WorldWideScience

Sample records for cadmium copper manganese

  1. In vitro susceptibility of the oomycete Pythium insidiosum to metallic compounds containing cadmium, lead, copper, manganese or zinc.

    Science.gov (United States)

    Ribeiro, Tatiana Corrêa; Weiblen, Carla; Botton, Sônia de Avila; Pereira, Daniela Isabel Brayer; de Jesus, Francielli Pantella Kunz; Verdi, Camila Marina; Gressler, Leticia Trevisan; Sangioni, Luís Antonio; Santurio, Janio Morais

    2017-08-01

    Pythium insidiosum is an aquatic oomycete that causes pythiosis, an important and severe disease of difficult treatment that affects humans, domestic and wild animals. This infection is often described in horses in Brazil and humans in Thailand. In clinical practice, we have observed many cases that do not respond to available therapies, indicating the need to explore alternative therapeutic approaches. In this sense, studies using metal compounds in conjunction with available antimicrobial agents have been demonstrated greater antimicrobial activity. Thus, in this research, we tested in vitro activities of metallic compounds containing cadmium, lead, copper, manganese, or zinc against 23 isolates of P. insidiosum. The assays were performed by broth microdilution based on CLSI M38-A2 document. The minimum inhibitory and fungicidal concentrations were established for all isolates. Copper acetate and cadmium acetate showed the highest inhibitory effects, with minimal inhibitory concentration ranging from 4-64 μg/ml and 16-256 μg/ml, respectively. The mean geometric for minimal fungicidal concentrations were, respectively, 26 μg/ml and 111.43 μg/ml for copper acetate and cadmium acetate. These results suggest that copper and cadmium can inhibit P. insidiosum growth, highlighting the greater inhibitory activity of copper acetate. In addition, our results propose that copper and/or cadmium compounds can be used in upcoming researches to formulate effective new complexed drugs against P. insidiosum in in vitro and in vivo experimental models. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  3. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys.

    Science.gov (United States)

    Paßlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The concentrations of specific elements in the equine liver and kidneys are of practical relevance since horses are not only food-producing animals, but also partially serve as an indicator for the environmental pollution, as the basic feed includes plants like grass, grain and fruits. In this study, the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) were measured in the liver, renal cortex and renal medulla of 21 horses (8 male; 13 female; aged between 5 months-28 years), using inductively coupled plasma mass spectrometry. Comparable Cu and Zn concentrations were detected in the liver and renal cortex, while approximately 50% lower concentrations were measured in the renal medulla. The lowest Sr, Cd and Se, but the highest Mn, Sb and Pb concentrations were measured in the liver. The Ba concentrations were comparable in the renal cortex and medulla, but lower in the liver of the horses. Gender-related differences were observed for Cd, Mn and Cr, with higher Cd concentrations in the liver, but lower Mn concentrations in the renal cortex and lower Cr concentrations in the renal medulla of female horses. Age-related differences were detected for most measured elements, however, the animal number per age-group was only low. In conclusion, the present study provides important reference data for the storage of Sr, Ba, Cd, Cu, Zn, Mn, Cr, Sb, Se and Pb in the liver and kidneys of horses, which are of practical relevance for an evaluation of the exposure of horses to these elements, either via feed or the environment.

  4. Deriving freshwater quality criteria for copper, cadmium, aluminum and manganese for protection of aquatic life in Malaysia.

    Science.gov (United States)

    Shuhaimi-Othman, M; Nadzifah, Y; Nur-Amalina, R; Umirah, N S

    2013-03-01

    Freshwater quality criteria for copper (Cu), cadmium (Cd), aluminum (Al), and manganese (Mn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia, which were Macrobrachiumlanchesteri (prawn), two fish -Poeciliareticulata and Rasborasumatrana, Melanoidestuberculata (snail), Stenocyprismajor (ostracod), Chironomusjavanus (midge larvae), Naiselinguis (annelid), and Duttaphrynusmelanostictus (tadpole), to determine 96-h LC50 values for Cu, Cd, Al, and Mn. The final acute values (FAVs) for Cu, Cd, Al, and Mn were 2.5, 3.0, 977.8, and 78.3 μgL(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a Criterion Maximum Concentration (CMC) and a criterion Continuous Concentration (CCC) for Cu, Cd, Al, and Mn of 1.3, 1.5, 488.9, and 39.1 μgL(-1) and 0.3, 0.36, 117.8, and 9.4 μgL(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Cu, Cd, Al, and Mn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that R.sumatrana, M.lanchesteri, C.javanus, and N.elinguis were the most sensitive to Cu, Cd, Al, and Mn, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  6. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.

    Science.gov (United States)

    Jiang, Jue-Chao; Chu, Zhao-Lian; Huang, Wei; Wang, Gang; You, Xiao-Zeng

    2010-07-05

    Four novel [3 + 3] Schiff-base macrocyclic ligands I-IV condensed from 2,6-diformyl-4-substituted phenols (R = CH(3) or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C horizontal lineN double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (1-6), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl(-), Br(-), OAc(-), and SCN(-)), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 7-10 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 1-10, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV-vis, circular dichroism, (1)H NMR, and fluorescence spectra have been used to characterize and compare the structural

  7. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease.

    Science.gov (United States)

    Passlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations.

  8. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  9. Structural and mechanical studies of cadmium manganese thiocyanate crystal

    Science.gov (United States)

    Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

    2012-06-01

    Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

  10. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    Science.gov (United States)

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  11. 济宁市太白湖区饮用水铅镉铜锌铁锰氟含量检测%The determination of Lead,Cadmium,Copper,Zinc,Iron,Manganese and Fluoride in drinking water of the North Lake District,Jining

    Institute of Scientific and Technical Information of China (English)

    张凯; 公维磊; 王长芹

    2014-01-01

    Objective To determinate the content of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride in Drinking Water of the North Lake District in Jining in order to explore the non‐point source pollution in the process of new town building ,which provides a scientific basis for city construction and waterways in the layout ,al‐teration and application .Methods 102 water samples of 8 areas were collected randomly in the North Lake Dis‐trict of Jining .The contents of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride were determined by atom‐ic absorption spectrometry and fluorine ion selective electrode method respectively .Results The average content of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride were 0 .014mg/L ,0 .0034 mg/L ,0 .017mg/L , 0.406mg/L ,0 .509mg/L ,0 .047 mg/L ,0 .214mg/L ,and the corresponding rates of exceed standard were 1 .96% , 27 .45% ,0% ,7 .84% ,76 .47% ,5 .88% and 1 .96% respectively .Conclusion The contents of lead ,manganese , copper ,zinc and fluoride were generally good ,the content of cadmium was high ,and the content of iron was exces‐sive generally .%目的:对济宁市太白湖区饮用水中铅、镉、铜、锌、铁、锰、氟含量进行检测,了解新城建设过程中的城市非点源污染状况,及早为城市建设和水系的布局、改造、应用提供科学依据。方法在济宁市太白湖区随机采集8个区域共102份水样,分别采用石墨炉原子吸收法、火焰原子吸收法和氟离子选择电极法测定其铅、镉、铜、锌、铁、锰、氟的含量。结果济宁市太白湖区饮用水中铅、镉、铜、锌、铁、锰、氟含量分别为0.014mg/L、0.0034 mg/L、0.017mg/L、0.406mg/L、0.509mg/L、0.047 mg/L、0.214mg/L ,超标率分别为1.96%、27.45%、0%、7.84%、76.47%、5.88%、1.96%。结论济宁市太白湖区饮用水中铅、锰、铜、锌、氟含量总体良好,镉含量超标

  12. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, diethyldithiocarbamate, ... the other hand, Cd in the culture medium increased Cu absorption. ... shown the interest of this test species for the evaluation of toxic.

  13. Adsorption mechanism of copper and cadmium onto defatted waste biomass.

    Science.gov (United States)

    Ogata, Fumihiko; Tominaga, Hisato; Yabutani, Hitoshi; Kawasaki, Naohito

    2011-01-01

    In this study, the amount of copper or cadmium adsorbed using waste biomass (i.e., coffee grounds (CG) and rice bran (RB)) was investigated. The amount of crude protein in defatted CG (D-CG) or RB (D-RB) was greater than that in CG or RB, respectively. The amount of copper or cadmium adsorbed using CG was greater than that using RB. Additionally, the amount of copper or cadmium adsorbed was not affected by the presence of fat in CG. Adsorption data was fitted to the Freundlich equation, and the correlation coefficients were in the range of 0.794-0.991. The main adsorption mechanism was thought to be monolayer adsorption onto the surface of the waste biomass. The adsorption rate data was fitted to the pseudo-second-order model, and the correlation coefficient average was in the range of 0.891-0.945. This result showed that the rate-limiting step may be chemisorption. Moreover, the amount of copper or cadmium desorbed from CG or RB using 0.01 mol/L or 1.00 mol/L HNO(3) was investigated. Desorption with 0.01 mol/L HNO(3) resulted in the recovery of 86-97% of the copper and cadmium, indicating that copper or cadmium that was adsorbed using waste biomass was recoverable.

  14. Structural and surface changes of copper modified manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    Highlights: • Formation of MnO with regular rippled-like surface patterns. • Synthesis of copper nanorods supported on MnO nanoparticles. • Hydrogen production in steam methanol reforming over supported copper nanorods. - Abstract: The structural and surface properties of manganese and copper–manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  15. Effect of Copper, Manganese and Zinc With Antioxidant Vitamins on ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Science (2011), 19 (1): 151- 154. ISSN 0794-5698. Effect of Copper, Manganese and Zinc With Antioxidant Vitamins on Pulse ..... human microvasculature,. Hypertension. 36: 941-944. Piece, J.D, Cackler ...

  16. Discovery of Chromium, Manganese, Nickel, and Copper Isotopes

    CERN Document Server

    Garofali, K; Thoennessen, M

    2010-01-01

    Twenty-seven chromium, twenty-five manganese, thirty-one nickel and twenty-six copper isotopes have so far been observed and the discovery of these isotopes is discussed. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  17. Manganese, nickel, selenium and cadmium in molluscs from the Magellan Strait, Chile.

    Science.gov (United States)

    Astorga España, M S; Rodríguez Rodríguez, E M; Díaz Romero, C

    2004-08-01

    The concentrations of manganese, selenium, nickel and cadmium were determined in 112 samples of molluscs belonging to mussels (Mytilus chilensis, n = 47) and limpets (Nacella deaurata, n = 65), which were collected from the coastline of the Magellan Strait, Chile. Four (6.2%) samples of limpets exceeded the maximum limits for cadmium established in Europe. Limpets showed higher mean manganese, nickel and cadmium concentrations than mussels, whilst the mean selenium concentration in mussels was higher. The consumption of one serving (100 g) of molluscs represents a considerable contribution to the dietary daily intake of selenium, and limpets make a significant contribution to the manganese and cadmium intakes. The sampling zone influenced the trace element concentrations, and different uptakes were observed between the mollusc species.

  18. Determination of the cadmium and copper content inherent to metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Raspor, B.; Kozar, S.; Pavicic, J.; Juric, D. [Ruder Boskovic Institute, Center for Marine Research Zagreb, P.O.B. 1016, HR-10 001 Zagreb (Croatia)

    1998-05-01

    The reliability of the voltammetric determination of the cadmium and copper content (at pH 1.0), inherent to metallothionein (MT) isolated from the digestive gland of Mytilus galloprovincialis, was investigated. An artifact signal enhancement of copper, caused by the cupric-thionein complex adsorption at the mercury electrode, was established. This artifact was removed by UV-digestion of the sample for 15-20 h prior to analysis. A similar artifact was not detected for cadmium, because at this pH the cadmium-thionein complex has dissociated, and cadmium exists in the ionic form. Therefore, the voltammetric analysis of the cadmium content can be performed directly at pH 1.0, without prior UV-digestion of the sample. (orig.) With 3 figs., 1 tab., 12 refs.

  19. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    OpenAIRE

    Kowalik R.

    2015-01-01

    In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV), anodic stripping voltammetry(ASV) and electrochemical quartz crystal microbalance(EQCM). The obtained results were compared with electrochemical impedance spectroscopy(EIS) measurements. CV, EQCM and EIS results suggest that the UPD of cadmium star...

  20. Effects of Cadmium, Lead, Manganese, and Zinc at WHO Safe Limits ...

    African Journals Online (AJOL)

    user

    ABSTRACT: In the present study, The in vitro availability of chloramphenicol was ... (Pb), cadmium (Cd), manganese (Mn) and zinc (Zn) at 0.01, 0.003, 0.5 and 3 ... It is used in treatment of human ..... World Health Organisation (WHO), (1993).

  1. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    Science.gov (United States)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  2. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  3. Removal of Cadmium and Copper from Aqueous Solution by the Adsorption Resin Coated Manganese Oxide%吸附树脂负载锰氧化物去除水中镉和铜

    Institute of Scientific and Technical Information of China (English)

    鲁雪梅; 熊鹰; 张广之; 倪晋仁

    2012-01-01

    A new hybrid material (Mn-SD300) was prepared by coating manganese oxide onto the adsorption resin SD300, which adopted the method of in-suit potassium permanganate oxidation and reduction. The adsorption ability of Mn-SD300 for Cd2+ and Cu2+ was studied. The results of TEM, XRD and XPS demonstrated that the form of manganese oxide loaded on the resin was MnO2. A good adsorption property of Cd2+ and Cu2+ onto Mn-SD300 was indicated by the batch experiments. The adsorption behavior of Cd2+ and Cu2+ on Mn-SD300 was well described by pseudo-first-order kinetic model and Langmuir isotherm model (P2>0.99), and the maximum adsorption capacity of Mn-SD300 towards Cd2+ and Cu2+, were up to 76.92 mg/g and 142.86 mg/g respectively at 303 K. Compared to the conventional cation exchange resin D001, Mn-SD300 had a better adsorption selectivity to Cd2+ and Cu2+, when Ca2+, Mg2+ and Na+ coexisted at high concentration.%以大孔吸附树脂SD300为载体,采用原位高锰酸钾氧化还原法将锰氧化物负载其上,制备了新型锰氧化物-吸附树脂复合材料Mn-SD300,并对其吸附水中Cd2+和Cu2+的性能进行了研究.TEM,XRD以及XPS的分析结果表明,负载的锰氧化物以MnO2的形态存在.静态吸附实验结果表明Mn-SD300对Cd2+和Cu2+具有良好的吸附性能.吸附行为均符合准一级动力学模型(R2>0.99)和Langmuir吸附等温线模型(R2>0.99),温度为303 K时,Mn-SD300对Cd2+和Cu2+的饱和吸附容量可分别达到76.92mg/g和142.86 mg/g.在高浓度竞争离子Ca2+,Mg2+和Na+共存的情况下,Mn-SD300对Cd2+和Cu2+的吸附选择性要强于传统阳离子交换树脂D001.

  4. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation.

    Science.gov (United States)

    Jones, Christopher; Taylor, Stuart H; Burrows, Andrew; Crudace, Mandy J; Kiely, Christopher J; Hutchings, Graham J

    2008-04-14

    Low levels of cobalt doping (1 wt%) of copper manganese oxide enhances its activity for carbon monoxide oxidation under ambient conditions and the doped catalyst can display higher activity than current commercial catalysts.

  5. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    Science.gov (United States)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  6. Relationship between lead, cadmium, zinc, manganese and iron in hair of environmentally exposed subjects

    OpenAIRE

    Rita Mehra; Amit Singh Thakur

    2016-01-01

    Trace level analysis of two toxic metals lead and cadmium and three essential metals zinc, manganese and iron was examined in hair of 25 workers of metals finishing units and metal recycling units of State of Rajasthan, India, as Exposed Group (EG). Twenty-five subjects as controls were selected from the office staff of the same units Control Group A (CGA) and 25 subjects selected from the population of State of Rajasthan, India, who were not exposed to metal pollution at their work place wer...

  7. Effect of copper doping on the crystal structure and morphology of 1D nanostructured manganese oxides.

    Science.gov (United States)

    Lee, Sun Hee; Park, Dae Hoon; Hwang, Seong-Ju; Choy, Jin-Ho

    2007-11-01

    We have tried to control the aspect ratio and physicochemical properties of 1D nanostructured manganese oxides through copper doping. Copper-doped manganese oxide nanostructures have been synthesized by one-pot hydrothermal treatment for the mixed solution of permanganate anions and copper cations. According to powder X-ray diffraction and electron microscopic analyses, all the present materials commonly crystallize with alpha-MnO2-type structure but their aspect ratio decreases significantly with increasing the content of copper. Such a variation of crystallite dimension is attributable to the limitation of crystal growth by the incorporation of copper ions. X-ray absorption spectroscopic studies at Mn K- and Cu K-edges clearly demonstrate that the average oxidation state of manganese ions is increased by the substitution of divalent copper ions. Electrochemical measurements reveal the improvement of the electrode performance of nanostructured manganate upon copper doping, which can be interpreted as a result of the decrease of aspect ratio and the increase of Mn valence state. From the present experimental findings, it becomes certain that the present Cu doping method can provide an effective way of controlling the crystal dimension and electrochemical property of 1D nanostructured manganese oxide.

  8. Relative and combined effects of ethanol and protein deficiency on bone manganese and copper.

    Science.gov (United States)

    González-Pérez, José M; González-Reimers, Emilio; DeLaVega-Prieto, María José; Durán-Castellón, María del Carmen; Viña-Rodríguez, José; Galindo-Martín, Luis; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco

    2012-06-01

    Both manganese and copper may affect bone synthesis. Bone content of both metals can be altered in alcoholics, although controversy exists regarding this matter. To analyse the relative and combined effects of ethanol and a low protein diet on bone copper and manganese, and their relationships with bone structure and metabolism, including trabecular bone mass (TBM), osteoid area (OA), osteocalcin (OCN), insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH), urinary hydroxyproline (uHP) and vitamin D. Adult male Sprague-Dawley rats were divided into four groups. The control rats received a 18% protein-containing diet; a second group, an isocaloric, 2% protein-containing diet; a third one, an isocaloric, 36% ethanol-containing diet and a fourth, an isocaloric diet containing 2% protein and 36% ethanol. After sacrifice, TBM and OA were histomorphometrically assessed; bone and serum manganese and copper were determined by atomic absorption spectrophotometry, and serum OCN, IGF-1, PTH, uHP and vitamin D by radioimmunoassay. Ethanol-fed rats showed decreased TBM and bone manganese. Significant relationships existed between bone manganese and TBM, serum IGF-1 and OCN. Ethanol leads to a decrease in bone manganese, related to decreased bone mass and bone synthesis. No alterations were found in bone copper.

  9. Cadmium, zinc, and copper in horse liver and in horse liver metallothionein: comparisons with kidney cortex

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Nordberg, M.; Palm, B.; Piscator, M.

    1981-10-01

    Cadmium, zinc, and copper were determined in liver and in kidney cortex samples obtained from 33 normal Swedish horses. Cadmium concentrations in liver ranged from 0.002 to 0.165 mmole/kg and in kidney from 0.01 to 2.15 mmole/kg. There was a significant correlation between liver and kidney concentrations of cadmium. The average kidney concentration of cadmium was about 15 times that of liver. Zinc concentrations increased with increasing cadmium concentrations in both liver and kidney. The relative increase of zinc with cadmium was more pronounced in liver than in kidney. However, the absolute increase of zinc was larger in kidney due to the much higher concentration of cadmium in kidney compared to liver. Any significant correlation between copper and cadmium, or copper and zinc, could not be revealed. Sephadex gel filtration was performed on supernatants from homogenates of kidney and liver from 19 of the horses. In both organs the major part of cadmium was recovered in protein fractions corresponding to metallothionein (MT), in which the increase of zinc also took place. The molar ratio between zinc and cadmium was higher in MT fractions obtained from liver than in MT fractions obtained from kidney.

  10. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    Science.gov (United States)

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  11. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    Science.gov (United States)

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  12. Manganese

    Science.gov (United States)

    Manganese is a mineral that is found in several foods including nuts, legumes, seeds, tea, whole grains, ... body requires it to function properly. People use manganese as medicine. Manganese is used for prevention and ...

  13. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  14. Distribution of blood lead, blood cadmium, urinary cadmium, and urinary arsenic levels in employees of a copper smelter

    Energy Technology Data Exchange (ETDEWEB)

    Lilis, R.; Valciukas, J.A.; Weber, J.P.; Fischbein, A.; Nicholson, W.J.; Campbell, C.; Malkin, J.; Selikoff, I.J.

    1984-02-01

    A cross-sectional medical examination of a copper smelter work force included determination of blood lead (Pb-B), zinc protoporphyrin (ZPP), blood cadmium (Cd-B), urinary cadmium (Cd-U), and urinary arsenic (As-U), since it was known that such metal impurities were present in the copper concentrate. A total of 776 copper smelter employees (680 active and 96 retirees and ex-employees) were examined. Another 144 men, never employed in the smelter, but who had worked in copper mines (and sometimes in gold mines) were also examined. Mean Pb-B, ZPP, Cd-B, and As-U were significantly higher in active copper smelter employees than in retirees or miners, indicating exposure and absorption in the copper smelter. Significant correlations between Pb-B and Cd-B, and Cd-U and As-U were present, confirming the common source of absorption. Although there was evidence for an increased lead absorption, this was very moderate, with practically no Pb-B levels in excess of 60 ..mu..g/dl. A marked effect of smoking on blood cadmium levels was present; nevertheless, for all smoking categories Cd-B levels were significantly higher in active employees, indicating the independent contribution of exposure to cadmium in the smelter. Cd-U did not exceed 10 ..mu..g/g creatinine, the generally accepted critical level for the kidney, but was higher than 2 ..mu..g/g cretinine, a level very rarely exceeded in the general population, in a sizable proportion of those examined. The highest Cd-U levels were found in retired copper smelter employees; age might have been a contributing factor, besides a longer duration of exposure in the smelter.

  15. Characterisation of covalent copper and manganese organometallic complexes with Schiff bases by ionspray mass spectrometry

    NARCIS (Netherlands)

    Raffaelli, A.; Minutolo, F.; Feringa, B.L.; Salvadori, P.

    1998-01-01

    Copper and manganese complexes containing Schiff bases as ligands, having potential interest in homogeneous catalysis, have been characterised by mass spectrometry using ionspray ionisation. Single stage mass spectrometry allowed us to confirm the molecular weight of complexes in all cases, providin

  16. Cadmium and copper toxicity in three marine macroalgae: evaluation of the biochemical responses and DNA damage.

    Science.gov (United States)

    Babu, M Yokesh; Palanikumar, L; Nagarani, N; Devi, V Janaki; Kumar, S Ramesh; Ramakritinan, C M; Kumaraguru, A K

    2014-01-01

    Marine macroalgae have evolved a different mechanism to maintain physiological concentrations of essential metal ions and non-essential metals. The objective of the present work was to evaluate the antioxidant response and DNA damage of copper and cadmium ions in three halophytes, namely, Acanthophora spicifera, Chaetomorpha antennina, and Ulva reticulata. Accumulation of copper was significantly higher (P  A. spicifera > C. antennina. DNA damage index analysis supported that copper was significantly (P < 0.05) more toxic than cadmium. Bioaccumulation, biochemical responses, and DNA damage observed in the here analyzed marine macroalgae after exposure to selected metals indicate that these marine organisms represent useful bioindicators of marine pollution.

  17. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2015-04-01

    Full Text Available The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL, 4.4 (2.4 μg/L, 10.9 (9.2 μg/L, and 43.7 (17.7 μg/L, respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01. After controlling for maternal education level and socio-economic status (through ownership of a family car, the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01. Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations.

  18. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D. (NIOM, Scandinavian Institute of Dental Materials, Oslo, Norway); Gjerdet, N. (Department of Dental Materials, School of Dentistry, Bergen, Norway); Paulsen, G. (Denatal Faculty, University of Oslo, Norway)

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied.

  19. Manganese-mitigation of cadmium toxicity to seedling growth of Phytolacca acinosa Roxb. is controlled by the manganese/cadmium molar ratio under hydroponic conditions.

    Science.gov (United States)

    Liu, Huimin; Zhang, Yuxiu; Chai, Tuanyao; Tan, Jinjuan; Wang, Jianwu; Feng, Shanshan; Liu, Geyu

    2013-12-01

    Manganese (Mn) can interact with cadmium (Cd) in environments and influence the toxic effect of Cd on plants. However, few studies have investigated the relationship between the Mn/Cd ratio and plant Cd-toxicity along Cd concentrations. In this paper, we studied the effects of external Mn/Cd molar ratios (0, 10, 30, 50 and 60) on Cd toxicity in the Mn hyperaccumulator and Cd tolerant plant, Phytolacca acinosa Roxb., at three Cd levels (50, 100 and 200 μM) under hydroponic conditions. Our result showed that seedling growth (y) under Cd stress was strongly positively related to the solution Mn/Cd molar ratio (SMCR). The relationship between the two variables under solution Cd concentrations was well explained by the linear regression model y=a+b1 (SMCR)+b2 (Solution-Cd). Increasing SMCR significantly reduced the Cd concentration and increased the Mn concentration in plant tissues. However, seedling growth was consistent with the shoot Mn/Cd molar ratio rather than with the Mn or Cd concentrations in plant tissues. At low levels of SMCR (e.g. 0 and 10), elevation of Mn distribution in shoot tissues might be a mechanism in P. acinosa seedlings to defend against Cd-toxicity. In comparison with low levels of SMCR, high levels of SMCR (e.g. 50 and 60) greatly alleviated lipid peroxidation and plant water-loss, and enhanced photosynthesis. However, the alleviated lipid peroxidation in the Mn-mitigation of Cd toxicity was likely to be the secondary effect resulting from the antagonism between Mn and Cd in the plant.

  20. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease.

    Science.gov (United States)

    Gorell, J M; Johnson, C C; Rybicki, B A; Peterson, E L; Kortsha, G X; Brown, G G; Richardson, R J

    1999-01-01

    A population-based case-control study was conducted in the Henry Ford Health System (HFHS) in metropolitan Detroit to assess occupational exposures to manganese, copper, lead, iron, mercury and zinc as risk factors for Parkinson's disease (PD). Non-demented men and women 50 years of age who were receiving primary medical care at HFHS were recruited, and concurrently enrolled cases (n = 144) and controls (n = 464) were frequency-matched for sex, race and age (+/- 5 years). A risk factor questionnaire, administered by trained interviewers, inquired about every job held by each subject for 6 months from age 18 onward, including a detailed assessment of actual job tasks, tools and environment. An experienced industrial hygienist, blinded to subjects' case-control status, used these data to rate every job as exposed or not exposed to one or more of the metals of interest. Adjusting for sex, race, age and smoking status, 20 years of occupational exposure to any metal was not associated with PD. However, more than 20 years exposure to manganese (Odds Ratio [OR] = 10.61, 95% Confidence Interval [CI] = 1.06, 105.83) or copper (OR = 2.49, 95% CI = 1.06,5.89) was associated with PD. Occupational exposure for > 20 years to combinations of lead-copper (OR = 5.24, 95% CI = 1.59, 17.21), lead-iron (OR = 2.83, 95% CI = 1.07,7.50), and iron-copper (OR = 3.69, 95% CI = 1.40,9.71) was also associated with the disease. No association of occupational exposure to iron, mercury or zinc with PD was found. A lack of statistical power precluded analyses of metal combinations for those with a low prevalence of exposure (i.e., manganese, mercury and zinc). Our findings suggest that chronic occupational exposure to manganese or copper, individually, or to dual combinations of lead, iron and copper, is associated with PD.

  1. Does copper reduce cadmium uptake by different rice genotypes?

    Institute of Scientific and Technical Information of China (English)

    CUI Yujing; ZHANG Xuhong; ZHU Yongguan

    2008-01-01

    A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd),calcium (Ca),iron (Fe),and zinc (Zn) uptake by several rice genotypes.The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution.Plants were grown in a growth chamber with controlled environment.The results showed a significant difference between the biomass of different rice genotypes (P<0.001).The Cd and Cu concentration in the solution had no significant effect on the biomass.The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P<0.001).The Cd concentration did not significantly influence Ca uptake by plants,whereas the Cu concentration did (P=0.034).There was a significant influence of Cd on Fe uptake by shoots and roots (P<0.001,P=0.003,respectively).Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots.We concluded that Cu had significant influence on Cd uptake.The possible mechanisms were discussed.

  2. Synthesis and characterization of manganese-glycine and copper-glycine adducts

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2002-09-01

    Full Text Available This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.

  3. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor).

    Science.gov (United States)

    Hou, Wenhua; Chen, Xiao; Song, Guanling; Wang, Qunhui; Chi Chang, Chein

    2007-01-01

    Aquatic plants have been identified as a potentially useful group for accumulating and bioconcentrating heavy metals. In the study, we investigated changes in the contents of soluble protein and photosynthetic pigments as well as the activity of antioxidant enzymes caused by copper sulfate and cadmium dichloride, respectively in duckweed (Lemna minor) during concentration-dependent exposure (0.05-20 mg l(-1)) to metal salt. The results demonstrated that exposure to high concentration heavy metals (Cu>10 mg l(-1), Cd>0.5 mg l(-1)) could result the disintegration of antioxidant system in duckweed. Also, the significant decrease of contents of soluble protein and photosynthetic pigments was observed to high-level metal stress. Additionally, cadmium was found to be more toxic than copper on plants. The outcome of this study corroborate that Lemna minor is a suitable candidate for the phytoremediation of low-level copper and cadmium contaminated waterbody.

  4. Physiological responses of Matricaria chamomilla to cadmium and copper excess.

    Science.gov (United States)

    Kovácik, Jozef; Backor, Martin; Kaduková, Jana

    2008-02-01

    Physiological responses of Matricaria chamomilla plants exposed to cadmium (Cd) and copper (Cu) excess (3, 60, and 120 microM for 7 days) with special emphasis on phenolic metabolism were studied. Cu at 120 microM reduced chamomile growth, especially in the roots where it was more abundant than Cd. Notwithstanding the low leaf Cu amount (37.5 microg g(-1) DW) in comparison with Cd (237.8 microg g(-1) DW) at 120 microM, it caused reduction of biomass accumulation, F(v)/F(m) ratio and soluble proteins. In combination with high accumulation of phenolics, strong reduction of proteins and high GPX activity in the roots, this supports severe redox Cu properties. In terms of leaf phenylalanine ammonia-lyase (PAL) activity, it seems that Cd had a stimulatory effect during the course of the experiment, whereas Cu was found to stimulate it after 7-day exposure. The opposite trend was visible in the roots, where Cd had a stimulatory effect at high doses but Cu mainly at the highest dose. This supports the assumption of different PAL time dynamics under Cd and Cu excess. A dose of 60 and 120 microM Cu led to 2- and 3-times higher root lignin accumulation while the same Cd doses increased it by 33 and 68%, respectively. A Cu dose of 120 microM can be considered as limiting for chamomile growth under conditions of present research, while resistance to high Cd doses was confirmed. However, PAL and phenolics seemed to play an important role in detoxification of Cd- and Cu-induced oxidative stress.

  5. Zinc, copper, manganese, and selenium metabolism in patients with human growth hormone deficiency or acromegaly.

    Science.gov (United States)

    Aihara, K; Nishi, Y; Hatano, S; Kihara, M; Ohta, M; Sakoda, K; Uozumi, T; Usui, T

    1985-08-01

    This study was designed to evaluate trace metal metabolism in patients with known abnormalities of human growth hormone (hGH). The mean concentration of zinc in plasma and urine decreased in patients with hGH deficiency after hGH injection, whereas, after adenomectomy, in patients with acromegaly, zinc increased in plasma, remained the same in erythrocytes, and decreased in urine. There was a negative correlation between plasma zinc and serum hGH levels and a positive correlation between urinary zinc excretion and serum hGH levels in acromegaly. In hGH deficiency, the copper content remained unchanged in plasma and erythrocytes and rose in urine after treatment; however, in acromegaly, the copper content increased in plasma and remained unchanged in erythrocytes and urine after surgery. The mean concentration of erythrocyte manganese did not change significantly after treatment in patients with hGH deficiency or acromegaly, but the pre-hGH treatment level of erythrocyte manganese in hGH deficiency was lower than in the controls. Plasma selenium concentrations were decreased in hGH deficiency and increased in acromegaly patients after therapy. These results suggest that hGH affects the metabolism of zinc, copper, manganese, and selenium.

  6. Synthesis and Magnetic Studies of Copper ( Ⅱ )-Manganese (Ⅱ)Heterobinuclear Complexes with an Oxamido Bridge

    Institute of Scientific and Technical Information of China (English)

    LI, Yan-Tuan; YAN, Cui-Wei; LIAO, Dai-Zheng

    2001-01-01

    Four new copper ( Ⅱ )-manganese ( Ⅱ ) beterobinuclear complexes bridged by N, N' -bis[ 2- (dimethylamino) ethyl) ] oxamido dianion (dmoxae) and end-capped with 1,10-phenanthroline (phen), 5-methyl-1, l0-phenanthroline (Mephen), diaminoethane (en) or 1,3-di-aminopropane (pn), respectively, namely, [Cu(dmoxae)MnL2](CO4)2 (L= phen, Mephen, en, pn), have been synthesized and characterized by elemental analyses, IR, electronic spectral studies, and molar conductivity measurements. The electronic reflectance spectrum indicates the presence of spin exchange-coupling interaction between bridged copper (Ⅱ) and manganese (Ⅱ) ions.The cryomagnetic measurements (4.2-300 K) of [ Cu(dmoxae)Mn(phen)2](ClO4)2 ( 1 ) and [Cu(dmoxae)Mn(Mephen)2](ClO4)2(2) complexes demonstrated an antiferromagnetic interaction between the adjacent manganese(Ⅱ) and copper (Ⅱ) ions through the oxamido-bridge within each molecule. On the basis of spin Hamiltonian, H^ = - 2JS^1·S^2,the magnetic analysis was carried out for the two complexes and the spin-coupling constant (J) was evaluated as - 35.9cm-1 for 1 and - 32.6 cm-1 for 2. The influence of methyl substitutions in the amine groups of the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is also discussed.

  7. Transcriptional and biochemical effects of cadmium and manganese on the defense system of Octopus vulgaris paralarvae.

    Science.gov (United States)

    Nicosia, Aldo; Salamone, Monica; Mazzola, Salvatore; Cuttitta, Angela

    2015-01-01

    Due to anthropogenic activities the relative concentrations of cadmium and manganese have increased in the marine environment. Cephalopods are able to accumulate such metals and, as inhabitant of coastal waters, Octopus vulgaris is continuously exposed to anthropogenic activities. Since no study is available on the effects of heavy metals at molecular level in developing octopuses, herein we exposed 1-day-old paralarvae for 24 h to 10, 100, and 1000 μg/L of CdCl2 or MnCl2. Cd exerted a concentration-dependent inhibition of survival and a reduction in growth rate was shown while Mn exposure did not affect the survival rate even at the highest concentrations. Gene expression profiles of hsp70, sod, cat, and gst genes were analyzed by quantitative real-time PCR and defined patterns of transcription were observed. Moreover posttranscriptional analyses were also performed suggesting the impairment of metabolic functions, under strong oxidative conditions (as occurred in paralarvae exposed to Cd) or the complete detoxification events (as occurred in paralarvae exposed to Mn).

  8. Investigations of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R.

    2009-10-06

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot, and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam X-ray topography (SWBXT), current-voltage (I-V) measurements, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors to irradiation exposure. The crystal from the stable growth region proved superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by two orders-of-magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau}){sub e} value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including for applications in medicine.

  9. Transcriptional and Biochemical Effects of Cadmium and Manganese on the Defense System of Octopus vulgaris Paralarvae

    Directory of Open Access Journals (Sweden)

    Aldo Nicosia

    2015-01-01

    Full Text Available Due to anthropogenic activities the relative concentrations of cadmium and manganese have increased in the marine environment. Cephalopods are able to accumulate such metals and, as inhabitant of coastal waters, Octopus vulgaris is continuously exposed to anthropogenic activities. Since no study is available on the effects of heavy metals at molecular level in developing octopuses, herein we exposed 1-day-old paralarvae for 24 h to 10, 100, and 1000 μg/L of CdCl2 or MnCl2. Cd exerted a concentration-dependent inhibition of survival and a reduction in growth rate was shown while Mn exposure did not affect the survival rate even at the highest concentrations. Gene expression profiles of hsp70, sod, cat, and gst genes were analyzed by quantitative real-time PCR and defined patterns of transcription were observed. Moreover posttranscriptional analyses were also performed suggesting the impairment of metabolic functions, under strong oxidative conditions (as occurred in paralarvae exposed to Cd or the complete detoxification events (as occurred in paralarvae exposed to Mn.

  10. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water.

    Directory of Open Access Journals (Sweden)

    Yunnan Hou

    Full Text Available In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II and Mn(II was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II and Mn(II, respectively. Two models were investigated to compare the cells' capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water.

  11. Relationship between lead, cadmium, zinc, manganese and iron in hair of environmentally exposed subjects

    Directory of Open Access Journals (Sweden)

    Rita Mehra

    2016-11-01

    Full Text Available Trace level analysis of two toxic metals lead and cadmium and three essential metals zinc, manganese and iron was examined in hair of 25 workers of metals finishing units and metal recycling units of State of Rajasthan, India, as Exposed Group (EG. Twenty-five subjects as controls were selected from the office staff of the same units Control Group A (CGA and 25 subjects selected from the population of State of Rajasthan, India, who were not exposed to metal pollution at their work place were selected as another control group Control Group B (CGB. Head hair samples were collected, decontaminated and digested followed by analysis for trace levels of Pb, Cd, Zn, Mn and Fe by Atomic Absorption Spectrophotometer (AAS, ECIL Model-AAS4141 using air acetylene flame. The significant levels of metals in between EG, CGA and CGB have been computed by Student’s ‘t’ test. The Pearson rank correlation of the data of five metals revealed significant positive correlation between Mn/Cd, Mn/Pb, Mn/Fe, Cd/Pb, Cd/Fe and Pb/Fe in hair of Exposed Group (EG, Mn/Zn, Mn/Cd, Mn/Pb, Zn/Cd, Zn/Pb, Cd/Pb and Cd/Fe in hair of Control Group A (CGA and Mn/Cd in hair of Control Group B (CGB. Significant negative correlation was observed between Pb/Fe in hair of CGB.

  12. Manganese Coated Sand for Copper (II Removal from Water in Batch Mode

    Directory of Open Access Journals (Sweden)

    Nidal Hilal

    2013-09-01

    Full Text Available Removal of heavy metals, such as copper ions, from water is important to protect human health and the environment. In this study, manganese coated sand (MCS was used as an adsorbent to remove copper ions in a batch system. Equilibrium data were determined at a temperature of 25.6 °C and the Langmuir model was used to describe the experimental data. Mn-coating improved the removal of copper ions by 70% as compared to uncoated sand. Based on a kinetics study, the adsorption of copper ions on MCS was found to occur through a chemisorption process and the pseudo-second-order model was found to fit the kinetics experimental data well. Due to particle interactions, the equilibrium uptake was reduced as the ratio of sand to volume of solution increased. pH affected the removal of copper ions with lowest uptakes found at pH 3 and pHs >7, whilst at pHs in the range of 4 to 7, the uptake was highest and almost constant at the value of 0.0179 mg/g ± 4%. This study has also revealed that copper ions removal was dissolved oxygen (DO dependent with the highest removal occurring at ambient DO concentration, which suggests that DO should be carefully studied when dealing with copper ions adsorption.

  13. Woodlouse Porcellio scaber as a biological indicator of zinc, cadmium, lead, and copper pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hopkin, S.P.; Hardisty, G.N.; Martin, M.H.

    1986-01-01

    The amounts of zinc, cadmium, lead, and copper were determined in the hepatopancreas and whole body of the woodlouse. Porcellio scaber (Crustacea, Isopoda) and soil and leaf litter collected from 89 sites in the counties of Avon and Somerset, south-west England. Maps were drawn to compare the regional distribution of concentrations of metals in the samples. The main source of zinc, cadmium, lead, and copper pollution was centered on Avonmouth to the north-west of Bristol, the site of a primary zinc, lead, and cadmium smelting works. Concentrations of all four metals in the hepatopancreas, whole woodlice, soil and leaf litter were above background levels over a large area on all maps which, in the case of cadmium in the hepatopancreas, extended for 25 km to the east of the smelting works. The correlation coefficients between the concentrations of each metal in woodlice and soil, and between woodlice and leaf litter, were positive and statistically significant in all cases. At individual sites, however, particularly those associated with disused mining areas, rubbish tips or busy roads, the concentrations of zinc, cadmium, lead, and copper in woodlice could not have been predicted accurately from the levels of metals in leaf litter or soil due to the large scatter of data points along the lines of best fit.

  14. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis.

    Science.gov (United States)

    Rodríguez-Barranco, Miguel; Lacasaña, Marina; Aguilar-Garduño, Clemente; Alguacil, Juan; Gil, Fernando; González-Alzaga, Beatriz; Rojas-García, Antonio

    2013-06-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5-15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6-13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  16. Effects of Copper, Cadmium, Lead, and Arsenic in a Live Diet on Juvenile Fish Growth

    Science.gov (United States)

    The effects of dietborne copper, cadmium, lead, and arsenic on juvenile fish were evaluated using a live diet consisting of the oligochaete Lumbriculus variegatus. In 30-d exposures, no effects on growth and survival of rainbow trout, fathead minnow, and channel catfish were obs...

  17. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant G

  18. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  19. The Effect of Arbuscular Mycorrhiza Fungi on Iron and Manganese Concentration of Berssem Clover by Cadmium Stress

    Directory of Open Access Journals (Sweden)

    H. Aram

    2014-02-01

    Full Text Available In this study, a factorial experiment was performed in completely randomized design (CRD with three factors: arbuscularmycorrhizal fungi with two levels (inoculated and non-inoculated soil and cadmium with six levels (0, 5, 10, 20, 40 and 80 ppm. The results showed that effect of cadmium levels on iron and manganese concentration was significant in one percent level of statistical.  In80 ppm cadmium concentration in soil, a reducediron were  on  concentration of Iron (39% and 53% and manganese (48% and 48.5% in root and aerial respectively. Butarbuscularmycorrhiza fungi increasediron concentration 30.2% and 26.7% in theroot and aerial, and manganese concentration36% and 30.9% in root and aerial plant respectively. Normal 0 false false false EN-US X-NONE FA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  20. Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Zaki, Z.I. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Advanced Materials Division, Central Metallurgical R and D Institute (CMRDI), P.O. Box: 87 Helwan, Cairo (Egypt); Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2013-03-15

    Cd-substituted manganese ferrite Mn{sub 1-x}Cd{sub x}Fe{sub 2}O{sub 4} powders with x having values 0.0, 0.1, 0.3 and 0.5 have been synthesized by hydrothermal route at 180 Degree-Sign C in presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x upto 0.3. However, sample with x{>=}0.5 showed hexagonal phase of cadmium hydroxide (Cd(OH){sub 2}) besides the ferrite phase. The increase in Cd-substitution upto x=0.3 leads to an increase in the lattice parameter as well as the average crystallite size of the prepared ferrites. The average crystallite size increased by increasing the Cd-content and was in the range of 39-57 nm. According to VSM results, the saturation magnetization increased with Cd ion substitution. - Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of mono dispersed Cd-substituted MnFe{sub 2}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer The change in Ms with increasing Cd-substitution was investigated Black-Right-Pointing-Pointer Pure single phases of cubic ferrites were obtained with x up to 0.3 Black-Right-Pointing-Pointer Sample with x{>=}0.5 showed hexagonal phase of Cd(OH){sub 2} beside the ferrite.

  1. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    Science.gov (United States)

    Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko

    2012-01-01

    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135

  2. Catalase Activity in Brown Mussels (Perna perna) under Acute Cadmium, Lead, and Copper Exposure and Depuration Tests

    National Research Council Canada - National Science Library

    Boudjema, Kamel; Kourdali, Sidali; Bounakous, Nabila; Meknachi, Abdellah; Badis, Abdelmalek

    2014-01-01

      Brown mussels (Perna perna) were exposed to cadmium (Cd), lead (Pb), and copper (Cu) concentrations under acute exposure and exposure-depuration tests for the estimation of biochemical biomarker catalase...

  3. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city.

    Science.gov (United States)

    Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J

    2015-08-01

    This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.

  4. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    OpenAIRE

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered ...

  5. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-04-30

    This paper determines the effect of immobilized brown alga Fucus vesiculosus in the biosorption of heavy metals with alginate xerogels. Immobilization increased the kinetic uptakes and intraparticle diffusion rates of the three metals. The Langmuir maximum biosorption capacity increased twofold for cadmium, 10 times for lead, and decreased by half for copper. According to this model, the affinity of the metals for the biomass was as follows: Cu>Pb>Cd without alga and Pb>Cu>Cd with alga. FITR confirmed that carboxyl groups were the main groups involved in the metal uptake. Calcium in the gels was displaced by heavy metals from solution according to the "egg-box" model. The restructured gel matrix became more uniform and organized as shown by scanning electron microscopy (SEM) characterization. F. vesiculosus immobilized in alginate xerogels constitutes an excellent biosorbent for cadmium, lead and copper, sometimes surpassing the biosorption performance of alginate alone and even the free alga.

  6. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Blazquez, M.L. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-04-30

    This paper determines the effect of immobilized brown alga Fucus vesiculosus in the biosorption of heavy metals with alginate xerogels. Immobilization increased the kinetic uptakes and intraparticle diffusion rates of the three metals. The Langmuir maximum biosorption capacity increased twofold for cadmium, 10 times for lead, and decreased by half for copper. According to this model, the affinity of the metals for the biomass was as follows: Cu > Pb > Cd without alga and Pb > Cu > Cd with alga. FITR confirmed that carboxyl groups were the main groups involved in the metal uptake. Calcium in the gels was displaced by heavy metals from solution according to the 'egg-box' model. The restructured gel matrix became more uniform and organized as shown by scanning electron microscopy (SEM) characterization. F. vesiculosus immobilized in alginate xerogels constitutes an excellent biosorbent for cadmium, lead and copper, sometimes surpassing the biosorption performance of alginate alone and even the free alga.

  7. The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa).

    Science.gov (United States)

    Karntanut, Wanchamai; Pascoe, David

    2002-06-01

    An acute toxicity study of three metals to Hydra species carried out using two different assessment methods, (i) determination of the LC50 and (ii) measurement of progressive morphological changes, demonstrated that relative toxicity decreased from copper to cadmium with zinc the least toxic for all species. The latter method revealed more details of the effect on Hydra in terms of physical damage to the polyp but both methods indicated that H. viridissima was more sensitive to copper and cadmium than H. vulgaris1 (Zurich strain, male clone), H. vulgaris2 (a dioecious strain reproducing sexually and asexually) and H. oligactis (dioecious, reproducing sexually and asexually). The responses to zinc were similar for all Hydra. The possible role of metabolic interactions between H. viridissima and its symbiotic green algae in contributing to the greater sensitivity of this polyp is discussed.

  8. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  9. Determination of cadmium and copper with ET-AAS after electrochemical deposition on a graphite electrode.

    Science.gov (United States)

    Vraná, A; Komárek, J

    1996-06-01

    The electrodeposition of cadmium and copper on a special graphite disk electrode has been performed at controlled potential. The electrode with the deposit has been inserted into the graphite atomizer HGA-400 by an adapted automatic sampler for the final determination by ET-ASS. The sensitivity of determination has been 0.371 (microg l(-1))(-1) for cadmium and 0.025 (microg l(-1))(-1) for copper for 2 min electrodeposition and increased linearly with the time of deposition. The limit of detection (3s(bl)) has been 7.9 ng l(-1) Cd(2+) and 0.11 microg l(-1) Cu(2+) for 2 min deposition and it has been improved with increased time of electrodeposition. The technique has been applied to the determination of both metals in seawater and to speciation in the presence of EDTA complexing agent.

  10. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus

    Science.gov (United States)

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10-6 and 3.6 x 10-5 M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals. PMID:26125595

  11. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Oriana Migliaccio

    Full Text Available Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6 and 3.6 x 10(-5 M, respectively on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.

  12. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus.

    Science.gov (United States)

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6) and 3.6 x 10(-5) M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.

  13. The Proteome of Copper, Iron, Zinc, and Manganese Micronutrient Deficiency in Chlamydomonas reinhardtii*

    Science.gov (United States)

    Hsieh, Scott I.; Castruita, Madeli; Malasarn, Davin; Urzica, Eugen; Erde, Jonathan; Page, M. Dudley; Yamasaki, Hiroaki; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Loo, Joseph A.

    2013-01-01

    Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MSE), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >103 proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ∼200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O2 labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition. PMID:23065468

  14. Evaluation of interaction of Zinc, Aluminum, Copper and Manganese on Chromobacterium violaceum

    Directory of Open Access Journals (Sweden)

    Luis Carlos Laureano da Rosa

    2007-12-01

    Full Text Available The accumulation of metallic salts in the environment resulted from the explotation, mineralogy, industrial, and agro-industrial activities and urban residues affect the dynamic balance of ecosystems, generating environmental and economic problems. The aim of this study was to evaluate the interaction of Chromobacterium violaceum with four metallic salts: aluminum sulphate, copper sulphate, manganese sulphate and zinc sulphate at concentration of 100mg/L or the absence of them, as well as a possible 2nd order interaction effect, using a complete 24 factorial design. The 16 experimental tests were carried out in microplate culture. Suspension of microorganism was prepared in Nutrient Broth and added to the orifices. After incubation at 37ºC during 24 hours, the absorbance was carried out using a 410nm in Versamax reader. The results showed remarkable bacterial adaptability. Student t test analysis showed that manganese was the only metal that did not have significant effect on the population growth of C. violaceum while zinc was the most influent. Positive interactions involving zinc was observed, interaction between aluminum and copper was not relevant.

  15. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  16. Localization and toxic effects of cadmium, copper, and uranium in Azolla

    Energy Technology Data Exchange (ETDEWEB)

    Sela, M.; Tel-Or, E.; Fritz, E.; Huttermann, A.

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  17. Distribution of cadmium, copper, and zinc in the caryopsis of wheat (Triticum aestivum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Pieczonka, K.; Rosopulo, A.

    1985-12-01

    Cadmium, copper, and zinc were quantitatively determined in the whole grain, the germ, the aleurone layer, the outer pericarp, and the endosperm from the caryopsis of wheat (Triticum aestivum L.) by the methods of direct solid microsampling and flame-AAS, respectively. Metal concentrations markedly differed among the tissues investigated. Both methods used in this study produced almost identical heavy metal concentrations. However, the techniques dramatically differed in the amounts of grain material required for analysis.

  18. Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium.

    Science.gov (United States)

    Jeppe, Katherine J; Carew, Melissa E; Long, Sara M; Lee, Siu F; Pettigrove, Vincent; Hoffmann, Ary A

    2014-05-01

    Freshwater invertebrates are often exposed to metal contamination, and changes in gene expression patterns can help understand mechanisms underlying toxicity and act as pollutant-specific biomarkers. In this study the expressions of genes involved in cysteine metabolism are characterized in the midge Chironomus tepperi during exposures to sublethal concentrations of cadmium and copper. These metals altered gene expression of the cysteine metabolism differently. Both metals decreased S-adenosylhomocysteine hydrolase expression and did not change the expression of S-adenosylmethionine synthetase. Cadmium exposure likely increased cystathionine production by up-regulating cystathionine-β-synthase (CβS) expression, while maintaining control level cysteine production via cystathionine-γ-lyase (CγL) expression. Conversely, copper down-regulated CβS expression and up-regulated CγL expression, which in turn could diminish cystathionine to favor cysteine production. Both metals up-regulated glutathione related expression (γ-glutamylcysteine synthase and glutathione synthetase). Only cadmium up-regulated metallothionein expression and glutathione S-transferase d1 expression was up-regulated only by copper exposure. These different transcription responses of genes involved in cysteine metabolism in C. tepperi point to metal-specific detoxification pathways and suggest that the transsulfuration pathway could provide biomarkers for identifying specific metals.

  19. Follow up of Treatment of Cadmium and Copper Toxicity in Clarias Gariepinus Using Laser Techniques

    Science.gov (United States)

    Zaghloul, Khalid H.; Ali, Maha F.; El-Bary, Manal G. Abd; Abd El-Harith, Mohamed

    2010-04-01

    Two purified diets were formulated and fed to seven groups of the Nile catfish; Clarias gariepinus for 12 weeks. The formulated diets contained 50 or 500 mg/kg diet of an ascorbic acid equivalent, supplied by L-ascorbyl-2-monophosphate (Mg salt). Laser induced breakdown spectroscopy (LIDS) technique has been used to characterize the bioaccumulation of cadmium, copper and iron in some selected organs (Gills, liver, kidney and muscles) and disturbance in the distribution of sodium, calcium and magnesium in gills and muscles of fish fed the minimum requirement of vitamin C (50 mg/kg diet) and exposed to cadmium (0.165 mg/l) and copper (0.35 mg/l) individually or in combination. Heavy metals bioaccumulation affect histological structure of gills, liver and kidney and consequently, fish exhibited the lowest growth rate and meat quality with a progressive fall in RBCs count, Hb content and haematocrite value. These effects were concomitant with significant increase in the WBCs count, serum glucose, total protein, AST, ALT, creatinine and uric acid. On the contrary, serum total lipids and liver glycogen revealed a significant decrease. However, fish fed 500 mg vitamin C/kg diet and exposed to the same concentrations of cadmium and copper either individually or in mixture showed an improvement in the growth rate and meat quality and a tendency to exhibit close to the control values for most of the other studied physiological, biochemical and histopathological investigations.

  20. Evaluation of Toxic Effects and Bioaccumulation of Cadmium and Copper in Spring Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Jūratė Žaltauskaitė

    2013-07-01

    Full Text Available This paper deals with the analysis of toxic effects of cadmium and copper on the growth of spring barley (Hordeum vulgare L. cultivated in hydroponics. The seedlings of barley were treated with four different concentrations of cadmium and copper, ranging from 0.1 to 10 mg L-1. The aim of the study was to assess toxic effects of cadmium (Cd and copper (Cu on the growth of spring barley, and to determine metal accumulation in above-ground and underground parts of the plant. The impact of Cu and Cd on photosynthetic pigments (chlorophyll a, b, the content of malondialdehyde (MDA, and the essential micronutrients (Mn, Fe were examined. Metal treatment reduced the growth of roots (by 60%, shoots (Cd – 48 %, Cu – 57% and dry weight (Cd – 47 %, Cu – 52% of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. Regression analysis revealed that there was significant negative relationship between MDA content and biomass of barley treated with Cu (r=-0.99, p=0.01. The examined heavy metals were accumulated mainly in the roots and bioconcentration of Cu there was higher than that of Cd, indicating that roots tended to accumulate higher amounts of Cu than Cd. Though translocation of Cd from roots to above-ground tissues was higher, higher levels of Cd were observed in leaves.DOI: http://dx.doi.org/10.5755/j01.erem.64.2.1951

  1. Cadmium and copper inhibit both DNA repair activities of polynucleotide kinase.

    Science.gov (United States)

    Whiteside, James R; Box, Clare L; McMillan, Trevor J; Allinson, Sarah L

    2010-01-02

    Human exposure to heavy metals is of increasing concern due to their well-documented toxicological and carcinogenic effects and rising environmental levels through industrial processes and pollution. It has been widely reported that such metals can be genotoxic by several modes of action including generation of reactive oxygen species and inhibition of DNA repair. However, although it has been observed that certain heavy metals can inhibit single strand break (SSB) rejoining, the effects of these metals on SSB end-processing enzymes has not previously been investigated. Accordingly, we have investigated the potential inhibition of polynucleotide kinase (PNK)-dependent single strand break repair by six metals: cadmium, cobalt, copper, nickel, lead and zinc. It was found that micromolar concentrations of cadmium and copper are able to inhibit the phosphatase and kinase activities of PNK in both human cell extracts and purified recombinant protein, while the other metals had no effect at the concentrations tested. The inhibition of PNK by environmentally and physiologically relevant concentrations of cadmium and copper suggests a novel means by which these toxic heavy metals may exert their carcinogenic and neurotoxic effects. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Manganese-II oxidation and Copper-II resistance in endospore forming Firmicutes isolated from uncontaminated environmental sites

    Directory of Open Access Journals (Sweden)

    Cristina Dorador

    2016-04-01

    Full Text Available The accumulation of metals in natural environments is a growing concern of modern societies since they constitute persistent, non-degradable contaminants. Microorganisms are involved in redox processes and participate to the biogeochemical cycling of metals. Some endospore-forming Firmicutes (EFF are known to oxidize and reduce specific metals and have been isolated from metal-contaminated sites. However, whether EFF isolated from uncontaminated sites have the same capabilities has not been thoroughly studied. In this study, we measured manganese oxidation and copper resistance of aerobic EFF from uncontaminated sites. For the purposes of this study we have sampled 22 natural habitats and isolated 109 EFF strains. Manganese oxidation and copper resistance were evaluated by growth tests as well as by molecular biology. Overall, manganese oxidation and tolerance to over 2 mM copper was widespread among the isolates (more than 44% of the isolates exhibited Mn (II-oxidizing activity through visible Birnessite formation and 9.1% tolerate over 2 mM copper. The co-occurrence of these properties in the isolates was also studied. Manganese oxidation and tolerance to copper were not consistently found among phylogenetically related isolates. Additional analysis correlating the physicochemical parameters measured on the sampling sites and the metabolic capabilities of the isolates showed a positive correlation between in situ alkaline conditions and the ability of the strains to perform manganese oxidation. Likewise, a negative correlation between temperature in the habitat and copper tolerance of the strains was observed. Our results lead to the conclusion that metal tolerance is a wide spread phenomenon in unrelated aerobic EFF from natural uncontaminated environments.

  3. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    Science.gov (United States)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2015-11-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square (χ 2) and normalized standard deviation (Δq). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity (Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression (R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆H° (+50.27848 kJ mol-1), standard entropy change ∆S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  4. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    Science.gov (United States)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2017-06-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square ( χ 2) and normalized standard deviation (Δ q). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity ( Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression ( R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆ H° (+50.27848 kJ mol-1), standard entropy change ∆ S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆ G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  5. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Barranco, Miguel [Andalusian School of Public Health (EASP), Granada (Spain); Lacasaña, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.es [Andalusian School of Public Health (EASP), Granada (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Aguilar-Garduño, Clemente [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Centre Superior d' Investigació en Salut Pública, Conselleria de Sanitat, Valencia (Spain); Alguacil, Juan [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Biology and Public Health, University of Huelva, Huelva (Spain); Gil, Fernando [Department of Legal Medicine and Toxicology, University of Granada, Granada (Spain); González-Alzaga, Beatriz [Andalusian School of Public Health (EASP), Granada (Spain); Rojas-García, Antonio [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2013-06-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  6. Application of chromatography and mass spectrometry to the characterization of cobalt, copper, manganese and molybdenum in Morinda citrifolia.

    Science.gov (United States)

    Rybak, Justyna; Ruzik, Lena

    2013-03-15

    An analytical procedure was proposed to determine the manganese species and to study the fractionation of microelements such as copper, cobalt and molybdenum in Noni juice. Morinda citrifolia is known as a noni fruit, Indian mulberry, nunaakai, dog dumpling, mengkudu, beach mulberry, vomit fruit and cheese fruit. It is a tropical plant with a long tradition of medicinal use in Polynesia and tropical parts of eastern Asia and Australia. This article covers the determination of manganese species in Noni juice and established by fractionation by size exclusion chromatography inductively coupled plasma mass spectrometry (SEC ICP MS) and next characterization of species by electrospray ionization mass spectrometry (ESI MS). Also presented the fractionation analysis of copper, cobalt and molybdenum in Noni juice sample using SEC ICP MS - juice was treated with buffer and enzymatic extraction media and analyzed. For the evaluation of the amounts of the metal fractions distinguished, the ICP MS was used off-line prior to the determination of copper, cobalt, molybdenum and manganese concentrations in the juice. It was established that elements are present in the analyzed samples in different species and their concentration is μg mL(-1) and ng mL(-1) range in fruit. The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery test. For the information about the bioavailability of these elements, in vitro bioavailability investigation was used by SEC ICP MS technique. Two step digestion model simulating gastric (pepsin digestion) and intestinal (pancreatin digestion) juices. In Noni juice, manganese is complexed from flavonoids - rutin, from dye like anthraquinone (alizarin) and glycosides - asperulosidic acid (ESI MS - characterization). The study shows that copper and molybdenum contained in Noni juice are complexed by peptides, and cobalt by organic acids (which are 3.6% of juice). Molybdenum in

  7. SPECTRAL-LUMINESCENT CHARACTERISTICS OF FLUOROPHOSPHATE GLASSES ACTIVATED WITH MANGANESE AND CADMIUM SULPHIDE QUANTUM DOTS

    OpenAIRE

    Zhanna O. Lipatova; Vladimir A. Aseev; Elena V. Kolobkova

    2014-01-01

    Research and development of phosphors based on quantum dots (QD) is a perspective problem of photonics. The main advantages of fluorophosphate glass with quantum dots are: high absorption coefficient, solid matrix and a broad band luminescence with high quantum efficiency of QD. Manganese ions have an intense band luminescence in the red region of the spectrum. Thus, the addition of manganese ions in the glass with quantum dots leads to a broadening of the spectrum in the long wav...

  8. Effect of doping rare earth oxide on performance of copper-manganese catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    何润霞; 姜浩强; 武芳; 智科端; 王娜; 周晨亮; 刘全生

    2014-01-01

    Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity.

  9. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    Science.gov (United States)

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  10. Determination of chromium, cadmium and manganese in water and fish samples after preconcentration using penicillium digitatum immobilized on pumice Stone

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Sitki [Nevsehir University, Science and Art Faculty, Chemistry Department, Nevsehir (Turkey); Tuerker, A.R. [Gazi University, Science and Art Faculty, Chemistry Department, Ankara (Turkey)

    2009-04-15

    This study presents a procedure for preconcentration of Cr(III), Cd(II) and Mn(II) from water and biological samples using Penicillium digitatum immobilized on pumice stone. Optimum conditions such as pH, flow rate were evaluated. The recoveries of Cr(III), Cd(II) and Mn(II) under optimum conditions were found to be 98{+-}2%, 100{+-}2%, and 97{+-}2%, respectively, at a 95% confidence level. Detection limits were 2.0, 1.6 and 1.5 ng/mL for Cr(III), Cd(II) and Mn(II), respectively. The proposed procedure was successfully applied for the determination of chromium, cadmium and manganese in dam water, spring water and fish (Carp) samples. The accuracy was evaluated through the analysis of the certified standard reference fish tissue samples (IAEA-407) and spiked fish and water samples. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    caleb

    implied that heavy metals have toxic effects and plasma electrolyte is a useful tool for early detection and diagnosis of ... essential metals, such as arsenic (As), mercury (Hg), cadmium (Cd) and ... underlying electrolyte imbalances can prevent.

  12. Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2015-07-01

    Full Text Available The catalytic activity of copper-manganese (CuMn2 mixed oxide nanoparticles (Cu/Mn = 1:2 has been studied for the selective oxidation of benzylic alcohols to the corresponding aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high selectivity (>99%. The complete conversion (100% of all the benzylic alcohols to the corresponding aldehydes is achieved within a short reaction period at 102 °C. The catalytic performance is obtained to be dependent on the electronic and steric effects of the substituents present on the phenyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reaction time for a complete conversion of the benzylic alcohols.

  13. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  14. Structure and Properties of Cast Near-Congruent Copper-Manganese Alloys

    Science.gov (United States)

    Chaput, Kevin; Trumble, Kevin P.

    2014-10-01

    Microstructure development in the casting of copper-manganese alloys based on the congruent point at 34.6 wt pct Mn and 1146 K (873 °C) has been studied. The alloys were prepared by induction melting of electrolytic Cu and Mn in clay-graphite crucibles in open air. Under conventional casting conditions, the alloys exhibit fine cellular (non-dendritic) solidification morphology with a distinct absence of solidification shrinkage microporosity, and they maintain these attributes over a composition range of approximately 3 wt pct Mn about the congruent point. The high Mn concentration in the alloy admits carbon into solution in the melt, resulting in formation of manganese carbide Mn7C3 particles having two different forms (globular and angular) in the cast microstructure. The Mn carbide was eliminated or controlled to low levels by melting in an alumina or a silicon carbide crucible, or in a clay-graphite crucible at lower temperatures. Microstructure development in casting the alloy was analyzed in terms of the available phase diagrams and thermochemical data. Hardness and tensile testing indicated a potent solid solution strengthening effect of Mn and high ductility in the as-cast condition, with additional hardness (strength) when the alloy contains the Mn carbide phase.

  15. LEACHING OF CADMIUM, TELLURIUM AND COPPER FROM CADMIUM TELLURIDE PHOTOVOLTAIC MODULES.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    2004-02-03

    Separating the metals from the glass is the first step in recycling end-of-life cadmium telluride photovoltaic modules and manufacturing scrap. We accomplished this by leaching the metals in solutions of various concentrations of acids and hydrogen peroxide. A relatively dilute solution of sulfuric acid and hydrogen peroxide was found to be most effective for leaching cadmium and tellurium from broken pieces of CdTe PV modules. A solution comprising 5 mL of hydrogen peroxide per kg of PV scrap in 1 M sulfuric acid, gave better results than the 12 mL H{sub 2}O{sub 2}/kg, 3.2 M H{sub 2}SO{sub 4} solution currently used in the industry. Our study also showed that this dilute solution is more effective than hydrochloric-acid solutions and it can be reused after adding a small amount of hydrogen peroxide. These findings, when implemented in large-scale operation, would result in significant savings due to reductions in volume of the concentrated leaching agents (H{sub 2}SO{sub 4} and H{sub 2}O{sub 2}) and of the alkaline reagents required to neutralize the residuals of leaching.

  16. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Carboxymethyl-beta-cyclodextrin mitigates toxicity of cadmium, cobalt, and copper during naphthalene biodegradation.

    Science.gov (United States)

    Hoffman, Douglas R; Anderson, Phillip P; Schubert, Carissa M; Gault, Melissa B; Blanford, William J; Sandrin, Todd R

    2010-04-01

    Hazardous waste sites are commonly contaminated with both organic and metal pollutants. Many metal pollutants have been shown to inhibit organic pollutant biodegradation. We investigated the ability of a modified, polydentate cyclodextrin (carboxymethyl-beta-cyclodextrin, CMCD) to reduce the toxicity of 33.4 microM cadmium, cobalt or copper during naphthalene degradation by a Burkholderia sp. in 120 h aerobic, batch studies. The highest investigated concentration of CMCD, 3340 microM, reduced cadmium, cobalt, and copper toxicity. With each metal, the length of the lag phase was reduced (by as much as 108 h with cobalt or copper), the cell yield was increased (by as much as a factor of 16 with cobalt), and the growth rate was increased (by as much as a factor of 31 with cobalt). The degrader was unable to use CMCD as the sole source of carbon and energy. Our data suggest that the ability of CMCD to complex metals plays an important role in its ability to mitigate metal toxicity and that CMCD has the potential to enhance biodegradation in organic and metal co-contaminated environments.

  18. Use of Azolla to assess toxicity and accumulation of metals from artificial and natural sediments containing cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Powell, G.M. [S.M. Stoller Corp., Boulder, CO (United States); Nimmo, D.W.R.; Flickinger, S.A.; Brinkman, S.F.

    1998-12-31

    The aquatic macrophyte Azolla mexicana was studied to determine if it could indicate toxicity and bioavailability of cadmium, copper, and zinc in sediments. Plants were exposed to metal-fortified artificial sediment and to natural sediment contaminated with tailings from a Superfund site near Deer Lodge, Montana. Dry weights (mass) of biomass were used to determine effects of the metal concentrations and tissue metals were measured to determine metal uptake from the sediments. Plants exposed to artificial sediments fortified with cadmium and copper showed the greatest reduction in dry mass while zinc showed the least. And, plants exposed to copper singly in artificial sediments lost both zinc and cadmium for their tissues. Plants exposed to metal-contaminated natural sediment developed necrotic and chlorotic tissue within 24 hours in 75% and 100% dilutions but significant effects (P < 0.0001) using dry mass were found as low as 3.13%.

  19. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus).

    Science.gov (United States)

    Dočekalová, Hana; Škarpa, Petr; Dočekal, Bohumil

    2015-03-01

    The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentrations measured by DGT. Significant correlation was found between metal fluxes to plant and metal fluxes into DGT. Pearson correlation coefficient for cadmium was 0.994 and for copper 0.998. The obtained results showed that DGT offers the possibility of simple test procedure for soils and can be used as a physical surrogate for plant uptake.

  20. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study

    Energy Technology Data Exchange (ETDEWEB)

    Margrete Meltzer, Helle, E-mail: helle.margrete.meltzer@fhi.no [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Lise Brantsaeter, Anne [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Borch-Iohnsen, Berit [Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, PO Box 1046 Blindern, N-0316 Oslo (Norway); Ellingsen, Dag G. [National Institute of Occupational Health, PO Box 8149 Dep, N-0033 Oslo (Norway); Alexander, Jan [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Thomassen, Yngvar [National Institute of Occupational Health, PO Box 8149 Dep, N-0033 Oslo (Norway); Stigum, Hein [Division of Epidemiology, Department of Chronic Diseases, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Ydersbond, Trond A. [Statistics Norway, P.Box 8131 Dep, N-0033 Oslo (Norway)

    2010-07-15

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin <12 {mu}g/L) and 84 had iron deficiency anaemia (serum ferritin <12 {mu}g/L and Hb<120 g/L). The low ferritin group had increased blood concentrations of Mn, Co and Cd but normal concentrations of Cu, Zn and Pb. In multiple regression models, ferritin emerged as the main determinant of Mn, Co and Cd (p<0.001), while no significant associations with Cu, Zn and Pb were found. Adjusted r{sup 2} for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110{<=}Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.

  1. The effect of copper, zinc, mercury and cadmium on some sperm enzyme activities in the common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Sarosiek, Beata; Pietrusewicz, Marta; Radziwoniuk, Julita; Glogowski, Jan

    2009-11-01

    The objective of the study was to determine the effect of copper, zinc, cadmium and mercury ions (100, 10 and 1 mg/l) on the activity of some enzymes of carp spermatozoa. Acid phosphatase activity was proved to be relatively insensitive to zinc ions, while copper, mercury and cadmium ions effectively inhibited the activity of this enzyme. Beta-N-acetylglucosaminidase activity was sensitive only to mercury ions. Lactic dehydrogenase activity remained unaffected by heavy metals. Our results showed that, among the examined metals, mercury had the strongest inhibitory effect on enzymatic activities.

  2. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV

    OpenAIRE

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice...

  3. Unusual route for preparation of manganese(II), cobalt(II), zinc(II) and cadmium(II) carbonate compounds: synthesis and spectroscopic characterizations

    Indian Academy of Sciences (India)

    Moamen S Refat; Mohsen M Al-Qahtani

    2011-07-01

    The manganese(II) carbonate, MnCO3.H2O, cobalt(II) carbonate, CoCO3.4H2O, zinc(II) carbonate, ZnCO3 and cadmium(II) carbonate, CdCO3, respectively, were synthesis by a new simple unusual route during the reaction of aqueous solutions of MnX2, CoX2, ZnX2 and CdX2, where (X = Br- and ClO$^{-}_{4}$) with urea at high temperature within ∼ 90°C for 6 h. The infrared spectra of the reaction products clearly indicate the absence of the bands of urea, but show the characteristic bands of ionic carbonate, CO$^{2-}_{3}$. A general mechanism describing the preparation of manganese(II), cobalt(II), zinc(II) and cadmium(II) carbonate compounds are discussed.

  4. SPECTRAL-LUMINESCENT CHARACTERISTICS OF FLUOROPHOSPHATE GLASSES ACTIVATED WITH MANGANESE AND CADMIUM SULPHIDE QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    Zhanna O. Lipatova

    2014-11-01

    Full Text Available Research and development of phosphors based on quantum dots (QD is a perspective problem of photonics. The main advantages of fluorophosphate glass with quantum dots are: high absorption coefficient, solid matrix and a broad band luminescence with high quantum efficiency of QD. Manganese ions have an intense band luminescence in the red region of the spectrum. Thus, the addition of manganese ions in the glass with quantum dots leads to a broadening of the spectrum in the long wavelength region. Such emission is closer to natural sunlight and has a high color rendering index. The work objective is the study of the spectral and luminescent properties of fluorophosphate glasses doped with manganese and CdS quantum dots. Fluorophosphate glasses (47NaPO3-30H3PO4-10Ga2O3-5ZnO-xMnS-7,5NaALF6-4,2CdS, where x = 3, 6, 8 mol. % were synthesized. The secondary heat treatment at the temperature of 430 ° C for 90 minutes has led to the growth of quantum dots in glass volume. Absorption spectra have been measured in the visible range (from 300 to 600 nm. Heat treatment has led to a shift of the fundamental absorption edge in the visible region of the spectrum. This change is due to the growth of quantum dots. Maximum intensity of luminescence is shifted to the red region of the spectrum from 620 nm to 660 nm under laser excitation at 410 nm. The maximum shift was observed in the glass with a concentration of 3 mol. % of manganese, the minimum one - in the glass with a concentration of 8 mol. %. Values of manganese ions lifetime from18 ms for a sample with a concentration of MnS 3 mol. % to15 ms for MnS 8 mol % were obtained. The decrease in the lifetime with concentration increasing of manganese ions is due to the concentration quenching of the luminescence. The growth of CdS quantum dots in the heat treatment leads to a decrease of the lifetimes to the values below 9-3 ms (3 and 8 - mol. % MnS, respectively. Obtained findings prove that fluorophosphate

  5. Lead and Cadmium Adsorption onto Iron Oxides and Manganese Oxides in the Natural Surface Coatings Collected on Natural Substances in the Songhua River of China

    Institute of Scientific and Technical Information of China (English)

    DONG De-ming; ZHAO Xing-min; HUA Xiu-yi; ZHANG Jing-jing; WU Shi-ming

    2007-01-01

    Natural surface coatings collected from natural substances(NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorption of lead(Pb) and cadmium(Cd) in aquatic environments. The selective chemical extraction followed by the adsorption of Pb and Cd experiments and statistical analysis, were used to investigate the adsorption property of each component.Hydroxylamine hydrochloride was used to remove manganese oxides selectively, and sodium dithionite was used to extract iron oxides and manganese oxides. The result indicated that iron oxides and manganese oxides played an important role in the adsorption of Pb and Cd on NSCsNS, and the relative contribution was about two-thirds. The contribution of manganese oxides was the greatest, with a lesser role indicated for other components. The adsorption ability of manganese oxides for Pb and Cd was greater than that of iron oxides or other components for Pb and Cd. The Pb adsorption observed in each component was greater than Cd adsorption.

  6. Influence of copper, manganese and pH on the growth and several enzyme activities in mycorrhizal fungus Amanita muscaria.

    Science.gov (United States)

    Kong, E X

    1995-01-01

    The effects of various concentrations of copper, manganese and pH on the growth and several enzyme activities of mycorrhizal fungus Amanita muscaria were investigated. Cu (5-25 mg l-1) and lower pH (3.0-4.0) strongly inhibited the mycelial growth (dry weight), however, the protein content was not affected evidently. Some enzyme activities were lower as the Cu and Mn concentrations were higher and other enzymes had the maximum values at the specified concentration. The activities of the following enzymes were significantly correlated with the fungal growth after the treatment with Cu: G6PDH, MTLDH and trehalase, and with Mn: G6PDH, MTLDH and alpha-mannosidase respectively. Measurement of these enzyme activities might provide a useful biochemical criterion for the evaluation of the fungitoxicity of soil contaminated by copper or manganese.

  7. ASSESSMENT OF THE BLACK SEA ECOSYSTEM POLLUTION WITH COPPER AND CADMIUM IN SELECTED BAYS OF SEVASTOPOL REGION

    Directory of Open Access Journals (Sweden)

    Marcin Niemiec

    2015-11-01

    Full Text Available A high level of anthropopressure has been registered in Sevastopol region, connected with its strategic role as the main city in the region, but also due to Russian Black Sea Fleet stationing there for many years. A significant source of the Black Sea contamination in Sevastopol area is the industry located in this city, municipal waste and agriculture. Implementing measures aimed at protection of the Black Sea and the evolution of their results requires monitoring conducted in the regions with various levels of anthropopressure. The work was aimed at the assessment of copper and cadmium content in water and algae in selected bays of the Black Sea in the vicinity of Sevastopol. Samples of water and algae were collected in August 2012 from eight Sevastopol bays (Galubaja, Kozacha, Kamyshova, Kruhla, Strieletska, Pishchana, Pivdenna and Sevastopolska and from the open sea in the vicinity of Fiolent. Algae (Cystoseira barbata and Ulva rigida were collected from the same places. Collected water was preserved on the sampling place and brought to the laboratory where its copper and cadmium concentrations were assessed. Collected algae were rinsed in distilled water, dried, then homogenised and mineralised. Copper and cadmium content were determined in the mineralizates using ASA method with electrothermal atomisation. Cadmium concentration in water ranged from 0.13 to 1.74 µg Cd∙dm-3, and copper from 7.07 to 22.56 µg Cd∙dm-3. Considerable differences in the content of the analysed elements were registered in individual bays. The highest content was assessed in Galubaja and Sevastopolska bays, whereas the lowest one in the water collected in the open sea and in Pivdenna bay. Copper concentrations in the analysed algae fluctuated from 3.375 to 14.96 mg Cu∙kg-1 d.m. No differences were noted in this element content between the algae species. Cadmium content in the algae ranged from 0.133 to 1.133 mg Cd∙kg-1 d.m. Higher accumulation of cadmium

  8. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    Science.gov (United States)

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  9. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  10. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behzad, Masoomeh; Behfar, Abdolazim; Sadeghi, Fatemeh; Saadatmand, Sahereh

    2014-01-01

    Osteoporosis is a multi factorial disease with dimension of genetic and nutritional considerations. The aim of this study was to present data from the association of plasma zinc, copper and toxic elements of lead and cadmium levels with bone mineral density in Iranian women. 135 women gave their information and enrolled. Fasting plasma was used for measurement of trace elements and heavy metals by Differential Pulse Anodic Stripping Voltammetry. Control group (n = 51) were normal in both lumbar spine (L1-L4) and femoral neck density (T-score ≥ -1), but just femoral neck T-score was considered as criterion in selection of patient group (n = 49, Tscore T-score > -1.7), 1.463 ± 0.174, 1.327 ± 0.147 μg/ml in Severe patient group (T-score < -1.7); respectively. Mean ± SD plasma level of lead and cadmium was 168.42 ± 9.61 ng/l, 2.91 ± 0.18 ng/ml in control group, 176.13 ± 8.64 ng/l, 2.97 ± 0.21 ng/ml in TP, 176.43 ± 13.2 ng/l, 2.99 ± 0.1 ng/ml in mild patients, 221.44 ± 20 ng/l and 3.80 ± 0.70 ng/ml in severe patient group, respectively. In this study plasma zinc, copper, lead & cadmium concentrations were higher in the patients than in the control, though differences were not significant. However, differences were higher between the controls and patients with severe disease (T-score < -1.7). In addition adjusted T-score of femur with age and BMI showed negative significant correlation with plasma levels of zinc and lead in total participants (p < 0.05, r = -0.201, p = 0.044, r = -0.201). It seems that more extensive study with larger ample size might supply definite results about this association for copper and cadmium.

  11. Copper, zinc and cadmium in marine cage fish farm sediments: An extensive survey

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Rebecca J. [Scottish Association for Marine Science, Ecology Department, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Shimmield, Tracy M. [Scottish Association for Marine Science, Ecology Department, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Black, Kenneth D. [Scottish Association for Marine Science, Ecology Department, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom)]. E-mail: kenny.black@sams.ac.uk

    2007-01-15

    The diet of cage-farmed Atlantic salmon contains a range of trace metals, some of which have toxic properties, e.g. zinc, copper and cadmium. A survey of metal concentrations (ICP-MS analysis) in surface sediments of ca. 70 stations was carried out in both May and December 2000 around a Scottish fish farm. Additionally, at 13 stations on 2 orthogonal transects centered on the farm, sediments were analysed at 1 cm intervals to 8 cm depth. Maximum concentrations in surface sediments were 921, 805 and 3.5 {mu}g g{sup -1} for Zn, Cu and Cd, respectively, and were found at stations near the fish farm. The calculated losses from the farm (feed input minus fish output) were 87.0%, 4.3% and 14.0% of the background-corrected inventories for Zn, Cu and Cd, respectively, indicating that for Cu and Cd at least, the feed is not the only source. - Sediments around a salmon farm show extremely high levels of zinc, copper and cadmium contamination.

  12. [Effects of heavy metal (copper and cadmium) coupled with Ulca pertusa on marine inorganic carbon system in simulated experiments].

    Science.gov (United States)

    Zheng, Guo-xia; Song, Jin-ming; Dai, Ji-cui

    2006-12-01

    Simulated experiments coupled with ocean biota dynamics were performed in laboratory. In these experiments, effects of heavy metal (copper and cadmium) coupled with Ulca pertusa on marine inorganic carbon system and CO2 fluxes were investigated. The results indicated that concentration changes (delta) of components in carbon dioxide system with time scale were correlated with the concentrations and kinds of heavy metal. In copper groups and cadmium groups (0.1 micromol x L(-1) and 1 micromol x L(-1)), DIC HCO3- and PCO2 significantly decreased comparing to the control experiment data( p = 0.01). However, when the heavy metal infusions were higher than the "critical concentration", the above mentioned parameters increased with time scale and their increments followed the uptrend with increasing heavy metal concentrations. The "critical concentration" in copper groups was much lower than that in cadmium groups, which attributed to the tolerance diversity of Ulca pertusa to copper and cadmium. Furthermore, CO2 fluxes under the influences of heavy metal were also regularly changed with time. Sea waters with low infusions of heavy metal represented as sinks to the atmosphere CO2. These sinks would probably convert into CO2 sources after a period of time. Sea waters with comparatively high amount of heavy metal were always to be CO2 sources, and their release fluxes of CO2 augmented along with the increasing infusions of heavy metal.

  13. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV

    National Research Council Canada - National Science Library

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    ...) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050...

  14. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  15. Characterization of Phases in an As-cast Copper-Manganese-Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    J.Iqbal, F.Hasan; F.Ahmad

    2006-01-01

    Copper-manganese-aluminum (CMA) alloys, containing small additions of Fe, Ni, and Si, exhibit good strength and remarkable corrosion resistance against sea water. The alloys are used in as-cast condition, and their microstructure can show wide variations. The morphology, crystallography and composition of the phases presented in an as-cast (CMA) alloy of nominal composition Cu-14%Mn-8%Al-3%Fe-2%Ni were investigated using optical, electron optical, and microprobe analytical techniques. The as-cast microstructure consisted of the grains of fcc α and bcc β-phases alongwith intermetallic precipitates of various morphologies. The dendritic-shaped particles and the cuboid-shaped precipitates, which were rich in Fe and Mn and had an fcc DO3 structure. These four different morphologies of intermetallic precipitates exhibited discrete orientationrelationships with the α-matrix. The β-grains only contained very small cuboid shaped precipitates, which could only be resolved through transmission electron microscopy. These precipitates were found to be based on Fe3Al and had the DO3 structure.

  16. Joint toxic action of binary metal mixtures of copper, manganese and nickel to Paronychiurus kimi (Collembola).

    Science.gov (United States)

    Son, Jino; Lee, Yun-Sik; Kim, Yongeun; Shin, Key-Il; Hyun, Seunghun; Cho, Kijong

    2016-10-01

    The joint toxic effects of binary metal mixtures of copper (Cu), manganese (Mn) and nickel (Ni) on reproduction of Paronhchiurus kimi (Lee) was evaluated using a toxic unit (TU) approach by judging additivity across a range of effect levels (10-90%). For all metal mixtures, the joint toxic effects of metal mixtures on reproduction of P. kimi decreased in a TU-dependent manner. The joint toxic effects of metal mixtures also changed from less than additive to more than additive at an effect level lower than or equal to 50%, while a more than additive toxic effects were apparent at higher effect levels. These results indicate that the joint toxicity of metal mixtures is substantially different from that of individual metals based on additivity. Moreover, the close relationship of toxicity to effect level suggests that it is necessary to encompass a whole range of effect levels rather than a specific effect level when judging mixture toxicity. In conclusion, the less than additive toxicity at low effect levels suggests that the additivity assumption is sufficiently conservative to warrant predicting joint toxicity of metal mixtures, which may give an additional margin of safety when setting soil quality standards for ecological risk assessment.

  17. Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids.

    Science.gov (United States)

    Gao, Lu; Peng, Kejian; Xia, Yan; Wang, Guiping; Niu, Liyuan; Lian, Chunlan; Shen, Zhenguo

    2013-01-01

    Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g(-1) dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn.

  18. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater.

    Science.gov (United States)

    Escobar, Claudio; Soto-Salazar, César; Toral, M Inés

    2006-12-01

    Chemical, electrochemical and flow variables were optimized to examine the effectiveness of the electrocoagulation process for the removal of copper, lead and cadmium. The electrochemical process, which uses electrodes of commercial laminate steel, was applied to simulated wastewater containing 12 mg dm(-3) of copper, 4 mg dm(-3) of lead and 4 mg dm(-3) of cadmium. The optimum conditions for the process were identified as pH=7, flow rate=6.3 cm(3) min(-1) and a current density between 31 and 54 A m(-2). When the electrode geometric area and time of electrolysis reached critical values, the copper removal reached a maximum value of 80%. A linear relationship was identified between the current density and the mass of generated sludge. In addition, a linear relationship was found between specific energy consumption and current density. The results of this investigation provide important data for the development of an industrial-scale electrolytic reactor.

  19. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Stoeppler, M. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Piscator, M. (Karolinska Inst., Stockholm (Sweden). Dept. of Environmental Hygiene) (eds.)

    1988-01-01

    The proceedings contain the 18 papers presented at the workshop. They are dealing with the following themes: Toxicity, carcinogenesis and metabolism of cadmium, epidemiology; environmental occurrence; quantitative analysis and quality assessment. (MG) With 57 figs., 79 tabs.

  20. Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food.

    Science.gov (United States)

    Balamurugan, Kuppusamy; Hua, Haiqing; Georgiev, Oleg; Schaffner, Walter

    2009-02-01

    Organisms from insects to mammals respond to heavy metal load (copper, zinc, cadmium, and mercury) by activating the metal-responsive transcription factor 1 (MTF-1). MTF-1 binds to short DNA sequence motifs, termed metal response elements, and boosts transcription of a number of genes, notably those for metallothioneins. In Drosophila, MTF-1 somewhat counter-intuitively also activates transcription of a copper importer gene (Ctr1B) in response to copper starvation. Here, we report that mutant flies lacking Ctr1B are extremely sensitive to cadmium and mercury treatment, but can be rescued by excess copper in the food. We thus propose that copper, by competing for binding sites on cellular proteins, alleviates the toxic effects of mercury and cadmium. Such a scenario also explains a seemingly fortuitous metal response, namely, that cadmium and mercury strongly induce the expression of a Ctr1B reporter gene. Thus, the transcription enhancer/promoter region of the Ctr1B copper importer gene is subject to three modes of regulation. All of them depend on MTF-1 and all make biological sense, namely, (i) induction by copper starvation, (ii) repression by copper abundance, and (iii), as shown here, induction by cadmium or mercury at normal copper supply.

  1. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Blazquez, M.L. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd {approx} Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  2. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu>Cd approximately Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb>Cu>Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  3. Electron Paramagnetic Resonance and Optical Absorption Studies on Copper Ions in Mixed Alkali Cadmium Phosphate Glasses

    Institute of Scientific and Technical Information of China (English)

    G.Giridhar; M.Rangacharyulu; R.V.S.S.N.Ravikumar; P.Sambasiva Rao

    2009-01-01

    Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Hamiltonian parameters obtained from room temperature EPR spectra are: g||=2.437, g⊥=2.096, A||=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g||=2.441, g⊥=2.088, A||=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2 and g||=2.433, g⊥=2.096, A||=125×10-4 cm-1, A⊥=32×10-4 cm-1 for LiNaCdP3. These EPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.

  4. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  5. Temporal and spatial distribution of dissolved copper,lead,zinc and cadmium in the Changjiang Estuary and its adjacent waters

    Institute of Scientific and Technical Information of China (English)

    WANG Changyou; WANG Xiulin; WANG Baodong; ZHANG Chuansong; SHI Xiaoyong; ZHU Chenjian

    2008-01-01

    Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters.Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copper,lead,zinc and cadmium in the study waters are 1.01~6.86,0.10~0.39,3.17~9.12 and 0.011~0.049 μg/dm3,respectively.Similar to zinc,the behavior of dissolved copper Was essentially conservative,but high seatter has been observed for high salinity samples,which can be attribu-ted to the decomposition or mineralization of organic matter by bacteria.Dissolved lead may have active behavior with an addition at high salinity.Overall concentrations of dissolved cadmium increase with salinity.The mean values of these dissolved metals cal-culated for the surface waters were highcr than those for the middle and bottom ones.External inputs of dissolved heavy metals to the surface waters were the likely explanation for these higher values.The maximum seasonal average values of dissolved copper and zinc were flound in summer,reflecting higher amounts of riverine input in this season.In contrast,the maximum seasonal av-erage values of dissolved lead and copper were found in winter and the lowest ones in summer,respectively,which might be asso-ciated with a combination of low concentration with heterogeneous scavenging.Concentrations of these dissolved metals found for the Changjiang Estuary fall in the range observed for the other estuaries but are noticeably higher than those from uncontaminated rivers,except for cadmium.Compared with observations for the Changjiang Estuary in the last two deeades.it is clear that the Changjiang estuarine waters has been contaminated with copper,lead,zinc and cadmium during China's industuialization,but concentrations of them have decreased in the last few years.

  6. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    Science.gov (United States)

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury. PMID:24614235

  7. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients.

    Science.gov (United States)

    Kazi, Tasneem Gul; Afridi, Hassan Imran; Kazi, Naveed; Jamali, Mohammad Khan; Arain, Mohammad Bilal; Jalbani, Nussarat; Kandhro, Ghulam Abbas

    2008-04-01

    There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease. The aim of present study was to compare the level of essential trace elements, chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn) in biological samples (whole blood, urine, and scalp hair) of patients who have diabetes mellitus type 2 (n = 257), with those of nondiabetic control subjects (n = 166), age ranged (45-75) of both genders. The element concentrations were measured by means of an atomic absorption spectrophotometer after microwave-induced acid digestion. The validity and accuracy was checked by conventional wet-acid-digestion method and using certified reference materials. The overall recoveries of all elements were found in the range of (97.60-99.49%) of certified values. The results of this study showed that the mean values of Zn, Mn, and Cr were significantly reduced in blood and scalp-hair samples of diabetic patients as compared to control subjects of both genders (p < 0.001). The urinary levels of these elements were found to be higher in the diabetic patients than in the age-matched healthy controls. In contrast, high mean values of Cu and Fe were detected in scalp hair and blood from patients versus the nondiabetic subjects, but the differences found in blood samples was not significant (p < 0.05). These results are consistent with those obtained in other studies, confirming that deficiency and efficiency of some essential trace metals may play a role in the development of diabetes mellitus.

  8. Electron paramagnetic resonance spectroscopic study of copper hopping in doped bis(L-histidinato)cadmium dihydrate.

    Science.gov (United States)

    Colaneri, Michael J; Vitali, Jacqueline; Kirschbaum, Kristin

    2013-04-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(L-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: -260, -190, -37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson's theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T(c) ≈ 160 K. The species below T(c) hops between the two low temperature site patterns, and the one above T(c) represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν(h4) = 4.5 × 10(8) s(-1) and between the low and high temperature states ν(h2) = 1.7 × 10(8) s(-1) at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE4 = 389 cm(-1) and ΔE2 = 656 cm(-1) between the two low temperature sites and between the low and high temperature states, respectively.

  9. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    Science.gov (United States)

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  10. Synthesis of cadmium, lead and copper alginate nanobeads as immunosensing probes for the detection of AFP, CEA and PSA.

    Science.gov (United States)

    Wang, Zifeng; Liu, Na; Feng, Feng; Ma, Zhanfang

    2015-08-15

    A double-water-in-oil-emulsion procedure was designed to synthesize cadmium, lead and copper alginate nanobeads less than 200n m diameter under mild conditions. The cadmium, lead and copper alginate nanobeads can be activated to immobilize biomacromolecules and can directly produce distinctive electrochemical signals. Using the novel alginate nanobeads labeled with antibodies as electrochemical probes, a sandwich-type immunosensor was constructed using AFP, CEA and PSA as model analytes. This proposed immunosensor shows wide linear range with detection limits of 0.01, 0.0086 and 0.0075 ng mL(-1) for AFP, CEA and PSA, respectively. Analysis of clinical serum samples using this immunosensor was well consistent with the data determined by the enzyme-linked immunosorbent assay (ELISA). It suggested that the alginate nanobeads electrochemical probes could be generally extended to other multiple analytes detection.

  11. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  12. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...... an explanation for the discrepancy in the literature regarding 113Cd-NMR investigations of bovine superoxide dismutase....

  13. Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java

    Science.gov (United States)

    Everaarts, J. M.; Boon, J. P.; Kastoro, W.; Fischer, C. V.; Razak, H.; Sumanta, I.

    A study was made of the concentrations of copper, zinc and cadmium in benthic organisms, representing the phyla Mollusca, Arthropoda, Echinodermata and Pisces, from the riverine and estuarine areas of the rivers Brantas and Solo (East Java) and the adjacent coastal area. Moreover, an assessment was made of the contamination of the benthic biota with these elements in the Java Sea and Bali Sea. Benthic organisms show a species-specific uptake pattern for each element. Compared to the same type of animals from estuaries and coastal areas in temperate regions of western Europe, the concentrations of cadmium are considerably higher, while copper and zinc concentrations are somewhat lower. There is no general trend in concentration levels of the metals in specimens from rivers, estuaries, coastal zone and open sea. In some groups of organisms ( e.g. shrimp, starfish) the concentrations of copper and zinc are highest in specimens from rivers and estuaries. In contrast, cadmium concentration levels in e.g. crab, shrimp and squid are lowest in riverine and estuarine areas. Significant differences in metal concentrations in these organisms were found between the dry monsoon period (July, August) and the beginning of the wet monsoon (November, December). No relationship existed between the metal concentration of the organisms and the silt fraction of the sediment (grain size < 63 μm) or the bulk sediment.

  14. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mojtaba Panjehpour

    2010-01-01

    Full Text Available Background: Cadmium chloride is an important occupational and environmental pollutant. However, it can also be anti-carcinogenic under certain conditions. Copper, an essential trace element, has the ability to generate reactive oxygen species and induce cell apoptosis. This study was aimed to determine the growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. Methods: By using MTT cell viability test, treatment of monolayer cell cultures with different metal concentrations (1-1000 μM showed a significant dose dependent decrease (p < 0.05 of viable cells in different times. Results: A considerable cytotoxicity was observed for CdCl2 at 200 μM and 1 μM after 48 and 72 hours incubations, respectively. The highest concentration of CuCl2 (1000 μM had little cytotoxic effects after 48 hours incubation period, but 1 μM of CuCl2 revealed a considerable cytotoxicity after 72 hours. The maximum synergic cytotoxic effect was observed at 0.5 μM of both metals. Conclusions: The results of the present study indicate that cytotoxic effect of CuCl2 is somehow lesser than that of CdCl2. This may be due to vital role of copper which is not known for cadmium so far.

  15. Application of anodic stripping voltammetry for zinc, copper, and cadmium quantification in the aqueous humor: implications of pseudoexfoliation syndrome.

    Science.gov (United States)

    Panteli, Vassiliki S; Kanellopoulou, Dimitra G; Gartaganis, Sotirios P; Koutsoukos, Petros G

    2009-12-01

    Anodic stripping voltammetric (ASV) procedure, using mercury film electrode, was optimized and applied to determine the concentrations of zinc, cadmium, and copper in the aqueous humor. Concentration levels as low as 1 ppb of the test metals was possible to be detected using short electrolysis times (120 s) and microquantities of aqueous humor (up to 35 μL). As a first application of the voltammetric analysis of trace metals in the aqueous humor, the role of the three selected trace elements in the pseudoexfoliation (PEX) syndrome was examined. Samples from aqueous humor were collected during cataract extraction from patients with and without PEX. The zinc and copper concentration levels in the aqueous humor did not show statistically significant difference in the study and control group. Cadmium was detected in a small number of samples, without however statistical differences between the two groups. ASV proved to be a highly precise and sensitive tool for the quantification of heavy metal ions in aqueous humor. Further studies may lead to useful conclusions for the role of zinc, copper, or cadmium in PEX syndrome.

  16. Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper.

    Science.gov (United States)

    Lemos, Valfredo Azevedo; Baliza, Patrícia Xavier

    2005-09-15

    A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50moll(-1) HCl or HNO(3). The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54mugl(-1), respectively, when used preconcentration periods of 180s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.

  17. Identification of Active Phase for Selective Oxidation of Benzyl Alcohol with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2013-01-01

    Full Text Available Catalytic activity of copper-manganese mixed oxide nanoparticles (Cu/Mn = 1 : 2 prepared by coprecipitation method has been studied for selective oxidation of benzyl alcohol using molecular oxygen as an oxidizing agent. The copper-manganese (CuMn2 oxide catalyst exhibited high specific activity of 15.04 mmolg−1 h−1 in oxidation of benzyl alcohol in toluene as solvent. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a short reaction period at 102°C. It was found that the catalytic performance is dependent on calcination temperature, and best activity was obtained for the catalyst calcined at 300°C. The high catalytic performance of the catalyst can be attributed to the formation of active MnO2 phase or absence of less active Mn2O3 phase in the mixed CuMn2 oxide. The catalyst has been characterized by powder X-ray diffraction (XRD, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Brunauer Emmett-Teller (BET surface area measurement, and Fourier transform infrared (FT-IR spectroscopies.

  18. Influences of petroleum on accumulation of copper and cadmium in the polychaete Nereis diversicolor

    Institute of Scientific and Technical Information of China (English)

    SUN Fu-hong; ZHOU Qi-xing; ZHANG Qian-ru

    2006-01-01

    Using the exposure simulation experiment, the action of petroleum affecting the accumulation of the trace metals including copper (Cu) and cadmium (Cd) in littoral polychaete Nereis diversicolor collected from the Shuangtaizi Estuary in Liaoning Province,China was examined. The results showed that there was a markedly non-linear relationship between the accumulation of Cu in worms and the experimental concentration of Cu in exposure solutions when the concentration of petroleum remained at 0, 100, and 220 μl/L, respectively. However, significantly non-linear relationship for worms exposed to Cd was observed only when the concentration of added petroleum was 0 and 220 μl/L. The accumulation of Cu in worms did not differ significantly among the three different levels of petroleum concentrations combined with various concentrations of Cu. So was the accumulation of Cd in worms (p>0.05).However, the addition of petroleum in exposure solutions brought about an increase in the accumulation of Cu in Nereis diversicolor,in comparison with single Cu pollution. On the other hand, when the concentration of added petroleum remained at 100 μl/L, the accumulation of Cd in worms was lower than that in worms exposed to various concentrations of only cadmium. However, the worms exposed to Cd and petroleum 220 μl/L did not show obvious and identical increase in the accumulation of Cd, compared with single Cd exposure. The accumulation of both Cu and Cd in worms did not increase significantly with the increases in concentrations of Cu or Cd in exposure solutions combined with petroleum (0, 100, and 220 μl/L) under the experimental conditions. Although Nereis diversicolor is exposed to very high Cu and Cd in exposure solutions, accumulation and detoxification mechanisms are sufficient to cope with the extra metal influx in order to survive.

  19. Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution.

    Science.gov (United States)

    Lei, Di; Zheng, Qianwen; Wang, Yili; Wang, Hongjie

    2015-02-01

    A novel material, aminopropyl-functionalized manganese-loaded SBA-15 (NH2-Mn-SBA-15), was synthesized by bonding 3-aminopropyl trimethoxysilane (APTMS) onto manganese-loaded SBA-15 (Mn-SBA-15) and used as a Cu2+ adsorbent in aqueous solution. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectra (XRD), N2 adsorption/desorption isotherms, high resolution field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the NH2-Mn-SBA-15. The ordered mesoporous structure of SBA-15 was remained after modification. The manganese oxides were mainly loaded on the internal surface of the pore channels while the aminopropyl groups were mainly anchored on the external surface of SBA-15. The adsorption of Cu2+ on NH2-Mn-SBA-15 was fitted well by the Langmuir equation and the maximum adsorption capacity of NH2-Mn-SBA-15 for Cu2+ was over two times higher than that of Mn-SBA-15 under the same conditions. The Elovich equation gave a good fit for the adsorption process of Cu2+ by NH2-Mn-SBA-15 and Mn-SBA-15. Both the loaded manganese oxides and the anchored aminopropyl groups were found to contribute to the uptake of Cu2+. The NH2-Mn-SBA-15 showed high selectivity for copper ions. Consecutive adsorption-desorption experiments showed that the NH2-Mn-SBA-15 could be regenerated by acid treatment without altering its properties.

  20. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  1. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  2. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  3. Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake.

    Science.gov (United States)

    Kovácik, Jozef; Backor, Martin

    2008-08-01

    Cadmium (Cd) and copper (Cu) uptake by the plants of Matricaria chamomilla and relation to activities of guaiacol peroxidase (GPX, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) up to 7 days of exposure to 3, 60 and 120 microM Cd or Cu was studied. Cd content in rosettes was ca. 10-fold higher in comparison to Cu while Cu was preferentially accumulated in the roots. In line with this observation, increase of CAT and GPX activity was similar in rosettes of Cd and Cu-treated plants, indicating non-redox active properties of Cd and low Cu accumulation. In the roots, Cu showed strong pro-oxidant effect, as judged from extreme stimulation of CAT and GPX, followed by increase of hydrogen peroxide and malondialdehyde. However, GPX seemed to be more important for alleviation of oxidative stress (ca. 93-250-fold higher activity in 120 microM Cu-treated roots). Cd had substantially lower influences and stimulated GR activity more than Cu. Activities of hydrogen peroxide-scavenging enzymes in relation to its accumulation are also discussed.

  4. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  5. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchelmore, Carys L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)], E-mail: Mitchelmore@cbl.umces.edu; Verde, E. Alan [Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420 (United States); Weis, Virginia M. [Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331 (United States)

    2007-11-15

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 {mu}g l{sup -1}) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 {mu}g l{sup -1} Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 {mu}g l{sup -1} metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response.

  6. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings.

  7. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  8. Adsorption of cadmium and copper in representative soils of Eastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Deyvison Andrey Medrado Gonçalves

    2016-10-01

    Full Text Available Studies of heavy metals adsorption in soil play a key role in predicting environmental susceptibility to contamination by toxic elements. The objective of this study was to evaluate cadmium (Cd and copper (Cu adsorption in surface and subsurface soil. Samples of six soils: Xanthic Hapludox (XH1 and XH2, Typic Hapludox (TH, Typic Rhodudalf (TR, Typic Fluvaquent (TF, and Amazonian dark earths (ADE from Eastern Amazonian, Brazil. The soils were selected for chemical, physical and mineralogical characterization and to determine the adsorption by Langmuir and Freundlich isotherms. All soils characterized as kaolinitic, and among them, XH1 and XH2 showed the lowest fertility. The Langmuir and Freundlich isotherms revealed a higher Cu (H curve than Cd (L curve adsorption. Parameters of Langmuir and Freundlich isotherms indicate that soils TR, TF and ADE has the greatest capacity and affinity for metal adsorption. Correlation between the curve adsorption parameters and the soil attributes indicates that the pH, CEC, OM and MnO variables had the best influence on metal retention. The Langmuir and Freundlich isotherms satisfactorily described Cu and Cd soil adsorption, where TR, TF and ADE has a lower vulnerability to metal input to the environment. Besides the pH, CEC and OM the MnO had a significant effect on Cu and Cd adsorption in Amazon soils.

  9. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China

    Science.gov (United States)

    LI, Yan; GAO, Qiaoyan; LI, Mingcai; LI, Mengyang; GAO, Xueming

    2014-01-01

    Abstract Background The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd), chromium (Cr), and copper (Cu) concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site. Methods Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality. Results The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate. Conclusions Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis. PMID:26060677

  10. Models for Copper Dynamic Behavior in Doped Cadmium dl-Histidine Crystals: Electron Paramagnetic Resonance and Crystallographic Analysis.

    Science.gov (United States)

    Colaneri, Michael J; Teat, Simon J; Vitali, Jacqueline

    2015-11-12

    Electron paramagnetic resonance and crystallographic studies of copper-doped cadmium dl-histidine, abbreviated as CdDLHis, were undertaken to gain further understanding on the relationship between site structure and dynamic behavior in biological model complexes. X-ray diffraction measurements determined the crystal structure of CdDLHis at 100 and 298 K. CdDLHis crystallizes in the monoclinic space group P21/c with two cadmium complexes per asymmetric unit. In each complex, the Cd is hexacoordinated to two histidine molecules. Both histidines are l in one complex and d in the other. Additionally, each complex contains multiple waters of varying disorder. Single crystal EPR spectroscopic splitting (g) and copper hyperfine (A(Cu)) tensors at room temperature (principal values: g = 2.249, 2.089, 2.050; A(Cu) = -453, -30.5, -0.08 MHz) were determined from rotational experiments. Alignments of the tensor directions with the host structure were used to position the copper unpaired dx(2)-y(2) orbital in an approximate plane made by four proposed ligand atoms: the N-imidazole and N-amino of one histidine, and the N-amino and O-carboxyl of the other. Each complex has two such planes related by noncrystallographic symmetry, which make an angle of 65° and have a 1.56 Å distance between their midpoints. These findings are consistent with three interpretations that can adequately explain previous temperature-dependent EPR powder spectra of this system: (1) a local structural distortion (static strain) at the copper site has a temperature dependence significant enough to affect the EPR pattern, (2) the copper can hop between the two sites in each complex at high temperature, and (3) there exists a dynamic Jahn-Teller effect involving the copper ligands.

  11. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia.

    Science.gov (United States)

    Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina

    2017-03-01

    The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L(-1)) in comparison to the control group (1.054 ± 0.174 mg L(-1)). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L(-1)) compared with that in the control group (46.00 ± 12.25 μg L(-1)). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

  12. The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the upper Silesian industrial district.

    Science.gov (United States)

    Baranowska, I; Czernicki, K; Aleksandrowicz, R

    1995-01-10

    The concentration of lead, cadmium, zinc, copper and nickel in autopsy samples of bones from adults living in the Upper Silesian industrial district (Poland)--an ecological disaster region--was determined by atomic absorption spectrometry (flame and flameless GF AAS). Lead concentrations ranged from 20 micrograms/g to 200 micrograms/g bone wet weight, cadmium from 0.4 microgram/g to 1.5 micrograms/g bone wet weight. About one-fourth of the bones examined from Silesia, contained lead in the range from 100 micrograms/g to 200 micrograms/g. The were no significant differences in zinc, copper and nickel concentration between the control groups. The samples were mineralized in a microwave digestion system. To avoid anomalous results caused by the influence of the matrix Ca3 (PO4)2--the procedure of lead determination was carried out at a temperature of 2000 degrees C, the cadmium determination at a temperature of about 1200 degrees C.

  13. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here.

  14. Kinematic gait analysis and lactation performance in dairy cows fed a diet supplemented with zinc, manganese, copper and cobalt.

    Science.gov (United States)

    Yamamoto, Satoshi; Ito, Kazuhiko; Suzuki, Kii; Matsushima, Yuki; Watanabe, Izumi; Watanabe, Yutaka; Abiko, Keima; Kamada, Toshihiko; Sato, Kan

    2014-03-01

    This study investigated how supplementation of the diet of dairy cows with trace minerals (zinc, manganese, copper and cobalt) affected kinematic gait parameters and lactation performance. Eight Holstein cows were divided into two groups, with each group receiving a different dietary treatment (control diet, or control diet supplemented with trace minerals) in a two-period crossover design. Kinematic gait parameters were calculated by using image analysis software. Compared to cows fed the control diet, cows that received the trace mineral-supplemented diet exhibited significantly increased walking and stepping rates, and had a shorter stance duration. Feed intake and milk production increased in cows fed the trace mineral-supplemented diet compared with control groups. The plasma manganese concentration was not different in control and experimental cows. In contrast, cobalt was only detected in the plasma of cows fed the supplemented diet. These results provide the first evidence that trace mineral supplementation of the diet of dairy cows affects locomotion, and that the associated gait changes can be detected by using kinematic gait analysis. Moreover, trace mineral supplementation improved milk production and only minimally altered blood and physiological parameters in dairy cows.

  15. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  16. Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats.

    Science.gov (United States)

    Tarohda, Tohru; Ishida, Yasushi; Kawai, Keiichi; Yamamoto, Masayoshi; Amano, Ryohei

    2005-09-01

    Time courses of changes in manganese, iron, copper, and zinc concentrations were examined in regions of the brain of a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations were simultaneously determined in brain section at the level of the substantia nigra 1, 3, 7, 10, 14, and 21 days after the 6-OHDA treatment and compared with those of control rats. The distributions of these elements were obtained for 18 regions of the sagittal section (1-mm thick). The ICP-MS results indicated that Mn, Fe, Cu, and Zn levels of the 6-OHDA-induced parkinsonian brain were observed to increase in all regions that lay along the dopaminergic pathway. In the substantia nigra, the increase in Mn level occurred rapidly from 3 to 7 days and preceded those in the other elements, reaching a plateau in the 6-OHDA brain. Iron and Zn levels increased gradually until 7 days and then increased rapidly from 7 to 10 days. The increase in the copper level was slightly delayed. In other regions, such as the globus pallidus, putamen, and amygdala, the levels of Mn, Fe, Cu, and Zn increased with time after 6-OHDA treatment, although the time courses of their changes were region-specific. These findings contribute to our understanding of the roles of Mn and Fe in the induction of neurological symptoms and progressive loss of dopaminergic neurons in the development of Parkinson's disease. Manganese may hold the key to disturbing cellular Fe homeostasis and accelerating Fe levels, which play the most important role in the development of Parkinson's disease.

  17. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    Science.gov (United States)

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Investigating the distribution of dissolved copper, zinc, silver and cadmium in the Pacific Ocean

    Science.gov (United States)

    Janssen, D. J.; Cullen, J. T.

    2012-12-01

    A stated goal of the GEOTRACES program is to better understand the large-scale distribution of trace metals in the marine environment. A characteristic feature of the soft Lewis acid metals like copper (Cu), zinc (Zn), silver (Ag) and cadmium (Cd) is their correlation with the major algal nutrients. These correlations imply that the proximate control on the distribution of these metals is microbial uptake at the ocean surface, sinking associated with particulate organic matter and subsequent remineralization in the ocean interior. Combined with sedimentary records of past metal concentrations such correlations can provide much needed information on water mass circulation and nutrient cycling in the paleo-ocean. Today, as trace nutrients and/or toxins these metals help shape microbial community composition and influence productivity. Here we present depth profiles through the low dissolved oxygen waters of the north Pacific which show decoupling of trace metal-macronutrient relationships driven by depletion anomalies of trace metal concentrations in the broad, low oxygen layer. Similar anomalies have been previously reported in permanently anoxic layers (e.g. fjords) or in waters in contact with suboxic sediments and attributed to sulfidic removal of soft trace metals. The observed trace metal behavior and trace metal-macronutrient relationships in the oxygen minimum layer in the northeastern Pacific is consistent with the possibility of sulfidic scavenging of soft metals and the formation of insoluble metal sulfides in the water column. Implications of this influence on the basin scale distribution of soft metals like Cu, Zn, Ag, Cd through scavenging in the spreading low oxygen layer in the northeastern Pacific are discussed.

  19. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    HUANG Yizong; HU Ying; LIU Yunxia

    2009-01-01

    Accumulation of copper (Cu) and cadmium (Cd) in six rice cultivars (94D-22, 94D-54, 94D-64, Gui630, YY-1 and KY1360) was evaluated through exposure to heavy metal contamination (100 mg/kg Cu, 1.0 mg/kg Cd, and 100 mg/kg Cu + 1.0 mg/kg Cd) in a greenhouse. The dry weight of shoot and root, concentrations of Cu and Cd in plant tissues and the Cu, Cd, P, Fe concentrations in the root surface iron plaques were analyzed eight weeks later after treatment. The results indicated that the plant biomass was mainly determined by rice genotypes, not Cu and Cd content in soil. Separated treatment with Cu/Cd increased each metal level in shoot, root and iron plaques. Soil Cu enhanced Cd accumulation in tissues. In contrast, Cu concentrations in shoot and root was unaffected by soil Cd. Compared to single metal contamination, combined treatment increased Cd content by 110.6%, 77.0% and 45.2% in shoot, and by 112.7%, 51.2% and 18.4% in root for Gui630, YY-1 and KY1360, respectively. The content level of Cu or Cd in root surface iron plaques was not affected by their soil content. Cu promoted Fe accumulation in iron plaques, while Cd has no effect on P and Fe accumulation in it. The translocation of Cu and Cd from iron plaques to root and shoot was also discussed. These results might be beneficial in selecting cultivars with low heavy metal accumulation and designing strategies for soil bioremediation.

  20. Phytoavailability of Copper, Zinc and Cadmium in Sewage Sludge-Amended Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; GUO Xue-Yan; XU Xing-Hua; ZUO Yu-Bao; WEI Dong-Pu; MA Yi-Bing

    2012-01-01

    The toxicity of trace elements (TEs),such as copper (Cu),zinc (Zn),and cadmium (Cd),often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China.In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS.The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts,respectively.The results from the field experiment showed that the contents of total Zn,Cu,and Cd in the soils increased linearly with SS application rates.With increasing SS application rates,the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau,while there was no significant change of Cd content in the maize grains.The bioconcentration factors of the metals in the grains of wheat and maize were found to be in the order of Zn > Cu > Cd,but for the straw the order was Cd > Cu > Zn.It was also found that wheat grains could accumulate more metals compared with maize grains.The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.

  1. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  2. Preparation and thermal decomposition of copper(II, zinc(II and cadmium(II chelates with 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Crespi Marisa S.

    1999-01-01

    Full Text Available When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II chelates. Anhydrous copper(II complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II and cadmium(II hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.

  3. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  4. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures.

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G; Dorman, Rebecca A; Brumbaugh, William G; Mebane, Christopher A; Kunz, James L; Hardesty, Doug K

    2014-10-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th-82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  5. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  6. Nutrients induction on lead, cadmium, manganese, zinc and cobalt speciation in the sediments of Aby lagoon (Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Akpétou K. L.,

    2010-08-01

    Full Text Available This study reported nitrogen and phosphorus leverage on lead, Cadmium, Manganese, Zinc and Cobalt speciation in the Aby lagoon sediments. The trace elements and water samples were collected from eleven sites located within the four lagoon sectors. Sequential extraction was carried out in five fractions: exchangeable (F1, bound to the carbonates (F2, bound to iron and manganese (oxy hydroxides (F3, bound to the organic matters (F4 and residual(F5. Heavy metals chemical fractionation followed the four-step Zerbe and al. (1999 process, completed with an acid digestion method for residual (F5 extraction. Co-inertia analysis monitored with ADE4 package showed that nitrite and Kjeldhal nitrogen (TKN mainly influenced Co speciation and especially the compounds (total lead, total Cd, total Zn, Co-F1 and Co-F4 tend to accumulate on sediment surface. However, their higher influence than nitrates on previous metals was too lower than the other nitrogen compounds which they were very negatively correlated. As the phosphorus compounds which showed a greatest impact on lead, Cd, Mn, and Zn speciation. The respective resulted factorial values were about -1 and 1. Total and inorganic phosphorus portion showed a similar influence range than total nitrogen on the various studied heavy metals speciation in sediment.

  7. Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions

    Science.gov (United States)

    Kahkonen, Joonas

    In order to produce passenger vehicles with improved fuel economy and increased passenger safety, car manufacturers are in need of steels with enhanced strength levels and good formability. Recently, promising combinations of strength and ductility have been reported for several, so-called third generation advanced high-strength steels (AHSS) and quenching and partitioning (Q&P) steels are increasingly being recognized as a promising third generation AHSS candidate. Early Q research used conventional TRIP steel chemistries and richer alloying strategies have been explored in more recent studies. However, systematic investigations of the effects of alloying elements on tensile properties and retained austenite fractions of Q&P steels are sparse. The objective of the present research was to investigate the alloying effects of carbon, manganese, molybdenum, aluminum, copper and nickel on tensile properties and microstructural evolution of Q&P heat treated sheet steels. Seven alloys were investigated with 0.3C-1.5Mn-1.5Si (wt pct) and 0.4C-1.5Mn-1.5Si alloys used to study carbon effects, a 0.3C-5Mn-1.6Si alloy to study manganese effects, 0.3C-3Mn-1.5Si-0.25Mo and 0.3C-3Mn-1.5Si-0.25Mo-0.85Al alloys to study molybdenum and aluminum effects and 0.2C-1.5Mn-1.3Si-1.5Cu and 0.2C-1.5Mn-1.3Si-1.5Cu-1.5Ni alloys to study copper and nickel effects. Increasing alloy carbon content was observed to mainly increase the ultimate tensile strength (UTS) up to 1865 MPa without significantly affecting total elongation (TE) levels. Increasing alloy carbon content also increased the resulting retained austenite (RA) fractions up to 22 vol pct. Measured maximum RA fractions were significantly lower than the predicted maximum RA levels in the 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys, likely resulting from transition carbide formation. Increasing alloy manganese content increased UTS, TE and RA levels, and decreased yield strength (YS) and austenite carbon content (Cgamma) levels

  8. Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality.

    Science.gov (United States)

    Massányi, Peter; Trandzík, Jozef; Nad, Pavol; Koréneková, Beáta; Skalická, Magdaléna; Toman, Robert; Lukác, Norbert; Strapák, Peter; Halo, Marko; Turcan, Ján

    2003-01-01

    The concentration of copper, iron, zinc, cadmium, lead, and nickel as well as its relation to spermatozoa quality was investigated. The semen samples were analyzed by atomic absorption spectrophotometry (AAS). The concentration of copper in boar semen was 1.64 +/- 0.28 mg kg(-1) and of iron 16.14 +/- 10.35 mg kg(-1). The concentration of zinc in boar semen reached an average value of 171.74 +/- 64.72 mg kg(-1) and the level of cadmium reached 0.01-0.16 mg kg(-1) with the average value of 0.05 mg kg(-1). The analysis of lead showed that the concentration of this element in boar semen was 0.02 +/- 0.03 mg kg(-1) and the average level of nickel was 0.06 +/- 0.08 mg kg(-1). The total percentage of pathological spermatozoa was 9.82 +/- 1.47%. Detail analysis determined 3.18% of separated flagellum, 2.26% knob twisted flagellum, 0.88% flagellum torso, 0.85% flagellum ball, 0.42% broken flagellum, 0.23% retention of the cytoplasmic drop, 0.14% small heads, 0.03% large heads, and 1.83% forms other of pathological changes. Correlation analysis showed significant (p spermatozoa (r = 0.73) was determined.

  9. Copper(II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples.

    Science.gov (United States)

    Soylak, Mustafa; Kaya, Betul; Tuzen, Mustafa

    2007-08-25

    A separation-preconcentration procedure based on the coprecipitation of cobalt(II) and manganese(II) ions with copper(II)-8-hydroxquinoline system has been developed. The analytical parameters including pH, amount of copper(II) as carrier element, amount of 8-hydroxquinoline, sample volume, etc., was investigated for the quantitative recoveries of Co(II) and Mn(II). No interferic effects were observed from the concomitant ions which are present in real samples. The detection limits for analyte ions by three sigma criteria were 0.86microgL(-1) for cobalt and 0.98microgL(-1) for manganese. The validation of the presented preconcentration procedure was performed by the analysis of NIST SRM 2711 Montana soil and GBW 07605 Tea certified reference materials. The procedure presented was applied to the analyte contents of real samples including natural waters and some food samples with successfully analytical results.

  10. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    Science.gov (United States)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  11. Effect of the Inclusion of Organic Copper, Manganese, And Zinc in The Diet of Layers on Mineral Excretion, Egg Production, and Eggshell Quality

    Directory of Open Access Journals (Sweden)

    LSS Carvalho

    2015-12-01

    Full Text Available ABSTRACT This study aimed at evaluating the replacement of inorganic copper, manganese, and zinc sources by organic sources in the diet of laying hens during the second laying cycle in trace mineral excretion, egg production, and eggshell quality. Two hundred and fifty 100-week-old Dekalb hens were distributed according to a completely randomized design into five treatments with five replicates of ten birds each. The control treatment consisted of a basal diet with all trace minerals in the inorganic form. The other treatments consisted of a basal diet with a mixture of the minerals copper, manganese, and zinc in the organic form with concentrations of 100%, 90%, 80%, and 70% of the levels of inclusion of inorganic mineral sources in the control treatment. Trace mineral excretion was determined in five layers per treatment by the method of total excreta collection. Excreta trace mineral contents were determined by atomic absorption spectrophotometry. Egg production and eggshell quality were determined by the mass of the eggs and the egg specific gravity, respectively. For all trace minerals examined, the dietary supplementation with organic sources reduced trace mineral excretion compared with the control group, even at 70% inclusion level, without compromising egg production or eggshell quality. The replacement of the inorganic trace mineral sources by organics source effectively reduced the excretion of copper, manganese, and zinc by laying hens in the second laying cycle.

  12. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Anacleto, Patrícia; van den Heuvel, Freek H M; Oliveira, C

    2017-01-01

    The presence of contaminants in aquatic ecosystems can cause serious problems to the environment and marine organisms. This study aims to evaluate the phycoremediation capacity of macroalgae Laminaria digitata for pesticides (diflubenzuron and lindane) and toxic elements (cadmium and copper) in s...

  13. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive MPC

  14. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium.

    NARCIS (Netherlands)

    Keltjens, W.G.; Beusichem, van M.L.

    1998-01-01

    Abstract

    Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil

  15. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  16. Immobilization of Trichosporon cutaneum R 57 Cells onto Methylcellulose/SiO2 Hybrids and Biosorption of Cadmium and Copper Ions

    Directory of Open Access Journals (Sweden)

    Georgieva N.

    2009-12-01

    Full Text Available Methylcellulose/Silica (MC/SiO2 hybrids were synthesized via poly step sol-gel method. SiO2 was included into the hybrids from two silica precursors - methyltriethoxysilane (MTES and ethyltrimethoxysilane (ETMS with different quantity of organic part-5, 20 and 50 wt.%. The filamentous yeasts Trichosporon cutaneum strain R 57 was immobilized onto the synthesized MC/SiO2 hybrids. After immobilization the hybrid materials were used in the processes of sorption of cadmium and copper ions. The obtained results of protein content analysis indicated that the amount of protein increased with increasing of MC in the hybrids. It was established that the maximal efficiency of copper and cadmium removal were observed for hybrid materials containing MTES and 50 wt.% MC - 66% and 26% respectively. For ETMS and 50 wt.% MC a high value of copper removal was 56% and for cadmium - 45% removal, respectively. FTIR analysis of free and immobilized cells with metal ions was conducted. SEM images showed successful immobilization of the yeasts cells. Second order model was employed in order to investigate the kinetics of copper and cadmium biosorption.

  17. Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem.

    Science.gov (United States)

    Motawei, Shimaa M; Gouda, Hossam E

    2016-06-01

    Heavy metals toxicity is a prevalent health problem particularly in developing countries. Mercury and cadmium are toxic elements that have no physiologic functions in human body. They should not be present in the human body by any concentration. Copper, on the other hand, is one of the elements that are essential for normal cell functions and a deficiency as well as an excess of which can cause adverse health effects. To test blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt. Using atomic absorption spectrophotometry, blood levels of cadmium, mercury, and copper were measured in 150 pregnant women attending to the antenatal care in Mansoura University Hospital in Dakahlia governorate, Egypt. The mean ± SD of blood mercury, cadmium, and copper levels were found to be far from their levels in the population surveys carried in developed countries like United States of America (USA) and Canada. Heavy metal intoxication and accumulation is a major health hazard. Developing countries, including Egypt, still lack many of the regulatory policies and legislations to control sources of pollution exposure. This should be dealt with in order to solve this problem and limit its health consequences.

  18. Uptake of lead, zinc, cadmium, and copper by the pulmonate mollusc, Helix aspersa Muller, and its relevance to the monitoring of heavy metal contamination of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Coughtrey, P.J.; Martin, M.H.

    1977-01-13

    The occurrence of lead, zinc, cadmium, and copper in individuals of Helix aspersa from two sites of varying degrees of contamination was studied. Zinc, cadmium, and copper were shown to increase in a linear fashion with animal weight. The rate of uptake for zinc and cadmium in particular was significantly greater at the more contaminated site. Statistical analysis of the data, using correlation and regression techniques, provided information on apparent intermetallic effects. It is concluded that because metal uptake and body weight show a positive linear relationship only the use of animals of similar weight and/or size can be used for monitoring purposes. Even then, different patterns of uptake into different organs and interactions between metal uptakes are such as to seriously question the use of Helix, and other molluscs, for monitoring purposes unless specific organs from comparably sized and/or aged animals are used.

  19. Human health risk assessment of lead, manganese and copper from scrapped car paint dust from automobile workshops in Nigeria.

    Science.gov (United States)

    Nduka, John Kanayochukwu; Onyenezi Amuka, John Paul; Onwuka, Jude Chinedu; Udowelle, Nnaemeka Arinze; Orisakwe, Orish Ebere

    2016-10-01

    The economic downturn in Nigeria and Structural Adjustment Programme led to the flooding of Nigerian market with imported used automobiles. Most of these vehicles needed refurbishing and reworking. The present study is a human health risk assessment of metal exposure resulting from reworking of imported used vehicles in Nigeria. Scrap paint dusts from 56 Japanese made cars were collected from 8 different mechanic villages (workshops A-H] in Southeastern Nigeria. Scrap paints were homogenized, mixed, divided into fine particles and digested by standard method. The filtrates were assayed of lead, manganese and copper with atomic absorption spectrophotometry (AAS). Workshop B has the highest concentration of Pb (4.26 ± 0.93). Manganese in workshops A and F were (3.31 ± 0.85) and (3.04 ± 0.47) respectively and were higher than the levels from workshops C, B, D, G and H. Copper in workshop D (7.11 ± 0.21) was significantly greater than the other workshops. The highest hazard quotient (HQ) through ingestion, inhalation and dermal exposures in adults were 9.44E-05 (workshop B), 4.20E-01 (workshop B) and 1.08E-05 (workshop D) respectively. The highest values for HQ through ingestion, inhalation and dermal in children were 8.82E-04, 7.61E-01 and 2.86E-05 all in workshop B respectively. For children, the highest carcinogenic risk levels were 7.05E-08, 6.09E-05 and 2.29E-10 for ingestion, inhalation and dermal exposures respectively. In adults, the carcinogenic risk levels were 7.55E-09, 3.39E-05 and 8.67E-10 for ingestion, inhalation and dermal exposures respectively. Chronic exposure to scrap car paint dusts may be of significant public health importance in Nigeria as this may add to the body burden of some heavy metals.

  20. Mechanical characterization based in the impact test of the cadmium-zinc and cadmium-zinc-copper alloys; Caracterizacion mecanica basada en la prueba de impacto de las aleaciones cadmio-zinc y cadmio-zinc-cobre

    Energy Technology Data Exchange (ETDEWEB)

    Casolco, S.R.; Torres V, G. [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D.F. (Mexico)

    1999-11-01

    The present work is a study carried out in the Institute for Materials Research of the UNAM, of the alloys cadmium-zinc and cadmium-zinc-copper with the fundamental objective of knowing their behavior to the impact that which will allow to establish structural applications of these alloys. This work consists mainly on impact tests of the type Charpy at different temperatures in a range of - 150 Centigrade to 250 Centigrade and to study their fracture morphologies with the help of a scanning electron microscope to recognize the tendency of the material toward the fracture of the fragile type and to determine the ductile-fragile transition. (Author)

  1. Effect of space flight on sodium, copper, manganese and magnesium content in the skeletal bones

    Science.gov (United States)

    Prokhonchukov, A. A.; Taitsev, V. P.; Shakhunov, B. A.; Zhizhina, V. A.; Kolesnik, A. G.; Komissarova, N. A.

    1979-01-01

    Sodium content decreased in the human skeletal bones and rose in the rat bones following space flight. In man copper content rose in the femoral bone and decreased in the vertebral body and the sternum, but was unchanged in the rest of the bones. Magnesium content was decreased in the femoral bone and the sternum, and in the vertebrae, but remained unchanged in the rest of the bones. Possible mechanisms of the changes detected are discussed.

  2. Nanostructured Multilayer Composite Films of Manganese Dioxide/Nickel/Copper Sulfide Deposited on Polyethylene Terephthalate Supporting Substrate

    Directory of Open Access Journals (Sweden)

    Awangku Nabil Syafiq Bin Awangku Metosen

    2015-01-01

    Full Text Available Nanostructured multilayer manganese dioxide/nickel/copper sulfide (MnO2/Ni/CuS composite films were successfully deposited onto supporting polyethylene terephthalate (PET substrate through the sequential deposition of CuS, Ni, and MnO2 thin films by chemical bath deposition, electrodeposition, and horizontal submersion deposition techniques, respectively. Deposition of each thin-film layer was optimized by varying deposition parameters and conditions associated with specific deposition technique. Both CuS and Ni thin films were optimized for their electrical conductivity whereas MnO2 thin film was optimized for its microstructure and charge capacity. The electrochemical properties of nanostructured multilayer MnO2/Ni/CuS composite films were evaluated by cyclic voltammetry as electrode materials of an electrochemical capacitor prototype in a dual-planar device configuration. Cyclic voltammogram in mild Na2SO4 aqueous electrolyte exhibited a featureless and almost rectangular shape which was indicative of the ideal capacitive behavior and high cycling reversibility of the electrochemical capacitor prototype. Nanostructured multilayer MnO2/Ni/CuS composite films on supporting polyethylene terephthalate (PET substrate could potentially be utilized as electrode materials for the fabrication of high performance electrochemical capacitors.

  3. Durability tests and up-scaling of selective absorbers based on copper-manganese oxide deposited by dip-coating

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, Rocio; San Vicente, Gema; Morales, Angel [Unidad de Concentracion Solar, Plataforma Solar de Almeria, Departamento de Energia, CIEMAT, Avd. Complutense 22, 28040 Madrid (Spain)

    2010-06-15

    Selective absorbers based on copper-manganese oxide were prepared by dip-coating method. The optical properties of the 2-layer configuration (Al/CuMnO{sub x}/SiO{sub 2}) were improved by introducing an additional absorber-protective layer directly in contact with the aluminium substrate (i.e. 3-layer absorber), for which solar absorptance up to 0.950 was achieved. Long-term durability of these absorbers was investigated by applying both thermal stability and humidity tests established by the IEA-SHC Task X. All the analyzed samples qualified for both tests leading to similar or even better results than some commercial absorbers. In order to prove the feasibility of the up-scaling process, 3-layer absorber samples of 30 x 30 cm{sup 2} size were prepared. It was observed that sintering process was determinant for obtaining fully homogenous films within the whole large-area surface. By using a sintering process with increasing temperature, 30 x 30 cm{sup 2} samples with {alpha}{sub s}=0.935{+-}0.005 (100 measurements) could be obtained. This study reveals that it is possible to deposit CuMn-oxide absorbers on large-area substrates and that they could be a good alternative to the materials present today in the market, not only in terms of optical properties but also in terms of long term durability. (author)

  4. Elements in rice on the Swedish market: part 2. Chromium, copper, iron, manganese, platinum, rubidium, selenium and zinc.

    Science.gov (United States)

    Jorhem, L; Astrand, C; Sundstrom, B; Baxter, M; Stokes, P; Lewis, J; Grawe, K P

    2008-07-01

    A survey of the levels of some essential and non-essential trace elements in different types of rice available on the Swedish retail market was carried out in 2001-03. The types of rice included long and short grain, brown, white, and parboiled white. The mean levels found were: chromium (Cr) = 0.008 mg kg(-1), copper (Cu) = 1.9 mg kg(-1), iron (Fe) = 4.7 mg kg(-1), manganese (Mn) = 16 mg kg(-1), platinum (Pt) < 0.0003 mg kg(-1), rubidium (Rb) = 3.3 mg kg(-1), selenium (Se) =0.1 mg kg(-1); and zinc (Zn) = 15 mg kg(-1). Inductively coupled plasma-mass spectrometry (ICP-MS) was used for the determination of Pt, Rb, and Se, after acid digestion. All other elements were determined using atomic absorption spectrometry (AAS) after dry ashing. Intake calculations were performed and it was concluded that rice may contribute considerably to the daily requirements of the essential elements Cu, Fe, Mn, Se, and Zn if rice consumption is high. The levels of some elements, e.g. Fe and Mn, were significantly higher in brown compared with white rice.

  5. Evaluation of arsenic, cobalt, copper and manganese in biological Samples of Steel mill workers by electrothermal atomic absorption Spectrometry.

    Science.gov (United States)

    Afridi, H I; Kazi, T G; Kazi, N G; Jamali, M K; Arain, M B; Sirajuddin; Kandhro, G A; Shah, A Q; Baig, J A

    2009-02-01

    The determination of trace and toxic elements in biological samples (blood, urine and scalp hair samples) of human beings is an important clinical test. The aim of our present study was to determine the concentration of arsenic (As), copper (Cu), cobalt (Co) and manganese (Mn), in biological samples of male production workers (PW) and quality control workers (QW) of steel mill, with aged 25-55 years, to assess the possible influence of environmental exposure. For comparison purpose, the same biological samples of unexposed healthy males of same age group were collected as control subjects. The determination of all elements in biological samples was carried out by electrothermal atomic absorption spectrometry, prior to microwave assisted acid digestion. The accuracy of the As, Cu, Co and Mn measurements was tested by simultaneously analyzing certified reference materials (CRMs) and for comparative purposes conventional wet acid digestion method was used on the same CRMs. No significant differences were observed between the analytical results and the certified values, using both methods (paired t-test at P > 0.05). The results indicate that concentrations of As, Cu, Co and Mn in all three biological samples of the exposed workers (QW and PW) were significantly higher than those of the controls. The possible correlation of these elements with the etiology of different physiological disorders is discussed. The results were also demonstrated the need of attention for improvements in workplace, ventilation and industrial hygiene practices.

  6. Salivary estimation of copper, iron, zinc and manganese in oral submucous fibrosis patients: A case-control study

    Directory of Open Access Journals (Sweden)

    Akshata Raghavendra Okade

    2015-01-01

    Full Text Available Background: Trace elements (TEs are required for physiological functioning and alterations are noted in potentially malignant disorders and oral cancer. These TEs are used in early diagnosis, treatment and also as an indicator of disease progress and prognosis. Aims: To estimate the TEs such as copper (Cu, zinc (Zn, iron (Fe, manganese (Mn and Cu/Zn ratio in the saliva of oral submucous fibrosis (OSF patients and controls. Settings and Design: The hospital-based study was conducted to estimate salivary TEs using atomic absorption spectrometry (AAS in 60 individuals. Methods and Material: 5 ml saliva was collected from OSF cases (n=30 and controls (n=30 and was centrifuged and prepared by using the Wet Ashing method. The TEs were estimated in parts per million (ppm by using AAS. Statistical Analysis Used: The data obtained was statistically analyzed using non parametric tests such as Mann Whitney U and Kruskal Wallis tests. Results: Significant difference in the mean salivary Zn, Mn and Fe levels in OSF when compared to that of controls. Mean salivary Cu levels were increased and Cu/ Zn ratio was decreased in OSF when compared to the controls. Conclusions: To conclude TEs play a role in the pathogenesis and progression of OSF. Betel quid and areca nut chewing habits are frequently associated with OSF and alters the salivary TE levels. Concerted efforts would, therefore, help in early detection, management and monitoring the efficacy of treatment.

  7. Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583.

    Directory of Open Access Journals (Sweden)

    Marta Coelho Abrantes

    Full Text Available Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn(2+, Mn(2+ and Cu(2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles.

  8. Cadmium, manganese, iron, zinc and magnesium content of bean plants (Phaseolus vulgaris L. ) in relation to the duration and the amount of cadmium supply

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, J.; Poschenrieder, C.; Cabot, C.

    1985-01-01

    In a long term experiment on bean plants, the effect of different cadmium concentrations on the growth and the content of Cd, Fe, Mn, Zn and Mg was studied during the total growth period. Cd treated and non-treated plants clearly exhibit differences in their growth and their nutrient content. There are clear differences between early and late Cd effects. In spite of a decrease of the magnesium content in most of the Cd treated plants, the values almost always stay above 1% and do not seem to be deficient. The results are discussed with the final conclusion, that the negative effect of Cd on the chlorophyll content observed in former studies, seems due to Mn deficiency rather than to the decrease of the Mg content.

  9. A test battery approach to the ecotoxicological evaluation of cadmium and copper employing a battery of marine bioassays.

    Science.gov (United States)

    Macken, Ailbhe; Giltrap, Michelle; Ryall, Kim; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2009-05-01

    Heavy metals are ubiquitous contaminants of the marine environment and can accumulate and persist in sediments. The toxicity of metal contaminants in sediments to organisms is dependent on the bioavailability of the metals in both the water and sediment phases and the sensitivity of the organism to the metal exposure. This study investigated the effects of two metal contaminants of concern (CdCl(2) and CuCl(2)) on a battery of marine bioassays employed for sediment assessment. Cadmium, a known carcinogen and widespread marine pollutant, was found to be the least toxic of the two assayed metals in all in vivo tests. However, CdCl(2) was found to be more toxic to the fish cell lines PLHC-1 and RTG-2 than CuCl(2). Tisbe battagliai was the most sensitive species to both metals and the Microtox and cell lines were the least sensitive (cadmium was found to be three orders of magnitude less toxic to Vibrio fischeri than to T. battagliai). The sensitivity of Tetraselmis suecica to the two metals varied greatly. Marine microalgae are among the organisms that can tolerate higher levels of cadmium. This hypothesis is demonstrated in this study where it was not possible to derive an EC(50) value for CdCl(2) and the marine prasinophyte, T. suecica. Conversely, CuCl(2) was observed to be highly toxic to the marine alga, EC(50) of 1.19 mg l(-1). The genotoxic effect of Cu on the marine phytoplankton was evaluated using the Comet assay. Copper concentrations ranging from 0.25 to 2.50 mg l(-1) were used to evaluate the effects. DNA damage was measured as percent number of comets and normal cells. There was no significant DNA damage observed at any concentration of CuCl(2) tested and no correlation with growth inhibition and genetic damage was found.

  10. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system.

    Science.gov (United States)

    Ge, Liqiang; Cang, Long; Liu, Hui; Zhou, Dongmei

    2015-10-01

    Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.

  11. The Role of Blood Lead, Cadmium, Zinc and Copper in Development and Severity of Acne Vulgaris in a Nigerian Population.

    Science.gov (United States)

    Ikaraoha, C I; Mbadiwe, N C; Anyanwu, C J; Odekhian, J; Nwadike, C N; Amah, H C

    2017-04-01

    Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals-lead (Pb) and cadmium (Cd)-globally, and trace metals-zinc (Zn) and copper (Cd)-particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals-cadmium and lead-and trace metals-zinc and copper-in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.

  12. Arsenic, cadmium, and manganese levels in shellfish from Map Ta Phut, an industrial area in Thailand, and the potential toxic effects on human cells.

    Science.gov (United States)

    Rangkadilok, Nuchanart; Siripriwon, Pantaree; Nookabkaew, Sumontha; Suriyo, Tawit; Satayavivad, Jutamaad

    2015-01-01

    Map Ta Phut Industrial Estate is a major industrial area in Thailand for both petrochemical and heavy industries. The release of hazardous wastes and other pollutants from these industries increases the potential for contamination in foods in the surrounding area, especially farmed shellfish. This study determined the arsenic (As), cadmium (Cd), and manganese (Mn) concentrations in the edible flesh of farmed shellfish, including Perna viridis, Meretrix meretrix, and Scapharca inaequivalvis, around the Map Ta Phut area using inductively coupled plasma mass spectrometry. The results showed that shellfish samples contained high levels of total As [1.84-6.42 mg kg(-1) wet weight (ww)]. High Mn concentrations were found in P. viridis and M. meretrix, whereas S. inaequivalis contained the highest Cd. Arsenobetaine (AsB) was found to be the major As species in shellfish (>45% of total As). The in vitro cytotoxicity of these elements was evaluated using human cancer cells (T47D, A549, and Jurkat cells). An observed decrease in cell viability in T47D and Jurkat cells was mainly caused by exposure to inorganic As (iAs) or Mn but not to AsB or Cd. The combined elements (AsB+Mn+Cd) at concentrations predicted to result from the estimated daily intake of shellfish flesh by the local people showed significant cytotoxicity in T47D and Jurkat cells.

  13. Spin-density-wave magnetism in dilute copper-manganese alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lamelas, F.J. [Marquette Univ., Milwaukee, WI (United States). Dept. of Physics; Werner, S.A. [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States); Mydosh, J.A. [Kammerlingh Onnes Lab., Leiden (Netherlands)

    1995-02-01

    Elastic neutron-scattering measurements on two samples of Cu alloyed with 1.3% Mn and 0.55% Mn show that the spin-density-wave (SDW) features found in more concentrated alloys persist in the limit of very dilute alloys. These features consist of temperature-dependent incommensurate peaks in magnetic neutron scattering, with positions and strengths which are fully consistent with those in the concentrated alloys. The implications of these measurements are twofold. First, it is clear from this data that SDW magnetic ordering occurs across the entire range of CuMn alloys which have typically been interpreted as spin glasses. Second, the more fundamental significance of this work is the suggestion via extrapolation that a peak in the magnetic susceptibility x(q) occurs in pure copper, at a value of q given by the Fermi-surface diameter 2k{sub F}.

  14. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  15. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Science.gov (United States)

    Xue, Yanfang; Yue, Shanchao; Zhang, Wei; Liu, Dunyi; Cui, Zhenling; Chen, Xinping; Ye, Youliang; Zou, Chunqin

    2014-01-01

    The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg-1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  16. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  17. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

    Science.gov (United States)

    Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

    2014-08-01

    The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.

  18. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles.

    Science.gov (United States)

    Wang, Jianyong; Rahman, Mohammed F; Duhart, Helen M; Newport, Glenn D; Patterson, Tucker A; Murdock, Richard C; Hussain, Saber M; Schlager, John J; Ali, Syed F

    2009-11-01

    Nanoparticles have received a great deal of attention for producing new engineering applications due to their novel physicochemical characteristics. However, the broad application of nanomaterials has also produced concern for nanoparticle toxicity due to increased exposure from large-scale industry production. This study was conducted to investigate the potential neurotoxicity of manganese (Mn), silver (Ag), and copper (Cu) nanoparticles using the dopaminergic neuronal cell line, PC12. Selective genes associated with the dopaminergic system were investigated for expression changes and their correlation with dopamine depletion. PC12 cells were treated with 10 microg/ml Mn-40 nm, Ag-15 nm, or Cu-90 nm nanoparticles for 24 h. Cu-90 nanoparticles induced dopamine depletion in PC12 cells, which is similar to the effect induced by Mn-40 shown in a previous study. The expression of 11 genes associated with the dopaminergic system was examined using real-time RT-PCR. The expression of Txnrd1 was up-regulated after the Cu-90 treatment and the expression of Gpx1 was down-regulated after Ag-15 or Cu-90 treatment. These alterations are consistent with the oxidative stress induced by metal nanoparticles. Mn-40 induced a down-regulation of the expression of Th; Cu-90 induced an up-regulation of the expression of Maoa. This indicates that besides the oxidation mechanism, enzymatic alterations may also play important roles in the induced dopamine depletion. Mn-40 also induced a down-regulation of the expression of Park2; while the expression of Snca was up-regulated after Mn-40 or Cu-90 treatment. These data suggest that Mn and Cu nanoparticles-induced dopaminergic neurotoxicity may share some common mechanisms associated with neurodegeneration.

  19. Trace elements in the human endometrium. I. Zinc, copper, manganese, sodium and potassium concentrations at various phases of the normal menstrual cycle.

    Science.gov (United States)

    Hagenfeldt, K; Plantin, L O; Diczfalusy, E

    1970-11-01

    The cyclic variations in the content of 5 trace elements in the normal human endometrium were studied by means of neutron activation analysis. The concentrations of zinc, copper, manganese, sodium, and potassium were measured in endometrial biopsy specimens taken from 6 healthy, normally menstruating volunteers from 10 to 32 years of age. 4 specimens were obtained from each during 4 consecutive cycles in the following phases: a) early proliferative (Days 6-10); late proliferative (Days 11-14); c) early secretory (Days 15-18); and d) late secretory Days 22-27). Biopsies were taken with a Novak type suction curette without anesthesia and without dilation of the cervix. Chemical methodology is described. An analysis of variance of the data revealed that in the early proliferative phase the human endometrium is characterized by significantly elevated concentrations of manganese (p greater than .001), sodium (p greater than .01), and potassium (p greater than .001). However, the late secretory endometrium is characterized by a highly significant rise in its zinc concentration (p greater than .001), accompanied by a highly significantly decreased concentration of sodium (p greater than .001) and potassium (p greater than .001). The copper concentration of the secretory endometria was significantly higher than that of the proliferative endometria (p greater than .001). The significance of the findings was the same whether values were expressed per g protein or per g wet tissue. It is suggested that the high concentrations of zinc and copper associated with low levels of manganese, sodium, and potassium at the expected time of implantation may be a reflection of changes in endometrial enzyme activities. Investigations are in progress to explore this possibility.

  20. An Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(L-histidinato)cadmium Dihydrate

    Science.gov (United States)

    Colaneri, Michael J.; Vitali, Jacqueline; Kirschbaum, Kristin

    2013-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal; bis(L-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, − 190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature dependent conversion between two species with a critical temperature Tc ≈ 160 K. The species below Tc hops between the two low temperature site patterns, and the one above Tc represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites νh4 = 4.5 × 108 s−1 and between the low and high temperature states νh2 = 1.7 × 108 s−1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE4 = 389 cm−1 and ΔE2 = 656 cm−1 between the two low temperature sites, and between the low and high temperature states, respectively. PMID:23530765

  1. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  2. [Simultaneous determination of trace amounts of zinc, cadmium, lead and copper by the method of anodic voltammetry using factor experimental design].

    Science.gov (United States)

    Koen, E

    1975-01-01

    Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.

  3. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  4. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  5. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO2 core-Au shell nanoparticles by flame atomic absorption spectrometry.

    Science.gov (United States)

    Gunduz, S; Akman, S; Kahraman, M

    2011-02-15

    Separation/preconcentration of copper and cadmium using TiO(2) core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and their slurry analysis by flame atomic absorption spectrometry were described. For this purpose, at first, titanium dioxide nanoparticles were coated with gold shell by reducing the chloroauric acid with sodium borohydride and then modified with 11-mercaptoundecanoic acid. The characterization of modified nanoparticles was performed using ultra-violet spectroscopy and dynamic light scattering. Copper and cadmium were then collected on the prepared sorbent by batch method. The solid phase loaded with the analytes was separated by centrifugation and the supernatant was removed. Finally, the precipitate was slurried and directly aspirated into the flame for the determination of analytes. Thus, elution step and its all drawbacks were eliminated. The effects of pH, amount of sorbent, slurry volume, sample volume and diverse ions on the recovery were investigated. After optimization of experimental parameters, the analytes in different certified reference materials and spiked water samples were quantitatively recovered with 5% RSD. The analytes were enriched up to 20-fold. Limits of detection (N=10, 3σ) for copper and cadmium were 0.28 and 0.15 ng mL(-1), respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples.

  7. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  8. Effective phototransformation in a heterostructure based on copper(I) oxide and cadmium tin oxide

    Science.gov (United States)

    Shelovanova, G. N.; Patrusheva, T. N.

    2017-02-01

    We present a heterostructure consisting of anodic copper oxide Cu2O on a copper substrate and a transparent Cd-Sn-O conducting film for use in solar cells. Focusing on simplicity and the availability of film fabrication techniques, we chose anodic oxidation for forming the Cu2O film and the extraction-pyrolysis technique for forming the transparent Cd-Sn-O conducting layer. We demonstrate the possibility of considerable enhancement of the phototransformation efficiency in the Cu-Cu2O/Cd-Sn-O structure over this parameter in the Cu-Cu2O structure.

  9. Molecular cloning of manganese superoxide dismutase gene in the cladoceran Daphnia magna: Effects of microcystin, nitrite, and cadmium on gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Kai; Zhu, Xuexia; Chen, Rui [Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 (China); Chen, Yafen [State Key Laboratory for Lake Science and Environment, Nanjing Institute of Geography and Limnology, the Chinese Academy of Sciences, Nanjing 210008 (China); Yang, Zhou, E-mail: yangzhou@njnu.edu.cn [Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Daphnia magna MnSOD (Dm-MnSOD) was identified and revealed MnSOD-family features. • The expression of Dm-MnSOD decreased with increased developmental stages. • Dm-MnSOD transcript was kinetically up-regulated by microcystin, nitrite and Cd. • Response of SOD to ubiquitous waterborne pollutants in D. magna was elucidated. • Dm-MnSOD gene is a potential biomarker indicating pollutants in the environment. - Abstract: Superoxide dismutases (SODs) are metalloenzymes that represent one important line of defense against oxidative stress produced by reactive oxygen species in aerobic organisms. Generally, waterborne pollutants caused by irregular anthropogenic activities often result in oxidative damage in aquatic organisms. The aim of this study was to molecularly characterize the manganese superoxide dismutase gene (Dm-MnSOD) in the waterflea, Daphnia magna, and evaluate the mRNA expression patterns quantified by real-time PCR after exposure to three common waterborne pollutants (microcystin-LR, nitrite, and cadmium). The results showed that the full-length Dm-MnSOD sequence consists of 954 bp nucleotides, encoding 215 amino acids, showing well-conserved domains that are required for metal binding and several common characteristics, such as two MnSOD domains. The deduced amino acid sequence of Dm-MnSOD shared over 70% similarity with homologues from Bythograea thermydron, Dromia personata, Cancer pagurus, and Scylla paramamosain. Dm-MnSOD gene expression was up-regulated in response to exposure to the three chemicals tested. The overall results indicated that Dm-MnSOD gene is an inducible gene and potential biomarker indicating these pollutants in the environment.

  10. Determination of cadmium and copper in fish samples from Sir and Menzelet Dam Lake Kahramanmaraş, Turkey.

    Science.gov (United States)

    Erdogrul, Ozlem; Ateş, D Ayfer

    2006-06-01

    The cadmium and copper levels were determined in the total of 126 fish samples which belongs to five fish species collected from Sir and Menzelet Dam Lakes in Kahramanmaraş Province by Atomic Absorption Spectrophotometer. The concentrations of heavy metals were expressed as ppm wet weight of tissue. The mean levels of cadmium and copper in muscle, liver and gill tissues of Cyprinus carpiofrom the Menzelet Dam were found as 0.27, 0.91, 1.49 and 0.94, 1.2, 1.05, respectively. The mean levels of Cd in the muscle tissues of Leuciscus cephalusfrom the Menzelet Dam were found 0.32 ppm, Cd wasn't found in tissues of liver and gill. The mean levels of Cu in the muscle, liver and gill tissues were found as 3.17 ppm, 1.19 ppm, 0.96 ppm, respectively. The mean levels of the Cd and Cu in muscle and gill tissues of Acanthobrama marmid from the Sir Dam were found as 1.28, 2.64 and 0.72, 0.08, respectively. The levels of the Cd and Cu in muscle tissues of Cyprinus carpiofrom the Sir Dam were found 0.87 and 0.02 ppm, respectively. The mean levels of the Cd and Cu in the muscle and gill tissues of Chondrostoma regium from the Sir Dam were found to be 0.80, 2.62 and 0.67, 1.34 ppm, respectively. The mean levels of the Cd in the muscle tissues of the Silurus glanis was found as 0.60 ppm. In the muscle of the Silurus glanis from the Sir Dam, Cu was not found. The Sir Dam is more polluted than the Menzelet Dam from the point of Cd but less polluted than the Menzelet Dam From the point of Cu. A relationship was determined between species and their habitating region in terms of the levels reflected metal residues. In this study it was emphasized that the amounts of Cd and Cu in the samples were low, however, seas, lakes, rivers, soil, air and consumed foods etc. has to be controlled routinely.

  11. Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu-O-Mn/γ-Al2O3 catalysts

    Science.gov (United States)

    Wang, Hongpei; Lu, Yiyuan; Han, YuXiang; Lu, Chunliang; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-10-01

    Toward catalytic oxidation of toluene, Cu-O-Mn/γ-Al2O3 catalysts with series molar ratios of Cu/Mn were prepared using an impregnation method. The surface structure and chemical state of the as-prepared catalysts were characterized by the combination of X-ray diffraction (XRD), N2 adsorption/desorption, UV-vis spectroscopy (UV-vis), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR). The results demonstrated that copper oxide and manganese oxide were highly dispersed on the γ-Al2O3 support. Meanwhile, there is an interaction between copper oxide and manganese oxide, depending on the atomic ratio of Cu/Mn. At the ratio of Cu/Mn = 1:1.5, the interaction between Cu and Mn oxides reached the strongest, thus leading to the highest catalytic activity and turn over frequency among all of the ratios. The temperature for complete combustion of toluene over the strongest interaction sample could be 350 °C, which could further decrease to 300 °C when tuning the loading amount of Cu and Mn. Findings in this work are important for the design of efficient catalyst by tuning the interaction between each components.

  12. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese.

    Science.gov (United States)

    Shawki, Ali; Anthony, Sarah R; Nose, Yasuhiro; Engevik, Melinda A; Niespodzany, Eric J; Barrientos, Tomasa; Öhrvik, Helena; Worrell, Roger T; Thiele, Dennis J; Mackenzie, Bryan

    2015-10-15

    Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.

  13. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese

    Science.gov (United States)

    Shawki, Ali; Anthony, Sarah R.; Nose, Yasuhiro; Engevik, Melinda A.; Niespodzany, Eric J.; Barrientos, Tomasa; Öhrvik, Helena; Worrell, Roger T.; Thiele, Dennis J.

    2015-01-01

    Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1int/int). DMT1int/int mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1int/int mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1int/int mice compared with DMT1+/+ mice but no meaningful change in copper, manganese, or zinc. DMT1int/int mice absorbed 64Cu and 54Mn from an intragastric dose to the same extent as did DMT1+/+ mice but the absorption of 59Fe was virtually abolished in DMT1int/int mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc. PMID:26294671

  14. Tissue concentrations as the dose metric to assess potential toxic effects of metals in field-collected fish: Copper and cadmium.

    Science.gov (United States)

    Meador, James P

    2015-06-01

    The present study examined the available literature linking whole-body tissue concentrations with toxic effects in fish species for copper and cadmium. The variability in effect concentration for both copper and cadmium among species occurred within an order of magnitude for all responses, whereas the range for lethal toxicity based on water exposure spanned approximately 4 to 5 orders of magnitude. Fish tissue concentrations causing adverse effects were just above background concentrations, occurring between 1 μg/g and 10 μg/g for copper and 0.1 μg/g to 4 μg/g for cadmium. The results also show that salmonids are especially sensitive to cadmium, which appears to be a function of chemical potency. No studies were found that indicated adverse effects without increases in whole-body concentration of these metals. This narrow range for dose-response implies that a toxicological spillover point occurs when the detoxification capacity of various tissues within the animal are exceeded, and this likely occurs at a similar whole-body concentration for all naïvely exposed fish species. Elevated whole-body concentrations in fish from the field may be indicative of possible acclimation to metals that may or may not result in effects for target species. Acclimation concentrations may be useful in that they signal excessive metal concentrations in water, sediment, or prey species for a given site and indicate likely toxic effects for species unable to acclimate to excess metal exposure. Using tissue residues as the dose metric for these metals provides another line of evidence for assessing impaired ecosystems and greater confidence that hazard concentrations are protective for all fish species.

  15. Comparative study between probe focussed sonication and conventional stirring in the evaluation of cadmium and copper in plants.

    Science.gov (United States)

    Pereira, Sara; Fonseca, Luís P; Capelo, José L; Armas, Teresa; Vilhena, Fernanda; Pinto, Ana P; Gonçalves, Maria L S; Mota, A M

    2010-11-01

    Ultrasound (US)-assisted extraction has been widely used for metal ion extraction in plants due to its unique properties of decreased extraction time, minimal contamination, low reagent consumption and low cost. However, very few papers present a sound comparison between probe-focussed sonication and conventional stirring in the evaluation of metal ion extraction in plants. In this study, ultrasonic-assisted digestion has been evaluated and compared to magnetic stirring for total copper and cadmium determination by atomic absorption spectrometry in biological samples (plants, plankton and mussels). The same experimental conditions of sample amount and particle size, extractant solution and extraction time were applied for both ultrasound and magnetic stirring-assisted extraction methods in order to truly compare their effect on metal ion solubilisation. To gain further insight in this issue, dried and fresh plants were tested. The results obtained indicated that osmotic tension in cell walls, produced when dried and powdered samples were immersed in the extractant solution, had an important contribution to metal ion solubilisation, the enhancement due to US for the same purpose being negligible.

  16. Assessing the mobility of lead, copper and cadmium in a calcareous soil of Port-au-Prince, Haiti.

    Science.gov (United States)

    Fifi, Urbain; Winiarski, Thierry; Emmanuel, Evens

    2013-11-01

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax), the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  17. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti †

    Science.gov (United States)

    Fifi, Urbain; Winiarski, Thierry; Emmanuel, Evens

    2013-01-01

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax), the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu. PMID:24192791

  18. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huifeng [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-11-15

    Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu + Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers.

  19. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  20. Accumulation of cadmium and copper by female Oxya chinensis(Orthopera: Acridoidea) in soil-plant-insect system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    One purpose of this research is to present accumulation of cadmium (Cd) and copper (Cu) by female Oxya chinensis (Orthopera: Acridoidea) in a simulated soil-plant-insect ecosystem treated with Cd. Fourth-instar nymphs of O. chinensis had been fed on wheat (Triticum aestivum) seedlings contaminated with Cd and Cu for one month. In the ecosystem, the Cd concentration in wheat seedlings rose greatly with the increasing of Cd in the soil, but the Cu concentration in wheat seedlings was not found elevated. There was a highly significant difference(P<0.05) in Cd concentrations of wheat seedlings and not any significant difference(P>0.05) in Cu concentrations of wheat seedlings. The Cd and Cu concentration in different body part-head, thorax, abdomen, and hind femur, varied under different Cd concentrations in soil. There were significant differences (P<0.05) in the four parts of Cd and Cu accumulations with all treatments. The order of Cd accumulation was thorax >abdomen >head >hind femur and the Cu was abdomen > thorax >head > hind femur. The results indicated that Cd and Cu were accumulated from the soil to grasshoppers through the plant; that is to say, Cd and Cu in environment could be transported to animal or human via food chain.

  1. Changes in phototactic behavior of Daphnia magna clone C1242 in response to copper, cadmium and pentachlorophenol

    Institute of Scientific and Technical Information of China (English)

    YUAN Ling; E. Michels; L. De Meester

    2003-01-01

    In order to develop a round biotechnique for monitoring water quality that builds on the previous experiments carried out in our laboratory, a specific D. magna clone C1 242 was used to study the effects of pollutants on phototactic behavior. In all experiments, the animals showed a stable and repeatable phototactic index approximated 0.2 in the presence and 0.4 in the absence of fish kairomones, which decreased significantly in response to pollutants. There existed no pollutant × fish kairomone interaction, indicating the changes in phototactic behavior of animals imposed by pollutants were independent of the presence of fish kairomones. The detection limits for changes in phototactic behavior of D. mgna clone C1242 are 0.04 mg/L for copper, 0.02 mg/L for cadmium, and 0.80 mg/L for PCP, respectively, quite lower than LC50 (48 h). The changes in phototactic behavior in presence to pollutants occurred quickly(3 h) compared to the period over whole acute toxicity tests. Therefore, D. magna clone C1242 could be potentially used to monitor water quality. Moreover, the phototactic behavior did not decrease further in the pollutant mixtures employed in our experiments compared to individual pollutants, except in the Cd-PCP treatment.This fact suggests that the formation of water quality criteria must be based upon pollutant mixture tests.

  2. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis.

    Science.gov (United States)

    Wu, Huifeng; Wang, Wen-Xiong

    2010-11-15

    Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu+Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

    Directory of Open Access Journals (Sweden)

    Urbain Fifi

    2013-11-01

    Full Text Available The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb, copper (Cu and Cadmium (Cd during their transfer in a calcareous soil of Port-au-Prince (Haiti. Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax, the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  4. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LI Ping; WANG Xingxiang; ZHANG Taolin; ZHOU Dongmei; HE Yuanqiu

    2008-01-01

    Heavy metals in variable charge soil are highly bioavailable and easy to transfer into plants.Since it is impossible to completely eliminate rice planting on contaminated soils,some remediation and mitigation techniques are necessary to reduce metal bioavailability and uptake by rice.This pot experiment investigated the effects of seven amendments on the growth of rice and uptake of heavy metals from a paddy soil that was contaminated by copper and cadmium.The best results were from the application of limestone that increased grain yield by 12.5-16.5 fold,and decreased Cu and Cd concentrations in grain by 23.0%-50.4%.Application of calcium magnesium phosphate,calcium silicate,pig manure,and peat also inereased the grain yield by 0.3-15.3 fold,and effectively decreased the Cu and Cd concentrations in grain.Cd concentration in grain was slightly reduced in the treatments of Chinese milk vetch and zinc sulfate.Concentrations of Cu and Cd in grain and straw were dependent on the available Cu and Cd in the soils.and soil availabie Cu and Cd Were significantly affected by the soil pH.

  5. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    Science.gov (United States)

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  6. Direct Determination of Zinc, Cadmium, Lead, Copper Metal in Tap Water of Delhi (India by Anodic Stripping Voltammetry Technique

    Directory of Open Access Journals (Sweden)

    Raj J.

    2013-04-01

    Full Text Available Salts of Zinc, Cadmium, Lead and Copper are taken incidentally or accidently and has become of great toxicological importance having toxic effect. In the present study direct determination of Zn, Cd, Pb and Cu metal was carried out from tap water of Delhi (India using differential pulse anodic stripping Voltammeter (DPASV at Hanging mercury dropping electrode (HMDE.Determination of Zn, Cd, Pb, Cu was done using Ammonium acetate buffer (pH 4.6 with a sweep rate (scan rate of 59.5 mV/s and pulse amplitude 50mV by HMDE by standard addition method. The solution was stirred during pre-electrolysis at -1150mV (vs. Ag/AgCl for 90 seconds and the potential was scanned from -1150V to +100V (vs..Ag/AgCl. As a result the minimum level of Zn, Cd, Pb, Cu was Zero and the concentration observed in the tap water sample of Delhi (India was determined as 0.174 mg/L-1, 0.001 mg/L-1, 0.002 mg/L-1, 0.011 mg/L-1 respectively.

  7. Comparative study between probe focussed sonication and conventional stirring in the evaluation of cadmium and copper in plants

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Sara; Fonseca, Luis P. [Technical University of Lisbon, Centro de Engenharia Quimica e Biologica, Instituto Superior Tecnico, Lisbon (Portugal); Capelo, Jose L. [University of Vigo at Ourense Campus, Analytical and Food Chemistry Department, Science Faculty, Ourense (Spain); Armas, Teresa; Vilhena, Fernanda; Goncalves, Maria L.S.; Mota, A.M. [Technical University of Lisbon, Centro de Quimica Estrutural, Instituto Superior Tecnico, Lisbon (Portugal); Pinto, Ana P. [University of Evora, Herdade Experimental da Mitra, ICAAM-Instituto de Ciencias Agrarias e Ambientais Mediterranicas, Evora (Portugal)

    2010-11-15

    Ultrasound (US)-assisted extraction has been widely used for metal ion extraction in plants due to its unique properties of decreased extraction time, minimal contamination, low reagent consumption and low cost. However, very few papers present a sound comparison between probe-focussed sonication and conventional stirring in the evaluation of metal ion extraction in plants. In this study, ultrasonic-assisted digestion has been evaluated and compared to magnetic stirring for total copper and cadmium determination by atomic absorption spectrometry in biological samples (plants, plankton and mussels). The same experimental conditions of sample amount and particle size, extractant solution and extraction time were applied for both ultrasound and magnetic stirring-assisted extraction methods in order to truly compare their effect on metal ion solubilisation. To gain further insight in this issue, dried and fresh plants were tested. The results obtained indicated that osmotic tension in cell walls, produced when dried and powdered samples were immersed in the extractant solution, had an important contribution to metal ion solubilisation, the enhancement due to US for the same purpose being negligible. (orig.)

  8. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  9. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium.

    Science.gov (United States)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-08-15

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb, and Cd (0, 0.5, 5, 50μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers.

  10. Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa.

    Science.gov (United States)

    Massányi, P; Trandzik, J; Nad, P; Koreneková, B; Skalická, M; Toman, R; Lukac, N; Halo, M; Strapak, P

    2004-01-01

    In this study the concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation of these metals to spermatozoa morphology was investigated. Analysis by atomic absorption spectrophotometry showed that copper concentration was significantly higher (pzinc concentration was higher in bull semen in comparison with ram semen. The iron and cadmium concentrations in the semen were similar. Higher concentration of lead was found in ram semen. Higher levels of nickel were found in ram semen in comparison with bulls. In bull semen 11.79+/-4.88% of pathological spermatozoa was found. Higher occurrence of pathological spermatozoa was in ram semen (17.17+/-3.76) in comparison with the semen of bulls. Separated tail, tail torso, and knob twisted tail were the most frequent forms of pathological spermatozoa in both species. Correlation analysis in bulls showed high positive relation between iron and zinc (r = 0.72), nickel and separated tail (r = 0.76), separated tail and tail torso (r = 0.71), tail torso and total number of pathological spermatozoa (r=0.72), and between tail ball and total number of pathological spermatozoa (r = 0.78). In rams high positive correlation between cadmium and lead (r=0.98), nickel and separated tail (r=0.77), separated tail and total number of pathological spermatozoa (r=0.69), knob twisted tail and retention of cytoplasmic drop (r=0.78), and between knob twisted tail and other pathological spermatozoa (r = 0.71) was found. High negative correlation in ram semen was observed between copper and nickel (r=0.71), copper and separated tail (r=0.70), and between iron and tail torso (r=0.67). The results suggest that the studied metals have a direct effect on spermatozoa quality.

  11. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  12. Oral intake of cadmium, cobalt, copper, iron, lead, nickel, manganese and zinc in the university student's diet.

    Science.gov (United States)

    Barberá, R; Farré, R; Mesado, D

    1993-01-01

    A duplicate diet meal study was carried out with a group of university students living in a hostel, in order to estimate the intake of Zn, Cd, Co, Cu, Fe, Mn, Ni and Pb. Zn, Cu, Fe, Mn and Ni were determined by flame atomic absorption spectrophotometry and Cd, Co and Pb by graphite furnace atomic absorption spectrophotometry after a nitric acid wet digestion procedure. The estimated intake values from the contents of breakfast, lunch, dinner and drinks were compared with the values of the Provisional Tolerable Daily Intake (PTDI) in the case of Cd and Pb, Recommended Dietary Allowances (RDA) of Co, Fe and Zn and Estimated Safe and Adequate Dietetic Daily Intake (ESADDI) of Cu and Mn. Neither excessive intake of Pb and Cd nor deficiencies in Zn, Co, Fe, Mn or Ni were observed, but Cu intake was lower than the ESADDI.

  13. Determination of presence and quantification of cadmium, lead and copper in Nile tilapia (Oreochromis niloticus fillets obtained from three cold storage plants in the state of Parana, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Nobuhiro Tajiri

    2011-06-01

    Full Text Available Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.

  14. Synthesis and antibacterial activity of cephradine metal complexes : part II complexes with cobalt, copper, zinc and cadmium.

    Science.gov (United States)

    Sultana, Najma; Arayne, M Saeed; Afzal, M

    2005-01-01

    Cephradine, the first generation cephalosporin, is active against a wide range of Gram-positive and Gram-negative bacteria including penicillinase-producing Staphylococci. Since the presence of complexing ligand may affect the bioavailability of a metal in the blood or tissues, therefore, in order to study the probable interaction of cephradine with essential and trace elements present in human body, cephradine has been reacted with cobalt, copper, zinc and cadmium metal halides in L:M ratio of 2:1 in methanol and the products recrystallized from suitable solvents to pure crystals of consistent melting points. Infrared and ultraviolet studies of these complexes were carried out and compared with ligand. Magnetic susceptibility studies of these complexes were also carried out showing their paramagnetic behavior. From the infra red studies and elemental analysis of the complexes, it has been shown that the drug molecule serves as a bidentate ligand coordinating through both its carboxylate at C-3 and beta-lactam nitrogen and the metal having a square planar or octahedral geometry. To evaluate the changes in microbiological activity of cephradine after complexation, antibacterial studies were carried out by observing the changes in MIC (minimum inhibitory concentration) of the complexes and compared with the parent drug by measuring the zone of inhibition of complexes and compared with the parent cephalosporin against both Gram-positive and Gram-negative organisms. For MIC observation, serial dilution method was employed and zone series were determined by disk diffusion method. Our investigations reveal that formation of complexes results in decrease in antibacterial activity of cephradine and MIC values are increased.

  15. Cadmium, copper, lead and zinc in cultured oysters under two contrasting climatic conditions in coastal lagoons from SE Gulf of California, Mexico.

    Science.gov (United States)

    Osuna-Martínez, Carmen C; Páez-Osuna, Federico; Alonso-Rodríguez, Rosalba

    2011-09-01

    In order to determine the metal concentrations in cultured oysters from four coastal lagoons from SE Gulf of California, several individuals of Crassostrea gigas and C. corteziensis were collected and their cadmium, copper, lead and zinc levels were measured by atomic absorption spectrometry after acid digestion. The concentration of metals in oyster soft tissue was Zn > Cu > Cd > Pb. In two lagoons, Cd concentrations (10.1-13.5 μg g(-1) dw) exceeded the maximum level allowed according to the Official Mexican Standard (NOM-031-SSA1-1993), which is equivalent to the WHO recommended Cd levels in organisms used for human consumption.

  16. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems.

  17. Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination.

    Science.gov (United States)

    Hladun, Kristen R; Parker, David R; Trumble, John T

    2015-04-01

    Several studies have found high levels of cadmium (Cd), copper (Cu), and lead (Pb) in honey bee hives located near urbanized or industrial areas. Insect herbivores and pollinators may come in contact with environmental contaminants in the leaves and flowers they forage upon in these areas. Our study quantified which of these metals are accumulated in the tissues of a common weedy plant that can serve as a route of exposure for insects. We grew Raphanus sativus (crop radish) in semi-hydroponic sand culture in the greenhouse. Plants were irrigated with nutrient solutions containing Cd, Cu, or Pb at four concentrations (control, low, medium, high). Plant performance, floral traits, and metal accumulation were measured in various vegetative and reproductive plant organs. Floral traits and flower number were unaffected by all metal treatments. Copper accumulated at the highest concentrations in flowers compared to the other two metals. Copper and Cd had the highest translocation indices, as well as higher bioconcentration factors compared to Pb, which was mostly immobile in the plant. Copper posed the highest risk due to its high mobility within the plant. In particular, accumulation of metals in leaves and flowers suggests that herbivores and pollinators visiting and foraging on these tissues may be exposed to these potentially toxic compounds.

  18. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    Science.gov (United States)

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  19. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method

    Energy Technology Data Exchange (ETDEWEB)

    Kong Bo; Tang Biyu; Liu Xiaoying; Zeng Xiandong; Duan Haiyan [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082 (China); Luo Shenglian, E-mail: kongbo2136@163.com [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082 (China); Wei Wanzhi [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082 (China)

    2009-08-15

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd{sup 2+} and Cu{sup 2+} appear at -0.13 and 0.34 V respectively, at the concentration range of 5-50 {mu}M, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd{sup 2+} and Cu{sup 2+} was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (q{sub e}) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  20. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  1. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent.

    Science.gov (United States)

    Asselman, Jana; Shaw, Joseph R; Glaholt, Stephen P; Colbourne, John K; De Schamphelaere, Karel A C

    2013-10-15

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1-mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells.

    Science.gov (United States)

    Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Nan; Deshmukh, Rahul; Yan, Xingchen; Lv, Xiuwen; Zhang, Pengfei; Zhang, Xia; Dou, Q Ping

    2015-01-01

    Ubiquitin-proteasome system (UPS) plays a crucial role in many cellular processes such as cell cycle, proliferation and apoptosis. Aberrant activation of UPS may result in cellular transformation or other altered pathological conditions. Previous studies have shown that metal-based complexes could inhibit proteasome activity and induce apoptosis in certain human cancer cells. In the current study, we report that the cadmium and copper complexes with heterocycle-ornithine Schiff base are potent inhibitors of proteasomal chymotrypsin-like (CT-like) activity, leading to induction of apoptosis in cancer cells. Two novel copper-containing complexes and two novel cadmium-containing complexes with different heterocycle-ornithine Schiff base structures as ligands were synthesized and characterized. We found that complexes Cu1, Cd1 and Cd2 show proteasome-inhibitory activities in human breast cancer MDA-MB-231 and human prostate cancer LNCaP cells, resulting in the accumulation of p27, a natural proteasome substrate and other ubiquitinated proteins, followed by the induction of apoptosis. Our results suggest that metal complexes with heterocycle-ornithine Schiff base have proteasome-inhibitory capabilities and have the potential to be developed into novel anticancer drugs.

  3. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  4. Role of the copper-oxygen defect in cadmium telluride solar cells

    Science.gov (United States)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O

  5. Cause and Measures of High Copper Content in Electrolyzing Manganese Dioxide Process%电解二氧化锰生产中铜含量偏高的原因分析及措施

    Institute of Scientific and Technical Information of China (English)

    丁延庚

    2014-01-01

    针对电解二氧化锰生产中产品和电解废液中铜含量偏高的问题,分析其原因,提出相应的改进措施,使铜含量控制在一个较低的水平,产品质量大大提高。%Analyze the cause of the high copper content in both the product and the electrolysis waste water in the electrolyzing manganese dioxide process ,propose the improvement measures .The copper content is controlled to a lower level ,the product quality is greatly improved .

  6. Determination of Trace Elements Copper and Manganese in Honeysuckle from Different Regions%不同产地金银花中铜锰微量元素的测定

    Institute of Scientific and Technical Information of China (English)

    丁玉; 郑雪莲; 覃柳; 唐思群; 苟建军; 李华兰

    2014-01-01

    Objective]The aim was to determine the contents of trace elements of copper and manganese in Honeysuckle from different habitats. [Method]Using mixed acid HNO3-HClO4 (4+1) digestion, the contents of trace elements of copper and manganese in Honeysuckle from Henan, Shandong and Sichuan were determined by flame atomic absorption spectrometry. [Result] The results showed that rich in manganese content in Honeysuckle three origin, less copper. The RSD was 0.35%-1.80%, and the recovery rate was 98.0%-104.2%. [Conclusion] The copper and manganese content in Honeysuckle from Henan,Shandong and Sichuan were compared, and it provided reference data for further research and application of three Honeysuckle.%[目的]测定不同产地金银花中铜锰微量元素的含量。[方法]采用混酸HNO3-HClO4(4+1)消解样品,火焰原子吸收光谱法测定河南、山东及四川三地金银花中Cu、Mn微量元素的含量。[结果]三产地金银花中都富含锰元素,铜的含量较少,RSD在0.35%~1.80%,回收率在98.0%~104.2%。[结论]对河南、山东及四川三地金银花中铜锰元素含量进行比较,为三地金银花的进一步研究和应用提供了相关数据参考。

  7. Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures.

    Science.gov (United States)

    Calfee, Robin D; Little, Edward E; Puglis, Holly J; Scott, Erinn; Brumbaugh, William G; Mebane, Christopher A

    2014-10-01

    The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model-normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.

  8. FAAS测定电解镉中的Zn、Cu和Fe%Determination of Zinc and Copper and Iron in Electrolysis Cadmium by FAAS

    Institute of Scientific and Technical Information of China (English)

    李文东; 张林; 陈自辉; 王琼; 邹立明; 黄大生

    2009-01-01

    采用火焰原子吸收光谱法测定电解镉中铜、铁和锌的方法,确定了最佳仪器工作条件和样品处理方法.在选择好的实验条件下.测定铜的特征浓度为0.006#g/mL/1%吸收;铁的特征浓度为0.015μg/mL/1%吸收;锌的特征浓度为0.0031μg/mL/1%吸收.回收率分别为铜97.5%-98.0%,铁99.1%-100.2%,锌97.4%-99.1%.%A method for determining zinc,copper and iron in electrolysis cadmium by FAAS was established. Under experimental conditions, characteristic mass are 0.006μg/mL/1% for copper, 0.015μg/mL/1% for iron, 0.003μg/mL/1% for zinc,recovery is 97.5%-98.0% for copper, 99.1%-100.2%for iron,97.4%-99.1% for zinc.

  9. The Audio Frequency Conductance Study of Some Metal Succinate Salts in Aqueous Medium at Different Temperatures (Part I: Magnesium, Manganese (II, Barium and Copper Succinates

    Directory of Open Access Journals (Sweden)

    Kosrat N. Kaka

    2013-01-01

    Full Text Available The audio electrical conductances of aqueous solutions of magnesium, manganese II, barium, and copper succinates have been measured at various temperatures in the range of 298.15 K to 313.15 K, using an audio frequency conductance bridge. The evaluation of conductance data was carried out by minimisation technique using the theoretical equations of the complete and modified forms of Pitts (P and Fuoss-Hsia (F-H, each a three-parameter equation, association constant (KA, molar conductance (Λm, and distance parameter (a. Quantitative results showed that these salts do not behave as “strong” electrolytes, and that their dissociations are far from complete. The abnormally low conductances of these electrolytes are not due to the presence of electrically neutral molecules but to the ion-pair formation. The Walden product values, as well as the standard thermodynamics functions (ΔH∘, ΔG∘, ΔS∘ for the association reaction at the four temperatures studied, have been evaluated.

  10. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  11. Structural analysis and physico-chemical characterization of mononuclear manganese(II) and polynuclear copper(II) complexes with pyridine-based alcohol

    Science.gov (United States)

    Zienkiewicz-Machnik, Małgorzata; Masternak, Joanna; Kazimierczuk, Katarzyna; Barszcz, Barbara

    2016-12-01

    Two novel manganese(II) and copper(II) complexes, mononuclear [Mn(H2O)2(2-(CH2)2OHpy)2](NO3)2 (1) and polynuclear [Cu(SO4)(2-(CH2)2OHpy)2]n (2), based on 2-(hydroxyethyl)pyridine (2-(CH2)2OHpy) were synthesised and fully characterised using X-ray structure analysis as well as spectroscopic, magnetic and thermal methods. Both central metal ions Mn(1) and Cu(1) are coordinated by two N,O-donor 2-(CH2)2OHpy ligands and possess an almost perfect octahedral geometry (a chromophore of {MN2O4} type). The coordination sphere of Mn(II) is completed by two molecules of water, whereas, in polynuclear complex 2, Cu(II) atoms are linked along the a crystallographic direction by bridging sulfate ligands in a μ2-κ2 binding mode to form chains. The intermolecular interactions in 1 and 2 have been interpreted in view of the 3D Hirshfeld surface analysis and associated 2D fingerprint plots. Furthermore, the complexes have been tested with ABTSrad + assay in order to assess their antioxidant activity. In addition, the IC50 values calculated for 1 and 2 revealed that the complexes show a higher antioxidant activity than corresponding ligand.

  12. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  13. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2 enhances tolerance to cadmium and copper stresses.

    Directory of Open Access Journals (Sweden)

    Yulin Tang

    Full Text Available The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd(2+, Co(2+, Ni(2+, Zn(2+ and Cu(2+ but not hard metal ions (Ca(2+ and Mg(2+ in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu(2+ or Cd(2+ stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd(2+ and copper (Cu(2+ tolerance to plants by helping plants to sequester Cd(2+ or Cu(2+ in the root and reduce the amount of heavy metals transported to the shoots.

  14. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  15. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future.

  16. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D.; Warman, Phil R

    2004-09-01

    Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.

  17. The release of zinc, copper, lead, and cadmium from the mineral tissue of teeth under the influence of soft drinks and sour-tasting food.

    Science.gov (United States)

    Nikolić, Ružica; Kaličanin, Biljana; Krstić, Nenad

    2012-01-01

    This study was carried out with the aim of identifying the effects of consuming sour-tasting food and refreshing drinks on the bone tissue of teeth among teenagers. The cumulative effect of a year-long exposure of teeth to the erosive effects of a model system of acidic media (citric acid, lactic acid, acetic acid, apple vinegar, lemonade, the soft drink Sprite, mineral water) was studied. The effects were registered based on the amount of released biometal ions, of zinc and copper, and toxic lead, during a period of 24 hr at room temperature, using the potentiometric stripping analysis. In the given time span, amounts ranging from 75 to 750 ppm of zinc, from 0.1 to 1.0 ppm of copper, and up to 1.5 ppm of lead were released from the dental matrix, while the release of cadmium was below the level of detection. The changes to the mineral structure of the bone tissue were monitored by the Fourier's transformation infrared spectroscopy and scanning electron microscopy technique. These studies have shown that under the influence of an acidic medium significant erosion to the tooth enamel ensues and that the eroded surfaces had a radius of 1-5 μm.

  18. A test battery approach to the ecotoxicological evaluation of cadmium and copper employing a battery of marine bioassays

    OpenAIRE

    Macken, Ailbhe; Giltrap, Michelle; Ryall, Kim; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2009-01-01

    Heavy metals are ubiquitous contaminants of the marine environment and can accumulate and persist in sediments. The toxicity of metal contaminants in sediments to organisms is dependent on the bioavailability of the metals in both the water and sediment phases and the sensitivity of the organism to the metal exposure. This study investigated the effects of two metal contaminants of concern (CdCl2 and CuCl2) on a battery of marine bioassays employed for sediment assessment. Cadmium, a known...

  19. Partial substitution, with their chelated complexes, of the inorganic zinc, copper and manganese in sow diets reduced the laminitic lesions in the claws and improved the morphometric characteristics of the hoof horn of sows from three Greek herds.

    Science.gov (United States)

    Varagka, Nikoleta; Lisgara, Marina; Skampardonis, Vassilis; Psychas, Vassilis; Leontides, Leonidas

    2016-01-01

    Hoof lesions in sows have been associated with lameness and poor hoof horn quality. The mechanical strength and quality of hoof horn is determined by the density and diameter of horn tubules, which were recently associated with the severity of lesions on the hoof wall of sows. Histologic changes that have previously been described in cases of bovine laminitis, have also been observed in the dermis and epidermis of the sows' claws. Trace elements, particularly zinc, copper and manganese, occupy important roles as enzyme catalysts in the process of keratin synthesis which determines the quality and the integrity of the hoof epidermis. Therefore, the objective of this study was to investigate the effect of diet supplementation with chelated zinc, copper and manganese, partially substituting their inorganic form, on sow claw health and hoof horn quality assessed by macroscopic, histologic and morphometric examination. Clinically, the total claw lesion score was significantly lower in claws of sows which received the "organic" diet compared to those of sows on the "inorganic" diet. Histologically, lamellar hyperplasia was the most frequently recorded change in the epidermis of the sows' claws regardless of the diet's mineral source. The claws of the sows which received the organic diet were more likely to have none or less histologic changes than at least one or more, respectively, compared to those of the sows on the "inorganic" diet. Morphometrically, the density and vertical and horizontal diameters of the horn tubules was significantly higher and smaller, respectively, in the hoof horn of sows which received the "organic" compared to those which received the "inorganic" source diet. Partial substitution of the inorganic zinc, copper and manganese in sows' diet with their chelated complexes, provided a comparative advantage against a conventional, inorganic mineral source diet, at least under the conditions examined in the current study, in terms of macroscopic

  20. 镉对水稻幼苗累积微量元素的影响%Effect of Cadmium on Accumulation of Microelements in Rice Seedlings

    Institute of Scientific and Technical Information of China (English)

    赵巍; 张联合; 郁飞燕; 李巍

    2011-01-01

    采用水培试验,研究了镉对锌、硼、锰、钼、铜和铁元素在水稻幼苗中累积的影响.结果表明,不同浓度镉处理,能不同程度地提高水稻根、叶鞘和叶片中锌、硼含量,降低其中的铜含量;提高水稻叶片中锰和钼含量,降低根中锰和钼含量;提高水稻根中的铁含量,而降低叶鞘和叶片中铁含量.镉对锌、硼、锰、钼、铜和铁元素累积的影响是水稻幼苗缓解镉毒害的一种反应.%The effect of cadmium on the accumulation of zinc, boron, manganese, molybdenum, copper, and iron in rice seedlings was studied by hydroponic experiment. The results showed that cadmium treatment increased the concentration of zinc and boron, but reduced copper concentration in leaves, leaf sheaths and roots of rice seedlings. It also increased the concentration of manganese and molybdenum in leaves, while reduced them in roots of rice seedlings; increased iron concentration in roots, while reduced it in leaves and leaf sheaths. It was proposed that the effect of cadmium on the accumulation of zinc, boron, manganese, molybdenum, copper and iron in rice seedlings be a response to alleviating cadmium toxicity.

  1. Material and detector properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te) crystals grown by the modified floating-zone method

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A., E-mail: hossain@bnl.gov; Gu, G.D.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Roy, U.N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R.B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd{sub 1−x}Mn{sub x}Te crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  2. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Gomez, Susana, E-mail: susana@us.es [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Mateos-Naranjo, Enrique; Andrades-Moreno, Luis [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain)

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l{sup -1} on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg{sup -1}. The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l{sup -1} Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P{sub N}). Reductions in P{sub N} could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  3. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Mendez, J.R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico)], E-mail: rene@ipicyt.edu.mx; Monroy-Zepeda, R.; Leyva-Ramos, E. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Diaz-Flores, P.E. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico); Shirai, K. [Universidad Autonoma Metropolitana, Biotechnology Department, Laboratory of Biopolymers, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico City (Mexico)

    2009-02-15

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10{sup 3} g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb{sup 2+}, Cd{sup 2+}, and Cu{sup 2+}, respectively, and it decreased for Pb{sup 2+} and Cd{sup 2+} in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. Finally, the preliminary desorption experiments of Cd{sup 2+} conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.

  4. Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete lumbricus rubellus

    NARCIS (Netherlands)

    Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.; Hankard, P.K.; Stubberud, H.E.; Kammenga, J.E.

    2003-01-01

    Demographic methods can translate toxicant effects on individuals into consequences for populations. To date few such studies have been conducted with longer-lived invertebrates. This is because full life-cycle experiments are difficult with such species. Here we report the effects of copper and

  5. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  6. Manganese nodules

    Science.gov (United States)

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2016-01-01

    The existence of manganese (Mn) nodules (Figure 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published in the journal Economic Geology (Mero, 1962) and later as a book (Mero, 1965). By the mid-1970s, large consortia had formed to search for and mine Mn nodules that occur between the Clarion and Clipperton fracture zones (CCZ) in the NE Pacific (Figure 2). This is still the area considered of greatest economic potential in the global ocean because of high nickel (Ni), copper (Cu), and Mn contents and the dense distribution of nodules in the area. While the mining of nodules was fully expected to begin in the late 1970s or early 1980s, this never occurred due to a downturn in the price of metals on the global market. Since then, many research cruises have been undertaken to study the CCZ nodules, and now 15 contracts for exploration sites have been given or are pending by the International Seabed Authority (ISA). Many books and science journal articles have been published summarizing the early work (e.g., Baturin, 1988; Halbach et al., 1988), and research has continued to the present day (e.g., ISA, 1999; ISA, 2010). Although the initial attraction for nodules was their high Ni, Cu, and Mn contents, subsequent work has shown that nodules host large quantities of other critical metals needed for high-tech, green-tech, and energy applications (Hein et al., 2013; Hein and Koschinsky, 2014).

  7. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  8. Preconcentration and separation of copper(II), cadmium(II) and chromium(III) in a syringe filled with 3-aminopropyltriethoxysilane supported on silica gel.

    Science.gov (United States)

    Tokman, Nilgun; Akman, Suleyman; Ozcan, Mustafa; Koklu, Unel

    2002-11-01

    In this study, a syringe was filled with silica gel loaded with 3-aminopropyltriethoxysilane, for the separation and preconcentration of copper, cadmium and chromium prior to their determination by graphite furnace atomic absorption spectrometry (GFAAS) in seawater. For this purpose, a syringe was filled with 0.5 g of modified silica gel and the sample solution was drawn into the syringe and ejected back again. The analyte elements were quantitatively retained at pH 5. Then, the elements sorbed by the silica gel were eluted with 2.0 M of HCl and determined by GFAAS. At optimum conditions, the recovery of Cu, Cd and Cr were 96-98%. Detection limits (3delta) were 6.6, 7.5 and 6.0 micro g L(-1) for Cu, Cd and Cr, respectively. The elements could be concentrated by drawing and discharging several portions of sample successively but eluting only once. Cu, Cd and Cr added to a seawater sample were quantitatively recovered (>95%) in the range of the 95% confidence level. The method proposed in this paper was compared with a column technique. Optimum experimental conditions, reproducibility, precision and recoveries of both techniques are the same, but the syringe technique is much faster, easier and more practical than the column technique. It is a portable system and allows one to make the sorption process in the source of sample. In addition, the risk of contamination is less than in the column technique.

  9. Sub-lethal effects of cadmium and copper on RNA/DNA ratio and energy reserves in the green-lipped mussel Perna viridis.

    Science.gov (United States)

    Yeung, Jamius W Y; Zhou, Guang-Jie; Leung, Kenneth M Y

    2016-10-01

    This study aims to test if RNA/DNA ratio and various energy reserve parameters (i.e., glycogen, lipid, protein content and total energy reserves) are sensitive biomarkers for indicating stresses induced by metal contaminants in the green-lipped mussel Perna viridis, a common organism for biomonitoring in Southeast Asia. This study was, therefore, designed to examine the effects of cadmium (Cd) and copper (Cu) on these potential biomarkers in two major energy storage tissues, adductor muscle (AM) and hepatopancreas (HP), of P. viridis after sub-lethal exposure to either metal for 10 days. The results showed that neither Cd nor Cu treatments affected the RNA/DNA ratio, glycogen and protein contents in AM and HP. As the most sensitive biomarker in P. viridis, the total lipid content in both AM and HP was significantly decreased in the treatment of 5μg Cu/L and 0.01-0.1μgCd/L, respectively. However, soft-tissue body burdens of Cu or Cd did not significantly correlate with each of the four biomarkers regardless of the tissue type. In addition, AM generally stored more glycogen than HP, whereas HP stored more lipids than AM. We proposed that multiple biomarkers may be employed as an integrated diagnostic tool for monitoring the health condition of the mussels. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Linking Oxidative Stress and Magnitude of Compensatory Responses with Life-Stage Specific Differences in Sensitivity of White Sturgeon (Acipenser transmontanus) to Copper or Cadmium.

    Science.gov (United States)

    Tang, Song; Doering, Jon A; Sun, Jianxian; Beitel, Shawn C; Shekh, Kamran; Patterson, Sarah; Crawford, Sarah; Giesy, John P; Wiseman, Steve B; Hecker, Markus

    2016-09-06

    Sensitivity of white sturgeon (Acipenser transmontanus) to copper (Cu) or cadmium (Cd) has been shown to significantly differ as a function of life-stage. This study investigated oxidative stress, metal homeostasis, and associated compensatory responses as potential mechanisms of this sensitivity pattern in three early life-stages. Sturgeon were most sensitive to Cu at 15 days post hatch (dph), which was accompanied by a significant increase in lipid peroxidation (LPO). Genes involved with amelioration of oxidative stress were significantly less inducible at this stage than in older, less sensitive fry. At 48 dph, acute lethality of sturgeon exposed to Cd was greatest and body LPO was significantly induced by 3.5-fold at 5 μg Cd/L. Moreover, there was a small but significant increase in antioxidative responses. At 139 dph, sturgeon were most tolerant to Cu and Cd and accumulation of these metals was least. Also, expression of metallothionein (MT) and apoptotic genes were greatest while expression of metal transporters was reduced and concentration of LPO was not different from controls. Our results suggest that life-stage specific sensitivity of white sturgeon to metals is complex, encompassing differences in the ability to mount compensatory responses important for metal homeostasis and combating oxidative stress and concomitant damages.

  11. Determination of Copper, Iron, Cadmium and Lead Contents of the Oils from Sunflower Seeds (Helianthus annus L. Grown Trakya Region, Turkey

    Directory of Open Access Journals (Sweden)

    U. Gecgel

    2009-01-01

    Full Text Available The aim of this study was to determine the copper (Cu, iron (Fe, cadmium (Cd, and lead (Pb contents of the oils from sunflower seeds which were grown in the Trakya region, Turkey. For this reason, the samples of sunflower seed were collected from three different provinces (Tekirdag, Edirne and Kirklareli which are located on the Trakya region. A total of 90 sunflower seed samples from 2007 harvest seasons were collected from these different provinces. The contents of these metals in the crude oils obtained by soxhlet extraction with n-hexane from sunflower seed samples were determined by using Atomic Absorption Spectrophotometer method. Preparing sample stage was made by using microwave analyze system in close container. According to the analysis results, the average amounts in the oil samples from three different provinces (Tekirdag, Edirne and Kirklareli were for Cd 0.11, 0.23 and 0.12 ppm; for Cu 0.12, 0.15 and 0.11 ppm; for Pb 0.23, 0.15 and 0.24 ppm; for Fe 4.83, 4.30 and 4.27 ppm, respectively. According to the analysis of variance, the differences among the provinces were statistically significant (P<0.01 with respect to Cd and Fe contents. The obtained these results were compared between the values reported in literatures. Potential sources of metal contamination of the oils from sunflower seeds were also discussed.

  12. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    Science.gov (United States)

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to

  13. Relative contribution of CTR1 and DMT1 in copper transport by the blood–CSF barrier: Implication in manganese-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang [School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an, Shanxi 710032 (China); Chen, Jingyuan [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an, Shanxi 710032 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-05-01

    The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood–CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular {sup 64}Cu uptake and the up-regulation of both CTR1 and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of {sup 64}Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular {sup 64}Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of {sup 64}Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of {sup 64}Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1. -- Highlights: ► This study compares the relative role of CTR1 and DMT1 in Cu transport by the BCB. ► Two novel tetracycline-inducible CTR1 and DMT1 expression cell lines are created. ► CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB. ► Mn-induced cellular Cu overload is due to its induction of CTR1 rather than DMT1. ► Induction of CTR1 by Mn in the BCB

  14. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.

    Science.gov (United States)

    Wójtowicz, Halina; Bielecki, Marcin; Wojaczyński, Jacek; Olczak, Mariusz; Smalley, John W; Olczak, Teresa

    2013-04-01

    Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires haem from host haemoproteins through a haem transporter HmuR and a haemophore HmuY. The aim of this study was to analyse the binding specificity of HmuY towards non-iron metalloporphyrins which may be employed as antimicrobials to treat periodontitis. HmuY binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX which uses His(134) and His(166) as axial ligands. The metal ions in Ga(iii)PPIX and Zn(ii)PPIX can accept only His(166) as an axial ligand, whereas nickel(ii) and copper(ii) interact exclusively with His(134). Two forms of pentacoordinate manganese(iii) are present in the Mn(iii)PPIX-HmuY complex since the metal accepts either His(134) or His(166) as a single axial ligand. The cobalt ion is hexacoordinate in the Co(iii)PPIX-HmuY complex and binds His(134) and His(166) as axial ligands; however, some differences in their environments exist. Despite different coordination modes of the central metal ion, gallium(iii), zinc(ii), cobalt(iii), and manganese(iii) protoporphyrin IX bound to the HmuY haemophore cannot be displaced by excess haem. All of the metalloporphyrins examined bind to a P. gingivalis wild-type strain with higher ability compared to a mutant strain lacking a functional hmuY gene, thus corroborating binding of non-iron metalloporphyrins to purified HmuY protein. Our results further clarify the basis of metalloporphyrin acquisition by P. gingivalis and add to understanding of the interactions with porphyrin derivatives which exhibit antimicrobial activity against P. gingivalis.

  15. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  16. 大型海藻对重金属镉、铜的富集动力学研究%Kinetic study on the bioconcentration of cadmium and copper by large-sized seaweed Gracilaria lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    王增焕; 林钦; 李刘冬; 王许诺

    2013-01-01

    The large-sized seaweeds are important renewable resources, which can be developed to delicious food and industrial materials. They were used to deal with sewage due to its accumulation of heavy metal. The living seaweeds are sensitive to light and temperature, and its growth was inhibited because of the toxicity of heavy metal. Gracilaria lemaneiformis is large-sized seaweed, which was suit for large-scale cultivation offshore. The uptake and clearance of copper and cadmium by Gracilaria lemaneiformis were investigated using artificial cultivated living Gracilaria lemaneiformis coupled with the low copper and cadmium concentrations in this paper. In order to test the practicability of two-compartment model adapted for accumulation of heavy metal by large-sized seaweeds, the experiment results were analyzed with nonlinear curve fitting. The results showed that the accumulation of heavy metal by Gracilaria lemaneiformis was accordance with two-compartment model, the uptake rate constant (Ku) and clearance rate constant (Kc) were also obtained. The Gracilaria lemaneiformis can accumulate copper and cadmium from waters, the contents of copper and cadmium accumulated in Gracilaria lemaneiformis were increased along with the concentrations of copper and cadmium in waters, and increased with the exposed time. Meanwhile, Gracilaria lemaneiformis can eliminate cadmium and copper strongly, because Gracilaria lemaneiformis accumulate mainly cadmium and copper from water by bio-absorption, which is a two-way process. Gracilaria lemaneiformis can also accumulate cadmium and copper by active transport, and those elements were combined to make into organic metals. The uptake rate constant of copper and cadmium accumulated by Gracilaria lemaneiformis was from 15.4 to 51.1, from 13.9 to 55.7, respectively. The clearance rate constant was from 0.023 to 0.070, from 0.030 to 0.050, respectively. The uptake rate constants decreased with exposure concentrations, while the clearance

  17. Development of high-efficiency solar cells on copper indium selenide single crystals (cadmium sulfide, zinc oxide)

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Lap Sum

    1996-12-31

    Photovoltaic cells with a ZnO/CdS/CuInSe{sub 2} structure were fabricated on bulk CuInSe{sub 2} substrates. Conversion efficiencies of more than or near 10 per cent were obtained on cells with an active area and without the use of antireflection coating. Copper indium selenide single crystals can be used as absorbers in thin film solar cells. In this study, the single crystals were grown by a horizontal Bridgman method. An annealing of the CuInSe{sub 2} substrate before the CdS deposition was found to be essential in obtaining high photovoltaic performance.

  18. Mineral resource of the month: manganese

    Science.gov (United States)

    Corathers, Lisa

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  19. Photocatalytic Activities of Copper Doped Cadmium Sulfide Microspheres Prepared by a Facile Ultrasonic Spray-Pyrolysis Method

    Directory of Open Access Journals (Sweden)

    Jinzhan Su

    2016-06-01

    Full Text Available Ultrasonic spray pyrolysis is a superior method for preparing and synthesizing spherical particles of metal oxide or sulfide semiconductors. Cadmium sulfide (CdS photocatalysts with different sizes and doped-CdS with different dopants and doping levels have been synthesized to study their properties of photocatalytic hydrogen production from water. The CdS photocatalysts were characterized with scanning electron microscopy (SEM, X-ray fluorescence-spectrometry (XRF, UV-Vis absorption spectra and X-ray diffraction (XRD to study their morphological and optical properties. The sizes of the prepared CdS particles were found to be proportional to the concentration of the metal nitrates in the solution. The CdS photocatalyst with smaller size showed a better photocatalytic activity. In addition, Cu doped CdS were also deposited and their photocatalytic activities were also investigated. Decreased bandgaps of CdS synthesized with this method were found and could be due to high density surface defects originated from Cd vacancies. Incorporating the Cu elements increased the bandgap by taking the position of Cd vacancies and reducing the surface defect states. The optimal Cu-doped level was found to be 0.5 mol % toward hydrogen evolution from aqueous media in the presence of sacrificial electron donors (Na2S and Na2SO3 at a pH of 13.2. This study demonstrated that ultrasonic spray pyrolysis is a feasible approach for large-scale photocatalyst synthesis and corresponding doping modification.

  20. Photocatalytic Activities of Copper Doped Cadmium Sulfide Microspheres Prepared by a Facile Ultrasonic Spray-Pyrolysis Method.

    Science.gov (United States)

    Su, Jinzhan; Zhang, Tao; Li, Yufeng; Chen, Yubin; Liu, Maochang

    2016-06-15

    Ultrasonic spray pyrolysis is a superior method for preparing and synthesizing spherical particles of metal oxide or sulfide semiconductors. Cadmium sulfide (CdS) photocatalysts with different sizes and doped-CdS with different dopants and doping levels have been synthesized to study their properties of photocatalytic hydrogen production from water. The CdS photocatalysts were characterized with scanning electron microscopy (SEM), X-ray fluorescence-spectrometry (XRF), UV-Vis absorption spectra and X-ray diffraction (XRD) to study their morphological and optical properties. The sizes of the prepared CdS particles were found to be proportional to the concentration of the metal nitrates in the solution. The CdS photocatalyst with smaller size showed a better photocatalytic activity. In addition, Cu doped CdS were also deposited and their photocatalytic activities were also investigated. Decreased bandgaps of CdS synthesized with this method were found and could be due to high density surface defects originated from Cd vacancies. Incorporating the Cu elements increased the bandgap by taking the position of Cd vacancies and reducing the surface defect states. The optimal Cu-doped level was found to be 0.5 mol % toward hydrogen evolution from aqueous media in the presence of sacrificial electron donors (Na₂S and Na₂SO₃) at a pH of 13.2. This study demonstrated that ultrasonic spray pyrolysis is a feasible approach for large-scale photocatalyst synthesis and corresponding doping modification.

  1. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    Science.gov (United States)

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay.

  2. Preparation of copper-manganese composite oxide catalysts for phenol oxidation by hydrogen peroxide%过氧化氢氧化苯酚铜锰复合氧化物催化剂的制备

    Institute of Scientific and Technical Information of China (English)

    刘长虹; 吴树新

    2011-01-01

    The novel copper-manganese composite oxide catalysts were prepared by the solid reaction method. The catalytic performance of the catalysts was evaluated using phenol oxidation by hydrogen peroxide as the probe reaction, phenol conversion and diphenol yield as the evaluation index, and HPLC chromatography as the analysis method. The results showed that the catalytic properties of the catalyst were enhanced and then reduced with the increase of molar ratio of copper to manganese, calcination temperature,calcination time and grinding time, and influenced by reducing properties of the complexing agent. The optimum condition for the catalyst preparation was that Cu2 (OH)2 CO3, MnCO3 (molar ratio of copper to manganese 1:2) and proper H2C2O4 · 2H20 were put into a mortar and grinded at room temperature for 10 min, and then calcined at 400 ℃ for 2 h. Under the optimum condition, phenol conversion and diphenol yield reached 63.7% and 59.1% ,respectively.%采用固相法制备了新型催化剂铜锰复合氧化物催化剂.利用高效液相色谱法对苯酚过氧化氢氧化反应产物进行分析,以苯酚转化率和苯二酚收率为评价指标,对催化剂进行了评价.结果表明,催化剂性能随铜与锰物质的量比、焙烧温度、焙烧时间和研磨时间等因素的增大呈先升高再降低的趋势,并与络合剂的还原性有关.确定最佳工艺条件为:室温下,按锰与铜物质的量比1:2将Cu(OH)CO、MnCO和适量HCO·2HO混匀,置于研钵匀速研磨10 min,马弗炉400℃焙烧2 h.最佳条件下,苯酚转化率为63.7%,苯二酚收率为59.1%.

  3. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sadtler, Bryce; Habenicht, Carsten [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Freitag, Bert [FEI Company, P.O. Box 80066, KA 5600 Eindhoven (Netherlands); Alivisatos, A. Paul [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Kisielowski, Christian, E-mail: CFKisielowski@lbl.gov [National Center for Electron Microcopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Joint Center for Artificial Photosynthesis, Berkeley, CA 94720 (United States)

    2013-11-15

    The atomic structure and interfaces of CdS/Cu{sub 2}S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu{sub 2}S exhibits a low-chalcocite structure in pristine CdS/Cu{sub 2}S nanorods. Under electron beam irradiation the Cu{sub 2}S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu{sup +}–Cd{sup 2+} cation exchange at the CdS/Cu{sub 2}S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper–cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu{sub 2}S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3–10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu{sub 2}S thin film solar cells with an activation energy of 0.96 eV. - Highlights: • Heterostructured nanorods were investigated at atomic resolution showing that they are free of extended defects. • Beam–sample interactions are controlled by current and voltage variations to provide pristine crystal structures. • Beam-induced migration of heterointerfaces are measured time-resolved and compared with Cu diffusion coefficients. • Beam–sample interaction overwrite possible signal improvements that can be expected by sample cooling.

  4. An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis).

    Science.gov (United States)

    Goswami, Prasun; Hariharan, G; Godhantaraman, Nallamuthu; Munuswamy, Natesan

    2014-01-01

    The present study documents individual and combined sub-lethal effect of one redox active (copper) and one non-redox active (cadmium) metal on green mussel (Perna viridis). The mussels were exposed to 60 μg L(-1) of Cu and 150 μg L(-1) of Cd (individually and in combination) for 21 days. Histopathological and ultrastructural studies revealed significant metal induced alterations such as vacuolization, fusion of gill lamellae, enhance mucous deposition, hyperplasia and necrosis in gills. Antioxidant enzyme assays revealed significant increase in superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione peroxidase (GPx) activity. Similarly, single exposure to Cd and Cu caused significant induction in Malate dehydrogenase (MDH) activity. However, combined Cu+Cd exposure modulated suppression in MDH activity. Unlike MDH, Cu and Cd individual exposure resulted in a decrease in esterase (EST) activity, but their combined exposure caused an induction. Non-enzymatic biomarkers such as lipid peroxidation (LPO) and metallothionein (MT) levels showed no significant change in response to Cu exposure, whereas, individual Cd exposure or Cd exposure in combination with Cu caused significant changes in their levels. Comet assay revealed a significant increase in DNA damage upon metal exposure. These results indicate that Cu (redox active) and Cd (non-redox active) can induce measurable physiological, biochemical as well as genotoxic perturbations in mussels even at sub-lethal concentrations. A monitoring programme based on the biomarkers discussed here would be useful to study the effect of metal pollutants reaching the coastal waters.

  5. Biochemical Responses of Juvenile European Sturgeon, (Huso Huso to A Sub-Lethal Level of Copper and Cadmium in Freshwater and Brackish Water Environments

    Directory of Open Access Journals (Sweden)

    Saeed Zahedi

    2013-08-01

    Full Text Available In Caspian Sea basin, sturgeons spend the larval and juvenile stages in freshwaters of rivers and then, they migrate to brackish waters of the sea where they grow and mature. With regard to the elevation of the metal concentrations in coastal waters and sediments of the Caspian Sea and its adjacent rivers, it is likely that juvenile sturgeon are exposed to sub-lethal levels of metals during seawater entry process. We compared the biochemical responses of juvenile European sturgeon, (Beluga, Huso huso exposed to a sub-lethal level of copper (Cu, 20 μg/L and cadmium (Cd, 300 μg/L in freshwater (FW, 0 ppt and brackish water (BW, 11 ppt for seven days. The results showed that the levels of plasma glucose increased significantly in BW and in all metal exposed groups. Also, plasma cortisol concentrations showed significant increases when juveniles were exposed to BW, Cu(FW/BW and Cd(BW. The activity of liver superoxide dismutase (SOD decreased significantly in BW compared with FW. Moreover, Cu and Cd exposure enhanced the activity of SOD in BW, while SOD did not show any changes in FW. The levels of tissue and plasma proteins as well as plasma triiodothyronine (T3, thyroxine (T4 and liver Catalase (CAT activity remained constant when animals were exposed to Cu/Cd in both FW and BW environments. Our data indicate that exposure of juvenile beluga to BW stimulated the general biochemical responses of stress such as cortisol and glucose, while sub-lethal exposure to Cu and Cd caused oxidative stress in BW environment but not in FW

  6. Effects of salinity on metal uptake and metallothionein mRNA levels in the organs of tilapia exposed to cadmium, copper, and zinc ions.

    Science.gov (United States)

    Shek, Alex C S; Chan, King Ming

    2015-05-01

    This study aimed to determine the effects of salinity on metal uptake and metallothionein (MT) mRNA levels in tilapia exposed to three metal ions. Male Oreochromis niloticus × O. aureus juveniles (hereafter, "tilapia") were exposed to various concentrations (100, 500, and 1 ppm) of metal ions (Cd(2+), Cu(2+) and Zn(2+)) in freshwater and water with two levels of salinity (10 and 20 ppt) for 7 days. Tests were then performed to investigate the effects of salinity on metal concentrations and MT mRNA induction in the test subjects' organs. Saline decreased cadmium (Cd) uptake and MT mRNA fold induction in various internal organs, but it did not enhance MT mRNA induction in the gills. Exposure to Cu(2+) caused greater copper (Cu) levels in the brains, intestines and livers, but Cu uptake in the intestines and kidneys occurred only at 10 ppm. MT mRNA induction caused by Cu(2+) was observed in various internal organs, but it occurred in the gills only at greater levels of salinity. Exposure at greater salinities also decreased zinc (Zn) uptake and MT mRNA induction in all organs except the gills. Although greater salinity decreased Cd and Zn uptake, the metal content in the water correlated with the MT mRNA levels in most of the organs, except for the intestines. In conclusion, metal accumulations in the livers and kidneys of tilapia correlated with MT mRNA levels. The levels of MT mRNA in the livers and kidneys of tilapia might therefore be used as biomarkers of exposure to Cd(2+), Cu(2+) and Zn(2+) in water of various salinities.

  7. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  8. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  9. Cadmium Alternatives

    Science.gov (United States)

    2012-08-01

    accessories) and be non- reflective Cadmium Replacements – Zinc Nickel Passivated Zinc Nickel Non-hex chrome passivate of high interest, but...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic , and is classified as a priority...including cadmium! Cadmium Replacements (With MIL-DTL-38999 Designations) Zn/Ni (Class Z) Per ASTM B 841, type D (black) Electroless Nickel plus

  10. Zinc, cadmium, and copper mobility and accumulation in reeds (Phragmites australis) in urban sediments from two stormwater infiltration basins

    Science.gov (United States)

    Bedell, J.-P.; Saulais, S.; Delolme, C.

    2012-04-01

    organic matter and metals than "Minerve". For example, Zn contents are equal to 400 mg/kgDW in "Grézieu" whereas it is equal to 80 mg/kgDW in "Minerve". In the most contaminated basin "Grézieu", metals mobility is mainly controlled by their association with carbonates and organic matter. Thus, copper associated with organic matter may represent almost 70% of the total copper content. In the "Minerve" sediment, the metals are distributed on the different sediment components, with very stable associations on the different mineral phases. The reed accumulates more metal in the context of the most contaminated basin (Grézieu), but without any differences in bioconcentration factors. The high metal contents in "Grézieu" sediments limited also the growth of reed. Moreover, for "Grézieu" sediment, characteristics evolve with the seasons. Thus, texture decreases from June to December in parallel with an increase in organic matter and metals in the sediment deposit.

  11. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.

    Science.gov (United States)

    Fu, Xing-Zheng; Tong, Ya-Hua; Zhou, Xue; Ling, Li-Li; Chun, Chang-Pin; Cao, Li; Zeng, Ming; Peng, Liang-Zhi

    2017-09-20

    Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs. The CitMTPs were predicted to encode proteins of 864 to 2556 amino acids in length that included 4 to 6 putative transmembrane domains (TMDs). Furthermore, all the CitMTPs contained a highly conserved signature sequence encompassing the TMD-II and the start of the TMD-III. Phylogenetic analysis further classified the CitMTPs into Fe/Zn-MTP, Mn-MTP, and Zn-MTP subgroups, which coincided with the MTPs of A. thaliana and rice. The closely clustered CitMTPs shared a similar gene structure. Expression analysis indicated that most CitMTP transcripts were upregulated to various extents under heavy metal stress. Among these, CitMTP5 in the roots and CitMTP11 in the leaves during Zn stress, CitMTP8 in the roots and CitMTP8.1 in the leaves during Mn stress, CitMTP12 in the roots and CitMTP1 in the leaves during Cu stress, and CitMTP11 in the roots and CitMTP1 in the leaves during Cd stress showed the highest extent of upregulation. These findings are suggestive of their individual roles in heavy metal detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Levels of arsenic, mercury, cadmium, copper, lead, zinc and manganese in serum and whole blood of resident adults from mining and non-mining communities in Ghana.

    Science.gov (United States)

    Obiri, Samuel; Yeboah, Philip O; Osae, Shiloh; Adu-Kumi, Sam

    2016-08-01

    Human beings working or living near an industrial site where toxic chemicals such as As, Hg, Cd, Cu, Mn, Pb, Zn and or their compounds are used or indiscriminately discharged into the environment, are constantly exposed to such chemicals via ingestion (drinking or eating), dermal contact or inhalation (breathing). However, in developing countries such as Ghana, limited data on levels of the aforementioned chemicals in whole blood and serum of human beings as a result of exposure to the aforementioned chemicals from mining communities and non-mining communities is preventing effective policy formulation to protect human health. Hence, this study was undertaken to measure the levels of the aforementioned toxic chemicals in whole blood and serum of 300 resident adults from mining (Tarkwa Nsuaem Municipality Assembly (TNMA) and Prestea Huni Valley District (PHVD)) and non-mining (Cape Coast Metropolis) communities in Ghana, using neutron activation analysis (NAA). Blood samples were taken from 200 resident adults (105 males and 95 females) from mining and 100 resident adults (60 males and 40 males) from non-mining communities in the study area following the completion of an informed consent and the issuance of ethical clearance by the Ghana Health Service Ethical Committee. The mean concentrations for As, Hg, Cd, Cu, Mn, Pb and Zn in whole blood of residents from mining communities were as follows: 38 ± 320 μg/L, 63 ± 0.23 μg/L, 303 ± 117 μg/L, 3300 ± 953, 195 ± 90 μg/L, 28 ± 14 μg/L and 1405 ± 458 μg/L, respectively; while the levels of measured toxic chemicals in the serum of resident adults from mining communities were as follows: 65 ± 14 μg/L, 358 ± 22 μg/l, 134 ± 12 μg/L, 3590 ± 254 μg/L, 401 ± 113 μg/L, 58 ± 5.8 μg/L and 49 ± 31 μg/L, respectively, for As, Hg, Cd, Cu, Mn, Pb and Zn and were found to have exceeded the permissible WHO guideline values.

  13. Application of Zeeman graphite furnace atomic absorption spectrometry with high-frequency modulation polarization for the direct determination of aluminum, beryllium, cadmium, chromium, mercury, manganese, nickel, lead, and thallium in human blood.

    Science.gov (United States)

    Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A

    2012-10-01

    Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

  14. 宁夏回族自治区食品中铅、镉、汞、铜、铝污染状况分析%Analysis of food contamination by lead, cadmium, mercury, copper and aluminum in Ningxia

    Institute of Scientific and Technical Information of China (English)

    魏秋宁; 晋博烜; 丁亚磊; 陈涛

    2015-01-01

    Objective To investigate the situation of food contamination by lead,cadmium,mercury,copper and aluminum in Ningxia Region.Methods Ten categories of food samples up to 712 copies including dairy,edible mushrooms,eggs,preserved egg,meat,organs,aquatic products,vegetables,grains and pasta from supermarkets of five administrative cities of Ningxia Autonomous Region were selected in 2010.The contents of lead,cadmium and mercury in food were detected in 646 samples of 9 categories of food,and copper content of the 30 meat samples were detected.Aluminum content in 66 samples of flour food was tested.According to the methods of national food safety standards (GB 5009.12-2010) and national food hygiene standards (GB/T 5009.13-2003,GB/ T 5009.15-2003 and GB/T 5009.17-2003),lead,copper,cadmium and mercury in various foods were tested.Aluminum was determined using the method for determination of spectrophotometry.Results The detection rates of lead,cadmium,mercury in the nine categories of food were 52.8% (341/646),62.1% (401/646),51.7% (334/646);the detection rates of copper in the meat was 90.0% (27/30);the aluminum in flour food was 84.8% (56/66),respectively.Compared with the national standards,the eligible rates of lead,cadmium,mercury,copper and aluminum were 97.1% (627/646),98.2% (539/549),100.0% (646/646),100.0% (30/30) and 75.8% (50/66),respectively.Food contaminated by lead and cadmium were mainly distributed in preserved egg [lead detection rate 9.5% (2/21)],organs [lead detection rate 6.7% (2/30),cadmium detection rate 30.0% (9/30)],vegetables [lead detection rate 9.9% (8/90)] and a small amount of food products [lead detection rate 4.7% (7/150)].The levels of lead in fried flour food and fine dried noodles were higher [40.9% (9/22),36.4% (4/11)].Conclusions Food contamination by lead,cadmium,mercury and copper is not serious in Ningxia.The monitoring results of lead,cadmium,mercury and copper in food are satisfying in Ningxia

  15. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz, E-mail: edsonqmc@hotmail.com [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil); Santos Roldan, Paulo dos [Universidade Federal de Alagoas, Campus A.C. Simoes, Av. Lourival Melo Mota, Tabuleiro do Martins, CEP: 57072-970 AL (Brazil); Gine, Maria Fernanda [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L{sup -1}, 0.3 mL, 0.15% (w/v), 50 deg. C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 {mu}g L{sup -1}, respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  16. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry.

    Science.gov (United States)

    Silva, Edson Luiz; Roldan, Paulo dos Santos; Giné, Maria Fernanda

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1), 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n=9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 microg L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  17. Cloud point extraction of copper, lead, cadmium, and iron using 2,6-diamino-4-phenyl-1,3,5-triazine and nonionic surfactant, and their flame atomic absorption spectrometric determination in water and canned food samples.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2012-01-01

    A cloud point extraction procedure was optimized for the separation and preconcentration of lead(II), cadmium(II), copper(II), and iron(III) ions in various water and canned food samples. The metal ions formed complexes with 2,6-diamino-4-phenyl-1,3,5-triazine that were extracted by surfactant-rich phases in the nonionic surfactant Triton X-114. The surfactant-rich phase was diluted with 1 M HNO3 in methanol prior to its analysis by flame atomic absorption spectrometry. The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, surfactant concentration, temperature, and incubation time, were optimized. LOD values based on three times the SD of the blank (3Sb) were 0.38, 0.48, 1.33, and 1.85 microg/L for cadmium(II), copper(II), lead(II), and iron(III) ions, respectively. The precision (RSD) of the method was in the 1.86-3.06% range (n=7). Validation of the procedure was carried out by analysis of National Institute of Standards and Technology Standard Reference Material (NIST-SRM) 1568a Rice Flour and GBW 07605 Tea. The method was applied to water and canned food samples for determination of metal ions.

  18. 血铅、镉、钙、锌及铜水平与孕妇稽留流产的相关性分析%Correlation of blood lead, cadmium, calcium, zinc and copper levels with missed abortion

    Institute of Scientific and Technical Information of China (English)

    朱军; 梅茹; 姚超

    2015-01-01

    目的:探讨血铅、镉、钙、锌及铜水平与孕妇稽留流产的相关性。方法:选取2012年6月至2014年12月我院收治的稽留流产孕妇172例为研究对象(研究组),同期随机选取200例正常孕妇为对照(对照组),检测两组患者血铅、镉、钙、锌及铜水平。结果:与对照组比较,研究组孕妇血铅、镉水平较高(P<0.05),而钙、锌水平较低(P<0.05),多元回归分析显示:孕妇血铅、镉、钙、锌及铜水平与多种因素相关(职业性铅暴露、镉暴露、被动吸烟、生活饮食习惯、孕期保健等因素)(P<0.05);多因素Logistic回归分析显示:高血铅、镉、孕妇职业铅暴露、孕妇吸烟、孕期生殖系统感染、近期家庭装潢为孕妇稽留流产危险因素(P<0.05);而血锌、血钙、补锌、孕期补充维生素为孕妇稽留流产保护性因素(P<0.05)。结论:血铅、镉、钙、锌与孕妇出现稽留流产可能存在一定相关性,值得临床关注。%Objective:To investigate the correlation between blood lead, cadmium, calcium, zinc and copper levels in pregnant women with missed abortion.Methods: A total of 172 cases of pregnant women with missed abortion admitted into our hospital from June 2012 to December 2014 were selected as subjects (research group), meanwhile 200 cases of normal pregnant women were randomly selected as controls (control group); blood lead, cadmium, calcium, zinc and copper were detected in both groups of patients.Results:Compared with the normal group, blood lead and cadmium levels in research group were higher (P<0.05), while the calcium and zinc levels were lower (P<0.05), multiple regression analysis showed that blood lead, cadmium, calcium, zinc and copper levels were related to a variety of factors (occupational exposure to lead, cadmium exposure, passive smoking, diet habits, prenatal care) (P<0.05); Logistic regression analysis showed that high blood lead, cadmium, maternal

  19. Experimental Study on Emergency Treatment of Source Water after Copper+Cadmium +Thallium Compound Pollution Accident%饮用水源突发性铜+镉+铊复合型污染应急处理试验研究

    Institute of Scientific and Technical Information of China (English)

    吴仲斯; 靳小虎; 周勤; 蔡展航

    2014-01-01

    为应对可能出现的突发性铜+镉+铊复合型污染事件,模拟自来水厂常规工艺以及强化工艺对含有铜(Cu)、镉(Cd)和铊(Tl)的原水进行处理。结果表明,常规工艺对含Cu、Cd和Tl复合污染的原水去除效果有限;Cu的去除较Cd和Tl容易;投加高铁酸钾预处理对Cd和Tl有明显去除效果;Cu、Cd和Tl的去除率随pH的升高而提高。单因素实验和正交试验确定最佳去除方案为高铁酸钾投加1.25mg/L,pH为9.50,PAFC投加2.0mg/L,粉末活性炭投加20mg/L,在此条件下处理含铜4.84mg/L、镉14.10ug/L、铊0.325ug/L的原水,出水剩余铜、镉、铊的浓度分别低于1mg/L、0.005mg/L、0.1ug/L,都达到国家饮用水标准。%To respond to accidental copper+cadmium+thallium compound pollution incidents,Simulated conventional water treatment processes and enhanced coagulation process were used to study the removal effect of copper+cadmium+thalium compound polution raw water.The results showed that the removal efficiency of copper/cadmium and thalium by conventional coagulation-sedimentation was poor;copper is easier to be removed than cadmium and thalium;The removal rates of copper/cadmium and thalium increase with pH value rising.Single factor analysis and orthogonal test determine the optimal dosage of K2FeO4,power activated carbon and poly aluminum ferric chloride(PAFC)were 1.25 mg/L,20.0mg/L and 1.50mg/L,the optimal pH was adjusted to 9.50.Under these conditions,the raw water with4.84 mg/L Cu,14.10ug/L Cd and 0.325μg/L Tl could be treated up to the national drinking water standards, with the residual concentration of Cu,Cd and Tl were lower than 1 mg/L,0.005 mg/L and 0.1ug/L.

  20. Bio-accumulation of copper, zinc, iron and manganese in oyster Saccostrea cucullata, Snail Cerithium rubus and Clam Tellina angulata from the Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R.; Moraes, C.

    Metal content was determined in three groups of molluscs - an oyster Saccostrea cucullata, snail Cerithium rubus and clam Tellina angulata from three sites along the Bombay Coast. Seasonal difference in copper content was significant in S. cucullata...

  1. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dust – concentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  2. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  3. Effect of Precipitation Method and Ce Doping on the Catalytic Activity of Copper Manganese Oxide Catalysts for CO Oxidation%沉淀方法及铈掺杂对铜锰氧化物催化剂催化氧化CO性能的影响

    Institute of Scientific and Technical Information of China (English)

    张学彬; 马扩颜; 张灵辉; 雍国平; 戴亚; 刘少民

    2011-01-01

    The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra,and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.

  4. Iron, copper, zinc and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    Directory of Open Access Journals (Sweden)

    Gaëlle ePorcheron

    2013-12-01

    Full Text Available For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.

  5. Effect of Atomic Absorption Spectrometry in Measuring the Contents of Lead, Cadmium and Copper in Honeysuckle%原子吸收光谱法测定金银花中铅、镉、铜的含量

    Institute of Scientific and Technical Information of China (English)

    邢凤晶; 郭琳; 常乐; 刘影

    2016-01-01

    Objective To adopt the atomic absorption spectrometry to measure the contents of lead, cadmium and copper in honeysuckle and provide data support for the objective evaluation of retail medicinal material quality in the present market. Methods After the microwave resolution of samples with concentrated nitric acid, the lead and cadmium were measured by the graphite stove method (GF-AAS), and the copper was measured by the flame method (F-AAS). Results The recovery rates of methods were respectively 104.2%, 105.4% and 114.5% and RSD were respectively 1.8%, 1.6% and 1.8%(n=6). Conclusion The measurement shows that the contents of lead, cadmium and copper in samples are lower than the limits in the current Chinese pharmacopoeia, and the method is simple and accurate with strong practicability, which can be used for the evaluation examination of medicinal materials and cut crude drugs.%目的:采用原子吸收光谱法((Atomic Absorption Spectroscopy)测定市售金银花饮片中铅、镉、铜的含量,为客观评价当前市面上零售的药材质量提供数据支持。方法样品加浓硝酸经微波消解后,用石墨炉法( GF-AAS)测定铅和镉,用火焰法( F-AAS)测定铜。结果方法的回收率分别为104.2%、105.4%、114.5%,RSD分别为1.8%、1.6%、1.8%(n=6)。结论测定样品中铅、镉、铜含量低于现行《中国药典》中的限度;该文方法简便、准确、实用性强,可用于该药材及饮片的评价性检查。

  6. Arsenic-cadmium interaction in rats.

    Science.gov (United States)

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone.

  7. Formation mechanism of manganese compounds in acidic electrolytes of copper; Mecanismo de la formacion de compuestos de manganeso en electrolitos acidos

    Energy Technology Data Exchange (ETDEWEB)

    Ipinza, J.; Ibanez, J. P.; Pagliero, A.; Vergara, F.

    2007-07-01

    The formation mechanism of manganese compounds in acidic electrolytes (180 g/l of H{sub 2}SO{sub 4}) was studied by potentiostatic experiments at 50 degree centigree. In the oxide layer on a PbCaSn anode, amorphous MnOOH was formed XRD showed that anodic slimes collected from the cell bottom after 3 h was made up of: {gamma}-MnO{sub 2} and {epsilon}-MnO{sub 2}. It was proved that the {epsilon} type oxide was formed by an electrochemical process and the {gamma} type oxide was formed by a pure chemical precipitation, the last one depends on the MnO{sub 4} concentration in the electrolyte. The electrochemical formation of MnOOH only depends on the concentrations of Mn''3+ in the electrolyte, and this amorphous compounds in the intermediate specie for generating {epsilon}-MnO{sub 2}. Fe''2+, in the presence of Mn''2+. inhibited the formation of both MnO{sub 2} oxides, and in the anode interface reduces PbO{sub 2} to PbSO{sub 4}, that reports in the anodic slime. furthermore, the presence of ferrous ion resulted in a better distribution of the manganese compounds and originates PbSO{sub 4} precipitates, which report on the slime. (Author) 25 refs.

  8. The Effect of Cadmium on Physiological Indices, Growth Parameters and Nutrient Concentration in Tomato in Soilless Culture

    Directory of Open Access Journals (Sweden)

    Z. Ghasemi

    2010-08-01

    Full Text Available In order to determine the effects of cadmium on growth, physiological parameters, and nutritional elements’ concentration in tomato organs in a soilless system, an experiment was conducted in greenhouse of Isfahan Agricultural and Natural Resources Research Center in 2008 with a complete randomized block design with two treatments and 6 replications. The treatments were nutritional solutions of Hoagland with and without cadmium (20 µM. The measured indices included: RGR, NAR, RLGR, LAR, SLA, LWR, LWCA, length of the stem, fresh and dry weight of root and shoot, amount of sugar, photosynthetic pigments, and concentration of nitrogen, potassium, phosphorous, calcium, magnesium, iron, zinc, copper, manganese, and cadmium in root, stem, leaves and fruit. The results showed that cadmium (20 µM had significant effects on some measured growth indices. Growth parameters such as RGR, NAR, RLGR, Ls, RDW, RFW, SFW and SDW decreased 13.3, 19.1, 13.3, 18.8, 59.5, 58.7, 53.9 and 65.3%, respectively, and SLA increased 12.2%. But physiological parameters were not significantly affected by cadmium. The Cd concentration in all organs increased except fruit, compared with control which was Cd free. High cadmium concentration had significant effects on concentration of Mn and Cu in the root, Mn and P in the stem and Mn in the leaves. Concentration of Mn increased 5.3 and 87.6% in the leaves and stem, respectively, while it decreased 58.4% in the root. Concentration of P increased 33.3% and Cu increased 2times more in the stem. However, Ca concentration decreased 76.7% in the fruit, compared with the control. In conclusion, it is not recommended to grow tomato in the soils with high Cd concentration (polluted soil because of its negative effects on tomato growth.

  9. Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water.

    Science.gov (United States)

    Vardy, David W; Santore, Robert; Ryan, Adam; Giesy, John P; Hecker, Markus

    2014-01-01

    Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9-25 μg Cu/L and 177-1,556 μg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 μg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 μg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed

  10. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent.

    Science.gov (United States)

    Yang, Guangyu; Fen, Weibo; Lei, Chun; Xiao, Weilie; Sun, Handong

    2009-02-15

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0molL(-1) HNO(3) was used as eluent. The metal ions in 300mL solution can be concentrated to 1.0mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4ngL(-1) for Cr(III), 1.0ngL(-1) for Ni(II), 0.85ngL(-1) for Ag(I), 1.2ngL(-1) for Co(II), 1.0ngL(-1) for Cu(II), 1.2ngL(-1) for Cd(II) and 1.3ngL(-1) for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method).

  11. Effects of methionine chelate- or yeast proteinate-based supplement of copper, iron, manganese and zinc on broiler growth performance, their distribution in the tibia and excretion into the environment.

    Science.gov (United States)

    Singh, Abhay Kumar; Ghosh, Tapan Kumar; Haldar, Sudipto

    2015-04-01

    A straight-run flock of 1-day-old Cobb 400 chicks (n = 432) was distributed into four treatment groups (9 replicate pens in each group, 12 birds in a pen) for a 38-day feeding trial evaluating the effects of a methionine chelate (Met-TM)- or a yeast proteinate (Yeast-TM)-based supplement of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on growth performance, bone criteria and some metabolic indices in commercial broiler chickens. The diets were either not supplemented with any trace elements at all (negative control, NC) or supplemented with an inorganic (sulphate) trace element premix (inorganic TM (ITM), 1 g/kg feed), the Met-TM (1 g/kg feed) and the Yeast-TM (0.5 g/kg feed). Body weight, feed conversion ratio and dressed meat yield at 38 days were better in the Yeast-TM-supplemented group as compared with the NC, ITM and Met-TM groups (p chelates or yeast proteinate forms of Cu, Fe, Mn and Zn improved body weight and feed conversion ratio (FCR) and markedly reduced excretion of the said trace elements. The study revealed that it may be possible to improve broiler performance and reduce excretion of critical trace elements into the environment by complete replacement of inorganic trace minerals from their dietary regime and replacing the same with methionine chelate or yeast proteinate forms.

  12. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens.

    Science.gov (United States)

    Sirri, F; Maiorano, G; Tavaniello, S; Chen, J; Petracci, M; Meluzzi, A

    2016-08-01

    The aim of the experiment was to assess the effects of 2 dietary levels of trace minerals (TM) zinc, manganese, and copper either from organic (OTM) or inorganic (ITM) sources on broiler performance, carcass traits, intramuscular collagen (IMC) properties, occurrence of hock burns (HB), foot pad dermatitis (FPD), femoral and tibia head necrosis, and breast muscle abnormalities (white striping, WS; wooden breast, WB; poor cohesion, PC). A total of 3,600 one-day-old male chicks were randomly assigned to one of 4 dietary treatments in a 2 × 2 factorial arrangement (9 replicates of 100 birds/dietary treatment). Birds were slaughtered at 31 (thinning) and 51 d of age. Body weight, daily weight gain (DWG), feed intake, feed conversion rate (FCR), and mortality were determined. A significant effect of the source of TM supplementation was found only in 51-day-old chickens. Birds of the OTM groups were heavier (P 0.05) by the different sources and doses of TM administrated. © 2016 Poultry Science Association Inc.

  13. Manganese nodules

    Science.gov (United States)

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2016-01-01

    The existence of manganese (Mn) nodules (Fig. 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published...

  14. 水环境中共存重金属对不同固相物质吸附镉和铜的影响%Influence of Co-existing Heavy Metals on the Adsorption of Cadmium and Copper onto Different Types of Solid Materials in Aquatic System

    Institute of Scientific and Technical Information of China (English)

    董会军; 花修艺; 贺丽; 董德明; 徐志璐; 梁大鹏; 郭志勇

    2012-01-01

    利用采集的固相物质(生物膜、悬浮颗粒物和沉积物)模拟水环境中多种固相物质共存吸附体系,研究共存金属对固相物质吸附镉和铜的影响.结果表明,各固相物质对镉的吸附均受共存金属(铜和铅)的抑制作用.当悬浮颗粒物吸附镉时,铜和铅的浓度增大,对镉吸附的抑制程度增强;当生物膜和沉积物吸附镉时,铅浓度的增加使得铅抑制镉的吸附作用增强,不同浓度的铜对镉吸附作用的抑制程度差别较小.共存铅对铜吸附有抑制作用,当铅浓度增加时,3种固相物质吸附铜所受的抑制作用均增强,而共存镉对铜的吸附影响较小.即在重金属总浓度较低时,重金属间的相互影响较小;随着重金属总浓度的增加,重金属间的相互影响增强.共存金属浓度变化对悬浮颗粒物吸附铜和镉受到的抑制程度影响较大,共存金属浓度越大,共存金属对悬浮颗粒物吸附镉和铜的抑制作用越强.%The influence of co-existing heavy metals on the adsorption of cadmium and copper onto solid phases was investigated by simulating aquatic multi-phase system comprising three types of solid phases, including biofilms, suspended paniculate materials and sediments, in the absence and presence of co-existing heavy metals. The results indicate that co-existing metals ( copper and lead) reduced the adsorption of cadmium to all solid phases remarkably. Under the conditions of the adsorption of cadmium onto suspended particulate materials, the reduction effects increased as the initial concentration of copper and lead increased. Under the conditions of the adsorption of cadmium to hiofilm and sediments, increasing lead initial concentra- tion enhanced the reduction effects on cadmium adsorption, but increasing copper initial concentration had little influence on the reduction effects. The co-existing lead reduced the adsorption of copper to solid materials and these reduction effects increased with

  15. 胶体钯在原子吸收光谱法测定全血中铅、镉、锰应用研究%Study on the application of colloidal palladium in the determination of lead, cadmium and manganese in blood by atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    董明; 张爱华; 孙毅; 杨展鸿; 潘巧裕; 罗晓婷

    2016-01-01

    目的:研究以胶体钯作为基体改进剂在石墨炉原子吸收光谱法测定全血中铅、镉、锰的应用效果。方法用血样稀释剂将全血样品稀释10倍后,以胶体钯为基体改进剂,优化待测元素的灰化和原子化温度后,以石墨炉原子吸收光谱仪检测全血中铅、镉、锰水平,并与普通钯盐作为基体改进剂的应用效果进行比较。结果胶体钯作为基体改进剂的最佳用量为5.00μL;其可将全血中铅、镉、锰的灰化温度分别提高至900、800和1400℃,将原子化温度分别提高至1900、1800和2000℃;与普通钯盐比较,胶体钯使3种待测元素有更宽的灰化和原子化温度范围。本方法全血中铅、镉、锰分别在质量浓度0.12~100.00、0.05~4.00和0.02~10.00μg/L呈良好线性关系,相关系数均大于0.999;最低检出浓度分别为1.20、0.50和0.20μg/L(以样品稀释10倍计);平均加标回收率分别为99.2%~104.0%、102.8%~105.5%和98.3%~103.2%;批内相对标准偏差( RSD)分别为1.2%~2.6%、2.7%~5.3%和2.3%~2.8%,批间RSD分别为1.6%~3.9%、4.0%~6.1%和3.2%~4.4%。结论胶体钯用于测定全血中的铅、镉、锰,背景干扰小,有利于改善检测的精密度和灵敏度,是一种优良的基体改进剂。%Objective To study the application of colloidal palladium as a matrix modifier in the determination of lead , cadmium and manganese in whole blood by graphite furnace atomic absorption spectrometry (GFAAS).Methods The whole blood samples were diluted 10 times by blood diluents , and then the colloidal palladium was applied as a chemical modifier to improve the ashing and atomizing temperature .The levels of lead , cadmium and manganese in whole blood were determined by GFAAS .The effects of palladium chloride as a conventional matrix modifier were compared

  16. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.

    Science.gov (United States)

    Suhre, Michael H; Hess, Simone; Golser, Adrian V; Scheibel, Thomas

    2009-12-01

    There is a large body of evidence that divalent metal ions, particularly copper, might play a role in several protein folding pathologies like Alzheimer's disease, Parkinson's disease or the prion diseases. However, contribution of metal ions on pathogenesis and their molecular influence on the formation of amyloid structures is not clear. Therefore, the general influence of metals on the formation of amyloids is still controversially discussed. We have utilized the well established system of yeast Sup35p-NM to investigate the role of three different metal ions, Cu(2+), Mn(2+) and Zn(2+), on amyloidogenesis. Recently, it has been shown that the prion determining region NM of the Saccharomyces cerevisiae prion protein Sup35p, which is responsible for the yeast prion phenotype [PSI(+)], specifically binds Cu(2+) ions. We further characterized the affinity of NM for Cu(2+), which were found to be comparable to that of other amyloidogenic proteins like the mammalian prion protein PrP. The specific binding sites could be located in the aminoterminal N-region which is known to initiate formation of amyloidogenic nuclei. In the presence of Cu(2+), fibril nucleation was significantly delayed, probably due to influences of copper on the oligomeric ensemble of soluble Sup35p-NM, since Cu(2+) altered the tertiary structure of soluble Sup35p-NM, while no influences on fibril elongation could be detected. The secondary structure of soluble or fibrous protein and the morphology of the fibrils were apparently not altered when assembled in presence of Cu(2+). In contrast, Mn(2+) and Zn(2+) did not bind to Sup35p-NM and did not exhibit significant effects on the formation of NM amyloid fibrils.

  17. Manganese Countries

    Directory of Open Access Journals (Sweden)

    Maria Sousa Galito

    2014-05-01

    Full Text Available Cheickna Bounajim Cissé wrote an article in Mars 2013 in the Journal Les Afriques N. º 237, suggesting a new acronym, MANGANESE, for the nine African countries: Morocco, Angola, Namibia, Ghana, Algeria, Nigeria, Egypt, South Africa and Ethiopia. According to Cissé, this group of African nations will be the fastest growing states in the region over the next few years. The purpose of this article is to test the pertinence of the acronym, discuss the credibility and reliability of the future prospects of these countries by comparing selected socioeconomic and sociopolitical indicators based on the latest global rankings and trends. Likewise, the potential of Cissé's claim will be assessed, especially in relationship to drug trafficking and terrorism that may put their recent sustainability in danger now and in the future.

  18. Contents of Iron, Zinc, Copper and Manganese in the Leaves of 10 Evergreen Tree Species%10个常绿树种叶片中铁锌铜锰的含量特征

    Institute of Scientific and Technical Information of China (English)

    毕波; 刘云彩; 陈强; 周筑; 张学星; 孙宏

    2012-01-01

    通过对10个常绿树种在昆钢污染区和相对无污染区叶片中铁锌铜锰4种重金属元素含量的实验测定和分析,研究了各树种叶片中的金属含量特征和对污染的吸收净化能力.结果表明,不同的树种对不同重金属的抗性和吸收净化能力不同,参试的10个树种均对重金属元素表现出较好的抗性和吸收净化能力,叶片中铁含量最高的是飞蛾槭,锌含量最高的是鳞斑荚蒾,铜含量最高的是金叶子,锰含量最高的是滇青冈.叶片中铁和锌、铜含量的相关性达极显著和显著水平,其他元素之间相关性均不显著.按各树种的综合富积量进行排序,鳞斑荚蒾>红果树>飞蛾槭>茶条木>金叶子>云南泡花树>云南木樨榄>滇青冈>云南卫矛>子楝树.%Ten evergreen tree species growing in polluted area (Kunming Iron and Steel Plant) and a relatively pollution-free zone, respectively were selected to examine the characteristics of metal contents in the leaves and absorption capabilities by measuring the contents of 4 metals, including Fe, Zn. Cu, and Mn. The results showed that all the 10 tree species demonstrated better resistance to the metals and absorption capability, while differences were observed among different tree species. The highest contents of iron, zinc, copper, and manganese were found in the leaves of Acer oblongum , Viburnum punctatum , Craibio-dendron yunnanense, and Cyclubalanopsis glaucoides , respectively. The correlationships among the contents of iron and zinc and copper were most significant or significant, while no significant correlationships were found among other metals. Considering the integrated accumulation amount for the metals, an order was given among 10 tree species: V. punctatum >Stranvaesia davidiana>A. oblongum>Delavaya yun-nanensis>C. yunnanense >Meliosma yunnanensis>Olea yunnanensis>C. glaucoides >Euonymus yun-nanensis >Decaspermum fruticosum.

  19. Current concepts:supplementation of tough bone elements magnesium, zinc, copper, and manganese, for the prevention and treatment of osteoporotic fractures%骨质疏松性骨折防治新概念:补充韧骨元素镁、锌、铜、锰

    Institute of Scientific and Technical Information of China (English)

    周建烈; 陈声

    2012-01-01

    Routine supplementation of calcium and vitamin D is effective for the prevention and treatment of osteoporosis, and it can reduce the rate of osteoporotic fractures further. Bone strength is determined by bone mineral density and bone quality. Bone mineral density depends on highly mineralized inorganic salts ( calcium, phosphorus, magnesium, etc. ). Bone quality is mainly composed of organic bone matrix collagen fibers. Trace elements, especially copper, manganese and zinc, are necessary for the synthesis of collagen. This paper mainly describes the role of magnesium, zinc, copper, and manganese in the prevention and treatment of osteoporosis and osteoporotic fractures. A new concept of supplementation of tough bone elements such as magnesium, zinc, copper, and manganese for the prevention and treatment osteoporotic fracture is proposed.%常规补充钙和维生素D可防治骨质疏松,进一步减少骨质疏松性骨折发病率.骨强度由骨密度和骨质量决定,骨密度由高度矿化的无机盐(钙、磷、镁等)组成,骨质量主要由有机骨基质胶原纤维组成,而胶原蛋白合成必需有微量元素参加,特别是铜、锰和锌.本文主要介绍镁、锌、铜、锰对骨质疏松症和骨质疏松性骨折防治的作用和临床研究,提出骨质疏松性骨折防治的新概念:补充韧骨元素镁、锌、铜、锰.

  20. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  1. Cadmium and copper adsorption on bentonite: effects of pH and particle size Adsorção de cádmio e cobre em bentonita: efeito do pH e da granulometria

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Garófalo Chaves

    2011-06-01

    Full Text Available Reactions of heavy metals with clay minerals are important in determining metal fates in the environment. However, the adsorption process of these metals by the bentonite has been extensively investigated. The objectives of this work were to assess the ability of bentonite clay to adsorb cadmium and copper and to study the effects of pH and particle size upon these metals adsorption. Adsorption isotherms were obtained from batch adsorption experiments, with increasing cadmium and copper concentrations (5-200 mg L-1. To find out the effects of pH and particle size on adsorption, the experiments were conducted at pH 4; 5 and 6 using particles sizes of As reações dos metais pesados com os minerais de argila são importantes para determinar o destino dos mesmos no meio ambiente. Assim, o processo de adsorção destes metais pela bentonita tem sido muito investigado. Objetivou-se com este trabalho avaliar a capacidade da argila bentonita em adsorver cádmio e cobre e os efeitos do pH e de sua granulometria na adsorção dos mesmos. A partir de experimentos tipo "batch", foram elaboradas isotermas de adsorção com quantidades crescentes de Cd e Cu (5-200 mg L-1. Para determinar o efeito do pH e da granulometria sobre a adsorção, os experimentos foram conduzidos a pH 4; 5 e 6, utilizando bentonita com granulometria < 0,5 mm e entre 0,5 a 2,0 mm. As quantidades de Cd e Cu adsorvidas pela bentonita foram determinadas pela diferença entre as concentrações inicial e final dos elementos na solução de equilíbrio. A bentonita adsorveu mais Cu do que Cd, entretanto a adsorção dos dois metais aumentaram com o aumento do pH independentemente da granulometria. Nenhum efeito da granulometria sobre a adsorção foi observada. Os dados experimentais foram bem ajustados ao modelo de Langmuir. A capacidade máxima de adsorção diminuiu e a energia de ligação aumentou em função do aumento do pH.

  2. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury-selenium balance.

    Science.gov (United States)

    Olmedo, P; Hernández, A F; Pla, A; Femia, P; Navas-Acien, A; Gil, F

    2013-12-01

    Fish and shellfish are an important source not only of toxic heavy metals, but also of essential elements in the diet. In this study, levels of Cu, Mn, Se and Zn have been determined in fresh, canned and frozen fish and shellfish products. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for essential elements content. The potential human health risks for the consumers and the nutritional value of the products analyzed were assessed. Furthermore, the mercury-selenium ratios and the selenium health benefit value (Se-HBVs) were calculated. The highest concentrations of Cu were found in crustaceans species (shrimp and prawn) as they have hemocyanin (a copper-containing protein) that functions as an oxygen-transport molecule. Mn levels were higher in canned bivalve molluscs, such as cockle and clam, and in fresh common sole. Concerning Se, two fresh predatory fish species (tuna and swordfish) presented the most remarkable concentrations of this element. The highest concentration of the essential metals analysed was found for Zn, especially in fresh and canned mussels. All the species analyzed showed beneficial Hg:Se ratios and Se-HBVs, except for the shark species (blue shark and cat shark) and gilt-head bream because of their high Hg levels and low Se content, respectively. Nevertheless, the biomagnification usually observed in hazardous metals such as Hg would not occur for the essential elements measured in predatory species. The estimated daily intakes of the elements studied represented very low percentages of their reference values, ranging from 0.1% (Se) to 3.9% (Cu) for person weighting 60 kg, so the intake of these elements through fish and shellfish would not pose any risk for the average consumer. Moreover, the contribution of fish and shellfish products to the recommended daily allowances and adequate intakes of these mineral elements ranges from 2.5% (Mn) to 25.4% (Se).

  3. Study on the Uptake of Copper, Cadmium and Zinc by Three Plants around the Gold Mining Area%黄金矿区周围三种植物对土壤中铜、镉和锌的吸收

    Institute of Scientific and Technical Information of China (English)

    李庚飞

    2012-01-01

    测定并分析了陕西省潼关县某黄金生产区及附近不同地区生长的三种植物远志(Polygala tenuifolia Willd.)、灰灰菜(Chenopodium album L)、千金子[ Leptochloa chinensis(L)Nees]体内的Cu、Cd和Zn含量,为确定富集植物修复土壤重金属提供依据.结果表明:三种植物中,千金子对Zn和Cu的富集能力均最高,千金子对Zn的富集系数为11.79,转移系数为0.87;对Cu的富集系数和转移系数分别为5.32和0.90.灰灰菜和远志对Zn的富集能力也较强;三种植物对Cd的富集能力均较弱.%The content of heavy metals in three kinds of plants [ Polygala tenuifolia Willd. ,Chenopodium album L. and Leptochloa chinensis ( L. ) Nees ] grown in the heavy metal polluted soil near the gold mine in Tongguan county, Shanxi, China, were investigated to provide the basis for the heavy metal removal of hyperaccumulators. The results were as follows -. Among three kinds of plants in different places, the concentration of zinc and copper in Leptochloa chinensis (L. )Nees. was the strongest. Its concentration factor and transfer factor to zinc was 11. 79 and 0. 87,respectively. And its concentration factor and transfer factor to copper was 5. 32 and 0. 90, respectively. Chenopodium album L. and Polygala tenuifolia Willd. had a strong concentration capacity to zinc. The three kinds of plants had a weak concentration capacity to cadmium.

  4. The Impact of Varied Fertilisation on the Concentration of Cadmium and Copper in Organs of Willow Trees (Salix Viminalis) / Wpływ Zróznicowanego Nawożenia Na Zawartość Kadmu I Miedzi W Wierzbie Wiciowej (Salix Viminalis )

    Science.gov (United States)

    Sieciechowicz, Aleksandra

    2015-03-01

    The paper presents the impact of varied fertilisation with sewage sludge on the concentration of cadmium and copper in willow organs during the first three years of cultivation. The lowest mean concentration of cadmium in Salix viminalis biomass was found in the plantation fertilised only with mineral fertilisers. The mean content of copper in the biomass of plants fertilised with mineral fertilisers was higher than the content of this metal in plants grown in non-fertilised soil by 23.4%. It has been shown that the method of fertilisation does not have an impact on the cadmium allocation in different organs. The highest content of cadmium and copper in the willow biomass was found in the foliage (1,76 mg/kgd.m. and 12,73 mg/kgd.m. respectively). W pracy określono wpływ zróżnicowanego nawożenia osadami ściekowymi na zmiany zawartości kadmu i miedzi w wierzbie wiciowej przez pierwsze trzy lata uprawy. Najmniejszą średnią zawartość kadmu w biomasie Salix viminalis wykazano dla plantacji nawożonej mineralnie. Średnia zawartość miedzi w biomasie roślin nawożonych mineralnie była o ok. 23,4% większa od zawartości tego metalu w roślinach uprawianych na glebie nienawożonej. Wykazano, że sposób nawożenia nie wpływa na miejsce kumulowania się kadmu w roślinie. Najwyższe zawartości kadmu i miedzi odnotowano w próbkach listowia Salix viminalis (odpowiednio 1,76 mg/kgs.m. i 12,73 mg/kgs.m.).

  5. Three 2 D copper(II)/cadmium(II) coordination polymers based on semi-rigid/flexible bis-pyridyl-bis-amide ligands and 5-aminoisophthalate: Syntheses, structures and properties

    Indian Academy of Sciences (India)

    Hongyan Lin; Huizhe Lu; Mao Le; Jian Luan; Xiuli Wang; Cuocheng Liu

    2015-07-01

    Three new transition metal coordination polymers [Cu(3-bpcb)0.5(5-AIP)]·2H2O (1), [Cd(3-bpcb)0.5(5-AIP)(H2O)]·H2O (2) and [Cd(3-bpsa)0.5(5-AIP)(H2O)]·2H2O (3) have been hydrothermally synthesized by self-assembly of 5-aminoisophthalic acid (5-H2 AIP), semi-rigid or flexible bis-pyridyl-bis-amide ligands [3-bpcb = N N′-bis(3-pyridinecarboxamide)-1,4-benzene, 3-bpsa = N,N′-bis(3-pyridyl)succinamide], and copper chloride or cadmium nitrate. X-ray diffraction analysis reveals that compounds 1 and 2 possess similar 2 D double-layered structures with (3,4)-connected (63)(65·8) topology, while compound 3 displays a 2 D layer with {62.10}{6} topology. The adjacent layers of 1–3 are finally extended into 3 D supramolecular frameworks by hydrogen bonding interactions. The bis-pyridyl-bis-amide ligands with different flexibilities play an important role in the construction of final topological structures for the title compounds. Further, the electrochemical behavior of the compound 1 and the fluorescent and photocatalytic properties of compounds 1–3 have been investigated.

  6. Determination on Iron, Copper, Chromium, Cadmium, Lead, Nickel and Cobalt in Hair Dye%染发剂中铁、铜、铬、镉、铅、镍和钴等重金属含量测定

    Institute of Scientific and Technical Information of China (English)

    解楠; 顾宇翔; 周泽琳

    2012-01-01

    建立了微波消解前处理,电感耦合等离子发射光谱(ICP-AES)测定染发剂中铁、铜、铬、镉、铅、镍和钴等重金属含量的方法.该方法各元素检出限均为0.05 mg/kg,线性范围0~500 ng/mL,加标回收率86.8%~108.0%,相对标准偏差为0.98%~5.54%.该方法简便、灵敏,结果稳定准确,可以用于染发剂中重金属含量的测定.%An inductively coupled plasma-atomic emission spectrometry (ICP-AES) with samples microwave digestion method for determination of Iron, Copper, Chromium, Cadmium, Lead, Nickel and Cobalt in hair dye was established. The detection limits of all elements were 0.05 mg/kg, the linearity ranged from 0 to 500 ng/mL, and recoveries of samples were in the range of 86. 8%~108. 0%, the RSD of precision is from 0. 98% to 5.54%. It indicates that the method is simple, sensitive, stable and accurate, which can be used for the determination of heavy metal elements in hair dye.

  7. Copper, iron and the organic ligands that bind them - updates from San Francisco Bay and beyond

    Science.gov (United States)

    Buck, K. N.; Bundy, R.; Biller, D.; Bruland, K. W.; Barbeau, K.

    2015-12-01

    Building on more than 30 years of measurements in San Francisco Bay by Russ Flegal and others, the concentrations of dissolved manganese, iron, cobalt, nickel, copper, zinc, cadmium and lead were determined from a suite of water quality monitoring program stations in North, Central and South Bay using inductively coupled plasma- mass spectrometry following preconcentration on a Nobias-chelate PA1 resin. Given the importance of organic ligands in governing iron solubility and copper bioavailability in natural waters, the organic complexation of dissolved iron and copper in these samples was determined from multiple analytical windows applied to competitive ligand exchange- adsorptive cathodic stripping voltammetry. This study constitutes the first dataset of iron speciation in San Francisco Bay and expands upon prior work evaluating the potential for copper toxicity in this urbanized estuary. Recent advances in voltammetric techniques emerging from a Scientific Committee on Oceanic Research (SCOR) working group on metal-binding ligands in the marine environment, and insights gained from high-resolution ligand measurements from the U.S. GEOTRACES program, highlight how metal-binding ligands in San Francisco Bay compare with those of the coastal and open ocean.

  8. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  9. Annual changes of iron,manganese,zinc and copper concentrations in both types of citrus fruit%两结实类型柑橘果实铁锰锌铜含量的年周期变化

    Institute of Scientific and Technical Information of China (English)

    肖家欣; 彭抒昂

    2008-01-01

    Annual changes in concentrations of iron(Fe),manganese(Mn),zinc(Zn)and copper(Cu)were measured in whole fruits from parthenocarpic Kamei satsuma mandarin(Citrus unshiu)and self-pollinated Egan 1 tangerine(C.reticulata)trees. The results were showed as follows:(1)Zn and Cu concentrations in the ovary of Kamei were relatively high before flowering and at full bloom,and decreased after flowering,whereas those of Egan 1 decreased obviously and were relatively low at full bloom,thereafter significant increases were observed. There were no significant differences in changes of Fe and Mn concentrations in the ovaries(fruitlets)between the two cultivars,which presented similarly decreasing trends after flowering. (2)Fe,Mn,Zn and Cu concentrations were relatively high in whole fruits of both cultivars during young fruit development,and decreased remarkably during early fruit enlargement(drought spell),whereas increased dramatically at the middle stage of fruit enlargement,thereafter decreased gradually. Dynamics of micronutrients concentrations in developing fruit and their possible relation with fruits development is discussed herein.%对单性结实的龟井温州蜜柑和自花授粉结实的鄂柑1号柑橘果实的铁、锰、锌和铜含量的年周期变化进行了测定.结果表明:(1)龟井子房的锌和铜含量在花前至花期居较高,花后趋下降,而鄂柑1号对应值在花期出现明显下降并居较低,花后却有一明显上升;两品种子房(幼果)的铁和锰含量变化却无明显差异,花后呈类似的下降趋势.(2)幼果阶段的果实铁、锰、锌和铜含量均居较高,在果实膨大初期(干旱期)均出现一明显下降,而在果实膨大中期却出现显著上升,之后又趋下降.本文还对果实发育中的微量元素含量动态及其与果实发育之间的关系进行了讨论.

  10. in situ immobilization of Cadmium and zinc in contaminated soils

    NARCIS (Netherlands)

    Osté, L.A.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.It is generally assumed that a decrease in metal c

  11. 铜、锰诱导吉富罗非鱼血细胞凋亡及铁、锌的干预作用%Effects of Copper and Manganese on Hemocyte Apoptosis and Antagonism of Iron and Zinc in Oreochromis niloticus

    Institute of Scientific and Technical Information of China (English)

    白丽蓉; 赵志英

    2016-01-01

    为了研究重金属铜与锰对吉富罗非鱼血细胞凋亡的影响以及铁、锌的拮抗作用,采用原子吸收分光光度法检测血液及饲料中重金属的含量,采用流式细胞术检测实验鱼血细胞凋亡情况。360尾吉富罗非鱼幼鱼随机分为12组,每组30尾,分别以硫酸铜(0、2000 mg/kg)、硫酸锰(0、120 mg/kg)为攻毒组重金属源,以硫酸锌(20、320 mg/kg)、硫酸铁(150、350 mg/kg)为拮抗组金属源,通过饲料投喂的方式进行血细胞凋亡的研究,养殖周期为20周。细胞凋亡分析结果表明,染铜组、染锰组实验鱼血细胞凋亡率显著高于对照组;补充铁和锌后,随着饲料添加铁、锌水平的增加,实验鱼血细胞凋亡率明显下降,但铁、锌干预组血细胞凋亡率显著高于对照组。试验表明,过量铜、锰可诱发实验罗非鱼血细胞凋亡;较高水平的铁、锌对铜、锰的毒性作用具有拮抗作用。%This study aimed to investigate the effects of copper and manganese on hemocyte apoptosis and the antagonism of iron and zinc in Oreochromis niloticus. The heavy metal contents in fish blood and feed were determined by atomic ab-sorption spectrophotometry, and the hemocyte apoptosis was determined by flow cytometry. A total of 360 tilapias were selected, and they were divided randomly and evenly into 12 groups. In the chal enge groups, the tilapias were fed with con-stant-level copper sulfate (0, 200 mg/kg) and manganese sulfate (0, 120 mg/kg); in the antagonism groups, the tilapias were fed with constant-level zinc sulfate (20, 320 mg/kg) and iron sulfate (150, 350 mg/kg). After 20-week aquaculture, the hemocyte apoptosis rates in the copper and manganese groups were significantly increased; with the increased addition levels of iron and zinc, the hemocyte apopto-sis rates in the iron and zinc groups were significantly reduced, but they were stil higher than that in the control group. In

  12. Phytotoxicity of cadmium on peroxidation, superoxide dismutase ...

    African Journals Online (AJOL)

    reading 6

    2015-04-01

    Apr 1, 2015 ... Of all the heavy metals, cadmium (Cd) is one of the most .... After adding 50 μL enzyme extract to 3 mL reaction mixtures ... data was statistically analyzed using a two tailed T-test to ..... Copper toxicity in Prunus cerasifera:.

  13. Cadmium-induced cancers in animals and in humans.

    Science.gov (United States)

    Huff, James; Lunn, Ruth M; Waalkes, Michael P; Tomatis, Lorenzo; Infante, Peter F

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds have been classified as known human carcinogens by the International Agency for Research on Cancer and the National Toxicology Program based on epidemiologic studies showing a causal association with lung cancer, and possibly prostate cancer, and studies in experimental animals, demonstrating that cadmium causes tumors at multiple tissue sites, by various routes of exposure, and in several species and strains. Epidemiologic studies published since these evaluations suggest that cadmium is also associated with cancers of the breast, kidney, pancreas, and urinary bladder. The basic metal cationic portion of cadmium is responsible for both toxic and carcinogenic activity, and the mechanism of carcinogenicity appears to be multifactorial. Available information about the carcinogenicity of cadmium and cadmium compounds is reviewed, evaluated, and discussed.

  14. Manganese Oxidation State Assignment for Manganese Catalase.

    Science.gov (United States)

    Beal, Nathan J; O'Malley, Patrick J

    2016-04-06

    The oxidation state assignment of the manganese ions present in the superoxidized manganese (III/IV) catalase active site is determined by comparing experimental and broken symmetry density functional theory calculated (14)N, (17)O, and (1)H hyperfine couplings. Experimental results have been interpreted to indicate that the substrate water is coordinated to the Mn(III) ion. However, by calculating hyperfine couplings for both scenarios we show that water is coordinated to the Mn(IV) ion and that the assigned oxidation states of the two manganese ions present in the site are the opposite of that previously proposed based on experimental measurements alone.

  15. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    Science.gov (United States)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  16. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  17. Cadmium inhalation and male reproductive toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, H.A.; Mast, T.J. (Battelle Pacific Northwest Laboratories, Richland, WA (USA))

    1990-01-01

    Cadmium is a highly toxic element that is cumulative and has a long biological half-life in mammals. The severe toxicity of cadmium in man has been known for more than 100 years. Despite the knowledge that cadmium is toxic, only 20 human cases of poisoning via ingestion were recorded prior to 1941, whereas in the ensuing five-year period more than 680 cases of cadmium poisonings from accidental oral ingestion of this metal were documented. Some of the recorded effects of exposure to cadmium in laboratory animals include renal tubular damage, placental and testicular necrosis, structural and functional liver damage, osteomalacia, testicular tumors, teratogenic malformations, anemia, hypertension, pulmonary edema, chronic pulmonary emphysema, and induced deficiencies of iron, copper, and zinc. Some of these effects have also been observed in human after accidental exposures to cadmium oxide fumes and are characteristic of the syndrome described in Japan as Itai Itai disease in which ingestion of cadmium is the inciting chemical.134 references.

  18. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    Science.gov (United States)

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  19. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bacquart, Thomas [Better Life Laboratories, Calais, VT (United States); Frisbie, Seth [Better Life Laboratories, Calais, VT (United States); Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Mitchell, Erika [Better Life Laboratories, Calais, VT (United States); Grigg, Laurie [Department of Earth and Environmental Science, Norwich University, Northfield, VT (United States); Cole, Christopher [Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Small, Colleen [Vermont Department of Health Laboratory, Burlington, VT (United States); Sarkar, Bibudhendra, E-mail: bsarkar@sickkids.ca [Department of Molecular Structure and Function, The Research Institute of The Hospital for Sick Children, University of Toronto, Toronto, Ontario (Canada); Department of Biochemistry, University of Toronto, Toronto, Ontario (Canada)

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  20. Synthesis and Characterization of Divalent Nickel, Copper and Cadmium Complexes of N-(2-2-[1-(3-aminophenyl ethylidene] hydrazino-2-oxoethyl Benzamide

    Directory of Open Access Journals (Sweden)

    Th. Promila Devi

    2014-12-01

    Full Text Available Complexes of Ni(II (1, Cu(II (2 and Cd(II (3 with a novel Schiff base N-(2-2-[1-(3-aminophenyl ethylidene] hydrazino-2-oxoethyl benzamide (LH have been prepared and characterized by elemental analysis, TG-DTA, magnetic, electronic, molar conductivity measurements, IR, SEM, NMR, ESR and mass studies. It is observed that all the complexes having 1:1 metal-ligand stoichiometry are tetracoordinated. The result shows that LH binds to Cu and Cd ions through the hydrazidic carbonyl oxygen, azomethine nitrogen and amine nitrogen as a tridentate ligand while with Ni ion, it coordinates as a bidentate species through the hydrazidic carbonyl oxygen and azomethine nitrogen. The ligand exhibits keto-enol tautomerism in 2 in which it acts as a uninegative ligand. Complexes 1 and 3 behave as 1:1 electrolytes in DMF solution while complex 2, as a nonelectrolyte. Complex 2 is diamagnetic and ESR inactive which suggest that copper ion is present in its cuprous form. SEM images are used to observe external morphology of the compounds.

  1. RESIDUAL CONCENTRATION OF COPPER, IRON, MANGANESE AND ZINC IN EUTROPHIC 'LATOSSOLO ROXO’ UNDER DIFFERENT SOIL MANAGEMENTS CONCENTRAÇÕES RESIDUAIS DE COBRE, FERRO, MANGANÊS E ZINCO EM LATOSSOLO ROXO EUTRÓFICO SOB DIFERENTES TIPOS DE MANEJO

    Directory of Open Access Journals (Sweden)

    Durval Dourado Neto

    2007-09-01

    Full Text Available

    The removal of micronutrients from soil by grains and burning of cultural remains constitute the main means of soilexhaustion. The correction of soil fertility and the adapted soilmanagement have been the means used to maintain the grainproduction. The soybean, corn, rice and common bean crops were developed in an eutrophic ‘latossolo roxo’, submitted to fourmanagement systems: 1 no-till, 2 deep moldboard plowing, 3shallow harrow plowing and 4 deep stirring, using a chiseling plower and three level of fertilization: 1 Check (natural soil fertility, 2 Goiás State recommendation and 3 Fertilizers to cover the nutrients extracted by grain exportation. Larger values of the pH were observed in the superficial layer of soil submitted to deep moldboard plowing in relation to no-till, shallow harrow plowing and deep stirring. Uniform distributions of iron, manganese and zinc were observed in areas submitted to deep moldboard plowing. The 40-60 cm layer presented similar concentrations in all types of soil management. Copper tried in the superficial layer and at deepest layers can be explained by the larger concentration of organic matter and origin of the soil. No variation was observed in relation to fertilizers application.

    KEY-WORDS: Micronutrients; no till system; cerrado soil.

    A exportação dos micronutrientes do solo pelos grãos e a queima dos restos culturais constituem os principais meios de esgotamento do solo. A correção da fertilidade e o manejo adequado do solo têm sido os meios usados para manter a produção de grãos. Desenvolveram-se culturas de soja, milho, arroz e feijão em um latossolo roxo eutrófico, submetidas a quatro sistemas de manejo: 1 plantio direto; 2 escarificação profunda; 3 grade aradora; e 4 aração profunda, e a três níveis de adubação: 1

  2. Elevated circulating levels of copper and nickel are found in elderly subjects with left ventricular hypertrophy.

    Science.gov (United States)

    Lind, P Monica; Olsén, Lena; Lind, Lars

    2012-12-01

    Identified risk factors for left ventricular hypertrophy (LVH) are hypertension, diabetes and obesity. However, since these risk factors only explain a part of the variation in left ventricular mass, we investigated if trace and heavy metals might also play a role in LVH. In the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, left ventricular mass index (LVMI) and relative wall thickness (RWT) were determined by echocardiography together with eleven different trace and heavy metals in 993 subjects aged 70 years. Only copper levels were significantly related to LVMI following adjustment for sex, blood pressure, antihypertensive treatment, diabetes and body mass index (BMI) (p<0.0001). However, both copper (Cu) and nickel (Ni) were related to RWT following adjustment (p<0.0001). When divided into four geometric groups, both Cu and Ni were elevated in subjects with concentric remodelling and concentric LVH, but not in those with eccentric hypertrophy, when compared to subjects with a normal left ventricle. No relationships were found for zinc, aluminium, manganese, molybdenum, mercury, lead, cadmium, cobalt or chromium. Elevated levels of copper and nickel are found in elderly subjects with LVH, especially of the concentric type, following adjustment for known risk factors for LVH. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Interactive effects of manganese and/or iron supplementation in adult women

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.D.; Greger, J.L. (Univ. of Wisconsin, Madison (United States))

    1991-03-15

    Evaluation of the practical significance of manganese-iron interactions has been hampered by the limited methodologies available to assess manganese status. Manganese status has not been monitored longitudinally in control studies with humans. Forty-eight women were recruited for a double blind 125-day supplementation study. After an initial 5-day baseline period, subjects were assigned to one of four treatments: placebo; 30 mg iron as ferrous fumarate daily; 15 mg manganese as an amino acid chelated manganese supplement daily or both the iron and manganese supplements daily. Dietary information, blood and 3-day urine samples were collected during the baseline period and after 20, 55, 85 and 120 days of consuming the supplements. Urinary manganese excretion ranged from 0.11 to 1.40 {mu}g/day. Serum manganese ranged from 0.16 to 1.92 {mu}g/l. Serum was also analyzed for iron, zinc, copper, ferritin and transferrin concentrations. Lymphocytes were isolated and manganese-dependent superoxide dismutase activity was determined as a new method to assess manganese status. Plasma cholesterol ranged from 126 to 229 mg/dl and HDL cholesterol ranged from 31 to 84 mg/dl. Plasma triglycerides were determined and LDL cholesterol was calculated by difference.

  4. Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc.

    Science.gov (United States)

    Pass, Rachel; Frudd, Karen; Barnett, James P; Blindauer, Claudia A; Brown, David R

    2015-09-01

    The cellular prion protein has been identified as a metalloprotein that binds copper. There have been some suggestions that prion protein also influences zinc and manganese homeostasis. In this study we used a series of cell lines to study the levels of zinc and manganese under different conditions. We overexpressed either the prion protein or known transporters for zinc and manganese to determine relations between the prion protein and both manganese and zinc homeostasis. Our observations supported neither a link between the prion protein and zinc metabolism nor any effect of altered zinc levels on prion protein expression or cellular infection with prions. In contrast we found that a gain of function mutant of a manganese transporter caused reduction of manganese levels in prion infected cells, loss of observable PrP(Sc) in cells and resistance to prion infection. These studies strengthen the link between manganese and prion disease.

  5. Structural analysis of actinidin and a comparison of cadmium and sulfur anomalous signals from actinidin crystals measured using in-house copper- and chromium-anode X-ray sources.

    Science.gov (United States)

    Yogavel, Manickam; Nithya, Nirmal; Suzuki, Atsuo; Sugiyama, Yasuo; Yamane, Takashi; Velmurugan, Devadasan; Sharma, Amit

    2010-12-01

    The structure of the 24 kDa cysteine protease saru-actinidin from the fruit of Actinidia arguta Planch. (sarunashi) was determined by the cadmium/sulfur-SAD method with X-ray diffraction data collected using in-house Cu Kα and Cr Kα radiation. The anomalous scatterers included nine sulfurs and several cadmium ions from the crystallization solution. The high quality of the diffraction data, the use of chromium-anode X-ray radiation and the substantial anomalous signal allowed structure determination and automated model building despite both a low solvent content (analysis and comparison of the sulfur/cadmium anomalous signals at the Cu Kα and Cr Kα wavelengths was carried out. It is proposed that the inclusion of cadmium salts in crystallization solutions coupled with chromium-anode radiation can provide a convenient route for structure determination.

  6. Air Manganese Study

    Science.gov (United States)

    In November 2011 US EPA researchers conducted a health study of airborne manganese exposure in East Liverpool, Ohio. This Web site discusses preliminary results of the study and provides background and other related information.

  7. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae

    Science.gov (United States)

    Johnson, Michael D. L.; Kehl-Fie, Thomas E.; Rosch, Jason W.

    2015-01-01

    Copper is universally toxic in excess, a feature exploited by the human immune system to facilitate bacterial clearance. The mechanism of copper intoxication remains unknown for many bacterial species. Here, we demonstrate that copper toxicity in Streptococcus pneumoniae is independent from oxidative stress but, rather, is the result of copper inhibiting the aerobic dNTP biosynthetic pathway. Furthermore, we show that copper-intoxicated S. pneumoniae is rescued by manganese, which is an essential metal in the aerobic nucleotide synthesis pathway. These data provide insight into new targets to enhance copper-mediated toxicity during bacterial clearance. PMID:25730343

  8. [Function and disease in manganese].

    Science.gov (United States)

    Kimura, Mieko

    2016-07-01

    Manganese is a metal that has been known named a Greek word "Magnesia" meaning magnesia nigra from Roman Empire. Manganese provide the wide range of metablic function and the multiple abnomalities from its deficiency or toxicity. In 1931, the essentiality of manganese was demonstrated with the authoritative poor growth and declined reproduction in its deficiency. Manganese deficiency has been recognized in a number of species and its signs are impaired growth, impaired reproduction, ataxia, skeletal abnormalities and disorders in lipid and carbohydrate metabolism. Manganese toxicity is also acknowledged as health hazard for animals and humans. Here manganese nutrition, metabolism and metabolic function are summarized.

  9. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  10. Synthesis, crystal structures and spectroscopy of meclofenamic acid and its metal complexes with manganese(II), copper(II), zinc(II) and cadmium(II). Antiproliferative and superoxide dismutase activity.

    Science.gov (United States)

    Kovala-Demertzi, Dimitra; Staninska, Malgorzata; Garcia-Santos, Isabel; Castineiras, Alfonso; Demertzis, Mavroudis A

    2011-09-01

    Some new complexes of meclofenamic acid (N-(2,6-dichloro-m-tolyl)anthranilic acid), Hmeclo (1), with potentially interesting biological activities are described. Complexes [Mn(meclo)(2)] (2), [Cu(meclo)(2)(H(2)O)(2)] (3), [Zn(meclo)(2)(H(2)O)(2)] (4) and [Cd(meclo)(2)(H(2)O)(2)] (5) were prepared and structurally characterized by means of vibrational, electronic and (1)H and (13)C NMR spectroscopies. The crystal structure of complexes [Cu(4)(meclo)(6)(OH)(2)(DMSO)(2)]2DMSO (3a) and [Cd(meclo)(2)(DMSO)(3)] (5a) have been determined by X-ray crystallography. Complex (3a) is a centrosymmetric tetramer built up around the planar cyclic Cu(2)(OH)(2) unit. Complex 5a is mononuclear seven-coordinated complex with the meclofenamato ligand behaving as a bidentate deprotonated chelating ligand. Intra and intermolecular hydrogen bonds stabilize these two structures, while the crystal packing is determined by π-π and C-H--π interactions. Meclofenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), and A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. Complex 5 exhibits the highest selectivity against MCF-7 and 4 shows the highest selectivity against T-24. Complexes 2-5 were found to be more potent cytotoxic agents against T-24 and complex 5 against MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cis-platin. The superoxide dismutase activity was measured by the Fridovich test which showed that complex [Cu(meclo)(2)(H(2)O)(2)] is a good superoxide scavenger.

  11. Determination of Copper,Manganese,Lead,Cadmium,Zinc in Drinking Water by ICP-AES%ICP-AES测定饮用水源中的Cu、Mn、Pb、Cd、Zn

    Institute of Scientific and Technical Information of China (English)

    康清蓉; 罗财红

    2002-01-01

    用ICP-AES法同时测定饮用水源中的Cu、Mn、Pb、Cd、Zn等重金属元素,具有基体效应小、测量范围宽等优点.检出限为0.2-4.0μg/L,回收率为91.5%-103.9%,相对标准偏差为0.29%-1.5%,测定密码样与实际样品,结果令人满意.

  12. 酿酒酵母对锦鲤鱼体内铜、汞、镉三种重金属排除效果的比较研究%Effect of Saccharomyces cerecisiae on purification of copper,mercury and cadmium in organ of Cyprinus carpioi

    Institute of Scientific and Technical Information of China (English)

    张金硕; 许晓曦; 滕国新

    2011-01-01

    By exposing fish ( Cyprinus carpioi)to the single heavy metal solutions, including copper, mercury and cadmium, Saccharomyces cerecisiae was selected as feeds additive to investigate the effects of visceral, gill and muscle purification.The results showed that Saccharomy cerecisiae had an effect on the purification of the three kinds of heavy metals accumulated in visceral,gill and muscle.The effect of purification on copper was:muscle >gill > visceral,the effect of purification on mercury was:visceral > muscle > gill,the effect of purification on cadmium was:muscle ≈ visceral > gill.In summary, Saccharomyces cerecisiae had a good effect on purification of cadmium and mercury, it can remove most of heavy metal ion accumulated in muscle and become relative weaker on the purification of copper.Saccharomyces cerecisiae had main effect on visceral and muscle,but little effect on gill.%通过对锦鲤鱼幼鱼进行铜、汞、镉的单一重金属积累实验和排除实验,研究了以酿酒酵母作为饲料添加剂对锦鲤鱼内脏、鳃和肉的排除作用效果.结果表明,酿酒酵母对锦鲤鱼体内脏、鳃和肌肉中积累的铜、汞、镉均有排除作用,其中对Cu的排除效果比较为肌肉>鳃>内脏;对Hg的排除效果比较为内脏>肌肉>鳃;对Cd的排除效果比较为肌肉≈内脏>鳃.综合比较得出,酿酒酵母对鱼体内Cd和Hg的排除效果显著,可以排除鱼肉中绝大多数的重金属离子.对Cu的排除效果相对减弱.酿酒酵母对鱼体内的重金属排除效果主要体现在内脏和肌肉中,而对鱼鳃的排除效果不明显.

  13. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    Science.gov (United States)

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element

  14. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium in dried bee pollen produced in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Gasparotto SATTLER

    2016-01-01

    Full Text Available Abstract Like other beehive products, such as honey, royal jelly and propolis, bee pollen has attracted great interest because of the health benefits it can provide when consumed. Bee pollen has high contents of sugars and proteins and a low content of lipids, it is also a rich source of vitamins and other bioactive compounds, which makes it an attractive micronutrient supplement. However, few studies have investigated its composition. Therefore, the aim of this study was to characterize the essential minerals and inorganic contaminants present in bee pollen produced at apiaries in Rio Grande do Sul State, Brazil. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES revealed the presence of 8 essential minerals (calcium, iron, copper, chromium, manganese, molybdenum, phosphorus and zinc in the 5 analyzed samples; 6 of them were in sufficiently high amounts to meet dietary requirements. Of the 5 inorganic contaminants assessed (barium, cadmium, lithium, lead and vanadium, only cadmium was present at levels over the International Honey Commission’s standards. All bee pollen samples showed a high content of the 8 essential minerals. Contamination usually results from the use of pesticides, fertilizers and other chemicals in agriculture; thus, monitoring of its levels must be included in bee pollen analysis.

  15. Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress.

    Science.gov (United States)

    Akhtar, Tasneem; Zia-Ur-Rehman, Muhammad; Naeem, Asif; Nawaz, Rab; Ali, Shafaqat; Murtaza, Ghulam; Maqsood, Muhammad Aamer; Azhar, Muhammad; Khalid, Hinnan; Rizwan, Muhammad

    2017-02-01

    Cadmium (Cd) is a biologically non-essential heavy metal while the cultivation of Cd-tolerant varieties/hybrids (V) seems the most promising strategy for remediation of Cd-contaminated soils. For this, 24-day-old seedlings of seven maize hybrids, DKC 65-25, DKC 61-25, DKC 919, 23-T-16, 32-B-33, 31-P-41, and Syn hybrid, were grown in hydroponic conditions for 21 additional days in various Cd concentrations (0, 5, 10, and 15 μM). Effects of variety, Cd, and their interaction were highly significant (p ≤ 0.05) for studied plant agronomic and physiological traits except the V × Cd interaction for leaf chlorophyll content, root-shoot length, and root dry weight. The Cd accumulation in root and shoot increased gradually with increasing Cd treatments while copper (Cu), zinc (Zn), and manganese (Mn) uptake was decreased in all hybrids. The reduction in root and shoot biomass and Cd uptake was lower in 32-B-33 and 23-T-16 compared to other hybrids. The highest accumulation of Cu, Zn, and Mn was observed in 32-B-33, DK C65-25, and 31-P-41, respectively. The differential uptake and accumulation of Cd by maize hybrids may be useful in selection and breeding for Cd-tolerant genotypes.

  16. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality.

  17. Manganese deposition in drinking water distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Tammie L., E-mail: Tammie.Gerke@miamioh.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States); Little, Brenda J., E-mail: brenda.little@nrlssc.navy.mil [Naval Research Laboratory, Stennis Space Center, MS 39529 (United States); Barry Maynard, J., E-mail: maynarjb@ucmail.uc.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States)

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn{sup 3+} and Mn{sup 4+}) and hollandite (Mn{sup 2+} and Mn{sup 4+}), and a Mn silicate, braunite (Mn{sup 2+} and Mn{sup 4+}), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. - Highlights: • Oxidation and deposition of Mn deposits in drinking water distribution pipes • In-situ synchrotron-based μ-XANES and μ-XRF mapping • Toxic metal sorption in Mn deposits.

  18. PARK2 patient neuroprogenitors show increased mitochondrial sensitivity to copper.

    Science.gov (United States)

    Aboud, Asad A; Tidball, Andrew M; Kumar, Kevin K; Neely, M Diana; Han, Bingying; Ess, Kevin C; Hong, Charles C; Erikson, Keith M; Hedera, Peter; Bowman, Aaron B

    2015-01-01

    Poorly-defined interactions between environmental and genetic risk factors underlie Parkinson's disease (PD) etiology. Here we tested the hypothesis that human stem cell derived forebrain neuroprogenitors from patients with known familial risk for early onset PD will exhibit enhanced sensitivity to PD environmental risk factors compared to healthy control subjects without a family history of PD. Two male siblings (SM and PM) with biallelic loss-of-function mutations in PARK2 were identified. Human induced pluripotent stem cells (hiPSCs) from SM, PM, and four control subjects with no known family histories of PD or related neurodegenerative diseases were utilized. We tested the hypothesis that hiPSC-derived neuroprogenitors from patients with PARK2 mutations would show heightened cell death, mitochondrial dysfunction, and reactive oxygen species generation compared to control cells as a result of exposure to heavy metals (PD environmental risk factors). We report that PARK2 mutant neuroprogenitors showed increased cytotoxicity with copper (Cu) and cadmium (Cd) exposure but not manganese (Mn) or methyl mercury (MeHg) relative to control neuroprogenitors. PARK2 mutant neuroprogenitors also showed a substantial increase in mitochondrial fragmentation, initial ROS generation, and loss of mitochondrial membrane potential following Cu exposure. Our data substantiate Cu exposure as an environmental risk factor for PD. Furthermore, we report a shift in the lowest observable effect level (LOEL) for greater sensitivity to Cu-dependent mitochondrial dysfunction in patients SM and PM relative to controls, correlating with their increased genetic risk for PD.

  19. TRACE ELEMENT ANALYSIS OF SOME COPPER CONTAINING HERBS

    Science.gov (United States)

    Begum, V. Hazeena; Elango, V.; Manju, R.

    1997-01-01

    Siddha system specifies medicinal plants containing various metal constituents for curing ailments. The plants reported as copper containing were subjected to atomic absorption spectrophotometic analysis. Among these mangifera indica and coccinia indica were found to contain comparatively higher content of copper while manganese was move in coccinia indica aloe perfoliata, cassia auriculata and Nelumbium nicifera. PMID:22556811

  20. Manganese As a Metal Accumulator

    Science.gov (United States)

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  1. Manganese As a Metal Accumulator

    Science.gov (United States)

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  2. Occupational exposure to manganese.

    Science.gov (United States)

    Sarić, M; Markićević, A; Hrustić, O

    1977-05-01

    The relationship between the degree of exposure and biological effects of manganese was studied in a group of 369 workers employed in the production of ferroalloys. Two other groups of workers, from an electrode plant and from an aluminium rolling mill, served as controls. Mean manganese concentrations at work places where ferroalloys were produced varied from 0-301 to 20-442 mg/m3. The exposure level of the two control groups was from 2 to 30 microgram/m3 and from 0-05 to 0-07 microgram/m3, in the electrode plant and rolling mill respectively. Sixty-two (16-8%) manganese alloy workers showed some signs of neurological impairment. These signs were noticeably less in the two control groups (5-8% and 0%) than in the occupationally exposed group. Subjective symptoms, which are nonspecific but may be symptoms of subclinical manganism, were not markedly different in the three groups. However, in the manganese alloy workers some of the subjective symptoms occurred more frequently in heavier smokers than in light smokers or nonsmokers. Heavier smokers engaged in manganese alloy production showed some of the subjective symptoms more often than heavier smokers from the control groups.

  3. Manganese in silicon carbide

    Science.gov (United States)

    Linnarsson, M. K.; Hallén, A.

    2012-02-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [ 1 1 2¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  4. Manganese in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Linnarsson, M.K., E-mail: marga@kth.se [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden); Hallen, A. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden)

    2012-02-15

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 Degree-Sign C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112{sup Macron }3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  5. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time.

  6. 镉对籽粒苋耐性生理及营养元素吸收积累的影响%Effect of cadmium on tolerance physiology and nutrient accumulation in Amaranthus hypochondriacus L.

    Institute of Scientific and Technical Information of China (English)

    李虹颖; 苏彦华

    2012-01-01

    . With the increased cadmium concentration, potassium content showed no significant change. Significant change in phosphorus, calcium, magnesium, zinc, iron, manganese, copper content appeared with the cadmium concentration increased. Transfer factor of cadmium, potassium, phosphorus, manganese changed slightly with the cadmium concentration increased. Transfer factor of calcium rise with the cadmium concentration increased; Transfer factor of magnesium, zinc, iron, copper showed a downward trend as the cadmium concentration increased. These results suggest that cadmium stress reduced chlorophyll content, and then inhibited photosynthesis and growth of plant; triggered defense mechanisms against reactive oxygen stress; caused metabolic nutrients disorders in plant. Conclusion: Under low cadmium concentration treatment conditions, cadmium ion damaged anti-oxidation system; decreased antioxidant capacity in plant. Under high cadmium concentration treatment conditions, amaranth has been adapted to the stress of cadmium ions, launched a series of defense mechanisms against active oxygen, improve the ability of anti-stress.

  7. Influence of manganese concentration on the electron magnetic resonance spectrum of Mn{sup 2+} in CdO

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Departamento de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N. [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2009-10-19

    Electron magnetic resonance spectra of manganese-doped cadmium oxide (CdO) have been studied at room temperature for Mn concentrations between 0.10 and 1.00 mol%. The results suggest that the range of the exchange interaction between Mn{sup 2+} ions is about 0.56 nm.

  8. Manganese dipyridoxyl diphosphate:

    DEFF Research Database (Denmark)

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart...

  9. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...

  10. Manganese, Metallogenium, and Martian Microfossils

    Science.gov (United States)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  11. Investigation of cadmium resistance in an Alcaligenes sp

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, J.D.; Woodrow, J.R.; Quirk, A.V.

    1986-03-01

    The mechanisms of metal resistance of a cadmium-resistant Alcaligenes sp. were studied. Growth in a defined medium was unaffected by cadmium at concentrations up to 0.1 mM, while at concentrations up to 2.5 mM, growth occurred after an extended lag phase. The increase in length of the lag phase was abolished by repeated subculturing at these higher concentrations. However, subculture in the absence of cadmium reversed the adaptation process. Plasmid DNA was not detected in adapted cells, suggesting that adaptation is not plasmid mediated. Increased sulfide production in response to cadmium was observed, although the levels were too low to account fully for cadmium resistance. Adaptation of cells to cadmium resulted in the appearance of a major new membrane preparation. This protein was induced at cadmium concentrations of 0.1 mM and above, but below this level the protein was absent. The onset of growth at concentrations above 0.1 mM was coincident with the appearance of this protein, which was also induced by zinc (0.4 mM) but not by manganese or nickel. The protein was only solubilized by a sodium dodecyl sulfate-2-mercaptoethanol mixture. Similar solubility properties were shown by a second major membrane protein (molecular weight, 33,000). These two proteins proved to be similar by peptide-mapping experiments and amino acid analysis. The appearance of the 34,500-molecular-weight protein and its possible role in cadmium resistance are discussed.

  12. 食品接触材料高分子材料中钡、钴、铜、铁、锂、锰和锌的迁移量测定%Determination of Barium, Cobalt, Copper, Iron, Lithium, Manganese, and Zinc Migration Quantity in Food Contact Polymer

    Institute of Scientific and Technical Information of China (English)

    方邢有; 路东琪; 马青; 周明辉; 郑朝辉

    2012-01-01

    Migration quantity of Barium, Cobalt, Copper, Iron, Lithium, Manganese, and Zinc was determined by inductively coupled plasma atomic emission spectrometry. The influence of analysis line, incident power, pump speed, and carrier gas pressure of ICP-AES, and matrix ion interference and coexistence were studied. The results showed that the method is simple and rapid; recovery for the elements determined is from 85.9% to 108%; and RSDs are in the range of 2.92%-6. 78%.%采用电感耦等离子体原子发射光谱仪(ICP—AES),同时测定了食品接触材料高分子材料中钡、钴、铜、铁、锂、锰和锌的迁移量,并对ICP—AES法测定时分析线的选择和入射功率、泵速、栽气压力的影响,以及基体和共存离子的干扰情况等进行了研究。研究表明,此方法简便快速,回收率为85.9%-108%,相对标准偏差为2.92%-6.78%。

  13. 21 CFR 184.1449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS... manganese carbonate from manganese sulfate and sodium carbonate solutions. The filtered and...

  14. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  15. 改性污泥对矿区铜、镉污染土壤的修复%Remediation of copper and cadmium contamination in farmland surrounding mining area with modified sludge

    Institute of Scientific and Technical Information of China (English)

    丁园; 吴余金; 郝双龙; 史蓉蓉

    2014-01-01

    evaluated for remediation of copper and cadmium contaminated soils affected by a copper mine. The test paddy soils were sampled from the farmland surrounding mining area in Jiangxi province. TCLP (Toxicity characteristic leaching procedure) leaching contents of Cu and Cd in soil were 40.34 mg·kg-1 and 660.1μg·kg-1 respectively, of which the Cu concentration was higher than the international standard value of 15 mg·kg-1. The sludge was applied to soil at four rates (1%, 3%, 5% and 10% of soil weight) and compared with no sludge treatment. After 30 days of soil incubation in lab, bioavailability and fraction change of Cu and Cd as well as protease and urease activities of the test soil were analyzed to evaluate the remediation effect and its mechanism. The results showed that modified sludge could deactivate soil Cu significantly, and the more the sludge was applied, the greater deactivation effect could be observed. When the sludge was applied at the rate of 5%of the soil weight, TCLP leaching content of soil Cu decreased to 12.03 mg·kg-1, which was lower than the standard limitation. Modified sludge could also deactivate soil Cd, but the deactivation effect was less marked than soil Cu. When the sludge was applied at the rate of 1%, leaching content of soil Cd increased conversely compared with control. However, when the rate was 5%, leaching content of soil Cd decreased to 539.6μg·kg-1. Results of sequential extraction procedure showed that the main fractions of Cu were carbonate-bound, organic-bound and residual Cu. When the sludge application rate was 5%, the percentage of exchangeable Cu decreased from 8.10% to 4.10 %, while the percentage of organic-bound Cu increased from 26.45% to 32.34%. Meanwhile, the percentage of exchangeable Cd reduced from 36.80% to 30.69%. So the transformation of Cu and Cd fractions caused by the modified sludge was mainly between exchangeable concentration and organic-bound concentration, which led to the decline of Cu and Cd

  16. Inductively coupled plasma atomic emission spectrometric determination of acid-soluble metal elements chromium,manganese, zinc and copper in talcum powder%电感耦合等离子体原子发射光谱法测定滑石粉中酸溶金属元素铬锰锌铜

    Institute of Scientific and Technical Information of China (English)

    胡晓静; 曾泽; 王长文; 仇薪越; 牟明仁; 富瑶; 沈桂玲; 刘向宽

    2011-01-01

    After digestion by aqua regia with microwave and selection of corresponding spectral lines at 267. 7, 257. 6, 213. 8 and 324. 7 nm as analytical lines, the acid-dissoluble metal elements including chromium, manganese, zinc and copper in talcum powder were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) under optimized conditions with radio frequency power of 1 250 W, auxiliary air flow rate of 0. 60 L/min and atomizer pressure of 26 psi. When the concentration of each testing element was 2. 0 μg/mL, the interferences caused by 20. 0 μg/mL of I-ron, magnesium, calcium, aluminum, zinc, nickel and copper were all less than 5 %. Since the contents of these elements in talcum powder were less than 1 %, their influence on the determination could be ignored. The detection limits of chromium, manganese, zinc and copper were 0. 004 8, 0. 003 8, 0. 001 and 0. 002 6 μg/mL, respectively. This proposed method was applied in actual samples, and the determination results were consistent with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) with relative standard deviations (RSD, n = 8) of 1.1%-4. 2% and recoveries of 93 %-107 %.%以王水作溶剂,微波消解法消解样品,选择267.7、257.6、213.8和324.7 nm波长的光谱线分别作为铬、锰、锌和铜的分析线,在发射功率为1 250 W、辅助气流量为0.60 L/min、雾化器压力为26 psi的优化条件下以电感耦合等离子体原子发射光谱法(ICP-AES)测定了滑石粉中酸溶金属元素铬、锰、锌、铜含量.样品中的基体组分硅酸镁在王水中的溶解量很少,对测定没有影响.当测定待测元素浓度均为2.0μg/mL的溶液时,20.0 μg/mL的铁、镁、钙、铝、锌、镍、铜对待测元素的干扰均小于5%.由于滑石粉中这些元素含量小于1%,因此它们对测定的影响可以忽略.铬、锰、锌、铜的检出限分别为0.004 8、0.003 8、0.001、0.002 6μg/mL.滑石粉样品分析

  17. Changes in Tissue Metals After Cadmium Intoxication and Intervention With Chlorpromazine in Male Rats 

    Institute of Scientific and Technical Information of China (English)

    YANGXIAO-FANG; WANGSHU-YI; 等

    2000-01-01

    Cadmium(Cd),one of the most dangerous heavy metals,has a very similar ionic radius to calcium(Ca),The interference of cadmium in calcium homeostasis may play an important role in cadmium toxicity.Recent reports indicate that calmodulin(CaM) inhibitors such as trifluoperazine and chlorpromazine(CPZ) could protect rodents against cadmium toxicity,It was also reported that pretreatment of mice with zine(Zn)could reduce the adverse effects induced by cadmium.The aim of this study is to determine whether Cd changes the balance of other essential metals such as Zn and copper(Cu) in rat tissues,and whether CPZ can reverse these changes which are induced by cadmium intoxication.Adult male Sprague-Dawley(SD) rats were injected intraperitoneally(ip) with cadmium chloride(CdCl2)(0.2,0.4,0.8mg Cd/kg body wight) alone and 0.4mg Cd/kg in association with CPZ(5mg/kg) daily for a week.The control animals were injected with normal saline only.The results showed that the cadmium content in the liver,kidney,and testis increased significantly with a dose-response relationship.Cadmium treatment markedly increased the Zn and Ca content in some of the tissues,Hepatic and renal metallothionein(MT) increased significantly after cadmium intoxication,CPZ treatment,howerver,reduced cadmium content in liver,but not blood and kidney.CPZ seemed to decrease the content of MT in liver and significantly increase the amounts of MT in kidney.These data suggest that the intervention of cadmium with tissue essential metals may play a role in cadium toxicity in rats,and calmodulin inhibitors to some extent can reduce the adverse effect of cadmium by decreasing the cadmium load in tissues and reversing the unbalance of essetial metals.

  18. 锰污染土壤渗漏液与径流生态拦截净化系统的植物筛选%Screening of plant species for establishing an retention and purification ecosystem of soil infiltration water and surface runoff in manganese polluted area

    Institute of Scientific and Technical Information of China (English)

    陈星; 文仕知; 陈永华; 郝君; 刘凯; 吴子剑

    2012-01-01

    Screening of plant species were carried out for establishing an ecosystem for retention and purification of soil infiltration water and surface runoff in Xiangtan manganese polluted area. The results obtained from a five month plant growth period indicate that mushroom grass had a very low survival rate while Arundo donax var. versicolor and Acorus calamus Linn had a negative value in its biomass increment. In comparison, the other nine plant species, Thalia dealbata, Boehmeria, Canna warscewiezii A. Dietr, Phragmites australis, Typha orientalis Presl, Pontederia cordala, Nerium oleander, Pontederia cordata, Sofistem bulrush and Iris germanica grew well in the manganese polluted sites. The manganese contents in shoots of the nine plant species were all more than 1000 mg/kg and their zinc, copper and cadmium contents were also relatively high, with the ratio of the metal content in above-ground tissues to that in roots being greater than 1. In contrast, the above-ground tissue to root ratio of zinc, copper, manganese and cadmium contents in A. calamus and that of zinc, copper, and cadmium contents in A. donax var versicolor were lower than 1, suggesting that the metal accumulation in roots due to weak heavy metal transfer abilities of these species had led to poisoning effects on the pant growth. The highest manganese uptake in above-ground tissues of Boehmeria reached 217.8 mg per plant. The next uptake value was given by T. dealbata, Boehmeria, followed in turn by C. warscewiezii, Dietr, P. australis, P. cordata and S. bulrush.%为建立锰污染土壤渗漏液和径流收集处理系统,在湘潭锰矿废弃地开展了植物筛选试验.5个月植物生长的试验结果表明,香菇草成活率低,花叶芦竹、菖蒲生长量下降,而再力花、苎麻、紫叶美人蕉、芦苇、香蒲、夹竹桃、梭鱼草、水葱和德国鸢尾长势良好,其地上部分锰的含量多高于1 000 mg/kg,锌、铜、镉的含量也相对较高,锰含量地上

  19. Influence of methionine administration during chelation of cadmium by CaNa(3)DTPA and DMPS in the rat.

    Science.gov (United States)

    Tandon, S K; Singh, S; Prasad, S

    1997-07-01

    Influence of methionine administration was investigated in rats on the efficacy of calcium trisodium diethylenetriamine pentaacetate (CaNa(3)DTPA) and 2,3-dimercaptopropane-1 sulfonate (DMPS) in the treatment of cadmium intoxication. CaNa(3)DTPA, DMPS or methionine were quite effective in mobilizing cadmium from blood and all the tissues examined in cadmium pre-exposed animals. The combination of CaNa(3)DTPA and methionine was more efficient in reducing hepatic, renal and heart cadmium levels while that of DMPS and methionine was more efficient in lowering liver, kidney and brain cadmium levels than either of them alone. The combinations were also highly effective in enhancing the urinary and the fecal excretion of cadmium. The treatment with CaNa(3)DTPA, DMPS or methionine was quite effective in reversing cadmium inhibited tissue enzymes and alterations in blood and serum biochemical levels. The combined treatment with a chelator and methionine was more effective than the chelators alone in restoring cadmium induced changes in hepatic and renal transaminases. The treatment with CaNa(3)DTPA, DMPS or methionine appreciably decreased the depletion of endogenous zinc, copper and iron due to cadmium but the combined treatments were more efficient than the individuals in restoring the kidney and the brain copper levels only. The results show that the administration of methionine during chelation therapy may be beneficial in the treatment of cadmium intoxication.

  20. Manganese in Madison's drinking water.

    Science.gov (United States)

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  1. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  2. Measurement and analysis of serum lead, cadmium, zinc, copper and metallothionein in residents of Shaying River area%沙颍河流域居民血清铅、镉、锌、铜及金属硫蛋白的测定

    Institute of Scientific and Technical Information of China (English)

    李仕群; 朱静媛; 李岩; 王志瑾; 袁伟; 程学敏; 巴月; 崔留欣

    2013-01-01

    chosen from villages less than 5 km and more than 20 km away from the Shaying River respectively , which had similar pop-ulation composition and economy condition .The concentrations of lead and cadmium in drinking water , soil, grain and veg-etables samples from the two areas were measured respectively by flame atomic absorption spectrometry .Serum lead , cad-mium, zinc and copper levels were determined by cyclic voltammetry method .Serum MT level was measured by ELISA . Results:The levels of serum lead , cadmium in drinking water , soil, grain and vegetable samples in the contaminated area were significantly higher than those of control area ( lead:t =2.663,2.300,3.001,and 2.117,P<0.05;cadmium:t =3.549,2.073,2.202,and 2.167,P<0.05).The levels of serum lead, cadmium, zinc, and Cu/Zn in the contaminated area were significantly higher than those of control area respectively (t=5.544,10.438,and 5.556,P<0.05).Conclu-sion:Water pollution of Shaying River has affected the load of heavy metals in local residents .%目的:探讨沙颍河污染区外环境重金属暴露对居民血清铅、镉、锌、铜及金属硫蛋白( MT )的影响。方法:在距沙颍河河堤5 km以内和20 km以外各选取一个人口构成相似的村庄分别作为污染区和对照区,测量河水、饮用水、土壤、蔬菜和粮食中的铅、镉含量。采用火焰原子吸收光谱法测定河水、饮用水、土壤、蔬菜、粮食中的铅、镉含量;采用溶出伏安法测定各组人群血清中的铅、镉、锌、铜含量;采用ELISA方法测定人群血清中MT的含量。结果:污染区饮用水、土壤、粮食和蔬菜中的铅、镉含量均高于对照区(铅:t=2.663、2.300、3.001和2.117,P<0.05;镉:t=3.549、2.073、2.202和2.167,P<0.05);污染区人群的血清铅、镉水平和铜/锌比值高于对照区(t=5.544、10.438和5.556,P<0.05);血清MT含量随着血清铅、镉含量的

  3. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  4. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dew, William A. [Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1 K 3M4 (Canada); Department of Biology, Trent University, Peterborough, Ontario K9 J 7B8 (Canada); Veldhoen, Nik; Carew, Amanda C.; Helbing, Caren C. [Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8 P 5C2 Canada (Canada); Pyle, Greg G., E-mail: gregory.pyle@uleth.ca [Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1 K 3M4 (Canada)

    2016-03-15

    Highlights: • Cadmium impairs the olfactory response of rainbow trout. • Nickel and zinc, but not copper, protect against Cd-induced olfactory dysfunction. • Calcium, sodium, and magnesium also protect against the effect of cadmium. • Protection from cadmium is most likely not due to metallothionein expression. - Abstract: A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.

  5. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  6. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Z.; Reiske, H.R.; Wilson, D.B.

    1999-11-01

    Two different Cd{sup 2+} uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn{sup 2+} uptake system which also takes up Cd{sup 2+} and is induced by Mn{sup 2+} starvation. The calculated K{sub m} and V{sub max} are 0.26 {mu}M and 3.6 {mu}mol g of dry cell{sup {minus}1} min{sup {minus}1}, respectively. Unlike Mn{sup 2+} uptake, which is facilitated by citrate and related tricarboxylic acids, Cd{sup 2+} uptake is weakly inhibited by citrate. Cd{sup 2+} and Mn{sup 2+} are competitive inhibitors of each other, and the affinity of the system for Cd{sup 2+} is higher than that for Mn{sup 2+}. The other Cd{sup 2+} uptake system is expressed in Mn{sup 2+}-sufficient cells, and no K{sub m} can be calculated for it because uptake is nonsaturable. Mn{sup 2+} does not compete for transport through this system, nor does any other tested cation, i.e., Zn{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Fe{sup 2+}, or Ni{sup 2+}. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn{sup 2+}-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn{sup 2+} for growth as the parental strain. Mn{sup 2+} starvation-induced Cd{sup 2+} uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn{sup 2+} or Cd{sup 2+} accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system.

  7. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  8. 21 CFR 184.1452 - Manganese gluconate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese gluconate. 184.1452 Section 184.1452 Food... Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate (C12H22MnO14... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  9. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  10. Cadmium status in Egypt

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is inferred from these studies that releases of Cd are still increasing and it is recommended that measures must be taken to reduce emissions of cadmium. Any cadmium discharged into the Egyptian environment may move from one compartment to another at varying rates,resulting in an accumulation in compartments such as soils and biota. Such accumulation can be expected to increase with continued emissions,and attention should be given to all sources of cadmium, natural as well as anthropogenic especially in the industrial cities in Egypt. Cadmium present in sewage, as well as industrial effluent (also, other liquid and solid wastes) and sewage sludge will increase levels in soils and is xpected to contribute to dietary levels and body burdens. The current information indicates that such effects may have to be evaluated over long periods of time, possibly as long as 50 - 100 years.

  11. Anion-exchange and anthracene-encapsulation within copper(II) and manganese(II)-triazole metal-organic confined space in a single crystal-to-single crystal transformation fashion.

    Science.gov (United States)

    Liu, Ju-Yan; Wang, Qian; Zhang, Li-Jun; Yuan, Bin; Xu, Yao-Yao; Zhang, Xin; Zhao, Cong-Ying; Wang, Dan; Yuan, Yue; Wang, Ying; Ding, Bin; Zhao, Xiao-Jun; Yue, Min Min

    2014-06-16

    A new multidentate ligand 1-(9-(1H-1,2,4-triazol-1-yl)anthracen-10-yl)-1H-1,2,4-triazole (tatrz) was designed and synthesized. Using tatrz as a building block, three novel coordination frameworks, namely, {[Cu(tatrz)2(NO3)2]·(CH3OH)·4H2O}n (1), {[Cu(tatrz)2(H2O)2](BF4)2}n (2), and [Mn(tatrz)2(SCN)2(CH3OH)]·2H2O (3) can be isolated. Anion-exchange experiment indicates that NO3(-) anions in the two-dimensional (2D) copper framework of 1 can be completely exchanged by ClO4(-) in an irreversible single crystal-to-single crystal (SC-SC) transformation fashion, as evidenced by the anion-exchange products of {[Cu(tatrz)2(H2O)2](ClO4)2·4CH3OH} (1a). Further, if 1a was employed as a precursor in N,N-dimethylformamide (DMF), an isomorphic solvate of {[Cu(tatrz)2(DMF)2](ClO4)2·2H2O}n (1b) can be generated during the reversible dynamic transformation process. When 1 was immersed in CH3OH, a distinct 2D layer {[Cu(tatrz)2(NO3)2]·4.4CH3OH·0.6H2O}n (1c) was isolated. Interestingly, the solvent-exchange conversion is also invertible between 1 and 1c, which exhibits spongelike dynamic behavior with retention of crystalline integrity. If the 2-fold interpenetrating three-dimensional (3D) framework 2 is selected, it can be transformed into another 2-fold interpenetrating 3D framework {[Cu(tatrz)2(H2O)2](ClO4)2·5.56H2O}n (2a) in a reversible SC-SC transformation fashion. However, when the light yellow crystals of mononuclear complex 3 were exposed to trichloromethane containing aromatic organic anthracene (atan), through our careful observation, the crystals of 3 were dissolved and reassembled into dark brown crystals of 2D crystalline coordination framework {[Mn(tatrz)2(SCN)2]·(atan)}n (3a). X-ray diffraction revealed that in 3a, atan acting as an organic template was encapsulated in the confined space of the 2D grid. Luminescent measurements illustrate that 3a is the first report of multidimensional polymers based on triazole derivatives as luminescent probes of Mg(2+).

  12. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II).

    Science.gov (United States)

    Kovala-Demertzi, Dimitra; Hadjipavlou-Litina, Dimitra; Staninska, Malgorzata; Primikiri, Alexandra; Kotoglou, Chronis; Demertzis, Mavroudis A

    2009-06-01

    Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)(2)(H(2)O)(2)], 1, [Co(mef)(2)(H(2)O)(2)], 2, [Ni(mef)(2)(H(2)O)(2)], 3, [Cu(mef)(2)(H(2)O)](2), 4 and [Zn(mef)(2)], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl(3) solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, beta-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)(2)(H(2)O)(2)] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)(2)] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 +/- 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 +/- 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7

  13. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium.

    OpenAIRE

    Brown, J A; Glenn, J K; Gold, M H

    1990-01-01

    The appearance of manganese peroxidase (MnP) activity in nitrogen-limited cultures of Phanerochaete chrysosporium is dependent on the presence of manganese. Cultures grown in the absence of Mn developed normally and produced normal levels of the secondary metabolite veratryl alcohol but produced no MnP activity. Immunoblot analysis indicated that appearance of MnP protein in the extracellular medium was also dependent on the presence of Mn. Intracellular MnP protein was detectable only in cel...

  14. Cointercalation of titanium dichalcogenides with transition metals and copper

    Science.gov (United States)

    Titov, A. A.; Titov, A. N.; Titova, S. G.; Pryanichnikov, S. V.; Chezganov, D. S.

    2017-01-01

    Cointercalated materials are studied, obtained by introducing copper into a TiSe2 lattice preintercalated with transition metals M = Mn, Fe, Co, or Ni. The analysis of the state of cointercalated systems at 950°C shows that copper reduces manganese and iron, but it is incapable of reducing cobalt or nickel. To explain the results, the values of the binding energy of hybrid states M3d/Ti3 d are compared.

  15. [Evaluation of the exposure to copper and other non-ferrous metals in copper foundries].

    Science.gov (United States)

    Linscheid, D

    1985-01-01

    Working environment has been evaluated in two copper metallurgy plants by analysis of Cu and other metals (Pb, Cd, Zn) concentrations. At the Charge Preparation Department the greatest concentrations of Cu and Pb were found. Copper concentrations at Metallurgy Department (shaft furnace, converter and anodic furnace) oscillate between 0.1-0.5 mg/m3, and Pb 0.06-0.71 mg/m3. In order to accurately evaluate copper exposure at working places where copper fume may arise (Metallurgy Department) it is necessary to determine Cu concentrations in respirable dust. At other working places Cu, Pb and Zn concentrations were low. Cadmium appears in vestigial amounts. The quantitative analysis indicates that airborne copper at the Charge Preparation Department and at the shaft furnace appears as CuS, at converter as Cu2O, and at other working places as metal Cu.

  16. Plausible Mechanisms of Cadmium Carcinogenesis

    Science.gov (United States)

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  17. Essential and nonessential elements in nestling rooks Corvus frugilegus from eastern Poland with a special emphasis on their high cadmium contamination.

    Science.gov (United States)

    Orłowski, Grzegorz; Kamiński, Piotr; Kasprzykowski, Zbigniew; Zawada, Zbigniew; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J

    2012-11-01

    Concentration of minerals (sodium, potassium, calcium [Ca], magnesium, iron [Fe], copper, zinc [Zn], manganese [Mn], and cobalt) as well as toxic metals (cadmium [Cd], lead [Pb]) were determined in five tissues (liver, lung, kidney, muscle, and bone) of nestling rooks (Corvus frugilegus; 1 to 13 days old) found dead in seven breeding colonies in eastern Poland. Cd concentration in all analyzed tissues was in the narrow range of 17.0-17.2 mg/kg dry weight (dw) Cd, which in the light of the literature data indicates acute contamination by this toxic metal. Similarly, we found increased levels of Pb, which in all tissues ranged between 5.0 and 6.2 mg/kg dw. Results of multivariate general linear model (GLM) testing of the effect of three variables (tissue type, colony, and nestling age) on tissue concentrations of various metals showed significance for Fe, Cu, Zn, and Mn. Only concentrations of Ca, Fe, and Zn differed significantly between the analyzed tissues. GLM analysis did not show any statistically significant differences in tissue levels of minerals and both toxic metals among examined rookeries, which indicates the widespread presence of nonpoint Cd and Pb pollution linked to agricultural activity and similar levels of these inorganic contaminants on crop fields (feeding grounds) around breeding colonies. We concluded that high levels of both toxic metals, Cd and Pb, probably resulting from the diet of nestling rooks, are based mainly on a diet of ground-dwelling beetles gathered on crop fields.

  18. Disponibilidad de cinc, cobre, hierro y manganeso extraíble con DTPA en suelos de córdoba (Argentina y variables edáficas que la condicionan Availability of DTPA extractable zinc, copper, iron and manganese in Córdoba (Argentina soils and its relationship with other properties

    Directory of Open Access Journals (Sweden)

    Eduardo Volmer Buffa

    2005-12-01

    Full Text Available Se midió el contenido en suelo de Cu, Zn, Fe y Mn extraíbles con DTPA y se relacionó con la materia orgánica, pH, tenor salino y cantidad de carbonatos en Molisoles, Entisoles y Alfisoles de la llanura chaco-pampeana, en la provincia de Córdoba, Argentina. Las muestras de suelo, colectadas en 48 situaciones, correspondientes a distintas condiciones texturales (desde franco limoso a franco arenoso, de acidez (débil acidez a alta alcalinidad y con salinidad baja a media, fueron contrastadas con valores de suficiencia para microelementos, obtenidos de la bibliografía. Se encontraron valores muy bajos de Cu en suelos arenosos (0,1-1 mg kg-1 y los mayores correspondieron a Argiudoles (PO (1,5 -2,5 mg kg-1. El Zn estuvo por debajo de 1 mg kg-1 en la mayoría de los sitios. El Mn presentó un rango de 23 a 85 mg kg-1 y el Fe de 21 a 68 mg kg-1, valores superiores a los considerados críticos y con los máximos en Argiudoles (PO. Las variables acidez y carbonatos se asociaron con el Cu, la materia orgánica y la salinidad con el Zn, todas con signo positivo.Cu, Zn, Fe and Mn DTPA extractable content and it relationship with organic matter, pH, salinity and lime were studied in 48 soils (Mollisol, Entisol and Alfisol from some geomorphic regions of the Chaco-Pampean plain of Cordoba (Argentina. Soils ranged from silty loam to loamy sandy texture, weak acidity to strong alcalinity, and low to medium salinity, they were sampled from 0 to 60 cm depth. Copper were at its critical range (0,1-1 mg.kg-1 only in sandy soils, with the highest contents (1.5 -2.5 mg kg-1 in Argiudolls. Zinc was below 1 mg kg-1 in most regions. Manganese (23-85 mg kg-1 and Fe (21-68 mg kg-1 were above their respective critical content in all regions, with highest contents in Argiudolls for both micronutrients. Zn, Cu and Mn distribution in depth profile, was associated with organic matter content. Soil variables lime and pH for Cu, and OM and salinity for Zn, were positively

  19. Transition-metal prion protein attachment: Competition with copper

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  20. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures.

    Science.gov (United States)

    Dew, William A; Veldhoen, Nik; Carew, Amanda C; Helbing, Caren C; Pyle, Greg G

    2016-03-01

    A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.

  1. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  2. ON-LINE FI-PRECONCENTRATION-FAAS DETERMINATION OF CADMIUM AND COPPER IN WATER%在线流动注射螯合树脂预富集石英缝管增敏火焰原子吸收法测定水中痕量镉和铜

    Institute of Scientific and Technical Information of China (English)

    张秀尧

    2001-01-01

    The fiowinjection system for the determination of cadmium and copper in water by on-line preconcentration with chelating resin and FAAS determination with slotted quartz tube is described in this paper. The water sample is mixed with a buffer solution of pH 8.0, and then pumped through a conical column packed with 200mg of poly-(8-HQ-SO3H) chelate resin, on which the cadmium (Ⅱ) and copper (Ⅱ) in the sample are adsorbed. The flow rate of the sample solution is 6.0ml·min-1 , and the sampling time is 90s. The Cd(Ⅱ) and Cu (Ⅱ) are then eluted from the resin with 0.5mol·L-1 HCl, and the eluted solution is introduced directly into the nebulizer of the atomic absorption spectrometer with a slotted quartz tube. By this Fl-system, the sensitivity of the determination are raised by a factor of 136 (for Cd) and 120 (for Cu) as compared with the conventional FAAS method. The detection limits (3σ) are found to be 0.1μg·L-1 and 0.2μg·L-1 for Cd(Ⅱ) and Cu(Ⅱ) respectively, and the RSD′s are found to be 2.8%, at the level of 2.0μg·L-1 of Cd(Ⅱ), and 3.6% at the level of 5μg · L-1of Cu ( Ⅱ ). The proposed method has been successfully applied to the determination of Cd ( Ⅱ ) and Cu ( Ⅱ ) in drinking water at a sampling frequency of 30 samples per hour.%应用高效的在线流动注射螯合树脂预富集石英缝管增敏火焰原子吸收系统直接测定水中痕量镉和铜,试验用内装200mg Amberlite XAD-4键合的5-磺酸-8-羟基喹啉螯合树脂的锥形柱,在pH 6条件下,样品流速为6.0ml·min-1,90s装样,用0.5mol·L-1HCl洗脱,分析速度为30样·h-1分别获得38和40倍的富集,经石英缝管增敏,总灵敏度分别提高136和120倍,检出限为0.1和0.2μg·L-1。对镉和铜含量分别为2.0,5.0μg·L-1的水样连续测定11次的相对标准偏差分别为2.8%和3.4%,可直接测定水体中μg·L-1级的镉和铜。

  3. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    Institute of Scientific and Technical Information of China (English)

    郝瑞霞; 彭省临

    1999-01-01

    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  4. 29 CFR 1910.1027 - Cadmium.

    Science.gov (United States)

    2010-07-01

    ... battery Plate making, plate preparation 50 All other processes 15 Zinc/Cadmium refining* Cadmium refining... as an airborne concentration of cadmium of 2.5 micrograms per cubic meter of air (2.5 µg/m3... air cadmium level to which an employee is exposed means the exposure to airborne cadmium that...

  5. ICP-MS法测定减肥茶中铅、汞、镉、砷、铜重金属元素△%Determination of Lead,Mercury,Cadmium,Arsenic,Copper heavy metals in weight-reducing tea by ICP-MS

    Institute of Scientific and Technical Information of China (English)

    吴一兵; 苏建

    2013-01-01

    In this paper,microwave digestion approach to weight-reducing tea samples,with the weight-reducing tea by ICP-MS determination of lead,mercury,cadmium,arsenic,copper heavy metal content.By optimizing the conditions for ICP-MS instrument measured using an internal standard to overcome the instrument drift and sample matrix effects,the establishment of the ICP-MS method for simultaneous determination of many elements in weight-reducing tea.Furthermore, the contamination of heavy metals in severa1 commercial available weight-reducing teas were evaluated which can provide valuable references for the healthy.%  本文采用微波消解方法处理减肥茶样品后,用ICP-MS法测定样品中铅、汞、镉、砷、铜重金属元素的含量,通过优化ICP-MS仪器测定条件,用内标克服仪器信号漂移及样品基体效应等的影响,建立了ICP-MS法同时测定减肥茶中多种元素的方法,同时对市场上不同厂家及不同批次的7例样品重金属的污染状况进行了评估,为健康安全使用减肥茶提供有益参考。

  6. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...

  7. Cadmium - is it hazardous

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    The report summarizes the state of knowledge and experience on cadmium. Biological, toxicological and epidemiological data have been evaluated. Cd pollution of the environment is reviewed under the aspect of human health. Uptake in food, threshod values of Cd exposure of the population, types and extent of health hazards, possible carcinogenic effects and future fields of research are discussed.

  8. Manganese depresses rat heart muscle respiration

    Science.gov (United States)

    It has previously been reported that moderately high dietary manganese (Mn) in combination with marginal magnesium (Mg) resulted in ultrastructural damage to heart mitochondria. Manganese may replace Mg in biological functions, including the role of enzyme cofactor. Manganese may accumulate and subs...

  9. 21 CFR 582.5458 - Manganese hypophosphite.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  10. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  11. 21 CFR 582.5452 - Manganese gluconate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  12. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  13. 21 CFR 73.2775 - Manganese violet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium...

  14. 21 CFR 582.5455 - Manganese glycerophosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate....

  15. 21 CFR 582.5449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  16. Cadmium and cancer.

    Science.gov (United States)

    Hartwig, Andrea

    2013-01-01

    Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development.

  17. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiu-lan; Saigusa Masaihiko

    2007-01-01

    Previous studies have shown that porous hydrated calcium silicate(PS)is very effective in decreasing cadmium(Cd)content in brown rice.However,it is unclear whether me PS influences cadmium transformation in soil.The present study examined the effect of PS on pH,cadmium transformation and cadmium solubility in Andosol and Alluvial soil,and also compared its effects with CaCO3,acidic porous hydrated calcium silicate(APS)and silica gel.Soil cadmium was operationally fractionationed into exchangeable(Exch),bound to carbonates(Carb).bound to iron and manganese oxides(FeMnOx),bound to organic matters(OM)and residual(Res)fraction.ApplicatiOn of PS and CaCO3 at hig rates enhanced soil pH,while APS and silica gel did not obviously change soil pH.PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil,thus reducing the Exch-Cd in me tested soils.However,PS was less effecfive than CaCO3 at the same application rate.Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel.There were no obvious differences in the solubility of cadmium in soils treated with PS,APS,silica gel and CaCO3 except Andosol treated 2.0%CaCO3 at the same pH of soil-CaCl2 suspensions.These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.

  18. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid – PR 445, 86051-990 Londrina (Brazil); Abrão, Taufik [Departamento de Engenharia Elétrica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid – PR 445, 86051-990 Londrina (Brazil); Santos, Maria Josefa, E-mail: mjyabe@uel.br [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid – PR 445, 86051-990 Londrina (Brazil)

    2014-01-30

    Highlights: • The cadmium sorption–desorption behavior on environmental samples was investigated. • The sorption decreased due to competition between Cd and protons in aqueous medium. • The experimental data were successfully adjusted to the Langmuir–Freundlich model. • The role of low-energy non-specific sites on the sample surfaces was elucidated. • The desorption rate and hysteresis index suggested a high risk of cadmium pollution. -- Abstract: The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption–desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption–desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir–Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin.

  19. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    Science.gov (United States)

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  20. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... low levels are toxic to many organisms (Kalay and Canli, 2000). Increases in ... and metalloids, are naturally present in aquatic ecosystems, fish and other ... tions manifesting within all levels of the food chain (Tessier and.

  1. Atomic and magnetic correlations in a copper - 5% manganese alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murani, A.P.; Schaerpf, O.; Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Raphel, R. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1997-04-01

    Interest in magnetism of Cu-Mn alloys has been revived and sustained by a number of very interesting neutron investigations on single-crystal samples which show `spin-density wave` (SDW) peaks at incommensurate wave-vectors. Recently such peaks have been observed even in very dilute samples with Mn concentration as low as {approx} 0.5 at.%. The proposed interpretation by the authors that these peaks represent incommensurate antiferromagnetic ordering, therefore, questions the widely-held view that at low enough temperatures the solute spins in this and similar alloys freeze with random or quasi-random orientations, forming a spin-glass state. Atomic and magnetic correlations have been investigated in a single crystal of Cu-5 at.% Mn within the first Brillouin zone using polarised neutrons and making use of the multi-angle three-dimensional polarisation analysis capability of the D7 spectrometer as a firs step in our aim to shed further light on the phenomenon. (author). 6 refs.

  2. Bioleaching of copper, aluminum, magnesium and manganese from ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... fast from low grade ores and wastes due to depletion of high grade ... the mining industry, at a time when high grade mineral re- sources are ...... solid waste incineration fly ash using adapted metal tolerant Aspergillus niger.

  3. Copper deficiency conditioned by high levels of zinc, manganese and iron in the Middle Paraíba, RJ, BrazilDeficiência de cobre condicionada a altos teores de zinco, manganês e ferro na região do Médio Paraíba, RJ, Brasil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lopes Marques

    2013-06-01

    Full Text Available Concentrations of microminerals in the soils, pastures, and sera of adult and young bovines were determined in 7 areas of Middle Paraíba, Rio de Janeiro, Brazil, that showed a history of low reproductive performance, marked weight loss of cows after calving, allotriophagy, and changes in pelage color. The animals were subjected to clinical evaluation, and the main signs were as follows: regular to poor general condition, anemia, alopecia, depigmentation of the pelage in adult animals, discolored pelage (reddish in dark animals, and thinning and loss of hair around the eyes. Calves showed bad general appearance, retarded development, and rough, dry, and spiked hair. There were other evident signs such as craving and consumption of foreign material such as soil, wood, or bones. After the interview with the owners and on-site evaluation of the herds, soil samples, forages, and blood serum samples were obtained for analysis of macro and micronutrients in 2 different periods: May/June (end of the rainy season–autumn and October/November (end of dry season–spring. The findings of soil (3.03 ± 1.72/3.13 ± 1.22 mg/ dm3 and forage (11.91 ± 2.92/13.6 ± 5.23 ppm samples indicated normal and high levels of copper, respectively, in most of the pastures which is contrary to the clinical signs of deficiency observed in the animals. However, the copper levels in serum were lower than normal (0.42 ± 0.14/0.45 ± 0.17 ppm in majority of the animals, in periods of evaluation and for all properties. Excessively high values of iron, zinc, and manganese were found in soil and pasture samples, which could have probably been acting as antagonists of copper absorption, resulting in a conditioned deficiency. Descrevem-se as concentrações de microelementos minerais em amostras de solos, pastagens e soro de bovinos adultos e jovens em sete propriedades na região do Médio Paraíba, RJ, Brasil com histórico de baixo desempenho reprodutivo, emagrecimento

  4. Renal cadmium overload without nephrotoxicity.

    OpenAIRE

    1981-01-01

    A redundant nickel/cadmium battery worker was investigated for non-specific fatigue after completing five years in the industry. Sensitive techniques for in-vivo organ cadmium measurement showed a moderate accumulation in the liver but a very large concentration in the kidneys. Despite this, overall glomerular and tubular function were not impaired. It was concluded that the mechanism of proteinuria observed in some cadmium workers is obscure and not clearly related to the degree of kidney sa...

  5. Cadmium in Sweden - environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H.; Iverfeldt, Aa. [Swedish Environmental Research Inst. (Sweden); Borg, H.; Lithner, G. [Stockholm Univ. (Sweden). Inst. for Applied Environmental Research

    1998-03-01

    This report aims at assessing possible effects of cadmium in the Swedish environment. Swedish soils and soft freshwater systems are, due to a generally poor buffering capacity, severely affected by acidification. In addition, the low salinity in the Baltic Sea imply a naturally poor organism structure, with some important organisms living close to their limit of physiological tolerance. Cadmium in soils is mobilized at low pH, and the availability and toxicity of cadmium in marine systems are enhanced at low salinity. The Swedish environment is therefore extra vulnerable to cadmium pollution. The average concentrations of cadmium in the forest mor layers, agricultural soils, and fresh-waters in Sweden are enhanced compared to `back-ground concentrations`, with a general increasing trend from the north to the south-west, indicating strong impact of atmospheric deposition of cadmium originating from the central parts of Europe. In Swedish sea water, total cadmium concentrations, and the fraction of bio-available `free` cadmium, generally increases with decreasing salinity. Decreased emissions of cadmium to the environment have led to decreasing atmospheric deposition during the last decade. The net accumulation of cadmium in the forest mor layer has stopped, and even started to decrease. In northern Sweden, this is due to the decreased deposition, but in southern Sweden the main reason is increased leakage of cadmium from the topsoil as a consequence of acidification. As a result, cadmium in the Swedish environments is undergoing an extended redistribution between different soil compartments, and from the soils to the aquatic systems. 90 refs, 23 figs, 2 tabs. With 3 page summary in Swedish

  6. Modeling of some biochemical mechanisms of development of manganese hypermicroelementosis

    Directory of Open Access Journals (Sweden)

    O. V. Goncharenko

    2013-04-01

    , muscles, liver and spleen. It was accompanied by increasing calcium content in liver, heart, muscle, kidneys and bones as well as by disorders of Ca/Mg ratios. MnCl2causes significant redistribution of the microelements in the rats’ organs. It is characterized by a decrease of copper, zinc and nickel contents in almost all studied tissues. The most antagonistic effect of manganese manifested in relation to nickel and copper in heart and spleen. A reduction of zinc content was most pronounced in spleen, while its contents in bones and kidneys almost don’t change. The study of the impact of manganese on biochemical parameters of membranes proved for the first time the malfunction of erythrocytes’ membranes. It results in increasing sorption capacity of the red blood cells glycocalyx to alcian blue. Using the erythrocyte model we established that manganese cations cause a significant increase in sorption capacity of the red blood cells (53.4 ± 1.8% and their osmotic fragility, as evidenced by an increase of spontaneous hemolysis to 42%. The other evidence is the change of surface properties (glycocalyx, which indicated by an increase in the sialic acid content by 60% as compared with the control. The obtained data of the model study of the dynamics of the sorption capacity of erythrocytes glycocalyx to alcian blue, osmotic resistance of erythrocytes, activation of lipid peroxidation and increased level of sialic acid may be a signal that the primary mechanism of manganese intoxication is a damage of cell (plasma membranes. The data obtained on a mitochondrial model suggests that MnCl2, acting as an antagonist of magnesium, has the ability to disturb respiration and oxidative phosphorylation that inhibits the energy metabolism of a cell. Mitochondrial oxidation of malate+glutamate was affected by MnCl2 in narrow range concentrations 3–4.5 mM that cause disengagement (3 mM and complete inhibition (4.5 mM. The effectiveness of manganese intoxicated rats treatment

  7. Regulations of essential amino acids and proteomics of bacterial endophytes Sphingomonas sp. Lk11 during cadmium uptake.

    Science.gov (United States)

    Khan, Abdul Latif; Ullah, Ihsan; Hussain, Javid; Kang, Sang-Mo; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2016-07-01

    Endophytic bacteria have been recently known for their potential to bioaccumulate metal from contaminated mediums. However, little is known about the physiological responses of phytohormone producing (gibberellins and auxins) endophytes during metal stressed environment. Endophytic bacteria Sphingomonas sp. LK11 was assessed for metals bioaccumulation and its physiological responses towards metal stress. The endophyte was grown in cadmium (Cd), zinc (Zn), aluminum (Al), manganese (Mn), and copper (Cu) contaminated mediums. The results revealed significantly higher endophytic growth potentials in Cd, Cu and Zn contaminations; however, the bio-accumulation rate of Cd was more prolific as compared to Zn and Cu. Interestingly, the SDS-PAGE profile showed increased expressions of proteins in Zn and Cu than in Cd. A similar attenuate response of amino acids was also observed for Cd than in case of Zn and Cu. Only asparagine, glutamate and proline showed significant impact in Cd while Cu and Zn had significantly higher responses of almost all amino acids. Detailed protein profile showed the activation of chaperone, antioxidative and detoxification proteins. Increased regulations of oxidoreductases, superoxide dismutase, thioredoxin, malate dehydrogenase, 2-oxoisovalerate dehydrogenase, 2-oxoisovalerate dehydrogenase, and dihydrolipoyl dehydrogenase were observed. The cellular defense-related protein responses were potent against Cd stress. The results conclude that Sphingomonas sp. LK11 reprogram its amino acids and proteomic expressions and maintain a steady growth during Cd stress. Using such phytohromones producing endophytic bacterium can be ideal approach to increase the phytoextraction potential of metal remediating plants. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 887-896, 2016.

  8. Manganese in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; Francois, P.

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other

  9. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs.

    Science.gov (United States)

    Gresakova, Lubomira; Venglovska, Katarina; Cobanova, Klaudia

    2016-12-01

    Manganese (Mn) is a trace element required for normal physiological processes in animals and humans. Organic forms of trace elements are expected to have higher bioavailability in comparison with inorganic sources. The effect of feeding a diet supplemented with different sources of manganese to lambs was studied in a 112-d feeding trial. The aim of this study was to investigate the deposition of Mn in relation to activities of superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD) and arginase in the tissues of lambs fed the diet supplemented with an inorganic or an organic source of manganese up to the maximum total Mn content allowed in the European Union (150mg Mn/kg). A total of eighteen female lambs of the improved Valachian breed were randomly allocated to three dietary treatments and fed an unsupplemented basal diet (Control, 31mg Mn/kg) or the identical diet supplemented with manganese sulphate (MnSO4) or manganese chelate of glycine hydrate (Mn-Gly) with a total Mn content up to 150mg/kg. Regardless of the source, feed supplementation with manganese increased Mn concentrations in plasma (P˂0.05) and the liver (P˂0.001) as well as the activity of liver MnSOD (P˂0.05) and arginase (P˂0.001) compared with the control lambs. In the kidney cortex, the concentration of Mn was greatest in lambs fed the diet supplemented with the chelated Mn source compared with animals receiving the inorganic Mn source (P˂0.05) and the unsupplemented diet (P˂0.001). The 112-d intake of feed enriched with manganese did not result in any change in Mn levels, SOD or MnSOD activity in pancreas and kidney tissues. Plasma Cu concentration was depressed in both supplemented treatments. No analyzed tissue showed a change in zinc and copper levels, except the greater Cu concentration in the liver of lambs fed the diet with Mn-Gly. The presented results did not indicate any differences between dietary Mn sources either in Mn tissue deposition or activity of SOD, MnSOD and

  10. CADMIUM – ENVIRONMENTAL HAZARD

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-06-01

    Full Text Available The paper presents some information about current status of cadmium as an environmental health problem. Agricultural uses of phosphate fertilizers, sewage sludge and industrial uses of Cd are the major source of widespread of this metal at trace levels into the general environment and human foodstuffs. It is well known that high cadmium (Cd exposure causes renal damage, anemia, enteropathy, osteoporosis, osteomalacia, whereas the dose-response relationship at low levels exposure is less established. During the last decade an increasing number of studies have found an adverse health effects due to low environmental exposure to Cd. Many authors try to determine the relationship between Cd intake and Cd toxicity indicators, especially dealing renal tubular damage. The level of b2-microglobulin in urine is regarded as the most sensitive biomarker of renal disfunction due to low environmental Cd concentrations.

  11. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...... leachates showed different Cd speciation patterns as expected. Some leachates were dominated by free divalent Cd (1-70%), some by inorganic complexes (1-87%), and some by organic complexes (7-98%)....

  12. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    Science.gov (United States)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  13. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anwei; Zeng, Guangming; Chen, Guiqiu; Fan, Jiaqi; Zou, Zhengjun; Li, Hui; Hu, Xinjiang; Long, Fei [Hunan Univ., Changsha (China). College of Environmental Science and Engineering; Ministry of Education, Changsha (CN). Key Lab. of Environmental Biology and Pollution Control (Hunan Univ.)

    2011-08-15

    Phanerochaete chrysosporium has been recognised as an effective bioremediation agent due to its unique degradation to xenobiotic and biosorption ability to heavy metals. However, few studies have focused on the simultaneous removal of heavy metals and organic pollutants. The aim of this work was to study the feasibility of simultaneous cadmium removal and 2,4-dichlorophenol (2,4-DCP) degradation in P. chrysosporium liquid cultures. The removal efficiencies were pH dependent and the maximum removal efficiencies were observed at pH 6.5 under an initial cadmium concentration of 5 mg/L and an initial 2,4-DCP concentration of 20 mg/L. The removal efficiencies for cadmium and 2,4-DCP reached 63.62% and 83.90%, respectively, under the optimum conditions. The high production levels of lignin peroxidase (7.35 U/mL) and manganese peroxidase (8.30 U/mL) resulted in an increase in 2,4-DCP degradation. The protein content decreased with increasing cadmium concentration. The surface characteristics and functional groups of the biomass were studied by scanning electron microscopy and a Fourier-transformed infrared spectrometer. The results showed that the use of P. chrysosporium is promising for the simultaneous removal of cadmium and 2,4-DCP from liquid media. (orig.)

  14. Is cadmium hazardous to health. Cadmium - ein Gesundheitsrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    This study entitled ''Is cadmium hazardous to health'' summarizes the current state of knowledge on and experience with cadmium. The authors have made efforts to take into account the more recent literature relating to cadmium. The data evaluated were, especially, biological, toxicological, and epidemiological ones. A principal object was to try to assess the importance of the presence of cadmium in the environment to man. The interest was focused on the uptake of heavy metals with food, danger thresholds for the cadmium exposure of the population, nature and extent of eventual damage to health including possible carcinogenous effects, and suggestions for further points of main emphasis in research. 3 figs., 12 tabs.

  15. On the optimum conditions for the reduction of nitrate to nitrite by cadmium.

    Science.gov (United States)

    Nydahl, F

    1976-05-01

    The variables of direct importance in the reduction of nitrate to nitrite by a metallic reductant such as cadmium used in a reductor column are discussed with special reference to the determination of nitrate as nitrite in very dilute solutions, e.g., natural waters. As a result of these considerations the effect of flow-rate (expressed as bed-volumes min ), pH, temperature, chloride concentration and various types of reductor cadmium on the yield of nitrite is investigated. The effect of dissolved oxygen in the sample solution on pH and cadmium concentration in the reduced solution is demonstrated. At constant pH a maximum yield of nitrite is obtained at a certain flow-rate, which is explained as the result of a rapid formation and simultaneously proceeding slow reduction of nitrite. With increasing pH this maximum is shifted to lower flow-rates, and grows broader whilst the yield at maximum approaches 100%; at pH 9.5 a yield of 99.9 +/- 0.1% is obtained. The temperature has little effect on the reduction rate in the interval 20-30 degrees but at 10 degrees the reduction is noticeably slower. Chloride ions have a strongly retarding effect on the reduction rate but the yield at maximum is not affected. Electrolytically precipitated cadmium, filings of pure cadmium or amalgamated pure cadmium all give practically the same yield at maximum though some differences in reduction rate are observed. Impure cadmium or copper-cadmium and silver-cadmium, owing to the formation of galvanic cells with higher reducing power, give a high reduction rate, which also applies to nitrite, causing a poorer yield at maximum. The practical consequences of the results are thoroughly discussed.

  16. 铜对伴矿景天生长及锌镉吸收性的影响%Effects of Copper on Growth and Zinc and Cadmium Accumulation of Sedum plumbizincicola

    Institute of Scientific and Technical Information of China (English)

    李柱; 任婧; 杨冰凡; 王松凤; 吴龙华; 骆永明

    2012-01-01

    利用植物生长室水培试验和温室土培盆栽试验相结合,研究了Cu对Zn、Cd超积累植物伴矿景天生长及Zn、Cd吸收性的影响.水培试验结果显示,0.31~50μmol/L Cu处理14天对伴矿景天生长及对Zn、Cd吸收性没有显著影响;但1 00 μmol/L Cu处理显著抑制植物生长,降低地上部Zn、Cd及根中Cd浓度,对根中Zn浓度变化没有显著影响.盆栽试验结果发现,在土壤Cu仅为3.61 mg/kg时伴矿景天生长不良,外加Cu显著促进其生长并随Cu浓度升高效应增加:但施用3 mmol/kgEDDS和再次外加250 mg/kg Cu处理使伴矿景天因体内Cu积累量过高而导致明显毒害,地上部Cu最高达1068 mg/kg.可见低量Cu处理可促进伴矿景天生长,利于植物对土壤Zn、Cd的吸取修复,但土壤中Cu浓度过高将抑制Zn、Cd超积累植物的生长,降低其Zn、Cd吸收能力,在利用该Zn、Cd超积累植物修复高Cu的Zn和Cd污染土壤时应采取适当措施降低Cu毒害效应.%Growth chamber hydroponics culture and glass house pot experiment were conducted to study the effects of copper on the growth of Sedum plumbtzincicoh plant and its accumulations of Zn and Cd. The results from the hydroponics culture showed that there was no significant difference on the growth and Zn and Cd concentrations of Sedum plant among the treatments of low solution Cu concentrations (0.31-SO umol/L), but 100 umol/L solution Cu inhibited plant growth and Cd and Zn accumulations in plant shoot. The glass house pot experiment results showed that sedum plant grew slowly in soil at low Cu (3.61 mg/kg) concentration, however, the addition of Cu promoted its growth. The application of 3 mmol/kg EDDS and 250 mg/kg Cu led the greater accumulation of Cu in plant, with the highest Cu concentration of 1 068 mg/kg, which may be responsible for plant injury and leaves fallen down. These results showed that low concentration of Cu benefits the plant growth and the phytoextraction of Zn and Cd from

  17. Projectbeschrijving Cadmium-informatiepunt (CIP)

    NARCIS (Netherlands)

    Meijer PJ

    1989-01-01

    To minimize the use of cadmium the Central Government has decided to perform the purchase of products and materials within the Central Government as much as possible within the Draft Cadmium Decree. The activities to achieve this are as far as could be seen at the start of the project in june

  18. Preliminary observations of cadmium and copper effects on juveniles of the polychaete Capitella sp. Y (Annelida: Polychaeta from Estero del Yugo, Mazatlán, México Observaciones preliminares de los efectos de cadmio y cobre sobre juveniles del poliqueto Capitella sp. Y (Annelida: Polychaeta del Estero del Yugo, Mazatlán, México

    Directory of Open Access Journals (Sweden)

    NURIA MÉNDEZ

    2005-12-01

    Full Text Available The effects of cadmium (Cd and copper (Cu on cultured juveniles of Capitella sp. Y were investigated. Seven-day old juveniles were exposed to 13 (control, 60, 160, 240 and 340 mg Cd L-1 and 17 (control, 50, 120 and 150 mg Cu L-1 for 30 days. Mortality significantly increased with increasing Cu concentrations, but in Cd exposures, it was only evident at 340 mg L-1. Body size and faecal pellet production were reduced earlier in juveniles exposed to Cu than those exposed to Cd, especially in the higher Cu concentrations. These facts indicate that juveniles are more sensitive to Cu in terms of mortality, feeding and growth. Haemoglobin production was inhibited due to the scarcity of food in the experimental sediment rather than to metal exposure. Tube building was not affected by the presence of metals or by the scarcity of food. This study suggests that Cu concentrations from 50 to 150 mg L-1 and 340 mg L-1 of Cd could affect the population dynamics of this species in natural ecosystemsSe investigaron los efectos de cadmio (Cd y cobre (Cu sobre juveniles cultivados de Capitella sp. Y. Organismos juveniles de siete días de edad fueron expuestos a 13 (control, 60, 160, 240 y 340 mg Cd L-1 y a 17 (control, 50, 120 y 150 mg Cu L-1 durante 30 días. La mortalidad se incrementó significativamente al aumentar las concentraciones de Cu y, en las exposiciones a Cd, solamente fue evidente a 340 mg L-1. El tamaño corporal y la producción de heces fecales disminuyeron antes en los especímenes expuestos a Cu que en los expuestos a Cd, especialmente en las concentraciones más altas de Cu. Estos resultados indican que los juveniles son más sensibles al Cu en términos de mortalidad, alimentación y crecimiento. La producción de hemoglobina fue inhibida debido a la escasez de alimento en el sedimento experimental, más que a exposición a los metales. La formación de tubos no fue afectada por la presencia de metales ni por la escasez de alimento. Este

  19. Cadmium carcinogenesis – some key points

    OpenAIRE

    2011-01-01

    The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney) induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  20. Cadmium exposure in the Swedish environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report gives a thorough description of cadmium in the Swedish environment. It comprises three parts: Cadmium in Sweden - environmental risks;, Cadmium in goods - contribution to environmental exposure;, and Cadmium in fertilizers, soil, crops and foods - the Swedish situation. Separate abstracts have been prepared for all three parts

  1. Cadmium carcinogenesis – some key points

    Directory of Open Access Journals (Sweden)

    Loreta Strumylaite

    2011-09-01

    Full Text Available The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  2. Spectroscopic characterization of manganese minerals

    Science.gov (United States)

    Lakshmi Reddy, S.; Padma Suvarna, K.; Udayabhaska Reddy, G.; Endo, Tamio; Frost, R. L.

    2014-01-01

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

  3. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. semicarbazide manganese (ii) and iron

    African Journals Online (AJOL)

    DR. AMINU

    compounds, indicating the coordination of the Schiff base to the copper ion. Key Words: Schiff ... point, decomposition temperature were determined .... good stability, as buttressed by their high ..... M.M (2005). complexation behavior of some.

  5. Manganese Research Health Project (MHRP)

    Science.gov (United States)

    2009-02-01

    of a GLP compliant micronucleus assay in mice according to the OECD Guideline for the Testing of Chemicals, OECD 474: Mammalian Erythrocyte... Micronucleus Test . Experimental Design The basic experimental design used at ILS and proposed for the definitive in vivo micronucleus assay in manganese...regimen, would be expected to produce lethality”. The limit dose for the in vivo micronucleus assay based on OECD 474 is 2000 mg/kg and testing in a

  6. Effect of manganese and zinc on the growth of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.H.; Lustigman, B.; Dandorf, D. (Montclair State College, Upper Montclair, NJ (United States))

    1994-07-01

    Anacystis nidulans is a unicellular member of the cyanobacteria, one of the largest groups of the Kingdom Monera. It is similar to other bacteria in the structure and chemistry of the cell wall, and its cell division and genetic recombination. Photoautotrophy is the main mode of nutrition and the photosynthetic apparatus is similar to that of other cyanobacteria. Cyanobacteria are excellent organisms to serve as environmental pollution indicators for the investigation of a wide variety of biological problems. There have been several studies on the effects of heavy metals on A. nidulans. Some of these elements, such as manganese, are known to be essential nutrients for cyanobacteria. Others, such as cadmium, are not known to be necessary for normal growth and metabolism. Large amounts of either essential or non-essential elements can be toxic. Manganese and zinc are essential elements for all living organisms. Manganese is a cofactor for a number of different enzymatic reactions particularly those involved in phosphorylation. Iron deficiency induced by a number of metals, cobalt and manganese in particular, inhibit chlorophyll biosynthesis. Zinc deficiency affects early mitotic events and the cells are large and aberrant in appearance. Light is essential for cells to take in zinc. As an industrial contaminant, zinc has been found to block photosynthesis by causing structural damage to the photosynthetic apparatus. In the presence of various pH ranges, high zinc concentrations can be associated with low pH. It has been indicated that pH value and EDTA (Ethylene Diamine Tetraacetic Acid) have an influence on the effect of some metals. The purpose of this study was to determine the effect of manganese and zinc on the growth of Anacystis nidulans, with and without EDTA.

  7. DETERMINATION OF STABILITY CONSTANTS OF MANGANESE (II ...

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Amino acids, dissociation constant, potentiometry, stability constant. INTRODUCTION ... constants of manganese (II) amino acid complexes using potentiometer. .... Principles of Biochemistry Third Edition,. Worth publishers, 41 ...

  8. Effects of natural exposure to high levels of zinc and cadmium in the immature pony as a function of age

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, D.F.; Gunson, D.E.; Shoop, C.R.; Ramberg, C.F. Jr.

    1986-08-01

    To study the effects of environmental exposure to zinc and cadmium in immature foals, five pregnant ponies were raised within 2.9 km of the New Jersey Zinc Smelter in Palmerton, Pennsylvania. The mares and their foals were kept outdoors on timothy hay and orchard grass. The foals were examined daily for signs of illness and blood samples were taken monthly for estimation of serum zinc, copper, and ceruloplasmin levels. The foals were sacrificed at 2.5, 4.5, 8.5, 13.5, and 18.5 months of age. Necropsy revealed generalized osteochondrosis in joints of the limbs and cervical vertebrae, lymphoid hyperplasia, and eosinophilia. Two of the foals had developed mild lameness. The concentrations of zinc, cadmium, copper, lead, magnesium, and calcium were determined in liver, kidney cortex, and pancreas. The concentration of cadmium and zinc were the only elements that were greatly elevated in all three tissues as compared to control animals. The concentration of cadmium was directly correlated with age in the three tissues (e.g., 23.9 to 212.7 micrograms/g wet wt in kidney cortex), whereas zinc was significantly increased (range 132 to 954 micrograms/g wet wt in liver) but there was no correlation with age. It was concluded that the development of osteochondrosis is associated with increased exposure to zinc and possibly cadmium. The classical signs of cadmium toxicosis, such as renal damage and osteomalacia, were not observed.

  9. Content of some metals in soils at different distances from the Karabash Copper Smelter

    Science.gov (United States)

    Dinu, Marina; Vitaly, Linnik; Yury, Tatsy; Tatyana, Kremleva

    2013-04-01

    considerably from 10 to 1000 mg/kg - showed a reduction in concentrations of more than 60%, and also depends on the distance from the plant, which may be due to changes in the structural features of humic substances and the differences in the complexation of metals with a high affinity for humic substances. 1.Makunina GS Geological features Karabash technogenic anomalies / / Geoecology, engineering geology, hydrogeology, Geocryology. -2001. - # 3. - P. 221-226. 2.Kalabin GV, Moiseenko TI Ekodinamika technological provincial mining industries: from degradation to restoration / / Reports of the Academy of Sciences, 2011, tom.437, # 3, p.398-403. 3.PND F 16.1:2.2:2.3:3.36-02. Method for measuring the total contents of copper, cadmium, zinc, lead, nickel, manganese, cobalt and chromium and in the soil, sediments and sewage sludge and waste by flame atomic absorption spectrometry.

  10. 熔融制样-波长色散X射线荧光光谱法测定红土镍矿中铁、镍、硅、铝、镁、钙、钛、锰、铜和磷%Determination of iron, nickel, silicon, aluminum, magnesium, calcium, titanium, manganese,copper and phosphorus in laterite nickel ores by wavelength dispersive X-ray fluorescence spectrometry with fusion sample preparation

    Institute of Scientific and Technical Information of China (English)

    林忠; 李卫刚; 褚宁; 蒋晓光; 孙涛; 林志伟; 王艳君

    2012-01-01

    A wavelength dispersive X - ray fluorescence spectrometry with fusion sample preparation has been developed for determination of iron, nickel, silicon, aluminum, magnesium, calcium, titanium, manganese, copper and phosphorus in laterite nickel ores. Calibration samples were prepared by adding high pure oxides and standard solutions of pending elements into iron ore standards, which were applied as matrix and ignited in 1000 ℃. The experimental conditions including of fluxing agent, fusion time, dilution ratios, doffing membrane reagent and matrix effects were determined. The analytical results were proposed by loss on ignition calibration, which were agreement with those obtained by wet method analysis, and the relative standard deviation was between 0. 219 % and 2. 817 %. The method was satisfied the request of laterite nickel ores test.%建立了熔融制样-波长色散X射线荧光光谱法测定红土镍矿中铁、镍、硅、铝、镁、钙、钛、锰、铜和磷含量的方法.采用经1000℃灼烧后的铁矿标准样品为基体,添加相关待测元素的高纯氧化物和标准溶液制作校准曲线用的校准样品,确定了助熔剂、熔融时间、稀释比、脱模剂和基体效应校正方式等试验条件.样品分析结果进行烧失量校正,与湿法分析结果的相对标准偏差介于0.219%~2.817%之间,满足红土镍矿检测需要.

  11. Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu(cdoa)(phen)2].8.8H(2)O and [Cu(4-Mecdoa)(phen)2].13H2O (phen=1,10-phenanthroline).

    Science.gov (United States)

    Creaven, Bernadette S; Egan, Denise A; Karcz, Dariusz; Kavanagh, Kevin; McCann, Malachy; Mahon, Mary; Noble, Andy; Thati, Bhumika; Walsh, Maureen

    2007-08-01

    Two novel coumarin-based ligands, coumarin-6,7-dioxyacetic acid (1) (cdoaH(2)) and 4-methylcoumarin-6,7-dioxyacetic acid (2) (4-MecdoaH(2)), were reacted with copper(II) and manganese(II) salts to give [Cu(cdoa)(H(2)O)(2)].1.5H(2)O (3), [Cu(4-Mecdoa)(H(2)O)(2)] (4), [Mn(cdoa)(H(2)O)(2)] (5) and [Mn(4-Mecdoa)(H(2)O)(2)].0.5H(2)O (6). The metal complexes, 3-6, were characterised by elemental analysis, IR and UV-Vis spectroscopy, and magnetic susceptibility measurements and were assigned a polymeric structure. 1 and 2 react with Cu(II) in the presence of excess 1,10-phenanthroline (phen) giving [Cu(cdoa)(phen)(2)].8.8H(2)O (7) and [Cu(4-Mecdoa)(phen)(2)].13H(2)O (8), respectively. The X-ray crystal structures of 7 and 8 confirmed trigonal bipyramidal geometries, with the metals bonded to the four nitrogen atoms of the two chelating phen molecules and to a single carboxylate oxygen of the dicarboxylate ligand. The complexes were screened for their antimicrobial activity against a number of microbial species, including methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans. The metal-free ligands 1 and 2 were active against all of the microbes. Complexes 3-6 demonstrated no significant activity whilst the phen adducts 7 and 8 were active against MRSA (MIC(80)=12.1microM), E. coli (MIC(80)=14.9microM) and Patonea agglumerans (MIC(80)=12.6microM). Complex 7 also demonstrated anti-Candida activity (MIC(80)=22microM) comparable to that of the commercially available antifungal agent ketoconazole (MIC(80)=25microM).

  12. Toxische effecten van combinaties van cadmium, zink en koper op terrestrische oligochaeten in relatie tot bodem-chemische interacties

    NARCIS (Netherlands)

    Weltje L; Posthuma L; Mogo FC; Dirven-van Breemen EM; Veen RPM van; ECO; TUD

    1995-01-01

    The joint toxicity of binary heavy metal combinations of cadmium, copper and zinc to Eisenia andrei and Enchytraeus crypticus was studied in a standardised OECD artificial soil system. Also soil-chemical behaviour of the metals was studied using the Freundlich-isotherm, because a large influence of

  13. Battles with Iron: Manganese in Oxidative Stress Protection*

    Science.gov (United States)

    Aguirre, J. Dafhne; Culotta, Valeria C.

    2012-01-01

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron. PMID:22247543

  14. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  15. Mineral of the month: cadmium

    Science.gov (United States)

    Klimasauskas, Edward

    2005-01-01

    Cadmium, which was once used almost exclusively for pigments, now has many diverse applications. Cadmium’s low melting point, excellent electrical conductivity and resistance to corrosion make it valuable for many products including batteries, electroplated coatings, stabilizers for plastics, solar cells and nonferrous alloys. Today’s cadmium is primarily used in rechargeable batteries, accounting for about 78 percent of consumption in 2004. In 2000, an estimated 3.5 billion consumer batteries were sold in the United States, of which almost 10 percent were nickel-cadmium batteries.

  16. Cadmium effects on the thyroid gland.

    Science.gov (United States)

    Jancic, Snezana A; Stosic, Bojan Z

    2014-01-01

    Cadmium has been listed as one of the 126 priority pollutants and a category I carcinogen. Carcinogenic effects of cadmium on the lungs, testicles, and prostate are widely recognized, but there has been insufficient research on the effect of cadmium on the thyroid gland. Cadmium has the affinity to accumulate not only in the liver, kidneys, and pancreas but also in the thyroid gland. It has been established that cadmium blood concentration correlates positively with its accumulation in the thyroid gland. Women of fertile age have higher cadmium blood and urine concentrations than men. In spite of its redox inertia, cadmium brings about oxidative stress and damage to the tissue by indirect mechanisms. Mitochondria are considered to be the main intracellular targets for cadmium. Colloid cystic goiter, adenomatoid follicular hyperplasia with low-grade dysplasia and thyroglobulin hypo- and asecretion, and parafollicular cell diffuse and nodular hyperplasia and hypertrophy are often found in chronic cadmium toxicity. © 2014 Elsevier Inc. All rights reserved.

  17. Control of bacterial iron homeostasis by manganese

    Science.gov (United States)

    Puri, Sumant; Hohle, Thomas H.; O'Brian, Mark R.

    2010-01-01

    Perception and response to nutritional iron availability by bacteria are essential to control cellular iron homeostasis. The Irr protein from Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to globally regulate iron-dependent gene expression. Heme binds directly to Irr to trigger its degradation. Here, we show that severe manganese limitation created by growth of a Mn2+ transport mutant in manganese-limited media resulted in a cellular iron deficiency. In wild-type cells, Irr levels were attenuated under manganese limitation, resulting in reduced promoter occupancy of target genes and altered iron-dependent gene expression. Irr levels were high regardless of manganese availability in a heme-deficient mutant, indicating that manganese normally affects heme-dependent degradation of Irr. Manganese altered the secondary structure of Irr in vitro and inhibited binding of heme to the protein. We propose that manganese limitation destabilizes Irr under low-iron conditions by lowering the threshold of heme that can trigger Irr degradation. The findings implicate a mechanism for the control of iron homeostasis by manganese in a bacterium. PMID:20498065

  18. Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Kook [Institute of Environmental and Occupational Medicine, Soonchunhyang University 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of); Kim, Yangho, E-mail: yanghokm@nuri.net [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan 682-060 (Korea, Republic of)

    2011-08-15

    Introduction: We present data on the association of manganese (Mn) level with hypertension in a representative sample of the adult Korean population who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. Methods: This study was based on the data obtained by KNHANES 2008, which was conducted for three years (2007-2009) using a rolling sampling design involving a complex, stratified, multistage, probability-cluster survey of a representative sample of the noninstitutionalized civilian population of South Korea. Results: Multiple regression analysis after controlling for covariates, including gender, age, regional area, education level, smoking, drinking status, hemoglobin, and serum creatinine, showed that the beta coefficients of log blood Mn were 3.514, 1.878, and 2.517 for diastolic blood pressure, and 3.593, 2.449, and 2.440 for systolic blood pressure in female, male, and all participants, respectively. Multiple regression analysis including three other blood metals, lead, mercury, and cadmium, revealed no significant effects of the three metals on blood pressure and showed no effect on the association between blood Mn and blood pressure. In addition, doubling the blood Mn increased the risk of hypertension 1.828, 1.573, and 1.567 fold in women, men, and all participants, respectively, after adjustment for covariates. The addition of blood lead, mercury, and cadmium as covariates did not affect the association between blood Mn and the prevalence of hypertension. Conclusion: Blood Mn level was associated with an increased risk of hypertension in a representative sample of the Korean adult population. - Highlights: {yields} We showed the association of manganese with hypertension in Korean population. {yields} This study was based on the data obtained by KNHANES 2008. {yields} Blood manganese level was associated with an increased risk of hypertension.

  19. Preparation of Manganese Oxide Nanobelts

    Institute of Scientific and Technical Information of China (English)

    Jisen WANG; Jinquan SUN; Ying BAO; Xiufang BIAN

    2003-01-01

    Oriented nanobelts of manganese oxide have been firstly and successfully prepared by a microemulsion techniqueunder controlled circumstances. The samples were characterized by X-ray diffraction (XRD), transmission electronmicroscope (TEM). Influences of sodium chloride and annealed temperature on the synthesis of Mn3O4 nanobeltswere investigated. It was found that NaCl is the key factor to synthesize oriented Mn3O4 nanobelts and 827 K isoptimum temperature to produce fine nanobelts. Oriented growth mechanism of Mn3O4 nanobelts was discussed.

  20. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  1. RNASeq in C. elegans Following Manganese Exposure.

    Science.gov (United States)

    Parmalee, Nancy L; Maqbool, Shahina B; Ye, Bin; Calder, Brent; Bowman, Aaron B; Aschner, Michael

    2015-08-06

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin, are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions and a ranked list of differentially expressed genes for further study.

  2. Survey of mercury, cadmium and lead content of household batteries.

    Science.gov (United States)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels.

  3. Enrichment of cadmium in biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Gwenner, C.; Wittig, H.; Glombitza, F.

    1986-01-01

    The uptake of cadmium ions from an aqueous solution by living, resting, and dead biomasses was investigated. The dependence of the uptaked amounts on pH-value of the medium, temperature and concentration of cadmium ions is demonstrated as well as the rate of uptake. Maximum realisable concentrations were 12 mg/g biomass in living cells and about 20 mg/g biomass in resting or dead cells, respectively.

  4. Talitrid amphipods (Crustacea) as biomonitors for copper and zinc

    Science.gov (United States)

    Rainbow, P. S.; Moore, P. G.; Watson, D.

    1989-06-01

    Data are presented on the copper and zinc concentrations of four talitrid amphipod species (standard dry weight 10 mg), i.e. Orchestia gammarellus (Pallas), O. mediterranea Costa, Talitrus saltator Montagu and Talorchestia deshayesii (Audouin), from 31 sites in S.W. Scotland, N. Wales and S.W. England. More limited data are also presented for cadmium in O. gammarellus (three sites) and T. deshayesii (one site). In S.W. Scotland, copper concentrations were raised significantly in O. gammarellus from Whithorn and Auchencairn (Solway) and Loch Long and Holy Loch (Clyde). In S.W. England, copper concentrations were highest at Restronguet Creek, Torpoint and Gannel (Cornwall). Samples of O. gammarellus from Islay (inner Hebrides) taken adjacent to the effluent outfalls of local whisky distilleries fell into two groups based on copper concentrations (presumably derived from copper stills), the higher copper levels deriving from the more productive distilleries. High copper levels were found in T. saltator and Tal. deshayesii from Dulas Bay (Wales). Zinc levels in O. gammarellus were high in Holy Loch and Auchencairn (Scotland), Gannel and Torpoint (England) but extremely elevated (as was Zn in O. mediterranea) at Restronguet Creek. Zinc was also high in T. saltator from Dulas Bay (Wales), but not in Tal. deshayesii. Cadmium levels in O. gammarellus from Kilve (Bristol Channel) were much raised. These differences (a) conform with expectations of elevated bioavailability of these metals from well researched areas (S.W. England & N. Wales), and (b) identify hitherto unappreciated areas of enrichment in S.W. Scotland. Orchestia gammarellus is put forward as a suitable biomonitor for copper and zinc in British coastal waters.

  5. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Fang Linchuan [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Zhou Chen; Cai Peng [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Wenli [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Rong Xingmin; Dai Ke; Liang Wei [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Gu Jidong [Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Huang Qiaoyun, E-mail: qyhuang@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-06-15

    Highlights: {yields} The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. {yields} Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. {yields} XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH{sub 4}NO{sub 3}, respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  6. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    Science.gov (United States)

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes.

  7. Revision of the Export Tax Rebate Policy for Manganese

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>According to a newly released circular by the Finance Ministry and the State Administration of Taxation, the export tax rebate policy for the manganese products under the tax code No. 811100100 is eliminated as from August 1, 2005. These products mainly include un-wrought manganese, manganese scrap and manganese powder.

  8. Phytomass of beans and grain production as affected by zinc, copper and cadmium doses and bentonite application Fitomassa e produção do feijão afetadas pelas doses de zinco, cobre e cádmio e aplicação de bentonita

    Directory of Open Access Journals (Sweden)

    Gilvanise A. Tito

    2011-07-01

    Full Text Available The objective of this study was to determine the effect of zinc, copper and cadmium on phytomass and grain production and to evaluate indirectly the adsorbent effect of bentonite clay by determining the accumulation of these heavy metals in bean plants. The study consisted of three separate experiments (one for each cation with the application of three doses of bentonite (0, 30 and 60 t ha-1 in pots containing separately 50 mg of Zn; Cu and Cd kg-1 of soil, with three replicates. Thus, each experiment consisted of 9 experimental units. In each one, a bean plant was cultivated and after 65 days, samples of leaves, stems, roots and grains were collected. Afterwards, the samples were dried, weighed, grinded and the concentrations of Zn, Cu and Cd were determined. The phytomass of leaves of the plant growing on the soil with Zn, the Zn concentration in the whole plant and the Cd concentration in the leaves, stem and grains were significantly influenced by the bentonite application. Zn and Cd concentration in leaves, stem and grains decreased with the application of bentonite, indicating a positive effect of the clay application to the soil on the adsorption of these metals, decreasing the availability for plants. Zn was the most accumulated element in the plant, followed by Cd and Cu. The Zn, Cu and Cd accumulation in the plant obeyed the following sequence: stem > leaves > grains > roots; roots > stem > grains > leaves; roots > stem > leaves > grains, respectively.Objetivou-se, com este trabalho, estudar o efeito do cobre, zinco e cádmio em fitomassa e produção de grãos e avaliar indiretamente o efeito adsorvente da argila bentonita, determinando o acúmulo de metais pesados em plantas de feijão. O estudo consistiu de três experimentos separados (um para cada cátion, com a aplicação de três doses de bentonita (0, 30 e 60 t ha-1 em vasos contendo, separadamente, 50 mg de Zn, 50 mg de Cu e 50 mg de Cd kg-1 de solo, com três repeti

  9. Geochemical Characteristics of Sinian Manganese Deposits in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sinian is one of the main periods of the formation of manganese deposits in China. Sinian manganese deposits are mainly hosted in carbon-rich black shale and siliceous shale formed during the Sinian interglacial period. The composition of manganese ore is simple. The main ore mineral is manganiferous carbonates. The grade of manganese ore is about 16- 25%, with Mn/Fe>5 and P/Mn=0.006- 0.14. Based on the tectonic setting and geological and geochemical characteristics of manganese deposits, this paper discusses the process of migration and concentration of manganese and ore-forming conditions of Sinian manganese deposits in China.

  10. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  11. 76 FR 37014 - Expedited Approval of Alternative Test Procedures for the Analysis of Contaminants Under the Safe...

    Science.gov (United States)

    2011-06-24

    ..., cadmium, calcium, chromium, copper, lead, magnesium, nickel, selenium, silica, sodium, iron, manganese...(k)(1). Selenium 40 CFR 141.23(k)(1). Aluminum 40 CFR 143.4(b). Iron 40 CFR 143.4(b). Manganese 40... ``green'' alternative to approved nitrate methods that use the toxic metal, cadmium. Therefore, EPA...

  12. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  13. Rising environmental cadmium levels in developing countries ...

    African Journals Online (AJOL)

    olayemitoyin

    molecular pathways of human disease, providing insight for the prevention of genome instability and associated disease ... systems. The potential for cadmium to cause toxicity has been ...... Comparison of the effects of arsenic and cadmium.

  14. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene

    Institute of Scientific and Technical Information of China (English)

    CAO Hongyan; LI Xiaoshuang; CHEN Yaoqiang; GONG Maochu; WANG Jianli

    2012-01-01

    A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method.The catalysts were characterized by N2 adsorption-desorption,H2-TPR and XPS.When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3,the catalysts possessed better catalytic activity,and benzene was converted completely at 558 K.Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts.Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts,and stabilized manganese at higher oxidation state.And the catalyst with the loading ratio 7:3 was a little worse than 8:2,since the interaction between manganese oxides and copper oxides is too strong,copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.

  15. [Tongue play and manganese deficiency in dairy cattle].

    Science.gov (United States)

    Karatzias, H; Roubies, N; Polizopoulou, Z; Papasteriades, A

    1995-09-01

    The present paper discusses "tongue rolling" observed in dairy cattle farms of a region in northern Greece associated with manganese deficiency. In these animals total body manganese status was evaluated by determining hair, as well as feed manganese content. Cows exhibiting tongue rolling had significantly lower hair manganese content, compared to non-tongue rolling control animals from other farms; in addition, feedstuff analysis demonstrated that manganese and inorganic phosphorus intake of affected cows was also significantly lower.

  16. EFFECTS OF MANGANESE ON THYROID HORMONE HOMEOSTASIS: POTENTIAL LINKS

    OpenAIRE

    Soldin, OP; Aschner, M.

    2007-01-01

    Manganese (Mn) is an essential trace nutrient that is potentially toxic at high levels of exposure. As a constituent of numerous enzymes and a cofactor, manganese plays an important role in a number of physiologic processes in mammals. The manganese-containing enzyme, manganese superoxide dismutase (Mn-SOD), is the principal antioxidant enzyme which neutralizes the toxic effects of reactive oxygen species. Other manganese-containing enzymes include oxidoreductases, transferases, hydrolases, l...

  17. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.

    Science.gov (United States)

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César; Abrão, Taufik; Santos, Maria Josefa

    2014-01-30

    The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption-desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption-desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir-Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin.

  18. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  19. Model ecosystem studies of lead and cadmium and of urban sewage sludge containing these elements

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.Y.; Metcalf, R.L.; Furman, R.; Vogel, R.; Hassett, J.

    1975-01-01

    The environmental fate and effects of cadmium and lead were studied in a laboratory model ecosystem with a terrestrial/aquatic interface, using silica sand, Bloomfield soil (sandy loam) and Drummer soil (silty clay loam) as substrates. Applications were made directly to the substrates as lead and cadmium chloride and as sewage sludge as a source of heavy metals. The mobilization and incorporation of cadmium and lead into food chain organisms were proportional to sorption capacity of the substrate and were highest in silica sand and lowest in Drummer soil. Following the application of sewage sludge there was clear cut mobilization and transfer of cadmium, copper, lead, and zinc into food chains, alga (Oedogonium cardiacum), daphnia (Daphnia magna), mosquito larva (Culex pipiens quinquefasciatus), snail (Physa), and fish (Gambusia affinis). Cadmium exerted a particularly adverse affect on the various organisms in the model ecosystem and its presence in relatively high levels in sewage sludge could become a limiting factor in its use on soils and for crop production.

  20. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans.

    Directory of Open Access Journals (Sweden)

    Elizabeth Lira-Silva

    Full Text Available Methanosarcina acetivorans was cultured in the presence of CdCl(2 to determine the metal effect on cell growth and biogas production. With methanol as substrate, cell growth and methane synthesis were not altered by cadmium, whereas with acetate, cadmium slightly increased both, growth and methane rate synthesis. In cultures metabolically active, incubations for short-term (minutes with 10 µM total cadmium increased the methanogenesis rate by 6 and 9 folds in methanol- and acetate-grown cells, respectively. Cobalt and zinc but not copper or iron also activated the methane production rate. Methanogenic carbonic anhydrase and acetate kinase were directly activated by cadmium. Indeed, cells cultured in 100 µM total cadmium removed 41-69% of the heavy metal from the culture and accumulated 231-539 nmol Cd/mg cell protein. This is the first report showing that (i Cd(2+ has an activating effect on methanogenesis, a biotechnological relevant process in the bio-fuels field; and (ii a methanogenic archaea is able to remove a heavy metal from aquatic environments.

  1. Metallothionein and bioaccumulation of cadmium in juvenile bluegills exposed to aqueous and sediment-associated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cope, W.G.

    1991-01-01

    The author evaluated metallothionein (MT), free (unbound) hepatic cadmium and whole body cadmium as indicators of cadmium exposure in juvenile bluegills Lepomis macrochirus in laboratory tests. Two types of cadmium exposure were tested; aqueous and sediment-associated. In the aqueous tests, fish were exposed to cadmium (0.0 to 32.3 [mu]g/L) in an inte