WorldWideScience

Sample records for cadmium copper nickel

  1. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    Science.gov (United States)

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  2. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.; Rastogi, S.C.

    1977-08-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analyzed for cadmium, chromium, copper, manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chromium and nickel levels were significantly higher (P < 0.01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P < 0.1). Nineteen percent of autoworkers were found to have an abnormally high blood level of carboxyhemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed.

  3. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Abstract. Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, .... mining 50% morbid concentrations (MC50) and 50% inhibition .... WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper.

  4. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    Science.gov (United States)

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  5. Removal of Cadmium, Zinc, Lead and Copper by Sorption on Leaching Residue from Nickel Production

    Directory of Open Access Journals (Sweden)

    Miroslava Václavíková

    2006-12-01

    Full Text Available A leaching resudue from the nickel production (LRNi, was used to study the removal of selected bivalent cations (Cd, Pb, Cu and Zn from model aqueous solutions. Batch-type experiments have been performed in solutions with initial concentrations of heavy metals in the range of 20-400 mg.L-1 and the adsorbent dosage 2 g.L-1. All adsorption experiments were carried out at ambient temperature (22+1°C in orbital shaker. The experimental data were modeled with Langmuir and Freundlich isotherms. The relatively high uptake indicated that LRNi can adsorb considerable amounts of cadmium and zinc (maximum uptake capacity for cadmium: 25 mg/g at pH 7.2 and ca. 40 mg/g for zinc at pH 7. A significant uptake was also observed for copper and lead at pH 5.8 and 6 respectively, which was attributed to the precipitation of the respective insoluble hydroxides.

  6. Phytoremediation of cadmium and nickel by Spirodela polyrhiza

    International Nuclear Information System (INIS)

    Chaudhuri, Devaleena; Goswami, Chandrima; Chatterjee, Sumon; Majumder, Arunabha; Mishra, A.K.; Bandyopadhyay, Kaushik

    2011-01-01

    Heavy metal pollution in surface and groundwater has considerably increased in the last few years. It is essential to have an effective removal mechanism of these toxic metals. Current research includes the need to develop environment friendly and cost effective technologies for removing heavy metals from water. In several studies cadmium and nickel have been considerably removed using phytoremediation. The removal efficiency of cadmium and nickel by Spirodela polyrhiza, common duckweed has been examined in the present study for 3 different concentrations of cadmium (1, 2 and 3 mg/L) and nickel (4, 5 and 6 mg/L). Two sets of experiments for cadmium and nickel were conducted separately. Effect of metal toxicity on Spirodela polyrhiza was evaluated in terms of relative growth factor and cadmium was found to be more toxic than nickel. Under experimental condition BCF value for cadmium removal was more than >1000 in all the 3 concentrations of cadmium. But the BCF value was found to be more than > 1000 only when input nickel concentration was 4 mg/L during phytoremediation process. Experimental results suggest that Spirodela polyrhiza has the potential of accumulating cadmium and nickel from aqueous solution at lower metal concentration. (author)

  7. Nickel hydrogen/nickel cadmium battery trade studies

    Science.gov (United States)

    Stadnick, S. J.

    1983-01-01

    Nickel Hydrogen cell and battery technology has matured to the point where a real choice exists between Nickel Hydrogen and Nickel Cadmium batteries for each new spacecraft application. During the past few years, a number of spacecraft programs have been evaluated at Hughes with respect to this choice, with the results being split about fifty-fifty. The following paragraphs contain criteria which were used in making the battery selection.

  8. Effects of cadmium electrode properties on nickel-cadmium cell performance

    International Nuclear Information System (INIS)

    Zimmerman, A.H.

    1986-01-01

    Tests have been conducted on a number of nickel-cadmium cells that have exhibited a variety of performance problems, ranging from high voltages and pressures during overcharge to low capacity. The performance problems that have been specifically linked to the cadmium electrode are primarily related to two areas, poor sinter and the buildup of excessive pressure during overcharge. A number of specific nickel-cadmium cell and cadmium electrode characterists have been studied in this work to determine what the effects of poor sinter are, and to determine what factors are important in causing excessive pressures during overcharge in cells that otherwise appear normal. Several of the tests appear suitable for screening cells and electrodes for such problems

  9. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  10. Solubility of nickel-cadmium ferrite in acids

    International Nuclear Information System (INIS)

    Vol'ski, V.; Vol'ska, Eh.; Politan'ska, U.

    1977-01-01

    The solubility of a solid solution of nickel-cadmium ferrite containing an excess of ferric oxide, (CdO)sub(0.5), (NiO)sub(0.5) and (Fe 2 O 3 )sub(1.5), in hydrochloric and nitric acids at 20, 40 and 60 deg C, was determined colorimetrically and chelatometrically, as well as by studying the x-ray diffraction patterns of the preparations prior to dissolution and their residues after dissolution. It is shown that cadmium passes into the solution faster than iron and nickel; after 800 hours, the solution contains 40% of iron ions and more than 80% of cadmium ions. The kinetics of ferrite dissolution is studied

  11. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.

    Science.gov (United States)

    Nongmaithem, Nabakishor; Roy, Ayon; Bhattacharya, Prateek Madhab

    2016-01-01

    Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  13. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  14. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    Science.gov (United States)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  15. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    Energy Technology Data Exchange (ETDEWEB)

    Timmerman, P.; Ratnakumar, B.V.; Distefano, S.

    1996-02-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  16. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry

    International Nuclear Information System (INIS)

    Silva, Edson Luiz; Santos Roldan, Paulo dos; Gine, Maria Fernanda

    2009-01-01

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L -1 , 0.3 mL, 0.15% (w/v), 50 deg. C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 μg L -1 , respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  17. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Directory of Open Access Journals (Sweden)

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  18. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    International Nuclear Information System (INIS)

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  19. Investigation of interdiffusion in copper-nickel bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Lettif, Ahmed M. [Physics Department, College of Science, Babylon University, Hilla (Iraq)]. E-mail: abdullettif@yahoo.com

    2007-01-15

    Auger depth profiling technique and X-ray diffraction analysis have been employed to study the interdiffusion in vacuum-deposited copper-nickel bilayer thin films. An adaptation of the Whipple model was used to determine the diffusion coefficients of both nickel in copper and copper in nickel. The calculated diffusion coefficient is (2.0x10{sup -7} cm{sup 2}/s)exp(-1.0 eV/kT) for nickel in copper, and (6x10{sup -8} cm{sup 2}/s)exp(-0.98 eV/kT) for copper in nickel. The difference between the diffusion parameters obtained in the present work and those extracted by other investigators is attributed essentially to the difference in the films microstructure and to the annealing ambient. It is concluded that interdiffusion in the investigated films is described by type-B kinetics in which rapid grain-boundary diffusion is coupled to defect-enhanced diffusion into the grain interior. The present data raise a question about the effectiveness of nickel as a diffusion barrier between copper and the silicon substrate.

  20. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    Science.gov (United States)

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  1. Solution-processed copper-nickel nanowire anodes for organic solar cells

    Science.gov (United States)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  2. Cadmium ban spurs interest in zinc-nickel coating for corrosive aerospace environments

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. (Pure Coatings Inc., West Palm Beach, FL (United States))

    1994-02-01

    OSHA recently reduced the permissible exposure level for cadmium. The new standard virtually outlaws cadmium production and use, except in the most cost-insensitive applications. Aerospace manufacturers, which use cadmium extensively in coatings applications because of the material's corrosion resistance, are searching for substitutes. The most promising alternative found to date is a zinc-nickel alloy. Tests show that the alloy outperforms cadmium without generating associated toxicity issues. As a result, several major manufacturing and standards organizations have adopted the zinc-nickel compound as a standard cadmium replacement. The basis for revising the cadmium PEL -- which applies to occupational exposure in industrial, agricultural and maritime occupations -- is an official OSHA determination that employees exposed to cadmium under the existing PEL face significant health risks from lung cancer and kidney damage. In one of its principal uses, cadmium is electroplated to steel, where it acts as an anticorrosive agent.

  3. Gold, nickel and copper mining and processing.

    Science.gov (United States)

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.

  4. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium.

    NARCIS (Netherlands)

    Keltjens, W.G.; Beusichem, van M.L.

    1998-01-01

    Abstract

    Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil

  5. The role of microRNAs in copper and cadmium homeostasis

    International Nuclear Information System (INIS)

    Ding, Yan-Fei; Zhu, Cheng

    2009-01-01

    Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

  6. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  7. Langmuir Isotherm application to the competitive adsorption of Cadmium, Nickel and Zinc on a Bentonite

    International Nuclear Information System (INIS)

    Silva Giraldo, German Dario; Pinzon Bello, Jorge Alejo

    1999-01-01

    In the present work, it was studied the simultaneous adsorption of binary and ternary mixtures of cadmium, nickel and zinc ions in aqueous solution at 25oC over a bentonite from the Cauca Valley, in its native state as well as in its sodium homo ionic form. The Langmuir isotherm, initially introduced by Murali and Aylmore for the competitive adsorption of various adsorbents, adequately describes the simultaneous adsorption of the three ions over the studied bentonite. The lineal correlation coefficient is greater than 0.900 in the major part of the systems. The competitive effect was interpreted by means of the thermodynamic distribution coefficient, Kdm. The degree of adsorption in the binary mixtures is nickel > zinc, cadmium over the natural bentonite, and nickel > cadmium > zinc over the sodium homo ionic form, whereas in the ternary mixture the order Nickel > Cadmium > Zinc is found over both adsorbents

  8. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution

    International Nuclear Information System (INIS)

    Munoz, A. Igual; Anton, J. Garcia; Guin-tilde on, J.L.; Herranz, V. Perez

    2004-01-01

    The electrochemical behavior of copper, nickel and two copper-nickel (Cu90/Ni10 and Cu70/Ni30) alloys in 850 g/L LiBr solution in the absence and presence of three different inorganic inhibitors (chromate CrO 4 2- , molybdate MoO 4 2- , and tetraborate B 4 O 7 2- ) has been studied. Differences in inhibition efficiency are discussed in terms of potentiodynamic and cyclic measurements. The best protection is obtained by adding chromate to the 850 g/L LiBr solution while the inhibition efficiencies of molybdate and tetraborate ions were not markedly high. Very aggressive anions, such as bromides, in the present experimental conditions, notably reduce the action of the less efficient molecules (molybdate and tetraborate), but not that of the most efficient ones (chromate). The results of the investigation show that the inhibiting properties depend on the nickel content in the alloy; this element improves the general corrosion resistance of the material in the sense that it shifts free corrosion potential towards more noble values and density corrosion currents towards lower levels. The nickel content in the alloy also enlarges the passivating region of the materials in chromate and molybdate-containing solution; furthermore it decreases the current passivating values to lower values. Nickel addition improves the localized corrosion resistance in the bromide media

  9. Recycling of spent nickel-cadmium batteries based on bioleaching process

    International Nuclear Information System (INIS)

    Zhu Nanwen; Zhang Lehua; Li Chunjie; Cai Chunguang

    2003-01-01

    Only 1-2 percent of discarded dry batteries are recovered in China. It is necessary to find an economic and environmentally friendly process to recycle dry batteries in this developing country. Bioleaching is one of the few techniques applicable for the recovery of the toxic metals from hazardous spent batteries. Its principle is the microbial production of sulphuric acid and simultaneous leaching of metals. In this study, a system consisting of a bioreactor, settling tank and leaching reactor was developed to leach metals from nickel-cadmium batteries. Indigenous thiobacilli, proliferated by using nutritive elements in sewage sludge and elemental sulphur as substrates, was employed in the bioreactor to produce sulphuric acid. The overflow from the bioreactor was conducted into the settling tank. The supernatant in the settling tank was conducted into the leaching reactor, which contained the anode and cathodic electrodes obtained from nickel-cadmium batteries. The results showed that this system was valid to leach metals from nickel-cadmium batteries, and that the sludge drained from the bottom of the settling tank could satisfy the requirements of environmental protection agencies regarding agricultural use

  10. Can energy willow (Salix sp.) remediate cadmium- and nickel-contaminated fish farm sludge?

    DEFF Research Database (Denmark)

    Pedersen, Marianne Bruus

    it meets the criteria. Phytoremediation by willow may combine accumulation of cadmium and nickel from the sludge with the production of an energy crop. The ability of eight selected willow clones to take up and tolerate cadmium and nickel was studied in pots under outdoor conditions. Fish farm sludge...

  11. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Mitra, Samiran; Kundu, Parimal; Singh, Rajkumar Bhubon

    1998-01-01

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph) 2 (DCA) 2 ], [Ni(tmorph) 2 (TCA) 2 ].2H 2 O, [Cu(DMP) 2 (TCA) 2 ],[ML 2 X 2 ].nH 2 O where M=Zn II or Cd II , L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph) 2 (TCA) 2 ] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. E a * , ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between E a * and ΔS for the decomposition of the complexes. (author)

  12. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  13. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles.

    Science.gov (United States)

    Li, Shuzhen; Zhong, Hui; Hu, Yuehua; Zhao, Jiancun; He, Zhiguo; Gu, Guohua

    2014-02-01

    This study investigated thermophilic bioleaching of a low grade nickel-copper sulfide using mixture of four acidophilic thermophiles. Effects of 0.2g/L l-cysteine on the bioleaching process were further evaluated. It aimed at offering new alternatives for enhancing metal recoveries from nickel-copper sulfide. Results showed a recovery of 80.4% nickel and 68.2% copper in 16-day bioleaching without l-cysteine; while 83.7% nickel and 81.4% copper were recovered in the presence of l-cysteine. Moreover, nickel recovery was always higher than copper recovery. l-Cysteine was found contributing to lower pH value, faster microbial growth, higher Oxidation-Reduction Potential (ORP), higher zeta potential and absorbing on the sulfide surfaces through amino, carboxyl and sulfhydryl groups. X-ray Diffraction (XRD) patterns of leached residues showed generation of S, jarosite and ammoniojarosite. Denaturing Gradient Gel Electrophoresis (DGGE) results revealed that l-cysteine could have variant impacts on different microorganisms and changed the microbial community composition dramatically during nickel-copper sulfide bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  15. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  16. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.

    Science.gov (United States)

    Prakash, Nagan; Latha, Srinivasan; Sudha, Persu N; Renganathan, N Gopalan

    2013-02-01

    The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan-clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k (1), for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu(2+) ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the

  17. Comparative study of the influence of antimony oxide additives (III) and nickel hydroxide (II) on electrochemical behavior of cadmium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kadnikova, N.V.; Lvova, L.A.; Ryabskaya, I.A.

    1983-01-01

    Comparative study of the influence of additives indicated that with partial or complete replacement in the active mass of the cadmium electrode of nickel hydroxide (II) by antimony oxide (III), the electrochemical characteristics do not significantly change. During prolonged storage of charged cadmium electrodes the presence of nickel hydroxide (II) and intermetal compound (IMC) of cadmium with nickel is formed and the specific surface increases. In the case of adding antimony (III) formation of noticeable quantities of IMC of cadmium with antimony is not observed. The specific surface is reduced during storage.

  18. Copper and nickel alloys and titanium for seawater applications

    International Nuclear Information System (INIS)

    Richter, H.

    1977-01-01

    Copper and nickel alloys and titanium have been successfully used for heat exchangers on ships, in power plants and for chemical apparatus and piping systems because of their resistance against corrosion in sea water. Aluminium brass and copper nickel alloys, the standard materials for condensers and coolers, however, may be attacked, the corrosion depending on water quality, water velocity, and structural conditions. The mechanisms of corrosion are discussed. Under severe conditions the use of titanium may be indicated. The use of nickel base alloys is advantageous at elevated temperatures, e.g. for chemical reactions and for evaporation processes. Examples are given for application and for prevention of corrosion. (orig.) [de

  19. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    Science.gov (United States)

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  20. Theoretical Modelling of Immobilization of Cadmium and Nickel in Soil Using Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vaidotas Danila

    2017-09-01

    Full Text Available Immobilization using zero valent using iron nanoparticles is a soil remediation technology that reduces concentrations of dissolved contaminants in soil solution. Immobilization of heavy metals in soil can be achieved through heavy metals adsorption and surface complexation reactions. These processes result in adsorption of heavy metals from solution phase and thus reducing their mobility in soil. Theoretical modelling of heavy metals, namely, cadmium and nickel, adsorption using zero valent iron nanoparticles was conducted using Visual MINTEQ. Adsorption of cadmium and nickel from soil solutions were modelled separately and when these metals were dissolved together. Results have showed that iron nanoparticles can be successfully applied as an effective adsorbent for cadmium and nickel removal from soil solution by producing insoluble compounds. After conducting the modelling of dependences of Cd+2 and Ni+2 ions adsorption on soil solution pH using iron nanoparticles, it was found that increasing pH of solution results in the increase of these ions adsorption. Adsorption of cadmium reached approximately 100% when pH ≥ 8.0, and adsorption of nickel reached approximately 100% when pH ≥ 7.0. During the modelling, it was found that adsorption of heavy metals Cd and Ni mostly occur, when one heavy metal ion is chemically adsorbed on two sorption sites. During the adsorption modelling, when Cd+2 and Ni+2 ions were dissolved together in acidic phase, it was found that adsorption is slightly lower than modelling adsorption of these metals separately. It was influenced by the competition of Cd+2 and Ni+2 ions for sorption sites on the surface of iron nanoparticles.

  1. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  2. Corrosion and biofouling resistance evaluation of 90-10 copper-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Carol [Consultant to Copper Development Association, UK, Square Covert, Caynham, Ludlow, Shropshire (United Kingdom)

    2004-07-01

    Copper-nickel alloys for marine use were developed for naval applications in the early part of the 20. century with a view to improving the corrosion resistance of condenser tubes and seawater piping. They still enjoy widespread use today not only for many navies but also in commercial shipping, floating production, storage and off loading vessels (FPSOs), and in multistage flash desalination. The two popular alloys contain 90% or 70% copper and differ in strength and maximum sea water velocity levels they can handle but it is the 90-10 copper-nickel (CuNi10Fe1Mn) which is the more economic and extensively used. An additional benefit of this alloy is its high resistance to biofouling: in recent years this has led to sheathing developments particularly for structures and boat hulls. This paper provides a review of the corrosion and biofouling resistance of 90-10 copper-nickel based on laboratory test data and documented experience of the alloy in marine environments. Particular attention is given to exposure trials over 8 years in Langstone Harbour, UK, which have recently been completed by Portsmouth University on behalf of the Nickel Institute. These examined four sheathing products; plate and foil as well as two composite products with rubber backing. The latter involved copper-nickel granules and slit sheet. The trial results are consistent with the behaviour of the alloy in the overall review. There is an inherent high resistance to marine biofouling when freely exposed. Prolonged exposure to quiet conditions can result in some growth of marine organisms but this is loosely attached and can readily be removed by wiping or a light scraping. The good corrosion resistance of 90-10 copper-nickel in sea water is also confirmed and associated with the formation of a thin, complex, protective and predominantly cuprous oxide surface film, which forms and matures naturally on exposure to seawater. Sound initial oxide film formation is also known to help protect against

  3. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  4. Inhibition in fertilisation of coral gametes following exposure to nickel and copper.

    Science.gov (United States)

    Gissi, Francesca; Stauber, Jenny; Reichelt-Brushett, Amanda; Harrison, Peter L; Jolley, Dianne F

    2017-11-01

    The mining and production of nickel in tropical regions have the potential to impact on ecologically valuable tropical marine ecosystems. Currently, few data exist to assess the risks of nickel exposure to tropical ecosystems and to derive ecologically relevant water quality guidelines. In particular, data are lacking for keystone species such as scleractinian corals, which create the complex structural reef habitats that support many other marine species. As part of a larger study developing risk assessment tools for nickel in the tropical Asia-Pacific region, we investigated the toxicity of nickel on fertilisation success in three species of scleractinian corals: Acropora aspera, Acropora digitifera and Platygyra daedalea. In the literature, more data are available on the effects of copper on coral fertilisation, so to allow for comparisons with past studies, the toxicity of copper to A. aspera and P. daedalea was also determined. Overall, copper was more toxic than nickel to the fertilisation success of the species tested. Acropora aspera was the most sensitive species to nickel (NOEC 4610µg Ni/L). Acropora aspera was also the more sensitive species to copper with an EC10 of 5.8µg Cu/L. The EC10 for P. daedalea was 16µg Cu/L, similar to previous studies. This is the first time that the toxicity of nickel on fertilisation success in Acropora species has been reported, and thus provides valuable data that can contribute to the development of reliable water quality guidelines for nickel in tropical marine waters. Copyright © 2017. Published by Elsevier Inc.

  5. Comparative effects of cobalt, nickel and copper on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, W E

    1938-11-01

    An account is given of the present position of our knowledge with regard to the distribution and the physiological importance of nickel and cobalt, in relation to plants and animals. Experiments on barley and broad beans were carried out in water cultures with the sulfates and chlorides of cobalt, nickel and copper. In every case a range of low concentrations did little or no damage, but toxic action occurred abruptly above a concentration which varied with the species and with the compound. With barley, copper was the most poisonous element in either compound, but the differences were not striking. Low concentrations of the sulfate were innocuous, but parallel low strengths of the chloride caused a slight, significant depression in growth. With broad beans, cobalt was much more poisonous than either nickel or copper, particularly with the sulfate. No slight depression with low concentrations of the chloride was noticeable with this species. The morphological response to toxicity varied with the element concerned. Copper, in poisonous strengths, caused shortening and bunching of barley roots, whereas nickel and cobalt permitted the growth of elongated roots of a very attenuated nature. The individuality of plant response to poison was frequently shown by the great variation in growth in the borderline concentrations just below those which caused marked depression of growth.

  6. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge

    International Nuclear Information System (INIS)

    Muntean, Alex; Wagner, Moritz; Meyer, Jörg; Seipenbusch, Martin

    2016-01-01

    The generation of copper, nickel, and copper-nickel alloy nanoparticles by spark discharge was studied, using different bespoke alloy feedstocks. Roughly spherical particles with a primary particle Feret diameter of 2–10 nm were produced and collected in agglomerate form. The copper-to-nickel ratios determined by Inductively coupled plasma mass spectrometry (ICP-MS), and therefore averaged over a large number of particles, matched the nominal copper content quite well. Further investigations showed that the electrode compositions influenced the evaporation rate and the primary particle size. The evaporation rate decreased with increasing copper content, which was found to be in good accordance with the Llewellyn-Jones model. However, the particle diameter was increasing with an increasing copper content, caused by a decrease in melting temperature due to the lower melting point of copper. Furthermore, the alloy compositions on the nanoscale were investigated via EDX. The nanoparticles exhibited almost the same composition as the used alloy feedstock, with a deviation of less than 7 percentage points. Therefore, no segregation could be detected, indicating the presence of a true alloy even on the nanoscale.

  7. Dietary exposure to cadmium, lead and nickel among students from south-east Poland.

    Science.gov (United States)

    Marzec, Zbigniew; Koch, Wojciech; Marzec, Agnieszka; Żukiewicz-Sobczak, Wioletta

    2014-01-01

    The dietary intake of cadmium, lead and nickel was determined among students from three universities in the city of Lublin in south-east Poland to assess the levels of exposure to these contaminants, compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one–MIBK, in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70% of PTWI/TDI values, and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years, whereas the exposures to nickel remains on a stable level.

  8. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  9. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    International Nuclear Information System (INIS)

    Rabah, Mahmoud A.

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics

  10. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    Science.gov (United States)

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  11. Assessment of Copper, Cadmium and Lead in Organical Matrix

    International Nuclear Information System (INIS)

    Gutierrez, Ariel

    2000-08-01

    In this report the electrochemical method of differential pulse anode voltametry redisolution voltametry is used to quantitative assessment of copper, cadmium and lead in solution. The methodology is described in the preparation of samples for measurement

  12. Study of Cadmium adsorption of Nickel and Zinc on a natural bentonite and homo ionic of sodium

    International Nuclear Information System (INIS)

    Silva Giraldo, German Dario; Pinzon Bello, Jorge Alejo

    1999-01-01

    It was studied the adsorption of cadmium, nickel and zinc in aqueous solution at 25oC over a bentonite from the Cauca Valley, in its native state as well as in its sodium homo ionic form. The Langmuir isotherm adequately describes the adsorption of these metal ions over both bentonites, and the thermodynamic distribution coefficient, Kdm, which allow quantifying the degree of adsorption, can be calculated. Baeyens-bradbury model correlates well the adsorption of the metal ions over both bentonites but Kdm cannot be calculated from it. The adsorption data do not adjust to freundlich isotherm or B.E.T. As well as they do to the previously mentioned models. The sodium homo ionic bentonite adsorbs nickel and zinc better than the native bentonite, whereas there are not significant differences in cadmium adsorption. The order of adsorption over both bentonites, Cadmium > Zinc > Nickel, follow the HSAB principle

  13. Localization and toxic effects of cadmium, copper, and uranium in Azolla

    International Nuclear Information System (INIS)

    Sela, M.; Tel-Or, E.; Fritz, E.; Huttermann, A.

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients

  14. Localization and toxic effects of cadmium, copper, and uranium in azolla.

    Science.gov (United States)

    Sela, M; Tel-Or, E; Fritz, E; Huttermann, A

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  15. Adsorption of cadmium ions on nickel surface skeleton catalysts and its effect on reaction of cathodic hydrogen evolution

    International Nuclear Information System (INIS)

    Korovin, N.V.; Udris, E.Ya.; Savel'eva, O.N.

    1986-01-01

    Cadmium adsorption from different concentration CdSO 4 solutions on nickel surface skeleton catalysts (Ni ssc ) is studied by recording of polarization and potentiodynamic curves using electron microscopy and X-ray spectrometry. Main regularities of cadmium adsorption on Ni ssc are shown to be similar to those on smooth and skeleton nickel. A conclusion is drawn that increase of catalytic activity in reaction of cathodic hydrogen evolution from alkali solutions of Ni ssc base electrodes after their treatment in solutions containing Cd 2+ ions is due to irreversible desorption of strongly and averagely bound hydrogen from electrode surface at cadmium adsorption on them

  16. Copper removal and nickel for exchange cationic with a natural zeolite

    International Nuclear Information System (INIS)

    Estupinan, Arnoldy; Sarmiento, Diego; Belalcazar de Galvis, Ana Maria

    1998-01-01

    Natural zeolite clinoptilolite, was used to remove copper and nickel from waste waters of a galvanotechnical company. Exchange capacity determined for the zeolite after its transformation to homoionic sodium form, was 0.794 meq/g for copper and 0.447 meq/g for nickel. There were made batch and column experiments, reaching the last one a better approach to the equilibrium. From the degeneration essays, the sodical zeolite concentrates the copper in the waste waters to 23.5 up times the level found for the acid rinsing waters; it shows its potential use in treatment of these waste, because its effectiveness and low cost

  17. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    Science.gov (United States)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  18. Carbon formation on nickel and nickel-copper alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alstrup, I.; Soerensen, O.; Rostrup-Nielsen, J.R. [Haldor Topsoe Research Labs., Lyngby (Denmark); Tavares, M.T.; Bernardo, C.A.

    1998-05-01

    Equilibrium, kinetic and morphological studies of carbon formation in CH{sub 4} + H{sub 2}, CO, and CO + H{sub 2} gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO + CO{sub 2} than in CH{sub 4} + H{sub 2}. A kinetic model based on information from surface science results with chemisorption of CH{sub 4} and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH{sub 4} + H{sub 2} well. The kinetics of carbon formation in CO and CO + H{sub 2} gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni {>=} 0.1) inhibits carbon formation and changes the morphology of the filaments (``octopus`` carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed. (orig.) 31 refs.

  19. Heavy metals (copper, cadmium, lead, mercury) in mute swans from Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Elvestad, K.; Karlog, O.; Clausen, B.

    1982-03-01

    During the severe winter of 1978-79, large numbers of mute swans died in coastal areas of Denmark. Of these, 2111 were collected for examination. The analyses confirm previous findings of relatively high copper levels in mute swans (mean for 178 livers was 2680 mg/kg dry weight (Dw) and for 110 kidneys 34 mg/kg Dw) (Table I, Fig. 1). The copper content was not related to sex or age (Table II). The highest liver levels of copper were found in swans from Western Jutland. Cadmium was found at the same relatively low levels as recorded for waterfowl elsewhere (mean for 178 livers was 12 mg/kg Dw, for 110 kidneys 24 mg/kg Dw) (Table I, Fig. 2). The cadmium content was not sex-related, but it increased with age (Table II). The mean mercury content (liver) was 1.4 mg/kg Dw in the 10 birds analysed (Table I). The mean lead content was 15 mg/kg Dw in the 178 livers analysed and 31 mg/kg Dw in 110 sternum (Table I and Fig. 3). The lead content was not sex-related. In sternum, but not in livers, it was related to age (Table II). One third of the swans were found lead-contaminated probably after ingestion of lead pellets. None of the swans carried high levels of both copper, cadmium, and lead (Table III).

  20. Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features.

    Science.gov (United States)

    dos Santos, Rodrigo W; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz K; Kreusch, Marianne; Pereira, Debora T; Costa, Giulia B; Simioni, Carmen; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-07-01

    Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50μM and 100μM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Copper and cadmium adsorption on pellets made from fired coal fly ash

    International Nuclear Information System (INIS)

    Papandreou, A.; Stournaras, C.J.; Panias, D.

    2007-01-01

    Studies on the utilization of low cost adsorbents for removal of heavy metals from wastewaters are gaining attention. Fired coal fly ash, a solid by-product that is produced in power plants worldwide in million of tonnes, has attracted researchers' interest. In this work, fly ash was shaped into pellets that have diameter in-between 3-8 mm, high relative porosity and very good mechanical strength. The pellets were used in adsorption experiments for the removal of copper and cadmium ions from aqueous solutions. The effect of agitation rate, equilibration time, pH of solution and initial metal concentration were studied. The adsorption of both cations follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 72 h. The experimental results for copper and cadmium adsorption fit well to a Langmuirian type isotherm. The calculated adsorption capacities of pellets for copper and cadmium were 20.92 and 18.98 mg/g, respectively. Desorption experiments were performed in several extraction media. The results showed that both metals were desorbed substantially from pellets under acidic solutions. For this reason, metal saturated pellets were encapsulated in concrete blocks synthesized from cement and raw pulverized fly ash in order to avoid metal desorption. The heavy metals immobilization after encapsulation in concrete blocks was tested through desorption tests in several aqueous media. The results showed that after 2 months in acidic media with pH 2.88 and 4.98 neither copper nor cadmium were desorbed thus indicating excellent stabilization of heavy metals in the concrete matrix. As a conclusion, the results showed that fly ash shaped into pellets could be considered as a potential adsorbent for the removal of copper and cadmium from wastewaters. Moreover, the paper proposes an efficient and simple stabilization process of the utilized adsorbents thus guarantying their safe disposal in industrial landfills and eliminating the risk of pollution

  2. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  3. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  4. Adsorption studies of water on copper, nickel, and iron: assessment of the polarization model

    International Nuclear Information System (INIS)

    Lee, S.; Staehle, R.W.

    1997-01-01

    In the atmospheric corrosion of copper, nickel, and iron, the adsorption of water affects the corrosion rates. Knowledge of water adsorption and metal oxyhydroxide formation is important in understanding the atmospheric corrosion process. The purposes of the present research were (i) to measure the adsorption of water on metal surfaces as a function of temperature and relative humidity (RH) and (ii) to assess Bradley's polarization model of adsorption. In the present research, the quartz-crystal microbalance (QCM) technique was used to measure the mass changes of copper, nickel, and iron at 0 to 100% relative humidity and 7 to 90 C under nitrogen and air environments. Less water was adsorbed on copper, nickel, and iron which form oxides than on gold. The amount of water adsorption was similar on copper, nickel, and iron under N 2 and air carrier gases. Functional relationship was first proposed as a way to include dipole/induced dipole interactions between the adsorbents and water layers. (orig.)

  5. Material Use in the United States - Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries

    Science.gov (United States)

    Wilburn, David R.

    2008-01-01

    This report examines the changes that have taken place in the consumer electronic product sector as they relate to (1) the use of cadmium, cobalt, lithium, and nickel contained in batteries that power camcorders, cameras, cell phones, and portable (laptop) computers and (2) the use of nickel in vehicle batteries for the period 1996 through 2005 and discusses forecasted changes in their use patterns through 2010. Market penetration, material substitution, and technological improvements among nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li-ion) rechargeable batteries are assessed. Consequences of these changes in light of material consumption factors related to disposal, environmental effects, retail price, and serviceability are analyzed in a series of short case studies.

  6. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Many heavy metals, including nickel (Ni, cadmium (Cd, and chromium (Cr are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells.

  7. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon

    International Nuclear Information System (INIS)

    Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmad, Y. M.

    2010-01-01

    Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater. Laboratory experimental investigation was carried out to identify the effect of p H and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that p H 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 minutes for lead, 75 minutes for copper and nickel, with lead recording 100 p ercent , copper 97 p ercent a nd nickel 55 p ercent r emoval, having a trend of Pb 2+ > Cu 2+ > Ni 2+ . Langmuir model had higher R 2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.

  8. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  9. Identification of molecular candidates and interaction networks via integrative toxicogenomic analysis in a human cell line following low-dose exposure to the carcinogenic metals cadmium and nickel.

    Science.gov (United States)

    Kwon, Jee Young; Weon, Jong-Il; Koedrith, Preeyaporn; Park, Kang-Sik; Kim, Im Soon; Seo, Young Rok

    2013-09-01

    Cadmium and nickel have been classified as carcinogenic to humans by the World Health Organization's International Agency for Research on Cancer. Given their prevalence in the environment, the fact that cadmium and nickel may cause diseases including cancer even at low doses is a cause for concern. However, the exact mechanisms underlying the toxicological effects induced by low-dose exposure to cadmium and nickel remain to be elucidated. Furthermore, it has recently been recognized that integrative analysis of DNA, mRNA and proteins is required to discover biomarkers and signaling networks relevant to human toxicant exposure. In the present study, we examined the deleterious effects of chronic low-dose exposure of either cadmium or nickel on global profiling of DNA copy number variation, mRNA and proteins. Array comparative genomic hybridization, gene expression microarray and functional proteomics were conducted, and a bioinformatics tool, which predicted signaling pathways, was applied to integrate data for each heavy metal separately and together. We found distinctive signaling networks associated with subchronic low-dose exposure to cadmium and nickel, and identified pathways common to both. ACTB, HSP90AA1, HSPA5 and HSPA8, which are key mediators of pathways related to apoptosis, proliferation and neoplastic processes, were key mediators of the same pathways in low-dose nickel and cadmium exposure in particular. CASP-associated signaling pathways involving CASP3, CASP7 and CASP9 were observed in cadmium-exposed cells. We found that HSP90AA1, one of the main modulators, interacted with HIF1A, AR and BCL2 in nickel-exposed cells. Interestingly, we found that HSP90AA1 was involved in the BCL2-associated apoptotic pathway in the nickel-only data, whereas this gene interacted with several genes functioning in CASP-associated apoptotic signaling in the cadmium-only data. Additionally, JUN and FASN were main modulators in nickel-responsive signaling pathways. Our

  10. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    International Nuclear Information System (INIS)

    Adámik, Matej; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holaňová, Lucie; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed

  11. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Energy Technology Data Exchange (ETDEWEB)

    Adámik, Matej [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Bažantová, Pavla [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Navrátilová, Lucie; Polášková, Alena [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Pečinka, Petr [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Holaňová, Lucie [Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic); Tichý, Vlastimil [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Brázdová, Marie, E-mail: maruska@ibp.cz [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic)

    2015-01-02

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.

  12. Separation and Pre-concentration of Cadmium, Copper, Lead, Nickel and Zinc by Solid-Liquid Extraction of their Cocrystallized Naphthalene Dithizone Chelate in Saline Matrices

    Directory of Open Access Journals (Sweden)

    Costa Antônio C. Spínola

    2002-01-01

    Full Text Available A procedure for separation and pre-concentration of trace amounts of cadmium, copper, lead, nickel, and zinc in brine samples has been proposed. It is based on the adsorption of metal ions onto dithizone co-crystallized with microcrystalline naphthalene, in the pH range 8.5-9.1. Nitric acid is used to back-extract the cations from the solid phase, which are measured by ICP-OES. Various parameters, such as the effect of pH, stirring time, and amounts of solid phase, have been studied in detail, to optimize the conditions for the determination of trace amounts of Cd, Cu, Pb, Ni and Zn in synthetic brine samples. The limits of detection values expressed in mug L-1 are 44 (Zn, 11 (Ni, 30 (Cd, 47 (Pb and 11 (Cu. The precision of the procedure was determined by running 10 replicate samples, each one containing 250 mug L-1 of each element and the relative standard deviations were 2.71 % (Cd, 2.15 % (Cu, 1.53 % (Pb, 2.47 % (Ni, and 2.78 % (Zn. The accuracy of the procedure was confirmed by applying the analyte additions method and the results indicated that quantitative recoveries (superscript three 95 % were obtained.

  13. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  14. Geochemical prospecting for copper and nickel in the Wulgai and Tor Tangi areas southeast of Hindubagh, Quetta Division, Pakistan

    Science.gov (United States)

    Stanin, S. Anthony; Wahid, M.A.; Khan, Shamsher

    1975-01-01

    Showings of magnetite, copper, and possible nickel mineralization in the Hindubagh chromite mining district are near Wulgai and Tor Tangi. Several hundred samples of clastic material from dry streambeds in these areas were sieved for the minus-80-mesh fraction and analyzed for copper using 2, 2'-biquinoline and for nickel using alpha-furildioxime. The copper threshold is 75 ppm, and the nickel threshold is 400 ppm. A geochemical map has been prepared that shows nine areas of anomalously high copper and six areas of high nickel. The nickel anomalies may represent secondary dispersion patterns derived from the erosion of nickeliferous ultramafic rocks of the Hindubagh intrusive complex. Copper showings in and near four of the anomalous copper areas indicate that detailed geological investigation and detailed geochemical sampling of rocks, soil, and unconsolidated clastic material are required to determine the source of the anomalies.

  15. Biochemical and Physiological Responses in Atlantic Salmon (Salmo salar) Following Dietary Exposure to Copper and Cadmium

    International Nuclear Information System (INIS)

    Lundebye, A.-K.; Berntssen, M.H.G.; Bonga, S.E.Wendelaar; Maage, A.

    1999-01-01

    Three experiments were conducted with Atlantic salmon (Salmo salar) to assess the effects of dietary exposure to copper and cadmium. The results presented here provide an overview, details of each experiment will be published in full elsewhere. In the first experiment, salmon parr exposed for four weeks to 35 and 700 mg Cu kg -1 diet had significantly elevated intestinal copper concentrations, cell proliferation (PCNA) and apoptosis rates compared to control fish. No differences were observed in gill or plasma copper concentrations among the groups. In contrast to the controls, the Cu exposed groups did not grow significantly during the exposure period. The second experiment (three months exposure) was conducted to assess the effects of dietary copper (control, 35, 500, 700, 900 or 1750 mg Cu kg -1 diet) on growth and feed utilization in salmon fingerlings. Growth was significantly reduced after three months exposure to dietary Cu concentrations above 500 mg kg -1 . Similarly, copper body burdens were significantly higher in fish exposed to elevated dietary copper concentrations (above 35 mg Cu kg -1 diet). In the third experiment, salmon parr were exposed to one of six dietary cadmium concentrations (0, 0.5, 5, 25, 125 or 250 mg Cd kg -1 diet) for four months. Cadmium accumulated in the liver>intestine>gills of exposed fish. Rates of apoptosis and cell proliferation in the intestine increased following exposure to dietary cadmium. Exposure to elevated concentrations of dietary cadmium had no effect on growth in salmon parr. Results from these studies indicate that cellular biomarkers have potential as early warning signs of negative effects on the overall fitness of an organism

  16. Combined action of radiation, salts of copper and nickel on cell viability in vitro

    Directory of Open Access Journals (Sweden)

    D. D. Gapeenko

    2014-09-01

    Full Text Available Experimental study of the combined action of heavy metals and ionizing radiation on the viability of cells in culture was made. We established a significant toxic effect of copper and nickel in the proliferative and mitotic activity of cells in vitro. Under the combined effects of radiation and copper ions on cells we observed the mor-phological changes in morphologically-functional properties of cells that were determined by or radiation dose or by concentration of copper ions. While incubation of irradiated cells with nickel ions we observed sensitiza-tion of cells by nickel ions under the irradiation dose of 0.5 and 5.0 Gy, and the resistance of cells to exposure to sublethal dose of 10.0 Gy.

  17. Parallel 50 ampere hour nickel cadmium battery performance in the Modular Power Subsystems (MPS)

    Science.gov (United States)

    Webb, D. A.

    1980-01-01

    The thermal performance of 50-ampere-hour, nickel cadmium batteries for use in a modular spacecraft is examined in near-Earth orbit simulation. Battery voltage and temperature profiles for temperature extreme cycles are given and discussed.

  18. Evaluation of copper, aluminum bronze, and copper-nickel container material for the Yucca mountain project

    International Nuclear Information System (INIS)

    Kass, J.

    1990-01-01

    Copper, 70 percent aluminum bronze, and 70/30 copper-nickel were evaluated as potential waste-packaging materials as part of the Yucca Mountain Project. The proposed waste repository site is under a desert mountain in southern Nevada. The expected temperatures at the container surface are higher than at other sites, about 250C at the beginning of the containment period; they could fall below the boiling point of water during this period, but will be exposed to very little water, probably less than 5 l/a. Initial gamma flux will be 10 4 rad/h, and no significant hydrostatic or lithostatic pressure is expected. Packages will contain PWR or BWR fuel, or processed-glass waste. Three copper alloys are being considered for containers: oxygen-free copper (CDA 102); 7 percent aluminum bronze (CDA 613); and 70/30 copper-nickel (CDA 715). Phase separation due to prolonged thermal exposure could be a problem for the two alloys, causing embrittlement. The reduction of internal oxides present in pure copper by hydrogen could cause mechanical degradation. Corrosion and oxidation rates measured for the three materials in well water with and without gamma irradiation at flux rates about ten times higher than those expected were all quite small. The corrosion/oxidation rates for CDA715 show a marked increase under irradiation, but are still acceptable. In the presence of ammonia and other nitrogen-bearing species stress corrosion cracking (SCC) is a concern. Welded U-bend specimens of all three materials have been tested for up to 10000 h in highly irradiated environments, showing no SCC. There was some alloy segregation in the Al bronze specimens. The investigators believe that corrosion and mechanical properties will not present problems for these materials at this site. Further work is needed in the areas of weld inspection, welding techniques, embrittlement of weld metal, the effects of dropping the containers during emplacement, and stress corrosion cracking. Other materials

  19. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Localization and Toxic Effects of Cadmium, Copper, and Uranium in Azolla1

    Science.gov (United States)

    Sela, Mordechai; Tel-Or, Elisha; Fritz, Eberhardt; Huttermann, Aloys

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients. Images Fig. 1 Fig. 2 Fig. 5 Fig. 7 PMID:16666274

  1. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  2. Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.

    Science.gov (United States)

    Henda, R; Hermas, A; Gedye, R; Islam, M R

    2005-01-01

    A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.

  3. Assessment of air quality for arsenic, cadmium, mercury and nickel in the Netherlands

    NARCIS (Netherlands)

    Buijsman E; LLO

    The presence of arsenic, cadmium, mercury and nickel in air in the Netherlands has been investigated. Using measurement data, a limited supplemental monitoring effort and the results of modelling calculations, it has been possible to obtain a realistic picture of air quality in the Netherlands with

  4. Dietary exposure to cadmium, lead and nickel among students from the south-east region of Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Marzec

    2014-11-01

    Full Text Available Dietary intake of cadmium, lead and nickel was determined among students from three universities in Lublin to assess the levels of exposure to these contaminants compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students from the south–east region of Poland. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one – MIBK in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70 % of PTWI/TDI values and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years whereas the exposures to nickel remain on stable levels.

  5. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  6. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudos em Cinetica e Catalise; Ballarini, Adriana; Maina, Silvia [Instituto de Investigaciones en Catalisis Y Petroquimica Ing. Jose Miguel Parera (INCAPE), Santa Fe (Argentina)

    2017-01-15

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  7. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    International Nuclear Information System (INIS)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo

    2017-01-01

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  8. Hydrology and water quality of the copper-nickel study region, northeastern Minnesota

    Science.gov (United States)

    Siegel, Donald I.; Ericson, Donald W.

    1980-01-01

    Data were collected on the hydrology of the Copper-Nickel study region to identify the location and nature of groundwater resources, determine the flow characteristics and general quality of the major streams, and determine the potential effects of mining copper and nickel on the hydrologic stream. Groundwater generally occurs in local flow systems within surficial deposits and in fractures in the upper few hundred feet of bedrock. Yields commonly range from 1 to 5 gallons per minute from wells in surficial materials and bedrock, but can be as much as 1,000 gallons per minute from wells in the sand and gravel aquifer underlying the Embarrass River valley. Groundwater generally is calcium-magnesium bicarbonate types. Over a mineralized zone, groundwater has concentrations of copper and nickel greater than 5 micrograms per liter. The average annual runoff from streams in the study area is about 10 inches. About 60% of the annual runoff occurs during snowmelt in spring. Flood peaks are reduced in streams that have surface storage available in on-channel lakes and wetlands. Specific conductance in streams can exceed 250 micromhos per centimeter at 25 Celsius where mine dewatering supplements natural discharge. Estimated groundwater discharge to projected copper-nickel mines ranges from less than 25 to about 2,000 gallons per minute. The introduction of trace metals from future mining activities to the groundwater system can be reduced if tailings basins and stockpiles are located on material which has low permeability, such as till, peat, or bedrock. (USGS)

  9. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-01-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  10. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  11. A study of copper, lead and cadmium speciation in some estuarine and coastal marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Batley, G E; Gardner, D

    1978-07-01

    The significance of the measured changes in heavy metal distribution for different sampled environments was ascertained. The potential of a heavy metal speciation scheme to reflect differences in marine metal distributions was evaluated in a study of soluble copper, lead, and cadmium speciation in water samples from Port Hacking Estuary and one coastal Pacific station in Australia. In all samples, the percentages of metals associated with colloidal matter were high40-60% of total copper, 45-75% of total lead, and 15-35% of total cadmium. (1 map, 26 references, 4 tables)

  12. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy

    Science.gov (United States)

    Wierenga, Mark

    Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P orthodontic metallurgy.

  13. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  14. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys.

    Science.gov (United States)

    Riman, Daniel; Spyrou, Konstantinos; Karantzalis, Alexandros E; Hrbac, Jan; Prodromidis, Mamas I

    2017-04-01

    Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and green methods in sensor's development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Uptake of heavy metals by plants from airborne deposition and polluted soils

    Directory of Open Access Journals (Sweden)

    T. YLÄRANTA

    2008-12-01

    Full Text Available The concentrations of sulphur, zinc, copper, lead and cadmium in spring wheat grain and straw, Italian rye grass, timothy and lettuce were studied in a three-year field experiment conducted in southern Finland near a copper-nickel smelter and at nonpolluted control sites. A pot experiment with copper- and nickel-contaminated soils and with a nonpolluted soil as the control was conducted to determine the copper and nickel concentrations in soils phytotoxic for plants. Forty, 200 or 1000 mg of copper or nickel as cloride was added to 2 litres of soil. The nickel and copper concentrations in the shoots of oats were measured. The zinc, copper, lead, cadmium and nickel concentrations varied between different plant species and also between experimental years. Near the smelter, the uptake of nickel by different plant species was very effective, as was copper uptake by lettuce, timothy and Italian rye grass. The same applied to the zinc and cadmium uptake of plants grown on plots. Nickel, cadmium and copper were easily accumulated by plants from air deposition. In the pot experiment, high nickel concentrations in soil were more phytotoxic for oats than were high copper concentrations. In acidic soil, nickel and copper concentrations lower than 20 and 100 mg/kg of soil, respectively, decreased the dry matter yield of oats shoots. Liming clearly decreased copper and nickel phytotoxity. In the most highly contaminated soil, the addition of Cu 20 mg/kg of soil decreased the yield of oats shoots.;

  16. Performance of 12Ah aerospace nickel-cadmium cells of design variable groups

    Science.gov (United States)

    Vasanth, K. L.

    1985-01-01

    The design variable program of NASA is a systematic approach to evaluate the performance of 12Ah aerospace nickel-cadmium cells of 9 important cell designs. These cells were life cycled in a Low-Earth Orbit (LEO) regime for 3 to 4 years. Representative cells taken from the design variable groups after different cycling periods have been examined. The results show that: (1) positive swelling and carbonate content in the electrolyte increases as a function of the number of cycles, (2) electrolyte distribution follows the order NEG greater than POS greater than SEP, 3) control and no PQ groups outperformed the rest of the groups and (4) the polypropylene group shows very heavy cadmium migration and poor performance.

  17. Some practical observations on the accelerated testing of Nickel-Cadmium Cells

    Science.gov (United States)

    Mcdermott, P. P.

    1979-01-01

    A large scale test of 6.0 Ah Nickel-Cadmium Cells conducted at the Naval Weapons Support Center, Crane, Indiana has demonstrated a methodology for predicting battery life based on failure data from cells cycled in an accelerated mode. After examining eight variables used to accelerate failure, it was determined that temperature and depth of discharge were the most reliable and efficient parameters for use in accelerating failure and for predicting life.

  18. Mineralogy of Tailings Dump around Selebi Phikwe Nickel-Copper ...

    African Journals Online (AJOL)

    This study aimed at mineralogically characterizing the tailings dump emanating from the mining and smelting of nickel-copper (Ni-Cu) at Selebi Phikwe, Botswana, Southern Africa. Samples of tailings dump around the Selebi Phikwe Ni-Cu plant were studied using petrographic microscopy and X-ray Powder Diffraction ...

  19. The determination of copper and nickel in iron- and chromium-bearing materials by a pressed-powder technique and x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Balaes, A.M.E.; Dixon, K.

    1984-01-01

    A method was developed that is suitable for the determination of copper and nickel in ores such as those from the Merensky and UG-2 Reefs. The sample was ground finely and diluted with river sand so that matrix variations were avoided as much as possible. After the addition of a wax-polystyrene binder, the material was pelletized. The matrix effects of iron and chromium, and the effects of their mutual interferences on the determination of copper and nickel, were then investigated. Equations were derived for the corrected copper and nickel Kα intensities, and were applied to the analyses of head, concentrate, middling, and tailing samples. Comparative values obtained by atomic-absorption spectrophotometry were found to be in reasonable agreement with the X-ray values; the average deviation was +0,3 per cent for copper and -1,6 per cent for nickel relative to the AAS values. The limits of detection of the method for copper and nickel are 31 and 40μg/g respectively; the limit of determination for copper is 92μg/g and for nickel is 119μg/g. The relative standard deviation at 900 and 2400μg of copper and nickel per gram is 0,02

  20. Biosorption characteristics of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions by Chara sp. and Cladophora sp.

    Science.gov (United States)

    Elmaci, Ayşe; Yonar, Taner; Ozengin, Nihan

    2007-09-01

    The aim of this research was to expose individual removals of copper, chromium, nickel, and lead from aqueous solutions via biosorption using nonliving algae species, Chara sp. and Cladophora sp. Optimum pH values for biosorption of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions were determined to be 6, 7, 7, and 3 for Cladophora sp. and 5, 3, 5, and 4 for Chara sp. respectively. Maximum adsorption capacities of Chara sp. [10.54 for chromium (III) and 61.72 for lead (II)] and Cladophora sp. [6.59 for chromium (III) and 16.75 and 23.25 for lead (II)] for chromium (III) and lead (II) are similar. On the other hand, copper (II) and nickel (II) biosorption capacity of Cladophora sp. [14.28 for copper (II) and 16.75 for nickel (II)] is greater than Chara sp. [6.506 for copper (II) and 11.76 for nickel (II)]. Significantly high correlation coefficients indicated for the Langmuir adsorption isotherm models can be used to describe the equilibrium behavior of copper, chromium, nickel, and lead adsorption onto Cladophora sp. and Chara sp.

  1. A 34 ampere-hour nickel-cadmium minimum trickle charge testing

    Science.gov (United States)

    Timmerman, P. J.

    1985-01-01

    The current rates used for trickle charging batteries are critical in maintaining a full charge and in preventing an overcharge condition. The importance of the trickle charge rate comes from the design, maintenance and operational requirements of an electrical power system. The results of minimum trickle charge testing performed on six 34 ampere-hour, nickel-cadmium cells manufactured by General Electric are described. The purpose of the testing was to identify the minimum trickle charge rates at temperatures of 15 C and 30 C.

  2. Nickel extraction from nickel matte

    Science.gov (United States)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  3. Luminescence properties of copper(I), zinc(II) and cadmium(II) coordination compounds with picoline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan Grzegorz, E-mail: gmalecki@us.edu.pl; Maroń, Anna

    2017-06-15

    Mononuclear coordination compounds of copper(I) – [Cu(PPh{sub 3}){sub 2}(picoline)(NO{sub 3})], zinc(II) – [ZnCl{sub 2}(picoline){sub 2}] (picoline=3– and 4–methylpyridine) and polymeric cadmium(II) – [CdCl{sub 2}(β-picoline){sub 2}]{sub n} were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. Single crystal X-ray crystallography revealed distorted tetrahedral geometry around the central ions of the compounds. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. The emission of copper(I) compounds originated from metal-to-ligand charge transfer state combined with nitrato-to-picoline charge transfer state i.e. ({sup 1}(M+X)LCT). The presence of nitrato ligand in the coordination sphere of copper(I) compounds quenches the emission. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution). - Graphical abstract: Coordination compounds of copper(I), zinc(II) and polymeric cadmium(II) with picoline ligands were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. Emission of copper(I) compounds originated from {sup 1}(M+X)LCT state. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution).

  4. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  5. Swelling of copper-aluminum and copper-nickel alloys in FFTF-MOTA at approximately 4500C

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Pure copper appears to swell with an S-shaped behavior at 450 0 C, tending to saturate at higher fluence levels. The addition of solutes such as aluminum and nickel at 5 wt % leads to an extended transient regime and thereby a reduction in swelling at low to moderate fast neutron exposures. The addition of these elements also leads to an increase in the saturation level of swelling, however, resulting in an increase in swelling relative to that of pure copper at high fluence

  6. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    Science.gov (United States)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  7. NASA 50 amp hour nickel cadmium battery waste heat determination

    Science.gov (United States)

    Mueller, V. C.

    1980-01-01

    A process for determining the waste heat generated in a 50-ampere-hour, nickel cadmium battery as a function of the discharge rate is described and results are discussed. The technique involved is essentially calibration of the battery as a heat transfer rate calorimeter. The tests are run at three different levels of battery activity, one at 40-watts of waste heat generated, one at 60, and one at 100. Battery inefficiency ranges from 14 to 18 percent at discharge rates of 284 to 588 watts, respectively and top-of-cell temperatures of 20 C.

  8. Structural and electrical properties of nickel substituted cadmium ferrite

    Science.gov (United States)

    Chethan, B.; Raj Prakash, H. G.; Vijayakumari, S. C.; Ravikiran, Y. T.

    2018-05-01

    Spinal nano-sized Cadmium ferrite (CD) and Nickel substituted cadmium ferrite (NSCF) were fabricated by sol-gel auto combustion method. The formation of spinal structure of ferrite materials was confirmed by X-ray diffraction (XRD) analysis. The crystallites size of CF and NSCF as determined by Scherrer's formula were found to be 24.73 nm and 17.70 nm respectively. comparative study of Fourier transform infrared spectroscopy (FTIR) of CF and NSCF revealed tetrahedral absorption bands shifted slightly towards higher frequency where as octahedral bands shifted towards lower frequency side confirming interfacial interaction between Ni and CF. The AC conductivity (σ), loss tangent (tan δ) and complex plane impedance plots for both CF and NSCF are determined at various frequencies ranging from 50 kHz to 5 MHz and comparatively analyzed. The increase in AC conductivity of the NSCF nano particles as compared to CF was explained in the light of hopping model. The impedance measurement of NSCF show presence of a semi-circle corresponding to the grain boundary resistance and hence shows that the conductivity takes place largely through grain boundaries.

  9. Functional activity of microorganisms in mining and processing of copper-nickel ores in the Murmansk Region

    Directory of Open Access Journals (Sweden)

    Fokina N. V.

    2018-03-01

    Full Text Available The quantitative indices and structure of the microbial community in flotation samples of sulfide copper-nickel ores at concentration plant of Kola Mining and Metallurgical Company have been determined. The smallest number of saprotrophic and oligotrophic bacteria has been observed in samples of ore and recycled water, which can be explained by the low temperature of samples and the lack of nutrients. It has been found out that the bacteria contained in the ore and recycling water flowing from the tailings increased their number during the flotation process due to coming of the organic compounds with the flotation reagents, aeration and increased temperature. Dominating strains have been isolated from recycled water and basic flotation products and classified as Pseudomonas. It has been shown that with an increase in the number of bacteria, the flotation time of copper-nickel ores increases. There is also a tendency to change the extraction of copper and nickel, which can be caused by both the increase in the flotation time for operations and the change in the number of bacteria in the circulating water. The thionic bacteria have been distinguished from the flow tailings of the Allarechensk deposit. The heap leaching experiments have proved the bacterial leaching to give good results on the ore samples passed through magnetic separation, having shown high content of the nickel and copper in filters. When leaching low-grade ore of the Nude Terrasa, the advantage of bacterial leaching use in comparison with the sulphuric-acid leaching only to copper has been revealed. The nickel content in the filtrates for bacterial leaching is 275 mg/l, and for sulfuric acid – 310 mg/l. The average copper content in the filtrates is 19 and 15 mg/l.

  10. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  11. Interactions of cadmium with copper, zinc, and iron in different organs and tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Julshamn, K.; Utne, F.; Brackkan, O.R.

    1977-01-01

    The effect of cadmium on tissue concentrations of iron, zinc and copper was studied in male rats. Two littermate groups were fed a stock diet with or without a supplement of 100 ..mu..g cadmium per g. Every three weeks ten animals from each group were sampled and the liver, kidneys, heart, lungs, spleen, testes, muscle, fur, feces and urine were individually analyzed. Except for the fur, all the other organs showed highly significantly increased levels of cadmium when compared with the control group. The iron levels were significantly depressed in all organs. As the content in the feces remained unchanged and the urinary excretion showed an increase, it could be concluded that the cadmium supplementation resulted in a depletion of the body stores of iron. The zinc levels showed a significant increase in the liver and testes and a correspondingly significant decrease in the spleen. The levels of copper generally showed no significant changes.

  12. The effects of a magnetic field on the morphologies of nickel and copper deposits: the concept of “effective overpotential”

    Directory of Open Access Journals (Sweden)

    NEBOJSA D. NIKOLIC

    2007-08-01

    Full Text Available The morphologies of nickel and copper deposits obtained without applied magnetic fields, and with both parallel and perpendicular applied magnetic fields were examined by the scanning electron microscopy (SEM technique. Changes in the morphologies of the metals caused by the effect of the magnetic fields are explained by the concept of “effective overpotential”. The morphologies of the nickel and copper deposits obtained under parallelly oriented magnetic fields were similar to those obtained at some lower cathodic potentials without an applied magnetic field. The magnetic field with a perpendicular orientation to the electrode surface increased the dispersity of the nickel and copper deposits. Nickel and copper deposits obtained under this orientation of the magnetic field were similar to those obtained at some higher cathodic potentials without an applied magnetic field.

  13. Nickel toxicity on seed germination and growth in radish (Raphanus sativus) and its recovery using copper and boron.

    Science.gov (United States)

    Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K

    2009-05-01

    Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings.

  14. Health risk assessment of heavy metals (cadmium, nickel, lead and zinc in withdrawed parsley vegetable from some farms in Hamedan city

    Directory of Open Access Journals (Sweden)

    M Cheraghi

    2014-11-01

    Results: Average concentration of cadmium, nickel, lead and zinc in parsley vegetable is in the order of 1/14, 2/56, 16/65 and 25/23 mg/kg and average concentration of this metals in soil is in the order of 0/23, 23/51, 20/85 and 57/5 mg/kg. Results of this study showed that average concentration of Cadmium and Leadin parsley is above WHO/FAO whereas average concentration of Nickel and Zink in parsleywas assessed less than WHO/FAO. Also the average concentration of every four metals in soil of farms was less than WHO/FAO levels.On the other hand the amount of risk and health index (HRI in parsley for lead metal was above 1 and for cadmium, nickel and zinc metals was less than 1. Conclusion: According to the studing results, cultivated parsley in this area was polluted to the heavy metalsCadmium and Lead, and the results indicates the very easy transferring of this metals from soil to parsley that was not healthy for human daily consumption and risk and health index (HRI that was above 1 for lead metal shows the hygienic potential risk of this metal in relation to the polluted parsley consumption in human daily alimentary diet.

  15. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  16. Kinetic investigation of myeloperoxidase upon interaction with copper, cadmium, and lead ions

    International Nuclear Information System (INIS)

    Shabani, M.; Ani, M.; Movahedian, A.; Samsam Shariat, Z. A.

    2011-01-01

    Myeloperoxidase, which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that Myeloperoxidase-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is of great importance. For clarifying some possible mechanism of the enzyme activity, kinetic investigations of Myeloperoxidase in the presence of Copper, Cadmium, and Lead ions were carried out in vitro. Methods: Myeloperoxidase was partially purified from human white blood cells using ion-exchange and gel-filtration chromatography techniques. Its activity was measured spectrophotometrically by using tetramethyl benzidine as substrate. Results: Purified enzyme had a specific activity of 21.7 U/mg protein with a purity index of about 0.71. Copper inhibited Myeloperoxidase activity progressively up to a concentration of 60 m M at which about 80% of inhibition achieved. The inhibition was non-competitive with respect to tetramethyl benzidine. An inhibitory constant (Ki) of about 19 m M was calculated from the slope of repot. Cadmium and Lead did not show any significant inhibitory effect on the enzyme activity. Conclusion: The results of the present study may indicate that there are some places on the enzyme and enzyme-substrate complex for Copper ions. Binding of Copper ions to these places result in conformational changes of the enzyme and thus, enzyme inhibition. This inhibitory effect of Copper on the enzyme activity might be considered as a regulatory mechanism on Myeloperoxidase activity.

  17. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    Science.gov (United States)

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  19. Effect of two heavy metals, cadmium and nickel, on the organic load removal efficiency in a laboratory UASB reactor

    International Nuclear Information System (INIS)

    Forero, Luis Eduardo; Sierra, Jorge Humberto

    2004-01-01

    Experiments were carried out in three up flow anaerobic sludge blanket, UASB, reactors each with 3 L capacity, four hours of hydraulic retention time, (HRT) and volumetric organic load of 4,8 g/L/d. After the initial start phase, which was of 4.000 hours for the three reactors, they were affected in the following way: the first reactor was continuously feed with 5 mg/L of cadmium chloride, the second one was continuously feed with 10 mg/L of nickel chloride and the last one was not affected and served as reference. Efficiency in organic load removal was measured as oxygen chemical demand (OCD), the first reactor changed from 60% in the start phase (phase one) to 18% in the cadmium-affected phase (phase two), efficiency in removal (OCI) in reactor two varied from 60 to 24% and the last one did not change in a noticeable manner. Reactor one accumulated cadmium in the mud, whereas reactor two did not do that with nickel

  20. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  1. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  2. III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-07-11

    Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni(0) and Cu(2+). This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals - considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well.

  3. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  4. Fixed-bed column study for the removal of cadmium (II) and nickel (II) ions from aqueous solutions using peat and mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Li Chenxi [Civil Engineering Department, Queen' s University, 58 University Avenue, Kingston, Ontario, K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Civil Engineering Department, Queen' s University, 58 University Avenue, Kingston, Ontario, K7L 3N6 (Canada)

    2009-11-15

    The study was conducted to examine the effectiveness of 4.0-4.75 mm crushed shells and Sphagnum peat moss as low-cost natural adsorbent filter materials for the removal of cadmium and nickel ions from binary aqueous solutions. The effects of column depth and flow rate on effluent metal breakthrough, metal removal and pH were investigated as a function of throughput volume (TPV). Metal removal efficiencies and adsorption capacities for each of the columns were estimated to identify the better filter material and operational conditions for the treatment of cadmium and nickel. During the column testing, a flow rate of 1.5 mL/min (surface loading of 27.5 cm{sup 3}/cm{sup 2} day) and bed depth of 15 cm were found to represent the better operational conditions, where 47.9% and 42.7% cadmium and nickel cumulative removals were obtained under these operational conditions, respectively. The results will be valuable in the development of a mixed-media adsorption system for the treatment of metal-rich wastewaters such as municipal landfill leachate.

  5. Fixed-bed column study for the removal of cadmium (II) and nickel (II) ions from aqueous solutions using peat and mollusk shells

    International Nuclear Information System (INIS)

    Li Chenxi; Champagne, Pascale

    2009-01-01

    The study was conducted to examine the effectiveness of 4.0-4.75 mm crushed shells and Sphagnum peat moss as low-cost natural adsorbent filter materials for the removal of cadmium and nickel ions from binary aqueous solutions. The effects of column depth and flow rate on effluent metal breakthrough, metal removal and pH were investigated as a function of throughput volume (TPV). Metal removal efficiencies and adsorption capacities for each of the columns were estimated to identify the better filter material and operational conditions for the treatment of cadmium and nickel. During the column testing, a flow rate of 1.5 mL/min (surface loading of 27.5 cm 3 /cm 2 day) and bed depth of 15 cm were found to represent the better operational conditions, where 47.9% and 42.7% cadmium and nickel cumulative removals were obtained under these operational conditions, respectively. The results will be valuable in the development of a mixed-media adsorption system for the treatment of metal-rich wastewaters such as municipal landfill leachate.

  6. Atomistic simulations of screw dislocation cross slip in copper and nickel

    DEFF Research Database (Denmark)

    Vegge, Tejs

    2001-01-01

    This paper presents calculations of screw dislocation cross slip in copper and nickel systems, using the nudged elastic band method and interatomic potentials based on the effective-medium theory. The validity of recent attempts to predict cross slip activation energies by ‘elastic scaling’ between...

  7. Cycle life test. Evaluation program for secondary spacecraft cells. [performance tests on silver zinc batteries, silver cadmium batteries, and nickel cadmium batteries

    Science.gov (United States)

    Harkness, J. D.

    1976-01-01

    Considerable research is being done to find more efficient and reliable means of starting electrical energy for orbiting satellites. Rechargeable cells offer one such means. A test program is described which has been established in order to further the evaluation of certain types of cells and to obtain performance and failure data as an aid to their continued improvement. The purpose of the program is to determine the cycling performance capabilities of packs of cells under different load and temperature conditions. The various kinds of cells tested were nickel-cadmium, silver-cadmium, and silver-zinc sealed cells. A summary of the results of the life cycling program is given in this report.

  8. Cobalt, nickel and cadmium coordination compounds with phenylacetylhydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Machkhoshvili, R.I.; Metreveli, D.P.; Mitaishvili, G.Sh.; Shchelokov, R.N.

    1985-03-01

    In the process of interaction of aqueous-ethanol solutions of chlorides, sulphates, nitrates, thiocyanates of cobalt, nickel, cadmium and phenylacetylhydrazine in neutral or low-acid medium coordination compounds: (M(EAG)/sub 3/)X/sub 2/ (M=Co, Ni; X=Cl, 1/2SO/sub 4/, NO/sub 3/), Cd(FAG)/sub 2/X/sub 2/ (X = Cl, 1/2SO/sub 4/, NCS), Ni(EAG)/sub 2/(NCS)/sub 2/, where FAG C/sub 6/H/sub 5/CH/sub 2/xCONHNH/sub 2/, have been synthesized. In the reactions of aqueous-ethanol solutions of (Co(NH/sub 3/)/sub 5/Cl)Cl/sub 2/ and phenylacetylhydrazine the complex Co(C/sub 6/H/sub 5/CH/sub 2/CONNH/sub 2/)/sub 3/ is prepared. Certain physicochemical properties and IR absorption spectra of the coordination compounds synthesized are studied.

  9. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  10. Cadmium, zinc, copper, sodium and potassium concentrations in rooster and turkey semen and their correlation.

    Science.gov (United States)

    Massanyi, Peter; Weis, Jan; Lukac, Norbert; Trandzik, Jozef; Bystricka, Judita

    2008-04-01

    The purpose of this study was to assess concentration of selected elements (cadmium, zinc, copper, sodium and potassium) in rooster and turkey semen and to find possible correlations between these elements. Samples were analyzed on the atomic absorption spectrophotometer. The analysis of cadmium showed that the concentration in rooster is 9.06 +/- 7.70 and in turkey 4.10 +/- 3.59 microg/mL. In zinc 5.25 +/- 1.96 microg/mL in rooster and 3.70 +/- 1.26 microg/mL in turkey were detected. Higher concentration of copper was found in rooster semen (6.79 +/- 6.42 microg/mL) in comparison with turkey semen (4.29 +/- 5.43 microg/mL). The level of sodium (3.96 +/- 1.02 microg/mL; 3.14 +/- 0.85 microg/mL) and potassium (2.88 +/- 0.65 microg/mL; 3.42 +/- 1.41 microg/mL) was very similar in both species. Correlation analysis detected high positive correlation between cadmium and zinc (r = 0.701) in rooster and between sodium and potassium (r = 0.899) in turkey semen.

  11. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  12. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    Science.gov (United States)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  13. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  14. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Science.gov (United States)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  15. Chitosan doped with nanoparticles of copper, nickel and cobalt.

    Science.gov (United States)

    Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian

    2017-11-01

    Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of a cloud-point extraction method for copper and nickel determination in food samples

    International Nuclear Information System (INIS)

    Azevedo Lemos, Valfredo; Selis Santos, Moacy; Teixeira David, Graciete; Vasconcelos Maciel, Mardson; Almeida Bezerra, Marcos de

    2008-01-01

    A new, simple and versatile cloud-point extraction (CPE) methodology has been developed for the separation and preconcentration of copper and nickel. The metals in the initial aqueous solution were complexed with 2-(2'-benzothiazolylazo)-5-(N,N-diethyl)aminophenol (BDAP) and Triton X-114 was added as surfactant. Dilution of the surfactant-rich phase with acidified methanol was performed after phase separation, and the copper and nickel contents were measured by flame atomic absorption spectrometry. The variables affecting the cloud-point extraction were optimized using a Box-Behnken design. Under the optimum experimental conditions, enrichment factors of 29 and 25 were achieved for copper and nickel, respectively. The accuracy of the method was evaluated and confirmed by analysis of the followings certified reference materials: Apple Leaves, Spinach Leaves and Tomato Leaves. The limits of detection expressed to solid sample analysis were 0.1 μg g -1 (Cu) and 0.4 μg g -1 (Ni). The precision for 10 replicate measurements of 75 μg L -1 Cu or Ni was 6.4 and 1.0, respectively. The method has been successfully applied to the analysis of food samples

  17. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    1982-01-01

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  18. Sources of variation in concentrations of nickel and copper in mountain birch foliage near a nickel-copper smelter at Monchegorsk, north-western Russia: results of long-term monitoring

    International Nuclear Information System (INIS)

    Kozlov, Mikhail V.

    2005-01-01

    Concentrations of nickel and copper, two principal metal pollutants of the 'Severonikel' smelter at Monchegorsk, NW Russia, were measured in unwashed leaves of mountain birch, Betula pubescens subsp. czerepanovii, collected in eight study sites along the pollution gradient during 1991-2003. In spite of significant decline in metal emissions, concentrations of foliar metals in most of the study sites did not decrease, indicating that soil contamination remains extremely high. Multiyear mean values peaked at 6.6 km S of the smelter, where they were 20-25 times higher than in the most distant study site. Concentrations of both metals demonstrated pronounced annual variation, which was explained by the meteorological conditions of early summer: higher precipitation in May increased foliar concentrations of both metals, whereas higher precipitation in June resulted in lower foliar concentrations of nickel. These data suggest that ecotoxicological situation in metal-contaminated areas can be modified by the expected climate change. In heavily polluted sites individual birch trees generally retained their ranks in terms of metal contamination during 1995-2003, demonstrating that the use of the same set of trees can significantly increase the accuracy of the monitoring data. - Foliar concentrations of nickel and copper did not reflect emission decline during 1991-2003; annual variation was explained by weather conditions

  19. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    International Nuclear Information System (INIS)

    Manzo, M.A.; Hoberecht, M.A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life

  20. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    Science.gov (United States)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  1. Defect structure in proton-irradiated copper and nickel

    International Nuclear Information System (INIS)

    Tsukuda, Noboru; Ehrhart, P.; Jaeger, W.; Schilling, W.; Dworschak, F.; Gadalla, A.A.

    1987-01-01

    This single crystals of copper or nickel with a thickness of about 10 μm are irradiated with 3 MeV protons at room temperature and the structures of resultant defects are investigated based on measurements of the effects of irradiation on the electrical resistivity, length, lattice constants, x-ray diffraction line profile and electron microscopic observations. The measurements show that the electrical resistivity increases with irradiation dose, while leveling off at high dose due to overlapping of irradiation cascades. The lattice constants decreases, indicating that many vacancies still remain while most of the interstitial stoms are eliminated, absorbed or consumed for dislocation loop formation. The x-ray line profile undergoes broadening, which is the result of dislocation loops, dislocation networks and SFT's introduced by the proton irradiation. Various defects have different effects though they cannot be identified separately from the profile alone. A satellite peak appears at a low angle, which seems to arise from periodic defect structures that are found in electron microscopic observations. In both copper and nickel, such periodic defect structures are seen over a wide range from high to low dose. Defect-free and defect-rich domains (defect walls), 0.5 to several μm in size, are alingned parallel to the {001} plane at intervals of 60 nm. The defect walls, which consist of dislocations, dislocation loops and SFT's, is 20 - 40 nm thick. (Nogami, K.)

  2. Critical loads and excess loads of cadmium, copper and lead for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Bril, J.; Vries, de W.; Groenenberg, J.E.; Breeuwsma, A.

    1995-01-01

    Recently, concern has arisen about the impact of the dispersion of heavy metals in Europe. Therefore, a study (ESQUAD) was initiated to assess critical loads and steady-state concentrations of cadmium, copper and lead for European forest soils. The calculation methods used strongly resemble those

  3. Experimental Investigation of Laser Ablation Characteristics on Nickel-Coated Beryllium Copper

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-03-01

    Full Text Available As electronic products are miniaturized, the components of the spring contact probe are made very fine. Current mechanical processing may make it difficult to perform micro-machining with a high degree of precision. A laser is often used for the high precision micro-machining due to its advantages such as a contact-free process, high energy concentration, fast processing time, and applicability to almost every material. The production of micro-electronics using nickel-coated copper is rapidly increasing and laser material processing is becoming a key processing technology owing to high precision requirements. Before applying laser material processing, it is necessary to understand the ablation characteristics of the materials. Therefore, this study systematically investigates the ablation characteristics of nickel-coated beryllium copper. Key laser parameters are pulse duration (4~200 ns and the total accumulated energy (1~1000 mJ. The processed workpiece is evaluated by analyzing the heat affected zone (HAZ, material removal zone (MRZ, and roundness. Moreover, the surface characteristics such as a burr, spatter, and roundness shapes are analyzed using scanning electron microscope (SEM.

  4. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Science.gov (United States)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  5. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    Science.gov (United States)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  6. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S.; Korn, Maria G.A.; Bezerra, Marcos A.

    2009-01-01

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L -1 nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 μg L -1 , respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 μg L -1 . The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish

  7. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    Science.gov (United States)

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  8. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    International Nuclear Information System (INIS)

    Santos, Inês C.; Mesquita, Raquel B.R.; Rangel, António O.S.S.

    2015-01-01

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L"−"1 for cadmium, 2.39 μg L"−"1 for zinc, and 0.11 μg L"−"1 for copper and a sampling rate of 12, 13, and 15 h"−"1 for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L"−"1 level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  9. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  10. Electrolyte management considerations in modern nickel/hydrogen and nickel/cadmium cells and battery designs

    Energy Technology Data Exchange (ETDEWEB)

    Thaller, L.H. [The Aerospace Corporation, El Segundo, CA (United States); Zimmermann, A.H. [The Aerospace Corporation, El Segundo, CA (United States)

    1996-11-01

    While attention has been paid to understanding and modeling abnormal nickel/hydrogen cell behaviors, not enough attention has been paid to the potassium ion content in these cells, and more recently, in batteries. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel/hydrogen and nickel/cadmium cells. Sample calculations of the concentration or volume changes that can take place within operating cells will be presented. With the aid of an accurate model of an operating cell or battery, the impact of changes of potassium ion content within a potential cell design can be estimated. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the components used in the cell or battery design. the three areas follow. (i) The gamma phase uptake of potassium ion can result in a lowering of the electrolyte concentration. This leads to a higher electrolyte resistance as well as electrolyte diffusional limitations on the discharge rate. This phenomenon also impacts the response of the cell to a reconditioning cycle. (ii) The transport of water vapor from a warmer to a cooler portion of the cell or battery under the driving force of a vapor pressure gradient has already impacted cells when water vapor condenses on a colder cell wall. This paper will explore the convective and diffusive movement of gases saturated with water vapor from a warmer plate pack to a cooler one, both with and without liquid communication. (iii) The impact of low level shunt currents in multicell configurations results in the net movement of potassium hydroxide from one part of the battery to another. This movement impacts the electrolyte volume/vapor pressure relationship within the cell or battery. (orig.)

  11. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  12. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  13. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town.

    Science.gov (United States)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-02-15

    This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both Pnickel (β=0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Citak, Demirhan [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Ferreira, Hadla S.; Korn, Maria G.A. [Universidade Federal da Bahia, Instituto de Quimica, 40170-290 Salvador (Brazil); Bezerra, Marcos A. [Universidade Estadual do Sudoeste da Bahia, 45200-190 Jequie (Brazil)

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L{sup -1} nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 {mu}g L{sup -1}, respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 {mu}g L{sup -1}. The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  15. Electrochemical determination of the levels of cadmium, copper and lead in polluted soil and plant samples from mining areas in Zamfara State, Nigeria

    Directory of Open Access Journals (Sweden)

    Modupe Mabel Ogunlesi

    2017-12-01

    Full Text Available The concentrations of lead, copper and cadmium in soil and plant samples collected from Abare and Dareta villages in Anka local government area of Zamfara State, Nigeria have been electrochemically determined. The study was carried out because of the high mortality of women and children under five, reported for these areas in June 2010. The cause was ascribed to the lead poisoning which has been related to the mining and processing of gold-containing ores. Linear sweep anodic stripping voltammetry technique was used with the glassy carbon working, Ag/AgCl reference and platinum auxiliary electrodes. Voltammetric peaks for lead, copper and cadmium that were observed at -495 mV, -19.4 mV and -675 mV, respectively, have formed a basis for construction of the corresponding calibration plots. The concentrations (in mg/kg of lead, copper and cadmium in the soil samples were found in the ranges of 18.99−26087.70, 2.96−584.60 and 0.00−1354.25, respectively. The concentration values for lead were far above already established USEPA (2002 and WHO (1996 maximum permissible limits for residential areas. The concentrations of lead, copper and cadmium in the food samples ranged between 5.70−79.91, 11.17−41.21 and 0.00−5.74 mg/kg. Several of these values are found well above the FAO/WHO limits of 0.1, 2 and 0.1 mg/kg, respectively. The results indicate that in addition to the lead poisoning, copper and cadmium poisoning may also be responsible for sudden and high mortality in this population.

  16. Monoliths of activated carbon from coconut shell and impregnation with nickel and copper

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan

    2008-01-01

    A series of different monoliths of activated carbon were prepared from coconut shell By means of chemical activation with phosphoric acid at different concentrations Without using binders or plastics. The monolith that developed the biggest surface area was impregnated by humidic route with solutions of Ni and Cu at different molar relations. The structures were characterized by N2 adsorption at 77 K, and the morphology was explored by means of scanning electron microscopy. The carbonaceous materials obtained, Nickel-Copper-Monolith, were analyzed by Thermal Programmed Reduction (TPR). The experimental results indicated that the activation with the acid generated a micro porosity, with micropores volume between 0.40 and 0.81 cm 3 g-1 and surface areas between 703 and 1450 m 2 g-1, and a good mechanical properties. It shows that, both the copper and the nickel, are fixed to the monolith and TPR's results are interpreted when these molar relation are modified.

  17. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  18. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  19. On the system of provision of ojsc "MMC 'Norilsk Nickel'" with interstate and State certified reference materials for quality control of cobalt, nickel, copper and promproducts

    Directory of Open Access Journals (Sweden)

    T. V. Shabelnikova

    2014-01-01

    Full Text Available In order to manage the quality of OJSC "MMC "Norilsk Nickel" products the Centre of Certified Reference Material Development has developed and is currently successfully implementing a system of operations provision with interstate and state certified reference materials of nickel, cobalt and copper composition. The system wholly corresponds to modern metrological requirements. The Centre of Reference Materials Development, fulfilling leading function in the field of state certified reference material production and supply to the Company's operations, aims its activity both at the development of new types of certified reference materials in the form of metals and at widening the range of synthetic oxide certified reference materials. Developed for the first time, metallic state certified reference materials of nickel, cobalt composition with certified mass fractions of oxygen, hydrogen, nitrogen, sulfur and carbon were put into practice of the Company's analytical services work. Certified reference material use provides the possibility to take into account requirements of some consumers to the quality of nickel and produce by OJSC "MMC "Norilsk Nickel" and also helps to raise competitive ability of the products on the world metals market. Over recent years the Centre fulfilled the work on the development, certification in established order, approval and entering into the State Register twenty five types of state certified reference materials. Certified reference materials are intended for fulfillment of the analysis of chemical composition of nickel, cobalt and copper in terms of their conformity with both national and international standards.

  20. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Melt refining of uranium contaminated copper, nickel, and mild steel

    International Nuclear Information System (INIS)

    Ren Xinwen; Liu Wencang; Zhang Yuan

    1993-01-01

    This paper presents the experiment results on melt refining of uranium contaminated metallic discards such as copper, nickel, and mild steel. Based on recommended processes, uranium contents in ingots shall decrease below 1 ppm; metal recovery is higher than 96%; and slag production is below 5% in weight of the metal to be refined. The uranium in the slag is homogeneously distributed. The slag seems to be hard ceramics, insoluble in water, and can be directly disposed of after proper packaging

  2. Fitoremediation for the Rehabilitation of Agricultural Land Contaminated by Cadmium and Copper

    OpenAIRE

    SA'AD, N. SUTRISNO; ARTANTI, R; DEWI, T

    2009-01-01

    There are many agricultural land using irrigation water from polluted industrial waste of heavy metals. Improvement of agricultural land quality using fitoremediation is needed to overcome heavy metal pollution. The reasearch aims to make remedies for paddy field polluted by cadmium (Cd) and copper (Cu) using plants that have the ability to absorb heavy metals in order to increase the quality of the land. This research was conducted at the screen house of Indonesian Agricultural Enviroment Re...

  3. Evaluation of copper, aluminum bronze, and copper-nickel for YMP [Yucca Mountain Project] container material

    International Nuclear Information System (INIS)

    Kass, J.N.

    1989-05-01

    In this presentation, I will discuss our evaluation of the materials copper, 7% aluminum bronze, and 70/30 copper-nickel. These are three of the six materials currently under consideration as potential waste-packaging materials. I should mention that we are also considering alternatives to these six materials. This work is part of the Yucca Mountain Project (YMP), formerly known as the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The expected-case environment in our proposed vault is quite different from that encountered at the WIPP site or that expected in a Canadian vault. Our proposed site is under a desert mountain, Yucca Mountain, in southern Nevada. The repository itself will be located approximately 700 feet above the water table and 300 to 1200 feet below the surface of the mountain. The variations in these numbers are due to the variations in mountain topography

  4. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...

  5. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  6. [Exposure to metal compounds in occupational galvanic processes].

    Science.gov (United States)

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  7. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    Science.gov (United States)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2017-10-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  8. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  9. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    Science.gov (United States)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  10. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  11. Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples

    International Nuclear Information System (INIS)

    Lemos, Valfredo Azevedo; Novaes, Cleber Galvao; Lima, Adriana da Silva; Vieira, Daniel Rodrigues

    2008-01-01

    A solid-phase extraction method combined with flow injection (FI) on-line flame atomic absorption spectrometry (FAAS) for the determination of cadmium and nickel in tobacco samples is presented. The 2-aminothiophenol functionalized Amberlite XAD-4 (AT-XAD) resin was synthesized by covalent coupling of the ligand with the copolymer through a methylene group. A minicolumn packed with AT-XAD was connected into the automated on-line preconcentration system. Elution of metal ions from minicolumn can be made with 0.50 mol L -1 hydrochloric acid solution. With a consumption of 21.0 mL of sample solution, detection limits (3 s) of 0.3 (Cd) and 0.8 μg L -1 (Ni) were achieved at a sample throughput of 18 h -1 . Enrichment factors (EF) of 99 (cadmium) and 43 (nickel) were obtained compared with the slope of the linear portion of the calibration curves before and after preconcentration. The contents of Cd and Ni in a certified reference material (NIST 1570a, spinach leaves) determined by the present method was in good agreement with the certified value. The developed procedure was also successfully applied to the determination of Cd and Ni in local tobacco samples

  12. Influence of nickel and beryllium content on swelling behavior of copper irradiated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Garner, F.A.; Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Evans, J.H.

    1996-10-01

    In the 1970`s, the effects of nickel content on the evolution of dislocation microstructures and the formation and growth of voids in Cu-Ni alloys were studied using 1 MeV electrons in a high voltage electron microscope. The swelling rate was found to decrease rapidly with increasing nickel content. The decrease in the swelling rate was associated with a decreasing void growth rate with increasing nickel content at irradiation temperatures up to 450{degrees}C. At 500{degrees}C, both void size and swelling rate were found to peak at 1 and 2% Ni, respectively, and then to decrease rapidly with increasing nickel content. However, recent work has demonstrated that the swelling behavior of Cu-5%Ni irradiated with fission neutrons is very similar for that of pure copper. The present experiments were designed to investigate this apparent discrepancy.

  13. Experimental Study of Nonequilibrium Electrodeposition of Nanostructures on Copper and Nickel for Photochemical Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Rajesh K. Shanmugam

    2011-01-01

    Full Text Available To increase the performance of photochemical fuel cells, nonequilibrium electrodeposition has been performed on Cu and Ni to make photosensitive anodes. Processing parameters including electrolyte concentration, and electrode potential were studied using cyclic voltammetry. Scanning electron microscopy (SEM and X-ray Spectroscopy (EDS were performed to understand the formation of the nanostructures during the nonequilibrium deposition of copper fractals. An increase in the deposition rate was observed with the increase in electrolyte concentration (from 0.05 M to 1.0 M. Similar trend was found when the cathode potential was decreased from −0.5 V to −4.5 V. The effect of substrate material was also examined. Porous fractal structures on copper were achieved, while the deposited material showed high density of surface cracks on nickel. The fractal structures deposited on copper electrode with the increased surface area were converted into copper oxide by oxidation in air. Such oxide samples were made into anodes for photochemical fuel cell application. We demonstrated that an increase in the magnitude of open circuit output voltage is associated with the increase in the fractal surface area under the ultraviolet irradiation test conditions. However, the electrodeposited fractals on nickel showed very limited increase in the magnitude of open circuit voltage.

  14. Theoretical study of magnetic layers of nickel on copper; dead or alive?

    Science.gov (United States)

    Ernst, A.; Lueders, M.; Temmerman, W. M.; Szotek, Z.; van der Laan, G.

    2000-07-01

    We studied the persistence of magnetism in ultrathin nickel films on copper. Layer-dependent magnetic moments in Ni films on the (001), (110) and (111) surfaces of Cu have been calculated using the Korringa-Kohn-Rostoker Green's function method. The results show that, at temperature T = 0, a single nickel monolayer is ferromagnetic on Cu(001) and Cu(110) but magnetically `dead' on the more closely packed Cu(111) surface. Films of two and more layers of Ni are always ferromagnetic, with the magnetic moment enhanced in the surface layer but strongly reduced in the interface layer. Due to the short screening length, both the effect of the interface and that of the surface are confined to only a few atomic layers.

  15. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram, 624 302, Dindigul District, Tamil Nadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2017-02-28

    Highlights: • A composite Ni foam textured with Cu particles was fabricated by a sonication method. • The foam can be used as a pseudocapacitive material for energy storage applications. • The foam has a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. - Abstract: Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl{sub 2}) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  16. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus)

    Czech Academy of Sciences Publication Activity Database

    Dočekalová, H.; Škarpa, P.; Dočekal, Bohumil

    2015-01-01

    Roč. 134, March (2015), s. 153-157 ISSN 0039-9140 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : radish * cadmium * copper * DGT technique * bioaccesibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.035, year: 2015

  17. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    Science.gov (United States)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  18. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  19. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    Science.gov (United States)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  20. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    International Nuclear Information System (INIS)

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel A.C.

    2013-01-01

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species

  1. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  2. Template synthesis of poly aza macrocyclic copper(II) and nickel(II) complexes: Spectral characterization and antimicrobial studies

    Energy Technology Data Exchange (ETDEWEB)

    Gurumoorthy, P.; Ravichandran, J.; Kaliur Rahiman, A. [The New College, Chennai (India); Karthikeyan, N.; Palani, P. [Univ. of Madras, Chennai (India)

    2012-07-15

    The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-amino propylamino)ethane produce the 12-membered N{sub 3}O and 17-membered N{sub 4}O macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear N{sub 3}O and N{sub 4}O copper(II) complexes show one irreversible one electron reduction wave at E{sup pc} = .1.35 and .1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at E{sup pc} = .1.25 and .1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at Epa = +0.84 and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

  3. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Science.gov (United States)

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  4. Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Soylak, Mustafa; Tuzen, Mustafa; Souza, Anderson Santos; Korn, Maria das Gracas Andrade; Ferreira, Sergio Luis Costa

    2007-01-01

    The present paper describes the development of a microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry (FAAS). The optimization step was performed using a full factorial design (2 3 ) involving the factors: composition of the acid mixture (CMA), microwave power (MP) and radiation time (RT). The experiments of this factorial were carried out using a certified reference material of tea GBW 07605 furnished by National Research Centre for Certified Reference Materials, China, being the metal recoveries considered as response. The relative standard deviations of the method were found below 8% for the three elements. The procedure proposed was used for the determination of copper, zinc and nickel in several samples of tea from Turkey. For 10 tea samples analyzed, the concentration achieved for copper, zinc and nickel varied at 6.4-13.1, 7.0-16.5 and 3.1-5.7 (μg g -1 ), respectively

  5. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  6. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    ... vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, tellurium, barium, mercury, thallium, lead and uranium) were determined with an ICP-MS. Bioconcentration of metals (selenium, mercury, and lead during autumn; copper, zinc, selenium, cadmium, ...

  7. Radiometric sampling of bucked copper-nickel ores for determining chemical composition

    International Nuclear Information System (INIS)

    Komlev, V.N.; Eliseev, G.I.

    1978-01-01

    Presented are the results and the technique of experimental-methodical works on radiometric sampling of bucked copper-nickel ores for determining chemical composition with their selection and analysis by the neutron-gamma method and by the gamma-gamma method. The error is estimated according to the chosen conditions of sampling. It is found that the gamma-gamma method being more rapid but less accurate is applied for rapid control of ore current, whereas the neutron-gamma method is applied for quality control of ores extracted

  8. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  9. Removal of copper and nickel contaminants from Si surface by use of cyanide solutions

    International Nuclear Information System (INIS)

    Fujiwara, N.; Liu, Y.-L.; Nakamura, T.; Maida, O.; Takahashi, M.; Kobayashi, H.

    2004-01-01

    The cleaning method using cyanide solutions has been developed to remove heavy metals such as copper (Cu) and nickel (Ni) from Si surfaces. Immersion of Si wafers with both Cu and Ni contaminants in potassium cyanide (KCN) solutions of methanol at room temperature decreases these surface concentrations below the detection limit of total reflection X-ray fluorescence spectroscopy of ∼3x10 9 atoms/cm 2 . UV spectra of the KCN solutions after cleaning of the Cu-contaminated Si surface show that stable copper-cyanide complexes are formed in the solution, leading to the prevention of the re-adsorption of copper in the solutions. From the complex stability constants, it is concluded that the Cu(CN) 4 3- is the most dominant species in the KCN solutions

  10. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44 ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  11. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes

    KAUST Repository

    Guo, Lin; Chatupheeraphat, Adisak; Rueping, Magnus

    2016-01-01

    An efficient nickel/copper-catalyzed decarbonylative silylation reaction of carboxylic acid esters with silylboranes is described. This reaction provides access to structurally diverse silanes with high efficiency and excellent functional-group tolerance starting from readily available esters.

  12. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes

    KAUST Repository

    Guo, Lin

    2016-08-25

    An efficient nickel/copper-catalyzed decarbonylative silylation reaction of carboxylic acid esters with silylboranes is described. This reaction provides access to structurally diverse silanes with high efficiency and excellent functional-group tolerance starting from readily available esters.

  13. The direct determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium, lead and copper

    International Nuclear Information System (INIS)

    Lee, A.F.

    1981-01-01

    This report describes the development and application of a voltammetric procedure for the direct, simultaneous determination of cadmium, lead, and copper in three SAROC reference materials (carbonatite, magnesite, and quartz). The electrolyte was a mixture of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. No interferences were encountered from Fe(III), As(III), Sb(V), Tl(I), or In(III) at the concentrations present in the samples. Intermetallic interferences were eliminated by the use of thin mercury-film electrodes not less than 80nm thick. Limits of detection were determined by the degree to which the supporting electrolyte could be purified, and were estimated to be 10ng/g, 250ng/g, and 150ng/g for cadmium, lead, and copper respectively

  14. Magnetic characterization of the nickel layer protecting the copper wires in harsh applications

    Directory of Open Access Journals (Sweden)

    Roger Daniel

    2017-06-01

    Full Text Available High Temperature (HT° motor coils open new perspectives for extending the applications of electrical motors or generators to very harsh environments or for designing very high power density machines working with high internal temperature gradients. Over a temperature of 300°C, the classic enameled wire cannot work permanently, the turn-to-turn insulation must be inorganic and made with high temperature textiles or vitro-ceramic compounds. For both cases, a diffusion barrier must protect the copper wire against oxidation. The usual solution consists of adding a nickel layer that yields an excellent chemical protection. Unfortunately, the nickel has ferromagnetic properties that change a lot the skin effect in the HT wire at high frequencies. For many applications such as aeronautics, electrical machines are always associated with PWM inverters for their control. The windings must resist to high voltage short spikes caused by the fast fronted pulses imposed by the feeding inverter. The nickel protection layer of the HT° inorganic wire has a large influence on the high frequency behavior of coils and, consequently, on the magnitude of the voltage spikes. A good knowledge of the non-linear magnetic characteristics of this nickel layer is helpful for designing reliable HT inorganic coils. The paper presents a method able to characterize non-linear electromagnetic properties of this nickel layer up to 500°C.

  15. Interactions between cadmium and other heavy metals in affecting the growth of lettuce (Lactuca sativa L. c. v. Webbs Wonderful) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Lepp, N.W.

    1977-01-01

    Changes in root and shoot extension of lettuce seedlings in relation to single or dual applications of heavy metal ions have been studied. When cadmium, copper, lead or nickel are applied singly, at concentrations of 10 ..mu..g/litre, significant reductions in root and shoot growth of the seedlings are apparent. Dual ion applications of 10 ..mu..g/litre cadmium with 10 ..mu..g/litre of any of the other elements produce no significant synergistic reduction in seedling growth. The responses observed are either additive or antagonistic, depending upon the metal treatment. The results are discussed in terms of their possible significance to heavy metal effects on plant growth. 14 references, 1 figure.

  16. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s

    International Nuclear Information System (INIS)

    Geraci, Fabiana; Pinsino, Annalisa; Turturici, Guiseppina; Savona, Rosalia; Giudice, Giovanni; Sconzo, Gabriella

    2004-01-01

    Treatment with heavy metals, such as nickel, lead or cadmium, elicits different cellular stress responses according to the metal used and the length of treatment. In Paracentrotus lividus embryos the inducible forms of HSP70 (HSP70/72) are different in molecular mass from the constitutively expressed HSP75, and they can be used as markers of cellular stress. Even a short treatment with each metal induces the synthesis of HSP70/72 which remain stable for at least 20 h and differ little in their isoelectric points. Continuous treatment from fertilization with nickel or lead produces late irregular pluteus embryos, with peak HSP70/72 synthesis at blastula followed by the arrest of synthesis by pluteus. On the contrary, the same treatment with cadmium induces continuous HSP70/72 synthesis and produces irregular gastrula embryos which then degenerate. Moreover, a long treatment induces over control embryos a slight increase in the amount of constitutive HSP75 during development while lead treatment depresses constitutive HSP75 at early stages and doubles its quantity at late stages

  17. Evaluation of Beryllium, Total Chromium and Nickel in the Surface Contaminant Layer Available for Dermal Exposure After Abrasive Blasting in a Shipyard

    Science.gov (United States)

    2013-04-24

    workers are potentially exposed to metals including cadmium, chromium, beryllium, iron, lead, nickel, tin, zinc and copper (43). 2 Potential worker...identified in the breathing zone air samples at Portsmouth NSY, coal slag was the abrasive in use. Within Portsmouth NSY, there are two main areas...where coal slag is used for blasting: the dry docks for blasting of submarines and in Building 286. Building 286 is a large bay room building where

  18. Improved dust handling at Inco's Copper Cliff smelter

    International Nuclear Information System (INIS)

    Dutton, A.; Warner, A.E.M.; Humphris, M.J.

    1989-01-01

    The Cooper Cliff Smelter Complex comprises three major production departments - a Nickel Smelter for the processing of nickel concentrated to a low iron, nickel - copper sulphide (Bessemer) matte; a Matte Processing plant for the separation of matte sulphides and the production of market nickel oxides and refinery feeds and a Copper Smelter to process copper concentrates to blister copper. Annual production is currently -114,000 tonnes of copper as blister and -110,000 tonnes of nickel. The nickel concentrate (11-13% Ni, 2-3% Cu) is roasted in multi-hearth roasters, smelted in oxy-fuel fired reverberatory furnaces to a 30-35% CuNiCo matte and converted to Bessemer matte (75% CuNiCo) in Peirce-Smith converters. The Bessemer matte is slow cooled and crushed for subsequent separation by mineral dressing techniques in the Matte Processing plant into nickel (sulphide and metallic) concentrates and a copper (chalcocite) concentrate. Nickel sulphides are further processed in fluid bed reactors to oxide market product or refinery feedstock. The copper concentrate (29-30% Cu, 0.9% No.) is dried in fluid bed driers, smelted to a 40-50% copper matte in an Inco oxygen flash furnace and converted to blister copper in Peirce-Smith converters. The chalcocite concentrate from the matte separation stage is flash converted to a semi-blister (3-4% S, 4-5% Ni) and then finished to lighter conventionally. A schematic process flowsheet of the Smelter Complex is shown in this paper

  19. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  1. Study of a nickel-copper filter for the future conditioning of insoluble residues

    Energy Technology Data Exchange (ETDEWEB)

    Massoni, Nicolas, E-mail: nicolas.massoni@cea.fr

    2016-10-15

    This paper deals with the feasibility of a separate conditioning for insoluble residues coming from spent nuclear fuel reprocessing. The two possible conditioning routes considered for insoluble residues were (i) added with cladding hulls with the considered filter (route #1) or (ii) melted with a nickel copper alloy already studied (route #2). Only route #2 was dealt with in this study. In France, the current practice is to store insoluble residues in a water suspension. For the two conditioning routes described here, dry insoluble residues are required for safety with melted metals. A nickel-copper filter was developed that can serve for the two types of conditioning. A filtration test performed with molybdenum particles as insoluble residue surrogates was done. The particle-charged filter was sintered, and Mo particles were kept inside the filter. Thus an integrated flowsheet for the filtration and immobilization of insoluble residues was demonstrated. - Highlights: • The basics for an integrated flowsheet for the filtration and immobilization of insoluble residues were demonstrated. • The filter can serve as an immobilization matrix or can be added in another metal waste. • A theoretical calculation has shown that the conception of the filter should be done to avoid an excessive heat-up.

  2. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  3. Retention of atmospheric Cu, Ni, Cd and Zn in an ombrotrophic peat profile near the Outokumpu Cu-Ni mine, SE-Finland

    Science.gov (United States)

    Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.

    2003-05-01

    Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.

  4. New process to discharge negative cadmium electrodes for Ni/Cd batteries

    International Nuclear Information System (INIS)

    Stiker, B.; Vignaud, R.

    1984-01-01

    The new process relates to the chemical oxidation (whether partial or total) of cadmium metal negative electrodes, as used in alkaline nickel-cadmium or silver-cadmium batteries. This process concerns all cadmium electrodes but more particularly the electrodeposited cadmium electrode developed by the company LES PILES WONDER and described in this publication

  5. Addressing Geographic Variability in the Comparative Toxicity Potential of Copper and Nickel in Soils

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Huijbregts, Mark A. J.

    2013-01-01

    Comparative toxicity potentials (CTP), in life cycle impact assessment also known as characterization factors (CF), of copper (Cu) and nickel (Ni) were calculated for a global set of 760 soils. An accessibility factor (ACF) that takes into account the role of the reactive, solid-phase metal pool...... findings stress the importance of dealing with geographic variability in the calculation of CTPs for terrestrial ecotoxicity of metals....

  6. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  7. Heavy metal content of lichens in relation to distance from a nickel smelter in Sudbury, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Nieboer, E; Ahmed, H M; Puckett, K J; Richardson, D H.S.

    1972-01-01

    The Sudbury region of Ontario has large deposits of nickel, iron, and copper, and thus a number of smelting plants which produce sulfur dioxide and heavy metal pollution. Since lichens are good indicators of SO/sub 2/ pollution levels, the pattern of heavy metal content in lichen species in the area of a copper smelter in Sudbury was correlated with distance from the smelter to ascertain whether lichens might also be good indicators of the amount of heavy metal fallout. The lichens were analyzed qualitatively and quantitatively. All seven species of lichens contained copper, iron, zinc, nickel, manganese, and lead. Cadmium and cobalt were detected in two species. Neither gold nor silver could be identified in lichen material with the tests used. A pollution model was developed and compared to field results. The simple dilution of the stack effluent was consistent with the fact that the lichen metal content was related to the reciprocal of the distance from the pollution source. The lichens from the area could tolerate simultaneously high concentrations of several heavy metals that are known to be toxic to other plants. The mechanism of metal uptake was not clearly established. The study showed that lichens and other epiphytes are potentially the most useful indicators of heavy metal fallout around industrial plants.

  8. Influence of photochemical transformations upon optic-spectral characteristics of iodine cadmium crystals with copper dopant

    International Nuclear Information System (INIS)

    Novosad, S.S.

    2000-01-01

    The influence of photochemical transformations upon absorption. X-ray, photo- and thermostimulated luminescence of crystals CdI 2 :CuI, CdI 2 :CuI and CdI 2 :CuO grown by Stockbarger - Czochralski method has been studied. The photochemical reactions in crystals of iodine cadmium with the dopant of copper leads to reducing the intensity of X-ray, photo- and thermostimulated luminescence, the appearance of new luminescent centers is not observed

  9. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  10. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Anacleto, Patrícia; van den Heuvel, Freek H M; Oliveira, C

    2017-01-01

    The presence of contaminants in aquatic ecosystems can cause serious problems to the environment and marine organisms. This study aims to evaluate the phycoremediation capacity of macroalgae Laminaria digitata for pesticides (diflubenzuron and lindane) and toxic elements (cadmium and copper) in s...

  11. Elimination of copper and nickel from wastewater by electrooxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Kazeminezhad, Iraj, E-mail: I.Kazeminezhad@scu.ac.ir [Physics Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Mosivand, Saba [Physics Department, Faculty of Science, Lorestan University, Khorram-Abad, Lorestan (Iran, Islamic Republic of)

    2017-01-15

    Electrooxidation method was used to remove copper and nickel from water by iron sacrificial sheets in an electrolytic cell. The effect of various voltages, electrooxidation time, and the initial pH of water has been studied on removal efficiency. The concentration of heavy metals before and after treatment was determined by an AAS instrument. The sludge obtained after treatment has been characterized using XRD, FESEM, and VSM. Our results show that the operational parameters play an important role on removal process. AAS results confirmed that the concentration of heavy metal pollutants in the water effectively decreases by increasing the applied voltage, electrochemical reaction time, or the initial pH of water. Based on these results it is possible to highly decrease the concentration of Ni or Cu from water at pH ∼4.5 by applying ∼28 V for 60 min. The FESEM images showed the nano-size of synthesized particles during water treatment. The element maps confirmed the presence of iron, oxygen, and heavy metal pollutants in precipitate after water treatment. The XRD patterns of powder sample obtained after removal of Ni or Cu show the reflections of Fe{sub 3}O{sub 4} and some small peaks which are correspond to different compound of metal pollutants. VSM results showed that the sludge samples are magnetically soft and their specific magnetization depends on removal conditions. The magnetic property of the sludge samples helps to separate them easily from water using magnetic field. - Highlights: • Electrooxidation method was used to remove copper and nickel from water. • By applying a potential between two electrodes the nanosorbents are generated in situ. • The operational parameters play an important role on removal process. • The concentration of metal in water decreases by increasing voltage, time, or pH of water. • The magnetic property of the sludge helps the magnetic separation.

  12. The effects of applied current on one-dimensional interdiffusion between copper and nickel in spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rudinsky, S.; Gauvin, R.; Brochu, M., E-mail: mathieu.brochu@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5 (Canada)

    2014-10-21

    Spark plasma sintering (SPS) is a powder metallurgy technique that employs the use of fast sintering kinetics to produce final consolidated components in a matter of minutes. In order to use blended powders in SPS to obtain fully alloyed parts, diffusion during sintering must be understood. An investigation into the effects of current on the diffusion of copper and nickel was performed using SPS. Bulk specimens were used to generate diffusion couples in SPS in alternating orientations with respect to the direction of the current. Control samples were produced using a horizontal insertion vacuum furnace. Experiments were performed at temperatures between 850°C and 1000°C for 3 h. Concentration profiles were obtained by the use of both energy-dispersive spectroscopy and a Monte Carlo simulated correction curve. Diffusion coefficients and activation energies were calculated for samples produced by SPS and annealing without current. It was shown that, at temperatures near 0.9 T{sub m}, the application of current in SPS inhibits diffusion between copper and nickel due to the re-orientation of electrons caused by the loss of ferromagnetism in nickel. Activation energy for diffusion is, however, decreased due to the temperature gradients arising from the difference in resistivity between the two species.

  13. The target preparation of "2"3"2Th plated on the nickel with copper as substrate and "2"3"0Pa generation

    International Nuclear Information System (INIS)

    Shen Hua; Geng Junxia; Gao Size; Zhang Guoxin; Zhang Lan; Li Wenxin; Li Qingnuan; Wu Guozhong

    2014-01-01

    The electrochemical parameters on nickel plating on the copper have been studied using aqueous electroplating technique. And thorium is plated on the nickel flake using molecular plating technique. The better experimental parameters are obtained. According to these optimized parameters, the "2"3"2Th target which is suitable for Cyclone-30 accelerator is prepared. The proton beam with energy of 21 MeV bombed the "2"3"2Th target (total beam time 20 μAh). The results showed that the better range of plating current density of nickel plated on copper is l.30∼1.68 A/dm"2. The thickness of nickel plating layer can reach more than 10 μm. The current density is 3∼5 mA/cm"2, and the thickness of plated thorium layer is up to micrometer scale. The binding force of as-prepared "2"3"2Th target is very well. There is "2"3"0Pa appeared after the target is bombed by the proton beam. (authors)

  14. Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt.

    Science.gov (United States)

    Osman, O; Tanguichi, H; Ikeda, K; Park, P; Tanabe-Hosoi, S; Nagata, S

    2010-04-01

    To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.

  15. A longitudinal study on urinary cadmium and renal tubular protein excretion of nickel-cadmium battery workers after cessation of cadmium exposure.

    Science.gov (United States)

    Gao, Yanhua; Zhang, Yanfang; Yi, Juan; Zhou, Jinpeng; Huang, Xianqing; Shi, Xinshan; Xiao, Shunhua; Lin, Dafeng

    2016-10-01

    This study aimed to predict the outcome of urinary cadmium (Cd) excretion and renal tubular function by analyzing their evolution through 10 years after Cd exposure ceased. Forty-one female, non-smoking workers were recruited from the year 2004 to 2009 when being removed from a nickel-cadmium battery factory, and they were asked to provide morning urine samples on three consecutive days at enrollment and in every follow-up year until 2014. Urinary Cd and renal tubular function biomarkers including urinary β2-microglobulin (β2-m) and retinol-binding protein (RBP) concentrations were determined with the graphite furnace atomic absorption spectrometry and the enzyme-linked immunosorbent assays, respectively. The medians of baseline Cd, β2-m and RBP concentrations at enrollment were 6.19, 105.38 and 71.84 μg/g creatinine, respectively. Urinary β2-m and RBP concentrations were both related to Cd concentrations over the years (β absolute-β2-m = 9.16, P = 0.008 and β absolute-RBP = 6.42, P < 0.001, respectively). Cd, β2-m and RBP concentrations in the follow-up years were all associated with their baseline concentrations (β absolute-Cd = 0.61, P < 0.001; β absolute-β2-m = 0.64, P < 0.001; and β absolute-RBP = 0.60, P < 0.001, respectively), and showed a decreasing tendency with the number of elapsed years relative to their baseline concentrations (β relative-Cd = -0.20, P = 0.010; β relative-β2-m = -17.19, P = 0.002; and β relative-RBP = -10.66, P < 0.001, respectively). Urinary Cd might eventually decrease to the general population level, and Cd-related tubular function would improve under the baseline conditions of this cohort.

  16. Cadmium-containing waste and recycling possibilities

    International Nuclear Information System (INIS)

    Wiegand, V.; Rauhut, A.

    1981-01-01

    To begin with, the processes of cadmium production from zinc ores in smelting plants or from intermediates of other metal works are described. A considerable amount of the cadmium is obtained in the recycling process in zinc, lead, and copper works. The way of the cadmium-containing intermediaries, processing, enrichment, and disposal of cadmium waste are described. Uses of cadmium and its compounds are mentioned, and cadmium consumption in the years 1973-1977 in West Germany is presented in a table. Further chapters discuss the production and the way of waste during production and processing of cadmium-containing products, the problem of cadmium in household refuse and waste incineration plants, and the problem of cadmium emissions. (IHOE) [de

  17. Assessment of copper, cadmium and zinc remobilization in Mediterranean marine coastal sediments

    Science.gov (United States)

    Sakellari, Aikaterini; Plavšić, Marta; Karavoltsos, Sotiris; Dassenakis, Manos; Scoullos, Michael

    2011-01-01

    The remobilization of copper, cadmium and zinc in sediments of three selected coastal microenvironments of the Aegean Sea (Eastern Mediterranean) is assessed. Various analytical methods and techniques were employed providing concentrations, profiles and forms of metals and organic matter in sediments and pore waters. At Loutropyrgos, a non-industrial site located, however, within an intensively industrialized enclosed gulf, an intense resupply of zinc in pore water from sediment was recorded, correlating with the highest value of weakly bound fraction of zinc determined at this area. The comparatively high zinc concentrations measured in the pore waters (394 nM), exceed considerably those in the overlying seawater (12.5 nM determined by DGT; 13.5 nM total), resulting in the formation of a strong concentration gradient at the sediment-water interface. Potential zinc flux at the sediment-water interface at Loutropyrgos (based on 0.4 mm DGT profile) was calculated equal to 0.8 mmol.m -2.d -1. The half lives of trace metals at Loutropyrgos site, based on the aforementioned DGT profiles, amount to 0.1 y (Zn), 2.8 y (Cd), 4.5 y (Cu), 2.2 y (Mn) and 0.4 y (Fe) pointing out to the reactivity of these metals at the sediment-water interface. The concentration of dissolved organic carbon (DOC) in pore waters of the three selected sites (2.7-5.2 mg/L) was up to four times higher compared to that of the corresponding overlying seawater. Similarly, the concentrations of carbohydrates in pore waters (0.20-0.91 mg/L monosaccharides; 0.71-1.6 mg/L polysaccharides) are an order of magnitude higher than those of seawater, forming a concentration gradient at the sediment-water interface. Total carbohydrates contribute between 34 and 48% of the organic carbon of the pore waters, being significantly higher than those of seawater from the corresponding areas, which were in the range of 15-21%. The complexing capacity as for copper ions (CCu) determined in pore water ranges widely, from 0

  18. Magnesium analysis. Determination of 5 elements by impulse polarography

    International Nuclear Information System (INIS)

    Anon.

    Determination of cadmium, copper, nickel, lead and zinc in magnesium used in magnesiothermics. The process is as follow: magnesium dissolution in hydrochloric acid, neutralisation by ammonia, addition of ammonium chloride and citric acid, ammonia is added until pH8. Addition of pyridine, polarographic determination of zinc and then of cadmium and copper [fr

  19. High-performance reagent modes for flotation recovery of platiniferous copper and nickel sulfides from hard-to-beneficiate ores

    Science.gov (United States)

    Matveeva, T. N.; Chanturiya, V. A.

    2017-07-01

    The paper presents the results of the recent research performed in IPKON Russian Academy of Sciences that deals with development and substantiation of new selective reagents for effective flotation recovery of non-ferrous and noble metals from refractory ores. The choice and development of new selective reagents PTTC, OPDTC, modified butylxanthate (BXm) and modified diethyl-dithiocarbamate (DEDTCm) to float platiniferous copper and nickel sulfide minerals from hard-to-beneficiate ores is substantiated. The mechanism of reagents adsorption and regulation of minerals floatability is discussed. The study of reagent modes indicates that by combining PTTC with the modified xanthate results in 6 - 7 % increase in the recovery of copper, nickel and PGM in the flotation of the low-sulfide platiniferous Cu-Ni ore from the Fedorovo-Panskoye deposit. The substitution of OPDTC for BX makes it possible to increase recovery of Pt by 13 %, Pd by 9 % and 2 - 4 times the noble metal content in the flotation concentrate.

  20. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  1. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health?

    DEFF Research Database (Denmark)

    Warming, Marlies; Hansen, Mette G.; Holm, Peter E.

    2015-01-01

    This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured. Concentra......This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured...

  2. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  3. Investigation of possibility of recovery nonferrous metals and producing building materials from copper-nickel smelterslag

    Directory of Open Access Journals (Sweden)

    Svetlov A.V.

    2015-06-01

    Full Text Available Pelletized slag of copper-nickel smelter ("Pechenganikel" combine, "Kola MMC" JSC has been investigated as a potential technogenic deposit. It has been shown that nonferrous metals can be re-extracted from slag using flotation. The work presents the results of laboratory simulation of heap leaching of non-ferrous metals. Ceramic building materials from slag-based feed have been produced and their main properties have been studied

  4. Determination of metallic elements in soils and plants in industrial and urban sites

    Energy Technology Data Exchange (ETDEWEB)

    Delearte, E; Nangniot, P; Impens, R

    1973-01-01

    The first phase of a program to study metals in soils and plants in industrial and urban sites is reported. The metals analyzed were copper, cobalt, nickel, zinc, lead, and cadmium. The soil samples were taken at increasing distances from potential emission sources with respect to dominant wind directions. Ubiquitous plants, such as Tussilago farfara L., Plantago major L., Mercurialis annua L., and Agrostis velgaris With. were used as samples for differential oscillopolarographic analyses. Soil samples taken around a zinc ore roasting plant showed very high zinc contents, and irregular distribution of cadmium and copper. Plant samples taken at different distances from the plant revealed rapid reduction of the copper, zinc, and cadmium levels with increasing distance. Very high concentrations of copper were found in plants around a petroleum refinery. Leaves of Aeer platanoides variety Schwedlerii in a town contained an average of 14.1 ppM copper, 0.7 ppM cobalt, 5.4 ppM nickel, 160 ppM zinc, 145 ppM lead, and 0.08 ppM cadmium, relative to the dry weight. The findings indicate that samples should be obtained over a period of sufficient length.

  5. Analysis of copper-nickel ores by gamma-gamma method in ore enrichment works

    International Nuclear Information System (INIS)

    Bol'shakov, A.Yu.; Tovstenko, Yu.G.; Chinskij, E.B.; Eliseev, G.I.

    1973-01-01

    The paper presents experimental data on continuous gamma-gamma assay of copper-nickel ores on conveyor belts and of dry discrete samples of classifier overflow at the enrichment plants of the Pechenganikel' group. The relative errors are given of the results of comparison of two-hour rapid analyses and shift and 24-hour chemical analyses of classifier overflow samples with the figures for gamma-gamma assay. The factors affecting the accuracy of the latter technique are elucidated. Practical recommendations are given on the use of this technique at the above enrichment plants. (author)

  6. Chemical sensors in natural water: peculiarities of behaviour of chalcogenide glass electrodes for determination of copper, lead and cadmium ions

    International Nuclear Information System (INIS)

    Seleznev, B.L.; Legin, A.V.; Vlasov, Yu.G.

    1996-01-01

    Specific features of chemical sensors (chalcogenide glass and crystal ion-selective electrodes) behaviour have been studied to determine copper (2), lead, cadmium and fluorine in the course of in situ measurements, including long-term uninterrupted testing, for solving the problem of inspection over natural water contamination. 16 refs., 3 figs., 2 tabs

  7. Effect of in vitro exposure to cadmium and copper on sea bass blood cells

    Directory of Open Access Journals (Sweden)

    Vincenzo Arizza

    2010-01-01

    Full Text Available Blood cells freshly collected from sea bass (Dicentrarchus labrax were exposed in vitro to different concentrations of cadmium (Cd and copper (Cu at 10-7 M, 10-5 M, 10-3 M, and exam- ined for neutral red retention capacity and for cell vitality with MTT assay. A relationship between heavy metal exposure and alteration in responses of blood cells in a dose-time-dependent was found. Our results showed that fish blood cells may constitute an interesting biological model for experimen- tal and applied toxicology, especially in the case of environmental pollution.

  8. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  9. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash

    International Nuclear Information System (INIS)

    Visa, Maria; Bogatu, Cristina; Duta, Anca

    2010-01-01

    In wastewaters originating from dye industry there are amounts of dyes (very common methyl orange, methylene blue-MB) and heavy metals (cadmium, copper, nickel mainly from the organo-metallic dyes). They tend to adsorb in a competitive process and modify the substrate. Advanced removal is usually proposed via adsorption and the use of modified fly ash as a substrate is sustainable solution. The main constituents of fly ash (silica, alumina, iron oxide and un-burned carbon), are the priority compounds which favour the heavy metal adsorption and are active sites in dyes' adsorption processes. The paper studies the effect of MB adsorbed on the fly ash surface on the removal efficiency of cadmium, copper and nickel ionic species from complex, multi-cationic dye solutions. The adsorption efficiency and kinetics are evaluated from the complex, multicomponent systems and possible influences are discussed. High efficiencies are obtained at low heavy metal concentrations (as it is the real case for the dyes industry) whereas at medium values, competitive processes lower the individual efficiencies of copper, nickel or cadmium from mixtures.

  10. Estimation of differences in trace element composition of Bulgarian summer fruits using ICP-MS

    Directory of Open Access Journals (Sweden)

    G. Toncheva

    2016-06-01

    Full Text Available Abstract. The content of potentially essential and toxic elements: chromium, manganese, iron, copper, nickel, cadmium and arsenic in Bulgarian fruits such as aronia, morello, cherry, raspberry, nectarine peach, apple type „akane” and pear type „early gold” were investigated. By using the ICP-MS we found that -1 -1 -1 raspberry has the highest content of iron (4635.9 ± 53.2 μg kg , manganese (5690.9 ± 31.7 μg kg and chromium (150.2 ± 2.5 μg kg , while the richest in -1 copper is the nectarine (887.5 ± 31.19 μg kg . The content of toxic elements (nickel, cadmium and arsenic is in amount significantly below the permissible standards. Single ANOVA and subsequent Dunkan's test were used to define the fruit and to estimate the significance of chemical elements. The test for multidirectional comparisons indicated that for five of the investigated seven elements: iron, copper, nickel, cadmium, and arsenic the fruits are statistically distinguishable According to hierarchical cluster analysis the fruits are into one cluster.

  11. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dust – concentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  12. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  13. Partitioning and distribution of dissolved copper, cadmium and organic matter in Mediterranean marine coastal areas: The case of a mucilage event

    Science.gov (United States)

    Scoullos, Michael; Plavšić, Marta; Karavoltsos, Sotiris; Sakellari, Aikaterini

    2006-04-01

    Dissolved copper and cadmium partitioning and their interaction with organic matter were investigated in shallow coastal areas of the Aegean Sea (Eastern Mediterranean). The percentage of DGT-labile copper as for total dissolved copper ranged from 13 to 34% during summer and from 23 to 36% during winter, whereas the corresponding percentage for DGT-labile cadmium was higher in summer (38-68%), in comparison to winter (29-44%). The CCu was found to be 100-260 nM during summer while in winter the range was 42-430 nM. The corresponding CCd reached 27 and 45 nM, respectively. The mean TEP value in summer was high (208 μg/L xanthan equiv.), while in winter it reached 441 μg/L xanthan equiv., which indicates significant phytoplankton activity in winter, a feature occasionally observed in the stratified study areas after the breaking down of the thermocline/pycnocline, followed by consequent nutrient enrichment of the surface layers by nutrients accumulated in the sea bottom. A significant fraction of dissolved organic carbon (DOC) exhibited surface active properties and was determined as surface active substances (SAS) in mg/L eq. of nonionic surfactant Triton-X-100. Carbohydrates were also determined and they represented up to 33% of the DOC.

  14. Nickel Hydrogen Battery Expert System

    Science.gov (United States)

    Johnson, Yvette B.; Mccall, Kurt E.

    1992-01-01

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  15. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  16. Study of biochemical characterization and tolerance to nickel and cadmium of 30 bacteria isolated from the microbasin of the Rio Purires (Cartago, Costa Rica)

    International Nuclear Information System (INIS)

    Vargas Asensio, Juan Gabriel

    2009-01-01

    Heavy metal pollution has been a worldwide problem; Costa Rica, a developing country, receives more and more industries, increasing at an accelerated pollution. A study was performed, from water contaminated with heavy metals, in the microbasin of the Rio Purires to isolate and characterize the cultivable bacteria with nickel and cadmium tolerance. The bacterial growth was determined by measuring of changes in the optical density of a medium. A curve of growth and biomass production experiment was made to the bacteria more tolerant to metals. Pseudomonas synxantha proved to be more tolerant to nickel with a minimum inhibitory concentration of 75 ppm and was chosen to make the curve of growth. The bacterium more tolerant to cadmium was Pseudomonas spp with a minimum inhibitory concentration of 22 ppm. A time of 450 minutes was given for the change in logarithmic phase to stationary phase in the curve of number of bacteria versus time, where the yield of biomass production was 1.73% wet weight biomass. The bacterium Pseudomonas synxantha was established as a good alternative to go forward to conduct trials of biosorption and bioremediation. (author) [es

  17. Factors affecting the simultaneous determination of copper, lead, cadmium, and zinc concentrations in human head hair using differential pulse anodic stripping voltammetry method

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    Conditions of analysis of copper, lead, cadmium and zinc content in human hair using differential pulse anodic stripping voltammetry (DPASV) and hanging mercury drop electrode (HMDE) have been established. Sample digestion using using the mixture HCI; H 2 O 2 ;HNO 3 in the ratio 2:1:40 by volume gave the best wet-ashing procedure. The peak currents and peak potentials of zinc, cadmium and lead, copper were maximum at pH 6-7 and 1-3 respectively, when excess H 2 O 2 was eliminated with subsequent addition of hydroxyamine hydrochloride. Matrix concentration effects were minimized by digesting weights not exceeding 50 mg per sample. The effect of selenium (IV) was negligible and was ignored. The detection limit of 0.0036 ng/cm 3 for Cd + 2 was obtained while the values for zinc, lead and copper were 0.0230, 0.0287 and 0.0269 ng/cm 3 respectively at the 95% confidence limit. The observed DPASV condition of analysis of these metals are useful for routine determination of the metals in human hair and should complement the conventional flame absorption spectrophotometry method. (author)

  18. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  19. Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Khadom, Anees A. [Univ. of Daiyla, Baquba (Iran, Islamic Republic of); Yaro, Aprael S. [Univ. of Baghdad, Aljadreaa (Iran, Islamic Republic of); Musa, Ahmed Y.; Mohamad, Abu Bakar; Kadhum, Abdul Amir H. [UniversitiKebangsaan Malaysia, Bangi (Malaysia)

    2012-08-15

    The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at 35 .deg. C and 0.2 M inhibitor concentration EDA, while the lower value was 4% at 35 .deg. C and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

  20. Determination of copper, manganese, nickel and zinc in different cigarette brands available in pakistan

    International Nuclear Information System (INIS)

    Siddiqui, I.; Hashmi, D.R.; Khan, F.A.

    2008-01-01

    Mean values of copper, manganese, nickel and zinc in different cigarette brands sold in Pakistan were found to be in the range of 8.61 to 94.67 macro g/g, 26.40 to 98.20 macro g/g, 0.61 to 8.58 macro g/g and 16.92 to 99.60 macro g/g, respectively, through Atomic Absorption Spectrophotometer (AAS). The results are discussed with reference to and in comparison with the mean average concentration of these elements reported in the cigarettes of other countries. (author)

  1. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  2. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  3. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2015-09-01

    Full Text Available This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss, degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  4. Assessment of cadmium, copper and lead in marine species of the atlantic and pacific oceans of Guatemala by voltametry techniques

    International Nuclear Information System (INIS)

    Chun, Evelyn

    2000-01-01

    In this thesis results of measurements of cooper, lead, and cadmium were made using voltametry. Three points in the pacific ocean and one in the atlantic were selected to obtain samples of fish and shrimp as species that are contaminated with toxic metals. The samples were treated by physical and chemical methods to turn soluble the metals and the chemical determination could be done using voltametry or differential polarography of pulse. The results shown that copper, lead and cadmium are present in the samples in traces level. The precision of measurements was verified measuring certified by the National Institute of Standard and Technology NIST of the Commerce Departmento of the United States

  5. Quantitative determination of iron, copper, lead, chromium and nickel in electronic waste samples using total reflection x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Elaseer, A. S.; Musbah, A. S; Ammar, M. M. G.; Salah, M. A.; Aisha, E. A.

    2015-01-01

    Total reflection x-ray fluorescence spectroscopy in conjunction with microwave assisted extraction technique was used for the analysis of twenty electronic waste samples. The analysis was limited to the printed circuit boards of electronic devices. Iron, copper, lead, chromium and nickel were quantitatively determined in the samples. The samples were carefully milled to fine powder and 50mg was digested by acid using microwave digestion procedure. The digested samples solution was spread together with gallium as internal standard on the reflection disk and analyzed. The results showed that the cassette recorder boards contain the highest concentration of iron, lead and nickel. The average concentrations of these metals were 78, 73 and 71g/Kg respectively. Computer boards contained the highest copper average concentration 39g/Kg. the highest chromium average concentration 3.6 g/Kg was in mobile phone boards. Measurements were made using PicoTAX portable x-ray device. the instrument was used for quantitative multi-element analysis. An air cooled x-ray tube (40KV, 1 mA) with Mo target and Be window was used as x-ray source. The optics of the device was a multilayer Ni/C, 17.5 keV, 80% reflectivity provides analysis of elements from Si to Zr (K series) and Rh to U (L series). A Si PIN-diode detector (7mm"2, 195eV) was used for the elements detection. In this study heavy metals average concentration in electronic circuit boards in the in the order of iron (35.25g/kg), copper (21.14g/Kg), lead (16.59g/Kg), nickel (16.01g/Kg) and chromium (1.07g/Kg).(author)

  6. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  7. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    Breckenridge, R.L.; Russell, G.M.; Watson, A.E.

    1976-01-01

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  8. Open Burn/Open Detonation (OBOD) Area Management Using Lime For Explosives Transformation And Metals Immobilization

    Science.gov (United States)

    2012-01-01

    Arsenic Ca Calcium Cd Cadmium Co Cobalt Cr Chromium Cu Copper Fe Iron Mo Molybdenum ERDC/EL TR-12-4 xii Ni Nickel Pb Lead Sb... phytoremediation , reactive barriers, etc.) exist for treatment after the explosive constituents have entered the groundwater or surface water. However, no...Explosives (1,3-dinitrobenzene and nitrobenzene), perchlorate, and inor- ganics ( arsenic , copper, nickel, selenium and zinc) were detected in pre- vious

  9. A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga Phaeocystis antarctica.

    Science.gov (United States)

    Gissi, Francesca; Adams, Merrin S; King, Catherine K; Jolley, Dianne F

    2015-07-01

    Despite evidence of contamination in Antarctic coastal marine environments, no water-quality guidelines have been established for the region because of a paucity of biological effects data for local Antarctic species. Currently, there is limited information on the sensitivity of Antarctic microalgae to metal contamination, which is exacerbated by the lack of standard toxicity testing protocols for local marine species. In the present study, a routine and robust toxicity test protocol was developed using the Antarctic marine microalga Phaeocystis antarctica, and its sensitivity was investigated following 10-d exposures to dissolved copper, cadmium, lead, zinc, and nickel. In comparisons of 10% inhibition of population growth rate (IC10) values, P. antarctica was most sensitive to copper (3.3 μg/L), followed by cadmium (135 μg/L), lead (260 μg/L), and zinc (450 μg/L). Although an IC10 value for nickel could not be accurately estimated, the no-observed-effect concentration value for nickel was 1070 μg/L. Exposure to copper and cadmium caused changes in internal cell granularity and increased chlorophyll a fluorescence. Lead, zinc, and nickel had no effect on any of the cellular parameters measured. The present study provides valuable metal-ecotoxicity data for an Antarctic marine microalga, with P. antarctica representing one of the most sensitive microalgal species to dissolved copper ever reported when compared with temperate and tropical species. © 2015 SETAC.

  10. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  11. [Bronchopulmonary diseases in workers engaged in deep-mined extraction of copper-nickel ore].

    Science.gov (United States)

    Siurin, S A; Derevoedov, A A; Nikanov, A N

    2008-01-01

    Examinations were made in 220 male workers exposed to dust-gas (low-silicon dioxide, nitric oxides, and carbon oxide) mixture, physical exercises, and cooling microclimate on deep-mined output of copper-nickel ore. Twenty-eight per cent of the workers were found to have evolving chronic bronchitis that did not substantially affect the patients' working capacity; 3.2% had chronic obstructive pulmonary disease and 1.4% had asthma that had developed before the onset of professional activity. 32.3% of the examinees were ascertained to have individual clinicofunctional disorders that permit their identification as a bronchopulmonary disease risk group to carry out early preventive and rehabilitative measures.

  12. Study of matrix effect in determination of metals in re-refined basic oils by energy dispersive X-ray fluorescence - EDX; Estudo do efeito de matriz na determinação de metais em óleos básicos rerrefinados por fluorescência de raios-X por energia dispersiva

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Maristela L. S., E-mail: mlsilva@anp.gov.br [Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), Brasília, DF (Brazil); Souza, Jurandir R. de [Universidade de Brasília (UnB), Brasília, DF (Brazil). Instituto de Química

    2015-06-15

    In this article, the results of the study of the matrix effect in the determination of metals calcium, chromium, iron, nickel, copper, zinc, molybdenum, cadmium, barium and lead in base oil using Energy Dispersive X-Ray Fluorescence (EDX) are presented. Sensitivities obtained for each calibration curve were evaluated where calcium, chromium, copper, cadmium, barium and lead had the lowest sensitivities. In the case of cadmium, this parameter was lagging and the studies were not carried forward. The curves of the other metals in different base oils were evaluated for linearity. The elements chromium, copper, molybdenum and lead showed linearity problems in some cases. Therefore, curves in different base oils showed distinct mathematical behavior where the matrix effect was confirmed. The other curves were evaluated and existence of the matrix effect attributed to interference of C / H ratio was confirmed in the quantification of all elements. Metals iron, nickel and zinc exhibited the highest sensitivity and determination coefficients, showing that the method has application potential. (author)

  13. Johor strait as a hotspot for trace elements contamination in peninsular Malaysia.

    Science.gov (United States)

    Zulkifli, Syaizwan Zahmir; Ismail, Ahmad; Mohamat-Yusuff, Ferdaus; Arai, Takaomi; Miyazaki, Nobuyuki

    2010-05-01

    Present study was conducted to evaluate current status of trace elements contamination in the surface sediments of the Johor Strait. Iron (2.54 +/- 1.24%) was found as the highest occurring element, followed by those of zinc (210.45 +/- 115.4 microg/g), copper (57.84 +/- 45.54 microg/g), chromium (55.50 +/- 31.24 microg/g), lead (52.52 +/- 28.41 microg/g), vanadium (47.76 +/- 25.76 microg/g), arsenic (27.30 +/- 17.11 microg/g), nickel (18.31 +/- 11.77 microg/g), cobalt (5.13 +/- 3.12 microg/g), uranium (4.72 +/- 2.52 microg/g), and cadmium (0.30 +/- 0.30 microg/g), respectively. Bioavailability of cobalt, nickel, copper, zinc, arsenic and cadmium were higher than 50% of total concentration. Vanadium, copper, zinc, arsenic and cadmium were found significantly different between the eastern and western part of the strait (p Johor Strait is suitable as a hotspot for trace elements contamination related studies.

  14. The observation of helium gas bubble lattices in copper, nickel and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1978-10-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, asub(l), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface. Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(l) obtained for copper, nickel and stainless steel are given. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300K. (author)

  15. Aluminium or copper substrate panel for selective absorption of solar energy

    Science.gov (United States)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  16. Reduction and aggregation of silver, copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    Kapoor, S.; Gopinathan, C.

    1998-01-01

    Radiolytic reduction of silver, copper and cadmium ions and the subsequent formation of their clusters was studied in aqueous gelatin or carboxy methyl cellulose (CMC) solutions. Presence of gelatin or CMC in the solution affects the early processes. The rate of reduction by hydrated electron reduces due to complexation. However, when the ratio of silver ions to monomeric chains decreases over a certain limit the process of reduction inhibits completely. The effect of ionic strength or pH and the reducing radical on the rate of formation of colloidal Cu and Cd is also discussed

  17. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  18. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  19. Development of nickel hydrogen battery expert system

    Science.gov (United States)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  20. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mooud Amirkavei

    2013-01-01

    Full Text Available A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

  1. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples

    International Nuclear Information System (INIS)

    Ghaedi, M.; Ahmadi, F.; Soylak, M.

    2007-01-01

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni 2+ , Cu 2+ and Co 2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 μg L -1 for copper, 0.75 μg L -1 for nickel and 0.80 μg L -1 for cobalt. The loading capacity was 0.56 mg g -1 for Ni 2+ , 0.50 mg g -1 for Cu 2+ and 0.47 mg g -1 for Co 2+ . The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n = 3)

  2. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)]. E-mail: m_ghaedi@mail.yu.ac.ir; Ahmadi, F. [Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni{sup 2+}, Cu{sup 2+} and Co{sup 2+} ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 {mu}g L{sup -1} for copper, 0.75 {mu}g L{sup -1} for nickel and 0.80 {mu}g L{sup -1} for cobalt. The loading capacity was 0.56 mg g{sup -1} for Ni{sup 2+}, 0.50 mg g{sup -1} for Cu{sup 2+} and 0.47 mg g{sup -1} for Co{sup 2+}. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n = 3)

  3. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples.

    Science.gov (United States)

    Ghaedi, M; Ahmadi, F; Soylak, M

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni2+, Cu2+ and Co2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 microg L(-1) for copper, 0.75 microg L(-1) for nickel and 0.80 microg L(-1) for cobalt. The loading capacity was 0.56 mg g(-1) for Ni2+, 0.50 mg g(-1) for Cu2+ and 0.47 mg g(-1) for Co2+. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n=3).

  4. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  5. Accumulation of heavy metals (cadmium, zinc, and copper) from smelter in forest ecosystems and their uptakes by Shiitake mushroom (Lentinus edodes (Berk) Sing. ) and Nameko mushroom (Pholiota glutinosa Kawamura) through polluted bed logs

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, T.; Fujita, K.; Furukawa, H.; Yoshimoto, M.

    1977-12-01

    Mushrooms cultivated on sawdust medium which had been innoculated with heavy metals accumulated the metals increasingly in stems, pileus, gill and spores, in that order. There were strain differences, in accumulation, and highest concentration was found in the first-born fruit body. At 2 ppm, cadmium did not affect yield of the fruiting body. At 20 ppm, however, yield was seriously reduced. Species differences in absorption capacity for heavy metals were noted. Seasonal variations in cadmium and copper accumulation were noted, along with zinc. Cadmium concentration in fruiting bodies increased with increase of cadmium concentration in the growth substrate. 23 figures, 16 tables.

  6. Investigation into the combined effects of ethanol and cadmium on rat liver and kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Hopf, G.; Boecker, R.; Bischoff, J.; Werner, M.G.; Estler, C.J. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Pharmakologie und Toxikologie)

    1990-08-01

    To examine the combined hepatoxic and nephrotoxic effects of cadmium and ethanol, rats maintained on an ethanol containing liquid diet (5% w/w) were given cadmium either acutely (3 x 1 mg/kg IP) or subacutely (about 14 mg/kg/day PO for 6 weeks). Parameters tested were cadmium, zinc and copper contents of blood and various organs, metallothionein (MT) contents, polysome profile of liver and kidneys, serum SDH and GPT levels and creatinine clearnace. Ethanol reduced the hepatic MT contents without altering the polysome profile and the zinc and copper contents. Cadmium on the other hand raised the MT contents in liver and kidneys. This effect of cadmium predominated in the combined treatment. Morphological examination and functional tests (SDH, GPT, creatinine clearance) indicate that cadmium does not enhance the toxic effects of ethanol, and vice versa. (orig.).

  7. Exploring the Molecular Mechanisms of Nickel-Induced Genotoxicity and Carcinogenicity: A Literature Review

    OpenAIRE

    Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.

    2011-01-01

    Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nick...

  8. Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrup, Martin, E-mail: martin.holmstrup@dmu.d [National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsovej 25, DK-8600 Silkeborg (Denmark); Sorensen, Jesper G. [National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsovej 25, DK-8600 Silkeborg (Denmark); Overgaard, Johannes; Bayley, Mark [Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C (Denmark); Bindesbol, Anne-Mette [National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsovej 25, DK-8600 Silkeborg (Denmark); Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C (Denmark); Slotsbo, Stine; Fisker, Karina V.; Maraldo, Kristine [National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsovej 25, DK-8600 Silkeborg (Denmark); Waagner, Dorthe [National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsovej 25, DK-8600 Silkeborg (Denmark); Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C (Denmark); Labouriau, Rodrigo [Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Foulum, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Asmund, Gert [National Environmental Research Institute, Aarhus University, Department of Arctic Environment, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2011-01-15

    Stress originating from toxicants such as heavy metals can induce compensatory changes in the energy metabolism of organisms due to increased energy expenses associated with detoxification and excretion processes. These energy expenses may be reflected in the available energy reserves such as glycogen. In a field study the earthworm, Dendrobaena octaedra, was collected from polluted areas, and from unpolluted reference areas. If present in the environment, cadmium, lead and copper accumulated to high concentrations in D. octaedra. In contrast, other toxic metals such as aluminium, nickel and zinc appeared to be regulated and kept at low internal concentrations compared to soil concentrations. Lead, cadmium and copper accumulation did not correlate with glycogen reserves of individual worms. In contrast, aluminium, nickel and zinc were negatively correlated with glycogen reserves. These results suggest that coping with different metals in earthworms is associated with differential energy demands depending on the associated detoxification strategy. - Detoxification and accumulation of cadmium and lead by earthworms carries little energetic expenses whereas strict internal regulation of aluminium and nickel has energetic costs.

  9. Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil

    International Nuclear Information System (INIS)

    Holmstrup, Martin; Sorensen, Jesper G.; Overgaard, Johannes; Bayley, Mark; Bindesbol, Anne-Mette; Slotsbo, Stine; Fisker, Karina V.; Maraldo, Kristine; Waagner, Dorthe; Labouriau, Rodrigo; Asmund, Gert

    2011-01-01

    Stress originating from toxicants such as heavy metals can induce compensatory changes in the energy metabolism of organisms due to increased energy expenses associated with detoxification and excretion processes. These energy expenses may be reflected in the available energy reserves such as glycogen. In a field study the earthworm, Dendrobaena octaedra, was collected from polluted areas, and from unpolluted reference areas. If present in the environment, cadmium, lead and copper accumulated to high concentrations in D. octaedra. In contrast, other toxic metals such as aluminium, nickel and zinc appeared to be regulated and kept at low internal concentrations compared to soil concentrations. Lead, cadmium and copper accumulation did not correlate with glycogen reserves of individual worms. In contrast, aluminium, nickel and zinc were negatively correlated with glycogen reserves. These results suggest that coping with different metals in earthworms is associated with differential energy demands depending on the associated detoxification strategy. - Detoxification and accumulation of cadmium and lead by earthworms carries little energetic expenses whereas strict internal regulation of aluminium and nickel has energetic costs.

  10. Microwave acid-digestion method for determination of nickel, pro-oxidants and other heavy metals in different brands of banaspati ghee

    International Nuclear Information System (INIS)

    Latif, A.; Khan, F.; Noor, S.; Amin-ur-Rehman

    2009-01-01

    Samples of different brands of banaspati ghee (Hydrogenated vegetable oil) were procured from local market in Peshawar. Nickel, Pro-oxidants and other heavy metals in these samples were determined by microwave acid digestion method and were analyzed by atomic absorption spectrometry to evaluate the value of different brands of banaspati ghee found in the local Peshawar market. Microwave acid digestion program was developed to give reliable estimates for metals in small sample (0.5g) of banaspati ghee. It reduced the external contamination and required small quantities of acid, improving the detection-limits and overall accuracy of the analytical method. Iron and copper concentrations were found in ranges of (0.44-4.64 ppm), (0.072 - 0.38 ppm), respectively. Nickel ranged (0.098 - 0.24 ppm), while the concentrations of chromium, cadmium, lead, manganese and zinc ranged (0. 035 - 0. 15ppm), (0.022 - 0. 16ppm), (0.025 - 0.095ppm), (0.029 - 0.12 ppm) and (0.019 - 0.13 ppm), respectively.(author)

  11. LcMKK, a MAPK kinase from Lycium chinense, confers cadmium ...

    Indian Academy of Sciences (India)

    Cadmium (Cd) is a highly toxic element to plants. Ethylene is an ..... 1 mM DTT, 0.1 mM Na3VO4) at room temperature for. 30 min ..... a time-dependent manner following exposure to Cu and .... copper and cadmium. .... signaling mechanisms.

  12. Observed transitions in n = 2 ground configurations of copper, nickel, iron, chromium and germanium in tokamak discharges

    International Nuclear Information System (INIS)

    Hinnov, E.; Suckewer, S.; Cohen, S.; Sato, K.

    1981-11-01

    A number of spectrum lines of highly ionized copper, nickel, iron, chromium, and germanium have been observed and the corresponding transitions identified. The element under study is introduced into the discharge of the PLT Tokamak by means of rapid ablation by a laser pulse. The ionization state is generally distinguishable from the time behavior of the emitted light. New identifications of transitions are based on predicted wavelengths (from isoelectronic extrapolation and other data) and on approximate expected intensities. All the transitions pertain to the ground configurations of the respective ions, which are the only states strongly populated at tokamak plasma conditions. These lines are expected to be useful for spectroscopic plasma diagnostics in the 1-3 keV temperature range, and they provide direct measurement of intersystem energy separations from chromium through copper in the oxygen, nitrogen, and carbon isoelectronic sequences

  13. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    International Nuclear Information System (INIS)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-01-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  14. A novel process for recovering valuable metals from waste nickel-cadmium batteries.

    Science.gov (United States)

    Huang, Kui; Li, Jia; Xu, Zhenming

    2009-12-01

    The environment is seriously polluted due to improper and inefficient recycling of waste nickel-cadmium (Ni-Cd) batteries in China. The aim of this work is aimed to seek an environmentally friendly recycling process for resolving the negative impacts on environmental and human health resulting from waste Ni-Cd batteries. This work investigates the fundamentals of waste Ni-Cd batteries recycling through vacuum metallurgy separation (VMS) and magnetic separation (MS). The results obtained demonstrate that the optimal temperature, the addition of carbon powder, and heating time in VMS are 1023 K, 1 wt %, 1.5 h, respectively. More than 99.2 wt % Cd is recovered under the optimal experimental condition, and the Cd purity is 99.98%. Around 98.0 wt % ferromagnetic materials are recovered through MS under 60 rpm rotational speed and the recovery ratios of Fe, Ni and Co are 99.2 wt %, 96.1 wt %, and 86.4 wt %, respectively. The composition of ferromagnetic fractions in the residue after VMS increases from 82.3 to 99.6%. Based on these results, a process (including dismantling and crushing, VMS and MS) for recycling of waste Ni-Cd batteries is proposed. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.

  15. The effects of trace metal exposure on agonistic encounters in juvenile rainbow trout, Oncorhynchus mykiss

    International Nuclear Information System (INIS)

    Sloman, K.A.; Baker, D.W.; Ho, C.G.; McDonald, D.G.; Wood, C.M.

    2003-01-01

    The effects of five trace metals, copper, cadmium, nickel, zinc and lead (presented as soluble salts) on the ability of juvenile rainbow trout to form social relationships were investigated. Comparable concentrations of the five metals in relation to their acute 96 h LC50s (concentration at which population mortality=50% at 96 h) were used (i.e. 15% of the 96 h LC50) and water quality parameters (hardness=120 mg l -1 as CaCO 3 , pH 8; DOC=3 mg l -1 ) were kept constant throughout. In the first experiment, trout exposed to sublethal concentrations of cadmium for 24 h displayed significantly lower numbers of aggressive attacks during pair-wise agonistic encounters than fish paired in the copper, nickel, zinc, lead and control water. In a second experiment, fish were exposed to the same concentration of metal for 24 h, and then returned to normal water for 24 h. When these metal pre-exposed fish were paired with non-exposed fish only cadmium pre-exposure had a significant effect on social interaction. All of the cadmium pre-exposed fish became subordinate when paired with non-exposed fish, whereas the probability of a fish pre-exposed to copper, nickel, zinc or lead becoming subordinate did not significantly differ from random. Therefore, at around 15% of the 96 h LC50, different metals exert different effects on the social behaviour of fish, suggesting potential implications for social structure and population stability

  16. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  17. [Features of health disorders in miners employed at northern copper-nickel mines].

    Science.gov (United States)

    Siurin, S V; Shilov, V V

    2016-01-01

    The aim of the study was to assess the influence of different working conditions on the health of 1523 copper-nickel miners of the Kola High North. The low degree of mechanization of mining operations was established to be related to more higher levels of vibration, noise and physical overloads. The working in such conditions, when compared with high mining mechanization, leads to a decrease in the number of conditionally healthy workers (12% and 20.7%, p mining operations the greatest risk of occupational diseases in noted in drifters (OR = 5.68), at that it was higher at hand mining than at mechanized mining (RR = 1.44). There was made a conclusion about the need to improve the complex of measures for the preservation of health in this group of workers, especially engaged in the performance of tunnel works.

  18. Nickel-cadmium batteries: waste management

    International Nuclear Information System (INIS)

    Nogueira, C.A.; Delmas, F.; Margarido, F.; Guimaraes, C.; Sequerira, C.A.C.; Pacheco, A.M.G.; Brito, P.S.D.

    1998-01-01

    Given the hazardous heavy metal content of Ni-Cd batteries, recycling is the preferred waste management option when they can no longer be recharged. Mechanical and physical methods can be used to dismantle the batteries and to separate the component materials but this yields material which is impure or heterogeneous and needs subsequent thermal or chemical treatment. Pyrometallurgical processes may be applied for the distillation of metals such as cadmium which have a low boiling point. Such processes are relatively simple and cheap but are not very versatile and are high in energy consumption. Hydrometallurgical processes, though more expensive, are more versatile, can be applied to a wider range of wastes and are more environmentally friendly. (13 references) (UK)

  19. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  1. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-01-01

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola

  2. Production of biogas from Azolla pinnata R. Br. and Lemna minor L. : effect of heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S K; Gujral, G S; Jha, N K; Vasudevan, P [Indian Inst. of Tech., New Delhi (India)

    1992-01-01

    The absorption of iron, copper, cadmium, nickel, lead, zinc, manganese and cobalt by Azolla pinnata R.Br and Lemna minor L., and subsequent utilization of this biomass for production of biogas (methane), have been investigated. Iron or manganese did not have any toxic effect on the anaerobic fermentation of Azolla and Lemna, while copper, cobalt, lead and zinc showed toxicity. At low concentrations cadmium and nickel showed a favourable effect on the rate of biogas production and its methane content, but with increase in concentrations,rate of biogas production and methane content decreased. However, although there was this decrease in biogas production and methane content, the methane content of biogas was still higher than that which was obtained from non-contaminated biomass. (author).

  3. Observations of a fcc helium gas-bubble superlattice in copper, nickel, and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1980-01-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300 K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant asub(i), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface (approximately 4 x 10 17 He/cm 2 ). Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(i) obtained for copper, nickel and stainless steel are (7.6 +- 0.3)nm, (6.6 +- 0.5)nm and (6.4 +- 0.5)nm respectively. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300 K. The presentation of this data was accompanied by a cine film illustrating the behaviour of the gas bubble lattice in copper during post-irradiation annealing in the electron microscope. A summary of the film is given in the appendix. (author)

  4. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  5. Determination of Manganese, Copper, Cadmium and Lead by FAAS after Solid-Phase Extraction of Their Phenylpiperazine Dithiocarbamate Complexes on Activated Carbon

    OpenAIRE

    CESUR, Hasan

    2014-01-01

    A solid-phase extraction method was developed for the pre-concentration of manganese, copper, cadmium and lead in water samples prior to their determination by flame atomic absorption spectrometry using phenylpiperazine dithiocarbamate as a new reagent. The optimum pre-concentration conditions have been investigated such as pH, volume of sample solution and the effects of some matrix elements. The obtained recovery was nearly 90 to 100, while the enrichment factor was 400 for metal s...

  6. Development of nickel-hydrogen battery for electric vehicle; Denki jidoshayo nickel-suiso denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of battery, a main part of electric vehicle, have been promoted. Various batteries, such as lead battery, nickel-cadmium battery, nickel-hydrogen battery, lithium ion battery and so on, have been investigated for electric vehicles. Among these, nickel-hydrogen battery is superior to the others from the points of energy density, lifetime, low-temperature properties, and safety. It is one of the most prospective batteries for electric vehicle. Research and development of the nickel-hydrogen battery with higher energy density and longer lifetime have been promoted for the practical application by Tohoku Electric Power Co., Inc. This article shows main performance of the developed nickel-hydrogen battery for electric vehicle. The nominal voltage is 12 V, the rated capacity is 125 Ah, the outside dimension is L302{times}W170{times}H245 mm, the weight is 25.5 kg, the energy density is 60 Wh/kg, the output density is 180 W/kg, and the available environment temperature is between -20 and 60 {degree}C. 1 fig., 1 tab.

  7. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    Science.gov (United States)

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  9. Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Yanbang; Iqbal, Mazhar; Zhang, Qianqian; Spelt, Cornelis; Bliek, Mattijs; Hakvoort, Henk W J; Quattrocchio, Francesca M; Koes, Ronald; Schat, Henk

    2017-08-01

    Silene vulgaris is a metallophyte of calamine, cupriferous and serpentine soils all over Europe. Its metallicolous populations are hypertolerant to zinc (Zn), cadmium (Cd), copper (Cu) or nickel (Ni), compared with conspecific nonmetallicolous populations. These hypertolerances are metal-specific, but the underlying mechanisms are poorly understood. We investigated the role of HMA5 copper transporters in Cu-hypertolerance of a S. vulgaris copper mine population. Cu-hypertolerance in Silene is correlated and genetically linked with enhanced expression of two HMA5 paralogs, SvHMA5I and SvHMA5II, each of which increases Cu tolerance when expressed in Arabidopsis thaliana. Most Spermatophytes, except Brassicaceae, possess homologs of SvHMA5I and SvHMA5II, which originate from an ancient duplication predating the appearance of spermatophytes. SvHMA5II and the A. thaliana homolog AtHMA5 localize in the endoplasmic reticulum and upon Cu exposure move to the plasma membrane, from where they are internalized and degraded in the vacuole. This resembles trafficking of mammalian homologs and is apparently an extremely ancient mechanism. SvHMA5I, instead, neofunctionalized and always resides on the tonoplast, likely sequestering Cu in the vacuole. Adaption of Silene to a Cu-polluted soil is at least in part due to upregulation of two distinct HMA5 transporters, which contribute to Cu hypertolerance by distinct mechanisms. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  11. Mercury, arsenic and cadmium in the unfried and fried fish

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1978-01-01

    Determination of mercury, arsenic and cadmium in unfried and fried fish samples has been carried out by neutron activation followed by chemical separation to remove the interfering activies of copper, zinc etc. This paper presents results of finding on losses of mercury, arsenic and cadmium in the unfried and fried fish. (author)

  12. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    OpenAIRE

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S.; Korn, Maria das Graças Andrade; Bezerra, Marcos de Almeida

    2009-01-01

    Texto completo: acesso restrito. p. 1041-1045 A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L−1 nitric acid solution, the analytes are determinate employing fla...

  13. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    Science.gov (United States)

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  14. Normal modes of vibration in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Birgeneau, R J [Yale Univ., New Haven, Connecticut (United States); Cordes, J [Cambridge Univ., Cambridge (United Kingdom); Dolling, G; Woods, A D B

    1964-07-01

    The frequency-wave-vector dispersion relation, {nu}(q), for the normal vibrations of a nickel single crystal at 296{sup o}K has been measured for the [{zeta}00], [{zeta}00], [{zeta}{zeta}{zeta}], and [0{zeta}1] symmetric directions using inelastic neutron scattering. The results can be described in terms of the Born-von Karman theory of lattice dynamics with interactions out to fourth-nearest neighbors. The shapes of the dispersion curves are very similar to those of copper, the normal mode frequencies in nickel being about 1.24 times the corresponding frequencies in copper. The fourth-neighbor model was used to calculate the frequency distribution function g({nu}) and related thermodynamic properties. (author)

  15. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  16. Determination of Some Heavy Metals in Selected Poultry Feeds ...

    African Journals Online (AJOL)

    MBI

    2014-04-22

    Apr 22, 2014 ... Copper, Iron, Manganese, Nickel, Lead, Chromium and Zinc detected in all samples. ... on human health (SCAN, 2003). The risk of heavy metals contamination in meat is of great concern for both food safety and human health because of the toxic nature of ..... assessment of zinc, cadmium, lead and copper.

  17. Environmental geochemistry of abandoned flotation tailing reservior from the Tonglvshan Fe-Cu sulfide mine in Daye, Central China.

    Science.gov (United States)

    Guo, Y; Bao, Z Y; Deng, Y M; Ma, Z Z; Yan, S

    2011-07-01

    This study investigated metals of tailings from Tonglvshan mine in Daye and assessed the effect of metal contamination in water and sediment near the tailing reservoir. The concentration of copper, lead, zinc, cadmium, chromium and nickel was measured in deposit samples taken from a profile in an abandoned flotation tailing reservoir, as well as in water and sediment samples near the reservoir. The results of this study indicate that copper concentration ranges from 780 to 4390 mg/kg, 2-10 times higher than the limit values in soil, while the contents of other metals are below the limit values. Metal levels in water and sediments are high and varied widely in different sampling sites. The mean concentrations of copper, lead, zinc, cadmium, chromium and nickel in waters are 27.76, 2.28, 8.20, 0.12, 5.30 and 3.04 mg/L, while those in sediments are 557.65, 96.95, 285.20, 0.92, 94.30 and 4.75 mg/kg, respectively. All of the results indicate that the environment near the tailing reservoir is polluted to some extent by some kinds of metals, especially by copper, lead, zinc and cadmium, which may be caused not only by some discharge sources of metals, but also by life garbage and sewage.

  18. Effect of leaching on heavy metals concentration of soil in some ...

    African Journals Online (AJOL)

    Administrator

    chemical manufacturing, painting and coating, mining, extractive metallurgy, nuclear and other .... The concentration of cadmium, cobalt, chromium, copper, iron, lead, manganese, nickel, tin and zinc from seven locations on each dumpsites at ...

  19. Laboratory evaluation of emissivity of soils

    International Nuclear Information System (INIS)

    Alex, Z.C.; Behari, J.

    1998-01-01

    A procedure for the rapid and safe analysis of soils with widely differing organic matter contents has been investigated and validated. Surface soils, totalling 295 and sampled on a grid basis, representing 22% of the land-base of the Republic of Ireland, have been analysed for cadmium, chromium, copper, nickel, lead and zinc. Soil concentrations of cadmium, chromium, lead and nickel exhibit patterns of regionalised elevation. Implications of this elevation are considered in relation to sewage sludge application to land, future requirement for baseline surveys and concerns over concentrations in food products. (author)

  20. Sequential determination of nickel and cadmium in tobacco, molasses and refill solutions for e-cigarettes samples by molecular fluorescence.

    Science.gov (United States)

    Talio, María Carolina; Alesso, Magdalena; Acosta, Mariano; Wills, Verónica S; Fernández, Liliana P

    2017-11-01

    In this work, a new procedure was developed for separation and preconcentration of nickel(II) and cadmium(II) in several and varied tobacco samples. Tobacco samples were selected considering the main products consumed by segments of the population, in particular the age (youth) and lifestyle of the consumer. To guarantee representative samples, a randomized strategy of sampling was used. In the first step, a chemofiltration on nylon membrane is carried out employing eosin (Eo) and carbon nanotubes dispersed in sodium dodecylsulfate (SDS) solution (phosphate buffer pH 7). In this condition, Ni(II) was selectively retained on the solid support. After that, the filtrate liquid with Cd(II) was re-conditioned with acetic acid /acetate buffer solution (pH 5) and followed by detection. A spectrofluorimetric determination of both metals was carried out, on the solid support and the filtered aqueous solution, for Ni(II) and Cd(II), respectively. The solid surface fluorescence (SSF) determination was performed at λ em = 545nm (λ ex = 515nm) for Ni(II)-Eo complex and the fluorescence of Cd(II)-Eo was quantified in aqueous solution using λ em = 565nm (λ ex = 540nm). The calibration graphs resulted linear in a range of 0.058-29.35μgL -1 for Ni(II) and 0.124-56.20μgL -1 for Cd(II), with detection limits of 0.019 and 0.041μgL -1 (S/N = 3). The developed methodology shows good sensitivity and adequate selectivity, and it was successfully applied to the determination of trace amounts of nickel and cadmium present in tobacco samples (refill solutions for e-cigarettes, snuff used in narguille (molasses) and traditional tobacco) with satisfactory results. The new methodology was validated by ICP-MS with adequate agreement. The proposed methodology represents a novel fluorescence application to Ni(II) and Cd(II) quantification with sensitivity and accuracy similar to atomic spectroscopies, introducing for the first time the quenching effect on SSF. Copyright © 2017 Elsevier B

  1. Solid phase extraction method for the determination of lead, nickel, copper and manganese by flame atomic absorption spectrometry using sodium bispiperdine-1,1'-carbotetrathioate (Na-BPCTT) in water samples

    International Nuclear Information System (INIS)

    Rekha, D.; Suvardhan, K.; Kumar, J. Dilip; Subramanyam, P.; Prasad, P. Reddy; Lingappa, Y.; Chiranjeevi, P.

    2007-01-01

    A novel column solid phase extraction procedure was developed for the determination of lead, nickel, copper and manganese in various water samples by flame atomic absorption spectrometry (FAAS) after preconcentration on sodium bispiperdine-1,1'-carbotetrathioate (Na-BPCTT) supported by Amberlite XAD-7. The sorbed element was subsequently eluted with 1 M nitric acid and the acid eluates are analysed by Flame atomic absorption spectrometry (FAAS). Various parameters such as pH, amount of adsorbent, eluent type and volume, flow-rate of the sample solution, volume of the sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions was about 6.0 ± 0.2. The loading capacity of adsorbent for Pb, Cu, Ni and Mn were found to 28, 26, 22 and 20 x 10 -6 g/mL, respectively. The recoveries of lead, copper, nickel and manganese under optimum conditions were found to be 96.7-99.2 at the 95% confident level. The limit of detection was 3.0, 3.2, 2.8 and 3.6 x 10 -6 g/mL for lead, copper, nickel and manganese, respectively by applying a preconcentration factor 50. The proposed enrichment method was applied for metal ions in various water samples. The results were obtained are good agreement with reported method

  2. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  3. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    Science.gov (United States)

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  4. Download this PDF file

    African Journals Online (AJOL)

    USER

    2016-12-16

    Dec 16, 2016 ... copper, nickel, cadmium, vanadium, chromium, lead, mercury and arsenic were determined using ... This is largely dependent on the mineral bearing rocks .... into trace and toxic metals. Trace ..... Interaction of earthworms and.

  5. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    Seasonal study on Bothriocephalus as indicator of metal pollution in yellowfish, ... Water and sediment, as well as liver, muscle and tapeworm samples were ... iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, ...

  6. 54 Nigerian Journal of Chemical Research Vol. 22, No. 2, 2017 ...

    African Journals Online (AJOL)

    User

    and 29% respectively. It was also shown that the presence of binary and ternary ions concentration ... include chromium, mercury, nickel, copper, zinc, lead and cadmium 2 ... surface and pores, ion exchange, ... different condition parameters.

  7. Determination of presence and quantification of cadmium, lead and copper in Nile tilapia (Oreochromis niloticus fillets obtained from three cold storage plants in the state of Parana, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Nobuhiro Tajiri

    2011-06-01

    Full Text Available Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.

  8. Heavy metal contaminants in tissues of the garfish, Belone belone L., 1761, and the bluefish, Pomatomus saltatrix L., 1766, from Turkey waters.

    Science.gov (United States)

    Türkmen, Aysun; Tepe, Yalçin; Türkmen, Mustafa; Mutlu, Ekrem

    2009-01-01

    Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. Fish samples were collected through the coastal waters of Turkey and the contents of cadmium, cobalt, chrome, copper, iron, manganese, nickel, zinc and lead in the liver and muscle tissues were determined. Among the metals analyzed, copper, zinc and iron were the most abundant in the different tissues while cadmium and lead were the least abundant both in Belone belone and Pomatomus saltatrix. Metal concentrations in muscles of fish species were found 0.01-0.38 mg kg(-1) for cadmium, 0.01-0.53 mg kg(-1) for cobalt, 0.05-1.87 mg kg(-1) for chromium, 0.21-5.89 mg kg(-1) for copper, 9.99-43.3 mg kg(-1) for iron, 0.14-1.33 mg kg(-1) for manganese, 0.06-4.70 mg kg(-1) for nickel, 0.09-0.81 mg kg(-1) for lead, 3.85-15.9 mg kg(-1) for zinc, respectively. Regional changes in metal concentration were observed in the tissues of both species, but these variations may not influence consumption advisories.

  9. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  10. DETERMINATION OF TRACE HEAVY METALS IN SOME TEXTILE ...

    African Journals Online (AJOL)

    a

    the environmental and industrial samples including textile products [1-5]. Textile is one of the ... Toxic and allergic metals including cadmium, copper, nickel, zinc, and chemicals like formaldehyde and chlorinated hydrocarbons can exist in ...

  11. [CHEMICAL AIR POLLUTION OF THE OCCUPATIONAL ENVIRONMENT AS A FACTOR FOR PROFESSIONAL RISK FOR WORKERS OF MAIN OCCUPATIONS IN THE COPPER AND NICKEL METALLURGY].

    Science.gov (United States)

    Lipatov, G Ia; Adrianovskiĭ, V I; Gogoleva, O I

    2015-01-01

    There are presented the results of hygienic researches of the harmful substances content in the air of the working area ofthe copper and nickel metallurgy. Sulfur-containing gases (primarily sulfur dioxide), to the effects of which there are exposed workers of drying, smelting, converter conversion, are shown to play a leading role among professional factors.

  12. Relation between the degree of lung pollution by air pollution and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, H; Endo, R; Takemoto, K

    1975-04-01

    Human and dog lungs were analyzed for 13 kinds of heavy metals. The human lungs (all of Tokyo citizens) showed a broad range of dust sedimentation, some correlation between the degree of pollution and the amount of cadmium, nickel, and chromium only, and conspicuous individual differences seemingly due to occupation. No correlation was found between the amount of pulmonary metals, and age, or sex. In dog lungs there was no correlation between the local pollution and the amount of iron, copper, zinc, cobalt, and cadmium. Cadmium, nickel, lead, and chromium showed a correlation between local air pollution in human lungs. In dogs obtained in Korea, Ni and Cr were higher than in dog lungs obtained in Jinsen.

  13. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.

    Science.gov (United States)

    Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2018-01-03

    An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.

  14. Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Science.gov (United States)

    Mccoy, D. A.; Lackner, J. L.

    1986-01-01

    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.

  15. Essential elements, cadmium, and lead in raw and pasteurized cow and goat milk

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Collins, W.F.; Williams, H.L.

    1985-08-01

    Fifteen essential elements plus cadmium and lead were determined in raw and pasteurized cow and goat milks by atomic absorption spectrophotometry. When results were compared on a wet weight basis, there were no significant differences between the raw and pasteurized milks except for cobalt, iron, and lead in goat milk. When copper in goat milk was expressed on a dry weight basis, there was a significant difference between raw and pasteurized milk. There were significantly higher amounts of cobalt, copper, iron, lead, magnesium, and phosphorus, wet weight basis, in pasteurized goat milk than in pasteurized cow milk. Significantly more nickel and sodium were in pasteurized cow milk. No difference in the content of chloride, calcium, potassium, and zinc was significant between the two milks. When dry weights of the two milks were compared, statistical differences were the same, except there was significantly more calcium and potassium in pasteurized cow milk than in pasteurized goat milk and there were no significant differences in the content of lead and phosphorus between the two milks. Percentages of the established and estimated recommended daily allowances show both cow and goat milk to be excellent sources of calcium, phosphorus, and potassium and fair sources of iron, magnesium, and sodium.

  16. The role of nickel in urea assimilation by algae.

    Science.gov (United States)

    Rees, T A; Bekheet, I A

    1982-12-01

    Nickel is required for urease synthesis by Phaeodactylum tricornutum and Tetraselmis subcordiformis and for growth on urea by Phaeodactylum. There is no requirement for nickel for urea amidolyase synthesis by Chlorella fusca var. vacuolata. Neither copper nor palladium can substitute for nickel but cobalt partially restored urease activity in Phaeodactylum. The addition of nickel to nickel-deficient cultures of Phaeodactylum or Tetraselmis resulted in a rapid increase of urease activity to 7-30 times the normal level; this increase was not inhibited by cycloheximide. It is concluded that nickel-deficient cells over-produce a non-functional urease protein and that either nickel or the functional urease enzyme participates in the regulation of the production of urease protein.

  17. Oxidative stress biomarkers in Oreochromis niloticus as early ...

    African Journals Online (AJOL)

    ... in Oreochromis niloticus as early warning signals in assessing pollution from ... in comparison to control fish, can be used to assess river water quality using O. niloticus. ... Concentrations of zinc, cadmium, chromium, nickel, lead, copper, ...

  18. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  19. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.

    2009-01-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  20. Chemistry of nickel and copper production from sulphide ores | Love ...

    African Journals Online (AJOL)

    Nickel is one of Zimbabwe's principle metallurgical exports. It is processed to a very high level of purity and hence has a high value. The economics of nickel production can be difficult, as the selling value of nickel varies tremendously with time, from a low of US$ 3 900 per ton in late 1998 to US$ 10 100 per ton in May 2000, ...

  1. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  2. Catalytic reduction of NOx in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Das, R.K.

    2001-01-01

    Catalytic removal of NO x in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO x and up to 90% of engine NO x emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO x reduction in the presence of different reductants such as, NH 3 , urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO x removal. Nevertheless, catalysts which are durable, economic and active for NO x reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO x under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO x reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO x efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h -1 ; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h -1 . Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO x reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  3. Assessment of Bioremediation Technologies: Focus on Technologies Suitable for Field-Level Demonstrations and Applicable to DoD Contaminants.

    Science.gov (United States)

    1995-06-01

    Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...industrial facilities include chromium, copper, nickel, lead, mercury , cadmium, and zinc. Table 3 shows that inorganics in soil were identified as high... mercury , molybdenum, nickel, selenium, and tin. Constructed wetlands. The passive bioremediation of metals in wetlands is a concept borrowed from

  4. Coastal Marine Pollution in Dar es Salaam (Tanzania) relative to ...

    African Journals Online (AJOL)

    The objective was to determine the levels of microbial contamination, heavy metals and persistent ... chemical and cosmetic production; metal ... Mean (± SD) concentration of (a) copper, lead and nickel (b) chromium and zinc, and (c) cadmium ...

  5. Polarographic methods for the analysis of beryllium metal and its alloys

    International Nuclear Information System (INIS)

    Wells, J.M.

    1975-10-01

    This report describes polarographic methods for the analysis of beryllium metal and its alloys. The elements covered by these methods are aluminium, bismuth, cadmium, cobalt, copper, iron, lead, molybdenum, nickel, thallium, tungsten, uranium, vanadium and zinc. (author)

  6. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  7. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, E. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Duchemin, C., E-mail: Charlotte.Duchemin@subatech.in2p3.fr [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Guertin, A. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Haddad, F.; Michel, N. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); GIP Arronax, 1 rue Aronnax, 44817 Saint-Herblain (France); Métivier, V. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France)

    2016-09-15

    Highlights: • Natural titanium, nickel and copper targets. • 70 MeV ARRONAX cyclotron proton beam. • Stacked-foil technique and monitor reactions. • Experimental cross section values. • TALYS code version 1.6. - Abstract: New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  8. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    Science.gov (United States)

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil soil-root interface (or rhizosphere) soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  9. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Nikolaou, Aris; Pentari, Despina; Gidarakos, Evangelos

    2009-01-01

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  10. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  11. Heavy metal pollution in benthic fishes from Kiri Dam in Guyuk local ...

    African Journals Online (AJOL)

    Heterotis niloticus) and catfish (Clarotes laticeps) in Kiri Dam in the Guyuk local government area, Adamawa State, Nigeria were studied. The concentrations of lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni) and iron (Fe) were ...

  12. Determination of heavy metals in chinese prickly ash from different ...

    African Journals Online (AJOL)

    digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium ... concentrations of heavy metals in these CPA samples mean they are safe for human consumption. ... poisoning, including Pb, Cd, As, Hg, Sn, and Sb.

  13. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    International Nuclear Information System (INIS)

    Kronberg, J.W.

    1994-01-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries

  14. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2008-01-01

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd ∼ Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups

  15. The effect of an induced copper deficiency on the total plasma ...

    African Journals Online (AJOL)

    The effect of a copper deficiency on certain aspects of reproduction in ewes was ... induced by using the copper antagonists cadmium, calcium and sulphate. .... sodium (Na), magnesium (MG), potassium (K), blood urea nitrogen (BUN) and ...

  16. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  17. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  18. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  19. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    International Nuclear Information System (INIS)

    Alsop, Derek; Wood, Chris M.

    2013-01-01

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na + loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC 50 , one third of the LC 01 ) to all copper treatments decreased the copper 96 h LC 50 by 58%, while sublethal copper exposure (6% of the copper LC 50 , 13% of the LC 01 ) decreased the cadmium 96 h LC 50 by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na + followed by K + (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na + and K + . Overall, whole body Na + loss showed the greatest correlation with mortality across a variety of toxicants. We theorize that a disruption of

  20. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.

    Science.gov (United States)

    Wu, Longhua; Li, Zhu; Han, Cunliang; Liu, Ling; Teng, Ying; Sun, Xianghui; Pan, Cheng; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2012-07-01

    A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.

  1. Evaluation program for secondary spacecraft cells: Initial evaluation tests of General Electric Company 40.0 ampere hour nickel cadmium spacecraft cells for the tracking data relay satellite system

    Science.gov (United States)

    Hall, S. W.

    1980-01-01

    Average end of charge voltages and pressures, and capacity output in ampere hours are presented. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are based on past cell performance data. The requirement does not constitute a limit for discontinuance from testing. The nickel cadmium batteries were screened for internal shorts, low capacity, electrolyte leakage, or inability of any cell to recover its open circuit voltage above 1.150 volts during the internal short test.

  2. Great Lakes water quality initiative criteria documents for the protection of aquatic life in ambient water. Draft report

    International Nuclear Information System (INIS)

    1993-02-01

    The document discusses the Tier 1 aquatic life criteria for 16 criteria documents. The compounds and metals discussed are Arsenic (III), Cadmium, Chromium (III), Chromium (VI), Copper, Cyanide (free), Dieldrin, Endrin, Lindane, Mercury (II), Nickel, Parathion, Pentachlorophenol, Phenol, Selenium, and Zinc

  3. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  4. Sorption media for stormwater treatment - A laboratory evaluation of five low-cost media for their ability to remove metals and phosphorus from artificial stormwater

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn H.; Hvitved-Jacobsen, Thorkild

    2012-01-01

    states. The sorbents were tested towards phosphorus, arsenic, cadmium, chromium, copper, nickel, lead and zinc at concentration and conditions relevant for typical stormwater. The materials were tested for sorption capacity and kinetics. Desorption was tested under neutral and alkaline conditions...

  5. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial.

    Science.gov (United States)

    Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore

    2009-08-01

    The purpose of this study was to investigate the efficiency of copper-nickel-titanium (CuNiTi) vs nickel-titanium (NiTi) archwires in resolving crowding of the anterior mandibular dentition. Sixty patients were included in this single-center, single-operator, double-blind randomized trial. All patients were bonded with the In Ovation-R self-ligating bracket (GAC, Central Islip, NY) with a 0.022-in slot, and the amount of crowding of the mandibular anterior dentition was assessed by using the irregularity index. The patients were randomly allocated into 2 groups of 30 patients, each receiving a 0.016-in CuNiTi 35 degrees C (Ormco, Glendora, Calif) or a 0.016-in NiTi (ModernArch, Wyomissing, Pa) wire. The type of wire selected for each patient was not disclosed to the provider or the patient. The date that each patient received a wire was recorded, and all patients were followed monthly for a maximum of 6 months. Demographic and clinical characteristics between the 2 wire groups were compared with the t test or the chi-square test and the Fisher exact test. Time to resolve crowding was explored with statistical methods for survival analysis, and alignment rate ratios for wire type and crowding level were calculated with Cox proportional hazards multivariate modeling. The type of wire (CuNiTi vs NiTi) had no significant effect on crowding alleviation (129.4 vs 121.4 days; hazard ratio, 1.3; P >0.05). Severe crowding (>5 on the irregularity index) showed a significantly higher probability of crowding alleviation duration relative to dental arches with a score of wires in laboratory and clinical conditions might effectively eliminate the laboratory-derived advantage of CuNiTi wires.

  6. Cancer incidence among copper smelting and nickel refining workers in Finland.

    Science.gov (United States)

    Pavela, Markku; Uitti, Jukka; Pukkala, Eero

    2017-01-01

    Among workers employed at a nickel refinery in Harjavalta, Finland an increased risk of lung and sinus cancer has been demonstrated in two previous studies. The current study adds 16 more years of follow-up to these studies. A total of 1,115 persons exposed to nickel and 194 non-exposed workers in the Harjavalta nickel smelter and refinery were followed up for cancer from 1967 to 2011 through the Finnish Cancer Registry. The total number of cancer cases in men was 251 (Standardized incidence ratio (SIR) 1.05) and in women 12 (SIR 1.22). In the most nickel-exposed work site (refinery), there were 14 lung cancers (SIR 2.01) and 3 sinonasal cancers (SIR 26.7, 95%). It is likely that exposure to nickel compounds is the main reason for elevated nasal cancer risk among the nickel refinery employees and may also contribute to the excess risk of lung cancer. Am. J. Ind. Med. 60:87-95, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYL)ETHANONE N(4)-ALLYL-3-THIOSEMICARBAZONE

    OpenAIRE

    Vasilii GRAUR; Serghei SAVCIN; Victor TSAPKOV; Aurelian GULEA

    2015-01-01

    The paper presents the synthesis of the ligand 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone (H2L) and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 ce...

  8. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  9. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  10. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  11. Copper, Cadmium and Lead in superficial sediment, water and the fish Cyprinodon Dearborni, in two Lagoons of Venezuela

    International Nuclear Information System (INIS)

    Toledo, J.; Lemus, M.; Chung, K. S

    2000-01-01

    The concentration of copper, cadmium and lead in superficial sediment, water and the fish Cyprenodon dearborni was determined in two coastal lagoons of Sucre State, Venezuela. Chacopata lagoon is hyper saline while Los Patos Lagoon is hypo saline and receives significant waste water from Cumana city. Water, sediment and fish samples were collected in Frebruary 1998. In the laboratory, samples underwent acid digestion and were analysed by atomic absorption spectrophotometry. The mean values of the metals in C dearborni from the Chacopata lagoon were: 159.26± 210.68 μg/g for Cu, 44.71±45.58 μg/g for Cd, and 9.31±23.34 μg/g for Pb, while for Los Patos lagoon the mean values were: 64.88±16.30, 19.48± 5.81 and 22.85±20.00, respectively. In the water column, the metal concentration ranges were: 2.3-11.6, 3.9-5.4 and 21-32 mg/l for cooper, cadmium and lead, respectively. These results suggest that metal levels in sediment, water column and organisms in both lagoons do not differ, except for lead, even though only Los Patos receives waste water. (Author) [es

  12. Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2 Prime -bipyridine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Kapoor, I.P.S. [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009 (India); Singh, Gurdip, E-mail: gsingh4us@yahoo.com [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009 (India); Froehlich, Roland [Institut fuer Organische Chemie, Universitaet Muenster, D-48149 Muenster (Germany)

    2012-10-10

    Graphical abstract: Nickel and copper nitrate complexes with 2,2 Prime -bipyridine, nitrate and water ligands have been prepared and characterized by single crystal X-ray diffraction, FT-IR and CHN analyses. Thermolysis was performed by using TG, DTA and ignition delay measurements. The kinetics of thermolysis were also evaluated. Highlights: Black-Right-Pointing-Pointer Preparation and characterization of Ni and Cu nitrate complexes have been reported. Black-Right-Pointing-Pointer Thermolysis has been carried out using TG-DTA and ignition delay measurements. Black-Right-Pointing-Pointer Their thermal decomposition pathways have been proposed. Black-Right-Pointing-Pointer Oxides residues as end product of thermolysis were revealed by XRD patterns. Black-Right-Pointing-Pointer Kinetics of their isothermal decomposition was evaluated. - Abstract: Nickel and copper nitrate complexes with 2,2 Prime -bipyridine (bipy) as a N donor and nitrate and water as oxygen donor ligands of the general formula [M(NO{sub 3})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 3}](NO{sub 3}), where M = Ni and Cu, have been obtained from the corresponding metal nitrate salts. These complexes were characterized by X-ray crystallography, FT-IR, and CHN analysis. Both the complexes have been found to be six coordinated. Their thermal decomposition behaviour was investigated by TG, DTA, and ignition delay measurements. TG-DTA examinations of these complexes revealed multistep thermal decomposition. The corresponding metal oxide residues obtained after thermolysis were identified from their X-ray diffraction patterns (XRD). Kinetics of isothermal decomposition of the complexes was established from both the model-fitting as well as isoconversional methods.

  13. Evaluation of nickel-hydrogen battery for space application

    Science.gov (United States)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  14. Metallothionein expression during liver regeneration after partial hepatectomy in cadmium-pretreated rats

    Energy Technology Data Exchange (ETDEWEB)

    Margeli, A.P. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Theocharis, S.E. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Yannacou, N.N. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Spiliopoulou, C. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Koutselinis, A. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece))

    1994-10-01

    Metallothionein is a low molecular mass protein inducible mainly by heavy metals, having high affinity for binding cadmium, zinc and copper. In the present study we investigated the expression of metallothionein in regenerating liver, at different time intervals, in cadmium pretreated partially hepatectomized rats. Liver metallothionein is highly expressed during regeneration induced by partial hepatectomy in rats, providing zinc within the rapidly growing tissue. Cadmium pretreatment caused inhibition of the first peak of liver regeneration, while metallothionein expression was markedly more prominent in the liver residues of cadmium-pretreated rats. These results demonstrate that although metallothionein able to bind temporarily metal ions as zinc and cadmium has been highly expressed, the liver regenerative process was inhibited possibly due to the effects of cadmium on other pivotal events necessary to the DNA replication. (orig.)

  15. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  16. Characterization of zinc–nickel alloy electrodeposits obtained from ...

    Indian Academy of Sciences (India)

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical ...

  17. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials

    Directory of Open Access Journals (Sweden)

    Liliana Argueta-Figueroa

    2014-08-01

    Full Text Available The antibacterial effect is a desirable property in dental materials. Development of simple methods for the preparation of nanosized metal particles has attracted significant attention because of their future applications due to unusual size-dependent antibacterial properties. Copper (Cu, Nickel (Ni and bimetallic Cu–Ni nanoparticles were prepared by a simple chemical method and their antibacterial activity was tested against the widely used standard human pathogens Staphylococcus aureus (gram-negative and Escherichia coli (gram-positive. Additionally, these nanoparticles were tested against the dental pathogen Streptococcus mutans. Our results are promising for potential use in dental materials science.

  18. Microplasticity and dislocation mobility in copper-nickel single crystals evaluated from strain-amplitude-dependent internal friction. [CuNi

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Y.; Okada, Y.; Asano, S. (Dept. of Materials Science and Engineering, Nagoya Inst. of Tech. (Japan))

    1992-02-16

    Internal friction in copper-0.4 to 7.6 at% nickel single crystals is measured as a function of strain amplitude at various temperatures. Analysis of the data on the amplitude-dependent internal friction yields the relation of effective stress and microplastic strain of the order of 10{sup -9}. The stress-strain responses thus obtained exhibit that the microplastic flow stress increases more rapidly on alloying than the macroscopic yield stress. The mean dislocation velocity is also evaluated from the internal-friction data, which corresponds well to the etch-pit data. It is shown that the dislocation motion is impeded by friction due to dispersed solute atoms. (orig.).

  19. The contact heat conductance at diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    International Nuclear Information System (INIS)

    Assoufid, L.; Khounsary, A.M.

    1996-01-01

    Results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray diamond monochromators under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. Measured average interface heat conductances are 44.7 ±8 W/cm 2 -K for nonplated copper and 23.0 ±3 W/cm 2 -K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10 degree C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes

  20. Heavy metal, proximate and microbial profile of some selected ...

    African Journals Online (AJOL)

    Dr. Ogundiran

    2014-03-05

    Mar 5, 2014 ... other protein sources like goat and chicken meat, it is safer, healthier and is also ... (such as zinc, copper, lead, cadmium, nickel and arsenic) present in the order Zn .... end point changes from green to pink. Volume of acid ...

  1. 1524-IJBCS-Article-Yindubé Kan Lati

    African Journals Online (AJOL)

    Pr GATSING

    Available online at http://ajol.info/index.php/ijbcs ... heavy metals (lead, cadmium, copper and nickel) in the waters of Bè Lagoon showed levels of about 2.58 ±. 0.11 µg/l, 1.03 ..... Trophic chains ... Sea using mussels as sentinel organisms.

  2. Manual for calculating critical loads of heavy metals for soils and surface waters; preliminary guidelines for environmental quality criteria, calculation methods and input data

    NARCIS (Netherlands)

    Vries, de W.; Bakker, D.J.

    1996-01-01

    Methodologies are described for calculating critical loads of lead, cadmium, copper, zinc, nickel, chromium and mercury for soils and surface waters. The aspects which are discussed are: selection of a computation model, determination of environmental-quality criteria for the metals, collection of

  3. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Pentari, Despina; Wang, Jing-Yuan; Gidarakos, Evangelos

    2010-01-01

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.

  4. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Wang, Jing-Yuan [Residues and Resource Reclamation Centre (R3C), Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2010-12-15

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type.

  5. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam; Evaluacion de metales pesados Cr, Fe, Ni, Cu, Zn, Cd, Pb y Hg en agua, sedimento y lirio acuatico (Eichhornia crassipes) de la Presa Jose Antonio Alzate, Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Avila P, P

    1996-12-31

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences ({alpha} < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author).

  6. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam

    International Nuclear Information System (INIS)

    Avila P, P.

    1995-01-01

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences (α < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author)

  7. Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Millikan, C R

    1947-01-01

    The addition of molybdenum to solutions containing an excess of either manganese, zinc, copper, nickel or cobalt respectively, resulted in decreases in the severity of iron deficiency symptoms which normally occurred when flax was grown in solutions containing the same concentrations of any of these elements, but without molybdenum. The efficacy of molybdenum in this regard increased with increasing concentration up to 25 parts per million. However, concentrations of 0.5 to 2 parts per million of molybdenum had little effect on the severity of iron deficiency symptoms at the concentrations of heavy metals used. Molybdenum 5, 10 or 25 parts per million also retarded the date of appearance and reduced the severity of lower leaf necrosis which is another characteristic symptom of the presence of excess manganese (25 to 100 parts per million) in the nutrient solution. It is concluded that an essential function of molybdenum is intimately associated with the regulation of the deleterious effect of manganese, zinc, copper, nickel or cobalt on the physiological availability of iron to the plant. 46 references, 3 figures.

  8. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  9. Thin-film cadmium telluride photovoltaics: ES and H issues, solutions, and perspectives

    International Nuclear Information System (INIS)

    Zweibel, K.; Moskowitz, P.; Fthenakis, V.

    1998-02-01

    Photovoltaics (PV) is a growing business worldwide, with new technologies evolving towards potentially large-volume production. PV use produces no emissions, thus offsetting many potential environmental problems. However, the new PV technologies also bring unfamiliar environment, safety, and health (ES and H) challenges that require innovative solutions. This is a summary of the issues, solutions, and perspectives associated with the use of cadmium in one of the new and important PV technologies: thin-film, cadmium telluride (CdTe) PV, which is being developed and commercialized by several companies including Solar Cells Inc. (Toledo, Ohio), BP Solar (Fairfield, California), and Matsushita (Japan). The principal ES and H issue for thin-film cadmium telluride PV is the potential introduction of cadmium--a toxic heavy metal--into the air or water. The amount of cadmium in thin-film PV, however, is quite small--one nickel cadmium flashlight battery has about as much cadmium (7 g) as a square meter of PV module using current technology--and a typical cordless power tool will have 5--10 batteries. CdTe modules are also very well sealed, limiting the chance of release. Nonetheless, minimizing the amount of cadmium in cadmium telluride modules and preventing the introduction of that cadmium into the environment is a top priority for National Renewable Energy Laboratory researchers and cadmium telluride PV manufacturers

  10. Levels of heavy metals in Gubi dam water Bauchi, Nigeria | Wufem ...

    African Journals Online (AJOL)

    Global Journal of Environmental Sciences ... The average concentrations of iron, manganese, nickel, zinc, cobalt, chromium and cadmium were generally highest in filtrate water, whereas the concentrations of copper and lead were always highest in the suspended materials which indicate the dominant role played by ...

  11. Biological recovery of metals, sulfur and water in the mining and metallurgical industry

    NARCIS (Netherlands)

    Weijma, J.; Copini, C.F.M.; Buisman, C.J.N.; Schultz, C.E.

    2002-01-01

    Metals of particular interest in acid mine drainage and industrial wastewaters include copper, zinc, cadmium, arsenic, manganese, aluminum, lead, nickel, silver, mercury, chromium, uranium and iron, in a concentration that can range from 106 to 102 g/l. The composition of such wastewater reflects

  12. Processes affecting the distribution and speciation of heavy metals in the Rhine/Meuse estuary

    NARCIS (Netherlands)

    Paalman, M.A.A.

    1997-01-01

    When rivers drain areas with a high population density the sediments are often contaminated with heavy metals, such as chromium, cobalt, nickel, copper, zinc, cadmium, mercury and lead. The extent and seriousness of sediment contamination is most pronounced in the lower reaches of rivers, where

  13. Heavy metals burden of Keenjhar Lake, District Thatta, Sindh, Pakistan

    African Journals Online (AJOL)

    Detection of heavy metals (HMs) content from Keenjhar Lake water was carried out monthly from January to December, 2003. Zinc, chromium, copper, iron, manganese, nickel and cadmium were analyzed by dual mode of analytical methods flame atomic absorption spectrometry and electrothermal atomic absorption ...

  14. Toxic elements and speciation in seafood samples from different contaminated sites in Europe

    NARCIS (Netherlands)

    Maulvault, A.L.; Anacleto, P.; Barbosa, V.; Sloth, J.J.; Rasmussen, R.; Tediosi, A.; Fernandez-Tejedor, M.; Heuvel, F.H.M.; Kotterman, M.J.J.; Marques, A.

    2015-01-01

    The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic

  15. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  16. Distribution ratios on Dowex 50W resins of metal leached in the caron nickel recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, B.A.; Metsa, J.C.; Mullins, M.E.

    1980-05-01

    Pressurized ion exchange on Dowex 50W-X8 and 50W-X12 resins was investigated using elution techniques to determine distribution ratios for copper, nickel, and cobalt complexes contained in ammonium carbonate solution, a mixture which approximates the waste liquor from the Caron nickel recovery process. Results were determined for different feed concentrations, as well as for different concentrations and pH values of the ammonium carbonate eluant. Distribution ratios were compared with those previously obtained from a continuous annular chromatographic system. Separation of copper and nickel was not conclusively observed at any of the conditions examined.

  17. Distribution ratios on Dowex 50W resins of metal leached in the caron nickel recovery process

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Metsa, J.C.; Mullins, M.E.

    1980-05-01

    Pressurized ion exchange on Dowex 50W-X8 and 50W-X12 resins was investigated using elution techniques to determine distribution ratios for copper, nickel, and cobalt complexes contained in ammonium carbonate solution, a mixture which approximates the waste liquor from the Caron nickel recovery process. Results were determined for different feed concentrations, as well as for different concentrations and pH values of the ammonium carbonate eluant. Distribution ratios were compared with those previously obtained from a continuous annular chromatographic system. Separation of copper and nickel was not conclusively observed at any of the conditions examined

  18. Copper welding in solid phase; Svarka medi v tverdoj faze

    Energy Technology Data Exchange (ETDEWEB)

    Avagyan, V Sh

    1993-12-31

    An analysis of the publications on the technology of diffusion welding of copper in solid phase is carried out. The aspects of diffusion welding of copper with silver, aluminium, nickels, chromium, titanium, stainless steel and refractory metals are considered 35 refs.

  19. Initial evaluation tests of General Electric Company 26.5 ampere-hour nickel-cadmium spacecraft cells with auxiliary electrodes for the TIROS-N and NOAA-A satellites

    Science.gov (United States)

    Harkness, J. D.

    1978-01-01

    This evaluation test program had the purpose to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are referenced to as normally expected values based on past performance of aerospace nickel-cadmium cells with demonstrated life characteristics. A requirement does not constitute a limit for discontinuance from test.

  20. Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes: Chapter I in Mineral deposit models for resource assessment

    Science.gov (United States)

    Schulz, Klaus J.; Woodruff, Laurel G.; Nicholson, Suzanne W.; Seal, Robert R.; Piatak, Nadine M.; Chandler, Val W.; Mars, John L.

    2014-01-01

    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (±) platinum-group elements (PGE), account for approximately 60 percent of the world’s nickel production. Most of the remainder of the Ni production is derived from lateritic deposits, which form by weathering of ultramafic rocks in humid tropical conditions. Magmatic Ni-Cu±PGE sulfide deposits are spatially and genetically related to bodies of mafic and/or ultramafic rocks. The sulfide deposits form when the mantle-derived mafic and/or ultramafic magmas become sulfide-saturated and segregate immiscible sulfide liquid, commonly following interaction with continental crustal rocks.

  1. Pressure brazing of ceramics to metals with copper solder

    International Nuclear Information System (INIS)

    Pavlova, M.A.; Metelkin, I.I.

    1986-01-01

    The effect on the quality of joints brazed with copper of different non metallized aluminooxide dielectrics with metals and alloys of a series of technological parameters (temperature, pressure, holding, and medium) in the course of pressure brazing is investigated. It is shown that in case of brazing with kovar and nickel the character of dependences is identical, however in all cases the joints with nickel are more durable. For the ceramics - molybdenum system characterized by weak interaction with copper solder kinetic dependences have no maximum and only under holding of more than 20 min the constant strength of 150-190 MPa is attained

  2. Acute toxicities of copper, cadmium and Cu: Cd mixture to larvae of the shrimp Penaeus Penicillatus

    Science.gov (United States)

    Munshi, A. B.; Su, Yong-Quan; Li, Shao-Jing

    1996-06-01

    This study showed lethal concentrations (LC) of copper for Peneaus penicillatus at various stages of its life cycle were 1000 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 vg/L for Zoea II, 2500 μg/L for Zoea III, 3000 μg/L for Mysis I, II and III and that for almost 100% mortality for postlarvae was 3000 μg/L. For cadmium LC were 100 μg/L for nauplii, 500 μg/L for Zoea I, 1000 μg/L for Zoea II, 2000 μg/L for Zoea III, 2500 μg/L for Mysis I and 3500 μg/L for Mysis II, III and postlarvae. For mixture of both metals, LC were 400 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 μg/L for Zoea II and 3000 μg/L for Mysis I, II, III and post larvae.

  3. Relationship between the level of zinc, lead, cadmium, nickel and chromium in hair of people with diabetes

    Directory of Open Access Journals (Sweden)

    Tadayon F.

    2014-07-01

    Full Text Available It has long been believed that some metals possess many adverse health effects. Recently, certain elements have been identified as essential trace elements that play an important role in the genesis and progression of several diseases. Some toxic metals have also been shown to be elevated in biological samples of diabetes mellitus patients. The status of trace elements in diabetes patients is also influenced by their diet, drugs administered and, to a large extent, by environmental factors. Pollutants due to the presence of toxic metals in environment not only enter the body by breading, water, and foodstuff accumulates in hair, but they could be adsorbed directly on the hair from environment. The aim of present study was to investigate the relationship between the level of zinc, lead, cadmium, nickel and chromium in hair samples of diabetic women from Tehran (Iran. The study population consisted of 100 women between 30 to 70 years of age from Tehran. The hair samples were washed with 1% (w/v (DDTC, 0.1M HCL and deionized water. Afterwards, the hair sample dried in oven at 70° C for 5 hours and then digested the next day. Dry ashing digestion procedure was carried out. The concentration of elements was measured by means of an atomic absorption spectrophotometer. The statistical analysis confirmed that mean concentrations of lead and nickel did not differ significantly from the control group. The results of this study showed that the mean values of Cr and Zn were significantly decreased in scalp hair samples of diabetic patients as compared to control subjects. Hair Cd level was significantly higher in type 2 diabetic patients. Values of Pearson correlation coefficient showed positive correlation between these elements.

  4. evaluation of physico-chemical parameters of agricultural soils

    African Journals Online (AJOL)

    Benlkhoubi N, Saber S, Lebkiri A, Rifi El and Fahime El

    2016-05-01

    May 1, 2016 ... analysis of source plasma emission (ICP) has identified eight trace elements ... that the interaction between the different physicochemical .... mineral soil), following the low organic matter of the studied soils where .... Copper, Zinc, Arsenic, Lead, Cadmium and Nickel ) developed at the media, were read in.

  5. Heavy metal bioaccumulation in Callinectes amnicola and ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals in organisms is as a result of pollutants discharge generated by anthropogenic and natural activities which has become a tremendous concern in developing nations. The levels of cadmium, copper, chromium, lead, zinc and nickel in the tissue of Callinectes amnicola and ...

  6. Determination of heavy metals in chinese prickly ash from different ...

    African Journals Online (AJOL)

    Methods: CPA samples collected from different production areas in China were subjected to microwave digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), tin (Sn), and antimony (Sb) were determined by inductively coupled plasma-mass spectrometry ...

  7. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe

    NARCIS (Netherlands)

    Mapanda, F.; Mangwayana, E.N.; Nyamangara, J.; Giller, K.E.

    2005-01-01

    The magnitude of contamination, regulatory compliance and annual loadings of soils with copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr) and lead (Pb) were determined at three sites in Harare where wastewater was used to irrigate vegetable gardens for at least 10 years. Heavy metal

  8. Risk Assessment of Heavy Metal Contamination on Vegetables Grown in Long-term Wastewater Irrigated Urban Farming Sites in Accra, Ghana

    DEFF Research Database (Denmark)

    Lente, I.; Keraita, Bernard; Drechsel, P.

    2012-01-01

    Assessment was done of heavy-metal contamination and its related health risks in urban vegetable farming in Accra. Samples of irrigation water (n = 120), soil (n = 144) and five different kinds of vegetable (n = 240) were collected and analyzed for copper, zinc, lead, cadmium, chromium, nickel an...

  9. Initial study of Nickel Electrolyte for EnFACE Process

    Directory of Open Access Journals (Sweden)

    Tri Widayatno

    2015-03-01

    Full Text Available Nickel electrolyte for a micro-pattern transfer process without photolithography, EnFACE, has been developed. Previous work on copper deposition indicated that a conductivity of ~2.7 Sm-1 is required. Electrochemical parameters of electrolyte i.e. current density and overpotential are also crucial to govern a successful pattern replication. Therefore, the investigation focused on the measurement of physicochemical properties and electrochemical behaviour of the electrolyte at different nickel concentrations and complexing agents of chloride and sulfamate. Nickel electrolytes containing sulfamate, chloride and combined sulfamate-chloride with concentrations between 0.14 M and 0.3 M were investigated. Physicochemical properties i.e. pH and conductivity were measured to ensure if they were in the desired value. The electrochemical behaviour of the electrolytes was measured by polarisation experiments in a standard three-electrode cell. The working electrode was a copper disc (surface area of 0.196 cm2 and the counter electrode was platinum mesh. The potential was measured againts a saturated calomel reference electrode (SCE. The experiments were carried out at various scan rate and Rotating Disc Electrode (RDE rotation speed to see the effect of scan rate and agitation. Based on the measured physicochemical properties, the electrolyte of 0.19 M nickel sulfamate was chosen for experimentation. Polarisation curve of agitated solution suggested that overall nickel electrodeposition reaction is controlled by a combination of kinetics and mass transfer.  Reduction potential of nickel was in the range of -0.7 to -1.0 V. The corresponding current densities for nickel deposition were in the range of -0.1 to -1.5 mA cm-2.

  10. APT characterization of high nickel RPV steels

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F

    2004-01-01

    Full text: The microstructures of several high nickel content pressure vessel steels have been characterized by atom probe tomography. The purposes of this study were to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels and to establish whether any additional phases were present after neutron irradiation. The nickel levels in these steels were at least twice that typically found in Western pressure vessel steels. Two different types of pressure vessel steels with low and high copper contents were selected for this study. The first set of alloys was low copper (∼0.05% Cu) base (15Ch2NMFAA) and weld (12Ch2N2MAA) materials used in a VVER-1000 reactor. The composition of the lower nickel VVER-1000 base material was Fe- 0.17 wt% C, 0.30% Si, 0.46% Mn, 2.2% Cr, 1.26% Ni, 0.05% Cu, 0.01% S, 0.008% P, 0.10% V and 0.50% Mo. The composition of the higher nickel VVER-1000 weld material was Fe- 0.06 wt % C, 0.33% Si, 0.80% Mn, 1.8% Cr, 1.78% Ni, 0.07% Cu, 0.009% S, 0.005% P, and 0.63% Mo. The VVER-1000 steels were irradiated in the HSSI Program's irradiation facilities at the University of Michigan, Ford Nuclear Reactor at a temperature of 288 o C for 2,137 h at an average flux of 7.08 x 10 11 cm 2 s -1 for a fluence of 5.45 x 10 18 n cm -2 (E >1 MeV) and for 5,340 h at an average flux of 4.33 x 10 11 cm -2 s -1 for a fluence of 8.32 x 10 1 28 n cm -2 (E >1 MeV). Therefore, the total fluence was 1.38 x 10 19 n cm -2 (E >1 MeV). The second type of pressure vessel steel was a high copper (0.20% Cu) weld from the Palisades reactor. The average composition of the Palisades weld was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mn. The Palisades weld, designated weldment 'B' from weld heat 34B009, was irradiated at a temperature of 288 o C and a flux of ∼7 x 10 11 cm -2 s -1 to a fast fluence of 1.4 x 10 19 n cm -2 (E >1 MeV). These three

  11. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  12. Exploring the Molecular Mechanisms of Nickel-Induced Genotoxicity and Carcinogenicity: A Literature Review

    Science.gov (United States)

    Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.

    2011-01-01

    Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nickel toxicity is influenced by the route of exposure, dose, and solubility of the nickel compound. Lung inhalation is the major route of exposure for nickel-induced toxicity. Nickel may also be ingested or absorbed through the skin. The primary target organs are the kidneys and lungs. Other organs such as the liver, spleen, heart and testes may also be affected to a lesser extent. Although the most common health effect is an allergic reaction, research has also demonstrated that nickel is carcinogenic to humans. The focus of the present review is on recent research concerning the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity. We first present a background on the occurrence of nickel in the environment, human exposure, and human health effects. PMID:21905451

  13. Health assessment for Tex Tin Corporation, National Priorities List Site, Texas City, Texas, Region 6. CERCLIS No. TXD062113329. Preliminary report

    International Nuclear Information System (INIS)

    1990-01-01

    The Tex Tin Corporation facility, formerly Gulf Chemical and Metallurgical Corporation, is a proposed National Priorities List site located in Texas City, Galveston County, Texas. Tex Tin previously operated as a primary tin smelter, but currently operates as a copper smelter. Significant concentrations of metals (antimony, arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury, nickel, silver, tin, and zinc) have been detected on-site in surface water, groundwater, and soil. Significant concentrations of metals (arsenic, cadmium, chromium, lead, nickel, and tin) have also been detected in ambient air samples collected off-site. Some remediation activities have occurred on-site including the closure of a 19-million-gallon ferric chloride pond and the removal of approximately 4,000 drums containing radioactive material. The Tex Tin site poses a potential public health concern for on-site workers, residents living in nearby neighborhoods, and possibly for a limited number of residents on private wells located within approximately one mile of the site

  14. Effect of nocturnal exhaustion exercise on the metabolism of selected elements

    Directory of Open Access Journals (Sweden)

    Patlar Suleyman

    2014-01-01

    Full Text Available The present study aims to examine how exercise performed until fatigue at night affects element distribution in the serum. The study examined 10 healthy sedentary males who were not actively engaged in any particular sport and whose mean age was 23.00±0.25 years, mean height 177.79±2.25 cm, and mean weight 70.70±1.63 kg. Blood samples were collected from the subjects at midnight twice: during rest before exercise and after exercise. Serum phosphorus, sodium, potassium, sulfur (mmol/L, cobalt, boron, cadmium, chrome, nickel, manganese, molybdenum, copper, iron, zinc and calcium levels (mg/L were measured using atomic emission spectroscopy (ICP-AES. Exhaustion exercise performed at night brought about a decrease in copper levels only (p<0.05, while elevating levels of potassium, sodium, magnesium, calcium, iron, zinc, manganese, nickel, selenium, molybdenum, chrome, cobalt, lead and cadmium (p<0.05. The results of the study demonstrate that nighttime exercise until exhaustion significantly alters element metabolism.

  15. BIOSORPTION AND RECOVERY OF HEAVY METALS FROM AQUEOUS SOLUTIONS BY EICHHORNIA CRASSIPES (WATER HYACINTH ASH

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood

    2010-04-01

    Full Text Available Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes, was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 µgg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in µgg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash.

  16. Application of total reflection x-ray fluorescence spectrometry in the textile industry

    International Nuclear Information System (INIS)

    Dogan, M.; Soylak, M.; Elci, L.; Bohlen, A. von

    2002-01-01

    In the present study, the determination of arsenic, lead, cadmium, chromium, cobalt, copper, nickel, mercury and zinc in various cloth samples produced in Kayseri-Turkey was performed after extraction with artificial sweat solution and decomposition with nitric acid. TXRF is shown to be suitable for the determination of 7 trace elements, down to the 0.001 (cobalt) to 0.004 (copper) mg/kg level in textile extract except for mercury and cadmium. The extractable part of the toxic metal's by artificial sweat solution is relatively low. In a few extracts the concentration values of Pb and Ni have exceeded their critical values of 0.2 mg/kg for lead and 1.0 mg/kg for nickel given by Oeko-Tex and determined for babies cloths. In addition, it was observed that the element pattern of textile samples resembled 'finger print type', TXRF-spectra. This technique can also be used for the identification of textile sample in forensic investigation. (author)

  17. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  18. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; O`Donnell, P.M. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-12-31

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (>30,000 cycles), the current cycle life of 4,000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft.

  19. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    International Nuclear Information System (INIS)

    Mitchelmore, Carys L.; Verde, E. Alan; Weis, Virginia M.

    2007-01-01

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 μg l -1 ) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 μg l -1 Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 μg l -1 metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response

  20. Adsorption of cadmium and copper in representative soils of Eastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Deyvison Andrey Medrado Gonçalves

    2016-10-01

    Full Text Available Studies of heavy metals adsorption in soil play a key role in predicting environmental susceptibility to contamination by toxic elements. The objective of this study was to evaluate cadmium (Cd and copper (Cu adsorption in surface and subsurface soil. Samples of six soils: Xanthic Hapludox (XH1 and XH2, Typic Hapludox (TH, Typic Rhodudalf (TR, Typic Fluvaquent (TF, and Amazonian dark earths (ADE from Eastern Amazonian, Brazil. The soils were selected for chemical, physical and mineralogical characterization and to determine the adsorption by Langmuir and Freundlich isotherms. All soils characterized as kaolinitic, and among them, XH1 and XH2 showed the lowest fertility. The Langmuir and Freundlich isotherms revealed a higher Cu (H curve than Cd (L curve adsorption. Parameters of Langmuir and Freundlich isotherms indicate that soils TR, TF and ADE has the greatest capacity and affinity for metal adsorption. Correlation between the curve adsorption parameters and the soil attributes indicates that the pH, CEC, OM and MnO variables had the best influence on metal retention. The Langmuir and Freundlich isotherms satisfactorily described Cu and Cd soil adsorption, where TR, TF and ADE has a lower vulnerability to metal input to the environment. Besides the pH, CEC and OM the MnO had a significant effect on Cu and Cd adsorption in Amazon soils.

  1. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchelmore, Carys L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)], E-mail: Mitchelmore@cbl.umces.edu; Verde, E. Alan [Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420 (United States); Weis, Virginia M. [Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331 (United States)

    2007-11-15

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 {mu}g l{sup -1}) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 {mu}g l{sup -1} Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 {mu}g l{sup -1} metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response.

  2. Zinc, nickel and cadmium in carambolas marketed in Guangzhou and Hong Kong, China: Implication for human health

    International Nuclear Information System (INIS)

    Li, J.T.; Liao, B.; Lan, C.Y.; Qiu, J.W.; Shu, W.S.

    2007-01-01

    Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies

  3. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings.

    Science.gov (United States)

    Guo, Xingmei; Song, Yan; Nan, Junmin

    2018-02-01

    The leaching characteristics of hazardous materials from Ni-Cd batteries immersed in four typical water samples, i.e., water with NaCl, river water, tap water, and deionized water, were investigated to evaluate the potential environmental harm of spent Ni-Cd batteries in the water surroundings. It is shown that four water surroundings all could leach hazardous materials from the Ni-Cd batteries. The water with NaCl concentration of 66.7 mg L -1 had the highest leaching ability, the hazardous materials were leached after only approximately 50 days (average time, with a standard deviation of 4.1), while less than 100 days were needed in the others. An electrochemical corrosion is considered to be the main leaching mechanism leading to battery breakage, while the dissolution-deposition process and the powder route result in the leakage and transference of nickel and cadmium materials from the electrodes. The anions, i.e., SO 4 2- and Cl - , and dissolved oxygen in water were demonstrated to be the vital factors that influence the leaching processes. Thus, it is proposed that spent Ni-Cd batteries must be treated properly to avoid potential danger to the environment.

  4. Zinc, nickel and cadmium in carambolas marketed in Guangzhou and Hong Kong, China: Implication for human health

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.T.; Liao, B.; Lan, C.Y. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, Guangdong (China); Qiu, J.W. [Deparment of Biology, Hong Kong Baptist University, Kowloon, Hong Kong (China); Shu, W.S. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, Guangdong (China)], E-mail: shuws@mail.sysu.edu.cn

    2007-12-15

    Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies.

  5. Zinc, nickel and cadmium in carambolas marketed in Guangzhou and Hong Kong, China: implication for human health.

    Science.gov (United States)

    Li, J T; Liao, B; Lan, C Y; Qiu, J W; Shu, W S

    2007-12-15

    Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies.

  6. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    Science.gov (United States)

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  7. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    International Nuclear Information System (INIS)

    Engelhaupt, D. E.

    1981-01-01

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readilycorrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature

  8. Analyses of soil cadmium and copper contents on a Domérien soil ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... 2Institut National de la Recherche Agronomique(INRA), Unité de ... The aim of this study is to determine the availability of cadmium (Cd) in the soil of Yonne district, ... Since cadmium (Cd) occurs in zinc (Zn), lead (Pb) and.

  9. Cadmium resistance in tobacco plants expressing the MuSI gene

    OpenAIRE

    Kim, Young-Nam; Kim, Ji-Seoung; Seo, Sang-Gyu; Lee, Youngwoo; Baek, Seung-Woo; Kim, Il-Sup; Yoon, Ho-Sung; Kim, Kwon-Rae; Kim, Sun-Hyung; Kim, Kye-Hoon

    2011-01-01

    MuSI, a gene that corresponds to a domain that contains the rubber elongation factor (REF), is highly homologous to many stress-related proteins in plants. Since MuSI is up-regulated in the roots of plants treated with cadmium or copper, the involvement of MuSI in cadmium tolerance was investigated in this study. Escherichia coli cells overexpressing MuSI were more resistant to Cd than wild-type cells transfected with vector alone. MuSI transgenic plants were also more resistant to Cd. MuSI t...

  10. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  11. Isolation and characterization of copper tolerant bacterial isolates

    International Nuclear Information System (INIS)

    Farooq, S.; Shoeb, E.; Badar, U.; Akhtar, J.

    2008-01-01

    Twelve bacterial strains were isolated from metal contaminated sites close to the chemical factory, Purification and characterization of these strains was done. Maximum tolerable concentration (MTC) of all the isolated strains was determined against heavy metals cadmium chloride (CdCl/sub 2/), copper sulphate (CuSO/sub 4/), and nickel chloride (NiCI/sub 2/) and antibiotics kanamycin (Km), streptomycin (Sm), and chloramphenicol (Cm). Most promising strain was found to be GESSF012 which showed MTC of 4.5 mM and 1.6 mM against CdCI/sub 2/ in enriched and minimal media respectively; whereas MTC of 750 micro g/ml was against Sm. GESSF012 demonstrated the occurrence of multiple stress tolerance as this strain showed considerable tolerance against other heavy metals including CuSO/sub 4/, (3.0 mM in enriched media and 1.8 mM in minimal media) and NiCl/sub 2/, (2.0 mM in enriched media and 1.8 mM in minimal media) as well as other antibiotics Cm and Km (150 and 125 micro g/ml respectively). Plasmids were detected in most of the strains including GESSF012. (author)

  12. Distribution of cadmium among geochemical fractions in floodplain soils of progressing development

    International Nuclear Information System (INIS)

    Lair, G.J.; Graf, M.; Zehetner, F.; Gerzabek, M.H.

    2008-01-01

    Initial soil development in river floodplains influences soil properties and processes. In this study, suites of young floodplain soils sampled at three European rivers (Danube/Austria, Ebro/Spain and Elbe/Germany) were used to link soil development to the soils' retention capacity for cadmium. Geochemichal fractionation of original and metal-spiked soils was conducted. Cadmium remained in weakly bound fractions in both original and spiked soils, representing an entirely different behaviour than observed for copper in an earlier study. The tendency of incorporation into more stable forms over time was only slightly expressed. Correlation analysis revealed the involvement of different sorption surfaces in soil, with no single soil constituent determining cadmium retention behaviour. Nevertheless, in the calcareous soils of the Danube floodplain, we found increased cadmium retention and decreased portions of desorbable cadmium with progressing soil development. - Distribution of cadmium among geochemical fractions in floodplain soils reveals high mobility but increased retention capacity with increasing soil age and development

  13. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  14. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  15. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  16. Heavy metals in green vegetables and soils from vegetable gardens ...

    African Journals Online (AJOL)

    Edible portions of five varieties of green vegetables, namely amaranth, chinese cabbage, cowpea leaves, leafy cabbage and pumpkin leaves, collected from several areas in Dar es Salaam, were analyzed for lead, cadmium, chromium, zinc, nickel and copper. Except for zinc, the levels of heavy metals in the vegetables ...

  17. jfewr ©2017 - jfewr Publications

    African Journals Online (AJOL)

    Wealthrite5

    Heavy metals such as Cadmium, Copper, lead, Chromium, Zinc and Nickel are ... as a vegetation cover for the remediation of land contaminated by toxic heavy metals seemsmuch .... Increase in salinity of the soil, which makes it ... Mechanisms Involved in Heavy Metal .... It is dependent on the growing conditions required.

  18. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Science.gov (United States)

    2010-07-01

    ... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... Pyridine 2,4,6-trichlorophenol Metal parameters Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Tin...-Cresol p-Cresol n-Decane Fluoranthene n-Octadecane Phenol Pyridine 2,4,6-trichlorophenol Metal parameters...

  19. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Synthesis, physico-chemical characterization and biological activity of copper(ii and nickel(ii complexes with l-benzoyl-2-methylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2002-01-01

    Full Text Available Chlorides of copper(II and nickel(ll react with 1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole to give complexes of the type [M(LnCln(H20∙Cln (M = Cu or Ni; L = (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole; n=O, 1 or 2. The complexes were synthesized and characterized by elemental analysis, molar conductivity magnetic susceptibility measurements and IR spectra. These studies suggest that all the complexes possess an octahedral stereochemistry. The antibacterial activity of (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole and their complexes was evaluated against Escherichia coli and Bacillus sp.

  1. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  2. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  3. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  4. Possibilities for the reduction of cadmium use and emission by development of new technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bevington, C F.P.

    1984-01-01

    This report is based on a review of the more recently published literature, supplemented by discussions with some of the authors and other experts. Cadmium production and consumption statistics for the world and the EEC are presented, also collation of estimates of human activity-caused burdening of the environment (European Communities). Substitution possibilities and problems are examined for the five main applications for which no technically satisfactory or economic alternatives have been demonstrated. With appropriate waste disposal management, cadmium pigments and stabilizers in domestic and industrial refuse do not appear to be significant sources of environmental dispersal. Special concern attaches to the chemically active wastes from electroplating operations and the growing volume of discarded nickel-cadmium batteries; technology is available for recovering and recycling cadmium from these sources, but implementation poses formidable problems. More research and development is needed to establish technology for reducing cadmium release from the production and use of phosphate fertilisers, and any solution is likely to be expensive.

  5. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  6. Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods

    Science.gov (United States)

    Thanh, Dong Nguyen; Novák, Pavel; Vejpravova, Jana; Vu, Hong Nguyen; Lederer, Jaromír; Munshi, Tasnim

    2018-06-01

    A nanocomposite of magnetic hydroxyapatite was synthesized and tested as an adsorbent for the removal of copper (Cu (II)) and nickel (Ni(II)) from aqueous solution. The adsorbent was investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy equipped with an Energy Dispersive Spectrometer (SEM/EDS), X-ray powder diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N2 adsorption). Batch experiments were carried out to determine and compare the adsorption parameters of Fe3O4 and its composite with hydroxyapatite. It was found that the adsorbent is nanostructured and has a specific surface area of 101.2 m2 g-1. The Langmuir adsorption isotherm was found to be an appropriate model to describe the adsorption processes, showing the adsorption capacities of Cu(II) and Ni(II) of 48.78 mg g-1 and 29.07 mg g-1, respectively. In addition to the high adsorption capacity, the fully-adsorbed material could be easily separated from aqueous media using an external magnetic field. These results suggested that the utilization of new hydroxyapatite - Fe3O4 nanocomposite for the removal of Cu(II) and Ni(II) is a promising method in water technology.

  7. Flaking behavior and microstructure evolution of nickel and copper powder during mechanical milling in liquid environment

    International Nuclear Information System (INIS)

    Xiao Xiao; Zeng Zigao; Zhao Zhongwei; Xiao Songwen

    2008-01-01

    To prepare metal flakes with a high flaking level and investigate the microstructure of metal flakes, nickel and copper powder were mechanically milled in liquid environment and the microstructure of powders was investigated by X-ray diffraction. The milling process can be divided into flaking and broken stages. At the flaking stage, milled metal powders exhibited high flaking level and flaky microshape, and became preferred orientation. While at the broken stage, the milled powders presented a low flaking level and irregular microshape, and was not preferred orientation any longer. The grain size, microstrain and dislocation density along direction varied with milling time differently from that along direction. The flaking level of the milled powders was related to the preferred orientation, and more closely to the deformation mechanism. We can strengthen the formation of preferred orientation to obtain metal powders with a high flaking level

  8. Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea.

    Science.gov (United States)

    Kim, Yong-Dae; Eom, Sang-Yong; Yim, Dong-Hyuk; Kim, In-Soo; Won, Hee-Kwan; Park, Choong-Hee; Kim, Guen-Bae; Yu, Seung-Do; Choi, Byung-Sun; Park, Jung-Duck; Kim, Heon

    2016-04-01

    Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urinary arsenic (As) level did not decrease according to the distance from the smelter, regardless of gender and working history in smelters and mines. However, in subjects who had no occupational exposure to toxic metals, blood lead (Pb) and cadmium (Cd) and urinary Cd decreased according to the distance from the smelter, both in men and women. Additionally, the distance from the smelter was a determinant factor for a decrease of As, Pb, and Cd in multiple regression models, respectively. On the other hands, urinary Cd was a risk factor for renal tubular dysfunction in populations living near the smelter. These results suggest that Janghang copper smelter was a main contamination source of As, Pb, and Cd, and populations living near the smelter suffered some adverse health effects as a consequence. The local population should be advised to make efforts to reduce exposure to environmental contaminants, in order to minimize potential health effects, and to pay close attention to any health problems possibly related to toxic metal exposure.

  9. Test of Tree Core Sampling for Screening of Toxic Elements in Soils from a Norwegian Site

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Rein, Arno; Legind, Charlotte Nielsen

    2011-01-01

    Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averag...

  10. The current pollution status of the new Calabar river in the Niger ...

    African Journals Online (AJOL)

    Administrator

    area are directly dependent on the river for their agricul- ... the water itself, but also to the danger of diffusion of toxic substances into other ... Temperature and pH of the water samples were ... phosphate, nitrate, oil and grease, cadmium, copper, nickel, lead, mercury ..... composition and molecular mechanisms including cell.

  11. EVALUATION OF THE DEGREE OF POLLUTION WITH HEAVY METALS OF SOILS OF TIMISOARA TOWN

    Directory of Open Access Journals (Sweden)

    Stela URUIOC

    2008-01-01

    Full Text Available Timisoara town as other urban centres is exposed to some possible dangers that soil and plant contamination with heavy metals can produce. The our studies has been realised on ten soil samples and three plant samples gathered from important areas regarding pollution with heavy metals of Timisoara city. The samples have been analyzed through atomic absorption spectrometry with a device type Varian 2, that has a double beam. The content in cobalt, copper, manganese, zinc, cadmium, nickel, lead, magnesium and iron from soil is changeable under maximum admission. The content in iron, manganese, copper, lead, cadmium from Tilia cordata leaves is situated in normal limits, but higher than in soil.

  12. Catalytic reduction of NO{sub x} in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. [Indian Inst. of Technology, Kharagpur (India). Dept. of Mechanical Engineering; Das, R.K. [Indian School of Mines, Dhanbad (India). Dept. of Engineering and Mining Machinery

    2001-10-11

    Catalytic removal of NO{sub x} in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO{sub x} and up to 90% of engine NO{sub x} emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO{sub x} reduction in the presence of different reductants such as, NH{sub 3}, urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO{sub x} removal. Nevertheless, catalysts which are durable, economic and active for NO{sub x} reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO{sub x} under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO{sub x} reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO{sub x} efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h{sup -1}; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h{sup -1}. Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO{sub x} reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  13. Development and functioning of microorganisms in concentration cycles of sulfide copper-nickel and non-sulfide apatite-nepheline ores

    Directory of Open Access Journals (Sweden)

    Fokina N. V.

    2017-03-01

    Full Text Available The number and trophic diversity of bacteria in flotation samples of apatite-nepheline and sulfide copper-nickel ores at the concentration plants of JSC "Apatite" and Kola Mining and Metallurgical Company have been determined. The study of the size and diversity of the microbiota has been conducted by culture on selective nutrient media. The total number and biomass of bacteria have been considered by fluorescence microscopy using Cyclopore polycarbonate membrane filters. Bacteria have been identified by molecular genetic methods. The least amount of both saprotrophic and other trophic groups of bacteria has been observed in the samples of ore and recycled water as at the concentrating factory of Apatit JSC, and also at the plant "Pechenganikel". It has been found out that the bacteria contained in the ore and recycling water flowing from the tailings increased their number during the flotation process due to coming of the nutrients with the flotation reagents, aeration and increased temperature. Strains which occurrence is more than 60 % have been extracted from recycled water and basic flotation products and classified as Pseudomonas. Two strains with occurrence of more than 60 % have been discovered at Apatit JSC and classified as Stenotrophomonas and Acinetobacter. The number of fungi in the cycle of apatite-nepheline ore enrichment at the factories is very low (1 to 24 CFU / 1 ml or 1 g of ore. Fungi of the genus Penicillium have been dominated, fungi of the genera Acremonium, Aureobasidium, Alternaria, Chaetomium have also been detected. At the plant "Pechenganikel" species Aspergillus fumigatus, Penicillium aurantiogriseum and P. glabrum have been extracted. It has been shown that the bacteria deteriorate the apatite flotation as a result of their interaction with active centers of calcium-containing minerals and intensive flocculation decreasing the floatation selectivity. Also some trend of copper and nickel recovery change has been

  14. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  15. Uptake and loss of absorbed dissolved cadmium to Clarias ...

    African Journals Online (AJOL)

    GRACE

    2006-06-16

    Jun 16, 2006 ... Res NATO Sci. Comm. Conf. 7: 187-195 London. Eisler R, Gardner GR (1973). Acute toxicology to an estuarine teleost of mistures of cadmuim, copper, and zinc salts. J. Fish. Biol. 5: 131 – 142. Eisler R (1974). Radio cadmium exchange with seawater by. Fundulus heteroclitus (L) (Pisces: Cyprinodontidae) ...

  16. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  17. Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance

    International Nuclear Information System (INIS)

    May May, Lee; Russell, David A.

    2003-01-01

    The activity of the enzyme urease is known to be inhibited by the heavy metal cadmium. The binding of cadmium to urease and the consequent changes of the enzyme structure are the basis of the surface plasmon resonance (SPR) biosensing system reported herein. To facilitate the formation of a self-assembled monolayer (SAM) of the urease on gold-coated glass SPR sensor disks, the enzyme has been modified with N-succinimidyl 3-(2-pyridyldithiol) propionate (SPDP). The urease monolayer was exposed to trace levels of cadmium ions and monitored by SPR. From circular dichroism (CD) data, it is believed that the conformation of the active nickel site of the urease changes upon binding of the cadmium ions. It is this change of the enzyme monolayer, measured by SPR, which has been related to the cadmium ion concentration in the range of 0-10 mg l -1 . These data are the first report of a SPR biosensor capable of detecting metal ions

  18. Determination of trace impurities of aluminium, cadmium, chromium, copper and nickel in indium phosphate by flameless atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Chruscinska, T.J.

    1990-01-01

    The sample (0.25 g) was treated with a nitric (0.9 ml) + hydrochloric (0.25 ml) acid mixture, heated to syrup under glass and then dissolved with 5 mol · 1 -1 HNO 3 (1 ml). The traces were determined in 0.2 mol · 1 -1 HNO 3 using Perkin-Elmer Model 430 Atomic Absorption Spectrometer equipped with a HGA 76B Graphite Furnace and an AS-1 Auto Sampling System. Pyrolytically coated and then tantalum treated tubes was employed. Additive errors due to contamination with, and loss of, the analyte element were controlled by estimation of the blank value and recovery. Background was corrected throughout. The background correction system efficiency was checked for the continuum background by two line method and for structured background by decreasing the slit or choosing different analytical lines. No other multiplicative (influencing the slope of the analytical curve) matrix interferences were found except for cadmium. (author). 12 refs, 4 tabs, 3 figs

  19. Sublethal effects of cadmium ingestion on mallard ducks. [Anas platyrhynchos

    Energy Technology Data Exchange (ETDEWEB)

    Di Giulio, R T; Scanlon, P F

    1984-11-01

    Juvenile mallard (Anas platyrhynchos) drakes were fed diets containing 0, 50, 150, or 450 ppM cadmium for 42 +/- 1 days in order to assess the impacts of cadmium ingestion on energy metabolism and tissue metal concentrations in this species. Most significant effects on energy metabolism were observed only in the 450 ppM group which displayed reduced body and liver weights, increased kidney weights, reduced liver aldolase activity, increased plasma concentrations of uric acid, decreased plasma triiodothyronine concentrations, and elevated adrenal weights and adrenal corticosterone concentrations. Ducks in the 150 ppM group displayed increased adrenal and kidney weights and elevated plasma nonesterified fatty acid concentrations. Among all treatments, increased cadmium and zinc concentrations in both livers and kidneys were dose-related; a similar trend was observed for copper concentrations in kidneys but not livers. Cadmium interference with carbohydrate metabolism in similar studies with mammals was more severe than that observed in mallards in the present study. 52 references, 6 tables.

  20. Toxic metals in breast milk samples from Ankara, Turkey: assessment of lead, cadmium, nickel, and arsenic levels.

    Science.gov (United States)

    Gürbay, Aylin; Charehsaz, Mohammad; Eken, Ayşe; Sayal, Ahmet; Girgin, Gözde; Yurdakök, Murat; Yiğit, Şule; Erol, Dilek Demir; Şahin, Gönül; Aydın, Ahmet

    2012-10-01

    Toxic metals are one of the significant groups of chemical contaminants that humans are exposed to by oral, inhalation, and dermal routes. Exposure to these chemicals begins with intrauterine life and continues during lactation period at the first years of life. Breastfeeding has a much more special place than other nutrition options for infants. However, when possibility of contaminant transfer by breast milk is considered, its safety and quality is essential. Regarding infant and mother health and limited number of information on this field in Turkey, measuring contamination levels in breast milk is important. Therefore, in the present study, lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As) levels were measured by atomic absorption spectrometry in 64 breast milk samples obtained from mothers from Ankara, Turkey. Pb and Ni levels in breast milk samples were found to be 391.45±269.01 μg/l and 43.94±33.82 μg/l (mean ± SD), respectively. Cd was found only in one of 64 samples, and the level was 4.62 μg/l. As level was below the limit of quantification (LOQ, 7.6 μg/l) in all samples. These findings will accurately direct strategies and solutions of protection against contaminants in order to reduce their levels in biological fluids.

  1. Heavy metal pollution assessment in the sediments of lake Chad ...

    African Journals Online (AJOL)

    Sediments were collected from Dumba and KwataYobe of Lake Chad, Nigerian Sector.The aim was to assess the pollution statusof the sediments of the lake. The concentration of heavy metals, Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), lead (Pb), Z (Zn) and Arsenic (As) were ...

  2. Corrosion resisting properties of 90/10 copper-nickel-iron alloy with particular reference to offshore oil and gas applications

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, P T

    1979-01-01

    The use of a copper-nickel-iron alloy for seawater pipeline systems and various other applications on offshore oil and gas platforms is now proving attractive, according to the UK's Yorkshire Imperial Metals Ltd. The alloy has already proved a useful and reliable material in many applications: It has given good results in seawater-cooled condensers and heat exchangers and seawater piping systems, in power stations, ships, desalination plant, and refrigeration service. Its antifouling and corrosion-resistant properties are valuable in these applications. The main limitations that have to be observed in its use are (1) the design, construction, and operation of systems within prescribed velocity and turbulence limits, to avoid the occurrence of impingement attack, and (2) problems that may arise because of badly polluted seawater.

  3. Concentrations of Cadmium, Copper, and Zinc in Macrobrachium rosenbergii (Giant Freshwater Prawn) from Natural Environment.

    Science.gov (United States)

    Idrus, Farah Akmal; Basri, Masania Mohd; Rahim, Khairul Adha A; Rahim, Nur Syazwani Abd; Chong, Melissa Dennis

    2018-03-01

    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p < 0.05) were observed with increase in length except for Cu in gills. No relationship was found between metals level in exoskeleton and length. The concentrations of Cd, Cu and Zn were significantly higher (p < 0.05) in males (muscle tissues and exoskeleton) except for Cd in exoskeleton. In gills, only Cu was significantly higher (p < 0.05) in female than male. All samples contained metals below the permissible limit for human consumption (i.e., Cd < 2.00 mg/kg; Cu < 30.00 mg/kg; Zn < 150 mg/kg). Annual metals monitoring in prawn and environmental samples is recommended to evaluate changes of metals bioaccumulation and cycling in the system, which is useful for resources management.

  4. Synthesis and properties of complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine

    International Nuclear Information System (INIS)

    El-Bindary, A.A.; El-Sonbati, A.Z.

    2000-01-01

    Metal complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine (HL) have been prepared and characterized by chemical and thermal analyses, molar conductivity , magnetic susceptibility measurements, and infrared, electronic and EPR spectra. The visible and EPR spectra indicated that the Cu(II) complex has a tetragonal geometry. From EPR spectrum of the Cu(II) complex,various parameters were calculated. The crystal field parameters of Ni(II) complex were calculated and were found to agree fairly well with the values reported for known square pyramidal complexes. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and nitrogen donor system. Thermal stabilities of the complexes are also reported. (author)

  5. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  6. Hydrochemical and toxicological characteristics of state national nature park “Kolsay Kolderi" lakes (Kungei Alatau, South-Eastern Kazakhstan

    Directory of Open Access Journals (Sweden)

    Krupa Elena G.

    2016-05-01

    Full Text Available In August 2015 four ultrafresh mountain lakes of Kolsay National Nature Park, located at an altitude of 1829–3170 m a.s.l., were examined. The water mineralization of the lakes decreased from 123.9 to 26.6 mg/dm3 with decreasing altitude above sea level. The concentration of dissolved organic matter and nitrogen compounds was at levels below the temporary maximum allowable concentration (MAC. Phosphorus has not been found in the water. The concentration of iron in the water has reached 44.0–440.0 g/dm3. The concentration of heavy metals in the water, except copper, was 10–100 times lower than the maximum allowable concentrations for standards of fishery waterbodies. The concentration of copper in water exceeded the permissible limits 2.6–5.5 times. The concentration of lead, copper, zinc, nickel and chromium in water has decreased from Lower Kolsay to Upper Kolsay. The most highland and shallow lake, which located under the Sarybulak mountain pass, had a higher concentration of lead, copper, zinc and nickel in the water than in the downstream lakes. The concentration of zinc, cadmium, lead, chromium, cobalt and nickel in the water of the other high mountain reservoirs of South-Eastern Kazakhstan has not exceeded 0.7 of MAC temporary. The concentration of copper has reached 1.5–13.9 of MAC temporary. In mountain lakes and reservoirs, the metal concentrations in the water decreased at lower altitudes, similar but less pronounce to their spatial dynamics in mountain rivers. Background concentration of cadmium and zinc in the mountain reservoirs of South-Eastern Kazakhstan was equivalent to the uncontaminated waters of the Tien Shan, the Alps and the Western Sayan mountain ranges. However, the concentration of copper, lead and chromium were higher respectively. Considering the remoteness of the region from the sources of anthropogenic influences, the background concentrations of heavy metals for water reservoirs of South-Eastern Kazakhstan

  7. Flaking behavior and microstructure evolution of nickel and copper powder during mechanical milling in liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiao [College of Metallurgical Science and Engineering, Central South University, Changsha 410083, Hunan (China); Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan (China); Zeng Zigao [Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan (China); Zhao Zhongwei [College of Metallurgical Science and Engineering, Central South University, Changsha 410083, Hunan (China); Xiao Songwen [Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan (China)], E-mail: swinxiao@yahoo.com.cn

    2008-02-25

    To prepare metal flakes with a high flaking level and investigate the microstructure of metal flakes, nickel and copper powder were mechanically milled in liquid environment and the microstructure of powders was investigated by X-ray diffraction. The milling process can be divided into flaking and broken stages. At the flaking stage, milled metal powders exhibited high flaking level and flaky microshape, and <2 0 0> became preferred orientation. While at the broken stage, the milled powders presented a low flaking level and irregular microshape, and <2 0 0> was not preferred orientation any longer. The grain size, microstrain and dislocation density along <2 0 0> direction varied with milling time differently from that along <1 1 1> direction. The flaking level of the milled powders was related to the <2 0 0> preferred orientation, and more closely to the deformation mechanism. We can strengthen the formation of <2 0 0> preferred orientation to obtain metal powders with a high flaking level.

  8. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  9. Heavy metals in sediments, mussels and oysters from Trinidad and Venezuela

    International Nuclear Information System (INIS)

    Rojas Astudillo, L. de; Chang Yen, I.; Bekele, I.

    2005-01-01

    The Gulf of Paria is bordered by both Trinidad and Venezuela, from which various metallic pollutants and other contaminants can originate. The Gulf is still a significant source of fish, crabs and shellfish for human consumption to both countries, where concerns over the quality of this marine environment have been long expressed but never properly addressed. In addition, the circulatory current patterns in the Gulf ensure that contaminants originating from either country are likely to affect both countries eventually. Heavy metals were determined in oysters (Crassostrea rhizophorae and C. virginica), green mussels (Perna viridis) and sediments from the Gulf of Paria. Samples were obtained at four sites in Trinidad and three sites in Venezuela in the Gulf of Paria, in addition to comparative samples collected from three sites on the north coast of Venezuela. Edible tissues of twelve shellfish from each location were blended and aliquots digested with concentrated nitric acid, for extraction of cadmium, chromium, copper, lead, nickel and zinc. The solutions were analysed by flame atomic absorption spectroscopy. Mercury was extracted with a mixture of nitric, hydrochloric and sulphuric acids and determined by cold vapour atomic absorption. Sediments were oven-dried at 60 0 C, before being similarly extracted. Results showed that mercury in sediments at all sites in Trinidad and Venezuela exceeded NOAA and Canadian sediment quality guidelines, while cadmium, copper, nickel, lead and zinc also exceeded these guidelines at several sites. Heavy metal levels in oysters and green mussels varied widely with location. However, oysters from the Gulf of Paria contained significantly higher mean levels of cadmium, copper, nickel and zinc than those from the north coast of Venezuela, but this difference was not apparent in mussels. Cadmium, mercury and zinc in sediments were significantly correlated with those of mussels, but not of oysters, in which copper and zinc at several

  10. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio holthius

    Energy Technology Data Exchange (ETDEWEB)

    Keteles, K.A.; Fleeger, J.W. [Louisiana State Univ., Dept. of Biological Sciences, Baton Rouge, LA (United States)

    2001-07-01

    Depuration through ecdysis by grass shrimp, Palaemonetes pugio, was examined by exposure to a sublethal mixture of copper, zinc and cadmium for 72 h, followed by placement in uncontaminated water to molt. Percent eliminated with the exuviae varied for each metal; of the total intermolt body burden, 11% Cu, 18% Zn and 26% Cd was associated with the exuviae. Cu concentrations of intermolt exoskeletons were significantly higher than of the exuviae of post-ecdysis shrimp suggesting that Cu contained in the exoskeleton was reabsorbed before molting. Exuvial Cd concentration was not significantly different than the concentration of the intermolt exoskeleton, suggesting that most Cd in the exoskeleton was depurated with the exuviae. Although Zn whole-body burdens were lower after a molt, Zn losses were most likely due to excretion because exuvial concentrations were significantly lower than in the intermolt exoskeleton. Cu, Cd and Zn concentrations in exuvaie shed in metal-enriched water were significantly higher due to adsorption than exuvaie produced in uncontaminated water. (Author)

  11. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  12. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  13. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  14. Thermochemical study of some inorganic and organic salts of cobalt, nickel and copper

    International Nuclear Information System (INIS)

    Le Van, My

    1968-01-01

    Differential enthalpy analysis has been carried out on a certain number of inorganic (halides, halide oxy-acid salts, nitrates and sulfates) and organic (alkanoates, and dicarboxylates) of cobalt, nickel and copper using a Tian-Calvet high-temperature microcalorimeter. Other investigational methods such as thermo-crystallography, thermogravimetry, spectroscopy and gas-phase chromatography have been used to complete this work. An intrinsic study of the microcalorimeter covering thermal leakage, the sensitivity and the aging of the batteries, the deviation of the experimental zero, has been carried out. A satisfactory experimental device has been developed which corresponds to optimum conditions of analysis. We have shown which are the most important factors affecting differential thermal analysis and have detected certain phenomena; we have also demonstrated that intermediate hydrates exist and shown the possibilities of thermal recrystallization. Various enthalpies of transformation have been evaluated. The various possible reaction mechanisms are discussed. The normal formation enthalpies of several series of alkanoates and dicarboxylates have been measured. A graphical method has been devised for evaluating the kinetic parameters of heterogeneous dissociations from the thermograms obtained. Finally, we have developed a simple method for estimating the normal formation enthalpies of carboxylates and oxy-acid salts, both anhydrous and hydrated. The agreement with available experimental data is satisfactory. (author) [fr

  15. Research of leaching of disseminated copper-nickel ores in their interaction with mine waters

    Directory of Open Access Journals (Sweden)

    Svetlov A. V.

    2017-03-01

    Full Text Available A great amount of mine waste creates serious problems for economy and ecology in mining regions. Keeping of dumps and tailings storages requires huge capital costs and material inputs. Removal of overburden volumes cause ecological disequilibrium, ingress of chemical agents and heavy metals in ground and surface water have an adverse influence on eco-systems and human health. These hazards are particularly high under extreme climatic conditions, when mines create vast desert lands around themselves. Foreign researchers use the terms "acid mine drainage" (AМD and "acid rock drainage" (ARD when speaking on mine water oxidation and contamination of the environment with heavy metals. AMD is induced by underground mine drainage, natural sulfide-bearing rock exposures, etc. The processes occurring in the interaction the mine water with fine dust particles, as well as water filtering through the thick sulfide rocks have been studied. It has been shown that the reduction in potential environmental hazard of mine water of JSC "Kola MMC" is achieved through precipitation of heavy metals by iron hydroxide and magnesium hydrosilicate. Preliminary assessment of the feasibility of hydrometallurgical processing of disseminated copper-nickel ores has been made

  16. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djinovic, J. [University of Belgrade, Belgrade (Serbia)

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

  17. On-line system for preconcentration and determination of metals in vegetables by Inductively Coupled Plasma Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Bezerra, Marcos A.; Santos, Walter N.L. dos; Lemos, Valfredo A.; Korn, Maria das Gracas A.; Ferreira, Sergio L.C.

    2007-01-01

    A procedure has been developed for the simultaneous determination of trace amounts of cadmium, copper, chromium, nickel and lead in digested vegetable samples. The method involves solid-phase extraction of the metals using a minicolumn of Amberlite XAD-4 modified with dihydroxybenzoic acid (DHB) and detection by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The elution of the metals from minicolumn was performed with 1.0 mol L -1 hydrochloric acid. Variables associated with flow preconcentration system performance, such as pH, buffer concentration, eluent concentration and sampling flow rate, were optimized. The developed procedure provides enrichment factors of 100, 72, 16, 91 and 53, for cadmium, copper, chromium, nickel and lead, respectively. Detection limits (3σ B ) were 0.02 (Cd), 0.23 (Cu), 0.58 (Cr), 0.060 (Ni) and 0.54 (Pb) μg L -1 . The procedure was applied for determination of metals in samples of guarana and cabbage. The accuracy of the method was checked by the analysis of a certified reference material (NIST 1571, Orchard leaves). Results found were in agreement with certified values

  18. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species.

    Science.gov (United States)

    Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela

    2017-01-01

    Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.

  19. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    Science.gov (United States)

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  20. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland.

    Science.gov (United States)

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-08-15

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (ruralsoil environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Studies on unusually reactive metal powders. Preparation of new organometallic and organic compounds including potential new catalysts. Final report, July 1, 1980-December 31, 1984

    International Nuclear Information System (INIS)

    Rieke, R.D.

    1985-06-01

    This research project was involved with the preparation and study of highly reactive metal powders prepared by the reduction of metal salts with alkali metals. Studies concentrated on nickel, copper, cadmium, uranium, iron, and magnesium. The nickel powders have been found to react rapidly with benzylic halides, and the resulting organonickel complexes yield dibenzyl. Aryl halides react rapidly with the nickel powders to produce biaryl compounds in high yields. Benzylic halides react with the nickel powders in the presence of acylhalides to produce benzyl ketones in high yields. Reactions of ROCOCOC1 and benzylic halides with nickel powders yield benzyl ketones. These reactions proceed with a wide variety of substituents on the phenyl ring of the benzylic halides. Highly reactive uranium has been prepared, and found to react with a variety of oxygen containing substrates, such as nitrobenzene to yield azo benzene. Highly reactive magnesium has opened up a totally new area of low temperature Grignard chemistry. The preparation of highly reactive copper has allowed the direct preparation of organocopper species directly from organic halides. 16 refs., 6 tabs

  2. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    Science.gov (United States)

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  3. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  4. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  5. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  6. 2260-IJBCS-Article-Prof Trokourey Albert

    African Journals Online (AJOL)

    hp

    p-phenylenediamine (L2) and used for the determination of copper(II) in water. The measurements are ... These results suggest that CPE/L2 should be an excellent tool for the detection of Cu (II) ions at trace ... in its elemental state or in various minerals ..... interaction between Cu2+ ..... nickel, lead, cadmium and mercury in.

  7. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    Science.gov (United States)

    2001-03-01

    phytoremediation , and electrokinetic extraction. The US Army Environmental Center (USAEC) and Engineer Research and Development Center (ERDC...California (CA) List Metals: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury , molybdenum, nickel, selenium...Comparison Technologies with which electrokinetic remediation must compete are "Dig and Haul", Soil Washing, and Phytoremediation . "Dig and haul

  8. Summary of Available Guidance and Best Practices for Determining Suitability of Dredged Material for Beneficial Uses

    Science.gov (United States)

    2007-11-01

    Metals = arsenic, cadmium, chromium, copper, lead, mercury, silver , nickel, and zinc. Use EPA 1986 Method 245.6 for mercury determinations. Methods...contaminated sediment. USEPA (1994c) evaluated grain size separation, magnetic separation, gravity separation, attrition scrubbing, and froth flotation for...Potential applications of magnetic separation at Indiana Harbor, and froth flotation at Saginaw River, showed limited application. Francingues and

  9. Heavy metals in paddy fields in Taiwan: chemical behavior in soil and uptake by brown rice

    NARCIS (Netherlands)

    Chu, C.L.; Romkens, P.F.A.M.; Guo, H.Y.

    2009-01-01

    Levels of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were measured in 19 individual paddy fields in Taiwan. Total, reactive, and available metal levels were measured using Aqua Regia, 0.43 N HNO3, 0.1 M HCl, 0.05 M EDTA and 0.01 M CaCl2. Total metal levels ranged

  10. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. Part 1 of this series studied the fundamentals of the reactor design and proposed a comprehensive design procedure, enabling a systematic methodology of designing and evaluating the rotary CLC reactor with different OCs and operating conditions. This paper presents the application of the methodology to the designs with three commonly used OCs, i.e., copper, nickel, and iron. The physical properties and the reactivities of the three OCs are compared at operating conditions suitable for the rotary CLC. Nickel has the highest reduction rate, but relatively slow oxidation reactivity while the iron reduction rate is most sensitive to the fuel concentration. The design parameters and the operating conditions for the three OCs are selected, following the strategies proposed in Part 1, and the performances are evaluated using a one-dimensional plug-flow model developed previously. The simulations show that for all OCs, complete fuel conversion and high carbon separation efficiency can be achieved at periodic stationary state with reasonable operational stabilities. The nickel-based design includes the smallest dimensions because of its fast reduction rate. The operation of nickel case is mainly limited to the slow oxidation rate, and hence a relatively large share of air sector is used. The iron-based design has the largest size, due to its slow reduction reactivity near the exit or in the fuel purge sector where the fuel concentration is low. The gas flow temperature increases monotonically for all the cases, and is mainly determined by the solid temperature. In the periodic state, the local temperature variation is within 40 K and the thermal distortion is limited. The design of the rotary CLC is

  11. Physiological Responses to Cadmium, Nickel and their Interaction in the Seedlings of Two Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    Pavlovkin Ján

    2016-12-01

    Full Text Available In the leaves of maize seedlings, cultivars Premia and Blitz, the relatively low 2 μmol/L concentration of cadmium (Cd, nickel (Ni, or both metals acting simultaneously (Cd +Ni for 72 h, induced a significant metal accumulation, decrease in total K+ content, reduction of light-induced membrane electrical potential (EM repolarisation in mesophyll cells and changes of ascorbic acid (AsA, dehydroascorbic acid (DHA and glutathione (GSH content. Shoot growth and the values of resting EM did not change significantly. Increased K+ leakage, from the leaves, and lipid peroxidation accompanied by increase of TBA-reactive substances (TBARS were found only in cv. Blitz exposed to Cd + Ni. This indicates a capability of high leaf-cell anti-oxidant pool to ameliorate the toxic effects on plasma membrane of single ions in both cultivars, and of Cd + Ni only in cv. Premia. The decreased total content of K+ in leaves in all variants indicated repressing the K+ uptake and/or distribution to the shoots. Under anoxia, the magnitude of the repolarisation obtained after switching on the light was smaller in Cd-treated cultivar Premia than in the controls, and this also occurred in Ni- and Cd + Ni-treated cultivar Blitz.

  12. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of District Shangla

    International Nuclear Information System (INIS)

    Ullah, I.; Khan, A.; Rahim, M.; Haris, M. R. H. M.

    2016-01-01

    Heavy metals such as cadmium, lead, nickel, chromium, cobalt, copper, zinc and iron were quantified in food crops and soil samples using atomic absorption spectrophotometry. Questionnaire survey was conducted to estimate average body weight and daily intake of food crops. Daily intake of metals (DIM) and health risk assessment were conducted for heavy metals via ingestion path way from food crops. Cobalt and cadmium daily intake were found to be higher than the suggested limits. Health risk indices (HRI) were found < 1 for all metals indicating no health risks except cadmium and cobalt. HRI of cobalt and cadmium were > 1 in 80 percent and 96 percent of the population, respectively. This study conveys a strong message to the ministry of health to protect the general population from the harmful effects of cadmium and cobalt. (author)

  13. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Mendez, J.R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico)], E-mail: rene@ipicyt.edu.mx; Monroy-Zepeda, R.; Leyva-Ramos, E. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Diaz-Flores, P.E. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico); Shirai, K. [Universidad Autonoma Metropolitana, Biotechnology Department, Laboratory of Biopolymers, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico City (Mexico)

    2009-02-15

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10{sup 3} g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb{sup 2+}, Cd{sup 2+}, and Cu{sup 2+}, respectively, and it decreased for Pb{sup 2+} and Cd{sup 2+} in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. Finally, the preliminary desorption experiments of Cd{sup 2+} conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.

  14. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    International Nuclear Information System (INIS)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping; Fu Zhengwei

    2009-01-01

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 μM Cu or 1.0 and 2.0 μM Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO 2 assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  15. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  16. Potentiometric stripping analysis of Cadmium and Lead in superficial waters

    International Nuclear Information System (INIS)

    Arias, Juan Miguel; Marciales Castiblanco, Clara

    2003-01-01

    This paper contains the implementation and validation of an analytical method for determining cadmium and lead in surface waters. This is a valuable tool for the description of actual conditions and qualitative and quantitative control of dangerous heavy metals discharge in water bodies. Test were run for selecting stripping potentiometry conditions that as indicated by results were: sample oxidant concentration 36.4 μg/L Hg 2+ stirring frequency 2400 rpm, electrolysis time 80 s., electrolysis potential -950 mV and pH of 2.0. Interference of Cu 2+ and Fe 2+ showed that copper concentrations larger than 150 μg/L and 500 μg/L negatively influence the analytical response for Cadmium and lead respectively; [Fe 3+ ] larger than 60 μg/L and 400 μg/L cause variations in cadmium and lead read content respectively. Linear concentration range for cadmium lies between 5 and 250 μg/L; for lead range goes from 10 to 250 μg/L. Precision expressed as repeatability for both system and method, exhibit good reproducibility with variation coefficients below 6%. Accuracy, assessed from recuperation, is strongly influenced by concentration level therefore standard addition is recommended for lead and cadmium quantification. Analysis performed on surface waters from Colombian Magdalena and Cauca rivers pointed lead and cadmium contents below detection limits

  17. Heavy metal burden of the Pinnau river

    International Nuclear Information System (INIS)

    1993-01-01

    The water phase and sediment of the Pinnau river were investigated for their heavy-metal pollution. Tests for the elements chromium, mercury, nickel, arsenic, lead, copper, cadmium, zinc and iron were carried through with sediment samples in 1984 and 1989 and with water samples in 1987 and 1989. Whereas no significant changes in the levels of these metals were found in the water phase during the two-year period of invetigation, slightly reduced levels of zinc, cadmium and mercury were established in the sediment in 1989 as compared to 1984. (orig.) [de

  18. Transfert de nickel, de cuivre et de zinc lors de la manipulation de pièces de monnaie : le cas du dirham marocain

    Science.gov (United States)

    Fournier, Paul-Guy; Nourtier, Alain; Monkade, Mohammed; Berrada, Khalid; Boughaleb, Hichame; Outzourhit, Abdelkader; Pichon, Rémy; Haut, Christian; Govers, Thomas

    2006-03-01

    When the euro was introduced, the fact that some coins contain nickel, which is known to be an allergen, gave rise to controversy. More generally, this raises the question of metal transfer from coins to skin. Morocco has used for decades one-dirham coins made of pure or alloyed nickel. Studying their wear, the labile metal on their surface and the transfer to fingers in handling may therefore be especially instructive. Weighing statistics for a sample of 401 coins confirm that cupronickel coins wear out more quickly than pure nickel coins and reveal that the dirham suffers a much stronger wear than other currencies for which wear statistics are available. SEM studies supplemented by ICP quantitative analyses show that the labile metal is mainly made up of chips, even after many handlings. These chips are often cupronickel, even on pure nickel coins, which shows that they are produced by the friction of coins against one another. Secondly, the surface of coins presents sweat residue with an important proportion of copper and a little nickel, which confirms that sweat dissolves surface copper. Depending on the alloy and date, coins have between 20 and 140 μg of labile copper and nickel, with a content of one quarter of nickel on cupronickel coins and about one half on pure nickel coins. The most worn cupronickel coins are the coins that present the largest amount of labile metal, and even labile nickel. In our experiments, the metal transfer to fingers when a cupronickel coin is handled for the first time represents between 4 and 9% of the labile metal and 0.05% of the annual wear. A simple and reliable test of nickel contamination consists in measuring the labile nickel. To cite this article: P.-G. Fournier et al., C. R. Physique 7 (2006).

  19. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  20. Simultaneous determination of oxygen and cadmium in cadmium and cadmium compounds

    International Nuclear Information System (INIS)

    Imaeda, K.; Kuriki, T.; Ohsawa, K.; Ishii, Y.

    1977-01-01

    Cadmium and its compounds were analysed for oxygen and cadmium by a modification of the Schutze-Unterzaucher method. Oxygen in some compounds such as cadmium oxide, nitrate and sulphate could not be determined by the usual method. The method of adding carbon was employed for the determination of total oxygen. Total oxygen could be determined by the addition of 5 mg of carbon to a sample boat and heating at 950 0 . The determination was also carried out by addition of naphthalene (2 mg). It was found that the cadmium powder and cadmium flake used contained ca. 1 and 0.15% oxygen, respectively. Oxygen and cadmium in cadmium and its compounds were simultaneously determined by the addition of 2 mg of naphthalene. Cadmium was determined colorimetrically by use of glyoxal-bis-(2-hydroxyanil). Oxygen and cadmium in the samples could be determined simultaneously with an average error of -0.02 and -0.22%, respectively. (author)

  1. Rare occupational cause of nasal septum perforation: Nickel exposure

    Directory of Open Access Journals (Sweden)

    Ertugrul Cagri Bolek

    2017-10-01

    Full Text Available Many etiologies are held accountable for nasal septum perforations. Topical nasal drug usage, previous surgeries, trauma, nose picking, squamous cell carcinoma, some rheumatological disorders such as granulomatosis with polyangiitis (Wegener granulomatosis, some infectious diseases such as syphilis and leprosy are among the causes of the perforations. Occupational heavy metal exposures by inhalation rarely may also cause nasal septum perforation. Here, we present a 29-year-old patient without any known diseases, who is a worker at a metallic coating and nickel-plating factory, referred for investigation of his nasal cartilage septum perforation from an otorhinolaryngology clinic. The patient questioning, physical examination and laboratory assessment about rheumatic and infectious diseases were negative. There was a metallic smell in the breath during the physical examination. The analysis showed serum nickel level at 31 μg/l and urine nickel at 18 μg/l (84.11 μg/g creatinine. Other possible serum and urine heavy metal levels were within normal ranges. Nickel exposure is usually together with other heavy metals (chromium or cadmium, it is rarely alone. Nickel ingested by inhalation usually leads to respiratory problems such as reduced olfactory acuity, ulcers, septum perforation or tumors of the nasal sinuses. This case demonstrates the importance of occupational anamnesis and awareness of diagnosis. Int J Occup Med Environ Health 2017;30(6:963–967

  2. Nickel-hydrogen battery; Nikkeru/suiso batteri

    Energy Technology Data Exchange (ETDEWEB)

    Kuwajima, S. [National Space Development Agency, Tokyo (Japan)

    1996-07-01

    In artificial satellites, electric power is supplied from batteries loaded on them, when sun light can not be rayed on the event of equinoxes. Thus, research and development was started as early as 1970s for light and long-life batteries. Nickel-hydrogen batteries have been used on practical satellites since middle of 1980s. Whereas the cathode reaction of this battery is the same as that of a conventional nickel-cadmium battery, the anode reaction is different in that it involves decomposition and formation of water, generating hydrogen and consuming it. Hydrogen is stored in a state of pressurized gas within the battery vessel. The shape of this vessel is of a bomb, whose size for the one with capacity of 35 Ah is 8cm in diameter and 18cm in length. On a satellite, this one is assembled into a set of 16 ones. National Space Development Agency of Japan has been conducting the evaluation test for nickel-hydrogen batteries in a long term range. It was made clear that the life-determinant factor is related to the inner electrode, not to the vessel. Performance data on long-term endurance of materials to be used have been accumulated also in the agency. 2 figs.

  3. Novel pectin-silica hybrids used for immobilization of Trichosporon cutaneum cells efficient in removal of Cadmium and Copper ions from waste water

    International Nuclear Information System (INIS)

    Georgieva, N.; Rangelova, N.; Peshev, D.; Nenkova, S.

    2011-01-01

    New silica hybrid materials containing tetramethyl siloxane (TMOS) as an inorganic precursor and apple pectin (AP) as an organic compound were prepared. The quantity of organic substance was 5 and 50 wt% AP. The amorphous state of the samples was proved by X-ray diffraction analyses (XRD). The Infrared scattering spectra (IR) showed characteristic peaks for SiO2 network, as well as for pectin. The synthesized hybrid materials were applied as matrices for cells immobilization by attachment and entrapment of the filamentous yeast Trichosporon cutaneum R57. This strain showed considerable ability to remove cadmium and copper ions from aqueous solutions. Regarding heavy metal biosorption capacity, the attachment was found to be superior compared to the entrapment method as a technique for biomass immobilization. (authors) Key words: biomaterials, composite materials, microstructure, sol-gel preparation

  4. Cadmium phytoextraction potential of different Alyssum species

    International Nuclear Information System (INIS)

    Barzanti, R.; Colzi, I.; Arnetoli, M.; Gallo, A.; Pignattelli, S.; Gabbrielli, R.; Gonnelli, C.

    2011-01-01

    Highlights: ► The possibility of using serpentine plants for phytoextraction of Cd was investigated. ► Variation in Cd tolerance, accumulation and translocation in three Alyssum plants with different phenotypes were found. ► Alyssum montanum showed higher Cd tolerance and accumulation than the Ni hyperaccumulator Alyssum bertolonii. ► As for the kinetic parameters of the Cd uptake system, A. montanum presented a low apparent K m value. ► The V max values were not significantly different among the plants. - Abstract: This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO 4 for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K m value, suggesting a high affinity for this metal of its uptake system, whereas the V max values were not significantly different among the plants. Present data revealed metallicolous plants are also suitable for the phytoremediation of metals underrepresented in the environment of their

  5. Effects of soil copper and nickel on survival and growth of Scots pine.

    Science.gov (United States)

    Nieminen, Tiina Maileena

    2004-11-01

    The contribution of soil Cu and Ni pollution to the poor vitality and growth rate of Scots pine growing in the vicinity of a Cu-Ni smelter was investigated in two manipulation experiments. In the first manipulation, Cu-Ni smelter-polluted soil cores were transported from a smelter-pollution gradient to unpolluted greenhouse conditions. A 4-year-old pine seedling was planted in each core and cultivated for a 17-month period. In the second manipulation, pine seedlings from the same lot were cultivated for the same 17-month period in a quartz sand medium containing increasing doses of copper sulfate, nickel sulfate, and a combination of both. The variation in the biomass growth of the seedlings grown in the smelter-polluted soil cores was very similar to that of mature pine stands growing along the same smelter-pollution gradient in the field. In addition, the rate of Cu and Ni exposure explained a high proportion of the biomass growth variation, and had an effect on the Ca, K, and Mg status of the seedlings. According to the lethal threshold values determined on the basis of the metal sulfate exposure experiments, both the Cu and Ni content of the 0.5 km smelter-polluted soil cores were high enough to cause the death of most of the seedlings. The presence of Cu seemed to increase Ni toxicity.

  6. Mechanical and wear properties of pre-alloyed molybdenum P/M steels with nickel addition

    Directory of Open Access Journals (Sweden)

    Yamanoglu R.

    2012-01-01

    Full Text Available The aim of this study is to understand the effect of nickel addition on mechanical and wear properties of molybdenum and copper alloyed P/M steel. Specimens with three different nickel contents were pressed under 400 MPa and sintered at 1120ºC for 30 minutes then rapidly cooled. Microstructures and mechanical properties (bending strength, hardness and wear properties of the sintered specimens were investigated in detail. Metallographical investigations showed that the microstructures of consolidated specimens consist of tempered martensite, bainite, retained austenite and pores. It is also reported that the amount of pores varies depending on the nickel concentration of the alloys. Hardness of the alloys increases with increasing nickel content. Specimens containing 2% nickel showed minimum pore quantity and maximum wear resistance. The wear mechanism changed from abrasive wear at low nickel content to adhesive wear at higher nickel content.

  7. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    Science.gov (United States)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  8. Comparative study between probe focussed sonication and conventional stirring in the evaluation of cadmium and copper in plants

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Sara; Fonseca, Luis P. [Technical University of Lisbon, Centro de Engenharia Quimica e Biologica, Instituto Superior Tecnico, Lisbon (Portugal); Capelo, Jose L. [University of Vigo at Ourense Campus, Analytical and Food Chemistry Department, Science Faculty, Ourense (Spain); Armas, Teresa; Vilhena, Fernanda; Goncalves, Maria L.S.; Mota, A.M. [Technical University of Lisbon, Centro de Quimica Estrutural, Instituto Superior Tecnico, Lisbon (Portugal); Pinto, Ana P. [University of Evora, Herdade Experimental da Mitra, ICAAM-Instituto de Ciencias Agrarias e Ambientais Mediterranicas, Evora (Portugal)

    2010-11-15

    Ultrasound (US)-assisted extraction has been widely used for metal ion extraction in plants due to its unique properties of decreased extraction time, minimal contamination, low reagent consumption and low cost. However, very few papers present a sound comparison between probe-focussed sonication and conventional stirring in the evaluation of metal ion extraction in plants. In this study, ultrasonic-assisted digestion has been evaluated and compared to magnetic stirring for total copper and cadmium determination by atomic absorption spectrometry in biological samples (plants, plankton and mussels). The same experimental conditions of sample amount and particle size, extractant solution and extraction time were applied for both ultrasound and magnetic stirring-assisted extraction methods in order to truly compare their effect on metal ion solubilisation. To gain further insight in this issue, dried and fresh plants were tested. The results obtained indicated that osmotic tension in cell walls, produced when dried and powdered samples were immersed in the extractant solution, had an important contribution to metal ion solubilisation, the enhancement due to US for the same purpose being negligible. (orig.)

  9. Heavy metal contamination in TIMS Branch sediments

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1990-01-01

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering ampersand Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized

  10. 40 CFR 437.14 - New source performance standards (NSPS).

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment and Recovery....3 Metal Parameters Antimony 0.111 0.0312 Arsenic 0.0993 0.0199 Cadmium 0.782 0.163 Chromium 0.167 0.0522 Cobalt 0.182 0.0703 Copper 0.659 0.216 Lead 1.32 0.283 Mercury 0.000641 0.000246 Nickel 0.794 0...

  11. Structural information on the coordination compounds formed by manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and mercury(II) thiocyanates with 4-cyanopyridine N-oxide from their magnetic moments, electronic and infrared spectra

    Science.gov (United States)

    Ahuja, I. S.; Yadava, C. L.; Singh, Raghuvir

    1982-05-01

    Coordination compounds formed by the interaction of 4-cyanopyridine. N-oxide (4-CPO), a potentially bidentate ligand, with manganese(II), cobalt(II), nickel(II), zinc(II), cadmium(II) and rnercury(II) thiocyanates have been prepared and characterized from their elemental analyses, magnetic susceptibilities, electronic and infrared spectral studies down to 200 cm -1 in the solid state. The compounds isolated are: Mn(4-CPO) 2(NCS) 2, Co(4-CPO) 2(NCS) 2,Ni(4-CPO) 2(NCS) 2,Zn(4-CPO) 2(NCS) 2, Cd(4-CPO)(NCS) 2 and Hg(4-CPO) 2(SCN) 2. It is shown that 4-CPO acts as a terminal N-oxide oxygen bonded monodentate ligand in all the metal(II) thiocyanate complexes studied. Tentative stereochemistries of the complexes in the solid state are discussed. The ligand field parameters 10 Dq, B, β and λ calculated for the manganese(II), cobalt(II) and nickel(II) complexes are consistent with their proposed stereochemistries.

  12. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    Science.gov (United States)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d

  13. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Couture, Patrice; Rajender Kumar, Puja

    2003-01-01

    This study examined variations in resting oxygen consumption rate (ROCR), post-exercise oxygen consumption rate, relative scope for activity (RSA), liver and muscle aerobic and anaerobic capacities (using citrate synthase (CS) and lactate dehydrogenase, respectively, as indicators), and tissue biosynthetic capacities (using nucleoside diphosphate kinase (NDPK) as an indicator), in wild yellow perch from four lakes varying in copper (Cu) and cadmium (Cd) contamination. Liver Cu and Cd concentrations largely reflected environmental contamination and were positively correlated with liver protein concentrations and NDPK activities. Our results suggest that metal contamination leads to an upregulation of liver protein metabolism, presumably at least in part for the purpose of metal detoxification. In contrast, muscle NDPK activities decreased with increasing liver Cd concentrations and NDPK activities. There was a 25% decrease in ROCR for a doubling of liver Cu concentrations and a 42% decrease in RSA for a doubling of liver Cd concentrations in the range studied. Cu contamination was also associated with lower muscle CS activities. Our results support previous findings of impaired aerobic capacities in the muscle of metal-contaminated fish, and demonstrate that this impairment is also reflected in aerobic capacities of whole fish. The evidence presented suggests that mitochondria may be primary targets for inhibition by Cu, and that Cd may reduce gill respiratory capacity. Muscle aerobic and anaerobic capacities were inversely related. This work indicates that metal exposure of wild yellow perch leads to a wide range of disturbances in metabolic capacities

  14. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  15. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  16. Effect of weak magnetic field on the grain size of electrodeposited nickel

    International Nuclear Information System (INIS)

    Ansari, M.S.; Gul, N.

    2007-01-01

    Effect of weak magnetic field on the electro-deposition of nickel onto copper electrode has been investigated. The working conditions were optimized through adjustment of cathodic current density (CCD), deposition time, bath temperature and pH of the medium. For electro-deposition in the absence of magnetic field, the optimum conditions comprised of pH = 4.0+- 0.5, average CCD = 22.5 +- 0.5 mA cm/sup -2/ and bath temperature in the range from 25 to 30 degree C. The same conditions were maintained for the electrodeposition while applying magnetic field of 0.75 kG. The morphological features of the Ni-deposits on copper cathode were compared for the two cases. The applied magnetic field not only enhanced the amount of nickel deposition but also improved the quality of the deposit. Surface morphology of the electro-deposited nickel has been monitored using scanning electron microscopy (SEM); the preliminary investigation has shown that the grain size decreased with the applied magnetic field case. One possible explanation to this behavior is the convection flow of cations close to the electrode surface induced by the Lorentz force which also influences the ion-migration. (author)

  17. Texture Formation of Electroplated Nickel and Nickel Alloy on Cu Substrate

    International Nuclear Information System (INIS)

    Lee, Hee Gyoun; Hong, Gye Won; Kim, Jae Geun; Lee, Sun Wang; Kim, Ho Jin

    2006-01-01

    Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at 400-800 degrees C. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above 900 degrees C. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was 9.9 degree and 13.4 degree, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was 8.6 degree, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above 900 degrees C by electroplated nickel.

  18. [Analysis of heavy metals monitoring results in food in Shaoxing in 2014].

    Science.gov (United States)

    Fan, Wei; Wang, Jing; Wu, Hongmiao; Lian, Lingjun; Du, Sai; Chen, Li

    2015-11-01

    To investigate heavy metals contamination level in food in Shaoxing, and to provide basis evidence for supervising heavy metals pollution in food and environmental pollution control in Shaoxing. Food samples in 2014 were detected for lead, cadmium, mercury, arsenic, nickel, copper and chromium by national standard methods, and the results were evaluated by GB 2762-2012 Pollutants limits in food. 1384 samples from 10 food categories were collected and tested for lead, cadmium, mercury and arsenic, the over standard rates were 2.0%, 3.0%, 1.5% and 0.22%, respectively, the median were 0.019, 0.0085, 0.0024 and 0.015 mg/kg, respectively; 273 samples were collected and tested for nickel, the detection rate was 48.4%, the median was 0.010 mg/kg; 255 samples were collected and tested for chromium, the detection rate was 14.9%, the median was 0.0050 mg/kg; 486 samples were collected and tested for copper, the detection rate was 94.0%, the median was 1.34 mg/kg. The heavy metals over standard rate of aquatic products, animal internal organs and grain were relatively high, 16.9%, 7.9% and 7.3% cadmium in swimming crabs exceeded standard seriously, the over standard rate was 38.9%. The overall pollution of heavy metals in food are not high in Shaoxing in 2014, but some food (aquatic products, animal internal organs and grain) pollution are relatively outstanding, and have the over standard problems of lead, cadmium, mercury and arsenic.

  19. Cloud point extraction of copper, lead, cadmium, and iron using 2,6-diamino-4-phenyl-1,3,5-triazine and nonionic surfactant, and their flame atomic absorption spectrometric determination in water and canned food samples.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2012-01-01

    A cloud point extraction procedure was optimized for the separation and preconcentration of lead(II), cadmium(II), copper(II), and iron(III) ions in various water and canned food samples. The metal ions formed complexes with 2,6-diamino-4-phenyl-1,3,5-triazine that were extracted by surfactant-rich phases in the nonionic surfactant Triton X-114. The surfactant-rich phase was diluted with 1 M HNO3 in methanol prior to its analysis by flame atomic absorption spectrometry. The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, surfactant concentration, temperature, and incubation time, were optimized. LOD values based on three times the SD of the blank (3Sb) were 0.38, 0.48, 1.33, and 1.85 microg/L for cadmium(II), copper(II), lead(II), and iron(III) ions, respectively. The precision (RSD) of the method was in the 1.86-3.06% range (n=7). Validation of the procedure was carried out by analysis of National Institute of Standards and Technology Standard Reference Material (NIST-SRM) 1568a Rice Flour and GBW 07605 Tea. The method was applied to water and canned food samples for determination of metal ions.

  20. Trace metal uptake by garden herbs and vegetables.

    Science.gov (United States)

    Shariatpanahi, M; Anderson, A C; Mather, F

    1986-12-01

    In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.