rate constants (k) for A. ustus and Stachybotrys sp. were almost equal, however higher than that for A. niger. Comparison of test results with the simulated ones demonstrated the applicability of the designed kinetic model for removal of humic substances from natural water by biosorption with fungal pellets. Different morphological structure of the examined fungal pellets showed that faster sorption does not imply the most efficient removal of humic substances. Desorption of humic substances from fungal pellets was complete, rapid, and yielded uniform results.

  11. Biosorption of Cu by Thiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Manriquez, A. [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Hermosillo (Mexico); Magana, P.I. [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y Estudios Avanzados (Mexico); Lopez, V. [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y Estudios Avanzados (Mexico); Guzman, R. [Department of Chemical and Environmental Engineering, University of Arizona, Tucson (United States)

    1998-02-01

    Current technologies for removal and recovery of both toxic and industrial interest metals usually produce wastes with high concentrations of those substances. They are an important source of environmental pollution, specially when they contain heavy metals. This is one of the most important environmental problems, and of the most difficult to solve. So far, there have been a number of studies considering the possibility of removing and recovering heavy metals from diluted solutions. These are due, principally, because of the commercial value of some metals as well as the environmental impact caused by them. The traditional methods for removing have several disadvantages when metals are present in concentrations lower than 100 mg/l. Biosorption, which uses biological materials as adsorbents, has been considered as an alternative method. In this work, several variables that affect the capacity for copper biosorption by T. ferrooxidans have been studied. Particularly, the effect of pH, chemical pretreatment, biomass concentration and temperature have been considered. Results indicate that a capacity as high as 119 mg of Cu/g of dry biomass can be obtained at a temperature of 25 C. (orig.) With 6 figs., 1 tab., 13 refs.

  12. Column studies for biosorption of dyes from aqueous solutions on ...

    African Journals Online (AJOL)

    Abstract. Biosorption is becoming a promising alternative to replace or ... biomass was immobilised in a polysulphone matrix in the form of spherical beads. In column studies, adsorption and elution tests were conducted for each dye and the ...

  13. Use of Aspergillus wentii for biosorption of methylene blue from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... African Journal of Biotechnology Vol. 9(6), pp. ... Key words: Aspergillus wentii, dye, methylene blue, biosorption, desorption, isotherm. INTRODUCTION. Wastewaters from textile, cosmetics, printing, dying, food coloring ...

  14. Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaomeng; Li, Lin; Liu, Erjia, E-mail: mejliu@ntu.edu.sg

    2013-10-01

    Graphene ultrathin films were synthesized by means of solid-state carbon diffusion from amorphous carbon (a-C) thin layers deposited on silicon substrates, which was catalyzed by nickel layers coated on the top of the a-C layers. The graphene films were used as working electrodes that were modified by a polyaniline (PANI) porous layer together with in-situ deposited bismuth (Bi) nanoparticles for the detection of trace heavy metal ions (Pb{sup 2+} and Cd{sup 2+}) in acetate buffer solutions (pH 5.3) with square wave anodic stripping voltammetry. The graphene electrodes modified with PANI porous layers and Bi nanoparticles had excellent repeatability, ultrahigh sensitivity (as low as 0.33 nM) and good resistance to passivation caused by the surface active species adsorbed on the electrode surfaces. - Highlights: • Graphene fabricated by nickel-catalyzed carbon diffusion in solid state • Graphene electrodes modified by bismuth nanoparticles and polyaniline layers • High resistance of modified graphene electrodes to passivation in acetate solutions • Ultra-low detection limits of lead and cadmium ions by modified graphene electrodes.

  15. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  16. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera.

    Science.gov (United States)

    Apiratikul, Ronbanchob; Pavasant, Prasert

    2008-05-01

    The biosorption of Cu(II), Cd(II), and Pb(II) by a dried green macroalga Caulerpa lentillifera was investigated. The sorption kinetic data could be fitted to the pseudo second order kinetic model. The governing transport mechanisms in the sorption process were both external mass transfer and intra-particle diffusion. Isotherm data followed the Sips isotherm model with the exponent of approximately unity suggesting that these biosorption could be described reasonably well with the Langmuir isotherm. The maximum sorption capacities of the various metal components on C. lentillifera biomass could be prioritized in order from high to low as: Pb(II)>Cu(II)>Cd(II). The sorption energies obtained from the Dubinin-Radushkevich model for all sorption systems were in the range of 4-6 kJ mol(-1) indicating that a physical electrostatic force was potentially involved in the sorption process. Thomas model could well describe the breakthrough data from column experiments. Ca(II), Mg(II), and Mn(II) were the major ions released from the algal biomass during the sorption which revealed that ion exchange was one of the main sorption mechanisms.

  17. Metallic Biosorption Using Yeasts in Continuous Systems

    Directory of Open Access Journals (Sweden)

    Karla Miriam Hernández Mata

    2013-01-01

    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  18. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].

    Science.gov (United States)

    Mo, Yu; Pan, Rong; Huang, Hai-wei; Cao, Li-xiang; Zhang, Ren-duo

    2010-07-01

    Batch experiments were conducted to study the ability of fruiting bodies of Auricularia polytricha and Tremella fuciformis to adsorb Cd(II), Cu(II), Pb(II) and Zn(II) from aqueous solutions, including biosorption ability of the biomass to remove heavy metals from solutions with different concentrations, kinetics of adsorption, influence of co-cations, and biosorption affinity in multi-metalsystem. Results showed that in the solutions with individual metal, the maximum biosorption amounts of Cd(II), Cu(II), Pb(II), Zn(II) by A. polytricha were 18.91, 18.69, 20.33, 12.42 mg x g(-1), respectively, and the highest removal rates for all cases were more than 85%. The maximum biosorption amounts of Cd(II), Cu(II), Pb(II), Zn(II) by T. fuciformis were 19.98, 20.15, 19.16, 16.41 mg x g(-1), respectively, and highest removal rates for all cases were more than 75%. In the solutions with initial concentrations of 10, 50 and 100 mg x L(-1), the biosorption amounts increased but the removal rates decreased as the initial concentrations increasing. The pseudo-second-order reaction model described adsorption kinetics of heavy metal ions by fruiting bodies of A. polytricha and T. fuciformis better than the pseudo-first-order reaction model. In the solutions with multi metals, the biosorption amounts of heavy metals by two biosorbent were in the order of Ph(II) > Cd(II) > Cu(II) > Zn(II). The ions with more negative charges were preferential to be sorbed. The biosorption ability of A. polytricha was inhibited in multi-metal solutions. In multi-metal solutions, T. fuciformis sorbed a higher amount of Pb(II) but lower amounts of other three ions than that in the individual metal solutions. The results indicated that both fruiting bodies of A. polytricha and T. fuciformis were potential biosorbents.

  19. Simultaneous biosorption of chromium(VI) and copper(II) on Rhizopus arrhizus in packed column reactor: Application of the competitive Freundlich model

    Energy Technology Data Exchange (ETDEWEB)

    Sag, Y.; Atacoglu, I.; Kutsal, T.

    1999-12-01

    The simultaneous biosorption of Cr(VI) and Cu(II) on free Rhizopus arrhizus in a packed column operated in the continuous mode was investigated and compared to the single metal ion situation. The breakthrough curves were measured as a function of feed flow rate, feed pH, and different combinations of metal ion concentrations in the feed solutions. Column competitive biosorption data were evaluated in terms of the maximum (equilibrium) capacity in the column, the amount of metal loading on the R. arrhizus surface, the adsorption yield, and the total adsorption yield. In the single-ion situation the adsorption isotherms were developed for optimum conditions, and it was seen that the adsorption equilibrium data fit the noncompetitive Freundlich model. For the multicomponent adsorption equilibrium the competitive adsorption isotherms were also developed. The competitive Freundlich model for binary metal mixtures represented most the column adsorption equilibrium data of Cr(VI) and Cu(II) on R. arrhizus satisfactorily.

  20. REMOVAL OF CADMIUM FROM AQUEOUS SOLUTION USING ...

    African Journals Online (AJOL)

    been identified as the best products [4]. Though little work has ... synthesized products for the removal of cadmium ion from aqueous solution. ... absence of suspect anions such as nitrate and chloride from the reagents used, which could be.

  1. Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents.

    Science.gov (United States)

    Djati Utomo, H; Hunter, K A

    2006-01-01

    The adsorption of the divalent cations of Cu, Zn, Cd and Pb by tea leaves and coffee grounds from aqueous solutions is described. Both adsorbents exhibited strong affinity for these ions which could be described by a simple single-site equilibrium model. For coffee, the order of increasing adsorption equilibrium constant K was Cu 10, probably because of anion formation in the case of Zn2+ and also increased leaching of metal-binding soluble materials. The effect of metal ion concentration on the adsorptive equilibria indicated a threshold concentration above which overall adsorption became limited by saturation of the adsorption sites. Competition between two metal ions for the same sites was not observed with Cu(II) and Pb(II), however Zn(II) reacted competitively with Cd(II) binding sites on both tea and coffee. If fresh coffee or tea adsorbents were used, the fraction of metal ion taken up by the adsorbent was diminished by the competitive effects of soluble metal-binding ligands released by the tea or coffee. Experiments with coffee showed that roasting temperature controls the formation of metal ion adsorption sites for this adsorbent.

  2. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.

    Science.gov (United States)

    Safa, Messaouda; Larouci, Mohammed; Meddah, Boumediene; Valemens, Pierre

    2012-01-01

    The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.

  3. The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II/ sulphate/Lewatit TP260

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    2002-10-01

    Full Text Available The adsorption of cadmium (II, from aqueous sulphate solutions, on Lewatit TP260 resin has been investigated in batch equilibrium experiments. The influence of pH and temperature on metal adsorption capacity have also been examined. The kinetic performance of the resin has been assesed and the results have been correlated by the pore diffusion model. The resin has been used in mini-columns to study its performance under dynamics conditions. The desorption of metal ion is achieved using sulphuric acid (0.25M and 0.5M.

    Se estudia la adsorción de cadmio(II, de disoluciones en medio sulfato, sobre la resina Lewatit TP260. La adsorción del metal se ha investigado en función del pH, la temperatura y el tiempo de contacto con la resina. Los estudios cinéticos permiten correlacionar el proceso de intercambio iónico con el modelo de difusión en poro. Se ha empleado el sistema en mini columnas para evaluar el comportamiento de la resina bajo condiciones dinámicas. La desorción del metal se lleva a cabo con disoluciones de ácido sulfúrico (0,25M y 0,5M.

  4. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  5. Influence of Arsenic (III, Cadmium (II, Chromium (VI, Mercury (II, and Lead (II Ions on Human Triple Negative Breast Cancer (HCC1806 Cell Cytotoxicity and Cell Viability

    Directory of Open Access Journals (Sweden)

    Tsdale F. Mehari

    2017-01-01

    Full Text Available The hazardous consequences of heavy metal ions (HMIs on human health necessitate the immediate need to probe fundamentally the interactions and cytotoxic effects of HMIs on humans. This study investigated the influence of five toxic HMIs (arsenic (As (III, cadmium (Cd (II, chromium (Cr (VI, mercury (Hg (II, and lead (Pb (II on human TNBC (HCC 1806 cell viability using optical microscopy, trypan blue dye-exclusion assays, and flow cytometry. The TNBC cells were exposed to varying concentrations of HMIs for 24 and 48 hours. We evaluated the influence of the concentrations and duration of HMIs exposure on TNBC cell viability. Light microscopy, cell viability assays, revealed that after 48-hour treatment of TNBC cells with 1 x 10-5 M of As (III, Cd (II, Hg (II, Cr (IV, and Pb (II resulted in cell viabilities of 23%, 34%, 35%, 56%, 91% respectively, suggesting that As (III has the greatest cytotoxicity (77% cell death while Pb (II showed the least (9% cell death. Furthermore, flow cytometry revealed that while Pb (II, As (III and Cr (IV had significant increases in cell death, Hg (II caused a G1 arrest. Together, this study revealed that HMIs cause a differential cytotoxic effect on TNBC cells and suggest that they may have very different genotoxic targets and implications in their mutagenic potential.

  6. Effects of salinity on metal uptake and metallothionein mRNA levels in the organs of tilapia exposed to cadmium, copper, and zinc ions.

    Science.gov (United States)

    Shek, Alex C S; Chan, King Ming

    2015-05-01

    This study aimed to determine the effects of salinity on metal uptake and metallothionein (MT) mRNA levels in tilapia exposed to three metal ions. Male Oreochromis niloticus × O. aureus juveniles (hereafter, "tilapia") were exposed to various concentrations (100, 500, and 1 ppm) of metal ions (Cd(2+), Cu(2+) and Zn(2+)) in freshwater and water with two levels of salinity (10 and 20 ppt) for 7 days. Tests were then performed to investigate the effects of salinity on metal concentrations and MT mRNA induction in the test subjects' organs. Saline decreased cadmium (Cd) uptake and MT mRNA fold induction in various internal organs, but it did not enhance MT mRNA induction in the gills. Exposure to Cu(2+) caused greater copper (Cu) levels in the brains, intestines and livers, but Cu uptake in the intestines and kidneys occurred only at 10 ppm. MT mRNA induction caused by Cu(2+) was observed in various internal organs, but it occurred in the gills only at greater levels of salinity. Exposure at greater salinities also decreased zinc (Zn) uptake and MT mRNA induction in all organs except the gills. Although greater salinity decreased Cd and Zn uptake, the metal content in the water correlated with the MT mRNA levels in most of the organs, except for the intestines. In conclusion, metal accumulations in the livers and kidneys of tilapia correlated with MT mRNA levels. The levels of MT mRNA in the livers and kidneys of tilapia might therefore be used as biomarkers of exposure to Cd(2+), Cu(2+) and Zn(2+) in water of various salinities.

  7. Lead Biosorption by Self-Immobilized Rhizopus nigricans Pellets in a Laboratory Scale Packed Bed Column: Mathematical Model and Experiment

    Directory of Open Access Journals (Sweden)

    Adela Kogej

    2010-01-01

    Full Text Available The biosorption of lead ions from aqueous solution on a self-immobilized Rhizopus nigricans biomass has been studied. Experiments were performed in a laboratory scale packed bed column at different liquid flow rates and biosorbent bed heights. Recorded experimental breakthrough curves were compared to those predicted by a mathematical model, which was developed to simulate a packed bed biosorption process by a soft, self-immobilized fungal biosorbent. In the range of examined experimental conditions, the biomass characteristics such as pellet porosity and biosorption capacity substantially affected the predicted response curve. General correlations for the estimation of the intra-pellet effective diffusivity, the external mass transfer coefficient, as well as axial dispersion were successfully applied in this biological system with specific mechanical properties. Under the experimental conditions, mass transfer is controlled by the external film resistance, while the intra-pellet mass transfer resistance, as well as the effect of axial dispersion, can be neglected. A new parameter α, the fraction of active biomass, with an average value of α=0.7, was introduced to take into account the specific biomass characteristics, and consequently the observed non-ideal liquid flow through the bed of fungal pellets.

  8. Studies on biosorption of Cr(VI) on a green resin: dry cow dung powder and tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Barot, N.S.; Bagla, H.K. [Kishinchand Chellaram College, Mumbai (India). Nuclear and Radiochemistry Dept.

    2012-07-01

    The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Cr(VI) from aqueous medium. Batch biosorption experiments were conducted employing {sup 51}Cr(VI) as a tracer and the effect of various process parameters such as optimum pH, temperature, amount of resin, time of equilibration, agitation speed, concentration of metal ions and interfering effect of different salts etc. were studied. The kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model with high correlation coefficient R{sup 2} value of 0.997 and adsorption capacity of 10.20 mg/g. The thermodynamic parameters for biosorption were evaluated as {Delta}G = -2.837 kJ/mol, {Delta}H = -4.757 kJ/mol and {Delta}S = 16.64 J/mol K, which indicated spontaneous and exothermic process with high affinity of DCP for Cr(VI). Many naturally available materials are used for the biosorption of heavy metal pollutants, where most of them are physically or chemically modified. In this research work, DCP has been utilized without any pre or post chemical treatment. Thus it manifests the principle of green chemistry and proves to be an eco-friendly resin. (orig.)

  9. 1H-NMR study of Na alginates extracted from Sargassum spp. in relation to metal biosorption.

    Science.gov (United States)

    Davis, Thomas A; Llanes, Francisco; Volesky, Bohumil; Diaz-Pulido, Guillermo; McCook, Laurence; Mucci, Alfonso

    2003-08-01

    The use of a number of species of marine brown algae in the implementation of bioremediation strategies for toxic heavy metals is being considered and evaluated. The biosorption capacity of these algae for heavy metals resides mainly in a group of linear polysaccharides known as alginates that occur as a gel in the algal thallus. The potential for selective metal binding by the biomass of two species of Sargassum was evaluated by 1H-NMR (nuclear magnetic resonance) following a high temperature, alkaline extraction and purification of their alginate polysaccharide. The alkaline extraction protocol applied to Sargassum fluitans and Sargassum siliquosum yielded alginate samples of low viscosity, suitable for direct acquisition of well-resolved spectra. Estimates of both the ratio of beta-D-mannopyranuronosyl (M) and alpha-L-gulopyranuronosyl (G) residues along the polymer chain and the frequencies of occurrence of diad uronic acid residue pairs were obtained. Guluronic acid (G) was the major component in all extracts and the GG diads accounted for more than 49% of the polymer diads. Whereas the performance of Sargassum spp. in the metal biosorption process is a function of both its alginate content and composition, the occurrence of "G-blocks" in both purified alginates and in the raw brown seaweed is critical because it results in a well-established selectivity for divalent ions, potentially increasing the commercial effectiveness of targeted biosorption as a means of remediation.

  10. OPTIMIZATION OF SOME HEAVY METALS BIOSORPTION BY REPRESENTATIVE EGYPTIAN MARINE ALGAE(1).

    Science.gov (United States)

    Elrefaii, Abdelmonem H; Sallam, Lotfy A; Hamdy, Abdelhamid A; Ahmed, Eman F

    2012-04-01

    Marine algae-as inexpensive and renewable natural biomass-have attracted the attention of many investigators to be used to preconcentrate and biosorb many heavy metal ions. Impressed by this concept, the metal uptake capacity of Egyptian marine algae was examined using representatives of green and brown algae, namely, Ulva lactuca L. and Sargassum latifolium (Turner) C. Agardh, respectively. The biosorption efficiencies of Cu(2+) , Co(2+) , Ni(2+) , Cd(2+) , Hg(2+) , Ag(2+) , and Pb(2+) ions seem to depend on the type of the algae used as well as the conditions under which the uptake processes were conducted. It was demonstrated that a pH range of 7.5-8.8 was optimum for the removal of the tested metals. Similarly, the uptake process was markedly accelerated during the first 2 h using relatively low metal level and sufficient amounts of the dried powdered tested algae. © 2012 Phycological Society of America.

  11. Biosorption of binary mixtures of copper and cobalt by Penicillium brevicompactum.

    Science.gov (United States)

    Tsekova, Kolishka; Ianis, Maria; Dencheva, Vera; Ganeva, Sonya

    2007-01-01

    This work reports on a study of the biosorption of copper and cobalt, both singly and in combination (in equimolar concentrations), by the resting cells of Penicillium brevicompactum. Equilibrium batch sorption studies were carried out at 30 degrees C and pH 5.0 for a contact time of 1 hour to guarantee that equilibrium was reached. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. The adsorption of binary mixtures of heavy metal solutions on the fungal biomass was found to be of competitive type where the adsorption capacity for any single metal decreased in the presence of the other. The cobalt ions showed a higher affinity for Penicillium brevicompactum than the copper ions.

  12. Data of heavy metals biosorption onto Sargassum oligocystum collected from the northern coast of Persian Gulf

    Directory of Open Access Journals (Sweden)

    Sedigheh Delshab

    2016-09-01

    Full Text Available This data article presents a simple method for providing a biosorbent from Sargassum oligocystum harvested from the northern coast of Persian Gulf, Bushehr, Iran. The characterization data of Sargassum oligocystum biochar (SOB were analyzed using various instrumental techniques (FTIR and XPS. The kinetics, isotherms, and thermodynamics data of Hg2+, Cd2+, and Cu2+ ions onto SOB were presented. The maximum biosorption capacity of SOB to uptake Hg2+, Cd2+, and Cu2+ ions from aqueous solution was obtained 60.25, 153.85, and 45.25 mg/g, respectively. The experimental data showed that biochar prepared from Sargassum oligocystum is an efficient and promising biosorbent for the treatment of heavy metals-bearing wastewaters.

  13. Biosorption of binary mixtures of copper and cobalt by Penicillium brevicompactum

    Energy Technology Data Exchange (ETDEWEB)

    Tsekova, K.; Ianis, M.; Dencheva, V. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Dept. of Microbial Ecology; Ganeva, S. [Sofia Univ. (Bulgaria). Faculty of Chemistry

    2007-03-15

    This work reports on a study of the biosorption of copper and cobalt, both singly and in combination (in equimolar concentrations), by the resting cells of Penicillium brevicompactum. Equilibrium batch sorption studies were carried out at 30 C and pH 5.0 for a contact time of 1 hour to guarantee that equilibrium was reached. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. The adsorption of binary mixtures of heavy metal solutions on the fungal biomass was found to be of competitive type where the adsorption capacity for any single metal decreased in the presence of the other. The cobalt ions showed a higher affinity for Penicillium brevicompactum than the copper ions. (orig.)

  14. IN VITRO MASS-SCREENING OF LACTIC ACID BACTERIA AS POTENTIAL BIOSORBENTS OF CESIUM AND STRONTIUM IONS

    Directory of Open Access Journals (Sweden)

    Hideki Kinoshita

    2015-04-01

    Full Text Available Many radionuclides were scattered by the explosion at the Fukushima Daiichi Nuclear Power Station. We examined whether lactic acid bacteria (LAB can sorb cesium ions (Cs+ and strontium ions (Sr2+ for radioprotection. Many strains showed biosorption to Cs+ and Sr2+ using an in vitro mass-screening although each strain showed different sorption. We selected MYU 111, MYU 758, and MYU 759 strains that showed especially high biosorption to Cs+ and/or Sr2+. MYU 111 was identified as Lactobacillus plantarum, and MYU 758 and 759 were Pediococcus pentosaceus. The selected strains tended to show higher biosorption when using the buffer method compared to the culture method. Further, they showed high biosorption at a low concentration of 1 ppb Cs+ and Sr2+ (max 28.8% and 97.7% sorption, respectively. This is the first study where lactic acid bacteria are shown to have biosorption of Cs+ and Sr2+.

  15. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D.L.; Bach, H. [Tel-Aviv Univ. (Israel). Dept. of Molecular Microbiology and Biotechnology

    2000-07-01

    Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. One of the approaches considered for application involves biosorption either to biomass or to isolated biopolymers. Many bacterial polysaccharides have been shown to bind heavy metals with varying degrees of specificity and affinity. While various approaches have been adopted to generate polysaccharide variants altered in both structure and activity, metal biosorption has not been examined. Polymer engineering has included structural modification through the introduction of heterologous genes of the biosynthetic pathway into specific mutants, leading either to alterations in polysaccharide backbone or side chains, or to sugar modification. In addition, novel formulations can be designed which enlarge the family of available bacterial biopolymers for metal-binding and subsequent recovery. An example discussed here is the use of amphipathic bioemulsifiers such as emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1, that forms stable, concentrated (70%), oil-in-water emulsions (emulsanosols). In this system metal ions bind primarily at the oil/water interface, enabling their recovery and concentration from relatively dilute solutions. In addition to the genetic modifications described above, a new approach to the generation of amphipathic bioemulsifying formulations is based on the interaction of native or recombinant esterase and its derivatives with emulsan and other water-soluble biopolymers. Cation-binding emulsions are generated from a variety of hydrophobic substrates. The features of these and other systems will be discussed, together with a brief consideratiton of possible applications. (orig.)

  16. The use of Neem biomass for the biosorption of zinc from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Mamoona [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Bioprocess Technology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad (Pakistan); Zafar, Muhammad Nadeem [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)], E-mail: MNadeem.Zafar@analykem.lu.se; Younis, Sadaf; Nadeem, Raziya [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan)

    2008-09-15

    An adsorbent was developed from mature leaves and stem bark of the Neem (Azadirachta indica) tree for removing zinc from water. Adsorption was carried out in a batch process with several different concentrations of zinc by varying pH. The uptake of metal was very fast initially, but gradually slowed down indicating penetration into the interior of the adsorbent particles. The data showed that optimum pH for efficient biosorption of zinc by Neem leaves and stem bark was 4 and 5, respectively. The maximum adsorption capacity showed that the Neem biomass had a mass capacity for zinc (147.08 mg Zn/g for Neem leaves and 137.67 mg Zn/g Neem bark). The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The adsorption followed pseudo-second-order kinetic model. The thermodynamic assessment of the metal ion-Neem tree biomass system indicated the feasibility and spontaneous nature of the process and {delta}G{sup o} values were evaluated as ranging from -26.84 to -32.75 (Neem leaves) kJ/mol and -26.04 to -29.50 (Neem bark) kJ/mol for zinc biosorption. Due to its outstanding zinc uptake capacity, the Neem tree was proved to be an excellent biomaterial for accumulating zinc from aqueous solutions.

  17. The application of biosorption for production of micronutrient fertilizers based on waste biomass.

    Science.gov (United States)

    Tuhy, Lukasz; Samoraj, Mateusz; Michalak, Izabela; Chojnacka, Katarzyna

    2014-10-01

    In the present paper, new environmental-friendly fertilizer components were produced in biosorption process by the enrichment of the biomass with zinc, essential in plant cultivation. The obtained new preparations can be used as controlled release micronutrient fertilizers because microelements are bound to the functional groups present in the cell wall structures of the biomass. It is assumed that new fertilizing materials will be characterized by higher bioavailability, gradual release of micronutrients required by plants, and lower leaching to groundwater. The biological origin of the material used in plant fertilization results in the elimination of toxic effect towards plants and groundwater mainly caused by low biodegradability of fertilizers. Utilitarian properties of new formulations enable to reduce negative implications of fertilizers for environmental quality and influence ecological health. In this work, the utilitarian properties of materials such as peat, bark, seaweeds, seaweed post-extraction residues, and spent mushroom substrate enriched via biosorption with Zn(II) ions were examined in germination tests on Lepidium sativum. Obtained results were compared with conventional fertilizers-inorganic salt and chelate. It was shown that zinc fertilization led to biofortification of plant in these micronutrients. Moreover, the mass of plants fertilized with zinc was higher than in the control group.

  18. Experimental and theoretical approaches for Cd(II) biosorption from aqueous solution using Oryza sativa biomass.

    Science.gov (United States)

    Fawzy, Manal; Nasr, Mahmoud; Helmi, Shacker; Nagy, Heba

    2016-11-01

    Biomass of Oryza sativa (OS) was tested for the removal of Cd(II) ions from synthetic and real wastewater samples. Batch experiments were conducted to investigate the effects of operating parameters on Cd(II) biosorption. Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy were used to examine the surface characteristics of the Cd(II)-loaded biomass. The maximum removal efficiency of Cd(II) was 89.4% at optimum pH 6.0, biosorbent dose 10.0 g L(-1), initial Cd(II) 50 mg L(-1), and biosorbent particle size 0.5 mm. The applicability of Langmuir and Freundlich isotherms to the sorbent system implied the existence of both monolayer and heterogeneous surface conditions. Kinetic studies revealed that the adsorption process of Cd(II) followed the pseudo-second-order model (r2: 0.99). On the theoretical side, an adaptive neuro-fuzzy inference system (ANFIS) was applied to select the operating parameter that mostly influences the Cd(II) biosorption process. Results from ANFIS indicated that pH was the most influential parameter affecting Cd(II) removal efficiency, indicating that the biomass of OS was strongly pH sensitive. Finally, the biomass was confirmed to adsorb Cd(II) from real wastewater samples with removal efficiency close to 100%. However, feasibility studies of such systems on a large-scale application remain to be investigated.

  19. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Science.gov (United States)

    Sun, Xiang-Yu; Zhao, Yu; Liu, Ling-Ling; Jia, Bo; Zhao, Fang; Huang, Wei-Dong; Zhan, Ji-Cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  20. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  1. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water.

  2. Comparison of differences between copper bioaccumulation and biosorption.

    Science.gov (United States)

    Kaduková, Jana; Vircíková, Edita

    2005-02-01

    Biological methods for wastewater treatment are becoming more accepted all over the world. The method, which makes use of accumulating abilities of living cells, is called bioaccumulation. In contrast with it, biosorption takes advantage of sequestering capabilities of dry or dead cells, which is technologically advantageous. The differences between bioaccumulation and biosorption of copper from model solutions were studied in this work. Application of living algal cells has some disadvantages. Copper significantly damages the surface of living cells, which results in partial loss of cell-binding abilities and release of accumulated copper back into solution. The binding capacity of living cells is significantly lower than that of dead cells. There is also a possibility of desorption and reuse of biomass in case of biosorption.

  3. Biosorption of Zn(II) by Thiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Celaya, R.J.; Noriega, J.A.; Yeomans, J.H.; Ruiz-Manriquez, A. [Dept. de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Hermosillo (Mexico); Ortega, L.J. [Dept. de Biotecnologia y Bioingenieria, Centro de Investigacion y Estudios Avanzados (Mexico)

    2000-06-01

    There have been a number of studies considering the possibility of removing and recovering heavy metals from diluted solutions. These are due, principally, because of the commercial value of some metals as well as in the environmental impact caused by them. The traditional methods for removing have several disadvantages when metals are present in concentrations lower than 100 mg/l. Biosorption, which uses biological materials as adsorbents, has been considered as an alternative method. In this work, variables like pH and biomass chemical pretreatment have been studied for its effect on the capacity for zinc biosorption by Thiobacillus ferrooxidans. Also, studies to determinate the time for zinc adsorption were carried out. Results indicate that a capacity as high as 82.61 mg of Zn(II)/g of dry biomass can be obtained at a temperature of 25 C and that the biosorption process occurs in a time of 30 min. (orig.)

  4. Biosorption of heavy metals under anaerobic conditions. Final report; Biosorption von Schwermetallen unter anaeroben Bedingungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kreikenbohm, R.

    1996-12-31

    The precipitation of heavy metals as hydroxides is the standard technique for the decontamination of waste water streams polluted by these elements. On the other side, progress in research has been made concerning the biosorption onto dead biomass and bioprecipitation supported by physiologically active bacteria. As the aim of this study, a flexible strategy has been envisaged cleaning a waste water with definite heavy metal load underlying the process mentioned above. Suitable bacteria were enriched and the process was tested in a technical plant. As result, a very high efficiency of heavy metal elimination has been found. The field of application covered by the acquired process is identical with the whole range of the waste water streams polluted by heavy metals. In addition, a second stage may be necessary if there are any further contaminants to be removed. (orig.) [Deutsch] Bei der Reinigung von schwermetallhaltigen Abwaessern ist der derzeitige Stand der Technik gegeben durch die Neutralisationsfaellung als Hydroxide, waehrend in der Forschung damit begonnen wurde, Biosorption an devitaler Biomasse oder Biopraezipitation durch physiologisch aktive Bakterien zu untersuchen. Ziel des Vorhabens war die Ermittlung einer flexiblen Strategie fuer die Prozessfuehrung zur Abwasserreinigung bei vorgegebener Schadstoffbelastung auf der Basis des zuletzt genannten Prozesses. Dazu wurden geeignete Bakterien angereichert und das Verfahren in einer Technikumsanlage erprobt. Als Ergebnis wurde bei Zufuhr verschiedener Industrieabwaesser eine sehr hohe Effizienz in der Schwermetallelimination gefunden. Das Anwendungsgebiet des erarbeiteten Verfahrens erstreckt sich auf eine Vielzahl schwermetallbelasteter Abwaesser, wobei - je nach Art der weiteren Inhaltsstoffe - eine zusaetzliche Reinigungsstufe vor- oder nachgeschaltet werden muss. (orig.)

  5. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    Science.gov (United States)

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H2O)]n·2nH2O [defined as "Co(L) MOF"] and [Cd(L)(H2O)]n·2nH2O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g(-1) after 330 cycles at 500 mA g(-1) and 1185 mA h g(-1) could be obtained after 50 cycles at 100 mA g(-1) for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  6. Comparison Of Cd2+ Biosorption And Bioaccumulation By Bacteria – A Radiometric Study

    Directory of Open Access Journals (Sweden)

    Machalová Linda

    2015-12-01

    Full Text Available In this work, bioaccumulation and biosorption characteristics of Cd2+ ions by both dead and living non-growing biomass of gram-positive bacteria Kocuria palustris and Micrococcus luteus isolated from spent nuclear fuel pools were compared. The radioindicator method with radionuclide 109Cd was used to obtain precise and reliable data characterizing Cd compartmentalization in bacterial cells. The following cellular distribution of Cd in living non-growing biomass after 4 h incubation in solutions containing different concentration of Cd2+ ions (100, 250, 500, 750 and 1000 µmol/L spiked with 109CdCl2 under aeration at 30 °C were obtained: in M. luteus almost 85 % of Cd was localized on the cell surface and 15 % in cytoplasm. Similarly, in K. palustris 83 % of Cd was localized on the cell surface and 17 % in cytoplasm. The data were obtained by gamma spectrometry of extracts and solids after sequential extraction of biomass with 5 mM Ca(NO32 and 20 mM EDTA. Biosorption of Cd by non-living bacterial biomass is a rapid process strongly affected by solution pH and as was confirmed by FTIR analysis beside carboxylate ions also other functional groups such as amino and phosphate contribute to Cd binding by bacterial cell surfaces. Maximum sorption capacities Qmax (μmol/g calculated from the Langmuir isotherm were 444 ± 15 μmol/g for M. luteus and 381 ± 1 μmol/g for K. palustris.

  7. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions.

    Science.gov (United States)

    Huang, Hui; Zhu, Wencai; Gao, Xiaochun; Liu, Xiuyu; Ma, Houyi

    2016-12-01

    The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd(2+) and Pb(2+) using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd(2+) in a range of 0.05-60 μg L(-1), with the detection limit (S/N = 3) of 0.02 μg L(-1), and for Pb(2+) in a range of 0.1-60 μg L(-1), with the detection limit (S/N = 3) of 0.05 μg L(-1). The new electrode was successfully applied to real water samples for simultaneous detection of Cd(2+) and Pb(2+) with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions.

  8. Cadmium a metalloestrogen: are we convinced?

    Science.gov (United States)

    Silva, Nalinda; Peiris-John, Roshini; Wickremasinghe, Rajitha; Senanayake, Hemantha; Sathiakumar, Nalini

    2012-05-01

    Metalloestrogens are inorganic metal ions that bind to and activate oestrogen receptors. They are implicated in the aetiology of oestrogen-dependent diseases such as cancers of the breast and endometrium as well as endometriosis. Cadmium is one of the most studied metalloestrogens. In this review, scientific evidence for the oestrogenic effects of cadmium is critically evaluated to determine if there is sufficient evidence to support cadmium as an aetiological factor of oestrogen-dependent disease in humans. Results of the review indicated that, although the in vitro and in vivo evidence of the oestrogenic properties of cadmium was persuasive, evidence from population-based human studies remains conflicting. Considerable knowledge gaps exist on the potential oestrogenic effect of cadmium in humans. Research that focuses on bridging these knowledge gaps would be useful in preventing and managing oestrogen-dependent disease in humans.

  9. Experimental analysis and mathematical prediction of Cd(II) removal by biosorption using support vector machines and genetic algorithms.

    Science.gov (United States)

    Hlihor, Raluca Maria; Diaconu, Mariana; Leon, Florin; Curteanu, Silvia; Tavares, Teresa; Gavrilescu, Maria

    2015-05-25

    We investigated the bioremoval of Cd(II) in batch mode, using dead and living biomass of Trichoderma viride. Kinetic studies revealed three distinct stages of the biosorption process. The pseudo-second order model and the Langmuir model described well the kinetics and equilibrium of the biosorption process, with a determination coefficient, R(2)>0.99. The value of the mean free energy of adsorption, E, is less than 16 kJ/mol at 25 °C, suggesting that, at low temperature, the dominant process involved in Cd(II) biosorption by dead T. viride is the chemical ion-exchange. With the temperature increasing to 40-50 °C, E values are above 16 kJ/mol, showing that the particle diffusion mechanism could play an important role in Cd(II) biosorption. The studies on T. viride growth in Cd(II) solutions and its bioaccumulation performance showed that the living biomass was able to bioaccumulate 100% Cd(II) from a 50 mg/L solution at pH 6.0. The influence of pH, biomass dosage, metal concentration, contact time and temperature on the bioremoval efficiency was evaluated to further assess the biosorption capability of the dead biosorbent. These complex influences were correlated by means of a modeling procedure consisting in data driven approach in which the principles of artificial intelligence were applied with the help of support vector machines (SVM), combined with genetic algorithms (GA). According to our data, the optimal working conditions for the removal of 98.91% Cd(II) by T. viride were found for an aqueous solution containing 26.11 mg/L Cd(II) as follows: pH 6.0, contact time of 3833 min, 8 g/L biosorbent, temperature 46.5 °C. The complete characterization of bioremoval parameters indicates that T. viride is an excellent material to treat wastewater containing low concentrations of metal.

  10. Accumulation of cadmium by durum wheat roots: bases for citrate-mediated exceptions to the free ion model.

    Science.gov (United States)

    Berkelaar, Edward; Hale, Beverley A

    2003-05-01

    The accumulation of Cd in durum wheat (Triticum turgidum) roots from hydroponic solutions, with the proportion of total Cd (8.9-445 nM Cd) as Cd2+ varied by the addition of citrate, was determined to test the free-ion model (FIM) of metal bioavailability for higher plants. Calcium, Mg, and K were also varied. Citrate enhanced root-Cd accumulation at higher Cd2+ concentrations but not lower relative to the same Cd2+ concentrations in solutions containing 0 mM citrate. Elevating Ca2+ and Mg2+ concentrations in the citrate solution to the same as those in control solutions alleviated some of the citrate-mediated enhancement but not all. Solutions containing 66% less Ca or Mg than control but the same Cd2+ concentration and no citrate also resulted in increased root Cd. Elevated K+ did not influence Cd accumulation. Regression relationships between root-Cd accumulation and total Cd in solution were similar for the control and pooled amended solutions, whereas they were different for root-Cd accumulation and solution Cd2+. These results contribute to the growing body of evidence that the FIM alone is likely insufficient to predict plant accumulation of metals from soils, although it may be a useful probe for the mechanistic bases of metal bioavailability.

  11. Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting.

    Science.gov (United States)

    Cornu, J Y; Parat, C; Schneider, A; Authier, L; Dauthieu, M; Sappin-Didier, V; Denaix, L

    2009-07-01

    Analytical techniques and speciation models have been developed to characterize the speciation of Cd in soil solution. They provide an estimate of operationally defined species of Cd that need to be compared, especially for soil solutions highly concentrated in organic matter as are the solutions collected after soil rewetting. This work deals with the comparison between the speciation of Cd measured by anodic stripping voltammetry (ASV) and ion exchange and the speciation of Cd calculated using Visual MINTEQ. The aim of this study was to quantify and explain the differences in Cd speciation observed between the three approaches. Cd speciation was assessed in soil solutions collected 4, 8, 24, 48, 96 and 144h after the rewetting of an air-dried contaminated soil. To optimize the computed speciation of Cd, other physico-chemical parameters were followed (e.g. pH, ionic strength and the concentrations of major anions, major cations and dissolved organic carbon) and a brief characterisation of dissolved organic matter (DOM) was performed. The discrepancy between model predictions and analytical measurements highlighted the need for caution in the interpretation of geochemical speciated data for Cd. The major result of this study was that a characterization of DOM based on its specific UV-absorbance at 254 nm improved the accuracy of model predictions. Another finding is that labile Cd complexes, even organic, may have been included in the electrochemically labile fraction of Cd measured by ASV.

  12. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+).

  13. Elimination of coexistent metal ion interference in determination of cadmium and lead by GFAAS%石墨炉原子吸收测镉和测铅时消除共存离子干扰的研究

    Institute of Scientific and Technical Information of China (English)

    许建明; 陈娟; 薛亚东; 向正华

    2013-01-01

    目的 探讨石墨炉原子吸收测镉(或铅)时,消除共存金属离子干扰的方法.方法 配制每毫升含0.25μg镉(或铅)和250μg其它金属离子模拟样品,向石墨管进样20μL,再直接加入基体改进剂5μL,做消除共存金属离子的干扰效果实验.结果 共存金属离子含量远大于被测元素镉(或铅)时,对测镉和测铅存在严重干扰,回收率在30%~76%;在石墨炉原子吸收法测镉时直接向石墨管中添加5%硫酸铵溶液能消除共存金属离子的干扰,回收率达到85%以上;测铅时直接向石墨管中添加2%磷酸二氢铵溶液能消除共存金属离子的干扰,回收率达到87%以上.结论 本研究是石墨炉原子吸收法测镉和铅时消除共存金属离子干扰的一种快速、灵敏、准确的分析方法.适用于生活饮用水、污水、食品等分析.%Objective To establish the method for determination of cadmium and lead by GFFAS with elimination of coexistent ion interference. Methods Simulated samples containing 0.25 μg cadmium ( or lead) and 250 μg other metal ion per milliliter were prepared, putting 20μL into the graphite tube, and then directly adding 5 μL matrix modifier for coexistent elimination of metal ions interference. Results Serious interference on measurement of cadmium and lead was observed in case the content of coexistent metal ions was much larger than the measured cadmium ( or lead), with recovery rate of between 30% to 76%. In the determination of cadmium with graphite furnace atomic absorption spectrometry, 5% ammonium sulfate solution was directly added into the graphite tube with the recovery rate of more than 85% .For determination of lead, 2% phosphoric acid two ammonium hydroxide solution directly added to the graphite tube with recovery rate of above 87%. Conclusion This method is rapid, sensitive, and accurate for determination of lead and cadmium with suppression and elimination of coexisting metal ions interference

  14. Potentiometric Demonstration of Metal Biosorption by Nonliving Plants

    Science.gov (United States)

    Velazquez-Jimenez, Litza Halla; Torres-Rodriguez, Luz Maria; Garcia-de la Cruz, Ramon Fernando; Montes-Rojas, Antonio; Lopez-Arteaga, Rafael Eduardo

    2010-01-01

    An electrochemical experiment is presented to illustrate biosorption to second-year and upper-division undergraduate students. The extraction of Cd[superscript 2+], Pb[superscript 2+], and Cu[superscript 2+] by nonliving "Typha latifolia" (cattail) roots can be monitored in real time by potentiometry determinations. The open circuit potential…

  15. Potentiometric Demonstration of Metal Biosorption by Nonliving Plants

    Science.gov (United States)

    Velazquez-Jimenez, Litza Halla; Torres-Rodriguez, Luz Maria; Garcia-de la Cruz, Ramon Fernando; Montes-Rojas, Antonio; Lopez-Arteaga, Rafael Eduardo

    2010-01-01

    An electrochemical experiment is presented to illustrate biosorption to second-year and upper-division undergraduate students. The extraction of Cd[superscript 2+], Pb[superscript 2+], and Cu[superscript 2+] by nonliving "Typha latifolia" (cattail) roots can be monitored in real time by potentiometry determinations. The open circuit potential…

  16. DSC, ESR and optical absorption studies of Cu{sup 2+} ion doped in boro cadmium tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri Pavani, P., E-mail: gayathri.potturi@gmail.com [Glassy Material Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007 (India); Prasad, M.; Chandra Mouli, V. [Glassy Material Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007 (India)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer Variation in different physical parameters of the glass system is studied. Black-Right-Pointing-Pointer Variation in glass transition temperature is discussed in terms of different structural parameters. Black-Right-Pointing-Pointer ESR analysis and the bonding parameters determination of the present glass system is interesting. - Abstract: Physical, optical absorption, ESR and DSC studies on 50 B{sub 2}O{sub 3}-(50 - x) CdO-xTeO{sub 2} glasses containing Cu{sup 2+} spin probe have been carried out. Density measurement is carried out by Archimedes principle. Variation in glass transition temperature is discussed in terms of physical parameters. ESR results show that g{sub Parallel-To} > g{sub Up-Tack} indicating that the Cu{sup 2+} ions is in tetragonal distorted octahedral site and its ground state is d{sub x{sub 2-y{sub 2}}}. There are considerable changes in g{sub Parallel-To }, g{sub Up-Tack} and A{sub Parallel-To} values with increasing the concentration of CdO in BCT glass systems. The optical absorption spectra results show that the absorption peak of Cu{sup 2+} is a function of composition. The observed optical absorption peak of Cu{sup 2+} has been found to be minimum at 776 nm for x = 30 mol.% of CdO content. The variations in the physical, optical and bonding parameters clearly indicate the structural changes in the present glass system with varied CdO content.

  17. Mechanism of cadmium resistance and adsorption of a yeast strain Rhodotorula sp. Y11

    Institute of Scientific and Technical Information of China (English)

    YUAN Hongli; LI Zhijian; WANG Nengfei; HUANG Huaizeng

    2005-01-01

    The mechanism of cadmium resistance of a yeast strain Rhodotorula sp. Y11 isolated from mine soil was investigated. We found that the yeast cells treated with different methods showed different cadmium-adsorption models. Grown in medium supplied with 100 mg/L of cadmium, 3.29% of the cell-absorbed cadmium was accounted in the cytoplasm. However, only 1% was taken into the cytoplasm and 99% was bound to the cell wall using the lyophilized biomass to adsorb cadmium in double distilled water. Treatments with alkali, ethanol-chloroform and proteinase showed different influences on the biosorption of whole cells and isolated cell walls. FT-IR analysis showed that acetyl of chitin was the active compound in the cells to absorb cadmium. The production of Metallothioneins, proteins related to the resistance to heavy metal in yeast, was evidently induced by cadmium, achieving 638.8 μg/g wet weight, which was about 85 folds higher than that in the uninduced biomass and was also much higher than that reported previously. The molecular weight of Metallothioneins was 6500 Da estimated by SDS-PAGE.

  18. Biosorption behaviors of Cu2+,Zn2+, Cd2+ and mixture by waste activated sludge

    Institute of Scientific and Technical Information of China (English)

    LUO Sheng-lian; YUAN Lin; CHAI Li-yuan; MIN Xiao-bo; WANG Yun-yan; FANG Yan; WANG Pu

    2006-01-01

    Biosorption of heavy metal ions, such as Cu2+, Cd2+ and Zn2+, was carried out using waste activated sludge from municipal sewage treatment plant as adsorption material, and the effects of parameters, such as pH value, temperature, reaction time and sorption duration, were studied in detail. The results indicate that the removal rates of Cu2+, Zn2+ and Cd2+ with low concentration are 96.47%, 80% and 90%, respectively, adsorbed by waste activated sludge. Little effect of dosage of activated sludge on the adsorption of Cu2+ and more effects on the adsorption of Zn2+ and Cd2+ are observed. Little effect oftemperature is observed, while pH value and adsorption time exert important influence on the sorption process. The adsorption behaviors of heavy metal ions all have parabolic relationships with pH value. The optimum pH value is between 6 and 10, and the optimum adsorption time is 1 h. In single heavy metal ion system, the sorption processes of Cu2+, Zn2+ and Cd2+ are in accordance with Freundlich model, which indicates that it is suitable for the treatment of these three heavy metal ions using intermittent operation. In addition, the sorption capacity of the sludge for Cu2+ is preferential to the other two ions.

  19. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves.

    Science.gov (United States)

    Guerrero-Coronilla, Imelda; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2015-04-01

    The present study explored the kinetics, equilibrium and thermodynamics of amaranth (acid red 27) anionic dye (AD) biosorption to water hyacinth leaves (LEC). The effect of LEC particle size, contact time, solution pH, initial AD concentration and temperature on AD biosorption was studied in batch experiments. AD biosorption increased with rising contact time and initial AD concentration, and with decreasing LEC particle size and solution pH. Pseudo-second-order chemical reaction kinetics provided the best correlation for the experimental data. Isotherm studies showed that the biosorption of AD onto LEC closely follows the Langmuir isotherm, with a maximum biosorption capacity of about 70 mg g(-1). The thermodynamic parameters confirm that AD biosorption by LEC is non-spontaneous and endothermic in nature. Results indicate that LEC is a strong biosorbent capable of effective detoxification of AD-laden wastewaters.

  20. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  1. Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste.

    Science.gov (United States)

    Yuvaraja, Gutha; Krishnaiah, Nettem; Subbaiah, Munagapati Venkata; Krishnaiah, Abburi

    2014-02-01

    Solanum melongena leaves are relatively galore and used as inexpensive material. This paper presents the characterization and evaluation of potential of S. melongena leaf powder (SMLP) for removal of Pb(II) from aqueous solution as a function of pH, biomass dosage, initial metal ion concentration, contact time and temperature. Experimental data were analyzed in terms of three kinetic models such as the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the biosorption processes of Pb(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. Langmuir isotherm described the equilibrium data very well, with a maximum monolayer sorption capacity of 71.42 mg/g for Pb(II) ions at 323 K. The biosorption process was spontaneous and endothermic in nature with negative ΔG° (-8.746, -8.509 and -7.983 kJ/mol) and positive value for ΔH° (3.698 kJ/mol).

  2. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  3. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    Directory of Open Access Journals (Sweden)

    D. Sivakumar

    2016-03-01

    Full Text Available The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI concentration (dilution ratio.  The results of this study indicated that the order of maximum removal of chromium(VI by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g andan initial chromium(VI concentration of 18.125 mg/L (dilution ratio 4is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans.  This study found that the maximum removal of chromium(VI was achieved by Aspergillus niger (96.3 % than other fungi species at chromium(VI concentration of 18.125 mg/Lin a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger.  Biosorption model was proposed to simulate the experimental condition for removing chromium(VI in a tannery industry wastewater by all isolated fungi species. The R2 and  values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI in a tannery industry wastewater by all isolated fungi species.  This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and pH level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

  4. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry.

    Science.gov (United States)

    Naz, Tayyaba; Khan, Muhammad Daud; Ahmed, Iftikhar; Rehman, Shafiq Ur; Rha, Eui Shik; Malook, Ijaz; Jamil, Muhammad

    2016-09-01

    Heavy metal-resistant bacteria can be efficient bioremediators of metals and may provide an alternative or additional method to conventional methods of metal removal. In this study, 10 bacterial isolates were isolated from soil samples of a sugar industry, located at Peshawar, Pakistan. Morphological, physiological, and biochemical characteristics of these isolates were observed. Sequence analysis (16S ribosomal RNA) revealed that isolated strains were closely related to the species belonging to the genera Pseudomonas, Arthrobacter, Exiguobacterium, Citrobacter, and Enterobacter Bacterial isolates were resistant with a minimum inhibitory concentration (500-900 ppm) to lead ion (Pb(2+)), (500-600 ppm) nickel ion (Ni(2+)), (500-800 ppm) copper ion (Cu(2+)), and (600-800 ppm) chromium ion (Cr(3+)) in solid media. Furthermore, biosorption of metals proved considerable removal of heavy metals by isolated metal-resistant strains. Pseudomonas sp. reduced 37% (Pb(2+)), 32% (Ni(2+)), 29% (Cu(2+)), and 32% (Cr(3+)) and was thus found to be most effective, whereas Enterobacter sp. reduced 19% (Pb(2+)), 7% (Ni(2+)), 14% (Cu(2+)), and 21% (Cr(3+)) and was found to be least effective. While average reduction of Pb(2+), Ni(2+), Cu(2+), and Cr(3+) by Citrobacter sp. was found to be 24%, 18%, 23%, and 27%, respectively, among recognized species. This study revealed that Pseudomonas sp. may provide a new microbial community that can be used for enhanced remediation of contaminated environment.

  5. SEC ICP MS and CZE ICP MS investigation of medium and high molecular weight complexes formed by cadmium ions with phytochelatins.

    Science.gov (United States)

    Miszczak, Agata; Rosłon, Magdalena; Zbroja, Grzegorz; Brama, Katarzyna; Szalacha, Elżbieta; Gawrońska, Helena; Pawlak, Katarzyna

    2013-05-01

    Size-exclusion chromatography (SEC) and capillary zone electrophoresis (CZE) coupled with inductively coupled plasma mass spectrometry were applied to characterize low, medium, and high molecular weight cadmium complexes with glutathione and phytochelatins (PCs). The dominant stoichiometry of the complexes formed in vitro was established as 1:1 using electrospray ionization mass spectrometry. Calculated molecular masses of Cd1L1 complexes were used for calibration of the SEC and CZE methods. The results showed a lower (2 kDa) SEC column exclusion limit for cadmium complexes compared with free peptides (10 kDa), and most of the high molecular weight cadmium species were eluted in the void volume of the column. Moreover, the CZE method based on the semiempirical model of Offord to elucidate peptide migration allowed us to show a high propensity of Cd-PC complexes for polymorphism on complexation, which was also observed for extracts of Arabidopsis thaliana treated with cadmium. All the information presented is vital for understanding the mechanism of metal deactivation in plants.

  6. SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress.

    NARCIS (Netherlands)

    A. Kulik; A. Anielska-Mazur; M. Bucholc; E. Koen; E. Szymańska; A. Żmieńko; E. Krzywińska; I. Wawer; F. McLoughlin; D. Ruszkowski; M. Figlerowicz; C. Testerink; A. Sklodowska; D. Wendehenne; G. Dobrowolska

    2012-01-01

    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related

  7. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column.

    Science.gov (United States)

    Vijayaraghavan, K; Jegan, J; Palanivelu, K; Velan, M

    2005-07-01

    Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata were investigated in a packed bed up-flow column. The experiments were conducted to study the effect of important design parameters such as bed height and flow rate. At a bed height of 25 cm, the metal-uptake capacity of U. reticulata for copper, cobalt and nickel was found to be 56.3+/-0.24, 46.1+/-0.07 and 46.5+/-0.08 mgg(-1), respectively. The Bed Depth Service Time (BDST) model was used to analyze the experimental data. The computed sorption capacity per unit bed volume (N0) was 2580, 2245 and 1911 mgl(-1) for copper, cobalt and nickel, respectively. The rate constant (K(a)) was recorded as 0.063, 0.081 and 0.275 lmg(-1)h(-1) for copper, cobalt and nickel, respectively. In flow rate experiments, the results confirmed that the metal uptake capacity and the metal removal efficiency of U. reticulata decreased with increasing flow rate. The Thomas model was used to fit the column biosorption data at different flow rates and model constants were evaluated. The column regeneration studies were carried out for three sorption-desorption cycles. The elutant used for the regeneration of the biosorbent was 0.1 M CaCl2 at pH 3 adjusted using HCl. For all the metal ions, a decreased breakthrough time and an increased exhaustion time were observed as the regeneration cycles progressed, which also resulted in a broadened mass transfer zone. The pH variations during both sorption and desorption process have been reported.

  8. Study of Mo (VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data.

    Science.gov (United States)

    Kafshgari, Fatemeh; Keshtkar, Ali Reza; Mousavian, Mohammad Ali

    2013-01-25

    Molybdenum (VI) biosorption process was investigated by marine algae Cystoseria indica pretreated with 0.1 M CaCl2 solution in a packed bed column. The biosorbent was characterized by FTIR, BET and SEM analyses. The results showed that Mo (VI) ions should be chelated with the hydroxyl, carboxyl and amine groups of the biomass. The effects of inlet metal concentration and flow rate on biosorption process were investigated and the experimental breakthrough curves were obtained. Results showed that the maximum biosorption capacity of Ca-pretreated C. indica for Mo (VI) was found to be 18.32 mg/g at optimum flow rate of (1.4 mL/min). The controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. Also, it was observed that the breakthrough and exhaustion time decreased from 17.14 hr to 9.05 hr and from 0.006 h to 0.002 hr respectively, with the increase of flow rate from 0.7 to 2.1 ML/min. The increase in the initial concentration of Mo (VI) solution from 30 to 95 ml min-1 increases the adsorption capacity from 18.32 to 30.19 mg/g and decreases the percentage of Mo (VI) removal from 61 to 38%. Also, the treated volume was the greatest (1.42 L) at the lowest inlet concentration. Column data obtained under different conditions were described using the Thomas, Yoon and Nelson, Yan and Belter models. The breakthrough curve predictions by Belter model were found to be very satisfactory.

  9. Study of Mo (VI removal from aqueous solution: application of different mathematical models to continuous biosorption data

    Directory of Open Access Journals (Sweden)

    Kafshgari Fatemeh

    2013-01-01

    Full Text Available Abstract Molybdenum (VI biosorption process was investigated by marine algae Cystoseria indica pretreated with 0.1 M CaCl2 solution in a packed bed column. The biosorbent was characterized by FTIR, BET and SEM analyses. The results showed that Mo (VI ions should be chelated with the hydroxyl, carboxyl and amine groups of the biomass. The effects of inlet metal concentration and flow rate on biosorption process were investigated and the experimental breakthrough curves were obtained. Results showed that the maximum biosorption capacity of Ca-pretreated C. indica for Mo (VI was found to be 18.32 mg/g at optimum flow rate of (1.4 mL/min. The controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. Also, it was observed that the breakthrough and exhaustion time decreased from 17.14 hr to 9.05 hr and from 0.006 h to 0.002 hr respectively, with the increase of flow rate from 0.7 to 2.1 ML/min. The increase in the initial concentration of Mo (VI solution from 30 to 95 ml min-1 increases the adsorption capacity from 18.32 to 30.19 mg/g and decreases the percentage of Mo (VI removal from 61 to 38%. Also, the treated volume was the greatest (1.42 L at the lowest inlet concentration. Column data obtained under different conditions were described using the Thomas, Yoon and Nelson, Yan and Belter models. The breakthrough curve predictions by Belter model were found to be very satisfactory.

  10. Study of Mo (VI Removal from Aqueous Solution: Application of Different Mathematical Models to Continuous Biosorption Data

    Directory of Open Access Journals (Sweden)

    Fatemeh Kafshgari

    2013-01-01

    Full Text Available Molybdenum (VI biosorption process was investigated by marine algae Cystoseria indica pretreated with 0.1 M CaCl2 solution in a packed bed column. The biosorbent was characterized by FTIR, BET and SEM analyses. The results showed that Mo (VI ions should be chelated with the hydroxyl, carboxyl and amine groups of the biomass. The effects of inlet metal concentration and flow rate on biosorption process were investigated and the experimental breakthrough curves were obtained. Results showed that the maximum biosorption capacity of Ca-pretreated C. indica for Mo (VI was found to be 18.32 mg/g at optimum flow rate of (1.4 mL/min. The controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. Also, it was observed that the breakthrough and exhaustion time decreased from 17.14 hr to 9.05 hr and from 0.006 h to 0.002 hr respectively, with the increase of flow rate from 0.7 to 2.1 ML/min. The increase in the initial concentration of Mo (VI solution from 30 to 95 ml min-1 increases the adsorption capacity from 18.32 to 30.19 mg/g and decreases the percentage of Mo (VI removal from 61 to 38%. Also, the treated volume was the greatest (1.42 L at the lowest inlet concentration. Column data obtained under different conditions were described using the Thomas, Yoon and Nelson, Yan and Belter models. The breakthrough curve predictions by Belter model were found to be very satisfactory.

  11. Remediation of radionuclide pollutants through biosorption - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nilanjana [Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore (India)

    2012-01-15

    The development of nuclear science and technology has led to the increase of nuclear wastes containing radionuclides to be released and disposed in the environment. Pollution caused by radionuclides is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of radionuclide containing wastes. Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. A variety of biomaterials viz. algae, fungi, bacteria, plant biomass, etc. have been reported for radionuclide remediation with encouraging results. This paper reviews the achievements and current status of radionuclide remediation through biosorption which will provide insights into this research frontier. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  13. Evaluating the Effects of Municipal Waste and Wastewater on Absorption of Nickel and Cadmium of Helianthus Annuus Plant

    Directory of Open Access Journals (Sweden)

    Amirhossein Ashouri

    2016-01-01

    Full Text Available The present study is an attempt to examine the effects of municipal waste and wastewater on absorption of nickel and cadmium of helianthus annuus plant. In order to determine cadmium and nickel in different organs of the plant in soil with organic fertilizers of municipal waste and municipal sewage sludge, we conducted a split plot study. The study was in form of randomized complete block from 2011 to 2015 under farm conditions. We considered the main factor in five levels of control, 10 and 20 tons of sewage sludge and municipal waste compost per hectare besides the minor factor of yearly treatment during four years. The results showed that using 20 tons of sewage sludge and waste per hectare increased absorbable soil nickel and cadmium up to approximately 220%. Also, the amount of cadmium and nickel in root was about 400% more than the control group. Bacteria found in soil contaminated to heavy metals showed remarkable resistance against higher concentration of these elements. Both bioaccumulation and biosorption techniques indicated high potential to refine aquatic environments. However, the bioaccumulation technique showed better efficiency in lower concentrations and the biosorption revealed better efficiency in higher concentrations of metals.

  14. Study on Mathematical Model of Cadmium Ion Removal by Genetically Engineered Bacteria%基因工程菌去除镉离子的数学模型研究

    Institute of Scientific and Technical Information of China (English)

    马青兰; 王楷; 张弛; 曹秋芬; 孟玉平

    2013-01-01

    The mathematical model of cadmium ion removal by genetically engineered bacteria was established on the basis of experiment and improve Meter-Door equation. In the model LgnCF (CF:Colony-Forming)represents bacteria concentration and can directly derive quantitative relationship of the growth rate of genetically engineered bacteria pGEX-ZjMT-B from the concentration of heavy metal ions. Through fitting experimental data with equations,the results show that the equation described well the quantitative relationship between the cadmium ion concentration and the growth rate of genetically engineered bacteria pGEX-ZjMT-B, meanwhile, conclude that experimental time was greatly shortened,and experimeutal effcieny was improved.%在实验的基础上,对米-门方程进行了改进,建立了基因工程菌去除镉离子的数学模型.该模型用lgnCF(CF.Colony-Forming活菌计数)表示菌浓度,能直接从重金属离子浓度得出它和基因工程菌pGEX-ZjMT-B[1]生长率的定量关系.通过实验数据对拟合的方程进行验证,结果表明,改进后的米-门方程可以直接反应镉离子浓度和基因工程菌pGEX-ZjMT-B生长率的定量关系,大大缩短了实验时间,提高了效率.

  15. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Directory of Open Access Journals (Sweden)

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  16. Phytosynthesis of Cadmium Oxide Nanoparticles from Achillea wilhelmsii Flowers

    Directory of Open Access Journals (Sweden)

    Javad Karimi Andeani

    2013-01-01

    Full Text Available The study here deals with the plant synthesis of cadmium oxide nanoparticles using flowers extract of Achillea wilhelmsii as the reducing agent. The photosynthesis is carried out at room temperature in the laboratory ambience. The aqueous cadmium ions when exposed to flower extract were reduced and resulted in their nanoparticles. The synthesized nanoparticles were characterized using techniques such as scanning electron microscope (SEM, Fourier transform infrared spectroscopy (FTIR, and UV-visible absorption spectroscopy. Stable cadmium oxide nanoparticles were formed by treating aqueous solution of cadmium chloride (CdCl2 with the plant flower extracts as reducing agent.

  17. Market for nickel-cadmium batteries

    Science.gov (United States)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  18. 纳米羟基磷灰石的镉离子吸附性能%Properties of nano hydroxyapatite for sorption of aqueous cadmium ion

    Institute of Scientific and Technical Information of China (English)

    石和彬; 钟宏; 刘羽; 田兴; 顾金燕; 鲁斌

    2012-01-01

    Nano hydroxyapatite (n - HA) was prepared by a coprecipitation process using calcium nitrate, phosphoric acid and ammonia as raw materials. The aqueous solution of cadmium nitrate was used as simulated waste water, and the solution chemistry of the waste water was illustrated by using Visual MINTEQ software. The effects of the initial pH value of the waste water, reaction time and initial content of Cd2+ on the Cd2+-sorption-capacity of n - HA were tested. The results show that the Cd2+-sorptive property of n - HA changes little at the initial pH value of Cd2+ solution being 4 to 9, the process of Cd2+ sorption on n - HA accords with pseudo-second-order kinetic model and highly fits Langmuir isotherm and Freundlich isotherm. The kinetic and thermal characteristics reflect that ion-exchange is the main mechanism of Cd2+ sorption on n - HA. n - HA is a kind of advanced environmental materials for its great capacity and high initial rate on sorption of aqueous Cd2+.%以硝酸钙、磷酸、氨水为原料,采用共沉淀法合成了纳米羟基磷灰石粉体.以硝酸镉水溶液作为模拟废水,用VisualMINTEQ软件对模拟废水的溶液化学特征进行了计算,主要研究了溶液的初始pH值、反应时间以及镉离子(Cd2+)初始浓度等因素对纳米羟基磷灰石的镉离子吸附量的影响.实验结果表明,纳米羟基磷灰石的镉离子吸附性能在溶液初始pH为4-9的范围内比较稳定,其去除水溶液中镉离子的过程符合准二级动力学模型,并且与朗缪尔等温吸附和弗伦德里希等温吸附均表现出了较高的相关性,反映了纳米羟基磷灰石吸附水溶液中镉离子的反应以离子交换作用为主的特点.纳米羟基磷灰石不仅镉离子吸附容量大,而且初期吸附速率很快,是一种性能良好的环境矿物吸附材料.

  19. Dispersive liquid-liquid microextraction for the simultaneous separation of trace amounts of zinc and cadmium ions in water samples prior to flame atomic absorption spectrometry determination

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2012-01-01

    Full Text Available In the proposed method, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, such as extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, linearity was maintained between 1.0 ng mL-1 to 1.5 mg mL-1 for zinc and 1.0 ng mL-1 to 0.4 mg mL-1 for cadmium. The proposed method has been applied for determination of trace amount of zinc and cadmium in standard and water samples with satisfactory results.

  20. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder

    Science.gov (United States)

    Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das

    2012-06-01

    Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.

  1. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  2. Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network.

    Science.gov (United States)

    Wilson, D; del Valle, M; Alegret, S; Valderrama, C; Florido, A

    2013-09-30

    In this communication, a new methodology for the simultaneous and automated monitoring of biosorption processes of multimetal mixtures of polluting heavy metals on vegetable wastes based on flow-injection potentiometry (FIP) and electronic tongue detection (ET) is presented. A fixed-bed column filled with grape stalks from wine industry wastes is used as the biosorption setup to remove the metal mixtures from the influent solution. The monitoring system consists in a computer controlled-FIP prototype with the ET based on an array of 9 flow-through ion-selective electrodes and electrodes with generic response to divalent ions placed in series, plus an artificial neural network response model. The cross-response to Cu(2+), Cd(2+), Zn(2+), Pb(2+) and Ca(2+) (as target ions) is used, and only when dynamic treatment of the kinetic components of the transient signal is incorporated, a correct operation of the system is achieved. For this purpose, the FIA peaks are transformed via use of Fourier treatment, and selected coefficients are used to feed an artificial neural network response model. Real-time monitoring of different binary (Cu(2+)/ Pb(2+)), (Cu(2+)/ Zn(2+)) and ternary mixtures (Cu(2+)/ Pb(2+)/ Zn(2+)), (Cu(2+)/ Zn(2+)/ Cd(2+)), simultaneous to the release of Ca(2+) in the effluent solution, are achieved satisfactorily using the reported system, obtaining the corresponding breakthrough curves, and showing the ion-exchange mechanism among the different metals. Analytical performance is verified against conventional spectroscopic techniques, with good concordance of the obtained breakthrough curves and modeled adsorption parameters.

  3. Application of poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples.

    Science.gov (United States)

    Nabid, Mohammad Reza; Sedghi, Roya; Behbahani, Mohammad; Arvan, Behnoush; Heravi, Majid M; Oskooie, Hossein Abdi

    2014-07-01

    Poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an effective sorbents in solid phase extraction has been developed for the separation and preconcentration of Cd(II) and Pb(II) at trace levels in environmental water samples. The results indicate that the novel nanocomposite show a high affinity for these heavy metals due to the presence of several good extractive sites, which are introduced to the synthesized nanocomposite The maximum adsorption capacity of the synthesized sorbent for cadmium and lead ions was found to be 101.2 and 175.2 mg g(-1) , respectively. The detection limits of this method were 0.09 and 0.7 ng ml(-1) for Cd(II) and Pb(II), respectively.

  4. Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus

    Energy Technology Data Exchange (ETDEWEB)

    Das, Devlina [School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu (India); Das, Nilanjana, E-mail: nilanjana00@lycos.com [School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu (India); Mathew, Lazar [School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu (India)

    2010-12-15

    Reports are available on silver binding capacity of some microorganisms. However, reports on the equilibrium studies on biosorption of silver by macrofungi are seldom known. The present study was carried out in a batch system using dead biomass of macrofungus Pleurotus platypus for the sorption of Ag(I). P. platypus exhibited the highest silver uptake of 46.7 mg g{sup -1} of biomass at pH 6.0 in the presence of 200 mg L{sup -1} Ag(I) at 20 deg. C. Kinetic studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have been carried out. The results showed a very good compliance with the pseudo-first order model. The experimental data were analyzed using two parameter isotherms (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Halsey), three parameter isotherms (Redlich-Peterson, Sips, Khan, Koble-Corrigan, Hill, Toth, Radke-Prausmitz, Jossens, Langmuir-Freundlich), four parameter isotherms (Weber-van Vliet, Fritz-Schlunder, Baudu) and five parameter isotherm (Fritz-Schlunder). Thermodynamic parameters of the biosorption ({Delta}G, {Delta}H and {Delta}S) were also determined. The present study confirmed that macrofungus P. platypus may be used as a cost effective efficient biosorbent for the removal of Ag(I) ions from aqueous solution.

  5. Potential capacity of Beauveria bassiana and Metarhizium anisopliae in the biosorption of Cd2+ and Pb2+.

    Science.gov (United States)

    Hussein, Khalid A; Hassan, Sedky H A; Joo, Jin Ho

    2011-01-01

    In this study Beauveria bassiana and Metarhizium anisopliae were used as inexpensive and efficient biosorbents for Pb(II) and Cd(II) from aqueous metal solutions. The effects of various physicochemical factors on Pb(II) and Cd(II) biosorption by B. bassiana and M. anisopliae were studied. The optimum pH for Cd(II) and Pb(II) biosorption by two fungal species was achieved at pH 6.0 for Pb(II) and 5.0 Cd(II) at a constant time of 30 min. The nature of fungal biomass and metal ion interactions was evaluated by Fourier transform infrared. The maximum adsorption capacities (q(max)) calculated from Langmuir isotherms for Pb(II), and Cd(II) uptake by B. bassiana were 83.33±0.85, and 46.27±0.12 mg/g, respectively. However, the q(max) obtained for Pb(II) uptake by M. anisopliae was 66.66±0.28 mg/g, and 44.22±0.13 mg/g for Cd(II). B. bassiana showed higher adsorption capacity compared to M. anisopliae. The data obtained imply the potential role of B. bassiana and M. anisopliae for heavy metal removal from aqueous solutions.

  6. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Jiachuan; Feng Huimin [Advanced Lab for Environmental Research and Technology, USTC-CityU, Suzhou, 215123 (China); Department of Chemistry, University of Science and Technology of China, Hefei, 230026 (China); Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Lam, Michael Hon-Wah, E-mail: bhmhwlam@cityu.edu.hk [Advanced Lab for Environmental Research and Technology, USTC-CityU, Suzhou, 215123 (China); Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Lam, Paul Kwan-Sing [Advanced Lab for Environmental Research and Technology, USTC-CityU, Suzhou, 215123 (China); Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Ding Yanwei [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026 (China); Yu Hanqing, E-mail: hqyu@ustc.edu.cn [Advanced Lab for Environmental Research and Technology, USTC-CityU, Suzhou, 215123 (China); Department of Chemistry, University of Science and Technology of China, Hefei, 230026 (China)

    2009-11-15

    Water hyacinth roots were employed as a biosorbent to remove Cu(II) in aqueous media. Nitrogen adsorption/desorption analysis revealed that the biosorbent was mesoporous with a relatively small surface area. Equilibrium biosorption isotherms showed that the water hyacinth roots possessed a high affinity and sorption capacity for Cu(II) with a monolayer sorption capacity of 22.7 mg g{sup -1} at initial pH 5.5. Kinetics study at different temperatures revealed that the sorption was a rapid and endothermic process. The activation energy for Cu(II) sorption was estimated to be 30.8 kJ mol{sup -1}, which is typical of activated chemisorption processes. The sorption mechanism was investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, effect of pH and calcium release. These analyses suggested that the biosorption mainly involved the ion exchange of Cu(II) with cations and complex formation with functional groups on the surface of the roots. All the results showed that water hyacinth roots are an alternative low-cost biosorbent for the removal of Cu(II) from aqueous media.

  7. Residual biomass for removal of uranyl ions;Biomassa residual para remocao de ions uranilo

    Energy Technology Data Exchange (ETDEWEB)

    Boniolo, Milena Rodrigues [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Biogeoquimica Ambiental; Yamaura, Mitiko; Monteiro, Raquel Almeida, E-mail: milenaboniolo@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2010-07-01

    Activities related to nuclear industry, production of phosphoric acid and hospitals have generated considerable volumes of radioactive waste containing uranyl ions. Banana pith was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy and was investigated as a biosorbent for uranyl ions from nitric solutions by batch experiments. Influences of adsorbent size, kinetics and equilibrium adsorption were studied. The biosorption of the uranyl ions followed pseudo-second-order kinetics. The adsorption isotherm data were closely fitted to the Freundlich equation. (author)

  8. Adsorption of lead and cadmium ions from aqueous solutions using manganoxide minerals%采用锰矿从水溶液中吸附铅和镉离子

    Institute of Scientific and Technical Information of China (English)

    Aylin S(O)NMEZAY; M. SALIM (O)NCEL; Nihal BEKTA(S)

    2012-01-01

    Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated.Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent.The kinetics of adsorption process data was examined using the pseudo-first-order,pseudo-second-order kinetics and the intra-particle diffusion models.The rate constants of adsorption for all these kinetics models were calculated and compared.The adsorption kinetics was best described by the pseudo second-order model.The Langmuir and Freundlich adsorption isotherm models were applied to the experimental equilibrium data at different temperatures.The experimental data well fitted to Langrnuir isotherm model.The maximum adsorption capacities of manganoxide mineral for lead and cadmium ions were calculated from the Langmuir isotherm and were 98 and 6.8 mg/g,respectively.Thermodynamic parameters such as the change of Gibbs free energy,enthalpy and entropy of adsorption were also calculated and it was found that the lead and cadmium uptake reactions by manganoxide mineral were endothermic and spontaneous in nature.Therefore,manganoxide mineral can be used as adsorbents for lead and cadmium ions removal processes as an alternative natural mineral among the others.%采用低成本的本地可得的天然锰矿作为吸附剂,研究吸附工艺从水溶液中脱除铅离子和镉离子.利用伪一级、伪二级动力学和颗粒内扩散模型检验动力学吸附数据,计算和比较这些动力学模型的吸附速率常数,发现用伪二级动力学模型能最佳地描述吸附动力学.将Langmuir和Freundlieh等温吸附模型用来拟合不同温度下的平衡数据,发现实验数据与Langmuir模型拟合得更好.采用Langmuir等温吸附模型计算出锰矿吸附铅离子和镉离子的最大容量分别为98和6.8 mg/g.计算了热力学参数,如吸附吉布斯自由能的变化、焓变与熵变.结果表明,锰矿作为吸附剂对铅和镉的吸附反应是自发

  9. Biosorption of mercury by Macrocystis pyrifera and Undaria pinnatifida: Influence of zinc, cadmium and nickel

    Institute of Scientific and Technical Information of China (English)

    Josefina Plaza; Marisa Viera; Edgardo Donati; Eric Guibal

    2011-01-01

    This study investigated the adsorption of Hg(Ⅱ) on Macrocystis pyrifera and Undaria pinnatifida in monometallic system in the presence of Zn(Ⅱ),Cd(Ⅱ) and Ni(Ⅱ).The two biosorbents reached the same maximum sorption capacity (qm =0.8 mmol/g) for mercury.U.pinnatifida showed a greater affinity (given by the coefficient b of the Langmuir equation) for mercury compared to M.pyrifera (4.4 versus 2.7 L/mmol).Mercury uptake was significantly reduced (by more than 50%) in the presence of competitor heavy metals such as Zn(Ⅱ),Cd(Ⅱ) and Ni(Ⅱ).Samples analysis using an environmental scanning electron microscopy equipped with an energy dispersive X-ray microanalysis showed that mercury was heterogeneously adsorbed on the surface of both biomaterials,while the other heavy metals were homogeneous distributed.The analysis of biosorbents by Fourier transform infrared spectrometry indicated that Hg(Ⅱ)binding occurred on S=O (sulfonate) and N-H (amine) functional groups.

  10. Biosorption of uranium by human black hair.

    Science.gov (United States)

    Saini, Amardeep Singh; Melo, Jose Savio

    2015-04-01

    Naturally available low cost materials have gained importance as effective alternative to conventional sorbents for the removal of metal ions from water. The present study describes the use of black hair waste as a sorbent for the removal of uranium ions from an aqueous medium. Alkali treatment of the biomass resulted in a significant increase in its uptake capacity. The optimum pH and contact time for uranium removal were 4.5 and 2 h respectively. It was observed that the experimental data fits well in Ho's pseudo-second order kinetic model. Binding of uranium to the biomass was confirmed using FT-IR spectroscopy. Thus, the present study could demonstrate the utility of human black hair to remove uranium from aqueous medium.

  11. State of the art for the biosorption process--a review.

    Science.gov (United States)

    Michalak, Izabela; Chojnacka, Katarzyna; Witek-Krowiak, Anna

    2013-07-01

    In recent years, biosorption process has become an economic and eco-friendly alternative treatment technology in the water and wastewater industry. In this light, a number of biosorbents were developed and are successfully employed for treating various pollutants including metals, dyes, phenols, fluoride, and pharmaceuticals in solutions (aqueous/oil). However, still there are few technical barriers in the biosorption process that impede its commercialization and thus to overcome these problems there has been a steadily growing interest in this research field. This resulted in large numbers of publications and patents each year. This review reports the state of the art in biosorption research. In this review, we provide a compendium of know-how in laboratory methodology, mathematical modeling of equilibrium and kinetics, identification of the biosorption mechanism. Various mathematical models of biosorption were discussed: the process in packed-bed column arrangement, as well as by suspended biomass. Particular attention was paid to patents in biosorption and pilot-scale systems. In addition, we provided future aspects in biosorption research.

  12. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method.

    Science.gov (United States)

    Chen, Zhengsuo; Deng, Hongbo; Chen, Can; Yang, Ying; Xu, Heng

    2014-03-12

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues.The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions.

  13. Biosorption of copper(II) by Marrubium globosum subsp. globosum leaves powder: effect of chemical pretreatment.

    Science.gov (United States)

    Yazici, Hüseyin; Kiliç, Mehmet; Solak, Murat

    2008-03-01

    The study was aimed at determining the effect of chemical pretreatment on copper(II) biosorption by Marrubium globosum subsp. globosum leaves. The uptake capacity of the biomass was increased by chemical pretreatment when compared with the raw biomass. The results of biosorption experiments, carried out at the conditions of 50 mg l(-1) initial metal concentration and pH 5.5, showed that pretreating the biomass with alkali solutions (laundry detergent, sodium hydroxide and sodium bicarbonate, 0.5 M) improved the biosorption capacity of biomass (45.90, 45.78 and 43.91%, respectively) compared with raw biomass. Pretreatment with sulfuric and nitric acid solutions, 0.5 M, increased the biosorption capacity of biomass by 11.82 and 10.18%, respectively, while there was no considerable change in the biosorption capacity of biomass (0.35%) after pretreatment with formic acid solution, 0.5 M. Furthermore, sodium chloride and calcium chloride, 0.5 M, pretreatments resulted in the improvement in biosorption capacity of biomass (31.38 and 26.69%, respectively). FT-IR analysis revealed that hydroxyl and carboxyl functional groups were mainly responsible for copper(II) biosorption.

  14. BIOSORPTION OF CONGO RED BY HYDROGEN PEROXIDE TREATED TENDU WASTE

    Directory of Open Access Journals (Sweden)

    G. K. Nagda ، V. S. Ghole

    2009-07-01

    Full Text Available Solid wastes from agro-industrial operations can be recycled as non-conventional adsorbents if they are inert and harmless and reduce the cost of wastewater treatment. Tendu leaf Diospyros melanoxylon is the second largest forest product in India after timber and is exclusively used in making local cigarette called Bidi. Waste leaf cutting remaining after making cigarette was used in present study as a biosorbent for the removal of Congo red dye from aqueous solution. It was treated with hydrogen peroxide to obtain biosorbent with increased adsorption capacity. Batch type experiments were conducted to study the influence of different parameters such as pH, initial dye concentration and dosage of adsorbent on biosorption evaluated. The adsorption occured very fast initially and attains equilibrium within 60 min at pH= 6.2 and the equilibrium attained faster after hydrogen peroxide modification. Kinetic studies showed that the biosorption of Congo red on tendu waste followed pseudo-second-order rate equation. The data fitted well to Langmuir and Freundlich isotherm models. Comparison was done on the extent of biosorption between untreated and treated forms of the tendu waste. The maximum adsorption capacity for untreated tendu waste was found to be 46.95 mg/g, which was enhanced by 2.8 times after hydrogen peroxide treatment and was found to be 134.4 mg/g. The adsorption process was in conformity with Freundlich and Langmuir isotherms for Congo red adsorption from aqueous solution. The study demonstrated use of milder chemical treatment of tendu waste to obtain a biosorbent with enhanced dye removal capacity.

  15. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anwei; Zeng, Guangming; Chen, Guiqiu; Fan, Jiaqi; Zou, Zhengjun; Li, Hui; Hu, Xinjiang; Long, Fei [Hunan Univ., Changsha (China). College of Environmental Science and Engineering; Ministry of Education, Changsha (CN). Key Lab. of Environmental Biology and Pollution Control (Hunan Univ.)

    2011-08-15

    Phanerochaete chrysosporium has been recognised as an effective bioremediation agent due to its unique degradation to xenobiotic and biosorption ability to heavy metals. However, few studies have focused on the simultaneous removal of heavy metals and organic pollutants. The aim of this work was to study the feasibility of simultaneous cadmium removal and 2,4-dichlorophenol (2,4-DCP) degradation in P. chrysosporium liquid cultures. The removal efficiencies were pH dependent and the maximum removal efficiencies were observed at pH 6.5 under an initial cadmium concentration of 5 mg/L and an initial 2,4-DCP concentration of 20 mg/L. The removal efficiencies for cadmium and 2,4-DCP reached 63.62% and 83.90%, respectively, under the optimum conditions. The high production levels of lignin peroxidase (7.35 U/mL) and manganese peroxidase (8.30 U/mL) resulted in an increase in 2,4-DCP degradation. The protein content decreased with increasing cadmium concentration. The surface characteristics and functional groups of the biomass were studied by scanning electron microscopy and a Fourier-transformed infrared spectrometer. The results showed that the use of P. chrysosporium is promising for the simultaneous removal of cadmium and 2,4-DCP from liquid media. (orig.)

  16. Equilibrium and kinetic studies of lead biosorption by three Spirulina (Arthrospira species in open raceway ponds

    Directory of Open Access Journals (Sweden)

    Siva Kiran RR

    2015-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 The present investigation deals with the biosorption of lead from aqueous solutions in open race way pond using edible and live Spirulina (Arthospira maxima, Spirulina (Arthospira indica, Spirulina (Arthospira platensis. Studies on various initial lead (II ion concentrations, biosorbent dosage, pH and bioaccumulation potential were evaluated. The organisms are tolerant up to 4 mg/l and after that slight growth inhibition was found. Spirulina (Arthospira indica showed more tolerance when compared with Spirulina (Arthospira maxima and Spirulina (Arthospira plantensis. The adsorption rate data was fitted to pseudo second order kinetics. The Langmuir and Freundlich models were applied to the experimental data and their equilibrium parameters were determined. Further optimization of initial lead (II ion concentration, solution pH, agitation speed and biosorbent dosage were done using Box-Behnken experimental design coupled with artificial neural networks. This study provides a deep insight for exploring potential of using algal open race way ponds for biosorption of heavy metals. The diversity of the results can be expanded still further for other algal species and heavy metals. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  17. Biodecolorization of Textile Dye Effluent by Biosorption on Fungal Biomass Materials

    Science.gov (United States)

    Kabbout, Rana; Taha, Samir

    Colored industrial effluents have become a vital source of water pollution, and because water is the most important natural source; its treatment is a responsibility. Usually colored wastewater is treated by physical and chemical processes. But these technologies are ineffective in removing dyes, expensive and not adaptable to a wide range of colored water. Biosorption was identified as the preferred technique for bleaching colored wastewater by giving the best results. This treatment was based on the use of dead fungal biomass as new material for treating industrial colored effluents by biosorption. We studied the ability of biosorption of methylene blue (MB) by Aspergillus fumigatus and optimize the conditions for better absorption. Biosorption reaches 68% at 120 min. Similarly, the biosorbed amount increases up to 65% with pH from 4 to 6, and it's similar and around 90% for pH from 7 to 13. At ambient temperature 20-22 °C, the percentage of biosorption of methylene blue was optimal. The kinetic of biosorption is directly related to the surface of biosorbent when the particle size is also an important factor affecting the ability of biosorption. Also the biosorption of methylene blue increases with the dose of biosorbent due to an augmentation of the adsorption surface. In this study, for an initial concentration of 12 mg/L of MB (biosorbent/solution ratio=2g/L) buffered to alkaline pH, and a contact time of 120 min, biosorption takes place at an ambient temperature and reaches 93.5% under these conditions.

  18. Correlative characteristic of cadmium in soils of steppe Dnieper region

    Directory of Open Access Journals (Sweden)

    N. M. Tsvetkova

    2015-09-01

    Full Text Available Much attention is paid to searching for methods of establishing environmental standards for objective assessment of admissibility of anthropogenic load on the biosphere. The main pollutants of the environment are xenobiotics; heavy metals such as cadmium occupy hold a special place among them. Cadmium is one of the most dangerous environmental toxic agents, belonging to the 1stclass of hazard. Due to insufficient and fragmented information available on the distribution of cadmium in the city edaphotopes, it’s necessary to conduct additional research, taking into account the properties of soils and the biological characteristics of every element. The paper shows the ratio of cadmium in soils and soil-forming rocks of steppe Dnieper region. Environmental assessment of cadmium content in Dniprodzerzhinsk city soilsis made, and the problem of topsoil contamination of the city as a territory of high anthropogenic load is considered. It is found that the content of cadmium down the profile in natural soil increases. Enrichment of the topsoil with cadmium occurs due to contamination. The value of movable forms content, expressed as a percentage of the total content, varies from 12% to 70%, providing the evidence of the technogenic origin of cadmium in Dniprodzerzhinsk city topsoil. General and proximate correlation analyses of interrelation of soil cadmium and specifically selected characteristics of soil (pH, humus, sulfate ions, dry solid, chloride ions, total alkalinity, hygroscopic moisture were made. It is established that cadmium concentration in the movable forms of natural soils of the steppe Dnieper region depends primarily on pH value. With the increase in pH value, concentration of movable cadmium in soil increases.

  19. The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: Kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Lodeiro, P. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain); Barriada, J.L. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain); Herrero, R. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain)]. E-mail: erob@udc.es; Sastre de Vicente, M.E. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain)

    2006-07-15

    This work reports kinetic and equilibrium studies of cadmium(II) and lead(II) adsorption by the brown seaweed Cystoseira baccata. Kinetic experiments demonstrated rapid metal uptake. Kinetic data were satisfactorily described by a pseudo-second order chemical sorption process. Temperature change from 15 to 45 {sup o}C showed small variation on kinetic parameters. Langmuir-Freundlich equation was selected to describe the metal isotherms and the proton binding in acid-base titrations. The maximum metal uptake values were around 0.9 mmol g{sup -1} (101 and 186 mg g{sup -1} for cadmium(II) and lead(II), respectively) at pH 4.5 (raw biomass), while the number of weak acid groups were 2.2 mmol g{sup -1} and their proton binding constant, K {sub H}, 10{sup 3.67} (protonated biomass). FTIR analysis confirmed the participation of carboxyl groups in metal uptake. The metal sorption was found to increase with the solution pH reaching a plateau above pH 4. Calcium and sodium nitrate salts in solution were found to affect considerably the metal biosorption. - Marine macroalgae show promise for biosorption of lead and cadmium.

  20. Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga.

    Science.gov (United States)

    Cecal, Alexandru; Humelnicu, Doina; Rudic, Valeriu; Cepoi, Liliana; Ganju, Dumitru; Cojocari, Angela

    2012-08-01

    In this paper was studied the uranyl ions biosorption on three types of alga: Nostok linckia, Porphyridium cruentum and Spirulina platensis. These ions were supplied either from a pure solution of uranyl nitrate, or after leaching process of uranium ore, or from the sludge resulting in the output of pure UO(2) technology. It was investigated the retention degree versus contact time and afterwards the Langmuir and Freundlich biosorption isotherms of uranyl ions on the three alga types. The retention of UO(2)(2+) ions on alga was proved through FTIR spectra plotted before and after biosorption processes. From the experimental data it was found that regardless of origin of uranyl ions, the retention degree on alga decreased in the series. Spirulina platensis > Porphyridium cruentum ≥ Nostok linckia.

  1. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    Science.gov (United States)

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments.

  2. The effect of surfactant on pollutant biosorption of Trametes versicolor

    Science.gov (United States)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  3. Bio-sorption of neptunium(V) by Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Songkasiri, W. [Dept. of Civil Engineering, Northwestern Univ., Evanston, IL (United States); Chemical Technology Div., Argonne National Lab., Argonne, IL (United States); Reed, D.T. [Chemical Technology Div., Argonne National Lab., Argonne, IL (United States); Rittmann, B.E. [Dept. of Civil Engineering, Northwestern Univ., Evanston, IL (United States)

    2002-07-01

    The bio-sorption of neptunyl (NpO{sub 2}{sup +}) by Pseudomonas fluorescens was investigated. The overall goals of this research are to identify key interactions between neptunium and soil bacteria and to model these effects under subsurface-related conditions. Neptunyl, which is generally thought to be non-sorptive, was significantly sorbed under all conditions studied. At initial neptunyl concentrations of 4.75 {mu}M and pH = 7, as much as 85% of the neptunium was sorbed under aerobic conditions. Kinetic studies show that neptunyl was sorbed rapidly within the first 15 minutes. The extent of sorption also increased with pH. In all cases, the sorbed neptunium was shown to be NpO{sub 2}{sup +} by X-ray absorption near edged spectroscopy (XANES) analysis, confirming that there was no reduction to Np(IV) under the conditions of our experiment. The sorption data were modeled using Langmuir and Freundlich isotherms. A comparison of the two approaches showed a significantly better fit for the Freundlich isotherm, and the Freundlich parameter values suggest interactions between sorbed NpO{sub 2}{sup +} molecules. These data show that bio-sorption, even for neptunyl, has a significant role in defining the speciation of neptunium and, hence, its overall mobility in the subsurface. (orig.)

  4. Biosorption of americium-241 by immobilized Rhizopus arrihizus

    Energy Technology Data Exchange (ETDEWEB)

    Liao Jiali E-mail: liaojiali@163.com; Yang Yuanyou; Luo Shunzhong; Liu Ning; Jin Jiannan; Zhang Taiming; Zhao Pengji

    2004-01-01

    Rhizopus arrihizus (R. arrihizus), a fungus, which in previous experiments had shown encouraging ability to remove {sup 241}Am from solutions, was immobilized by calcium alginate and other reagents. The various factors affecting {sup 241}Am biosorption by the immobilized R. arrihizus were investigated. The results showed that not only can immobilized R. arrihizus adsorb {sup 241}Am as efficiently as free R. arrihizus, but that also can be used repeatedly or continuously. The biosorption equilibrium was achieved within 2 h, and more than 94% of {sup 241}Am was removed from {sup 241}Am solutions of 1.08 MBq/l by immobilized R. arrihizu in the pH range 1-7. Temperature did not affect the adsorption on immobilized R. arrihizus in the range 15-45 deg. C. After repeated adsorption for 8 times, the immobilized R. arrihizus still adsorbed more than 97% of {sup 241}Am. At this time, the total adsorption of {sup 241}Am was more than 88.6 KBq/g, and had not yet reached saturation. Ninety-five percent of the adsorbed {sup 241}Am was desorbed by saturated EDTA solution and 98% by 2 mol/l HNO{sub 3}.

  5. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II and Nickel(II Ions

    Directory of Open Access Journals (Sweden)

    Marcin Wysokowski

    2014-04-01

    Full Text Available Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively. The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry.

  6. Biosorption of Ag(I)-Spirulina platensis for different pH

    CERN Document Server

    Gelagutashvili, E; Kuchava, N; Bagdavadze, N; Rcheulishvili, A

    2011-01-01

    Biosorption of Ag(I)-Spirulina platensis for different pH were investigated using dialysis and Atomic-absorbtion analysis. It was shown, that the biosorption constant for Ag(I) Spirulina platensis complex and the capacity depend on the change of pH. In particular, with the increase of pH (pH=5.5. and pH=8.6 cases), the biosorption constant increase and the capacity decreases. The nature of interaction is also changed. In case of neutral pH, the interaction Ag(I)-S. platensis is of cooperative character and maximum metal biosorption by S. platensis biomass was observed at pH 7.0.

  7. Separation Of Cadmium(II), Cobalt(II) And Nickel(II) By Transport Through Polymer Inclusion Membranes With Phosphonium Ionic Liquid As Ion Carrier / Separacja Jonów Kadmu(II), Kobaltu(II) I Niklu(II) W Procesie Transportu Przez Polimerowe Membrany Inkluzyjne Zawierające Fosfoniową Ciecz Jonową W Roli Przenośnika

    OpenAIRE

    2015-01-01

    This paper presents study on the facilitated transport of cadmium(II), cobalt(II) and nickel(II) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) with phosphonium ionic liquid. Cyphos IL 101 (trihexyl(tetradecyl) phosphonium chloride) was used as a selective carrier for synthesis of cellulose triacetate membranes containing o-nitrophenyl pentyl ether (ONPPE) as a plasticizer. Effect of different parameters such as hydrochloric acid concentration in the source ph...

  8. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Khalifa, E-mail: khalifa_riahi31@yahoo.fr [Laboratoire de Chimie and Qualite des Eaux, Departement d' Amenagement and Environnement, Ecole Superieure des Ingenieurs de l' Equipement Rural, Medjez El Bab 9070 (Tunisia); Thayer, Bechir Ben [Laboratoire de Chimie and Qualite des Eaux, Departement d' Amenagement and Environnement, Ecole Superieure des Ingenieurs de l' Equipement Rural, Medjez El Bab 9070 (Tunisia); Mammou, Abdallah Ben [Laboratoire de Ressources Minerales and Environnement, Departement de Geologie, Faculte des Sciences de Tunis, Campus Universitaire Tunis-El Manar 2092 (Tunisia); Ammar, Aouatef Ben; Jaafoura, Mohamed Habib [Unite de Services Communs pour la Recherche en Microscope Electronique a Transmission, Faculte de Medecine de Tunis, 15, Rue Djebel Lakhdar 1007 (Tunisia)

    2009-10-30

    Phosphates are very important basic materials in agricultural and other industrial applications. The removal of phosphates from surface waters is generally necessary to avoid problems, such as eutrophication, particularly near urban areas. This paper is focused on the sorption of PO{sub 4}{sup 3-} ions from aqueous solution onto date palm fibers as a raw, natural and abundantly materials. A series of batch tests were conducted and the influence of contact time, initial phosphate concentration, pH of the solution and adsorbent dosage on PO{sub 4}{sup 3-} specie removal was investigated. FT-IR spectroscopy, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) analysis of the date palm fibers before and after phosphates biosorption and desorption studies were investigated to confirm the mechanism of the retention of phosphates. Results indicate that PO{sub 4}{sup 3-} uptake increased with increased initial phosphate concentration and decreased with increased pH values. The results showed that the highest phosphates adsorption capacity (4.35 mg/g) was found at pH 6.8, for an adsorbent dosage of 6 g/L, initial phosphate concentration of 50 mg/L, under a constant temperature of 18 deg. C {+-} 02, and the equilibrium state was reached within 120 min of exposure time. The relatively low cost and high capabilities of date palm fibers make them potentially attractive adsorbents for the removal of phosphate from aqueous solution.

  9. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers.

    Science.gov (United States)

    Riahi, Khalifa; Thayer, Béchir Ben; Mammou, Abdallah Ben; Ammar, Aouatef Ben; Jaafoura, Mohamed Habib

    2009-10-30

    Phosphates are very important basic materials in agricultural and other industrial applications. The removal of phosphates from surface waters is generally necessary to avoid problems, such as eutrophication, particularly near urban areas. This paper is focused on the sorption of PO4(3-) ions from aqueous solution onto date palm fibers as a raw, natural and abundantly materials. A series of batch tests were conducted and the influence of contact time, initial phosphate concentration, pH of the solution and adsorbent dosage on PO4(3-) specie removal was investigated. FT-IR spectroscopy, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) analysis of the date palm fibers before and after phosphates biosorption and desorption studies were investigated to confirm the mechanism of the retention of phosphates. Results indicate that PO4(3-) uptake increased with increased initial phosphate concentration and decreased with increased pH values. The results showed that the highest phosphates adsorption capacity (4.35 mg/g) was found at pH 6.8, for an adsorbent dosage of 6g/L, initial phosphate concentration of 50mg/L, under a constant temperature of 18 degrees C+/-02, and the equilibrium state was reached within 120 min of exposure time. The relatively low cost and high capabilities of date palm fibers make them potentially attractive adsorbents for the removal of phosphate from aqueous solution.

  10. Biosorption study of Ni2+ and Cr3+ by Sargassum filipendula: kinetics and equilibrium

    Directory of Open Access Journals (Sweden)

    A. A. Seolatto

    2014-03-01

    Full Text Available In this work, the biosorption of Cr3+ and Ni2+ by Sargassum filipendula pre-treated with CaCl2 was studied. Kinetic and equilibrium experiments were carried out for mono- and multi-component solutions in a batch reactor at pH 3.0 and 30 ºC. The results from the kinetic experiments showed that Cr3+ adsorbs slower than Ni2+. This behavior was explained by means of a mechanistic analysis, which showed that Cr3+ uptake presented three adsorption stages, whereas Ni2+ adsorption presents only two. The mono-component equilibrium data, along with binary kinetic data obtained from mono-component experiments, showed that, although the kinetics for Cr3+ removal are slower, the biomass had a stronger affinity for this ion. Almost all Ni2+ is desorbed from the biomass as Cr3+ adsorbs. The binary equilibrium data also presented this behavior. The binary data was also modeled by using modified forms of the Langmuir, Jain and Snoeyink, and Langmuir-Freundlich isotherms. However, the prediction obtained presented low accuracy. An alternative modeling with artificial neural networks was presented and the results showed that this technique could be a promising tool to represent binary equilibrium data. The main contribution of this work was to obtain experimental data for Cr3+/Ni2+ adsorption, which is a system rarely found in the literature and that provides information that could be used in process modeling and simulation.

  11. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  12. Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models.

    Science.gov (United States)

    Gupta, Vinod K; Rastogi, Arshi; Nayak, Arunima

    2010-02-15

    Oedogonium hatei was developed into an effective and efficient adsorbent for the removal of Ni(II) ions from aqueous solution. The adsorption studies of untreated and treated algal biomass (with 0.1M HCl) were compared in batch mode. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature and the Langmuir and Freundlich isotherms were found applicable in terms of relatively high regression values. The maximum monolayer adsorption capacity of the biosorbents (untreated and acid-treated algae), as obtained from the Langmuir adsorption isotherm, was found to be 40.9 and 44.2mg/g, respectively at 80min contact time, 5.0 pH, 0.7g/L algal dose, and 298K temperature. The thermodynamic parameters showed that the adsorption of Ni(II) ions onto algal biomass was feasible, spontaneous, and exothermic under the studied conditions. Kinetics of adsorption followed both first- and second-order rate equations and the process involving the rate-controlling step is complex involving boundary layer as well as intraparticle diffusion processes. The FTIR results of algal biomass showed that biomass has different functional groups and these functional groups are able to react with metal ion in aqueous solution. Biosorbent could be regenerated using 0.1M NaOH solution, with up to 70% recovery. The performance of this biosorbent was then compared with many other reported biosorbents for nickel removal and it was observed that the proposed adsorbent is effective in terms of its performance.

  13. Kinetic and Thermodynamic Studies on Biosorption of Direct Red 81 from Aqueous Solutions by Chamomilla Plant

    Directory of Open Access Journals (Sweden)

    M. Momen Heravi

    2013-01-01

    Full Text Available In this study, Chamomilla plant biomass used as a sorbent for biosorption of a textile dye, direct red 81, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and temperature. Also, kinetic and isotherm parameters were determined for biosorption of Direct red 81 by Chamomilla plant. The maximum biosorption capacity (qm of Direct red 81 10 mg g-1 was obtained at 25oC. The kinetic and isotherm studies indicated that the biosorption process obeys a pseudo-second order and Langmuir isotherm models. In addition, various thermodynamic parameters, such as changes in Gibbs free energy (ΔG, enthalpy (ΔH and entropy (ΔS have been calculated. The biosorption process of Direct Red 81 dye onto activated carbon prepared from Chamomilla plant was found to be spontaneous and exothermic. The findings of this investigation suggest that this procces is a physical biosorption. The experimental studies indicated that Chamomilla plant had the potential to act as an alternative biosorbent to remove the Direct Red 81 dye from an aqueous solution.

  14. Biosorption of heavy metals from aqueous solution by Gracilaria corticata varcartecala and Grateloupia lithophila

    Directory of Open Access Journals (Sweden)

    Narayanaswamy Tamilselvan

    2013-09-01

    Full Text Available Objective: To study the biosorption of heavy metals viz., Cr (VI, Cr (III, Hg (II, Pb (II and Cd (II using Gracilaria corticata varcartecala (G. corticata varcartecala and Grateloupia lithophila (G. lithophila biomass. Methods: Batch biosorption and acid digestion methods were used. Different physical and chemical parameters were optimized for biosorption. Results: Both seaweeds absorb Hg (II upto 99.9% and 98.2% in batch biosorption method; whereas in acid digestion method, Cr (III absorbed upto 96.49% by G. corticata varcartecala and Pb (II absorbed upto 93.71% by G. lithophila. FT-IR analysis was used to know the involvement of different functional groups in the biosorption process. Scanning electron microscopy was carried out to study the morphological cell surface changes due to biosorption. Conclusions: It can be concluded that G. corticata varcartecala and G. lithophila are potential algal species for effective removal of heavy metals namely Cr (VI, Cr (III, Hg (II, Pb (II and Cd (II from environmental sources.

  15. Biosorption of heavy metals from aqueous solution by Gracilaria corticata varcartecala and Grateloupia lithophila

    Institute of Scientific and Technical Information of China (English)

    Narayanaswamy Tamilselvan; Jothi Hemachandran; Thirunavukarasu Thirumalai; Chacko Vijai Sharma; Krishnan Kannabiran; Ernest David

    2013-01-01

    Objective: To study the biosorption of heavy metals viz., Cr (VI), Cr (III), Hg (II), Pb (II) and Cd (II) using Gracilaria corticata varcartecala (G. corticata varcartecala) and Grateloupia lithophila (G. lithophila) biomass.Methods:Batch biosorption and acid digestion methods were used. Different physical and chemical parameters were optimized for biosorption.Results:Both seaweeds absorb Hg (II) upto 99.9% and 98.2% in batch biosorption method; whereas in acid digestion method, Cr (III) absorbed upto 96.49% by G. corticata varcartecala and Pb (II) absorbed upto 93.71% by G. lithophila. FT-IR analysis was used to know the involvement of different functional groups in the biosorption process. Scanning electron microscopy was carried out to study the morphological cell surface changes due to biosorption.Conclusions:It can be concluded that G. corticata varcartecala and G. lithophila are potential algal species for effective removal of heavy metals namely Cr (VI), Cr (III), Hg (II), Pb (II) and Cd (II) from environmental sources.

  16. Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.

    Science.gov (United States)

    Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita

    2011-06-01

    Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media.

  17. Biosorption of Cr(VI)_ and Cr(III)_Arthrobacter species

    CERN Document Server

    Gelagutashvili, E; Gurielidze, M

    2011-01-01

    The biosorption of Cr(VI)_ and Cr(III)_ Arthrobacter species (Arthrobacter globiformis and Arthrobacter oxidas) was studied simultaneous application dialysis and atomic absorption analysis. Also biosorption of Cr(VI) in the presence of Zn(II) during growth of Arthrobacter species and Cr(III) in the presence of Mn(II) were discussed. Comparative Cr(VI)_ and Cr(III)_ Arthrobacter species shown, that Cr(III) was more effectively adsorbed by both bacterium than Cr(VI). The adsorption capacity is the same for both the Chromium-Arthrobacter systems. The biosorption constants for Cr(III) is higher than for Cr(VI) 5.7-5.9- fold for both species. Comparative Freundlich biosorption characteristics Cr(VI) Arthrobacter species of living and dry cells shown, that capacity(n) is in both cases the same(1.25,1.35). Dry cells have larger biosorption constant for both species, than living cells. Biosorption characteristics (K) and (n) for A. oxidas are without Mn(II) and in the presence of Mn(II) 2.6 x 10-4 (K), 1.37 (n) and 2...

  18. Biosorption of Cu(Ⅱ) and Pb(Ⅱ) by Auricularia polytricha

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dan; GAO Jianwei; GAO Tingyan; YING Yigao; CHEN Hong

    2007-01-01

    For searching biological material for heavy metal removal of waste-water, using macrofungus Auricularia polytricha as biosorbent for Cu2+ and Pb2+ removal was investigated. After shaking and biosorbing Cu2+ and Pb2+ in solution by biosorbents, the filtrates were tested by AAS and the adsorbed quantity of Cu2+ and Pb2+ was calculated. The biosorbents were effective in removal of Cu2+ and Pb2+ on the biosorbents that showed a highest value around pH 5-6. The biosorption rate of Cu2+ and Pb2+on A. polytricha biomass decreased with increasing the initial concentration of Cu2+ and Pb2+ in the medium. The biosorption of Cu2+ and Pb2+ on the biomasses follows pseudo-second order kinetics. The determined maximum biosorption capacities presented by the fungus biomass were 3.34 and 13.03 mg·g -1 dry weight for Cu2+ and Pb2+, respectively by the biosorption equilibrium with Langmuir adsorption isotherm. According to the whole data analysis in each experiment of studying Cu2+ and Pb2+ biosorption including condition factors and adsorption isotherm, the adsorbed capacity of Pb2+ by A. polytricha biomass was bigger than Cu2+. The biosorption by A. polytricha was most effective when pH 5-6. The biosorbents are suitable for low Cu2+ and Pb2+ concentration waste-water, especially for Pb2+ removal.

  19. Application of cloud point preconcentration and flame atomic absorption spectrometry for the determination of cadmium and zinc ions in urine, blood serum and water samples

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl dimethane (TTDM in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.

  20. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties.

  1. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.

  2. Biosorption of Cu (II and Zn (II with açaí endocarp Euterpe oleracea M. in contaminated aqueous solution

    Directory of Open Access Journals (Sweden)

    Affonso Celso Gonçalves Junior

    2016-06-01

    Full Text Available Current analysis investigates the capacity of the açaí endocarp (Euterpe oleracea M. as a biosorbent for the removal of Cu2+ and Zn2+ in monoelementary water solutions. The best conditions for the ion adsorption process were pH of the solution at 4.0; 8 g L-1 of the biosorbent mass per volume of solution; best equilibrium time at 60 min. The application of kinetic models suggests that chemosorption may be the main limiting stage for metal ion adsorption. In the case of adsorption isotherms, Langmuir´s model had the best adjustment for biosorption and indicated adsorption in monolayers. A strong interaction of metals with the surface of the adsorbent was indicated due to low elution rates. Thermodynamic parameters showed that the biosorption process was spontaneous and endothermal. Results demonstrated that the use of the açaí endocarp as biosorbent is an alternative for the remediation of Cu2+ and Zn2+ contaminated waters since it is a natural, low-cost and highly available material.

  3. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34

    Energy Technology Data Exchange (ETDEWEB)

    Desaunay, Aurélien; Martins, Jean M.F., E-mail: jean.martins@ujf-grenoble.fr

    2014-05-01

    Highlights: • Subcellular distribution of cadmium in Cupriavidus metallidurans CH34 cells. • Comparison of a chemical (EDTA washing) and a physical method (physical disruption). • EDTA washings strongly overestimated membrane-bound Cd concentrations. • The physical method revealed surprisingly over 80% of Cd internalization in the cells. • Metal biosorption by bacteria cannot be considered as a surface complexation process. - Abstract: Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria.

  4. Bioremediation potential of spirulina: toxicity and biosorption studies of lead

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; PAN Shan-shan

    2005-01-01

    This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wastewater samples containing lead of different concentrations, and the growth rate was determined by light at wavelength of 560 nm. The 72 h-EC50 (72 h medium effective concentration) was estimated to be 11.46 mg/L (lead). Afterwards, the lead adsorption by live spirulina cells was conducted. It was observed that at the initial stage (0-12 min) the adsorption rate was so rapid that 74% of the metal was biologically adsorbed. The maximum biosorption capacity of live spirulina was estimated to be 0.62 mg lead per 105 alga cells.

  5. Biosorption of Direct Black 38 by dried anaerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The biosorption of Direct Black 38 by dried anaerobic granular sludge in a batch system under specific temperatures and initial pH was investigated.The adsorption reaction is pH dependent with higher removal at low pH.The adsorption equilibrium data fit very well with both Langmuir and Freundlich models in the concentration range of Direct Black 38 at all chosen temperatures.The adsorption parameters show that the adsorption of Direct Black 38 is an endothermic and more effective process at high temperatures.The kinetics of adsorption was found to be second order and adsorption rate constants increased with increasing temperature.Activation energy was determined as 26.8 kJ/mol for the process.This suggests that the adsorption of Direct Black 38 by dried anaerobic granular sludge is chemically controlled.

  6. BIOSORPTION OF CR (VI BY RESTING CELLS OF ASPERGILLUS SP.

    Directory of Open Access Journals (Sweden)

    M. Sen , M. Ghosh Dastidar

    2007-01-01

    Full Text Available Biosorption of Cr(VI from aqueous solution was studied in a batch bioreactor using the resting cells of filamentous fungal biomass (Aspergillus sp. isolated from industrial wastewaters. The specific Cr(VI removal (mg/g of dried biomass decreased with increase in pH and increased with increase in initial Cr(VI concentration, upto 500 mg/L. By increasing biomass concentration from 2.4 to 5.2 g/L, the specific metal removal remained almost constant. The studies carried out by using the resting cells from various stages of growth indicated maximum Cr(VI removal of 34.8 mg/g using the biomass from the beginning of the stationary phase. The adsorption equilibrium constants Qº (42.9 mg/g and b (0.0091/mg were obtained from the Langmuir adsorption isotherm model.

  7. Bioremediation potential of spirulina: toxicity and biosorption studies of lead.

    Science.gov (United States)

    Chen, Hong; Pan, Shan-Shan

    2005-03-01

    This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wastewater samples containing lead of different concentrations, and the growth rate was determined by light at wavelength of 560 nm. The 72 h-EC50 (72 h medium effective concentration) was estimated to be 11.46 mg/L (lead). Afterwards, the lead adsorption by live spirulina cells was conducted. It was observed that at the initial stage (0-12 min) the adsorption rate was so rapid that 74% of the metal was biologically adsorbed. The maximum biosorption capacity of live spirulina was estimated to be 0.62 mg lead per 10(5) alga cells.

  8. Copper biosorption on immobilized seaweed biomass: column breakthrough characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biosorption of copper by the brown seaweed Sargassum baccularia, immobilized onto polyvinyl alcohol (PVA) gel beads, was investigated with fixed-bed experiments. Laboratory-scale column tests were performed to determine breakthrough curves with varying flow rates and feed concentrations. A theoretical fixed-bed model, known as the Bohart-Adams equation, was evaluated in simulating the experimental breakthrough curves. The Bohart-Adams model qualitatively predicted the breakthrough trends. PVA-immobilized seaweed biomass beads were amenable to efficient regeneration with aqueous solution containing the chelating agent ethylenediaminetetraacetic acid (EDTA). The biosorbent retained most of its original uptake capacity over three cycles of use. The excellent reusability of the biosorbent could lead to the development of a viable metal remediation technology.

  9. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  10. Pb(II) biosorption using anaerobically digested sludge.

    Science.gov (United States)

    Tokcaer, Emre; Yetis, Ulku

    2006-10-11

    Removal of Pb(II) by using resting cells of anaerobically digested sludge (ADS) obtained from a nearby wastewater treatment plant was examined. Firstly, sorption kinetic and equilibrium experiments were conducted using agitated, thermostated (25 degrees C) batch reactors. The maximum Pb(II) sorption capacity was found to be very high (1,750 mg/g dry ADS or 8.45 mmol/g dry ADS). At all initial Pb(II) concentrations tested, sorption resulted in neutralization with an increase in the solution pH from an initial value of 4.0-5.5 to an equilibrium value of 7.0-8.0, at which Pb(II) can precipitate as hydroxide. The removal of Pb(II) by ADS was found to involve bioprecipitation as well as biosorption. FTIR spectrometry highlighted carboxyl groups present on the surface of ADS as the major functional groups responsible for biosorption. Secondly, a three-stage semi-continuous pseudo-counter current reactor system was tested to reduce ADS requirement in comparison to a conventional single-stage batch reactor. At an initial Pb(II) concentration of about 200 mg/L, an effluent Pb(II) concentration of 1.3 mg/L was achieved in the three stage reactor, corresponding to a metal removal capacity of 682.7 mg/g dry ADS (3.30 mmol/g), in comparison to 1.9 mg/L and 644.0 mg/g dry ADS (3.10 mmol/g) for the single-stage batch reactor.

  11. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.

    Science.gov (United States)

    Gupta, Vinod K; Rastogi, Arshi

    2008-07-15

    Industrial wastewaters containing heavy metals pose a major environmental problem that needs to be remedied. The present study reports the ability of two non-living (dried) fresh water algae, Oedogonium sp. and Nostoc sp. to remove lead(II) from aqueous solutions in batch system under varying range of pH (2.99-7.04), contact time (5-300 min), biosorbent dose (0.1-0.8 g/L), and initial metal ion concentrations (100 and 200mg/L). The optimum conditions for lead biosorption are almost same for the two algal biomass Oedogonium sp. and Nostoc sp. (pH 5.0, contact time 90 and 70 min, biosorbent dose 0.5 g/L and initial Pb(II) concentration 200mg/L) however, the biomass of Oedogonium sp. was found to be more suitable than Nostoc sp. for the development of an efficient biosorbent for the removal of lead(II) from aqueous solutions, as it showed higher values of q(e) adsorption capacity (145.0mg/g for Oedogonium sp. and 93.5mg/g for Nostoc sp.). The equilibrium data fitted well in the Langmuir isotherms than the Freundlich isotherm, thus proving monolayer adsorption of lead on both the algal biomass. Analysis of data shows that the process involves second-order kinetics and thermodynamic treatment of equilibrium data shows endothermic nature of the adsorption process. The spectrum of FTIR confirms that the amino and carboxyl groups on the surface of algal biomass were the main adsorption sites for lead removal. Both the biosorbents could be regenerated using 0.1 mol/L HCl solution, with upto 90% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that both the algal biomass could be used as an efficient biosorbents for the treatment of lead(II) bearing wastewater streams.

  12. Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium: optimization, kinetic and isotherm studies.

    Science.gov (United States)

    Tabaraki, Reza; Sadeghinejad, Negar

    2017-06-01

    Biosorption of Methyl Blue (MB), Fuchsin Acid (FA), Rhodamine B (RB), Methylene Blue (MEB), Bromocresol purple (BC) and Methyl Orange (MO) onto Sargassum ilicifolium was studied in a batch system. Effect of dye structure on biosorption by Sargassum ilicifolium was studied to define the correlation between chemical structure and biosorption capacity. Different dye groups such as triarylmethane (MB, FA and BC), monoazo (MO), thiazine (MEB) and xanthene (RB) were studied. At optimum experimental conditions for each dye, biosorption capacity was determined and compared. The results indicate that the chemical structure (triarylmethane, monoazo, thiazine, xanthene), number of sulfonic groups, basicity (element of chromophore group: S, N, O) and molecular weight of dye molecules influence their biosorption capacity. Experimental parameters such as biosorbent dose, pH, contact time, and initial dye concentration were optimized for each dye. The biosorption kinetic data were successfully described by the pseudo second-order model. The biosorption results were also analyzed by the Langmuir and Freundlich isotherms. Finally, biosorption capacities obtained using Sargassum ilicifolium were compared with the ones presented in the literature.

  13. Computer controlled-flow injection potentiometric system based on virtual instrumentation for the monitoring of metal-biosorption processes.

    Science.gov (United States)

    Florido, A; Valderrama, C; Nualart, S; Velazco-Molina, L; Arias de Fuentes, O; del Valle, M

    2010-05-23

    A completely automated flow-injection system was developed for the monitoring of biosorption studies of Cu(II) ion on vegetable waste by-products. The system employed flow-through Cu(II)-selective electrodes, of epoxy-resin-CuS/Ag(2)S heterogeneous crystalline type, and computer controlled pumps and valves for the flow operation. Computer automation was done through a specially devised virtual instrument, which commanded and periodically calibrated the system, allowing for the monitoring of Cu(II) ions between 0.6 and 6530 mg L(-1) at a typical frequency of 15 h(-1). Grape stalk wastes were used as biosorbent to remove Cu(II) ions in a fixed-bed column with a sorption capacity of 5.46 mg g(-1), obtained by the developed flow system, while the reference determination performed by FAAS technique supplied a comparable value of 5.41 mg g(-1). Copyright 2010 Elsevier B.V. All rights reserved.

  14. Removal of cadmium(II) ions from aqueous solution using Ni (15 wt.%)-doped α-Fe2O3 nanocrystals: equilibrium, thermodynamic, and kinetic studies.

    Science.gov (United States)

    OuldM'hamed, Mohamed; Khezami, L; Alshammari, Abdulrahman G; Ould-Mame, S M; Ghiloufi, I; Lemine, O M

    2015-01-01

    The present publication investigates the performance of nanocrystalline Ni (15 wt.%)-doped α-Fe2O3 as an effective nanomaterial for the removal of Cd(II) ions from aqueous solutions. The nanocrystalline Ni-doped α-Fe2O3 powders were prepared by mechanical alloying, and characterized by X-ray diffraction and a vibrating sample magnetometer. Batch-mode experiments were realized to determine the adsorption equilibrium, kinetics, and thermodynamic parameters of toxic heavy metal ions by Ni (15 wt.%)-doped α-Fe2O3. The adsorption isotherms data were found to be in good agreement with the Langmuir model. The adsorption capacity of Cd(II) ion reached a maximum value of about 90.91 mg g(-1) at 328 K and pH 7. The adsorption process kinetics was found to comply with pseudo-second-order rate law. Thermodynamic parameters related to the adsorption reaction, free energy change, enthalpy change and entropy change, were evaluated. The found values of free energy and enthalpy revealed a spontaneous endothermic adsorption-process. Moreover, the positive entropy suggests an increase of randomness during the process of heavy metal removal at the adsorbent-solution interface.

  15. Preconcentration and determination of copper and cadmium ions with 1,6-bis(2-carboxy aldehyde phenoxy)butane functionalized Amberlite XAD-16 by flame atomic absorption spectrometry.

    Science.gov (United States)

    Oral, Elif V; Dolak, Ibrahim; Temel, Hamdi; Ziyadanogullari, Berrin

    2011-02-15

    A new chelating resin, covalently linked 1,6-bis(2-carboxy aldehyde phenoxy)butane with the Amberlite XAD-16 was synthesized and used for preconcentration of Cu(II) and Cd(II) prior to their determination by flame atomic absorption spectrometry (FAAS). It was characterized by elemental analyses and Fourier Transform Infrared Spectroscopy (FT-IR). Cu(II) and Cd(II) ions were quantitatively preconcentrated on minicolumn loaded with synthesised resin at pH 4.00 and 6.00, respectively. They were eluated with 5 mL of 0.5 mol L(-1) HCl. Recoveries of Cu(II) and Cd(II) were found to be 100±2.15, 100±1.40 (N=5), the limits of detection of Cu(II) and Cd(II) in the determination by FAAS (3s, N=20) were found to be 0.33 and 1.19 μg L(-1), respectively. The effect of foreign ions on the recovery has been investigated. The proposed method has been applied for the determination of Cu(II) and Cd(II) ions to the real samples collected from Tigris river water in Diyarbakir and Elaziğ cities in Turkey. Standard addition method and analysis of the certified reference material (NCS-DC 73350) was employed to check the accuracy of the method.

  16. Studies on extraction of nickel and cadmium ions in used batteries with ionic liquid [ Emim ] PF6- phenanthroline%离子液体[Emim]PF6-邻菲咯琳萃取回收废旧电池中镐、镍离子的研究

    Institute of Scientific and Technical Information of China (English)

    廖芳丽; 王永生; 郑汉锐

    2011-01-01

    The extraction of nickel and cadmium in waste nickel-cadmium battery with hydrophobic ionic liquid [ Emim] PF6- phenanthroline was studied. The effects of the oscillation duration、 temperature、 the balance aqueous phase acidity and the extractant quantity on the extraction of nickel and cadmium were examined, respectively. The result showed that nickel and cadmium ions in waste nickel-cadmium battery could be extracted nicely in extraction system of 4. 0 mL of 4g/L phenanthroline-3.0 mL of[ Emim ] PF6, in an aqueous phase of pH 5.91, at a, temperature of 80℃ for 20 min of oscillation duration. The effect of back-extraction of used [ Emim ] PF6 under different oscillation duration and acidic media was also researched, and it was found that the nickel and cadmium ions could be well back extracted in 1.0 mol/L hydrochloric acid medium when oscillation duration was one hour.%研究了疏水性离子液体[Emim] PF_6-邻菲咯琳萃取体系对废旧镍镉电池中镉、镍离子的萃取性能,考察了振荡时间、温度、平衡水相酸度和萃取剂用量时萃取性能的影响.在水相pH值为5.91、温度为80℃时,4.0mL4g/L的邻菲咯琳与3.0mL离子液[Emim] PF_6组成的萃取体系时废旧电池液中镉、镍离子萃取效果良好.同时研究了废旧离子液在不同时间及酸度下的反萃效果,在浓度为1.0mol/L的盐酸介质中反萃1h,镉、镍离子能较好地被反萃.

  17. Biosorption of B-aflatoxins Using Biomasses Obtained from Formosa Firethorn [Pyracantha koidzumii (Hayata Rehder

    Directory of Open Access Journals (Sweden)

    Rosa Adriana Ramales-Valderrama

    2016-07-01

    Full Text Available Mycotoxin adsorption onto biomaterials is considered as a promising alternative for decontamination without harmful chemicals. In this research, the adsorption of B-aflatoxins (AFB1 and AFB2 using Pyracantha koidzumii biomasses (leaves, berries and the mixture of leaves/berries from aqueous solutions was explored. The biosorbent was used at 0.5% (w/v in samples spiked with 100 ng/mL of B-aflatoxin standards and incubated at 40 °C for up to 24 h. A standard biosorption methodology was employed and aflatoxins were quantified by an immunoaffinity column and UPLC methodologies. The biosorbent-aflatoxin interaction mechanism was investigated from a combination of zeta potential (ζ, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The highest aflatoxin uptakes were 86% and 82% at 6 h using leaves and the mixture of leaves/berries biomasses, respectively. A moderate biosorption of 46% was attained when using berries biomass. From kinetic studies, the biosorption process is described using the first order adsorption model. Evidence from FTIR spectra suggests the participation of hydroxyl, amine, carboxyl, amide, phosphate and ketone groups in the biosorption and the mechanism was proposed to be dominated by the electrostatic interaction between the negatively charged functional groups and the positively charged aflatoxin molecules. Biosorption by P. koidzumii biomasses has been demonstrated to be an alternative to conventional systems for B-aflatoxins removal.

  18. Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.

    Science.gov (United States)

    Gürel, Levent

    2017-04-01

    Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L(-1), treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g(-1), respectively. A maximum biosorption capacity of 142.86 mg g(-1) was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.

  19. Biosorption of B-aflatoxins Using Biomasses Obtained from Formosa Firethorn [Pyracantha koidzumii (Hayata) Rehder].

    Science.gov (United States)

    Ramales-Valderrama, Rosa Adriana; Vázquez-Durán, Alma; Méndez-Albores, Abraham

    2016-07-13

    Mycotoxin adsorption onto biomaterials is considered as a promising alternative for decontamination without harmful chemicals. In this research, the adsorption of B-aflatoxins (AFB₁ and AFB₂) using Pyracantha koidzumii biomasses (leaves, berries and the mixture of leaves/berries) from aqueous solutions was explored. The biosorbent was used at 0.5% (w/v) in samples spiked with 100 ng/mL of B-aflatoxin standards and incubated at 40 °C for up to 24 h. A standard biosorption methodology was employed and aflatoxins were quantified by an immunoaffinity column and UPLC methodologies. The biosorbent-aflatoxin interaction mechanism was investigated from a combination of zeta potential (ζ), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The highest aflatoxin uptakes were 86% and 82% at 6 h using leaves and the mixture of leaves/berries biomasses, respectively. A moderate biosorption of 46% was attained when using berries biomass. From kinetic studies, the biosorption process is described using the first order adsorption model. Evidence from FTIR spectra suggests the participation of hydroxyl, amine, carboxyl, amide, phosphate and ketone groups in the biosorption and the mechanism was proposed to be dominated by the electrostatic interaction between the negatively charged functional groups and the positively charged aflatoxin molecules. Biosorption by P. koidzumii biomasses has been demonstrated to be an alternative to conventional systems for B-aflatoxins removal.

  20. Biosorption of B-aflatoxins Using Biomasses Obtained from Formosa Firethorn [Pyracantha koidzumii (Hayata) Rehder

    Science.gov (United States)

    Ramales-Valderrama, Rosa Adriana; Vázquez-Durán, Alma; Méndez-Albores, Abraham

    2016-01-01

    Mycotoxin adsorption onto biomaterials is considered as a promising alternative for decontamination without harmful chemicals. In this research, the adsorption of B-aflatoxins (AFB1 and AFB2) using Pyracantha koidzumii biomasses (leaves, berries and the mixture of leaves/berries) from aqueous solutions was explored. The biosorbent was used at 0.5% (w/v) in samples spiked with 100 ng/mL of B-aflatoxin standards and incubated at 40 °C for up to 24 h. A standard biosorption methodology was employed and aflatoxins were quantified by an immunoaffinity column and UPLC methodologies. The biosorbent-aflatoxin interaction mechanism was investigated from a combination of zeta potential (ζ), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The highest aflatoxin uptakes were 86% and 82% at 6 h using leaves and the mixture of leaves/berries biomasses, respectively. A moderate biosorption of 46% was attained when using berries biomass. From kinetic studies, the biosorption process is described using the first order adsorption model. Evidence from FTIR spectra suggests the participation of hydroxyl, amine, carboxyl, amide, phosphate and ketone groups in the biosorption and the mechanism was proposed to be dominated by the electrostatic interaction between the negatively charged functional groups and the positively charged aflatoxin molecules. Biosorption by P. koidzumii biomasses has been demonstrated to be an alternative to conventional systems for B-aflatoxins removal. PMID:27420096

  1. Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, M. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom); Donnellan, N. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom); Rollan, A. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom); McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom)

    1997-06-01

    The ability of residual biomass from the thermotolerant ethanol-producing yeast strain Kluyveromyces marxianus IMB3 to function as a biosorbent for uranium has been examined. It was found that the biomass had an observed maximum biosorption capacity of 120 mg U/g dry weight of biomass. The calculated value for the biosorption maximum, obtained by fitting the data to the Langmuir model was found to be 130 mg U/g dry weight biomass. Maximum biosorption capacities were examined at a number of temperatures and both the observed and calculated values obtained for those capacities increased with increasing temperature. Decreasing the pH of the biosorbate solution resulted in a decrease in uptake capacity. When biosorption reactions were carried out using sea-water as the diluent it was found that the maximum biosorption capacity of the biomass increased significantly. Using transmission electron microscopy, uranium crystals were shown to be concentrated on the outer surface of the cell wall, although uranium deposition was also observed in the interior of the cell. (orig.). With 3 figs., 2 tabs.

  2. Biosorption of {sup 241}Am by Rhizopus arrihizus: preliminary investigation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ning E-mail: 5416507@mail.sc.cninfo.net; Yang Yuanyou; Luo Shunzhong; Zhang Taiming; Jin Jiannan; Liao Jiali; Hua Xifeng

    2002-08-01

    The biosorption of {sup 241}Am from solution by a fungus--Rhizopus Arrihizus (R. arrihizus), and the effect of experimental conditions on the adsorption were investigated. The preliminary results showed that the biosorption of {sup 241}Am by R. arrihizus is very efficient. An average of more than 99% of the total {sup 241}Am was removed by R. arrihizus of 1.3 g/l (dry weight) from {sup 241}Am solutions of 5.6-111 MBq/l (44.3-877.2 {mu}g/l) (C{sub 0}), with adsorption capacities (W) of 4.2-79.4 MBq/g biomass (dry weight) (33.2-627.5 {mu}g/g). The biosorption equilibrium was achieved within 1 h and the optimum pH ranged from 1 to 3. No significant differences in {sup 241}Am biosorption were observed at 10-45 deg. C, or in solutions containing Au{sup 3+} or Ag{sup +}, even 2000 times above {sup 241}Am concentration. The relationship between concentrations and adsorption capacities of {sup 241}Am indicated that the {sup 241}Am biosorption by R. arrihizus obeys the Freundlich adsorption equation.

  3. Cadmium status in Egypt

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is inferred from these studies that releases of Cd are still increasing and it is recommended that measures must be taken to reduce emissions of cadmium. Any cadmium discharged into the Egyptian environment may move from one compartment to another at varying rates,resulting in an accumulation in compartments such as soils and biota. Such accumulation can be expected to increase with continued emissions,and attention should be given to all sources of cadmium, natural as well as anthropogenic especially in the industrial cities in Egypt. Cadmium present in sewage, as well as industrial effluent (also, other liquid and solid wastes) and sewage sludge will increase levels in soils and is xpected to contribute to dietary levels and body burdens. The current information indicates that such effects may have to be evaluated over long periods of time, possibly as long as 50 - 100 years.

  4. Competitive Adsorption of Cadmium(II and Mercury(II Ions from Aqueous Solutions by Activated Carbon from Xanthoceras sorbifolia Bunge Hull

    Directory of Open Access Journals (Sweden)

    Xiaotao Zhang

    2016-01-01

    Full Text Available This paper presents low-cost and recyclable activated carbon (XLAC derived from Xanthoceras sorbifolia Bunge hull for high-efficiency adsorption of Cd(II and Hg(II ions in industrial wastewater. XLAC was prepared through H3PO4 activation and was characterized using N2 adsorption-desorption, scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDX, and Fourier transform infrared (FTIR spectroscopy. In single-metal-system adsorption experiments, the maximum adsorption capacities for Cd(II and Hg(II obtained under different experimental conditions were 388.7 and 235.6 mg·g−1, respectively. All adsorption equilibrium data fit perfectly with the Langmuir isotherm model. In a binary metal system, competitive studies demonstrated that the presence of Cd(II significantly decreased the adsorption of Hg(II, but the adsorption of Cd(II showed a little change in the presence of Hg(II. In addition, XLAC can be regenerated with a 0.01 mol·L−1 HNO3 solution and reused at least four times. The FTIR spectra revealed that a chemical interaction occurs between functional groups containing lone electron pairs in XLAC and metal ions. Overall, these results suggest that XLAC may be suitable as an adsorbent for heavy metal removal from wastewater streams.

  5. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    Science.gov (United States)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  6. The effect of dodecyltrimethilammoniumbromide on Ni biosorption property of white rod fungi

    Science.gov (United States)

    Gül, Ülküye Dudu; Silah, Hülya

    2017-04-01

    Industrial waste water contains abundant amount of heavy metals, therefore the treatment of heavy metals have gained importance. The effect of Dodecylthrimetylammonium bromide (DTAB) on biological treatment of heavy metal called Nickel by white rot fungus Trametes versicolor was examined in this study. In biosorption experiments, the effects of DTAB, pH and contact time on removal of Nickel by dried T. versicolor were investigated. The results of Nickel removal experiments showed that after 4 hours of incubation Nickel biosorption was 14.95% and 24.81% in the absence and peresence of DTAB, respectively. The addition of surfactant had contribution on metal biosorption. The results of research finding showed that the biolgical heavy metal treatment capacity of fungus was enhanced by using surfactants.

  7. A comparative study on biosorption characteristics of certain fungi for bromophenol blue dye.

    Science.gov (United States)

    Zeroual, Youssef; Kim, Beom Su; Kim, Choel Sang; Blaghen, Mohamed; Lee, Kang Min

    2006-07-01

    Laboratory investigations of the potential use of dried biomasses of Rhizopus stolonifer, Fusarium sp., Geotrichum sp., and Aspergillus fumigatus as biosorbents for the removal of bromophenol blue (BPB) dye from aqueous solutions were conducted. Kinetics studies indicated that the BPB dye uptake processes can be well described by the pseudo-second-order model. The fungal biomasses exhibited the highest dye biosorption at pH 2.0. The Langmuir adsorption model appears to fit the dye biosorption better than the Freundlich model, with maximum dye uptake capacities ranging from 526 to 1,111 mg/g, depending on the biomass used.

  8. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zelmina Lubovac-Pilav

    Full Text Available Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12, this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc. and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.. Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  9. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Science.gov (United States)

    Lubovac-Pilav, Zelmina; Borràs, Daniel M; Ponce, Esmeralda; Louie, Maggie C

    2013-01-01

    Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12), this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc.) and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.). Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  10. Plausible Mechanisms of Cadmium Carcinogenesis

    Science.gov (United States)

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  11. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes.

    Science.gov (United States)

    Brasil, Jorge L; Ev, Ricardo R; Milcharek, Caroline D; Martins, Lucas C; Pavan, Flavio A; dos Santos, Araci A; Dias, Silvio L P; Dupont, Jairton; Zapata Noreña, Caciano P; Lima, Eder C

    2006-05-20

    In order to reduce the total number of experiments for achieving the best conditions for Cr(VI) uptake using Araucaria angustifolia (named pinhão) wastes as a biosorbent, three statistical design of experiments were carried out. A full 2(4) factorial design with two blocks and two central points (20 experiments) was experimented (pH, initial metallic ion concentration-C(o), biosorbent concentration-X and time of contact-t), showing that all the factors were significant; besides, several interactions among the factors were also significant. These results led to the performance of a Box-Behnken surface analysis design with three factors (X, C(o) and t) and three central points and just one block (15 experiments). The performance of these two statistical designs of experiments led to the best conditions for Cr(VI) biosorption on the pinhão wastes using a batch system, where: pH 2.0; C(o) = 1200 mg l(-1) Cr(VI); X = 1.5 g l(-1) of biosorbent; t = 8 h. The maximum Cr(VI) uptake in these conditions was 125 mg g(-1). After evaluating the best Cr(VI) biosorption conditions on pinhão wastes, a new Box-Behnken surface analysis design was employed in order to verify the effects of three concomitant ions (Cl(-), NO(3)(-) and PO(4)(3-)) on the biosorption of Cr(VI) as a dichromate on the biosorbent (15 experiments). These results showed that the tested anions did not show any significant effect on the Cr(VI) uptake by pinhão wastes. In order to evaluate the pinhão wastes as a biosorbent in dynamic system, a glass column was fulfilled with pinhão wastes (4.00 g) as biosorbent, and it was fed with 25.0 mg l(-1) Cr(VI) at pH 2.0 and 2.5 ml min(-1). The breakpoint was attained when concentrations of effluent of the column attained the value of 0.05 mg l(-1) Cr(VI) using 5550 ml of the metallic ion solution. In these conditions, the biosorbent was able to remove completely Cr(VI) from aqueous solution with a ratio of Cr(VI) effluent volume/biosorbent volume of 252.3.

  12. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.

    Science.gov (United States)

    Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik

    2012-04-01

    In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions.

  13. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Arezoo Dadrasnia

    2015-12-01

    Full Text Available The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG0, ΔH0, and ΔS0 indicated that the mechanism of Cr(VI adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.

  14. Redox magnetohydrodynamics enhancement of stripping voltammetry of lead(II), cadmium(II) and zinc(II) ions using 1,4-benzoquinone as an alternative pumping species.

    Science.gov (United States)

    Ensafi, Ali A; Nazari, Z; Fritsch, I

    2012-01-21

    Differential pulse anodic stripping voltammetry (DPASV) coupled with redox-magnetohydrodynamics (MHD) is used to enhance the anodic stripping voltammetry (ASV) response using a mercury thin film-glassy carbon electrode. The sensitivity increased to at least a factor of two (at 1.2 T) and is facilitated by using 20.0 mmol L(-1) 1,4-benzoquinone as an alternative pumping species to enhance ASV by redox-MHD. The MHD force formed by the cross-product of ion flux with magnetic field induces solution convection during the deposition step, enhancing mass transport of the analytes to the electrode surface and increasing their preconcentrated quantity in the mercury thin film. Therefore, larger ASV peaks and improved sensitivities are obtained, compared with analyses performed without a magnet. The influence of pH, 1,4-benzoquinone concentration, accumulation potential, and time are also investigated. Detection limits of 0.05, 0.09 and 2.2 ng mL(-1) Cd(II), Pb(II) and Zn(II) were established with an accumulation time of 65 s. The method is used for the analysis of Cd(II), Pb(II) and Zn(II) in different water samples, certified reference materials, and saliva samples with satisfactory results.

  15. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Energy Technology Data Exchange (ETDEWEB)

    O' Reilly, Andrew M., E-mail: aoreilly@usgs.gov [U.S. Geological Survey, Florida Water Science Center, 12703 Research Pkwy, Orlando, FL 32826 (United States); Wanielista, Martin P., E-mail: Martin.Wanielista@ucf.edu [University of Central Florida, Water Research Center and Stormwater Management Academy, 4000 Central Florida Blvd, Building 91, Suite 442, Orlando, FL 32816 (United States); Chang, Ni-Bin, E-mail: Ni-bin.Chang@ucf.edu [University of Central Florida, Department of Civil, Environmental, and Construction Engineering, 4000 Central Florida Blvd, Building 91, Suite 442, Orlando, FL 32816 (United States); Xuan, Zhemin, E-mail: zheminxuan@gmail.com [University of Central Florida, Department of Civil, Environmental, and Construction Engineering, 4000 Central Florida Blvd, Building 91, Suite 442, Orlando, FL 32816 (United States); Harris, Willie G., E-mail: apatite@ufl.edu [University of Florida, Soil and Water Science Department, 2169 McCarty Hall, Gainesville, FL 32611 (United States)

    2012-08-15

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO{sub 3}{sup -}/Cl{sup -}) ratios for the shallow groundwater indicates that prior to using BAM, NO{sub 3}{sup -} concentrations were substantially influenced by nitrification or variations in NO{sub 3}{sup -} input. In contrast, for the new basin utilizing BAM, NO{sub 3}{sup -}/Cl{sup -} ratios indicate minor nitrification and NO{sub 3}{sup -} losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO{sub 3}{sup -} losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO{sub 4}{sup 3-}) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism

  16. Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene.

    Science.gov (United States)

    Brownson, Dale A C; Lacombe, Alexandre C; Kampouris, Dimitrios K; Banks, Craig E

    2012-01-21

    We explore the use of surfactant free graphene towards the electroanalytical sensing of cadmium(II) ions via anodic stripping voltammetry. In line with literature methodologies, we modify an electrode substrate which exhibits relatively fast electron transfer with commercially available graphene which is free from surfactants. Surprisingly, we find that graphene reduces the analytical performance and hence inhibits the electrochemical detection of cadmium(II) ions, with calibration plots in model aqueous solutions revealing no advantages of employing graphene in this analytical context.

  17. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Lemière, Sébastien [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Hanotel, Julie; Lescuyer, Arlette [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Demuynck, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Bodart, Jean-François [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); and others

    2016-08-15

    Highlights: • First embryonic steps were studied. • Fertilization success was impacted by cadmium exposures. • Oocytes were most affected instead of spermatozoa by cadmium exposures. • First embryonic cleavages were slown down or stopped by cadmium exposures. • Lead exposures did not affected fertilization and segmentation. - Abstract: Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  18. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage.

    Science.gov (United States)

    Slaby, Sylvain; Lemière, Sébastien; Hanotel, Julie; Lescuyer, Arlette; Demuynck, Sylvain; Bodart, Jean-François; Leprêtre, Alain; Marin, Matthieu

    2016-08-01

    Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  19. Biosorption of aquatic copper (II) by mushroom biomass Pleurotus eryngii: kinetic and isotherm studies.

    Science.gov (United States)

    Kan, Shi-Hong; Sun, Bai-Ye; Xu, Fang; Song, Qi-Xue; Zhang, Sui-Fang

    2015-01-01

    Biosorption is an effective method for removing heavy metals from effluent. This work mainly aimed to evaluate the adsorption performance of the widely cultivated novel mushroom, Pleurotus eryngii, for the removal of Cu(II) from single aqueous solutions. Kinetics and equilibria were obtained using a batch technique. The sorption kinetics follows the pseudo-second-order model, whereas the adsorption equilibria are best described by the Langmuir model. The adsorption process is exothermic because both the Langmuir-estimated biosorption capacity and the heat of adsorption estimated from the Temkin model decreased with increasing tested temperature. Based on the adsorption intensity estimated by the Freundlich model and the mean adsorption free energy estimated by the Dubinin-Radushkevich model, the type of adsorption is defined as physical adsorption. The biomass of the macro-fungus P. eryngii has the potential to remove Cu(II) from a large-scale wastewater contaminated by heavy metals, because of its favorable adsorption, short biosorption equilibrium time of 20 min and remarkable biosorption capacity (15.19 mg g⁻¹ as calculated by the Langmuir model). The adsorbed metal-enriched mushroom is a high-quality bio-ore by the virtue of its high metal content of industrial mining grade and easy metal extractability.

  20. Biosorption characteristics of Spirulina and Chlorella cells to accumulate heavy metals

    Directory of Open Access Journals (Sweden)

    Kőnig-Péter Anikó

    2015-01-01

    Full Text Available The heavy metal biosorption of dried Chlorella vulgaris and Spirulina platensis-Spirulina maxima cells was studied under various experimental conditions. The effect of biosorbent dosage, pH, adsorption time, temperature, initial metal concentration on biosorption was studied. Biosorption process can be divided into two parts: the first part follows zero-order, the second part pseudo second-order kinetics. Characterization of biosorption equilibrium was evaluated with Langmuir and Dubinin-Radushkevich models using non-linear regression. The optimum pH range was found to be 5.0 − 6.0 for Pb(II and 4.0 − 6.0 for Cu(II and Cd(II adsorption. The maximum adsorption capacities for Pb(II, Cd(II and Cu(II were 144, 161 and 138 mg g-1 by Chlorella cells and 370, 201 and 165 by Spirulina cells, based on the experimental data. The same values for activated carbon were 86, 134 and 43 mg g-1, respectively.

  1. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    Directory of Open Access Journals (Sweden)

    R Andreazza

    2011-03-01

    Full Text Available Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária experimental station, Bento Gonçalves, RS, Brazil (29º09'53.92''S and 51º31'39.40''W and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30º29'43.48''S and 53'32'37.87W. Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L-1 in 24 h. Contrarily isolate N11 (Bacillus pumilus displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h. GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  2. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption.

    Science.gov (United States)

    Andreazza, R; Pieniz, S; Okeke, B C; Camargo, F A O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09'53.92″S and 51°31'39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29'43.48″S and 53'32'37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L(-1) in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  3. Optimization of process parameters for heavy metals biosorption onto mustard waste biomass

    Directory of Open Access Journals (Sweden)

    Nemeş Lăcrămioara (Negrilă

    2016-01-01

    Full Text Available Mustard waste biomass was tested as a biosorbent for the removal of Pb(II, Zn(II and Cd(II from aqueous solution. This strategy may be a sustainable option for the utilization of such wastes. The influence of the most important operating parameters of the biosorption process was analyzed in batch experiments, and optimal conditions were found to include initial solution pH 5.5, 5.0 g biosorbent/L, 2 hours of contact time and high temperature. Kinetics analyses show that the maximum of biosorption was quickly reached and could be described by a pseudo-second order kinetic model. The equilibrium data were well fitted by the Langmuir model, and the highest values of maximum biosorption capacity were obtained with Pb(II, followed by Zn(II and Cd(II. The thermodynamic parameters of the biosorption process (ΔG, ΔH and ΔS were also evaluated from isotherms. The results of this study suggest that mustard waste biomass can be used for the removal of heavy metals from aqueous media.

  4. Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Nanseu-Njiki, Charles Peguy; Dedzo, Gustave Kenne [Laboratoire de Chimie Analytique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Ngameni, Emmanuel, E-mail: engameni@yahoo.fr [Laboratoire de Chimie Analytique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon)

    2010-07-15

    This study concerns the batch biosorption of paraquat on Ayous (Triplochiton schleroxylon) sawdust; the study centers on the evolution of biosorption parameters during the process. It appears that paraquat forms a monolayer on the sawdust surface as evidenced by the good correlation between the experimental data and the Langmuir model. The biosorption which is rather fast (the equilibrium was reached after ten minutes) follows a pseudo-second-order kinetic model and does not obey to the intra-particle diffusion model. According to the mathematical kinetic modeling, pore and surface mass transfer well describe the phenomenon. NaCl reduces the adsorption capacity of the material but has no significant effect on the kinetics. Alkaline solutions enhance the accumulation of the pollutant, the reverse being observed for acidic media. According to the thermodynamic data, this biosorption is a spontaneous and exothermic process. From these results we concluded that the adsorption of the pollutant is mainly due to cation exchange as indicated by the adsorption energy determined by the Dubinin-Radushkevich model (E = 12.0736 kJ mol{sup -1}); some other interactions resulting from the affinity through organophilic interactions between paraquat and sawdust have also been pointed out. Desorption experiments conducted in HCl and HNO{sub 3} solutions confirmed the proposed mechanism.

  5. Biosorption of Cr(VI from AqueousSolution Using New Adsorbent: Equilibrium and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Israa G. Zainal

    2010-01-01

    Full Text Available Biosorption is one such emerging technology which utilized naturally occurring waste materials to sequester heavy metals from polluted water. In the present study cinnamon was utilized for Cr(VI removal from aqueous solutions.It was found that a time of two hours was sufficient for sorption to attain equilibrium. The optimum pH was 2 for Cr(VI removal. Temprature has little influence on the biosorption process. The Cr(VI removal decreased with increase in temperature. The biosorption data was well fitted to Dubinin - Radushkevich (D-R, Freundlich and Tempkin adsorption isotherm models, although the correlation coefficient of Langmuir model was high but the calculated adsorption capacity did not agree with the experimental. The thermodynamic study reveals that the biosorption process is spontaneous and the spontaneity decreased with temperature increase and the process is exothermic accompanied by highly ordered adsorbate at the solid liquid interface. ΔH° values were negative and lie in the range of physical adsorption.

  6. [Relation between oxygen uptake rate and biosorption of activated sludge against chemical substance].

    Science.gov (United States)

    Mihara, Yuichi; Inoue, Tatsuaki; Yokota, Katsushi

    2005-02-01

    In this study, the elucidation of the toxicity mechanism was undertaken regarding the IC(50) of the oxygen uptake rate (OUR) with relevance to the biosorption as a toxicity evaluation of chemical substances for activated sludge (AS). At the IC(50) oflinear alkyl benzene sulfonate (LAS), alkyl ethoxy sulfonate (AES), alpha-olefine sulfonate (AOS), sodium dodecyl sulfate (SDS), formaldehyde (FA), benzalkonium chloride (BZaC), benzethonium chloride (BZeC), rhodamine 6G (R-6G) and fuchsine (Fuc) in which the IC(50) belonged to the 100-1000 mg/l group, when it was compared with CV and MG. In ethanol (EtOH), isopropanol (PrOH), nile blue (NB), evans blue (EB), methylene blue (MB), methyl orange (MO), paraquat (PQ), chlorophyllin (Chl) and auramine (Aur), the IC(50) was large, and the biosorption of AS was weak at 0-15%. The biosorption of MG for AS followed the adsorption isotherm equation Y=0.002X(0.511) of Freundrich. The correlation coefficient was gamma=0.998 (n=8), and a very high correlation was obtained. In the qualitative OUR curve by AS pretreated with MG or CV which belonged to the IC(50) small group, the inhibition of remarkable OUR was observed. Therefore, the findings of the present investigation suggest that the inhibition of the OUR for AS by the tested chemical substances was markedly affected by the biosorption.

  7. The research on the adsorption effect on metal ions by immobilized marine algae

    Institute of Scientific and Technical Information of China (English)

    WANG Xian; QIU Haiyuan; CAI Zhenzhen; CHEN Lidan; ZHENG Shenghua; HUANG Zhiwei

    2006-01-01

    The process of adsorption of Cu2+, Cd2+ by immobilized marine algae was investigated. It can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model.According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min-1 for Cu2+ and Cd2+ respectively. The experimental biosorption equilibrium data for Cu2+ and Cd2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu2+ and Cd2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu2+was better than Cd2+.

  8. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  9. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  10. Biosorption of phenanthrene by pure algae and field-collected planktons and their fractions.

    Science.gov (United States)

    Zhang, Dainan; Ran, Chenyang; Yang, Yu; Ran, Yong

    2013-09-01

    The biosorption isotherms for phenanthrene (Phen) by cultured algae, field-collected plankton, and market algae samples (OSs) and their fractions (lipid-LP, lipid free carbon-LF, alkaline nonhydrolyzable carbon-ANHC, and acid nonhydrolyzable carbon-NHC) were established. All the biosorption isotherms are well fitted by the Freundlich model. The biosorption isotherms for the ANHC and NHC fractions are nonlinear and for the other fractions are linear. It was found that the NHC fractions are chemically and structurally different from other fractions by using elemental analysis and Fourier transformed infrared spectroscopy (FTIR), consisting mainly of aliphatic polymethylene carbon. The average KOC values for Phen at Ce=0.005Sw are 10706±2768mLg(-1) and 95843±55817mLg(-1) for the bulk market algal samples and their NHC isolates, respectively. As the NHC fraction for Porphyra contains higher polymethylene carbon than that for Seaweed or Spirulina, it exhibits higher biosorption capacity. Moreover, the logKOC values are significantly higher for the field-collected samples than for the market algae and cultured algae samples. The multivariate correlation shows that the logKOC values are positively related to the LP contents, and negatively to the C/N ratios for the original algal samples. Furthermore, the logKOC values are negatively related to the polarity indices (O/C and O+N/C) for the original samples and their fractions excluding LP fractions. These observations help to understand the role of polarity, LP and NHC fractions, and aliphatic structures in the biosorption of Phen, which requires more attention in the examination of sorption processes in the natural environment.

  11. 29 CFR 1910.1027 - Cadmium.

    Science.gov (United States)

    2010-07-01

    ... battery Plate making, plate preparation 50 All other processes 15 Zinc/Cadmium refining* Cadmium refining... as an airborne concentration of cadmium of 2.5 micrograms per cubic meter of air (2.5 µg/m3... air cadmium level to which an employee is exposed means the exposure to airborne cadmium that...

  12. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  13. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  14. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin.

    Science.gov (United States)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-09

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L(-1) HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 microg L(-1) for aqueous samples and in the range of 2.5-9.4 ng g(-1) for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.

  15. Remoção de Pb(II de soluções aquosas por Biossorção em R. opacus Removal of Pb(II from aqueous solutions by biosorption with R.opacus

    Directory of Open Access Journals (Sweden)

    Belenia Medina Bueno

    2009-12-01

    Full Text Available Nesse estudo foi avaliada a capacidade de biossorção de íons chumbo em solução aquosa pela bactéria Rhodococcus opacus. Avaliou-se em batelada o efeito do pH da solução, concentração da biomassa, tempo de contato e concentração inicial do metal. A cinética adequou-se melhor ao modelo de pseudo-segunda ordem. Empregaram-se as isotermas de Langmuir e Freundlich para representar o processo de sorção no equilíbrio. O valor da capacidade máxima de captação (q max obtida pelo modelo de Langmuir foi de 94,34 mg g-1. No ensaio de biossorção competitiva a remoção do chumbo foi afetada pela presença de outros metais na solução.The biosorption of lead ions from aqueous solution by Rhodococcus opacus bacteria was evaluated in this study. The effects of the solution's pH, biomass concentration, contact time and initial metal concentration were studied in batch experiments. The results of the kinetics studies revealed that the biosorption of lead on R. opacus cells followed pseudo-second order kinetics. The equilibrium data was analyzed using Freundlich and Langmuir models. The maximum uptake capacity (q max obtained by the Langmuir adsorption model was 94.34 mg.g-1. In the competitive biosorption experiments, the lead removal was affected by the presence of other metal ions in the solution.

  16. Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus

    National Research Council Canada - National Science Library

    Bharathi, Kandaswamy Suyamboo; Ramesh, SriKrishna Perumal Thanga

    2013-01-01

    In this study, fixed-bed column experiments were performed to investigate the biosorption potential of two agricultural wastes, Citrullus lanatus rind and Cyperus rotundus to remove Crystal violet (CV...

  17. Evaluation of ATC as an Orally Administered Drug in Treatment of Cadmium Toxicity of Rat Organs

    Directory of Open Access Journals (Sweden)

    S. Nabilaldine Fatemi

    2009-01-01

    Full Text Available The effect of N-tetramethylene dithiocarbamate (ATC as a chelating agent on the excretion of cadmium was evaluated in cadmium-poisoned Wistar rats following administration through food and drink. The present research aimed to characterize the potential efficiency of ATC as an orally administered chelator drug after cadmium administration for 60 days. This chelator significantly enhanced the urinary and biliary excretion of cadmium and restored the altered levels of iron. Cadmium and iron concentrations in different tissues were determined by graphite furnace and flame atomic absorption spectrometry (GF AAS and F AAS methods, respectively. The chelation therapy results show that ATC is able to remove cadmium ions from different tissues while iron concentration returned to the normal level and the clinical symptoms were also reduced. In summary, we conclude that ATC is able to mobilize and promote the excretion of cadmium in rat organs and reduce the side effects and general symptoms of toxicity caused by cadmium and might be useful for preliminary testing of the efficacy of chelating agents in human body. However, these results should be confirmed in different experimental models before extrapolation to other systems. This testing procedure of course does not provide all the relevant answers for evaluating the efficiency of chelating agents in cadmium toxicity.

  18. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  19. Cadmium - is it hazardous

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    The report summarizes the state of knowledge and experience on cadmium. Biological, toxicological and epidemiological data have been evaluated. Cd pollution of the environment is reviewed under the aspect of human health. Uptake in food, threshod values of Cd exposure of the population, types and extent of health hazards, possible carcinogenic effects and future fields of research are discussed.

  20. Biosorption of Zn+2 on non living biomass of Spirulina platensis immobilized on polyurethane foam cubes: Column studies

    Directory of Open Access Journals (Sweden)

    P Nirguna Babu

    2015-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 In the present study, the non living biomass of cyanobacteria Spirulina platensis was used for biosorption of Zn+2 in column mode. Polyurethane foam (PUF cubes were used for immobilizing the biosorbent. A maximum biomass loading of 0.2 g dry S. platensis /(g of PUF cubes could be achieved. The effect of parameters (such as pH of feed solution, flow rate of feed solution to column, bed height and initial concentration of metal ion in feed solution on uptake capacity of biosorbent was studied. A maximum uptake capacity of 87.3 mg Zn+2/(g S. platensis was observed under optimum conditions. The column was regenerated using 0.1 M HCl and sorption-desorption studies were carried out for four cycles. Both  % removal of Zn+2 and uptake capacity of biosorbent were found to progressively decrease with increase in the number of cycles. The biomass was characterized by Fourier transform infrared Spectroscopy (FTIR and Scanning Electronic Microscopic (SEM images before and after biosorption. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  1. Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Art and Science, Department of Chemistry, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr

    2008-06-15

    A biosorption procedure for separation-enrichment of aluminum in environmental samples has been presented in this work. Pseudomonas aeruginosa loaded on Chromosorb 106 has been used as biosorbent for that purpose. P. aeruginosa is a gram-negative, aerobic rod. The influences of pH of the aqueous solution, eluent type, eluent volume, sample volume, etc. were examined on the quantitative recovery of aluminum in P. aeruginosa loaded on Chromosorb 106. The effects of concomitant ions on the recoveries of aluminum were also investigated. The detection limit based on 3 sigma for aluminum is 30 ng L{sup -1}. Three certified reference materials (LGC 6010 Hard Drinking Water, NIST-SRM 1568a Rice Flour and NRCC-DORM-2 Dogfish Muscle) were analyzed for the validation of the presented procedure. The proposed procedure was applied to the determination of aluminum in environmental samples including natural water and food samples. The concentration of aluminum in real samples was found at ppb level.

  2. Removal of mercury(II from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata

    Directory of Open Access Journals (Sweden)

    Akbar Esmaeili

    2015-07-01

    Full Text Available Previous studies have shown the batch removal of Pb2+ ions from wastewater and aqueous solution using two different algae; Gracilaria corticata (red algae and Sargassum glaucescens (brown algae. The objective of this research is to study the batch removal of Hg2+ from aqueous solution, and wastewater using marine dried red algae G. corticata (red algae and S. glaucescens (brown algae. Marine alga was used as a low-cost absorbent. The effects of pH, biosorption time and the concentration of the Hg2+ solution were examined in the adsorption process with S. glaucescens and G. corticata. Results showed that when we used S. glaucescens as the biosorbent, optimum conditions of pH, Hg2+ concentration and equilibrium time were at 5, 200 ppb and 90 min, and when G. corticata was used, these conditions were at 7, 1000 ppb and 30 min. The equilibrium adsorption data are fitted to the Frundlich isotherm model, by both S. glaucescens and G. corticata. The Hg2+ uptake by S. glaucescens was best described by the first-order rate model and G. corticata was best described by the second-order model.

  3. Cadmium and cancer.

    Science.gov (United States)

    Hartwig, Andrea

    2013-01-01

    Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development.

  4. Efectos de las Condiciones de Operación Sobre la Biosorción de Pb2+, Cd2+ y Cr3+ en Solución por Saccharomyces cerevisiae Residual Effects of the Operating Conditions on the Biosorption of Pb2+, Cd2+ y Cr3+ in Solution by Residual Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    María E Rodríguez

    2008-01-01

    Full Text Available Se han estudiado los efectos de algunas variables involucradas en el proceso de adsorción de iones de metales pesados en aguas de descarga contaminadas. Se evaluaron los efectos de las variables pH, concentración de iones, presencia de electrólitos, concentración y tratamiento de biomasa sobre la biosorción de iones Pb2+, Cd2+ y Cr3+ en soluciones mediante el uso de Saccharomyces cerevisiae no-viva. El pH, la concentración de biomasa y el tratamiento previo tuvieron un efecto significativo sobre la biosorción de Pb2+. Para la biosorción del Cr3+ solo son significativos los efectos del pH y la concentración de biomasa, mientras que para la biosorción del Cd2+ son significativos los efectos de la concentración de biomasa, el pH y la presencia de todos los co-iones presentes en solución.This paper presents a study on the effects of some variables on the adsorption process of heavy metal ions in polluted wastewaters. The effects of pH, ion concentration, biomass concentration and pre-treatment of the biomass on the biosorption process of Pb2+, Cd2+ y Cr3+ in artificial solutions using non-living Saccharomyces cerevisiae were evaluated. It was observed that pH, biomass concentration and biomass pretreatment had a significant effect on the biosorption of Pb2+. For the adsorption of Cr3+ the only important factors were pH and concentration biomass, while for Cd2+ biosorption the effects of biomass concentration, pH and the presence of co-ions in the solution were significant.

  5. Biosorption of lead by e. coli strains expressingvitreoscilla hemoglobin: isotherm modeling with two-and three-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Aljundi, Isam H. [Chemical Engineering Department, Mutah University, Al-Karak (Jordan); Khleifat, Khaled M. [Biology Department, Mutah University, Al-Karak (Jordan)

    2010-06-15

    Biosorption is presented as an alternative choice to traditional physicochemical means for removing toxic metals from groundwater and wastewaters. Removal of lead (Pb) from solutions was studied using Escherichia coli (parental) and Vitreoscilla hemoglobin (VHb)-expressing E. coli (transformed) cells. Pb biosorption was increased in bacterial hemoglobin-expressing E. coli cells grown in Luria broth B containing different concentrations of Pb{sup 2+}. The maximum Pb{sup 2+} biosorption of transformed and parental cells was determined to be 612 and 370 {mu}g Pb/g biomass, respectively. The inhibitory effect of Pb{sup 2+} on the parental strain was determined at 10 ppm. However, in transformed cells, Pb{sup 2+} was lethal at 100 ppm. The optimum aeration required for the transformed cells was lower than that for the parental strain on a growth yield basis. A linear correlation was established between the biosorption and uptake amounts. The biosorption process was analyzed using two-parameter (Langmuir, Freundlich, Temkin) and three-parameter models (Sips, Redlich-Peterson, Toth). The chi-square test was used to compare these models. It was demonstrated that the three-parameter model is better in describing biosorption equilibria a, white the Sips equation showed the best description for both types of cells. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Influence of pH value on Cu (II biosorption by lignocellulose peach shell waste material

    Directory of Open Access Journals (Sweden)

    Lopičić Zorica R.

    2013-01-01

    Full Text Available In the last decade, the pollution made by anthropogenic sources has reached large amounts with special attention on heavy metals because of their high toxicity, persistence and bioaccumulation tendency. Since the conventional methods for their removing are either too expensive or create large quantities of toxic sludge, the great attention has been paid to the new technologies such as biosorption, technology that use cheap, abundant, organic waste for sequestering pollutants from contaminated mediums. Among the other factors that affect biosorption process, pH value is one the most important because it directs both the metal solution chemistry as well as the activity of the biomass functional groups. In this paper the influence of pH value on biosorption of Cu (II by unmodified low-cost lignocellulose biosorbent - peach shell (PS particles, have been studied. The chemical composition of PS, point of zero charge (pHPZC as well as its surface morphology is also presented. Results have showed that this biosorbent contains mainly cellulose and lignin, the components that carry the functional groups responsible for metal binding. Its multilayer surface contains many pores and channels that help diffusion in deeper layers and force biosorption process. Point of zero charge determination was performed with three different KNO3 ionic strengths: 0,1M, 0,01M and 0,001M. The obtained value for pHPZC was 4,75±0,1 and showed that this biosorbent is non-sensitive to ionic strength of electrolyte applied. Biosorption experiments were done with peach shell particles whose diameter was -0,5+0,1mm at 25oC . The initial copper (II concentration was 50 mg/dm3 while the biosorbent concentration was 10g/dm3. Experiments were done with and without keeping pH constant. The influence of pH on biosorption process was examined in 2-6 pH range. The percentage of Cu (II removed by PS, reaches its maximum at pH 6, with the 90,43% removing but this percentage can also be

  7. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  8. Toxicity of ionic liquids to Clostridium sp. and effects on uranium biosorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C., E-mail: zhangchengdong@nankai.edu.cn [College of Environmental Science and Engineering, Nankai University, Tianjin, China 300071 (China); Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07104 (United States); Malhotra, S.V. [Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07104 (United States); Francis, A.J. [Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2014-01-15

    Highlights: • Three ILs showed varying degrees of toxicity to Clostridium sp. • In the presence of ILs uranium biosorption by the bacteria decreased. • The decreased biosorption was due to membrane damage induced by ILs. • Intracellular accumulation of uranium was also impacted. -- Abstract: As green solvents ionic liquids (ILs) show high potential in nuclear industry for extraction and purification of actinides. However, to date relatively little information has been gained on ILs application in microbial processes, for example biosorption of radionuclides. We investigated the effects of three ILs, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF{sub 6}), N-ethylpyridinium trifluoroacetate (EtPyCF{sub 3}COO) and N-ethylpyridinium tetrafluoroborate (EtPyBF{sub 4}) on the growth and biosorption of uranium by Clostridium sp. The ILs affected the growth of the bacterium as evidenced by decreases in optical density, total gas production, and organic acids production from glucose metabolism. The IC{sub 50-48h} of three ILs decreased in the order of BMIMPF{sub 6} (8.26 mM) > EtPyBF{sub 4} (7.04 mM) > EtPyCF{sub 3}COO (4.05 mM). Uranium biosorption by the bacterial cells decreased by 75% in the presence of 1% (v/v) BMIMPF{sub 6} and by about 90% with 1% (v/v) EtPyBF{sub 4} or EtPyCF{sub 3}COO, in comparison to the control without ILs. The diminished biosorption may be attributed to the membrane damages induced by EtPyBF{sub 4} and EtPyCF{sub 3}COO, which can be visualized by Transmission Electron Microscope (TEM) analysis. Energy-dispersive X-ray spectroscopy (EDS) analysis revealed the accumulation of uranium inside peripheral membrane of the cells exposed to uranium alone or with BMIMPF{sub 6}, while little or no accumulation was observed in the presence of EtPyBF{sub 4} and EtPyCF{sub 3}COO. These results imply that potential toxicity of ILs towards microorganisms is a particularly important issue in limiting its biotechnological applications.

  9. Renal cadmium overload without nephrotoxicity.

    OpenAIRE

    1981-01-01

    A redundant nickel/cadmium battery worker was investigated for non-specific fatigue after completing five years in the industry. Sensitive techniques for in-vivo organ cadmium measurement showed a moderate accumulation in the liver but a very large concentration in the kidneys. Despite this, overall glomerular and tubular function were not impaired. It was concluded that the mechanism of proteinuria observed in some cadmium workers is obscure and not clearly related to the degree of kidney sa...

  10. Cadmium in Sweden - environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H.; Iverfeldt, Aa. [Swedish Environmental Research Inst. (Sweden); Borg, H.; Lithner, G. [Stockholm Univ. (Sweden). Inst. for Applied Environmental Research

    1998-03-01

    This report aims at assessing possible effects of cadmium in the Swedish environment. Swedish soils and soft freshwater systems are, due to a generally poor buffering capacity, severely affected by acidification. In addition, the low salinity in the Baltic Sea imply a naturally poor organism structure, with some important organisms living close to their limit of physiological tolerance. Cadmium in soils is mobilized at low pH, and the availability and toxicity of cadmium in marine systems are enhanced at low salinity. The Swedish environment is therefore extra vulnerable to cadmium pollution. The average concentrations of cadmium in the forest mor layers, agricultural soils, and fresh-waters in Sweden are enhanced compared to `back-ground concentrations`, with a general increasing trend from the north to the south-west, indicating strong impact of atmospheric deposition of cadmium originating from the central parts of Europe. In Swedish sea water, total cadmium concentrations, and the fraction of bio-available `free` cadmium, generally increases with decreasing salinity. Decreased emissions of cadmium to the environment have led to decreasing atmospheric deposition during the last decade. The net accumulation of cadmium in the forest mor layer has stopped, and even started to decrease. In northern Sweden, this is due to the decreased deposition, but in southern Sweden the main reason is increased leakage of cadmium from the topsoil as a consequence of acidification. As a result, cadmium in the Swedish environments is undergoing an extended redistribution between different soil compartments, and from the soils to the aquatic systems. 90 refs, 23 figs, 2 tabs. With 3 page summary in Swedish

  11. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract.

    Science.gov (United States)

    Ehrampoush, Mohammad Hassan; Miria, Mohammad; Salmani, Mohammad Hossien; Mahvi, Amir Hossein

    2015-01-01

    The adsorption process by metal oxide nanoparticles has been investigated an effective agent for removing organic and inorganic contaminants from water and wastewater. In this study, iron oxide nanoparticles were synthesized in the presence of tangerine peel extract as adsorbent for cadmium ions removal from contaminated solution. Iron oxide nanoparticles prepared by co-precipitation method and tangerine peel extract was used to prevent accumulation and reduce the diameter of the particles. Effect of various parameters such as contact time, pH, metal concentration and adsorbent dosage was determined on the removal efficiency. The different concentrations of tangerine peel had an impact on the size of nanoparticles. As, increasing the concentration of tangerine peel extract from 2 to 6 % the average size of synthesized iron oxide nanoparticles decreased 200 nm to 50 nm. The maximum removal of cadmium ions (90 %) occurred at pH of 4 and adsorbent dose of 0.4 g/100 ml. Adsorption of cadmium ions by synthesized iron oxide nanoparticles followed Freundlich adsorption model and pseudo-second-order equation. The cadmium ions are usually soluble in acidic pH and the maximum removal of cadmium by green synthesis iron oxide nanoparticles was obtained in the pH of 4, so these nanoparticles can be a good adsorbent for the removal of cadmium from wastewater.

  12. CADMIUM – ENVIRONMENTAL HAZARD

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-06-01

    Full Text Available The paper presents some information about current status of cadmium as an environmental health problem. Agricultural uses of phosphate fertilizers, sewage sludge and industrial uses of Cd are the major source of widespread of this metal at trace levels into the general environment and human foodstuffs. It is well known that high cadmium (Cd exposure causes renal damage, anemia, enteropathy, osteoporosis, osteomalacia, whereas the dose-response relationship at low levels exposure is less established. During the last decade an increasing number of studies have found an adverse health effects due to low environmental exposure to Cd. Many authors try to determine the relationship between Cd intake and Cd toxicity indicators, especially dealing renal tubular damage. The level of b2-microglobulin in urine is regarded as the most sensitive biomarker of renal disfunction due to low environmental Cd concentrations.

  13. Cadmium removal from contaminated soil by tunable biopolymers.

    Science.gov (United States)

    Prabhukumar, Giridhar; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2004-06-01

    An elastin-like polypeptide (ELP) composed of a polyhistidine tail (ELPH12) was exploited as a tunable, metal-binding biopolymer with high affinity toward cadmium. By taking advantage of the property of ELPH12 to undergo a reversible thermal precipitation, easy recovery of the sequestered cadmium from contaminated water was demonstrated as the result of a simple temperature change. In this study, batch soil washing experiments were performed to evaluate the feasibility of using ELPH12 as an environmentally benign strategy for removing cadmium from contaminated soil. The stability constant (log KL) for the cadmium-ELPH12 complex was determined to be 6.8, a value similar to that reported for the biosurfactant rhamnolipid. Two washings with 1.25 mg/mL of ELPH12 were able to remove more than 55% of the bound cadmium as compared to only 8% removal with ELP containing no histidine tail or 21% removal using the same concentration of EDTA. Unlike rhamnolipid from Pseudomonas aeruginosa ATCC 9027, which adsorbs extensively to soil, less than 10% of ELPH12 was adsorbed under all soil washing conditions. As a result, a significantly lower concentration of ELPH12 (0.036 mM as compared to 5-10 mM of biosurfactants) was required to achieve similar extraction efficiencies. However, cadmium recovery by simple precipitation was incomplete due to the displacement of bound cadmium by zinc ions present in soil. Owing to its benign nature, ease of production, and selective tailoring of the metal binding domain toward any target metals of interest, ELP biopolymers may find utility as an effective extractant for heavy metal removal from contaminated soil or ore processing.

  14. Separation Of Cadmium(II, Cobalt(II And Nickel(II By Transport Through Polymer Inclusion Membranes With Phosphonium Ionic Liquid As Ion Carrier / Separacja Jonów Kadmu(II, Kobaltu(II I Niklu(II W Procesie Transportu Przez Polimerowe Membrany Inkluzyjne Zawierające Fosfoniową Ciecz Jonową W Roli Przenośnika

    Directory of Open Access Journals (Sweden)

    Pospiech B.

    2015-12-01

    Full Text Available This paper presents study on the facilitated transport of cadmium(II, cobalt(II and nickel(II ions from aqueous chloride solutions through polymer inclusion membranes (PIMs with phosphonium ionic liquid. Cyphos IL 101 (trihexyl(tetradecyl phosphonium chloride was used as a selective carrier for synthesis of cellulose triacetate membranes containing o-nitrophenyl pentyl ether (ONPPE as a plasticizer. Effect of different parameters such as hydrochloric acid concentration in the source phase as well as ion carrier concentration in the polymer membrane on metal ions transport has been investigated. Cd(II was transported preferably from hydrochloric acid solutions containing Co(II and Ni(II through PIM containing 18.8 wt.% CTA and 26.0 wt.% Cyphos 101 and 55.1 wt.% ONPPE into 0.5 M HNO3 as the receiving phase. The obtained results suggest that there is a possibility of application of this membrane with Cyphos IL 101 as ion carrier for separation of Cd(II over Co(II and Ni(II from hydrochloric acid solutions.

  15. The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge

    Directory of Open Access Journals (Sweden)

    A. J. Morais Barros

    2006-06-01

    Full Text Available This work on the process of biosorption of nickel and chromium in an ascendant continuous-flow, fixed packed-bed bioreactor of sanitary sewage sludge was conducted in a search for solutions to the environmental problem caused by heavy metals. Analysis of the results demonstrated that the absorbent had an extraordinary capacity for biosorption of the heavy metals studied at about 9.0 pH of the effluent, with a removal percentage of over 90.0% for the two metals. Chemometric study results demonstrated that 20 days of the experimental system function were sufficient for achieving the maximum efficiency of sorption of the heavy metals studied by the sanitary sewage sludge employed.

  16. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L

    Energy Technology Data Exchange (ETDEWEB)

    Aksakal, Ozkan [Department of Biology, Faculty of Science, Ataturk University, Erzurum 25240 (Turkey); Ucun, Handan, E-mail: hanucun@yahoo.com [Department of Environmental Engineering, Faculty of Engineering, Bartin University, Bartin 74100 (Turkey)

    2010-09-15

    This study investigated the biosorption of Reactive Red 195 (RR 195), an azo dye, from aqueous solution by using cone biomass of Pinus sylvestris Linneo. To this end, pH, initial dye concentration, biomass dosage and contact time were studied in a batch biosorption system. Maximum pH for efficient RR 195 biosorption was found to be 1.0 and the initial RR 195 concentration increased with decreasing percentage removal. Biosorption capacity increased from 6.69 mg/g at 20 deg. C to 7.38 mg/g at 50 deg. C for 200 mg/L dye concentration. Kinetics of the interactions was tested by pseudo-first-order and pseudo-second-order kinetics, the Elovich equation and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order kinetic model and intraparticle diffusion mechanism. Moreover, the Elovich equation also showed a good fit to the experimental dat