WorldWideScience

Sample records for cadmium copper lead

  1. Canadian soil quality criteria for lead, copper, arsenic, cadmium and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gaudet, C.; Milne, D.; Teed, S.; Lin, J.; Raju, G.S.; Ouellet, S. [Environment Canada, Hull, Quebec (Canada)

    1995-12-31

    National soil quality criteria for the protection of ecological receptors, including livestock and wildlife, are currently under development in Canada. Based on an evaluation of direct soil contact and soil and food ingestion pathways for sensitive species, soil quality criteria for lead, copper, arsenic, cadmium and mercury for three land use categories have been derived. The draft values, in mg/kg soil, for agricultural, residential/parkland, commercial/industrial land uses are: mercury, 4, 4, 30; copper, 62, 62, 100; cadmium, 10, 10, 27; lead, 70, 250, 400; arsenic, 17, 17, 26. Critical data requirements in developing soil quality criteria are also reviewed.

  2. Effects of Copper, Cadmium, Lead, and Arsenic in a Live Diet on Juvenile Fish Growth

    Science.gov (United States)

    The effects of dietborne copper, cadmium, lead, and arsenic on juvenile fish were evaluated using a live diet consisting of the oligochaete Lumbriculus variegatus. In 30-d exposures, no effects on growth and survival of rainbow trout, fathead minnow, and channel catfish were obs...

  3. Assimilation of zinc, cadmium, lead and copper by the centipede Lithobius variegatus (Chilopoda)

    Energy Technology Data Exchange (ETDEWEB)

    Hopkin, S.P.; Martin, M.H.

    1984-08-01

    Specimens of the centipede Lithobius variegatus Leach collected from a contaminated deciduous woodland 3 km downwind of a primary smelting works, and a similar but uncontaminated site, were fed hepatopancreas tissue from the woodlouse Oniscus asellus L. (Crustacea, Isopoda) containing known amounts of zinc, cadmium, lead and copper. The extent to which zinc, cadmium and copper are assimilated or lost from the tissues of centipedes depends on the concentrations of these elements in the food and the degree of contamination of the site from which the centipedes are collected. Lead is not assimilated by L. variegatus. Centipedes from the contaminated site survive longer than centipedes from the uncontaminated site when both populations are fed on the hepatopancreas of woodlice in which the concentrations of metals are very high. This information, together with a consideration of the levels of metals in the animals at the end of the experiment, suggests that the midgut cells of centipedes from the contaminated site are able to tolerate higher concentrations of cadmium than those of centipedes from the uncontaminated site. The concentrations of cadmium and copper in the midgut increase considerably when centipedes are fed on the hepatopancreas of woodlice from their own site. This suggests that adult O. asellus do not form a major proportion of the diet of L. variegatus in deciduous woodlands, although they probably consume large numbers of juvenile woodlice in which the concentrations of heavy metals are lower.

  4. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae

    OpenAIRE

    Abbas H. Sulaymon; Mohammed, Ahmed A.; Al-Musawi, Tariq J.

    2012-01-01

    The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concen...

  5. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV

    OpenAIRE

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice...

  6. Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

    Directory of Open Access Journals (Sweden)

    Shidvash Dowlatshahi

    2014-11-01

    Full Text Available Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the present research was to provide an appropriate and cost-effective adsorbent to remove heavy metals from aqueous solutions. Methods: The activated carbon was produced from the dried. Batch experiments were performed on real and synthetic samples at room temperature. The effect of pH, adsorbent dose, initial concentration, and contact time were studied, and the adsorption isotherms of heavy metals were determined. The removal efficiency was evaluated on real wastewater. Results: The maximum removal efficiency of heavy metals (copper, cadmium and lead by activated carbon adsorbent prepared from saffron leaves was obtained in pH 7. The optimum amount of adsorbent was 0.6 g, and the optimum contact times were 45 min for copper and cadmium ions and 90 min for lead ion, respectively. In these optimum conditions the removal efficiencies were 76.36%, 91.25% and 97.5%, respectively. The removal efficiencies of heavy metals from actual samples (copper industry and the battery industry in the optimum conditions were 82.25%, 69.95% and 91.23%, respectively. The results obtained showed the highest correlation with Langmuir isotherm model. Conclusion: Based on the results obtained, the activated carbon produced from saffron leaves has a good capability in removal of the metal ions from the aqueous solutions. Considering the availability of saffron leaves in Khorasan, its cost-effectiveness, and high uptake capacity, it can be applied as a proper absorbent to remove the heavy metals from industrial wastewater.

  7. ANODIC STRIPPING VOLTAMMETRY AT A MERCURY FILM ELECTRODE: BASELINE CONCENTRATIONS OF CADMIUM, LEAD, AND COPPER IN SELECTED NATURAL WATERS

    Science.gov (United States)

    A simple, rapid, and inexpensive anodic stripping voltammetric method with a mercury thin film electrode is reported for the establishment of baseline concentrations of cadmium, lead, and copper in natural waters. The procedure for routine surface preparation of wax-impregnated g...

  8. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  9. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  10. Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea.

    Science.gov (United States)

    Kim, Yong-Dae; Eom, Sang-Yong; Yim, Dong-Hyuk; Kim, In-Soo; Won, Hee-Kwan; Park, Choong-Hee; Kim, Guen-Bae; Yu, Seung-Do; Choi, Byung-Sun; Park, Jung-Duck; Kim, Heon

    2016-04-01

    Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urinary arsenic (As) level did not decrease according to the distance from the smelter, regardless of gender and working history in smelters and mines. However, in subjects who had no occupational exposure to toxic metals, blood lead (Pb) and cadmium (Cd) and urinary Cd decreased according to the distance from the smelter, both in men and women. Additionally, the distance from the smelter was a determinant factor for a decrease of As, Pb, and Cd in multiple regression models, respectively. On the other hands, urinary Cd was a risk factor for renal tubular dysfunction in populations living near the smelter. These results suggest that Janghang copper smelter was a main contamination source of As, Pb, and Cd, and populations living near the smelter suffered some adverse health effects as a consequence. The local population should be advised to make efforts to reduce exposure to environmental contaminants, in order to minimize potential health effects, and to pay close attention to any health problems possibly related to toxic metal exposure. PMID:27051230

  11. Assessment of cadmium, copper and lead in marine species of the atlantic and pacific oceans of Guatemala by voltametry techniques

    International Nuclear Information System (INIS)

    In this thesis results of measurements of cooper, lead, and cadmium were made using voltametry. Three points in the pacific ocean and one in the atlantic were selected to obtain samples of fish and shrimp as species that are contaminated with toxic metals. The samples were treated by physical and chemical methods to turn soluble the metals and the chemical determination could be done using voltametry or differential polarography of pulse. The results shown that copper, lead and cadmium are present in the samples in traces level. The precision of measurements was verified measuring certified by the National Institute of Standard and Technology NIST of the Commerce Departmento of the United States

  12. Temporal and spatial distribution of dissolved copper,lead,zinc and cadmium in the Changjiang Estuary and its adjacent waters

    Institute of Scientific and Technical Information of China (English)

    WANG Changyou; WANG Xiulin; WANG Baodong; ZHANG Chuansong; SHI Xiaoyong; ZHU Chenjian

    2008-01-01

    Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters.Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copper,lead,zinc and cadmium in the study waters are 1.01~6.86,0.10~0.39,3.17~9.12 and 0.011~0.049 μg/dm3,respectively.Similar to zinc,the behavior of dissolved copper Was essentially conservative,but high seatter has been observed for high salinity samples,which can be attribu-ted to the decomposition or mineralization of organic matter by bacteria.Dissolved lead may have active behavior with an addition at high salinity.Overall concentrations of dissolved cadmium increase with salinity.The mean values of these dissolved metals cal-culated for the surface waters were highcr than those for the middle and bottom ones.External inputs of dissolved heavy metals to the surface waters were the likely explanation for these higher values.The maximum seasonal average values of dissolved copper and zinc were flound in summer,reflecting higher amounts of riverine input in this season.In contrast,the maximum seasonal av-erage values of dissolved lead and copper were found in winter and the lowest ones in summer,respectively,which might be asso-ciated with a combination of low concentration with heterogeneous scavenging.Concentrations of these dissolved metals found for the Changjiang Estuary fall in the range observed for the other estuaries but are noticeably higher than those from uncontaminated rivers,except for cadmium.Compared with observations for the Changjiang Estuary in the last two deeades.it is clear that the Changjiang estuarine waters has been contaminated with copper,lead,zinc and cadmium during China's industuialization,but concentrations of them have decreased in the last few years.

  13. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice

    OpenAIRE

    Atef M. Al-Attar

    2011-01-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of ...

  14. Evaluation of Lead, Cadmium and Copper Concentrations in Bee Honey and Edible Molasses

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2010-01-01

    Full Text Available Problem statement: Content of Cadmium, lead and copper in 26 bee honey samples from different places of Assiut governorate (south of Egypt and three different botanical origins (Clover, Multi-flower and Citrus in addition to four edible molasses samples from Egypt market were evaluated by Differential Pulse Anodic Stripping Voltammetry (DPASV in Briton-Robinson buffer solution at pH ~ 2.1, as well as atomic absorption spectrometry after wet digestion. Approach: The optimal deposition potentials and times for the detection of these metal ions in all sample solutions have been studied. Results: The concentration of each metal ion was determined by the standard addition method. The statistical parameters i.e., slope, standard deviation, correlation coefficient and confidence have been calculated. Conclusion/Recommendations: The results obtained using stripping voltammetry indicate that the average concentration of Cu ions ranged from 0.085-0.987 μg g−1. In addition, the average concentrations of Cd and Pb ions ranged 0.001-0.077 and 0.006-1.640 μg g−1; respectively. On the other hand, the average concentrations obtained using atomic absorption spectrometry of the same element mentioned above ranged from 0.077-0.991 μg g−1 for Cu; 0.001-0.087 μg g−1 for Cd and 0.007-1.650 μg g−1 for Pb.

  15. DETERMINATION OF ZINC, CADMIUM, LEAD, AND COPPER IN WATER BY ANODIC STRIPPING VOLTAMMETRY

    Science.gov (United States)

    The Tennessee Valley Authority developed a method of differential pulse anodic stripping voltammetry for determining total concentrations of cadmium and lead in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and addition of reagent...

  16. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments.

    Science.gov (United States)

    Yin, Xuebin; Liu, Xiaodong; Sun, Liguang; Zhu, Renbin; Xie, Zhouqing; Wang, Yuhong

    2006-12-01

    To reconstruct the profiles of heavy metal levels in the South Ocean ecosystem of Antarctica, the concentrations of lead (Pb), copper (Cu), arsenic (As), cadmium (Cd), and zinc (Zn) in seal hairs and lake sediments spanning the past 1500 years from Fildes Peninsula of King George Island and in weathering lake sediments from Nelson Island of West Antarctica were determined. The lead contents in the seal hairs and the weathering sediments show a sharp increase since the late 1800s, very likely due to anthropogenic contamination from modern industries. After the 1980s, the Pb content in seal hairs dropped by one-third, apparently due to the reduced usage of leaded gasoline in the Southern Hemisphere. Copper arises mainly from the weathering process, and its level may be substantially affected by climatic conditions. The concentrations of Cd, As, and Zn do not show any clear temporal trends.

  17. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  18. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

    OpenAIRE

    Urbain Fifi; Thierry Winiarski; Evens Emmanuel

    2013-01-01

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch test...

  19. Simultaneous Determination of Zinc (Zn, Cadmium (Cd, Lead (Pb and Copper (Cu in Blood Using Differential- Pulse Anodic-Stripping Voltammetry

    Directory of Open Access Journals (Sweden)

    A.K. Jaiswal

    2015-05-01

    Full Text Available The salts of Zinc (Zn, Cadmium (Cd, Lead (Pb, Copper (Cu, are of great toxicological importance and can causes poisoning. Therefore quantitative determination of traces of zinc, cadmium, lead, copper, in blood is very essential. Routinely, inductive coupled plasma, atomic absorption spectrometry, graphite furnace atomic absorption spectrometry were used for analysis. An attempt has been made to develop new method for simultaneous determination of traces of zinc, cadmium, lead, copper, in blood done by differential-pulse anodic-stripping voltammetry. Blood was processed by wet digestion method using concentrated nitric acid and sulphuric acid. Determination of zinc, cadmium, lead, copper, was made in acetate buffer (pH 4.6 with a sweep rate (scan rate of 60.0 mV/s and pulse amplitude 50 mV by Hanging Mercury Dropping Electrode (HMDE by standard addition method. The solution was stirred during pre-electrolysis at -1150 mV (vs. Ag/ AgCl for 90 s and the potential was scanned from - 1150m V to +100m V (vs. Ag/ AgCl. Under these conditions the limit of detection of zinc, cadmium, lead, and copper were 1.0 μg/L, 1.0 μg/L, 0.1 μg/L, 1.0 μg/L and respectively

  20. Copper, Cadmium and Lead in superficial sediment, water and the fish Cyprinodon Dearborni, in two Lagoons of Venezuela

    International Nuclear Information System (INIS)

    The concentration of copper, cadmium and lead in superficial sediment, water and the fish Cyprenodon dearborni was determined in two coastal lagoons of Sucre State, Venezuela. Chacopata lagoon is hyper saline while Los Patos Lagoon is hypo saline and receives significant waste water from Cumana city. Water, sediment and fish samples were collected in Frebruary 1998. In the laboratory, samples underwent acid digestion and were analysed by atomic absorption spectrophotometry. The mean values of the metals in C dearborni from the Chacopata lagoon were: 159.26± 210.68 μg/g for Cu, 44.71±45.58 μg/g for Cd, and 9.31±23.34 μg/g for Pb, while for Los Patos lagoon the mean values were: 64.88±16.30, 19.48± 5.81 and 22.85±20.00, respectively. In the water column, the metal concentration ranges were: 2.3-11.6, 3.9-5.4 and 21-32 mg/l for cooper, cadmium and lead, respectively. These results suggest that metal levels in sediment, water column and organisms in both lagoons do not differ, except for lead, even though only Los Patos receives waste water. (Author)

  1. Arsenic, Cadmium, Copper and Lead Accumulation in Water, Sediments and Fish Species of Oueme River in Bonou

    Directory of Open Access Journals (Sweden)

    P. Guedenon

    2012-02-01

    Full Text Available In order to evaluate the level of contamination of Oueme river with heavy metals and raise awareness of the local population regarding heavy metals pollution and its risks for health, assessment of toxic metals (cadmium, lead, copper and arsenic was carried out in water, sediments and fish species samples of Oueme River in Bonou municipality located in the south of Benin. The study was carried out in 2011. Except for water, sediments and fish samples were mineralized before the analysis with atomic absorption spectrophotometer. Mean concentrations of heavy metals in water rose from ND to 1.0 mg/L in the case of lead and 4.41 to 10.23 mg/L for arsenic. In water, copper showed low concentrations in all locations and most of the values of cadmium were below the detectable limits. The mean concentrations in the sediments were: Cd (0.01 to 22.07 mg/Kg; Pb (2.73 to 20.12 mg/Kg; Cu (7.84 to 58.96 mg/Kg and As (0.01 to 870.03 mg/Kg. In fish, the concentrations were expressed in mg/Kg. Clarias gariepinus is the most polluted species with high levels in Cd, Pb, Cu and As (2.31±1.44; 2.09±1.29; 15.10±6.34; 13.90±7.88, respectively. The mean concentrations of heavy metals recorded in Parachanna obstura are 1.34±0.65; 1.17±0.79; 2.72±2.19; 4.11±3.56, respectively for Cd, Pb, Cu and As, respectively. In Tilapia guineensis were recorded Cd: 1.53±0.97; Pb: 1.56±1.27; Cu: 0.91±0.58 and As: 7.56±2.41. The implication of this finding is that the consumption of water and fishes of Oueme River by man could lead to health hazards induced by heavy metals.

  2. Analysis of total copper, cadmium and lead in refuse-derived fuels (RDF): study on analytical errors using synthetic samples.

    Science.gov (United States)

    Skutan, Stefan; Aschenbrenner, Philipp

    2012-12-01

    Components with extraordinarily high analyte contents, for example copper metal from wires or plastics stabilized with heavy metal compounds, are presumed to be a crucial source of errors in refuse-derived fuel (RDF) analysis. In order to study the error generation of those 'analyte carrier components', synthetic samples spiked with defined amounts of carrier materials were mixed, milled in a high speed rotor mill to particle sizes <1 mm, <0.5 mm and <0.2 mm, respectively, and analyzed repeatedly. Copper (Cu) metal and brass were used as Cu carriers, three kinds of polyvinylchloride (PVC) materials as lead (Pb) and cadmium (Cd) carriers, and paper and polyethylene as bulk components. In most cases, samples <0.2 mm delivered good recovery rates (rec), and low or moderate relative standard deviations (rsd), i.e. metallic Cu 87-91% rec, 14-35% rsd, Cd from flexible PVC yellow 90-92% rec, 8-10% rsd and Pb from rigid PVC 92-96% rec, 3-4% rsd. Cu from brass was overestimated (138-150% rec, 13-42% rsd), Cd from flexible PVC grey underestimated (72-75% rec, 4-7% rsd) in <0.2 mm samples. Samples <0.5 mm and <1 mm spiked with Cu or brass produced errors of up to 220% rsd (<0.5 mm) and 370% rsd (<1 mm). In the case of Pb from rigid PVC, poor recoveries (54-75%) were observed in spite of moderate variations (rsd 11-29%). In conclusion, time-consuming milling to <0.2 mm can reduce variation to acceptable levels, even given the presence of analyte carrier materials. Yet, the sources of systematic errors observed (likely segregation effects) remain uncertain. PMID:23027034

  3. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium.

    Science.gov (United States)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-08-15

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb, and Cd (0, 0.5, 5, 50μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers. PMID:27287861

  4. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

    Directory of Open Access Journals (Sweden)

    Urbain Fifi

    2013-11-01

    Full Text Available The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb, copper (Cu and Cadmium (Cd during their transfer in a calcareous soil of Port-au-Prince (Haiti. Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax, the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  5. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice.

    Science.gov (United States)

    Al-Attar, Atef M

    2011-10-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of blood alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) were detected in heavy metals-treated mice. Histopathologically, the liver sections from heavy metals-treated mice showed severe changes including disarrangement of hepatic strands, rupture in hepatocytes, advanced hepatocellular necrosis, dilation and congestion of blood vessels with hemorrhage, dense lymphocytic infiltration round the central vein and dark stained hepatocytic nuclei indicating cell pycnosis. Administration of vitamin E at a dose of 50 IU/kg body weight, five times weekly improved the observed biochemical and histopathological changes induced by these heavy metals intoxication. Hence, the results of this study suggest that vitamin E protects against these heavy metals-induced liver injury and the attenuating effect of vitamin E may be due to its antioxidant activity. PMID:23961152

  6. Assessing the mobility of lead, copper and cadmium in a calcareous soil of Port-au-Prince, Haiti.

    Science.gov (United States)

    Fifi, Urbain; Winiarski, Thierry; Emmanuel, Evens

    2013-11-01

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax), the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  7. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti †

    Science.gov (United States)

    Fifi, Urbain; Winiarski, Thierry; Emmanuel, Evens

    2013-01-01

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax), the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu. PMID:24192791

  8. The direct determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium, lead and copper

    International Nuclear Information System (INIS)

    This report describes the development and application of a voltammetric procedure for the direct, simultaneous determination of cadmium, lead, and copper in three SAROC reference materials (carbonatite, magnesite, and quartz). The electrolyte was a mixture of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. No interferences were encountered from Fe(III), As(III), Sb(V), Tl(I), or In(III) at the concentrations present in the samples. Intermetallic interferences were eliminated by the use of thin mercury-film electrodes not less than 80nm thick. Limits of detection were determined by the degree to which the supporting electrolyte could be purified, and were estimated to be 10ng/g, 250ng/g, and 150ng/g for cadmium, lead, and copper respectively

  9. Portable Solid Phase Extraction of Copper, Cadmium and Lead Using Analig ME-02 Chelating Resin and Their Determination by Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Mohamed Abousa Gaza

    2013-12-01

    Full Text Available ABSTRACT The adsorption of metallic elements on the solid phase chelating resins is probably the most effective separation and preconcentration methods. In this work, portable Solid phase extraction (SPE was constructed using a commercially available plastic syringe containing certain amount of the Analiq ME-02 chelating resin. The ability of this portable SPE was evaluated through adsorption-desorption process of copper, lead, and cadmium prior their determination by atomic absorption spectrometry (AAS. Some parameters affecting the adsorption-desorption of these heavy metal ions on the Analiq ME-02, which include effect of pH and concentration of eluent ((HNO3, were investigated in detail. It was found that quantitative adsorptions (> 90% of copper, lead, and cadmium are obtained at all pHs (4-8 examined, whereas 1 M HNO3 was found to be effective for the desorption of these metals with the recoveries in the range of 93 -114%. Such results indicated that Analig ME-02 has excellent chelating ability (pH-independent for the adsorption of copper, lead, and cadmium, while portable SPE system provides easiness and effectiveness for collection/preconcentation of metallic elements.

  10. Portable Solid Phase Extraction of Copper, Cadmium and Lead Using Analig ME-02 Chelating Resin and Their Determination by Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Mohamed Abousa Gaza

    2014-06-01

    Full Text Available The adsorption of metallic elements on the solid phase chelating resins is probably the most effective separation and preconcentration methods. In this work, portable Solid phase extraction (SPE was constructed using a commercially available plastic syringe containing certain amount of the Analiq ME-02 chelating resin. The ability of this portable SPE was evaluated through adsorption-desorption process of copper, lead, and cadmium prior their determination by atomic absorption spectrometry (AAS. Some parameters affecting the adsorption-desorption of these heavy metal ions on the Analiq ME-02, which include effect of pH and concentration of eluent ((HNO3, were investigated in detail. It was found that quantitative adsorptions (> 90% of copper, lead, and cadmium are obtained at all pHs (4- 8 examined, whereas 1 M HNO3 was found to be effective for the desorption of these metals with the recoveries in the range of 93 -114%. Such results indicated that Analig ME-02 has excellent chelating ability (pH-independent for the adsorption of copper, lead, and cadmium, while portable SPE system provides easiness and effectiveness for collection/preconcentation of metallic elements

  11. Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea

    OpenAIRE

    Kim, Yong-Dae; Eom, Sang-Yong; Yim, Dong-Hyuk; Kim, In-Soo; Won, Hee-Kwan; Park, Choong-Hee; Kim, Guen-Bae; Yu, Seung-Do; Choi, Byung-Sun; Park, Jung-Duck; Kim, Heon

    2016-01-01

    Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urina...

  12. Determination of presence and quantification of cadmium, lead and copper in Nile tilapia (Oreochromis niloticus fillets obtained from three cold storage plants in the state of Parana, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Nobuhiro Tajiri

    2011-06-01

    Full Text Available Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.

  13. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  14. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  15. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection.

    Science.gov (United States)

    Hu, Qiufen; Yang, Guangyu; Zhao, Yiyun; Yin, Jiayuan

    2003-03-01

    A new method for the simultaneous determination of seven heavy metal ions in water by solid-phase extraction and reversed-phase high-performance liquid chromatography (RP-HPLC) was developed. The copper, nickel, cobalt, silver, lead, cadmium, and mercury ions were pre-column derivatized with tetra( m-aminophenyl)porphyrin (T m-APP) to form colored chelates. The metal-T m-APP chelates in 100 mL of sample were preconcentrated to 1 mL by solid-phase extraction with a C(18 )cartridge; an enrichment factor of 100 was achieved. The chelates were separated on a Waters Xterra()RP(18) column by gradient elution with methanol (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) and acetone (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) as mobile phase at a flow rate of 1.0 mL min(-1) and detected with a photodiode array detector. The detection limits of copper, cobalt, nickel, silver, lead, cadmium, and mercury are 2, 2, 3, 4, 3, 3, and 3 ng L(-1), respectively, in the original sample. The method was also applied to the determination of these metals in water with good results. PMID:12664186

  16. Aluminium, lead, cadmium and mercury levels in human food chain (in Karnataka, India) and their interaction with micronutrients - Copper, iron, zinc and vitamin A

    International Nuclear Information System (INIS)

    Micronutrient elements are indispensable for the survival of life. Nature and food habits govern the uptake, deposition, metabolic involvement and excretion of metals in human body. In this process, certain non-essential metals like Aluminium (Al), Lead (Pb), Cadmium (Cd) and Mercury (Hg) may accumulate in various organs during the life cycle. Essential trace elements like Copper (Cu), Iron (Fe) and Zinc (Zn), play dual role and they have beneficiary action at biologically optimum concentrations, whereas they affect biological function at very low or higher concentration. High concentration of lead (Pb) arising from automobile exhaust, pesticides, solders, water, dairy products; cadmium (Cd) arising from tanneries, nickel-cadmium batteries, stabilizers in plastic, glazed potteries, and mercury (Hg) arising from refineries, batteries, pesticides, amalgams, paints and industrial waste; are found in food. High concentration of Pb, Cd, Hg and Al are also reported in leafy vegetables grown on sewage run-off in urban areas. Main source of Al in our diet is from drinking water and through use of aluminium utensils for cooking of food. There is a growing concern regarding the human health in developed and developing countries with respect to neurodegenerative disorders and carcinogenic potential caused by heavy metals when their levels exceed the Provisional Tolerable Weekly Intake (PTWI). The PTWI levels (mg/kg body weight) are 7 for Al, 0.025 for Pb, 0.007 for Cd and 0.005 for Hg. Dietary exposure of humans to toxic trace elements leads to their accumulation in various tissues and consequently influence functional ability of essential elements. Studies show that Al, Pb and Cd alter or impair the optimal biological and physiological functions of Fe, Ca, Zn and Cu

  17. Ultrasound-assisted extraction in the determination of arsenic, cadmium, copper, lead, and silver in contaminated soil samples by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vaeisaenen, A.; Suontamo, R.; Silvonen, J. [Univ. of Jyvaeskylae, Dept. of Chemistry, Jyvaeskylae (Finland); Rintala, J. [Univ. of Jyvaeskylae, Dept. of Biological and Environmental Science, Jyvaeskylae (Finland)

    2002-05-01

    An extraction method was developed for the determination of toxic elements in contaminated soil samples by inductively coupled plasma atomic emission spectrometry (ICP-AES). The determination of arsenic, cadmium, lead, and silver in ultrasound-assisted extracts of SRM 2710 and SRM 2711 by ICP-AES was carried out with high accuracy and precision (RSD<3.7%). The certified concentrations of the SRMs were obtained for arsenic, cadmium, lead, and silver by using an ultrasound-assisted extraction method with a digestion solution of (1+1)-diluted aqua regia. The determination of copper in SRMs by the ultrasound-assisted extraction method and analysis by ICP-AES failed to obtain the certified concentrations at the 95% level of confidence using ({+-}2 s) as confidence limits of the mean. However, the same results were observed with the use of the microwave digestion method and reflux, which is the ISO 11466 standard method. The analysis of the SRMs showed that the ultrasound-assisted extraction method is highly comparable with the other methods used for such purposes. The major advantages of the ultrasound-assisted extraction method compared to the microwave and reflux methods are the high treatment rate (50 samples simultaneously in nine minutes) and low reagent usage, the main benefit of which are the low chloride and nitrate concentrations in the extracts. (orig.)

  18. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  19. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  20. Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California.

    Science.gov (United States)

    Jara-Marini, M E; Soto-Jiménez, M F; Páez-Osuna, F

    2009-11-01

    Trophic relationships and heavy metal transference in a coastal subtropical lagoon marine food web were investigated through the use of stable isotopes in food sources and biota. A selective extraction scheme was applied to the surface sediments as an indirect way to evaluate the potential of toxicity of metals. Results showed that cadmium, copper, lead and zinc concentrations were within sediment quality guidelines criteria. Concentrations of these metals in organisms varied widely among functional groups and within the same and closely related taxa. delta(13)C values varied significantly among organisms from different functional groups, while the delta(15)N values varied according with their feeding habits. Cd, Cu, Pb, and Zn were not positively transferred (biomagnification factor web. However, a partial positive transference was observed for Cu and Zn involving three trophic levels (from the phytoplankton to crab as secondary consumer). PMID:19818990

  1. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  2. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Mendez, J.R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico)], E-mail: rene@ipicyt.edu.mx; Monroy-Zepeda, R.; Leyva-Ramos, E. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Diaz-Flores, P.E. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico); Shirai, K. [Universidad Autonoma Metropolitana, Biotechnology Department, Laboratory of Biopolymers, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico City (Mexico)

    2009-02-15

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10{sup 3} g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb{sup 2+}, Cd{sup 2+}, and Cu{sup 2+}, respectively, and it decreased for Pb{sup 2+} and Cd{sup 2+} in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. Finally, the preliminary desorption experiments of Cd{sup 2+} conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.

  3. Trace metal detection in Sibenik Bay, Croatia: Cadmium, Lead and Copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study

    International Nuclear Information System (INIS)

    The vertical profiles of the concentration of reactive Mn and total concentrations of Cd, Pb, and Cu ions in the water column of the Sibenik Bay (Krka river estuary) were determined. The measured ranges of concentrations are: 60-1300 ng 1-1for Mn, 5-13 ng 1-1 for Cd, 70-230 ng 1-1for Pb, and 375-840 ng 1-1for Cu. These values are comparable with the concentrations found in the unpolluted estuaries. The Krka river estuary is highly stratified, with the measured salinity gradient of 20% within a half meter of the freshwater-seawater interface . The main changes in the vertical profiles of the measured parameters occur in the freshwater-seawater interface: the temperature increases for 1digC and the pH decreases for 0.1 unit, whereas the metal concentrations show different behaviour. Generally, Mn, Pb, and Cd ions show the increase of concentrations in the freshwater-seawater interface , while copper concentration profile indicates anthropogenic pollution in the brackish layer caused by agriculture activities and by the paint with copper basis used as an antifoulant biocide for the ships. UV-digested samples show an increase in manganese concenbations for at least 3.5 times comparing to non UV-digested. This suggests that in natural water manganese exists mainly in the form of inert complexes and as associated to particulate matter (about 70-80%). UV irradiation has no influence on the concentration of cadmium, while for lead an increase of 50% in the seawater layer is observed. The twofold increase of the copper concentration in the upper freshwater layer and at least the fourfold one in the seawater layer were measured in the UV-digested samples. These results show that copper is strongly bound to inert complexes, and that UV-digestion is necessary step in determination of the total metal concentrations in natural water samples. No significant increase of the metal concentrations in the deeper seawater layer was observed, indicating the absence of the processes of

  4. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  5. 测定甘蔗中铅、铜、镉方法的研究%Determination of Lead, Copper, Cadmium in Sugar Cane

    Institute of Scientific and Technical Information of China (English)

    梁文君; 陈洁; 朱红玉; 李辉; 王应平

    2009-01-01

    Sugar cane is a gramineous plant, produced in the tropical and subtropical regions. It is the stuff of the white granulated sugar, brown granulated sugar, red sugar, etc. For the climate, soil, geological condition, environment is different, the hazardous substances and the hazardous elements in the sugar cane is also different. In this study, we determinated the three harmful elements lead, copper & cadmium in sugar cane by inductively coupled plasma-atomic emission spectrometer (ICP-AES) at the same time. The method is simple, rapid, accurate and suitable for sugar cane examination.%甘蔗(Sugar cane)是禾本科植物,产于热带、亚热带地区,是生产白砂糖、赤砂糖、红糖等食糖的主要原料,由于生长地气候、土壤、地质条件、环境的不同,甘蔗中的有害物质、有害元素的含量也不同.本研究采用电感耦合等离子体-原子发射光谱仪(ICP-AES)同时测定甘蔗中的3个有害元素铅、铜、镉.方法简便,检测速度快,结果准确,适用于甘蔗检验.

  6. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  7. Determination of Copper, Iron, Cadmium and Lead Contents of the Oils from Sunflower Seeds (Helianthus annus L. Grown Trakya Region, Turkey

    Directory of Open Access Journals (Sweden)

    U. Gecgel

    2009-01-01

    Full Text Available The aim of this study was to determine the copper (Cu, iron (Fe, cadmium (Cd, and lead (Pb contents of the oils from sunflower seeds which were grown in the Trakya region, Turkey. For this reason, the samples of sunflower seed were collected from three different provinces (Tekirdag, Edirne and Kirklareli which are located on the Trakya region. A total of 90 sunflower seed samples from 2007 harvest seasons were collected from these different provinces. The contents of these metals in the crude oils obtained by soxhlet extraction with n-hexane from sunflower seed samples were determined by using Atomic Absorption Spectrophotometer method. Preparing sample stage was made by using microwave analyze system in close container. According to the analysis results, the average amounts in the oil samples from three different provinces (Tekirdag, Edirne and Kirklareli were for Cd 0.11, 0.23 and 0.12 ppm; for Cu 0.12, 0.15 and 0.11 ppm; for Pb 0.23, 0.15 and 0.24 ppm; for Fe 4.83, 4.30 and 4.27 ppm, respectively. According to the analysis of variance, the differences among the provinces were statistically significant (P<0.01 with respect to Cd and Fe contents. The obtained these results were compared between the values reported in literatures. Potential sources of metal contamination of the oils from sunflower seeds were also discussed.

  8. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.

    Science.gov (United States)

    Ogunbileje, J O; Sadagoparamanujam, V-M; Anetor, J I; Farombi, E O; Akinosun, O M; Okorodudu, A O

    2013-03-01

    This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (pcement dust compared with Nigeria cement dust or clinker (pcement dust and clinker (pMercury was more in both Nigeria cement dust and clinker (pcement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers. PMID:23261125

  9. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  10. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants. PMID:27306449

  11. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. PMID:24632122

  12. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability

    International Nuclear Information System (INIS)

    Highlights: ► Cd, Cu, and Pb were determined in macroalgae from Veracruz Reefs, Gulf of Mexico. ► Mean concentrations were lower or similar to those from other coastal areas. ► Cd and Pb levels are controlled by fluvial discharge. ► Sediment scavenging also controls environmental trace metal levels. ► Pb environmental concentrations have been decreasing in the lasts two decades. -- Abstract: This study focused on the spatial distribution of trace metals in the Veracruz Reef System in the Southern Gulf of Mexico, and its variability in the early (July) and late (September) rainy season of 2008, by analyzing the concentration of Cd, Cu and Pb in benthic macroalgae. Mean concentrations are lower (Pb 295 ± 347 ng g−1, Cd 17.9 ± 15.0 ng g−1), or similar (Cu 3.4 ± 4.5 μg g−1) to those reported from other coastal areas. Cd and Pb concentrations are influenced by the discharge of the Jamapa River, evidencing a fluvial control on coastal trace metal levels. Also, Cd and Cu concentrations were lower in the late rainy season, when there is a high load of suspended sediments derived from fluvial discharge, which probably adsorb dissolved metals decreasing their bioavailability. Pb concentrations have been decreasing in the last two decades in the SGM, after the banning of leaded-gasoline in the late 20th century

  13. Understanding the remobilization of copper, zinc, cadmium and lead due to ageing through sequential extraction and isotopic exchangeability.

    Science.gov (United States)

    Kumar, Manish

    2016-06-01

    Artificial infiltration facilities (AIFs) are useful to control urban runoff and regulate combined sewer overflows. Over the years, AIFs accumulate significant amounts of soakaway sediments and organic matter. The prolonged retention of soakaway sediments in AIFs is likely to cause metal remobilization due to ageing processes. The measurement of the individual consequence of ageing demands homogeneity in physical and chemical profiles of samples. This leads to assessment of metal remobilization in a single soil core through solid-phase extractions and isotopic exchangeability (E value). Depth-wise variation in the physicochemical properties and metal content of the underlying soil (below 1 m of AIFs) was created through 2 weeks of continuous leaching with artificial road runoff (ARR). Ten samples obtained from a 50-cm core by sectioning it at 5-cm intervals were subsequently incubated for 18 months. The results suggest that degradation of organic matter and changes in functional groups due to ageing govern metal remobilization. In general, the top segment showed significant alteration due to ageing. Post incubation, Zn increased dramatically in contrast to subdued Cu and Pb levels in exchangeable fractions with concomitant rise in organic-bound fractions. Isotopic exchangeability of Cd and Zn showed pronounced effect of ageing, although the effect of ageing was distinct in chemical partitioning and isotopic exchangeability of metals; a comparative study of short-term versus long-term incubation will benefit assessment of initial dynamics and final equilibrium. Consequently, the outcome from this work is a viable tool in risk prediction related to soakaway sediment accumulation in AIF. PMID:27236447

  14. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dust – concentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  15. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions. PMID:25556031

  16. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  17. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  18. 血铅、镉、钙、锌及铜水平与孕妇稽留流产的相关性分析%Correlation of blood lead, cadmium, calcium, zinc and copper levels with missed abortion

    Institute of Scientific and Technical Information of China (English)

    朱军; 梅茹; 姚超

    2015-01-01

    目的:探讨血铅、镉、钙、锌及铜水平与孕妇稽留流产的相关性。方法:选取2012年6月至2014年12月我院收治的稽留流产孕妇172例为研究对象(研究组),同期随机选取200例正常孕妇为对照(对照组),检测两组患者血铅、镉、钙、锌及铜水平。结果:与对照组比较,研究组孕妇血铅、镉水平较高(P<0.05),而钙、锌水平较低(P<0.05),多元回归分析显示:孕妇血铅、镉、钙、锌及铜水平与多种因素相关(职业性铅暴露、镉暴露、被动吸烟、生活饮食习惯、孕期保健等因素)(P<0.05);多因素Logistic回归分析显示:高血铅、镉、孕妇职业铅暴露、孕妇吸烟、孕期生殖系统感染、近期家庭装潢为孕妇稽留流产危险因素(P<0.05);而血锌、血钙、补锌、孕期补充维生素为孕妇稽留流产保护性因素(P<0.05)。结论:血铅、镉、钙、锌与孕妇出现稽留流产可能存在一定相关性,值得临床关注。%Objective:To investigate the correlation between blood lead, cadmium, calcium, zinc and copper levels in pregnant women with missed abortion.Methods: A total of 172 cases of pregnant women with missed abortion admitted into our hospital from June 2012 to December 2014 were selected as subjects (research group), meanwhile 200 cases of normal pregnant women were randomly selected as controls (control group); blood lead, cadmium, calcium, zinc and copper were detected in both groups of patients.Results:Compared with the normal group, blood lead and cadmium levels in research group were higher (P<0.05), while the calcium and zinc levels were lower (P<0.05), multiple regression analysis showed that blood lead, cadmium, calcium, zinc and copper levels were related to a variety of factors (occupational exposure to lead, cadmium exposure, passive smoking, diet habits, prenatal care) (P<0.05); Logistic regression analysis showed that high blood lead, cadmium, maternal

  19. 矮身材儿童血铅镉锌钙铁铜镁水平分析%Analysis on serum lead, cadmium, zinc, caicium, iron, copper, magnesium level of microsomia children

    Institute of Scientific and Technical Information of China (English)

    黄丽敏

    2009-01-01

    Objective To assess the effect of serum lead, cadmium, zinc, calcium, iron, copper,magnesium level on children's growth and development. Methods Use Wu Zhou atomic absorption spectrometer to detect the periphery vein serum of lead, cadmium, zinc, calcium, iron, copper, magnesium level in fifty three microsemia children (microsomia children group) and fifty three normal height children (control group), and analysis the relation to the children's growth. Results The serum lead of the microsomia children group was significant higher than the control group. The serum zinc, calcium and iron were signif-icant lower in the mierosomia children group than the control group, all(P<0.05). While the serum copper and cadmium and magnesium were not significant different comparing with the control group. In the microsemia children group between the male and feinale children, except that the serum lead was significant higher in, the male children than the female, while the others were not significant different. Conclusion As the serum level of high lead, and low fine, calcium, iron and magnesium may affect the growth and development of mierosomia children, we should adjust dietary pattern of microsemia children and prevent and cure lead poisoning of chidren.%目的 探讨血铅、镉、锌、钙、铁、铜、镁水平对儿童生长发育的影响.方法 通过采用钨舟原子吸收光谱仪测定我院儿保门诊53例矮身材儿童(矮身材组)及53例正常儿童(对照组)末梢静脉血中铅、镉、锌、钙、铁、铜、镁水平,并对其与儿童生长发育关系进行分析.结果 矮身材儿童血铅明显高于正常对照组,锌、钙、铁明显低于正常对照组(P<0.05).而血镉、铜、镁与对照组则无明显差异.矮身材组血铅男童明显高于女童(P<0.05).结论 矮身材儿童的生长发育迟缓可能与高血铅,低血锌、钙、铁密切相关.儿童铅中毒防治和合理的膳食结构是降低儿童矮身材发生率的重要措施.

  20. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  1. Determination of the cadmium and copper content inherent to metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Raspor, B.; Kozar, S.; Pavicic, J.; Juric, D. [Ruder Boskovic Institute, Center for Marine Research Zagreb, P.O.B. 1016, HR-10 001 Zagreb (Croatia)

    1998-05-01

    The reliability of the voltammetric determination of the cadmium and copper content (at pH 1.0), inherent to metallothionein (MT) isolated from the digestive gland of Mytilus galloprovincialis, was investigated. An artifact signal enhancement of copper, caused by the cupric-thionein complex adsorption at the mercury electrode, was established. This artifact was removed by UV-digestion of the sample for 15-20 h prior to analysis. A similar artifact was not detected for cadmium, because at this pH the cadmium-thionein complex has dissociated, and cadmium exists in the ionic form. Therefore, the voltammetric analysis of the cadmium content can be performed directly at pH 1.0, without prior UV-digestion of the sample. (orig.) With 3 figs., 1 tab., 12 refs.

  2. Determination on Iron, Copper, Chromium, Cadmium, Lead, Nickel and Cobalt in Hair Dye%染发剂中铁、铜、铬、镉、铅、镍和钴等重金属含量测定

    Institute of Scientific and Technical Information of China (English)

    解楠; 顾宇翔; 周泽琳

    2012-01-01

    建立了微波消解前处理,电感耦合等离子发射光谱(ICP-AES)测定染发剂中铁、铜、铬、镉、铅、镍和钴等重金属含量的方法.该方法各元素检出限均为0.05 mg/kg,线性范围0~500 ng/mL,加标回收率86.8%~108.0%,相对标准偏差为0.98%~5.54%.该方法简便、灵敏,结果稳定准确,可以用于染发剂中重金属含量的测定.%An inductively coupled plasma-atomic emission spectrometry (ICP-AES) with samples microwave digestion method for determination of Iron, Copper, Chromium, Cadmium, Lead, Nickel and Cobalt in hair dye was established. The detection limits of all elements were 0.05 mg/kg, the linearity ranged from 0 to 500 ng/mL, and recoveries of samples were in the range of 86. 8%~108. 0%, the RSD of precision is from 0. 98% to 5.54%. It indicates that the method is simple, sensitive, stable and accurate, which can be used for the determination of heavy metal elements in hair dye.

  3. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  4. Thermodynamic properties of cadmium in lead amalgam dilute solution

    International Nuclear Information System (INIS)

    Investigation of thermodynamic properties of cadmium dilute solutions in lead amalgam is carried out by means of electromotive force technique within 453-523 K temperature range. Cadmium thermodynamic functions are calculated: activity, activity ratio, Libbs partial energy and its excess value and integral characteristics, respectively. When changing cadmium content from 0.01 up to 0.1 χcd at T=473 K, logarithm of activity ratio does not depend on alloy composition, that is, Heury's law is fulfilled. Increase of cadmium content in amalgam results in the essential reduction of mercury and cadmium reaction

  5. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  6. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  7. Determination of lead, cadmium, copper, and nickel in the tonghui river of beijing, china, by cloud point extraction-high resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Ren, Ting; Zhao, Li-Jiao; Sun, Bo-Si; Zhong, Ru-Gang

    2013-11-01

    Heavy metal contamination of water has become an important problem in recent years. Most hazardous heavy metals exist in environmental water in trace or ultra-trace amounts, which requires establishing highly sensitive analytical methods. In this research, quantitative analyses were performed using high-resolution continuum source graphite furnace atomic absorption spectrometry combined with cloud point extraction (CPE) to determine Pb, Cd, Cu, and Ni levels in environmental surface water. By optimizing the CPE conditions, the enrichment factors were 29 for Pb, Cd, and Cu and 25 for Ni. The limits of detection (LOD) were 0.080, 0.010, 0.035, and 0.014 μg L for Pb, Cd, Cu, and Ni, respectively. The sensitivity of the method is comparable with those reported in previous investigations using various methods and improves outcome by 2 to 3 orders of magnitude compared with the LODs of the current national standard methods of China. Our method was used to determine Pb, Cd, Cu, and Ni in 55 water samples collected from the Tonghui River, which is the principal river in the urban area of Beijing, China. The results indicated that the distributions of the four heavy metals in the Tonghui River were related with the environments. The levels of Pb and Ni exhibit increasing trends along the river from upstream to downstream possibly due to the existence of some chemical factories in the downstream area. Lead, Cd, Cu, and Ni averaged 13.9, 0.8, 46.8, and 38.5%, respectively, of the total amount of the determined heavy metals. The levels of the four heavy metals conformed to the Environmental Quality Standards for Surface Water (Grade I) of China. This work provides a reliable quantitative method to determine trace-amount heavy metals in water, which lays a foundation for establishing standards and regulations for environmental water protection.

  8. 微波消解-石墨炉原子吸收法测定食品中铅、镉和铜%Determination of lead, cadmium and copper in food by microwave digestion graphite furnace atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    李志娟; 王金星

    2012-01-01

    Objective To establish microwave digestion graphite furnace atomic absorption spectrometry method for determination lead, cadmium and copper in food. Method The food was dissolved by microwave digestion and then Pb, Cd and Cu in food were determined by graphite furnace atomic absorption spectrometry. Results This method had good linear relation at the density range of Pb O(I,g/L to 20u,g/L, Cd Op,g/L to 2p,g/L and Cu Omg/L to 0. Lmg/L, correlation coefficient were rPb = 0. 9995, rcd = 0. 9998, rCu = 0. 9992, the detection limit were that Pb 0. 005mg/kg, Cd 0. 0003 mg/kg, Cu 0. 08 mg/kg, with the relative standard deviation was that Pb 2. 3% , Cd 1. 2% , CuO.92%. The coefficient of recovery was that Pb 88. 5% ~ 93. 5% , Cd 92. 0% -96. 8% , Cu 93. 3% ~ 97. 6%. Conclusions The method is simple and rapid and accurate, it is suitable for daily determination.%目的 建立微波消解-石墨炉原子吸收法测定食品中铅、镉和铜的方法.方法 食品样品经微波消解后,用石墨炉原子吸收法测定食品中铅、镉和铜的浓度.结果 本法在铅浓度为0μg/L~20μg/L、镉浓度为0μg/L ~ 2μg/L、铜浓度为0mg/L ~0.1mg/L,范围有良好的线性关系,相关系数:rPb=0.9 995,rCd=0.9 998,rCu=0.9 992;检出限为:Pb:0.005mg/kg,Cd:0.0 003mg/kg,Cu:0.08mg/kg;相对标准偏差为Pb:2.3%,Cd:1.2%,Cu:0.92%;回收率为Pb:88.5% ~93.5%,Cd:92.0% ~96.8%,Cu:93.3%~97.6%.结论 该方法具有简便、快速、准确等优点,适合日常批量检测.

  9. Lead, mercury, and cadmium in breast milk

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2015-10-01

    Full Text Available Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in order to meet increased calcium needs of the fetus in pregnant women and for the calcium needs in human milk during lactation. Human fetus and infants are susceptible to heavy metal toxicity passing through placenta and breastmilk due to rapid growth and development of organs and tissues, especially central nervous system. However most of the damage is already done by the time the infant is born. Intrauterine lead exposure can cause growth retardation, cognitive dysfunction, low IQ scores on ability tests, and low performance in school. Biological samples, such as umbilical cord blood and breast milk, and less commonly infant hair, are used for biomonitoring of intra-uterine exposure to these toxic chemicals. Although toxic metals and other pollutants may be excreted into breast milk, their effects are unknown and this topic is subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. In fact, the species-specific components present in breast milk protect infants against infections; promote immune and neurologic system development; and may decrease the risk of disease, including allergies, obesity, insulin-dependent diabetes mellitus, inflammatory bowel disease, and sudden infant death syndrome. Breastfeeding also facilitates maternal-infant attachment. The potential risk of environmental contaminants that can be transferred from

  10. Lead and cadmium in indoor air and the urban environment

    International Nuclear Information System (INIS)

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM10, and PM2.5 were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM2.5, both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals

  11. Lead and cadmium in indoor air and the urban environment.

    Science.gov (United States)

    Komarnicki, Günter J K

    2005-07-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM(10), and PM(2.5) were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM(2.5), both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality.

  12. Lead and Cadmium Content of Korbal Rice in Northern Iran

    Directory of Open Access Journals (Sweden)

    A Bakhtiarian

    2001-09-01

    Full Text Available Every year the entrance of factory wastes such as Shiraz Petrochemical Complex, Marvdasht sugar cube factory, and Charmineh factory, and other industrial units into the Kor and Sivand rivers and also the entrance of the Marvdasht and Zarghan city sewer system wastes into the Kor river and the use of their water in the cultivation of the rice has caused a significant increase in the lead and cadmium content of the grains of rice. To study the effect of the Kor river's pollution on the lead and cadmium content of the Korbal rice samples. The results of the study show that the lead and cadmium content of the grains of rice, 57 samples of 6 different types of rice were prepared in 19 different stations in Korbal region and also 18 samples of 6 different types of rice, cultivated with unpolluted water, were prepared in the National Institute of Rice Research (Gilan. A comparison of the pollution level of the Korbal and Gilan rice samples shows a significant difference and indicates the significant effect of the pollution of the river on the lead and cadmium content of the Korbal rice samples. The results of the study show that the lead and cadmium content of the hybrid, prolific, and late rice sample types were greater than that of unprolific and early types, such that the amount of these two elements were highest in the Hassani type (the lead content was 0.9625 ppm and the cadmium content was 0.0793 ppm, whereas the Gasroddashti type which blooms earlier and is long seeded has the lowest amount of these two elements.

  13. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

    Science.gov (United States)

    He, Lin-Yan; Chen, Zhao-Jin; Ren, Gai-Di; Zhang, Yan-Feng; Qian, Meng; Sheng, Xia-Fang

    2009-07-01

    Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils. PMID:19368973

  14. 乐安河-鄱阳湖湿地植物群落特征及其优势植物对重金属 Cu、Pb、Cd 的富集%Plant community characteristics and the enrichment of heavy species grown in the wetland of Lean River and Poyang Lake metals copper,lead and cadmium in the dominant plant

    Institute of Scientific and Technical Information of China (English)

    简敏菲; 周雪玲; 余厚平; 朱咏梅

    2015-01-01

    An investigation was conducted on the typical plant community and collected the soil and plant samples in different sampling sites in the wetland of Poyang Lake and Lean River.Plant community characteristics and the domi-nant plant community in different regions of Lean River were evaluated by using important value method.The con-tents of the heavy metals copper,lead and cadmium in the dominant plants in different habitats and the root zone soils were determined in the laboratory by using physical and chemical analysis methods,and the enrichment characteris-tics of heavy metals included copper,lead and cadmium in the dominant plants were evaluated by using bio-concentra-tion factor (BCF)method.The results indicated that the main wetland plants were dominated by herbaceous plants in the sampling sites and 124 species in total were found in the different sampling sites,including 2 families,2 genera and 2 species of ferns,and 40 families,97 genera and 122 species of seed plants.In the survey sampling sites, Rumex japonicus ,Polygonum orientale ,Gnaphalium affine ,Astragalus sinicus and Boehmeria nivea were the typical dominant plants which had strong enrichment ability of heavy metals.The heavy metals determined results in-dicated that the contents of copper and cadmium in some dominant plants’root zone soils exceeded the third class of the soil environmental quality standards.The highest content of copper in plant root zone soils was 824.03 mg·kg-1 and the highest content of cadmium in plant root zone soils was 5.03 mg·kg-1 .And the five dominant species showed hyperaccumulation ability to one or two kinds of the heavy metal pollutants including copper,lead and cadmium.For example,Polygonum orientale had strong accumulation ability on copper and the highest content in P .orientale reached to 148.80 mg·kg-1 ;another kind of dominant plant is Gnaphalium affine ,the bio-concentration factor values of the three heavy metal elements were much more than those of other

  15. Lead and cadmium in wild birds in southeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A. [Univ. of Murcia (Spain); Jimenez-Montalban, P. [Regional Environmental Agency, Murcia (Spain). Centro de Recuperacion de Fauna Silvestre El Valle

    1995-12-01

    The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (mean 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.

  16. Differents remediation methodos for lead, chromium and cadmium contaminated soils

    International Nuclear Information System (INIS)

    The usage of phosphates in the remediation of plots contaminated with heavy metals appears to be a good strategy to lessen the danger of these metals. This study analyses the effect of the mobilization of: Lead, chromium and cadmium by utilizing diverse forms of phosphates in contaminated soils of three different origins with ph modification and without it

  17. Determination of lead and cadmium in biological materials

    International Nuclear Information System (INIS)

    Sampling techniques and experience, and decomposition methods are presented. The processes used in flameless atomic absorption spectrometry (including the method using automatic insertion of samples), pulse polarography and isotope dilution mass spectrometry are described. Finally, the results of lead and cadmium measurements in bovine liver, blood, urine and hair samples are reported and discussed with a comparison of methods in some cases

  18. 济宁市太白湖区饮用水铅镉铜锌铁锰氟含量检测%The determination of Lead,Cadmium,Copper,Zinc,Iron,Manganese and Fluoride in drinking water of the North Lake District,Jining

    Institute of Scientific and Technical Information of China (English)

    张凯; 公维磊; 王长芹

    2014-01-01

    Objective To determinate the content of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride in Drinking Water of the North Lake District in Jining in order to explore the non‐point source pollution in the process of new town building ,which provides a scientific basis for city construction and waterways in the layout ,al‐teration and application .Methods 102 water samples of 8 areas were collected randomly in the North Lake Dis‐trict of Jining .The contents of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride were determined by atom‐ic absorption spectrometry and fluorine ion selective electrode method respectively .Results The average content of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride were 0 .014mg/L ,0 .0034 mg/L ,0 .017mg/L , 0.406mg/L ,0 .509mg/L ,0 .047 mg/L ,0 .214mg/L ,and the corresponding rates of exceed standard were 1 .96% , 27 .45% ,0% ,7 .84% ,76 .47% ,5 .88% and 1 .96% respectively .Conclusion The contents of lead ,manganese , copper ,zinc and fluoride were generally good ,the content of cadmium was high ,and the content of iron was exces‐sive generally .%目的:对济宁市太白湖区饮用水中铅、镉、铜、锌、铁、锰、氟含量进行检测,了解新城建设过程中的城市非点源污染状况,及早为城市建设和水系的布局、改造、应用提供科学依据。方法在济宁市太白湖区随机采集8个区域共102份水样,分别采用石墨炉原子吸收法、火焰原子吸收法和氟离子选择电极法测定其铅、镉、铜、锌、铁、锰、氟的含量。结果济宁市太白湖区饮用水中铅、镉、铜、锌、铁、锰、氟含量分别为0.014mg/L、0.0034 mg/L、0.017mg/L、0.406mg/L、0.509mg/L、0.047 mg/L、0.214mg/L ,超标率分别为1.96%、27.45%、0%、7.84%、76.47%、5.88%、1.96%。结论济宁市太白湖区饮用水中铅、锰、铜、锌、氟含量总体良好,镉含量超标

  19. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    Science.gov (United States)

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  20. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration

    OpenAIRE

    R. C. Patra; Amiya K. Rautray; D. Swarup

    2011-01-01

    Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthrop...

  1. Lead, Cadmium and Nickel Contents of Some Medicinal Agents

    Science.gov (United States)

    Nessa, Fazilatun; Khan, S. A.; Abu Shawish, K.Y.I.

    2016-01-01

    Thirty nine brands of pharmaceutical dosage forms (28 tablets, 4 syrups, 6 suspensions and one chewing gum) that are available in United Arab Emirates pharmaceutical markets were investigated for the presence of three heavy metals; lead, cadmium and nickel. Amongst the samples, 13 products were manufactured locally in United Arab Emirates and 26 products were imported from around the world. The samples were prepared by acid digestion procedure and the resultant solutions were analyzed for heavy metals by using a validated graphite furnace atomic absorption spectrometric method. Calibration curves were achieved using different concentration of lead, nickel and cadmium ranged from 0.001 to 0.05 μg/ml. The mean recoveries of metals from the samples were 86.4 to 97%. The %relative standard deviation for the intraassay and interday precision for the metals were <5%. Amongst the 39 samples of pharmaceutical dosage form all exhibited a positive response for lead, cadmium and nickel except three products whose Ni levels were below quantification level. The products contained variable amounts of heavy metals as of 0.0017 to 11.88 μg lead; 0.0011 to 0.5559 μg cadmium and 0.0011 to 2.6428 μg nickel, respectively. Based on maximum recommended daily dose (g) of these products, maximum daily ingested mass of lead was 0.0034 to 11.88 μg/d, 0.0013 to 0.56 μg/d for cadmium and 0.0011 to 2.64 μg/d for nickel, respectively. The results were compared with those of oral permitted daily exposure levels of United State Pharmacopeial National Formulary 2013. All the products were safe to consume and contained lower level of lead, cadmium and nickel than Oral Permitted Daily Exposure levels, except three products which showed higher level of lead than oral permitted daily exposure levels. Hence the raw materials used in manufacturing of these medicinal agents might be responsible for the presence of higher level of lead. PMID:27168689

  2. Lead, cadmium and nickel contents of some medicinal agents

    Directory of Open Access Journals (Sweden)

    Fazilatun Nessa

    2016-01-01

    Full Text Available Thirty nine brands of pharmaceutical dosage forms (28 tablets, 4 syrups, 6 suspensions and one chewing gum that are available in United Arab Emirates pharmaceutical markets were investigated for the presence of three heavy metals; lead, cadmium and nickel. Amongst the samples, 13 products were manufactured locally in United Arab Emirates and 26 products were imported from around the world. The samples were prepared by acid digestion procedure and the resultant solutions were analyzed for heavy metals by using a validated graphite furnace atomic absorption spectrometric method. Calibration curves were achieved using different concentration of lead, nickel and cadmium ranged from 0.001 to 0.05 μg/ml. The mean recoveries of metals from the samples were 86.4 to 97%. The %relative standard deviation for the intraassay and interday precision for the metals were <5%. Amongst the 39 samples of pharmaceutical dosage form all exhibited a positive response for lead, cadmium and nickel except three products whose Ni levels were below quantification level. The products contained variable amounts of heavy metals as of 0.0017 to 11.88 μg lead; 0.0011 to 0.5559 μg cadmium and 0.0011 to 2.6428 μg nickel, respectively. Based on maximum recommended daily dose (g of these products, maximum daily ingested mass of lead was 0.0034 to 11.88 μg/d, 0.0013 to 0.56 μg/d for cadmium and 0.0011 to 2.64 μg/d for nickel, respectively. The results were compared with those of oral permitted daily exposure levels of United State Pharmacopeial National Formulary 2013. All the products were safe to consume and contained lower level of lead, cadmium and nickel than Oral Permitted Daily Exposure levels, except three products which showed higher level of lead than oral permitted daily exposure levels. Hence the raw materials used in manufacturing of these medicinal agents might be responsible for the presence of higher level of lead.

  3. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration

    Directory of Open Access Journals (Sweden)

    R. C. Patra

    2011-01-01

    Full Text Available Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthropogenic sources including mining, smelting, and other industrial processes are responsible for human and animal exposure. These pollutants, many a times, are copollutants leading to concurrent exposure to living beings and resultant synergistic deleterious health effects. Several mechanisms have been explained for the damaging effects on the body system. Of late, oxidative stress has been implicated in the pathogenesis of the lead- and cadmium-induced pathotoxicity. Several ameliorative measures to counteract the oxidative damage to the body system aftermath or during exposure to these toxicants have been assessed with the use of antioxidants. The present review focuses on mechanism of lead- and cadmium-induced oxidate damages and the ameliorative measures to counteract the oxidative damage and pathotoxicity with the use of supplemented antioxidants for their beneficial effects.

  4. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  5. Inherent variability in lead and copper collected during standardized sampling.

    Science.gov (United States)

    Masters, Sheldon; Parks, Jeffrey; Atassi, Amrou; Edwards, Marc A

    2016-03-01

    Variability in the concentration of lead and copper sampled at consumers' taps poses challenges to assessing consumer health threats and the effectiveness of corrosion control. To examine the minimum variability that is practically achievable, standardized rigs with three lead and copper containing plumbing materials (leaded brass, copper tube with lead solder, and a lead copper connection) were deployed at five utilities and sampled with regimented protocols. Variability represented by relative standard deviation (RSD) in lead release was high in all cases. The brass had the lowest variability in lead release (RSD = 31 %) followed by copper-solder (RSD = 49%) and lead-copper (RSD = 80%). This high inherent variability is due to semi-random detachment of particulate lead to water, and represents a modern reality of water lead problems that should be explicitly acknowledged and considered in all aspects of exposure, public education, and monitoring.

  6. Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units

    Energy Technology Data Exchange (ETDEWEB)

    Patra, R.C. [Environmental Medicine Laboratory, Division of Medicine, Indian Veterinary Research Institute, Izatnagar - 243 122 (India); College of Veterinary Science and AH, Orissa University of Agriculture and Technology, Bhuabneswar - 751 003 (India)], E-mail: rcpatra@gmail.com; Swarup, D.; Kumar, P.; Nandi, D.; Naresh, R. [Environmental Medicine Laboratory, Division of Medicine, Indian Veterinary Research Institute, Izatnagar - 243 122 (India); Ali, S.L. [College of Veterinary Science and AH, Rajiv Gandhi Agricultural University, Anjora, Durg (India)

    2008-10-01

    The present investigation was carried out to assess the trace mineral profile of milk from lactating cows reared around different industrial units and to examine the effect of blood and milk concentration of lead and cadmium on copper, cobalt, zinc and iron levels in milk. Respective blood and milk samples were collected from a total of 201 apparently healthy lactating cows above 3 years of age including 52 cows reared in areas supposed to be free from pollution. The highest milk lead (0.85 {+-} 0.11 {mu}g/ml) and cadmium (0.23 {+-} 0.02 {mu}g/ml) levels were recorded in lactating cows reared around lead-zinc smelter and steel manufacturing plant, respectively. Significantly (P < 0.05) higher concentration of milk copper, cobalt, zinc and iron compared to control animals was recorded in cows around closed lead cum operational zinc smelter. Analysis of correlation between lead and other trace elements in milk from lactating cows with the blood lead level > 0.20 {mu}g/ml (n = 79) revealed a significant negative correlations between milk iron and milk lead (r = - 0.273, P = 0.015). However, such trend was not recorded with blood lead level < 0.20 {mu}g/ml (n = 122). The milk cobalt concentration was significantly correlated (r = 0.365, P < 0.001) with cadmium level in milk and the highest milk cadmium (> 0.10 to 0.39 {mu}g/ml) group had significantly (P < 0.05) increased milk cobalt. It is concluded that increased blood and milk lead or cadmium level as a result of natural exposure of lactating cows to these environmental toxicants significantly influences trace minerals composition of milk and such alterations affect the milk quality and nutritional values.

  7. Remediation of lead and cadmium-contaminated soils.

    Science.gov (United States)

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  8. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    Science.gov (United States)

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  9. Does copper reduce cadmium uptake by different rice genotypes?

    Institute of Scientific and Technical Information of China (English)

    CUI Yujing; ZHANG Xuhong; ZHU Yongguan

    2008-01-01

    A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd),calcium (Ca),iron (Fe),and zinc (Zn) uptake by several rice genotypes.The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution.Plants were grown in a growth chamber with controlled environment.The results showed a significant difference between the biomass of different rice genotypes (P<0.001).The Cd and Cu concentration in the solution had no significant effect on the biomass.The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P<0.001).The Cd concentration did not significantly influence Ca uptake by plants,whereas the Cu concentration did (P=0.034).There was a significant influence of Cd on Fe uptake by shoots and roots (P<0.001,P=0.003,respectively).Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots.We concluded that Cu had significant influence on Cd uptake.The possible mechanisms were discussed.

  10. Measurement and analysis of serum lead, cadmium, zinc, copper and metallothionein in residents of Shaying River area%沙颍河流域居民血清铅、镉、锌、铜及金属硫蛋白的测定

    Institute of Scientific and Technical Information of China (English)

    李仕群; 朱静媛; 李岩; 王志瑾; 袁伟; 程学敏; 巴月; 崔留欣

    2013-01-01

    chosen from villages less than 5 km and more than 20 km away from the Shaying River respectively , which had similar pop-ulation composition and economy condition .The concentrations of lead and cadmium in drinking water , soil, grain and veg-etables samples from the two areas were measured respectively by flame atomic absorption spectrometry .Serum lead , cad-mium, zinc and copper levels were determined by cyclic voltammetry method .Serum MT level was measured by ELISA . Results:The levels of serum lead , cadmium in drinking water , soil, grain and vegetable samples in the contaminated area were significantly higher than those of control area ( lead:t =2.663,2.300,3.001,and 2.117,P<0.05;cadmium:t =3.549,2.073,2.202,and 2.167,P<0.05).The levels of serum lead, cadmium, zinc, and Cu/Zn in the contaminated area were significantly higher than those of control area respectively (t=5.544,10.438,and 5.556,P<0.05).Conclu-sion:Water pollution of Shaying River has affected the load of heavy metals in local residents .%目的:探讨沙颍河污染区外环境重金属暴露对居民血清铅、镉、锌、铜及金属硫蛋白( MT )的影响。方法:在距沙颍河河堤5 km以内和20 km以外各选取一个人口构成相似的村庄分别作为污染区和对照区,测量河水、饮用水、土壤、蔬菜和粮食中的铅、镉含量。采用火焰原子吸收光谱法测定河水、饮用水、土壤、蔬菜、粮食中的铅、镉含量;采用溶出伏安法测定各组人群血清中的铅、镉、锌、铜含量;采用ELISA方法测定人群血清中MT的含量。结果:污染区饮用水、土壤、粮食和蔬菜中的铅、镉含量均高于对照区(铅:t=2.663、2.300、3.001和2.117,P<0.05;镉:t=3.549、2.073、2.202和2.167,P<0.05);污染区人群的血清铅、镉水平和铜/锌比值高于对照区(t=5.544、10.438和5.556,P<0.05);血清MT含量随着血清铅、镉含量的

  11. PHYTOREMEDIATION OF LEAD AND CADMIUM CONTAMINATED SOILS USING SUNFLOWER PLANT

    OpenAIRE

    Nasser Sewalem; Soad Elfeky; Fatma El- Shintinawy

    2014-01-01

    Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower ( Helianthus annuus L.) plants as a potential phytoremediator to soils contaminated with cadmium (Cd) and lead (Pb) was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid pero...

  12. Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

    Directory of Open Access Journals (Sweden)

    Ptumporn Muangphra

    2011-01-01

    Full Text Available To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd and lead (Pb for 48 h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50 μg cm−2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32 μg cm−2. For Cd at 0.75 μg cm−2, in the micronucleus test (detects chromosomal aberrations, significant increases (<.05 in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks, tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29 μg cm−2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects.

  13. Kinetic modelling of cadmium and lead removal by aquatic mosses

    Directory of Open Access Journals (Sweden)

    R. J. E. Martins

    2014-03-01

    Full Text Available Because biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In the present study, the performance of the aquatic moss Fontinalis antipyretica for removing cadmium and lead from simulated wastewaters has been evaluated. Five kinetic models (first-order, pseudo-first-order, Elovich, modified Ritchie second-order and pseudo-second-order were fitted to the experimental data and compared. Previously, the effect of parameters such as the initial solution pH, contact time, and initial metal ion concentration on biosorption was investigated. The initial pH of the solution was found to have an optimum value in the range of 4.0-6.0. The equilibrium sorption capacity of cadmium and lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L-1, the uptake capacity of the moss, at equilibrium, is the same for both metals (4.8 mg g-1. Nevertheless, when the initial concentration increases up to 100 mg L-1, the uptake of Pb(II was higher than 78%. The pseudo-second order biosorption kinetics provided the better correlation with the experimental data (R² ≥ 0.999.

  14. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  15. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  16. Cadmium, lead and mercury exposure in non smoking pregnant women

    International Nuclear Information System (INIS)

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  17. Cadmium, lead and mercury exposure in non smoking pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Callan, A.C.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.Ø. [Department of Community Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2013-10-15

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  18. Best Practices for Controlling Lead and Copper Release

    Science.gov (United States)

    Presentation draft, covering summary of current state-of-the-art knowledge for the best treatment strategies for minimizing lead release and controlling copper release. The presentation is intended to aid with compliance with the Lead and Copper Rule, but also provide a guide to...

  19. Development of Lead-Free Copper Alloy-Graphite Castings

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K. [Univ. of Wisconsin-Milwaukee (US)

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  20. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  1. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  2. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Gareth J., E-mail: g.norton@abdn.ac.uk [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Deacon, Claire M. [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Mestrot, Adrien [Soil Science Group, Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern (Switzerland); Feldmann, Joerg [Department of Chemistry, School of Physical Sciences, University of Aberdeen, Meston Building, AB24 3UE (United Kingdom); Jenkins, Paul; Baskaran, Christina [Food Standards Agency, Aviation House, Kingsway, London WC2B 6NH (United Kingdom); Meharg, Andrew A. [Institute for Global Food Security, Queen' s University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN (United Kingdom)

    2015-11-15

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes.

  3. Prostatic cellular changes after injection of cadmium and lead into rat prostate

    Energy Technology Data Exchange (ETDEWEB)

    Khare, N.; Der, R.; Ross, G.; Fahim, M.

    1978-05-01

    Forty male rats were divided into four groups. Group I served as control. Group II received 1 mg lead injected into the prostate; Group III received 1 mg cadmium chloride; and Group IV received 0.5 mg lead acetate and 0.5 mg cadmium chloride. The lead caused stone formation in the bladder and calcification of both bladder and prostate; cadmium caused reduction in size and weight of prostate, and histological observation showed marked atrophy of the gland, cuboidal epithelium, and squamous metaplasia in the acini of the prostate; there was no synergistic effect of lead acetate and cadmium chloride when combined at the level administered to Group IV.

  4. Prostatic cellular changes after injection of cadmium and lead into rat prostate.

    Science.gov (United States)

    Khare, N; Der, R; Ross, G; Fahim, M

    1978-05-01

    Forty male rats were divided into four groups. Group I served as control. Group II received 1 mg. lead injected into the prostate; Group III received 1 mg. cadmium chloride; and Group IV received 0.5 mg. lead acetate and 0.5 mg. cadmium chloride. Results indicated that lead caused stone formation in the bladder and calcification of both bladder and prostate; cadmium caused reduction in size and weight of prostate, and histological observation showed marked atrophy of the gland, cuboidal epithelium, and squamous metaplasia in the acini of the prostate; there was no synergistic effect of lead acetate and cadmium chloride when combined at the level administered to Group IV.

  5. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    International Nuclear Information System (INIS)

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes

  6. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria.

    Science.gov (United States)

    Yusuf, A A; Arowolo, T A; Bamgbose, O

    2003-03-01

    The levels of cadmium, copper and nickel in five different edible vegetables, Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils in which they were grown, from three industrial and three residential areas of Lagos City, Nigeria, were determined using atomic absorption spectrophotometry. The results obtained for these three heavy metals from the industrial areas were higher than those of the residential areas as a result of pollution. Industrial area results for vegetables ranged between 1.13 and 1.67 microg/g for cadmium; 25.08 and 56.84 microg/g for copper and 1.33 and 2.06 microg/g for nickel. There were statistically significant differences (P<0.05) between the levels of copper and nickel in all the vegetables studied from industrial and residential areas, while there was no statistically significant difference for cadmium. The results also show that Corchorus olitorus (bush okra) has the ability to accumulate more copper and nickel than the other vegetable studied but has the least ability to accumulate cadmium. PMID:12504169

  7. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  8. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Cai Qiu, E-mail: caiqiu1029@126.co [Guizhou Import-Export Inspection Bureau, 4 Beijing Road, Guiyang 550004 (China); Long Meili [Guizhou Academy of Sciences, Guiyang 550001 (China); Zhu Ming [Guizhou Import-Export Inspection Bureau, 4 Beijing Road, Guiyang 550004 (China); Zhou Qingzhen [Guizhou Academy of Sciences, Guiyang 550001 (China); Zhang Ling [Guizhou Import-Export Inspection Bureau, 4 Beijing Road, Guiyang 550004 (China); Liu Jie, E-mail: jie@liuonline.co [Zunyi Medical College, Zunyi 563003 (China)

    2009-11-15

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. - Cd and Pb from lead-zinc smelters contaminate the environment and accumulate in bovine tissues.

  9. Critical loads of Cadmium, Lead and Mercury and their exceedances in Europe

    NARCIS (Netherlands)

    Hettelingh, J.P.; Schutze, G.; Vries, W. de; Denier van der Gon, H.A.C.; Ilyin, I.; Reinds, G.J.; Slootweg, J.; Travnikov, O.

    2015-01-01

    Cadmium (Cd), lead (Pb) and mercury (Hg) are known to be transported over relatively long distances from their sources. Deposited metals may accumulate over time in soils and catchments, and then follow varying pathways to endpoints in humans and the environment. Cadmium and lead, that are emitted p

  10. Environmental Cadmium and Lead Exposure and Anti-Müllerian Hormone in Pregnant Women

    DEFF Research Database (Denmark)

    Christensen, P S; Bonde, J P; Bungum, L;

    2016-01-01

    BACKGROUND: Anti-Müllerian Hormone (AMH) has been suggested as a marker for ovarian function. Cadmium and lead have been suggested to reduce female fecundity. In this study we aimed to investigate whether environmental exposure to cadmium and lead was associated with alterations in serum...

  11. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    Science.gov (United States)

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  12. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth

    Directory of Open Access Journals (Sweden)

    GORAN M. NIKOLIC

    2004-07-01

    Full Text Available Potentiometric stipping analysis (PSA was applied for the determination of lead and cadmium leaching from dental prosthetic materials and teeth. The soluble lead content in finished dental implants was found to be much lower than that of the individual components used for their preparation. Cadmium was not detected in dental implants and materials under the defined conditions. The soluble lead and cadmium content of teeth was slightly lower than the lead and cadmium content in whole teeth (w/w reported by other researchers, except in the case of a tooth with removed amalgam filling. The results of this work suggest that PSA may be a good method for lead and cadmium leaching studies for investigation of the biocompatibility of dental prosthetic materials.

  13. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China.

    Science.gov (United States)

    Cai, Qiu; Long, Mei-Li; Zhu, Ming; Zhou, Qing-Zhen; Zhang, Ling; Liu, Jie

    2009-11-01

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. PMID:19573961

  14. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [Ca; Pb; cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  15. Diagnostic Sampling to Reveal Hidden Lead and Copper Health Risks

    Science.gov (United States)

    Lead, copper and other metallic contamination sources in premise drinking water plumbing systems, are unevenly distributed and are usually hidden from thought, view, or both. Many sampling protocols exist, each with some set of implicit assumptions governing its applicability to...

  16. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  17. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [3-week-old cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The purpose of the present studies was to elucidate the mechanism of lead transport, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined in 3-week old White Leghorn cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or 1 mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Certain differences were, however, observed in the absorption process. Increasing luminal stable lead concentration from 0.01 to 1.00 mM Pb, significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, and the effect on calcium outlasted that on lead, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  18. A nationwide survey of heavy metal absorption in children living near primary copper, lead, and zinc smelters.

    Science.gov (United States)

    Baker, E L; Hayes, C G; Landrigan, P J; Handke, J L; Leger, R T; Housworth, W J; Harrington, J M

    1977-10-01

    Arsenic, lead, and cadmium absorption levels were determined in 1774 children 1-5 years old living in 19 USA towns with primary nonferrous metal smelters. Results were compared with data on 258 children of the same age in three communities without smelters. Increased systemic absorption of arsenic, as reflected by urine arsenic content, was noted in children near 10 of 11 copper smelters. Blood lead levels were also modestly elevated near two copper smelters. Near lead and zinc smelters, elevated levels of lead and cadmium in hair provided evidence of external exposure to these elements. Levels of lead in blood were not, however, elevated near any of three lead smelters and were elevated near only two of five zinc smelters. Blood cadmium levels were high near one lead and two zinc smelters. The apparent sources of exposure (except in one community with elevated levels of arsenic in drinking water) were air, soil, and dust contaminated by smelting operations. While the full biologic significance of these findings is not known exposure of children to toxic heavy metals emitted by smelters should be reduced to a minimum. PMID:910795

  19. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  20. Localization and toxic effects of cadmium, copper, and uranium in Azolla

    Energy Technology Data Exchange (ETDEWEB)

    Sela, M.; Tel-Or, E.; Fritz, E.; Huttermann, A.

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  1. Distribution of cadmium, copper, and zinc in the caryopsis of wheat (Triticum aestivum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Pieczonka, K.; Rosopulo, A.

    1985-12-01

    Cadmium, copper, and zinc were quantitatively determined in the whole grain, the germ, the aleurone layer, the outer pericarp, and the endosperm from the caryopsis of wheat (Triticum aestivum L.) by the methods of direct solid microsampling and flame-AAS, respectively. Metal concentrations markedly differed among the tissues investigated. Both methods used in this study produced almost identical heavy metal concentrations. However, the techniques dramatically differed in the amounts of grain material required for analysis.

  2. Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium.

    Science.gov (United States)

    Jeppe, Katherine J; Carew, Melissa E; Long, Sara M; Lee, Siu F; Pettigrove, Vincent; Hoffmann, Ary A

    2014-05-01

    Freshwater invertebrates are often exposed to metal contamination, and changes in gene expression patterns can help understand mechanisms underlying toxicity and act as pollutant-specific biomarkers. In this study the expressions of genes involved in cysteine metabolism are characterized in the midge Chironomus tepperi during exposures to sublethal concentrations of cadmium and copper. These metals altered gene expression of the cysteine metabolism differently. Both metals decreased S-adenosylhomocysteine hydrolase expression and did not change the expression of S-adenosylmethionine synthetase. Cadmium exposure likely increased cystathionine production by up-regulating cystathionine-β-synthase (CβS) expression, while maintaining control level cysteine production via cystathionine-γ-lyase (CγL) expression. Conversely, copper down-regulated CβS expression and up-regulated CγL expression, which in turn could diminish cystathionine to favor cysteine production. Both metals up-regulated glutathione related expression (γ-glutamylcysteine synthase and glutathione synthetase). Only cadmium up-regulated metallothionein expression and glutathione S-transferase d1 expression was up-regulated only by copper exposure. These different transcription responses of genes involved in cysteine metabolism in C. tepperi point to metal-specific detoxification pathways and suggest that the transsulfuration pathway could provide biomarkers for identifying specific metals.

  3. Follow up of Treatment of Cadmium and Copper Toxicity in Clarias Gariepinus Using Laser Techniques

    Science.gov (United States)

    Zaghloul, Khalid H.; Ali, Maha F.; El-Bary, Manal G. Abd; Abd El-Harith, Mohamed

    2010-04-01

    Two purified diets were formulated and fed to seven groups of the Nile catfish; Clarias gariepinus for 12 weeks. The formulated diets contained 50 or 500 mg/kg diet of an ascorbic acid equivalent, supplied by L-ascorbyl-2-monophosphate (Mg salt). Laser induced breakdown spectroscopy (LIDS) technique has been used to characterize the bioaccumulation of cadmium, copper and iron in some selected organs (Gills, liver, kidney and muscles) and disturbance in the distribution of sodium, calcium and magnesium in gills and muscles of fish fed the minimum requirement of vitamin C (50 mg/kg diet) and exposed to cadmium (0.165 mg/l) and copper (0.35 mg/l) individually or in combination. Heavy metals bioaccumulation affect histological structure of gills, liver and kidney and consequently, fish exhibited the lowest growth rate and meat quality with a progressive fall in RBCs count, Hb content and haematocrite value. These effects were concomitant with significant increase in the WBCs count, serum glucose, total protein, AST, ALT, creatinine and uric acid. On the contrary, serum total lipids and liver glycogen revealed a significant decrease. However, fish fed 500 mg vitamin C/kg diet and exposed to the same concentrations of cadmium and copper either individually or in mixture showed an improvement in the growth rate and meat quality and a tendency to exhibit close to the control values for most of the other studied physiological, biochemical and histopathological investigations.

  4. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    OpenAIRE

    Nourmoradi, H.; M. Foroghi; Farhadkhani, M.; M Vahid Dastjerdi

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2  µ g/g and 4.08–60.20  µ g/g, respectiv...

  5. Measurement of vitamin D3 metabolites in smelter workers exposed to lead and cadmium

    OpenAIRE

    Chalkley, S. R.; Richmond, J; Barltrop, D.

    1998-01-01

    OBJECTIVES: To investigate the effects of lead and cadmium on the metabolic pathway of vitamin D3. METHODS: Blood and urinary cadmium and urinary total proteins were measured in 59 smelter workers occupationally exposed to lead and cadmium. In 19 of these workers, the plasma vitamin D3 metabolites, (25-hydroxycholecalciferol (25 OHD3), 24R, 25-dihydroxycholecalciferol (24R,25(OH)2D3) and 1 alpha,25- dihydroxycholecalciferol (1 alpha, 25(OH)2D3)) were measured together with blood lead. V...

  6. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole;

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy...

  7. Biosorption of copper and cadmium in packed bed columns with live immobilized fungal biomass of Phanerochaete chrysosporium.

    Science.gov (United States)

    Pakshirajan, K; Swaminathan, T

    2009-05-01

    Biosorption of copper (II) and cadmium (II) by live Phanerochaete chrysosporium immobilized by growing onto polyurethane foam material in individual packed bed columns over two successive cycles of sorption-desorption were investigated in this study. Initial pH and concentrations of the metals in their respective solutions were set optimum to each of those: 4.6 and 35 mg x l(-1) in case of copper and 5.3 and 11 mg x l(-1) for cadmium. The breakthrough curves obtained for the two metals during sorption in both the cycles exhibited a constant pattern at various bed depths in the columns. The maximum yield of the columns in removing these metals were found to be, respectively, 57% and 43% for copper and cadmium indicating that copper biosorption by the immobilized fungus in its column was better than for cadmium. Recovery values of the sorbed copper and cadmium metals from the respective loaded columns by using 0.1 N HCl as eluant was observed to be quite high at more than 65% and 75%, respectively, at the end of desorption in both the cycles. Breakthrough models of bed-depth service time, Adams-Bohart, Wolborska, and Clark were fitted to the experimental data on sorption of copper and cadmium in the columns, and only the Clark model could fit the sorption performance of the columns well over the entire range of ratios of concentrations of effluent to influent, i.e., C/C0 for both copper and cadmium biosorption. The kinetic coefficients of mass transfer and other suitable parameters in the system were determined by applying the experimental data at C/C0 ratios lower than 0.5 to the other three models. PMID:18551254

  8. [Assessment of cadmium and lead released from cigarette smoke].

    Science.gov (United States)

    Suna, S; Asakawa, F; Jitsunari, F; Manabe, Y; Gotou, A; Fukunaga, I; Nakajima, T

    1991-12-01

    Cigarette smoke, which contains many harmful compounds, affects not only the smoker's health but also indoor air quality. To evaluate indoor air contamination by cadmium (Cd) and lead (Pb), we measured Cd and Pb contained in the mainstream and sidestream smoke exhaled by experimental smoking of Japanese cigarettes and also determined urinary and blood Cd and Pb levels in smokers and non-smokers and air Cd and Pb levels in smoky environments. 1. One cigarette of each of 7 Japanese brands contained about 1 microgram each of Cd and Pb, of which about 50 ng each was released to the mainstream and 250 ng of Cd and 50 ng of Pb to the sidestream by smoking. 2. The blood Cd level in the smokers was significantly higher than that in the non-smokers. The urinary Cd level in the smokers was slightly higher than that in the non-smokers. The blood Cd level was related to the number of cigarettes smoked daily. Blood and urinary Pb levels did not differ between the smokers and non-smokers, but the blood Pb level was also related to the number of cigarettes smoked daily. 3. The air Cd levels in smoky places such as the smoking car of the special express train, an office, and a pachinko parlor were markedly higher than that in outdoor air. The air Cd concentration was well correlated with the environmental tobacco smoke concentration. On the other hand, the air Pb level was slightly higher in the above smoky places than outdoors. The mean air Pb concentration was not correlated with the environmental tobacco smoke concentration but was higher at higher environmental tobacco smoke concentration in each place.

  9. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium.

    Science.gov (United States)

    Varun, Mayank; D'Souza, Rohan; Pratas, João; Paul, M S

    2011-07-01

    Root and shoot samples of Prosopis juliflora were assessed for their heavy metal content to evaluate the species as a green solution to decontaminate soils contaminated with lead and cadmium. The highest uptake of both the metals was observed in plants from industrial sites. Sites with more anthropogenic disturbance exhibited reduced chlorophyll levels, stunted growth, delayed and shortened reproductive phase. The ratios of lead and cadmium in leaves to lead and cadmium in soil were in the range of 0.62-1.46 and 0.55-1.71, respectively. Strong correlation between the degree of contamination and concentrations of lead and cadmium in plant samples identifies P. juliflora as an effective heavy metal remediator coupled with environmental stress.

  10. Distribution of Cadmium and Lead in Trees Planted on Contaminated Soil

    OpenAIRE

    Vondrášek, Ladislav

    2013-01-01

    In the environment, lead and cadmium are characterized as toxic metals, carcinogenic for the entire biosphere. Their geogenic occurrence is caused by volcanic activity and forest fires. Geogenic lead is mostly released from sea aerosols into the atmosphere and regarding geogenic cadmium the wind erosion prevails, but nowadays the anthropogenic input into the environment outweighs, especially the extractive industries and the subsequent industrial processing of both toxic metals. The legislati...

  11. Interlaboratory Comparison of Lead and Cadmium in Blood, Urine, and Aqueous Solutions

    DEFF Research Database (Denmark)

    Paulev, P. E.; Solgaard, Per Bent; Tjell, Jens Christian

    1978-01-01

    Analysis for lead and cadmium in biological liquids (blood and urine) is difficult. Results of such analyses from five laboratories are compared for samples with known additions of lead and cadmium. The data, evaluated in terms of inter- and intralaboratory reproducibility and accuracy, suggest t...... that laboratories should voluntarily participate in quality control programs. Users of routine laboratories are advised to use their own quality control program...

  12. Lead and cadmium determinations by atomic absorption technique in biological samples: blood, placenta and umbilical cord

    International Nuclear Information System (INIS)

    In order to determine the possibility contamination of lead and cadmium in pregnant women living in the mining-smelting city of La Oroya in Peru, lead and cadmium concentrations were assessed in maternal blood (pre-birth), umbilical cord blood and placental tissue. Forty deliveries with normal evolution were evaluated between October 2002 and January 2003. Samples were analyzed by atomic absorption on a graphite furnace at the Peruvian Institute of Nuclear Energy (IPEN) laboratories. Results are summarized as follows: a) Mean lead concentrations in maternal blood (MB), umbilical cord blood (UCB) and placental tissue (PT) were 27.23 μg/dL, 18.48 μg/dL and 363.97 μg/100g, respectively; b) Mean cadmium concentrations in MB, UCB and PT were 8.82 μg/dL, 12,0 μg/dL and 104,44 μg/100g, respectively; c) The correlation coefficient between lead concentration in maternal blood and umbilical cord was 0.122; d). The correlation coefficient of cadmium concentration between MB and UCB was 0.223; e). The correlation coefficient of lead concentration between MB and PT was 0.189; f). The correlation coefficient of cadmium concentration between MB and PT was 0.633. Trans-placental transport of lead was 67.84% (27,23 μg/dL in MB vs. 18.48 μg/dL in UCB); whereas in the case of cadmium, the concentration in UC (12,00 μg/dL) was greater than in MB (8.82 μg/dL.). These results could indicate that the placenta acts as a barrier trapping lead and cadmium. This barrier is efficient for lead since the concentration in cord blood is inferior to maternal blood but it is less efficient for cadmium. (author)

  13. Accumulation of Cadmium and Lead in Soils and Vegetables of Lenjanat Region in Isfahan Province, Iran

    OpenAIRE

    Salehi M. H.; Mohajer R.; Mohammadi J.

    2013-01-01

    Various heavy metals have been reported as dangerous agents to the human health and wildlife when they occur in the environment at high concentrations. Cadmium and lead compounds are classified as human carcinogens by several regulatory agencies. Vegetables grown at environmentally contaminated sites could take up and accumulate metals at concentrations that are probably toxic to human health. In this study, concentrations of cadmium and lead in some of vegetables and soil samples were invest...

  14. Jiangxi Copper Marching into Lead-zinc Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On November 13,Jiangxi Copper officially signed transfer agreement on the share rights of lead-zinc mines with Jiangxi Provincial Geol- ogy & Mineral Resources Bureau,marking the beginning of full-strategic cooperation between the two parties for the common exploitation of lead-zinc industry in the province. The Jiangxi Province is rich in lead-zinc re- sources,but most of them are in scattered lay-

  15. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. PMID:23959253

  16. Calculation of critical loads for cadmium, lead and mercury; background document to a mapping manual on critical loads of cadmium, lead and mercury

    NARCIS (Netherlands)

    Vries, de W.; Schütze, G.; Lofts, S.; Tipping, E.; Meili, M.; Römkens, P.F.A.M.; Groenenberg, J.E.

    2005-01-01

    This report on heavy metals provides up-to-date methodologies to derive critical loads for the heavy metals cadmium (Cd), lead (Pb) and mercury (Hg) for both terrestrial and aquatic ecosystems. It presents background information to a Manual on Critical Loads for those metals. Focus is given to the m

  17. LEAD AND COPPER CONTROL WITH NON-ZINC ORTHOPHOSPHATE

    Science.gov (United States)

    Successful application of orthophosphate formulations not containing zinc for achieving control of copper and lead corrosion requires careful consideration of the background water chemistry, particularly pH and DIC. Inhibitor performance is extremely dependent upon dosage and pH,...

  18. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    OpenAIRE

    Ibrahim, I.; Lim, H. N; N. M. Huang; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively....

  19. Use of Azolla to assess toxicity and accumulation of metals from artificial and natural sediments containing cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Powell, G.M. [S.M. Stoller Corp., Boulder, CO (United States); Nimmo, D.W.R.; Flickinger, S.A.; Brinkman, S.F.

    1998-12-31

    The aquatic macrophyte Azolla mexicana was studied to determine if it could indicate toxicity and bioavailability of cadmium, copper, and zinc in sediments. Plants were exposed to metal-fortified artificial sediment and to natural sediment contaminated with tailings from a Superfund site near Deer Lodge, Montana. Dry weights (mass) of biomass were used to determine effects of the metal concentrations and tissue metals were measured to determine metal uptake from the sediments. Plants exposed to artificial sediments fortified with cadmium and copper showed the greatest reduction in dry mass while zinc showed the least. And, plants exposed to copper singly in artificial sediments lost both zinc and cadmium for their tissues. Plants exposed to metal-contaminated natural sediment developed necrotic and chlorotic tissue within 24 hours in 75% and 100% dilutions but significant effects (P < 0.0001) using dry mass were found as low as 3.13%.

  20. Association of lead and cadmium exposure with frailty in US older adults

    Energy Technology Data Exchange (ETDEWEB)

    García-Esquinas, Esther, E-mail: esthergge@gmail.com [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Pérez-Gómez, Beatriz [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Environmental Epidemiology and Cancer Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid (Spain); Artalejo, Fernando Rodríguez [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2015-02-15

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  1. Association of lead and cadmium exposure with frailty in US older adults

    International Nuclear Information System (INIS)

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  2. Contamination of urban garden soils with copper, boron, and lead

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1967-04-01

    Spectrochemical analysis of representative samples of topsoil from urban gardens and from individual fields in rural areas indicates that the level of total copper, EDTA-extractable copper, water-soluble boron, and acetic-acid extractable lead are markedly enhanced in urban areas. No significant differences were discovered between levels of these elements in soils from built-up areas in small towns and large conurbations. These results suggest the possibility of general enhancement of the trace element content of plants grown in private gardens in built-up areas.

  3. Lead and cadmium in meat and meat products consumed by the population in Tenerife Island, Spain.

    Science.gov (United States)

    González-Weller, D; Karlsson, L; Caballero, A; Hernández, F; Gutiérrez, A; González-Iglesias, T; Marino, M; Hardisson, A

    2006-08-01

    The aim of this study was to determine the levels of lead and cadmium in chicken, pork, beef, lamb and turkey samples (both meat and meat products), collected in the island of Tenerife (Spain). Lead and cadmium were measured by graphite furnace atomic absorption spectrometry (GFAAS). Mean concentrations of lead and cadmium were 6.94 and 1.68 microg kg(-1) in chicken meat, 5.00 and 5.49 microg kg(-1) in pork meat, 1.91 and 1.90 microg kg(-1) in beef meat and 1.35 and 1.22 microg kg(-1) in lamb meat samples, respectively. Lead was below the detection limit in turkey samples and mean cadmium concentration was 5.49 microg kg(-1). Mean concentrations of lead and cadmium in chicken meat product samples were 3.16 and 4.15 microg kg(-1), 4.89 and 6.50 microg kg(-1) in pork meat product, 6.72 and 4.76 microg kg(-1) in beef meat product and 9.12 and 5.98 microg kg(-1) in turkey meat product samples, respectively. The percentage contribution of the two considered metals to provisional tolerable weekly intake (PTWI) was calculated for meat and meat products. Statistically significant differences were found for lead content in meats between the chicken and pork groups and the turkey and beef groups, whereas for cadmium concentrations in meats, significant differences were observed between the turkey and chicken, beef and lamb groups. In meat products, no clear differences were observed for lead and cadmium between the various groups.

  4. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    OpenAIRE

    Jinzhong Wan; Die Meng; Tao Long; Rongrong Ying; Mao Ye; Shengtian Zhang; Qun Li; Yan Zhou; Yusuo Lin

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximu...

  5. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: A public health concern?

    Energy Technology Data Exchange (ETDEWEB)

    Orisakwe, Orish Ebere, E-mail: eorish@aol.com [Toxicology Unit, Department of Pharmacology,College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Nduka, John Kanayochukwu [Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, P.M.B. 5025, Awka Anambra State (Nigeria)

    2009-11-15

    Fifty different pediatric syrups were randomly sampled from patent medicine stores and pharmaceutical shops within Awka, in Anambra State between November 2007 and May 2008. Syrups were ashed before digestion using conc. aqua regia, HCl:HNO{sub 3} (3:1) and lead and cadmium were assayed with AAS 205A. Results revealed that 60 and 98% of the sample size had lead and cadmium respectively. The lead levels ranged from 0.01 in chloroquine to 1.08 mg/l in magcid suspension. The highest level of cadmium was seen in magcid suspension with concentration of 2.45 mg/l while lowest concentration of 0.01 in emzolyn and colipan. About 41.2% of the locally made syrup had none detectable levels of lead while all the syrup had detectable levels of cadmium. Lead levels ranged from 0.01 mg/l in cadiphen manufactured in Dholka, India to 0.09 in maxiquine made in England. About 68.8% of the imported syrups of the imported syrups had non detectable levels of lead. Chloramphenicol and zentel albendazole syrups had 0.60 and 0.88 mg/l of cadmium respectively. Bellis cough syrup showed the lowest level (0.01 mg/l) of cadmium. Only erythromycin suspension representing 6.3% had non detectable level of cadmium of the imported syrups. Due to the Cd and Pb levels found, we suggest that the behaviour scenario (here, self administration without medical assistance) should be properly taken under control. Along with this, contamination sources or vulnerable practices during syrups preparation should be also assessed in a tiered approach, towards the minimization of noxious presence in syrups and the promotion of quality of Nigerian-made products.

  6. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: a public health concern?

    Science.gov (United States)

    Orisakwe, Orish Ebere; Nduka, John Kanayochukwu

    2009-11-15

    Fifty different pediatric syrups were randomly sampled from patent medicine stores and pharmaceutical shops within Awka, in Anambra State between November 2007 and May 2008. Syrups were ashed before digestion using conc. aqua regia, HCl:HNO(3) (3:1) and lead and cadmium were assayed with AAS 205A. Results revealed that 60 and 98% of the sample size had lead and cadmium respectively. The lead levels ranged from 0.01 in chloroquine to 1.08 mg/l in magcid suspension. The highest level of cadmium was seen in magcid suspension with concentration of 2.45 mg/l while lowest concentration of 0.01 in emzolyn and colipan. About 41.2% of the locally made syrup had none detectable levels of lead while all the syrup had detectable levels of cadmium. Lead levels ranged from 0.01 mg/l in cadiphen manufactured in Dholka, India to 0.09 in maxiquine made in England. About 68.8% of the imported syrups of the imported syrups had non detectable levels of lead. Chloramphenicol and zentel albendazole syrups had 0.60 and 0.88 mg/l of cadmium respectively. Bellis cough syrup showed the lowest level (0.01 mg/l) of cadmium. Only erythromycin suspension representing 6.3% had non detectable level of cadmium of the imported syrups. Due to the Cd and Pb levels found, we suggest that the behaviour scenario (here, self administration without medical assistance) should be properly taken under control. Along with this, contamination sources or vulnerable practices during syrups preparation should be also assessed in a tiered approach, towards the minimization of noxious presence in syrups and the promotion of quality of Nigerian-made products. PMID:19765804

  7. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    International Nuclear Information System (INIS)

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (qmax 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (qmax 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  8. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Vimala, R., E-mail: vimararagu@yahoo.co.in [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India); Das, Nilanjana [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India)

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q{sub max} 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q{sub max} 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  9. ASSESSMENT OF THE BLACK SEA ECOSYSTEM POLLUTION WITH COPPER AND CADMIUM IN SELECTED BAYS OF SEVASTOPOL REGION

    Directory of Open Access Journals (Sweden)

    Marcin Niemiec

    2015-11-01

    Full Text Available A high level of anthropopressure has been registered in Sevastopol region, connected with its strategic role as the main city in the region, but also due to Russian Black Sea Fleet stationing there for many years. A significant source of the Black Sea contamination in Sevastopol area is the industry located in this city, municipal waste and agriculture. Implementing measures aimed at protection of the Black Sea and the evolution of their results requires monitoring conducted in the regions with various levels of anthropopressure. The work was aimed at the assessment of copper and cadmium content in water and algae in selected bays of the Black Sea in the vicinity of Sevastopol. Samples of water and algae were collected in August 2012 from eight Sevastopol bays (Galubaja, Kozacha, Kamyshova, Kruhla, Strieletska, Pishchana, Pivdenna and Sevastopolska and from the open sea in the vicinity of Fiolent. Algae (Cystoseira barbata and Ulva rigida were collected from the same places. Collected water was preserved on the sampling place and brought to the laboratory where its copper and cadmium concentrations were assessed. Collected algae were rinsed in distilled water, dried, then homogenised and mineralised. Copper and cadmium content were determined in the mineralizates using ASA method with electrothermal atomisation. Cadmium concentration in water ranged from 0.13 to 1.74 µg Cd∙dm-3, and copper from 7.07 to 22.56 µg Cd∙dm-3. Considerable differences in the content of the analysed elements were registered in individual bays. The highest content was assessed in Galubaja and Sevastopolska bays, whereas the lowest one in the water collected in the open sea and in Pivdenna bay. Copper concentrations in the analysed algae fluctuated from 3.375 to 14.96 mg Cu∙kg-1 d.m. No differences were noted in this element content between the algae species. Cadmium content in the algae ranged from 0.133 to 1.133 mg Cd∙kg-1 d.m. Higher accumulation of cadmium

  10. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  11. Reclamation of wastes contaminated by copper, lead, and zinc

    Science.gov (United States)

    Wong, M. H.

    1986-11-01

    Waste materials containing toxic levels of copper, lead, and zinc, such as mine and smelter wastes, present difficult conditions for the establishment of vegetation. This article reviews the many attempts which have been made to reclaim these wastes. Inert wastes from mining and quarrying operations, such as slate quarry waste and certain colliery shales, seem to be good materials for reclaiming wastes contaminated by copper, lead, and zinc. Organic wastes, such as sewage sludge and domestic refuse, may provide only a temporary visual improvement and stabilization of the toxic materials. Nontolerant plant materials may often be planted directly on modern waste materials, which are less toxic than they were in the past. However, tolerant plant materials are needed for revegetating waste materials produced by early and more primitive extraction methods.

  12. Effect of flow rate and lead/copper pipe sequence on lead release from service lines.

    Science.gov (United States)

    Cartier, Clément; Arnold, Roger B; Triantafyllidou, Simoni; Prévost, Michèle; Edwards, Marc

    2012-09-01

    A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present.

  13. Lead and cadmium levels in coastal benthic algae (seaweeds) of Tenerife, Canary Islands.

    Science.gov (United States)

    Lozano, Gonzalo; Hardisson, Arturo; Gutiérrez, Angel José; Lafuente, María Anunciación

    2003-01-01

    Lead and cadmium levels of some species of brown-algae (Phaeophyta) from the mesolittoral (intertidal area) of the Island of Tenerife (central-eastern Atlantic) were determined by Atomic Absorption Spectrometry. The quality control was carried out using a standard "CRM 279 Ulva lactuca". The mean, minimum and maximum concentrations were 11.21, 2.090 and 81.795 microg/g/dw; and 1.13, 0.190 and 5.130 microg/g/dw for lead and cadmium, respectively. The fact that samples registering the highest cadmium concentrations were the same as those which showed the highest lead level corresponding to a sampling station nearby an urban water outlet could be relevant.

  14. Temporal trending of lead and cadmium contamination in the Vigo estuary intertidal area

    Directory of Open Access Journals (Sweden)

    M. Pérez López

    2004-12-01

    Full Text Available At the present work, limpet (Patella vulgata L. and seaweed (Ulva lactuca specimens have been monthly sampled at the same point from the Vigo estuary, during a year. Heavy metal (cadmium and lead content has been determined by means of differential pulse anodic stripping voltammetry in both limpet and seaweed tissues, as well as in seawater. The obtained results have shown the main heavy metal content in limpet soft tissues with respect to shell, with maximum concentrations of 3 ppm (limpet shell for lead, whereas the highest content for cadmium was identified in seaweed samples (1.1 ppm. The statistical study revealed the existence of a clear correlation between cadmium and lead concentrations in seaweed samples.

  15. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  16. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  17. [Effects of heavy metal (copper and cadmium) coupled with Ulca pertusa on marine inorganic carbon system in simulated experiments].

    Science.gov (United States)

    Zheng, Guo-xia; Song, Jin-ming; Dai, Ji-cui

    2006-12-01

    Simulated experiments coupled with ocean biota dynamics were performed in laboratory. In these experiments, effects of heavy metal (copper and cadmium) coupled with Ulca pertusa on marine inorganic carbon system and CO2 fluxes were investigated. The results indicated that concentration changes (delta) of components in carbon dioxide system with time scale were correlated with the concentrations and kinds of heavy metal. In copper groups and cadmium groups (0.1 micromol x L(-1) and 1 micromol x L(-1)), DIC HCO3- and PCO2 significantly decreased comparing to the control experiment data( p = 0.01). However, when the heavy metal infusions were higher than the "critical concentration", the above mentioned parameters increased with time scale and their increments followed the uptrend with increasing heavy metal concentrations. The "critical concentration" in copper groups was much lower than that in cadmium groups, which attributed to the tolerance diversity of Ulca pertusa to copper and cadmium. Furthermore, CO2 fluxes under the influences of heavy metal were also regularly changed with time. Sea waters with low infusions of heavy metal represented as sinks to the atmosphere CO2. These sinks would probably convert into CO2 sources after a period of time. Sea waters with comparatively high amount of heavy metal were always to be CO2 sources, and their release fluxes of CO2 augmented along with the increasing infusions of heavy metal.

  18. European Critical Loads of Cadmium, Lead and Mercury and their Exceedances

    Energy Technology Data Exchange (ETDEWEB)

    Slootweg, J.; Hettelingh, J.-P., E-mail: j.p.hettelingh@mnp.nl; Posch, M. [Netherlands Environmental Assessment Agency (MNP), Coordination Centre for Effects (Netherlands); Schuetze, G. [OEKO-DATA (Germany); Spranger, T. [Umweltbundesamt (UBA) (Germany); Vries, W. de; Reinds, G. J. [Alterra, Wageningen University and Research Centre (WUR) (Netherlands); Zelfde, M. van ' t [Leiden University, Institute of Environmental Sciences (CML) (Netherlands); Dutchak, S.; Ilyin, I. [EMEP/MSC - East (Russian Federation)

    2007-03-15

    Critical loads of cadmium, lead and mercury were computed by 18 countries of the LRTAP Convention. These national data were collated into a single database for the purpose of identifying sensitive areas in Europe. Computing exceedances, i.e. comparing the critical loads to atmospheric deposition, shows that cadmium was not a widespread risk in 2000, that the risk from lead deposition has decreased since 1990 but was still widespread in 2000, and that the risk from mercury remains high without much change from 1990 to 2000 in most of the countries.

  19. MERCURY, LEAD, CADMIUM AND CHROME CONCENTRATION LEVELS IN FISH FOR PUBLIC CONSUMPTION

    OpenAIRE

    Imer Haziri; Muhamed Zogaj; Fatgzim Latifi; Jetmira Abeshi; Dorjana Beqiraj; Luljeta Dhaskali; Enkelejda Ozuni

    2011-01-01

    A total of seventy cultured fish from the local market of Tirana were sampled and the concentration level of mercury, lead, cadmium and chrome was evaluated. Their concentration always resulted below the maximum permitted level for human consumption set by EC (Hg- 1.0 mg/kg, Pb – 0.30 mg/kg, Cd – 0.05 mg/kg and Cr -8 mg/kg). Heavy metal concentration varied among the muscle tissue of different fish species. The concentration level of mercury, lead, cadmium and chrome ranged between 0.002-0.21...

  20. A Biomonitoring Study of Lead, Cadmium, and Mercury in the Blood of New York City Adults

    OpenAIRE

    McKelvey, Wendy; Gwynn, R. Charon; Jeffery, Nancy; Kass, Daniel; Thorpe, Lorna E.; Garg, Renu K.; Palmer, Christopher D.; Parsons, Patrick J.

    2007-01-01

    Objectives We assessed the extent of exposure to lead, cadmium, and mercury in the New York City (NYC) adult population. Methods We measured blood metal concentrations in a representative sample of 1,811 NYC residents as part of the NYC Health and Nutrition Examination Survey, 2004. Results The geometric mean blood mercury concentration was 2.73 μg/L [95% confidence interval (CI), 2.58–2.89]; blood lead concentration was 1.79 μg/dL (95% CI, 1.73–1.86); and blood cadmium concentration was 0.77...

  1. Mercury, Cadmium and Lead Biogeochemistry in the Soil–Plant–Insect System in Huludao City

    OpenAIRE

    Zhang, Zhong-Sheng; Lu, Xian-Guo; Wang, Qi-Chao; Zheng, Dong-Mei

    2009-01-01

    Mercury, cadmium, and lead concentrations of ashed plants and insects samples were investigated and compared with those of soil to reveal their biogeochemical processes along food chains in Huludao City, Liaoning Province, China. Concentration factors of each fragments of the soil–plant–the herbivorous insect–the carnivorous insect food chain were 0.18, 6.57, and 7.88 for mercury; 6.82, 2.01, and 0.48 for cadmium; 1.47, 2.24, and 0.57 for lead, respectively. On the whole, mercury was the most...

  2. Sorption of lead, cadmium and zinc from air sediments applying natural wool fiber

    Directory of Open Access Journals (Sweden)

    Babincev Ljiljana M.

    2013-01-01

    Full Text Available The aim of this study is to investigate the possibilities of removing lead, cadmium, and zinc from air by sorption natural wool fibers (NWF, thus evaluating possible application of the wool materials in direct protection of air from the influence of heavy metals. Metal detection was done (before and after the sorption process by potentiometric stripping analysis. Sorption experiments were done in two ways: by immersing NWF in model solutions (prepared by the working standard solutions and deionized water, and by immersing NWF in solutions of sediments from the air. The influence of mass sorbent, sorption time, pH, and temperature on the sorption of lead, cadmium, and zinc were experimentally examined. Effectiveness of lead, cadmium, and zinc sorption by applying natural wool fibers is shown as the sorption capacity (a ratio between metal concentration before and after sorption and sorbent mass. Sorbent of 0.1 g NWF mass in neutral environment collects: after 10 min 23,9% of lead, 19,0% of cadmium, and 21,3% of zinc; whereas after 30 min 71.5% of lead, 69.6% of cadmium, and 69.4% of zinc. NWF of the same mass in acidic environment shows lower sorption capabilities, for pH 4.5 the effective sorption is: 68.6% of lead, 66.8% of cadmium, and 66.6% of zinc; whereas for pH 2.1 NWF sorption is 54.6% of lead, 53.2% of cadmium, and 52.9% of zinc. Optimal pH range for application of this sorption during the experiment material is 4.5-7.0. The sorption was made in solutions with pH 2.1 due to potentiometric stripping analysis application conditions. Temperature significantly impacts the tested material sorption characteristics. When temperature slightly increases, regardless of the inflicted damage, NWF keeps its functionality. When temperature is higher than 60°C, the sorbent effectiveness is reduced. The NWF sorption capacity is lowest at 100°C: for lead 11.63 μg g−1, for cadmium 8.18 μg g−1, and for zinc 9.41 μg g−1. Results of the

  3. Assessment of lead and cadmium levels in frequently used cosmetic products in Iran.

    Science.gov (United States)

    Nourmoradi, H; Foroghi, M; Farhadkhani, M; Vahid Dastjerdi, M

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08-5.2  µ g/g and 4.08-60.20  µ g/g, respectively. The eye shadow samples had a lead level of 0.85-6.90  µ g/g and a cadmium level of 1.54-55.59  µ g/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics. PMID:24174937

  4. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    Directory of Open Access Journals (Sweden)

    H. Nourmoradi

    2013-01-01

    Full Text Available This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow in Iran. Fifty samples of lipstick (5 colors in 7 brands and eye shadow (3 colors in 5 brands were selected taken from large cosmetic stores in Isfahan (Iran and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2 µg/g and 4.08–60.20 µg/g, respectively. The eye shadow samples had a lead level of 0.85–6.90 µg/g and a cadmium level of 1.54–55.59 µg/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics.

  5. 40 CFR 141.88 - Monitoring requirements for lead and copper in source water.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.88 Monitoring requirements for lead and copper in source water. (a) Sample location, collection methods, and number of samples. (1) A water system that fails to meet the lead or copper action level...

  6. Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells

    Science.gov (United States)

    DE LA FUENTE, H; PORTALES-PÉREZ, D; BARANDA, L; DÍAZ-BARRIGA, F; SAAVEDRA-ALANÍS, V; LAYSECA, E; GONZÁLEZ-AMARO, R

    2002-01-01

    The aim of this work was to investigate the effect of cadmium, lead and arsenic on the apoptosis of human immune cells. Peripheral blood mononuclear cells (MNC) were incubated with increasing concentrations of these metals and then cellular apoptosis was determined by flow cytometry and by DNA electrophoresis. We found that arsenic induced a significant level of apoptosis at 15 μm after 48h of incubation. Cadmium had a similar effect, but at higher concentrations (65 μm). In addition, cadmium exerted a cytotoxic effect on MNC that seemed to be independent of the induction of apoptosis. In contrast, concentrations of lead as high as 500 μm were nontoxic and did not induce a significant degree of apoptosis. Additional experiments showed that arsenic at concentrations as low as 1·0 μm had a significant pro-apoptotic effect when cells were cultured in the presence of this pollutant for more than 72. Non-T cells were more susceptible than T lymphocytes to the effect of arsenic and cadmium. Interestingly, MNC from children chronically exposed to arsenic showed a high basal rate of apoptosis and a diminished in vitro sensibility to this metalloid. Our results indicate that both arsenic and cadmium are able to induce apoptosis of lymphoid cells, and suggest that this phenomenon may contribute to their immunotoxic effect in vivo. PMID:12100024

  7. Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food.

    Science.gov (United States)

    Balamurugan, Kuppusamy; Hua, Haiqing; Georgiev, Oleg; Schaffner, Walter

    2009-02-01

    Organisms from insects to mammals respond to heavy metal load (copper, zinc, cadmium, and mercury) by activating the metal-responsive transcription factor 1 (MTF-1). MTF-1 binds to short DNA sequence motifs, termed metal response elements, and boosts transcription of a number of genes, notably those for metallothioneins. In Drosophila, MTF-1 somewhat counter-intuitively also activates transcription of a copper importer gene (Ctr1B) in response to copper starvation. Here, we report that mutant flies lacking Ctr1B are extremely sensitive to cadmium and mercury treatment, but can be rescued by excess copper in the food. We thus propose that copper, by competing for binding sites on cellular proteins, alleviates the toxic effects of mercury and cadmium. Such a scenario also explains a seemingly fortuitous metal response, namely, that cadmium and mercury strongly induce the expression of a Ctr1B reporter gene. Thus, the transcription enhancer/promoter region of the Ctr1B copper importer gene is subject to three modes of regulation. All of them depend on MTF-1 and all make biological sense, namely, (i) induction by copper starvation, (ii) repression by copper abundance, and (iii), as shown here, induction by cadmium or mercury at normal copper supply.

  8. European Critical Loads of Cadmium, Lead and Mercury and their Exceedances

    NARCIS (Netherlands)

    Slootweg, J.; Hettelingh, J.P.; Posch, M.; Schutze, G.; Spranger, T.; Vries, de W.; Reinds, G.J.; Zelfde, van 't M.; Dutchak, S.; Ilyin, I.

    2007-01-01

    Critical loads of cadmium, lead and mercury were computed by 18 countries of the LRTAP Convention. These national data were collated into a single database for the purpose of identifying sensitive areas in Europe. Computing exceedances, i.e. comparing the critical loads to atmospheric deposition, sh

  9. Critical loads of cadmium, lead and mercury and their exceedances in Europe

    NARCIS (Netherlands)

    Hettelingh, J.P.; Schütze, G.; Vries, de W.; Denier van der Gon, H.A.C.; Ilyin, I.; Reinds, G.J.; Slootweg, J.; Travnikov, O.

    2015-01-01

    In this chapter information is summarized on the assessment of the risk of impacts of cadmium, lead and mercury emissions and related depositions of these metals, with an emphasis on natural areas in Europe. Depositions are compared to critical loads to identify areas in Europe where critical loads

  10. Method of analysis for the determination of lead and cadmium in fresh meat

    NARCIS (Netherlands)

    Ruig, de W.G.

    1980-01-01

    This report comprises the result of the RIKILT of an intercomparison on the determination of lead and cadmium in bovine liver and bovine kidney. The aim of this round robbin was to check a wet ashing procedure followed by a flame AAS determination as described too in EEC doc. 2266/VI/77. Special att

  11. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  12. Increased Lead and Cadmium Burdens among Mentally Retarded Children and Children with Borderline Intelligence.

    Science.gov (United States)

    Marlowe, Mike; And Others

    1983-01-01

    The relationship between subtoxic metal levels and mild mental retardation and borderline intelligence was investigated through comparison of hair metal concentrations in 135 secondary students with mild retardation or borderline intelligence. Children in the retarded/borderline group had significantly higher lead and cadmium concentrations.…

  13. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  14. Mushroom contamination by mercury, cadmium and lead; Contaminazione di funghi commestibili con mercurio, cadmio e piombo

    Energy Technology Data Exchange (ETDEWEB)

    Dojmi Di Delupis, G.; Dojmi Di Delupis, F. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1996-12-01

    Occurrence and bioaccumulation of mercury, cadmium and lead were found in mushrooms by various researchers. Such mushrooms were often found in polluted areas. Pollution was mainly caused by industrial or mining plants, by some agricultural treatments and by road traffic. Considerations and recommendations concerning food consumption are made.

  15. Cadmium and lead contents in drinking milk from selected regions of Poland

    Directory of Open Access Journals (Sweden)

    Renata Pietrzak-Fiećko

    2013-09-01

    Full Text Available Background. Cadmium and lead are classified as toxic metals. Toxicity is attributed to the adverse effect on the human body, and therefore the content of these elements is analyzed in the environment and in food products. Studies conducted by many researchers indicate that more of cadmium and lead accumulate in products of plant origin, however, food products of animal origin are also not free from these compounds. The aim of this study was to determine the content of cadmium and lead in drinking milk originating from four selected milk producers from two different regions. Methods. A total of 28 milk samples were tested. The tested material was mineralized dry. To determine the content of the analyzed elements the Flame Atomic Absorption Spectrometry method was used. There were no significant differences in the content of heavy metals in the analyzed samples of milk. Results. None of the samples revealed the exceedance of the highest permissible level of these elements. Conclusions. Cadmium and lead content in tested drinking milk does not pose a threat to human health

  16. Triazine-modified magnetite nanoparticles as a novel sorbent for preconcentration of lead and cadmium ions

    International Nuclear Information System (INIS)

    We report on a new sorbent for preconcentration of cadmium and lead ions that is based on triazine-functionalized magnetite nanoparticles that were prepared by direct silylation of magnetic nanoparticles with 3-aminopropyltriethoxysilane-2,4-bis(3,5-dimethylpyrazol)-triazine. The sorbent was characterized by IR spectroscopy, X-ray powder diffraction, scanning electron microscopy, thermal and elemental analysis. The sorbent was applied to the preconcentration of lead and cadmium ions which then were quantified by FAAS. The effects of sample pH value, extraction time, of type, concentration and volume of eluent, and of elution time were optimized. The limits of detection are 0.7 ng mL−1 for Pb(II) ion and 0.01 ng mL−1 for Cd(II). The effects of potentially interfering ions often found in real samples on the recovery in the determination of cadmium and lead ions in real samples were also investigated. The accuracy of the method was confirmed by analyzing the certified reference materials NIST 1571 (orchard leaves) and NIST 1572 (citrus leaves). Finally, the method was successfully applied to the determination of cadmium and lead ions in some fruit samples. (author)

  17. Histomorphological evaluation of mice testis after co-exposure to lead and cadmium

    Institute of Scientific and Technical Information of China (English)

    Maria de Lourdes Pereira; Neidy Varela Rodrigues; Fernando Garcia e Costa

    2012-01-01

    Objective:The present study investigates the effects of co-exposure to lead and cadmium on mice testis using histomorphological approach.Methods:Male mice were subcutaneously injected with lead chloride on day1 and cadmium chloride on day2(74 and1 mg/kg body weight, respectively), and kept for24 h.Vehicle control group was also considered.Mice were then sacrificed and testis were collected and weighed.Samples were fixed onBouin´s solution and processed for histology.The diameter of seminiferous tubules in both groups was calculated using software based on deformable models(SNAKE).Results:The combined exposure of lead and cadmium induced degenerative changes in testis, namely, wavy contour of seminiferous tulules, germ cell loss, and release of immature cells into the lumen.Atrophy of seminiferous tubules was seen in this group, confirmed by a significant(P<0.001) decrease in the diameter.Conclusions:Cumulative effects of lead and cadmium may have disrupted the blood-testis barrier, then causing the histopathological lesions within testis.

  18. Metagenomic analysis of cadmium and copper resistance genes in activated sludge of a tannery wastewater treatment plant.

    Science.gov (United States)

    Jia, Shuyu; Wang, Zhu; Zhang, Xu-Xiang; Liu, Bo; Li, Weixin; Cheng, Shupei

    2013-04-01

    In order to comprehensively characterize the copper and cadmium resistance in activated sludge of a tannery wastewater treatment plant, a resistance protein database of the two heavy metals was manually created by retrieving annotated sequences and related information from the public databases and published literatures. The metagenomic DNA was extracted from the activated sludge for Illumina high-throughput sequencing, and the obtained 11,973,394 clean reads (1.61 Gb) were compared against the established databases using BLAST tool. Annotations of the BLAST hits showed that 222 reads (0.019 per thousand) and 197 reads (0.016 per thousand) were identified as copper and cadmium resistance genes, respectively. Among the identified cadmium resistance genes, czcA encoding cobalt-zinc-cadmium resistance protein had the highest abundance (83 reads, 0.0069 per thousand), which was further confirmed by annotation of the open reading frames predicted with the assembly contigs. Among the copper resistance genes, copA (66 reads, 0.0055 per thousand) was most abundant, followed by copK and cusR. Alignment against the Clusters of Orthologous Groups (COG) database also suggested that 87.26% of the matched reads were grouped in COG0474 (cation transport ATPase). This study may be practically helpful for exploring various functional genes in the environment using high-throughput sequencing and bioinformatics methods. PMID:24620608

  19. Determination of cadmium, aluminium, and copper in beer and products used in its manufacture by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Aguinaga, Nerea; López-García, Ignacio; Hernandez-Córdoba, Manuel

    2002-01-01

    Procedures were developed for determining cadmium, aluminium, and copper in beer and the products used in its manufacture by electrothermal atomic absorption spectrometry. Beer samples were injected into the furnace and solid samples were introduced as suspensions after preparation in a medium containing hydrogen peroxide, nitric acid, and ammonium dihydrogen phosphate for cadmium atomization. Calibration was performed with aqueous standards, and characteristic masses and detection limits were, respectively, 1 and 0.3 pg for cadmium, 18 and 5.4 pg for aluminium, and 5.6 and 6.8 pg for copper. Different samples of beer, wort, brewer's yeast, malt, raw grain, and hops were analyzed by the proposed procedures. Cadmium was found in low concentrations (0.001-0.08 microg/g and 0-1.3 ng/mL); copper (3-13 microg/g and 25-137 ng/mL) and aluminium (0.6-9 microg/g and 0.1-2 microg/mL) were found at higher levels. The reliability of the procedure was confirmed by comparing the results obtained with others based on microwave oven sample digestion, and by analyzing several certified reference materials. PMID:12083268

  20. Residues of lead, cadmium, and arsenic in livers of Mexican free-tailed bats

    Energy Technology Data Exchange (ETDEWEB)

    Thies, M.; Gregory, D. (Oklahoma State Univ., Stillwater (United States))

    1994-05-01

    Since 1936, the size of the summer population of Mexican free-tailed bats, Tadarida brasiliensisat Carlsbad Caverns, New Mexico, declined from an estimated 8.7 million to 700,000 in 1991. This decline has been attributed primarily to human disturbance and the heavy agricultural use of organochlorine pesticides. Members of this species forage extensively over heavily agricultural areas, feeding on insects potentially contaminated with high levels of insecticides and trace metals. However, contamination from elements such as lead, cadmium, and arsenic have not been examined. The accumulation of these elements in wild vertebrates is often a primary reflection of contamination of the food supply. The presence of elemental contaminants in body tissues of bats is poorly documented. The objectives of this study were to examine and compare lead, cadmium, and arsenic contamination in livers of adult T. Brasiliensis from Carlsbad Caverns and Vickery Cave, a maternity colony in northwestern Oklahoma. Lead, cadmium, and arsenic were specifically selected because of their documented toxic and/or reproductive effects and their potential availability to this species. Large quantities of tetraethyl lead have been released into the environment and other lead compounds continue to be released by industrial manufacturing and petroleum refinement processes. Cadmium is used in a number of industrial processes such as metal plating and fabrication of alloys and is released from phosphate fertilizers and combusted coals. Teratogenicity appears to be greater for cadmium than for other elements. Arsenical compounds have been commonly used as herbicides and defoliants. These compounds have been demonstrated to cause abnormal embryonic development, degenerative tissue changes, cancer, chromosomal damage, and death in domestic animals.

  1. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Science.gov (United States)

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  2. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Directory of Open Access Journals (Sweden)

    Jinzhong Wan

    Full Text Available This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  3. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    Science.gov (United States)

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  4. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions.

    Science.gov (United States)

    Ibrahim, I; Lim, H N; Huang, N M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  5. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  6. study on the Response of wheat to lead, cadmium and zinc

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The effect of lead, cadmium and zinc on thetranscriptions and structures of 5 DNA fragments was studied by RNAslot blot hybridization and the analyze of Restriction FragmentLength Polymorphism (RFLP). The seeds of three wheat strains(Yunmai29, 1257, 5118) which had grown in contaminated area, HuizeLead-zinc mine, Yunnan Province of China for a long time and theuncontaminated area were taken as the experimental materials. Noobvious change of DNA structure was detected, but there were manydifferences in the DNA transcription levels. These results impliedthat lead, cadmium and zinc might inhibit DNA transcription and hadmuch more effect on gene expression than structure in wheat, wheatmight acclimate to metal pollution after having grown in pollutionarea for a long time and the interference of these metal ions ingene expression might be one of main mechanisms of metal toxicityand plant adaptation. The results also showed the microevolution ofwheat in Lead-zinc mine.

  7. Zinc, cadmium and lead resistance mechanisms in bacteria and their contribution to biosensing

    OpenAIRE

    Hynninen, Anu

    2010-01-01

    In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but ...

  8. Corrosion characteristics of copper and leaded bronze in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Ann, L.J.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel has become more attractive as alternative fuel for automobiles because of its environmental benefits and the fact that it is made from renewable sources. However, corrosion of metals in biodiesel is one of the concerns related to biodiesel compatibility issues. This study aims to characterize the corrosion behavior of commercial pure copper and leaded bronze commonly encountered in the automotive fuel system in diesel engine. Static immersion tests in B0, B50 and B100 fuels were carried out at room temperature for 2640 h. Similar immersion tests in B0, B100 and B100 (oxidized) fuels were also conducted at 60 C for 840 h. At the end of the test, corrosion behavior was investigated by weight loss measurements and changes in surface morphology. Fuels were analyzed by using TAN analyzer, FTIR, MOA (multi-element oil analyzer) to investigate acid concentration, oxidation level with water content and corrosive impurities respectively. Results showed that under the experimental conditions, pure copper was more susceptible to corrosion in biodiesel as compared to leaded bronze. (author)

  9. Association of cadmium, lead and mercury with paraoxonase 1 activity in women.

    Directory of Open Access Journals (Sweden)

    Anna Z Pollack

    Full Text Available BACKGROUND: The activity of paraoxonase 1 (PON1, an antioxidant enzyme whose polymorphisms have been associated with cancer risk, may be associated with metals exposure. OBJECTIVE: To evaluate PON1 activity in relation to cadmium, lead, and mercury levels in healthy, premenopausal women. METHODS: Women from upstate New York were followed for ≥ two menstrual cycles. Repeated measures linear mixed models estimated the association between cadmium, lead, and mercury levels (by tertile: T1, T2, T3 and PON1 arylesterase (PON1A and PON1 paraoxonase (PON1P activity, separately. Analyses were stratified by PON1 Q192R phenotype and un-stratified. RESULTS: Median blood cadmium, lead, and mercury concentrations were 0.30 µg/L, 0.87 µg/dL, and 1.15 µg/L. In un-stratified analyses cadmium and mercury were associated with decreased PON1A activity (T2 vs. T1; not T3 vs. T1 but metals were not associated with PON1P. Phenotypes were distributed between QQ (n = 99, QR (n = 117, and RR (n = 34. Cadmium was associated with decreased PON1A activity for QR and RR phenotypes comparing T2 vs. T1 (-14.4% 95% confidence interval [CI] [-20.1, -8.4] and -27.9% [-39.5, -14.0],. Lead was associated with decreased PON1A (RR phenotype, T3 vs. T1 -18.9% [-32.5, -2.5]; T2 vs. T1 -19.6% [-32.4, -4.4]. Cadmium was associated with lower PON1P comparing T2 vs. T1 for the RR (-34.9% [-51.5, -12.5] and QR phenotypes (-9.5% [-18.1, 0.0] but not comparing T3 vs. T1. Cadmium was associated with increases in PON1P levels (QQ phenotype, T3 vs. T1 24.5% [7.0, 44.9] and mercury was associated with increased PON1A levels (QQ phenotype, T3 vs. T1 6.2% [0.2, 12.6]. Mercury was associated with decreased PON1P (RR phenotype, T2 vs. T1 -22.8 [-37.8, -4.1]. CONCLUSION: Blood metals were associated with PON1 activity and these effects varied by phenotype. However, there was not a linear dose-response and these findings await replication.

  10. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huifeng [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-11-15

    Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu + Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers.

  11. Investigation and Evaluation on Heavy Metal Copper and Cadmium Contaminations of Vegetables Grown in Huanggang City of China

    OpenAIRE

    Xiaoming Hu; Weibin Jin; Wenjuan Lv; Shuiyuan Cheng; Yanyan Jiang

    2013-01-01

    No published data are available on heavy metals concentrations and contaminations of vegetables in Huanggang City, Hubei Province, China. This study focused on characteristics and evaluation on heavy metal (Copper and Cadmium) concentrations and contaminations in vegetables grown in the suburbs of Huanggang. Several important vegetable bases in the suburbs of the city were employed as study areas and 150 representative vegetable samples, including leaf vegetables, melon-fruit vegetables, root...

  12. L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells.

    Science.gov (United States)

    Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Nan; Deshmukh, Rahul; Yan, Xingchen; Lv, Xiuwen; Zhang, Pengfei; Zhang, Xia; Dou, Q Ping

    2015-01-01

    Ubiquitin-proteasome system (UPS) plays a crucial role in many cellular processes such as cell cycle, proliferation and apoptosis. Aberrant activation of UPS may result in cellular transformation or other altered pathological conditions. Previous studies have shown that metal-based complexes could inhibit proteasome activity and induce apoptosis in certain human cancer cells. In the current study, we report that the cadmium and copper complexes with heterocycle-ornithine Schiff base are potent inhibitors of proteasomal chymotrypsin-like (CT-like) activity, leading to induction of apoptosis in cancer cells. Two novel copper-containing complexes and two novel cadmium-containing complexes with different heterocycle-ornithine Schiff base structures as ligands were synthesized and characterized. We found that complexes Cu1, Cd1 and Cd2 show proteasome-inhibitory activities in human breast cancer MDA-MB-231 and human prostate cancer LNCaP cells, resulting in the accumulation of p27, a natural proteasome substrate and other ubiquitinated proteins, followed by the induction of apoptosis. Our results suggest that metal complexes with heterocycle-ornithine Schiff base have proteasome-inhibitory capabilities and have the potential to be developed into novel anticancer drugs.

  13. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mojtaba Panjehpour

    2010-01-01

    Full Text Available Background: Cadmium chloride is an important occupational and environmental pollutant. However, it can also be anti-carcinogenic under certain conditions. Copper, an essential trace element, has the ability to generate reactive oxygen species and induce cell apoptosis. This study was aimed to determine the growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. Methods: By using MTT cell viability test, treatment of monolayer cell cultures with different metal concentrations (1-1000 μM showed a significant dose dependent decrease (p < 0.05 of viable cells in different times. Results: A considerable cytotoxicity was observed for CdCl2 at 200 μM and 1 μM after 48 and 72 hours incubations, respectively. The highest concentration of CuCl2 (1000 μM had little cytotoxic effects after 48 hours incubation period, but 1 μM of CuCl2 revealed a considerable cytotoxicity after 72 hours. The maximum synergic cytotoxic effect was observed at 0.5 μM of both metals. Conclusions: The results of the present study indicate that cytotoxic effect of CuCl2 is somehow lesser than that of CdCl2. This may be due to vital role of copper which is not known for cadmium so far.

  14. Measured radionuclide production from copper, gold and lead spallation targets

    International Nuclear Information System (INIS)

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A ampersand M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets

  15. Influences of petroleum on accumulation of copper and cadmium in the polychaete Nereis diversicolor

    Institute of Scientific and Technical Information of China (English)

    SUN Fu-hong; ZHOU Qi-xing; ZHANG Qian-ru

    2006-01-01

    Using the exposure simulation experiment, the action of petroleum affecting the accumulation of the trace metals including copper (Cu) and cadmium (Cd) in littoral polychaete Nereis diversicolor collected from the Shuangtaizi Estuary in Liaoning Province,China was examined. The results showed that there was a markedly non-linear relationship between the accumulation of Cu in worms and the experimental concentration of Cu in exposure solutions when the concentration of petroleum remained at 0, 100, and 220 μl/L, respectively. However, significantly non-linear relationship for worms exposed to Cd was observed only when the concentration of added petroleum was 0 and 220 μl/L. The accumulation of Cu in worms did not differ significantly among the three different levels of petroleum concentrations combined with various concentrations of Cu. So was the accumulation of Cd in worms (p>0.05).However, the addition of petroleum in exposure solutions brought about an increase in the accumulation of Cu in Nereis diversicolor,in comparison with single Cu pollution. On the other hand, when the concentration of added petroleum remained at 100 μl/L, the accumulation of Cd in worms was lower than that in worms exposed to various concentrations of only cadmium. However, the worms exposed to Cd and petroleum 220 μl/L did not show obvious and identical increase in the accumulation of Cd, compared with single Cd exposure. The accumulation of both Cu and Cd in worms did not increase significantly with the increases in concentrations of Cu or Cd in exposure solutions combined with petroleum (0, 100, and 220 μl/L) under the experimental conditions. Although Nereis diversicolor is exposed to very high Cu and Cd in exposure solutions, accumulation and detoxification mechanisms are sufficient to cope with the extra metal influx in order to survive.

  16. Monitoring of the content of lead and cadmium in the waters of the river Tuis

    International Nuclear Information System (INIS)

    The content of lead and cadmium was monitored in the waters of the river Tuis for 11 months. The method of digestion most suitable was determined for this type of matrix. The chemical analyses were realized by means of the technique of anodic stripping voltammetry by differential pulse, for which some parameters of measurement were optimized and there decided the limits of detection and quantification. The veracity of the method was evaluated by means of the percentage of recovery for each of the analytes. The limit of detection of the lead is of 0,46 μgL-1 and limit of quantification is 1, 5 μgL-1, the cadmium has a limit of detection of 0,40 μgL-1 and 1,3 μgL-1 of quantification. (author)

  17. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    Science.gov (United States)

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO. PMID:26445755

  18. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead.

    Science.gov (United States)

    Zhang, Zhongchun; Gao, Xiang; Qiu, Baosheng

    2008-02-01

    Phytochelatins (PCs) are known to play an essential role in the heavy metal detoxification of some higher plants and fungi by chelating heavy metals. However, three recent papers reported that no PCs could be detected in the hyperaccumulator Sedum alfredii Hance upon cadmium, lead or zinc treatment, respectively. In this paper, PC synthesis was assayed again in the mine population of S. alfredii with the help of reversed phase high-performance liquid chromatography (HPLC), HPLC-mass spectrometry, and HPLC-tandem mass spectrometry. Our data showed that PC formation could be induced in the leaf, stem and root tissues of S. alfredii upon exposure to 400 microM cadmium, and only in the stem and root when exposed to 700 microM lead. However, no PCs were found in any part of S. alfredii when it was subjected to exposure to 1600 microM zinc.

  19. Estimation of lead and cadmium in various food commodities by electrothermal atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    The determination of lead and cadmium was carried out in various types of food commodities including poultry farm chicken eggs, integrated diet of winter season for the inhabitants of Rawalpindi/Islamabad area and different brands of baby cereals, employing electrothermal atomic absorption spectrophotometric technique. The results showed that integrated diet contained the highest amount of lead whereas the maximum concentration of cadmium was observed in samples of baby cereals. The effect of mechanical food processing on the concentration levels of these elements was discussed. The results obtained were compared with the reported values for other countries. Intake values of these toxic elements through these food articles were calculated and compared with the tolerance levels of WHO. (author)

  20. Factors affecting lead and cadmium levels in house dust in industrial areas of eastern Germany.

    Science.gov (United States)

    Meyer, I; Heinrich, J; Lippold, U

    1999-08-30

    The indoor exposure of 381 women (52-59 years old) to lead and cadmium was assessed by measuring the levels of the contaminants in sedimented house dust. The study was conducted in the areas surrounding the towns of Hettstedt, a region of mining and smelting of non-ferrous ores, of Bitterfeld, a centre of chemical production and coal mining, and of Zerbst, a primarily agricultural area. Factors that were significantly associated with lead and cadmium surface loading rates included the city area of residence, urban environment of dwelling, ventilation behaviour, type of heating, year of construction of building and crowding in the sampling room. In metal-contaminated areas, the transport of heavy metals into the home from external sources and their subsequent resuspension into the air due to normal household activities are significant factors in the exposure to heavy metals, whereas in unpolluted areas indoor sources play the major role.

  1. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead.

    Science.gov (United States)

    Zhang, Zhongchun; Gao, Xiang; Qiu, Baosheng

    2008-02-01

    Phytochelatins (PCs) are known to play an essential role in the heavy metal detoxification of some higher plants and fungi by chelating heavy metals. However, three recent papers reported that no PCs could be detected in the hyperaccumulator Sedum alfredii Hance upon cadmium, lead or zinc treatment, respectively. In this paper, PC synthesis was assayed again in the mine population of S. alfredii with the help of reversed phase high-performance liquid chromatography (HPLC), HPLC-mass spectrometry, and HPLC-tandem mass spectrometry. Our data showed that PC formation could be induced in the leaf, stem and root tissues of S. alfredii upon exposure to 400 microM cadmium, and only in the stem and root when exposed to 700 microM lead. However, no PCs were found in any part of S. alfredii when it was subjected to exposure to 1600 microM zinc. PMID:18023461

  2. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    International Nuclear Information System (INIS)

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis

  3. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar [Department of Biotechnology, Gandhi Institute of Engineering and Technology, Gunupur, Rayagada 765 022, Odisha (India); Mohapatra, Pradeep Kumar Das, E-mail: pkdmvu@gmail.com [Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-01-30

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.

  4. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.)

    OpenAIRE

    Shahram AMIRMORADI; Parviz Rezvani MOGHADDAM; Alireza KOOCHEKI; Shahnaz DANESH; Amir FOTOVAT

    2012-01-01

    Cadmium (Cd) and lead (Pb) are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm) and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm) and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replicati...

  5. Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran

    OpenAIRE

    Shekoohiyan Sakine; Ghoochani Mahboobeh; Mohagheghian Azita; Mahvi Amir Hossein; Yunesian Masoud; Nazmara Shahrokh

    2012-01-01

    Abstract Tea is one of the most common drinks in all over the world. Rapid urbanization and industrialization in recent decades has increased heavy metals in tea and other foods. In this research, heavy metal contents such as lead (Pb), cadmium (Cd) and arsenic (As) were determined in 105 black tea samples cultivated in Guilan and Mazandaran Provinces in north of Iran and their tea infusions. The amount of heavy metals in black tea infusions were analyzed using Inductively Coupled Plasma Atom...

  6. Determination of Cadmium and Lead Concentration in Cosmetics (Sunscreen, Lipstick and Hair Color)

    OpenAIRE

    Mehrnoosh Mohammadi; Alireza Riyahi Bakhtiari; Saber Khodabandeh

    2013-01-01

    Background and Objectives: Development of cosmetics industry has increased the affinity to use these products by people especially women for makeup and toilet. Due to the presence of metals such as lead and cadmium as preservative and colored element in these products, concentrations of these metals in sunscreen cosmetics, lipstick and hair color were determined. Materials and Methods: Different brands of cosmetics were analyzed to determine Cd and Pb concentration (in µg/kg dry weight) us...

  7. Biologic indicators of exposure to cadmium and lead palmerton, Pennsylvania. Part 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, S.M.; McGeehin, M.A.; Stallings, F.L.; Terracciano, G.L.; Amler, R.W.

    1995-05-01

    In Part 2 of this study, no difference was reported in the results of medical tests of the blood, liver, kidney, and immune systems of participants living in the two study areas. No relationships was found between exposure to cadmium and lead and the immune, liver, and blood system tests. No community wide medical action is needed in Palmerton based on the results of this study. No further site-specific health studies are recommended.

  8. Spectrophotometric determination of trace amounts of cadmium and lead with iodide and rhodamine B

    International Nuclear Information System (INIS)

    Highly sensitive spectrophotometric methods have been developed for determination of cadmium and lead, based on the CdI42- or PbI42- anionic complexes with Rhodamine B in the presence of polyvinyl alcohol to form ion-association complexes. The molar absorptivity is 4.2x105 l x mole-1 x cm-1 at 600 nm for cadmium and 5.7x105 l x mole-1 x cm-1 at 610 nm for lead. The complexes have the composition [CdI 42-] x [RhB+]2 and [PbI42-] x [RhB+]2 as established by Job's method of continuous variations and the molar-ratio method. The colour reaction selectivity is fairly good and the method can be applied for direct spectrophotometric determination of cadmium or lead in some pure metals. A species [PbI3-] x [RhB+] can also be formed, and extracted into toluene or a toluene/diethyl ether micture. (Authors)

  9. Deposition of lead and cadmium released by cigarette smoke in dental structures and resin composite.

    Science.gov (United States)

    Takeuchi, Cristina Yoshie Garcia; Corrêa-Afonso, Alessandra Marques; Pedrazzi, Hamilton; Dinelli, Welingtom; Palma-Dibb, Regina Guenka

    2011-03-01

    Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. PMID:20687130

  10. MERCURY, LEAD, CADMIUM AND CHROME CONCENTRATION LEVELS IN FISH FOR PUBLIC CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Imer Haziri

    2011-12-01

    Full Text Available A total of seventy cultured fish from the local market of Tirana were sampled and the concentration level of mercury, lead, cadmium and chrome was evaluated. Their concentration always resulted below the maximum permitted level for human consumption set by EC (Hg- 1.0 mg/kg, Pb – 0.30 mg/kg, Cd – 0.05 mg/kg and Cr -8 mg/kg. Heavy metal concentration varied among the muscle tissue of different fish species. The concentration level of mercury, lead, cadmium and chrome ranged between 0.002-0.21 mg/kg (Hg; 0.01-0.16 mg/kg (Pb; nd - 0.002 (Cd, and 0.01-0.03 (Cr mg/kg wet weight. The results collected from this monitoring process revealed that these groups of cultivated fish species show low levels of contaminants, such as mercury (Hg, lead (Pb, cadmium (Cd and chrome (Cr. This monitoring process is very important to safeguard the health of Tirana consumers.

  11. Content of Cadmium and Lead in Vegetables and Fruits Grown in the Campania Region of Italy.

    Science.gov (United States)

    Esposito, Mauro; Picazio, Giuseppe; Serpe, Paola; Lambiase, Sara; Cerino, Pellegrino

    2015-09-01

    Illegal practices of waste combustion and their burial in some land devoted to agricultural crops caused a severe economic crisis of the agriculture and food sector in the Campania region of Italy. To assess the levels of contamination by lead and cadmium, the only metals subject to European Union legislation, a system of monitoring of plant foods in the whole territory of the region has been promoted, with the goal of certifying productions and consumer protection. In fact, products that comply with European Union standards are assigned a Quick Response Code, which guarantees the traceability of the product (manufacturer and location). The code also ensures the safety of the product, as it allows the consumer to see the results of the analysis performed on the specific chain of production. The content of lead and cadmium was determined in 750 vegetable samples by using the atomic absorption spectrophotometry after microwave mineralization. These levels were below the maximum limits in all but three samples; two samples of tomatoes exceeded the maximum level of cadmium, and one sample of valerian contained an excess of lead.

  12. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies

    Energy Technology Data Exchange (ETDEWEB)

    Puranik, P.R.; Paknikar, K.M. [Agharkar Research Inst., Pune (India). Div. of Microbial Sciences

    1999-03-01

    The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature. Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCm B-181 was a fast process, requiring < 20 min to achieve > 90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11.8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co{sup 2+} < Ni{sup 2+} < Cd{sup 2+} < Cu{sup 2+}, Zn{sup 2+} < Pb{sup 2+}. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time.

  13. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    Science.gov (United States)

    Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  14. Content of Cadmium and Lead in Vegetables and Fruits Grown in the Campania Region of Italy.

    Science.gov (United States)

    Esposito, Mauro; Picazio, Giuseppe; Serpe, Paola; Lambiase, Sara; Cerino, Pellegrino

    2015-09-01

    Illegal practices of waste combustion and their burial in some land devoted to agricultural crops caused a severe economic crisis of the agriculture and food sector in the Campania region of Italy. To assess the levels of contamination by lead and cadmium, the only metals subject to European Union legislation, a system of monitoring of plant foods in the whole territory of the region has been promoted, with the goal of certifying productions and consumer protection. In fact, products that comply with European Union standards are assigned a Quick Response Code, which guarantees the traceability of the product (manufacturer and location). The code also ensures the safety of the product, as it allows the consumer to see the results of the analysis performed on the specific chain of production. The content of lead and cadmium was determined in 750 vegetable samples by using the atomic absorption spectrophotometry after microwave mineralization. These levels were below the maximum limits in all but three samples; two samples of tomatoes exceeded the maximum level of cadmium, and one sample of valerian contained an excess of lead. PMID:26319733

  15. Lead, cadmium and chromium in raw and boiled portions of Norway lobster.

    Science.gov (United States)

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2014-01-01

    Lead, cadmium and chromium levels were determined in different raw and boiled portions of Norway lobster caught in the central Adriatic Sea (Italy). In raw specimens, the lowest concentrations were always detected in the white meat. Lead and cadmium content in the edible portion never exceeded the maximum levels set by European legislation. The highest cadmium and chromium values (0.47 ± 0.04 and 0.62 ± 0.13 mg/kg wet weight, respectively) were detected in the brown meat, while the highest lead concentrations were found in the exoskeleton (0.21 ± 0.01 mg/kg wet weight). Also, the boiled samples showed the lowest metal levels in the white meat, even if a significant increase (p portions. Among metals, chromium showed the highest concentrations in both raw and boiled portions, but up to now, the European legislation did not envisage any limits in seafood. PMID:24784349

  16. Cadmium and lead in selected tissues of two commercially important fish species from the Adriatic Sea.

    Science.gov (United States)

    Gaspić, Z Kljaković; Zvonarić, T; Vrgoc, N; Odzak, N; Barić, A

    2002-12-01

    Baseline levels of cadmium and lead were determined in muscle tissue and liver of hake (Merluccius merluccius) and red mullet (Mullus barbatus), two commercially important fish species from the eastern Adriatic. Concentrations of trace metals in liver (Cd: 6-183 microg kg(-1) w. wt. ; Pb: 39-970 microg kg(-1) w. wt.) were within the range of recently published data for the Mediterranean. In the muscle tissue, cadmium concentrations (4.1-29 microg kg(-1) w. wt.) were among the lowest reported values for the Mediterranean, whereas lead levels (49-158 microg kg(-1) w. wt.) were within the range of values reported for various coastal areas of the Mediterranean. Presented data on cadmium and lead content in the studied fish species provide no proof of the general pollution of the Adriatic. Obtained data were tested in relation to fish length. Metal concentrations in liver decreased with the increase in fish size, whereas no significant correlation was found between trace metal levels in the muscle tissue and the length of both species. Relationships between metal concentrations and sex were also tested, but they gave no significant results. A comparison of contaminant concentrations in the edible tissue of hake and red mullet with the Croatian legislation shows that the consumption of their meat is not harmful for humans, not even for the most endangered population from the coastal region.

  17. Non-occupational exposure of Malay women in Kuala Lumpur, Malaysia, to cadmium and lead.

    Science.gov (United States)

    Moon, C S; Zhang, Z W; Watanabe, T; Shimbo, S; Ismail, N H; Hashim, J H; Lkeda, M

    1996-01-01

    Abstract Peripheral blood and 24-h total food duplicate samples were obtained from 49 adult Malay women in Kuala Lumpur, Malaysia, in July, 1995. Samples of boiled and uncooked (raw) rice were also collected from the subjects. The blood samples, homogenates of each food duplicates and rice samples (both cooked and raw) were digested by heating in the presence of mineral acids, and the digests were subjected to analysis for cadmium (Cd) and lead (Pb) with a system composed of a fully automated liquid sampler, a graphiie furnace atomic absorption spectrometer and a data processor. The geometric mean metal concentrations in blood were 0.71 ng Cd per ml and 45.6 ng Pb per ml, and the dietary metal intakes were 7.31 μg Cd per day and 10.1 μg Pb per day. The metal intake via rice accounted for 53% and 13% of total dietary intake of cadmium and lead, respectively. When the absorption from the air and foods was compared, the cadmium burden came almost exclusively from foods, whereas the lead burden came both from air (44%) and foods (56%).

  18. Copper electrodeposition from cuprous chloride solutions containing lead, zinc or iron ions

    Institute of Scientific and Technical Information of China (English)

    M. Tchoumou; M. Roynette Ehics

    2005-01-01

    Cuprous chloride hydrochloric acid solutions were electrolysed in a two compartments cell without agitation for copper extraction. It is found that the current density affects the colour and the size of copper deposits. During electrodeposition of copper from cuprous solution in the presence of various concentrations of lead, zinc or iron ions at different current densities, it is observed that lead is codeposited with copper by increasing current density.In all experiments, the current efficiency for the copper deposition reaction fluctuates between 88.50% and 95.50%.

  19. Evaluation of Estimated Daily Intake (EDI of Cadmium and Lead for Rice (Oryza sativa L. in Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Ali Chamannejadian

    2013-04-01

    Full Text Available The excessive amounts of cadmium and lead in food chain can cause health problems for humans and ecosystem. Rice is an important food in human diet. Therefore this study was conducted in order to investigate cadmium and Lead concentrations in seed rice (Oryza saliva of paddy fields in southwest of Iran. A total of 70 rice seed samples were collected from paddy fields in five regions of Khuzestan province, Southwest Iran, during harvesting time. In the samples cadmium and Lead concentrations were measured. To assess the daily intake of Cadmium and Lead by rice, daily consumption of rice was calculated. The results showed that average concentrations of Cadmium and Lead in rice seeds were 273.6 and 121.8 μg/kg, respectively. Less than 72% of rice seed samples had Cadmium concentrations above 200 μg/kg (i.e. Guide value for cadmium; and less than 3% had Lead concentrations above 150 μg/kg (i.e. Guide value for Lead. The estimated daily intakes of cadmium by the local population was calculated to 0.59 μg/day kg bw, which corresponds to 59% of the tolerable daily intakes (i.e. 1 μg/day kg bw. Eleven out of 70 samples (15.71% exceed the tolerable daily intakes. The dietary intakes for Lead in the local population ranged from 0.22 to 0.47 μg/day kg bw. Tolerable daily intakes for Lead is 3.6 μg/day kg bw. As a whole, long term consumption of the local rice may bear high risk of heavy metal exposure to the consumer in the study region.

  20. Toxicity of cadmium and lead on tropical midge larvae, Chironomus kiiensis Tokunaga and Chironomus javanus Kieffer (Diptera:Chironomidae)

    Institute of Scientific and Technical Information of China (English)

    Warrin Ebau; Che Salmah Md Rawi; Zubir Din; Salman Abdo Al-Shami

    2012-01-01

    Objective: To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer. Methods: Different larval instars (first-fourth) were exposed using a static non-replacement testing procedures to various concentrations of cadmium and lead. Results:In general, younger larvae (first and second instars) of both species were more sensitive to both metals than older larvae (third and forth instars). The toxic effects of the metals on C. kiiensis and C. javanus were influenced by the age of the larvae (first to fourth instars), types of metals (cadmium or lead) and duration of larval exposure (24, 48, 72 and 96 h) to the metals. Conclusions: Cadmium was more toxic to the chironomids than lead and C. javanus was significantly more sensitive to both metals than C. kiiensis (P<0.05).

  1. Applications of Crown Ether Cross-Linked Chitosan for the Analysis of Lead and Cadmium in Environmental Water Samples

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4'-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%-106%, the detection limits of lead and cadmium are 0.5μg*L-1and 0.04 μg*L-1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.

  2. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Chigbo, F.E.; Smith, R.W.; Shore, F.L.

    1982-01-01

    The water hyacinth Eichornia crassipes was studied as a pollution monitor for the simultaneous accumulation of arsenic, cadmium, lead and mecury. After cultivation of the plants for 2 days in tanks containing 10 ppm of each of the metals in aqueous solution, the plants were harvested and rinsed with tap water. The leaves and stems were separated and analysed for each of the metals. The ratio of the concentration of arsenic and mercury in the leaves to the concentrations in the stems was found to be 2:1. Cadmium and lead showed a concentration ratio in leaves to stems of about 1:1. The leaf concentration of arsenic was the lowest of the metals of 0.3428 mg g/sup -1/ of dried plant material whilst the leaf concentration of cadmium was highest at 0.5740 mg g/sup -1/ of dried plant material. Control plants were grown in unpolluted water. Plants grown in Bay St. Louis, Mississippi sewage lagoon were also analysed. The mercury concentrations of the leaves of plants grown in the sewage lagoon were significantly different from the control sample which had a concentration of 0.0700 mg g/sup -1/ of dried plant material.

  3. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  4. Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method

    International Nuclear Information System (INIS)

    Highlights: ► Cu1−xCdxFe2O4 mixed metal oxides. ► Sol–gel auto-combustion method. ► Cubic spinel symmetry. ► Semiconducting nature. ► Ferrimagnetic material. - Abstract: Cu1−xCdxFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) ferrite nanoparticles were synthesized by sol–gel auto-combustion method. The thermal decomposition process was investigated by Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA) technique. The phase composition of the copper cadmium ferrite samples were characterized by powder X-ray diffraction analyses (XRD). All the samples reveal formation of cubic spinel symmetry. The surface morphology of Cu1−xCdxFe2O4 ferrite powder was investigated by scanning electron microscope (SEM), while elemental compositions of sample were studied by energy dispersive X-ray analysis (EDAX). The DC conductivity studies of the samples reveal their semiconducting nature. Vibrating sample magnetometer (VSM) studies showed that, all the samples are ferrimagnetic in nature at room temperature.

  5. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings.

  6. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchelmore, Carys L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)], E-mail: Mitchelmore@cbl.umces.edu; Verde, E. Alan [Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420 (United States); Weis, Virginia M. [Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331 (United States)

    2007-11-15

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 {mu}g l{sup -1}) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 {mu}g l{sup -1} Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 {mu}g l{sup -1} metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response.

  7. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  8. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China

    Science.gov (United States)

    LI, Yan; GAO, Qiaoyan; LI, Mingcai; LI, Mengyang; GAO, Xueming

    2014-01-01

    Abstract Background The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd), chromium (Cr), and copper (Cu) concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site. Methods Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality. Results The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate. Conclusions Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis. PMID:26060677

  9. EXAFS and DFT study of the cadmium and lead adsorption on modified silica nanoparticles.

    Science.gov (United States)

    Arce, Valeria B; Gargarello, Romina M; Ortega, Florencia; Romañano, Virginia; Mizrahi, Martín; Ramallo-López, José M; Cobos, Carlos J; Airoldi, Claudio; Bernardelli, Cecilia; Donati, Edgardo R; Mártire, Daniel O

    2015-12-01

    Silica nanoparticles of 7 nm diameter were modified with (3-aminopropyl) triethoxysilane (APTES) and characterized by CP-MAS (13)C and (29)Si NMR, FTIR, zeta potential measurements, and thermogravimetry. The particles were shown to sorb successfully divalent lead and cadmium ions from aqueous solution. Lead complexation with these silica nanoparticles was clearly confirmed by EXAFS (Extended X-ray Absorption Fine Structure) with synchrotron light measurements. Predicted Pb-N and Pb-C distances obtained from quantum-chemical calculations are in very good agreement with the EXAFS determinations. The calculations also support the higher APTES affinity for Pb(2+) compared to Cd(2+). PMID:26135536

  10. Lead and Cadmium Concentration in Agricultural Crops (Lettuce, Cabbage, Beetroot, and Onion of Isfahan Province, Iran

    Directory of Open Access Journals (Sweden)

    Reza Mohajer

    2014-07-01

    Conclusion: The findings of this study indicated that although most of the sampling plants were contaminated with lead and cadmium, the estimated daily intake of each metal (EDI showed that except lead in lettuce, other crops have EDI below the provisional tolerable daily intake (PTDI recommended by the Institute of Standards and Industrial Research of Iran. In order to better management, preventing pollution and also finding the origin of elements, analyzing heavy metals content in soil, water, and dust of this region is recommended.

  11. Models for Copper Dynamic Behavior in Doped Cadmium dl-Histidine Crystals: Electron Paramagnetic Resonance and Crystallographic Analysis.

    Science.gov (United States)

    Colaneri, Michael J; Teat, Simon J; Vitali, Jacqueline

    2015-11-12

    Electron paramagnetic resonance and crystallographic studies of copper-doped cadmium dl-histidine, abbreviated as CdDLHis, were undertaken to gain further understanding on the relationship between site structure and dynamic behavior in biological model complexes. X-ray diffraction measurements determined the crystal structure of CdDLHis at 100 and 298 K. CdDLHis crystallizes in the monoclinic space group P21/c with two cadmium complexes per asymmetric unit. In each complex, the Cd is hexacoordinated to two histidine molecules. Both histidines are l in one complex and d in the other. Additionally, each complex contains multiple waters of varying disorder. Single crystal EPR spectroscopic splitting (g) and copper hyperfine (A(Cu)) tensors at room temperature (principal values: g = 2.249, 2.089, 2.050; A(Cu) = -453, -30.5, -0.08 MHz) were determined from rotational experiments. Alignments of the tensor directions with the host structure were used to position the copper unpaired dx(2)-y(2) orbital in an approximate plane made by four proposed ligand atoms: the N-imidazole and N-amino of one histidine, and the N-amino and O-carboxyl of the other. Each complex has two such planes related by noncrystallographic symmetry, which make an angle of 65° and have a 1.56 Å distance between their midpoints. These findings are consistent with three interpretations that can adequately explain previous temperature-dependent EPR powder spectra of this system: (1) a local structural distortion (static strain) at the copper site has a temperature dependence significant enough to affect the EPR pattern, (2) the copper can hop between the two sites in each complex at high temperature, and (3) there exists a dynamic Jahn-Teller effect involving the copper ligands. PMID:26501364

  12. Towards prenatal biomonitoring in Nanjing, China: lead and cadmium levels in the duration of pregnancy

    Institute of Scientific and Technical Information of China (English)

    LIU Kang-sheng; MAO Xiao-dong; HAO Jia-hu; SHI Juan; DAI Chun-fang; CHEN Wen-jun

    2013-01-01

    Background Prenatal lead and cadmium exposure will not only influence the mother's organ systems,but also will provide an environment that may influence the fetus and neonate in a harmful way.In the present study,we detected the blood lead levels (BLLS) and cadmium levels for the duration of pregnancy and 6-12 weeks after delivery and to analyze the influencing factors of BLLs in healthy pregnant women.Methods A cohort study survey was carried out.We recruited 174 healthy pregnant women without pregnancy or obstetric complications or abnormal pregnancy outcomes as the gravida group,and 120 healthy non-pregnant women as the control group.Results The lead concentrations in the three pregnancy trimesters and in the postpartum period were:(5.98±2.43),(5.54±2.01),(5.59±1.97),and (6.76±1.74) μg/dl; and (6.75±2.13) μg/dl in the control group.The cadmium concentrations in the three pregnancy trimesters and postpartum period were 1.61±0.45,1.63±0.46,1.64±0.49,and 1.67±0.57.We found that the BLLs in the gravida group were lower than in the control group during all three trimesters.Occupations,supplement nutritional elements (dietary supplements and nutritional (food) elements),and the time of house painting could affect BLLs in pregnant women.Lead-related occupations,using cosmetics,and living in a house painted more recently than one year previously are risk factors of high BLLs among pregnant women,while calcium,iron,zinc,and milk supplements are protective factors.Conclusions These findings may help people,especially pregnant women,to reduce lead exposure via supplements of calcium,iron,zinc,and milk or avoiding contacting risk factors.

  13. Contamination by cadmium and lead of some fruits and vegetables exposed to polluted air

    International Nuclear Information System (INIS)

    Author.Global air pollution and particularly in the urban cities derives from vehicle transportation (cars, buses, trucks) and electric generators. In Lebanon, many people use fuel diesel and leaded gasoline in the engines of their vehicles. Indeed, the fuel used in our country, contains thirteen times more pollutants than that used legally in the developed countries (Magazine de l'environnement, 2002). This contributes to the pollution of the air that we breathe as well as the fruits and vegetables exposed to air. 762 samples of four kinds of different fruits (peaches, apples, strawberries and grapes) and two kinds of vegetables (parsleys and cucumbers) were taken twice and during different periods from eight different places in laps of time of seven days. The samples were analyzed in the laboratories of IRAL at Fanar and Tal-Amara, using the Spectroscopy Atomic Absorption method. The analysis included two groups of samples: the first one comprises 192 samples of fruits and vegetables without peeling and the second one comprises 570 samples of fruit and vegetables with peeling. The average values of the non washed samples were between 0.13 ±0.012 and 0.6 ppm ± 0.02 for lead and 0.06 ± 0.015 and 0.18 ppm ± 0.02 for cadmium. Those of the non washed peelings were between 0.08 ± 0.015 and 0.38 ppm ±0.025 for lead and 0.03 ±0.006 and 0.11 ppm ± for cadmium. On the other hand, those of the non-washed peeled samples were between 0.05 ± 0.01 and 0.27 ppm ± 0.016 for lead and 0.03 ± 0.016 and lead and 0.03 ± 0.06 and 0.07 ppm ± 0.015 for cadmium. Once these samples were washed , the average values were marked between 0.03 ± 0.006 and 0.15 ppm ± 0.02 for the lead and 0.02 ± 0.006 and 0.06 ppm ± 0.015 for the cadmium. Then, after drying them, concentrations revealed to be comprised between 0.02 ± 0.005 and 0.1 ppm ± 0.02 for the lead and 0.01 and 0.04 ppm ± 0.006 for the cadmium and that of the washing water was concentrated between 0.09 ± 0.016 and 0

  14. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, Agnes Y. [Sanexen Environmental Services Inc., 1471 Lionel-Boulet Boulevard, Varennes, Quebec J3X 1P7 (Canada)]. E-mail: arenoux@sanexen.com; Rocheleau, Sylvie [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sarrazin, Manon [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sunahara, Geoffrey I. [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada)]. E-mail: geoffrey.sunahara@cnrc-nrc.gc.ca; Blais, Jean-Francois [Institut national de la recherche scientifique (INRS-ETE), Centre Eau, Terre et Environnement, 490 rue de la Couronne street, Quebec, Quebec G1K 9A9 (Canada)]. E-mail: blaisjf@ete.inrs.ca

    2007-01-15

    The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45 {+-} 0.08 mg/kg in barley, 0.79 {+-} 0.27 mg/kg in ryegrass, and 21.82 {+-} 1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls. - Assessment of a sewage sludge treatment on metal bioavailability as measured by metal speciation, toxicity and bioaccumulation.

  15. Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

    2009-01-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 μm Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  16. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  17. Paramagnetic copper centers in ferroelectric lead germanate with halogens

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Vylkov, A. I.

    2014-08-01

    The electron paramagnetic resonance spectrum of triclinic bivalent copper centers in copper-doped Pb5Ge3O11 single crystals has been investigated. The spectrum intensity increases after thermal treatment in a chlorine- or fluorine-containing atmosphere. The parameters of the electron Zeeman, hyperfine, and nuclear quadrupole interactions have been determined. The model of the observed centers has been proposed.

  18. Lead and cadmium contents in a medicinal plant/spice grown in an urban city of Nigeria

    Directory of Open Access Journals (Sweden)

    Olateju Dolapo Adeyolanu

    2016-12-01

    Full Text Available Human exposure to heavy metals is a growing concern across Nigerian urban settings due to potential danger from consuming plants grown on contaminated soils. This study assessed the contents of lead and cadmium in soil and basil (Ocimum basilicum Lamiaceae grown by vegetable farmers in Ojo Local Government Area of Lagos State, Nigeria. Using grid method, 36 points were located to collect soil samples at 0–15 and 15–30 cm depths, while plant samples were also collected simultaneously. The contents of lead and cadmium in soil and plants were determined and results were subjected to descriptive statistics while the transfer factor (TF was calculated. Lead ranged from 1.85 mg kg−1 at the topsoil to 2.54 mg kg−1 at subsoil. Cadmium varied from 0.99 mg kg−1 at the topsoil to 1.41 mg kg−1 at subsoil. Average TF were 0.21 for Pb and 0.35 for cadmium. Distribution of lead and cadmium increased in order leaf < stem < root indicating that the root of basil may be useful in bioremediation of metal-contaminated soils. Although, the levels of lead and cadmium contents in the basil leaf are lower than other parts, there could be accumulation of these metals through long-term consumption of the leaf.

  19. Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling

    Science.gov (United States)

    Trzeciakowski, Jerome P.; Gardiner, Lesley; Parrish, Alan R.

    2014-01-01

    A relationship between exposure to heavy metals, including lead and cadmium, and renal dysfunction has long been suggested. However, modeling of the potential additive, or synergistic, impact of metals on renal dysfunction has proven to be challenging. In these studies, we used structural equation modeling (SEM), to investigate the relationship between heavy metal burden (serum and urine levels of lead, cadmium and mercury) and renal function using data from the NHANES database. We were able to generate a model with goodness of fit indices consistent with a well-fitting model. This model demonstrated that lead and cadmium had a negative relationship with renal function, while mercury did not contribute to renal dysfunction. Interestingly, a linear relationship between lead and loss of renal function was observed, while the maximal impact of cadmium occurred at or above serum cadmium levels of 0.8 µg/L. The interaction of lead and cadmium in loss of renal function was also observed in the model. These data highlight the use of SEM to model interaction between environmental contaminants and pathophysiology, which has important implications in mechanistic and regulatory toxicology. PMID:24769258

  20. Heavy Metals (Lead and Cadmium in some Medicinal Herbal Products in Iranian Market

    Directory of Open Access Journals (Sweden)

    Zahra Mousavi

    2014-03-01

    Full Text Available Background: The use of herbal or medicinal plants in various forms has been popular for thousands of years. It is estimated that about 70–80% of the world’s population relies on alternative medicine, mainly of herbal origin. However, due to the nature and sources of these plants, they are sometimes contaminated with toxic heavy metals, which pose serious health risks to consumers. Herbal formulations, especially those used in the treatment of diseases such as hypertension, diabetes, and weight loss may require long-term usage and the patient might be at risk of heavy metal poisoning. In this study, the levels of toxic heavy metals (Pb, Cd were evaluated in 11 Iranian common herbal drugs for their health implications. Methods: In this investigation, concentrations of lead and cadmium were quantitatively determined in Iranian herbal drugs sampled from pharmacies in Tehran, Iran, using atomic absorption spectrophotometry (wet digestion. Results: The results indicated that lead and cadmium were present in all investigated herbal drugs. The concentrations of metals in drugs ranged from 0.19 to 1.75 µg/g for Cd and 9.61 to 52.74 µg/g for Pb. Conclusion: The concentrations of lead and cadmium were higher than the maximum permissible daily levels in the majority of these herbal drugs, whereas the quantities of Pb and Cd were well below provisional tolerable weekly intake (PTWI. Daily total intake of these metals is considered in accord with the recommended daily intake of their corresponding formulations.

  1. Evaluation of cadmium, copper, zinc, and iron concentrations and tissue distributions in the benthic crab, Dorippe granulata (De Haan, 1841) from Tolo Harbour, Hong Kong.

    Science.gov (United States)

    Depledge, M H; Forbes, T L; Forbes, V E

    1993-01-01

    The distributions of copper, zinc, iron, and cadmium among the tissues of Dorippe granulata were determined. The highest copper concentrations were found in the haemolymph (c. 53 microg ml(-1)) while the highest iron concentrations occurred in the gills (c. 720 microg g(-1) dry weight) and the highest zinc concentrations in the exoskeleton (c. 200 microg g(-1) dry weight). By comparison, concentrations of the non-essential metal, cadmium, were low in all tissues (mean = 10 microg g(-1) dry weight). The highest value was recorded from the midgut gland of a female crab (18.5 microg Cd g(-1) dry weight). Concentrations of copper, zinc, and iron were positively correlated with tissue-hydration levels. Such a relationship was not found for cadmium. The findings are discussed with regard to trace-metal levels found in temperate and tropical brachyurans from clean and polluted localities. PMID:15091832

  2. KINETIC AND EQUILIBRIUM STUDIES OF LEAD AND CADMIUM BIOSORPTION FROM AQUEOUS SOLUTIONS BY SARGASSUM SPP. BIOMASS

    OpenAIRE

    R. Nabizadeh, K. Naddafi, R. Saeedi, A. H. Mahvi, F. Vaezi, K. Yaghmaeian and S. Nazmara

    2005-01-01

    Contamination of the aqueous environment by heavy metals is a worldwide environmental problem. Biosorption of lead (II) and cadmium (II) from aqueous solutions by brown algae Sargassum spp.biomass was studied in a batch system. The heavy metals uptake was found to be rapid and reached to 88-96% of equilibrium capacity of biosorption in 15min. The pseudo second-order and saturation rate equations were found in the best fitness with the kinetic data (R2 > 0.99). The data obtained from experimen...

  3. Determination of lead, cadmium and thallium by neutron activation analysis in environmental samples

    International Nuclear Information System (INIS)

    A radiochemical procedure for simultaneous determination of lead (203Pb), thallium (202Tl) and cadmium (115Cd→115mIn) after fast neutron activation, based on ion-exchange separation from bromide medium and additional purification steps for Pb and Tl is described. Radioactive tracers 210Pb and 10'9Cd were used for determination of the chemical yields of Pb and Cd; for Tl it was determined gravimetrically. Two standard reference materials, BCR CRM No. 146 Sewage Sludge and NIST SRM 1633a Coal Fly Ash were analyzed and satisfactory agreement with certified values was obtained. (author) 17 refs.; 3 tabs.; 3 schemes

  4. DDE, PCBs, cadmium, lead, and mercury concentrations in rhinoceros auklets from Washington

    Science.gov (United States)

    Blus, L.J.; Fitzner, R.E.; Leschner, L.L.; Wilson, U.W.

    1999-01-01

    In July 1981, 5 adult rhinoceros auklets (Cerorhinca monocerata) were captured on the ground near nesting areas on each of Protection and Destruction Islands, Washington. The birds were euthanized, and their livers and kidneys removed and analyzed. Levels (I?g / g wet weight) of DDE (0.11 to 0.95), polychlorinated biphenyls (no residue detected [ND] to 1.1), mercury (0.60 to 1.8), and lead (ND to 0.85) in livers and cadmium (9.1 to 21.9) in kidneys were similar in each colony. All concentrations were less than known effect levels.

  5. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: A public health concern

    Energy Technology Data Exchange (ETDEWEB)

    Maduabuchi, J.-M.U. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Nzegwu, C.N. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Adigba, E.O. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Aloke, R.U. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Ezomike, C.N. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Okocha, C.E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Obi, E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Orisakwe, O.E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria)]. E-mail: eorish@aol.com

    2006-08-01

    The lead and cadmium levels of canned and non-canned foods purchased in Nigeria were studied. Fifty samples of these beverages were digested in nitric acid and were analyzed using the Atomic Absorption Spectrophotometer (AAS). The cadmium levels ranged from 0.003-0.081 mg/L for the canned and 0.006-0.071 mg/L for non-canned beverages. About 85.71% of the canned beverages had cadmium levels that exceeded the maximum contaminant level (MCL) of 0.005 mg/L set by US EPA while 82.7% non-canned beverages had cadmium levels exceeding the MCL. The mean and median levels of cadmium exceeded the MCL in both the canned and non-canned beverages. Whereas only 79.3% of the non-canned beverages showed lead levels that exceeded the US EPA's MCL of 0.015 mg/L, 100% of the canned beverages had lead levels that were greater than the MCL. The range of the lead in the canned beverages was 0.002-0.0073 and 0.001-0.092 mg/L for the non-canned beverages. The mean and median values of lead exceeded the MCL in both the canned and non-canned beverages. The calculated amount of lead and cadmium in three beverages were 0.204 mg (204 {mu}g) and 0.177 mg (177 {mu}g), respectively. These represent the estimated intake of a consumer who takes three of the products selected randomly in a week; assuming an average volume of one liter (1 L) for each product. Taken together 86% and 84% of the 50 beverages (canned and non-canned) studied in March, 2005 in Nigeria failed to meet the US EPA criteria for acceptable lead and cadmium levels in consumer products.

  6. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  7. Phytoavailability of Copper, Zinc and Cadmium in Sewage Sludge-Amended Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; GUO Xue-Yan; XU Xing-Hua; ZUO Yu-Bao; WEI Dong-Pu; MA Yi-Bing

    2012-01-01

    The toxicity of trace elements (TEs),such as copper (Cu),zinc (Zn),and cadmium (Cd),often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China.In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS.The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts,respectively.The results from the field experiment showed that the contents of total Zn,Cu,and Cd in the soils increased linearly with SS application rates.With increasing SS application rates,the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau,while there was no significant change of Cd content in the maize grains.The bioconcentration factors of the metals in the grains of wheat and maize were found to be in the order of Zn > Cu > Cd,but for the straw the order was Cd > Cu > Zn.It was also found that wheat grains could accumulate more metals compared with maize grains.The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.

  8. Investigating the distribution of dissolved copper, zinc, silver and cadmium in the Pacific Ocean

    Science.gov (United States)

    Janssen, D. J.; Cullen, J. T.

    2012-12-01

    A stated goal of the GEOTRACES program is to better understand the large-scale distribution of trace metals in the marine environment. A characteristic feature of the soft Lewis acid metals like copper (Cu), zinc (Zn), silver (Ag) and cadmium (Cd) is their correlation with the major algal nutrients. These correlations imply that the proximate control on the distribution of these metals is microbial uptake at the ocean surface, sinking associated with particulate organic matter and subsequent remineralization in the ocean interior. Combined with sedimentary records of past metal concentrations such correlations can provide much needed information on water mass circulation and nutrient cycling in the paleo-ocean. Today, as trace nutrients and/or toxins these metals help shape microbial community composition and influence productivity. Here we present depth profiles through the low dissolved oxygen waters of the north Pacific which show decoupling of trace metal-macronutrient relationships driven by depletion anomalies of trace metal concentrations in the broad, low oxygen layer. Similar anomalies have been previously reported in permanently anoxic layers (e.g. fjords) or in waters in contact with suboxic sediments and attributed to sulfidic removal of soft trace metals. The observed trace metal behavior and trace metal-macronutrient relationships in the oxygen minimum layer in the northeastern Pacific is consistent with the possibility of sulfidic scavenging of soft metals and the formation of insoluble metal sulfides in the water column. Implications of this influence on the basin scale distribution of soft metals like Cu, Zn, Ag, Cd through scavenging in the spreading low oxygen layer in the northeastern Pacific are discussed.

  9. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    HUANG Yizong; HU Ying; LIU Yunxia

    2009-01-01

    Accumulation of copper (Cu) and cadmium (Cd) in six rice cultivars (94D-22, 94D-54, 94D-64, Gui630, YY-1 and KY1360) was evaluated through exposure to heavy metal contamination (100 mg/kg Cu, 1.0 mg/kg Cd, and 100 mg/kg Cu + 1.0 mg/kg Cd) in a greenhouse. The dry weight of shoot and root, concentrations of Cu and Cd in plant tissues and the Cu, Cd, P, Fe concentrations in the root surface iron plaques were analyzed eight weeks later after treatment. The results indicated that the plant biomass was mainly determined by rice genotypes, not Cu and Cd content in soil. Separated treatment with Cu/Cd increased each metal level in shoot, root and iron plaques. Soil Cu enhanced Cd accumulation in tissues. In contrast, Cu concentrations in shoot and root was unaffected by soil Cd. Compared to single metal contamination, combined treatment increased Cd content by 110.6%, 77.0% and 45.2% in shoot, and by 112.7%, 51.2% and 18.4% in root for Gui630, YY-1 and KY1360, respectively. The content level of Cu or Cd in root surface iron plaques was not affected by their soil content. Cu promoted Fe accumulation in iron plaques, while Cd has no effect on P and Fe accumulation in it. The translocation of Cu and Cd from iron plaques to root and shoot was also discussed. These results might be beneficial in selecting cultivars with low heavy metal accumulation and designing strategies for soil bioremediation.

  10. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.

    Science.gov (United States)

    Megateli, Smain; Semsari, Saida; Couderchet, Michel

    2009-09-01

    Effects of cadmium, copper, and zinc on the aquatic plant Lemna gibba were determined under controlled conditions; in parallel their removal from the growth medium was followed. The results showed that the three heavy metals affected growth, a physiological stress index defined as the ratio of Chlorophyll to phaeophytin (D665/D665a), and the contents of proline. After 4 days, 10(-3)-10(-1)mg/L Cd inhibited growth by 25-100%, reduced D665/D665a by 35-89%, and increased proline content by 44-567%. Under the same conditions, 10(-4)-10(-1) microg/L Cu inhibited growth by 36-75%, reduced D665/D665a by 19-81%, and increased proline content by 67-288%. Comparable concentrations of Zn had little effect. However, higher concentrations (4, 30, and 50mg/L) inhibited growth by 50-79%. Also, 0.1 and 30 mg/L induced a small reduction of D665/D665a (-3.8% and -22%) and an increase in proline contents (+144% and +177%). When it was observed, proline accumulation was always transient and the maximum was reached after 4 days. Monitoring metal concentration in the medium showed that L. gibba was able to remove metals from the medium. Zn and Cu removal was biphasic, it was rapid during the first 2 days (> 60% reduction) and slow (10-20%) during the following 8 days. For Cd, removal was linear and depended on the initial concentration. It reached approximately 90% after 6 or 8 days for initial concentrations of 10(-1) and 10(-3)mg/L, respectively. PMID:19505721

  11. Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea.

    Science.gov (United States)

    Sepe, A; Ciaralli, L; Ciprotti, M; Giordano, R; Funari, E; Costantini, S

    2003-06-01

    Concentrations of cadmium, chromium, lead and vanadium were determined in samples of six fish species collected along the coast of the Adriatic Sea. The concentrations of the elements studied were generally low, often below the detection limits of the analytical methods. The highest values (microg x kg(-1) fresh weight) were observed, mainly in the central area of the Adriatic Sea, for anchovy (Cd 20.2, Cr 82.9, Pb 45.9, V 89.9), red mullet (Cd 3.1, Cr 31.0, Pb 36.0, V 79.1) and mackerel (Cd 7.7, Cr 28.0, Pb 11.4, V 43.5). The concentrations of cadmium and lead in all the species examined were below the maximum levels indicated by the European Community for these two elements in seafood, and also would lead to exposure levels lower than the provisional tolerable daily intakes suggested by the FAO/WHO for Cd (420 microg x week(-1) for a 60-kg person) and Pb (1500 microg x week(-1) for a 60-kg person). The concentration of chromium was lower than the recommended daily amount (50-200 microg x day(-1) for a 60-kg person) indicated by the US National Research Council. An 11-34% contribution to the daily vanadium ingestion with fish was calculated for the population of the Adriatic coast.

  12. Kinetic investigations of oxidative roasting and afterwards leaching of copper-lead matte

    Directory of Open Access Journals (Sweden)

    Minić Duško

    2004-01-01

    Full Text Available In this paper, results of copper - lead matte investigations are presented. Investigated copper-lead matte is intermediate product of lead production in TREPCA-Zvecan. In the first part of the paper characterization of starting material is presented, consisting of: chemical composition analysis (XRQ, sceaning electron microscopy (SEM and diffractometry (XRD. Thermal properties of matte investigated were determined using differential thermal analysis (DTA at characteristic temperatures. Using results of induced analysis, mechanism of matte oxidation process was determined. In second part of the paper kinetic parameters describing oxidative roasting and afterwards leaching in sulfuric acid of copper-lead mate are presented.

  13. Removal of Cadmium(II and Lead(II ions from aqueous phase on sodic bentonite

    Directory of Open Access Journals (Sweden)

    Luz Stella Gaona Galindo

    2013-04-01

    Full Text Available This paper describes the adsorption of Cd2+and Pb2+ions using sodic bentonite clay type Fluidgel modified. The Fluidgelbefore and after chemical modification and thermal activation was characterized by different techniques including X-ray diffraction, thermal analysis, Fourier transform infrared, surface area, helium pycnometry, cation exchange capacity and scanning electron microscopy. Pseudo-first order, pseudo-second order and intra-particle diffusion models were used to analyze the kinetic curves. Equilibrium data were analyzed using Langmuir and Freundlich models. The thermodynamic study indicated that lead adsorption process is endothermic and interactions between clays and solutions of lead occurred spontaneously, while cadmium adsorption revealed an exothermic and spontaneous nature. The maximum removal efficiencies were 97.62% for Cd(II using Fluidgelmodified chemically and 91.08% for lead by Fluidgel modified chemical and thermally.

  14. Lead and Cadmium: Priorities for action from UNEP’s perspective for addressing risks posed by these two heavy metals

    Directory of Open Access Journals (Sweden)

    Piper D.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP has been focusing on actions with regard to lead and cadmium since 2001 when the work of the Partnership for Clean Fuels and Vehicles (PCFV was initiated. The development and finalization of the reviews of scientific information on lead and cadmium facilitated discussions among Governments in relation to the need for global action with regard to these heavy metals. UNEP continues to address priority areas for focusing to reduce risks posed by lead and cadmium. The Global Alliance to Eliminate Lead Paint (GAELP is a clear example for addressing those risks; however more work is expected to be done in relation to these key issues.

  15. Bio sorption of Uranium by baker's yeast in the presence of Lead and Cadmium and modeling of equilibrium data

    International Nuclear Information System (INIS)

    Bio sorption technology is one of the novel technologies used for removal and recovery of radioactive metals from aqueous solutions. Scheduled researches are required for this technique. In this research, bio sorption of uranium, lead and cadmium by immobilized baker's yeast on calcium alginate was investigated. Equilibrium parameters in single systems and binary systems (uranium-lead and uranium-cadmium) were studied. The obtained results in single systems showed that the uranium uptake capacity is higher than that of lead and cadmium. Also, according to the observations in binary systems, the uranium uptake capacity was decreased by interferences of lead or cadmium ions. Nevertheless, uranium uptake capacity in these binary systems is high (more than 130 mg g-1 in uranium-lead and 200 mg g-1 in uranium-cadmium binary systems). The equilibrium isotherms were modeled by Langmuir, Freundlich and combination Langmuir-Freundlich models in single systems and the competitive Langmuir, modified extended Langmuir, extended Freundlich and combination Langmuir-Freundlich models in binary systems. According to the results, the Freundlich model in single systems and the extended Freundlich model in binary systems were found to be better than the others.

  16. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  17. Lead, cadmium, arsenic and mercury in canned tuna fish marketed in Tehran, Iran.

    Science.gov (United States)

    Andayesh, Shirin; Hadiani, Mohammad Rasoul; Mousavi, Zahra; Shoeibi, Shahram

    2015-01-01

    Fifty-four canned tuna fish samples corresponding to 10 widely used different brands were purchased from local markets in Tehran, Iran during 2012-2013 and analysed on heavy metals. Mercury was determined by a direct mercury analyser without any sample preparation. For analysis of other elements samples were digested using a microwave apparatus. Lead and cadmium were determined by graphite furnace atomic absorption spectrometry and arsenic via hydride vapour generation. All samples had arsenic and mercury contamination. Arsenic levels showed a range of 0.25-1.42 mg kg(-1), which might be due to lack of national and international limits for arsenic in canned tuna fish. Lead and cadmium were measured in a small number of samples with a mean of 0.053 ± 0.058 mg kg(-1) and 0.013 ± 0.015 mg kg(-1), respectively. Results obtained for these heavy metals in all samples were lower than the corresponding limits, whereas arsenic and mercury contents might raise some attention.

  18. Flow injection determination of lead and cadmium in hair samples from workers exposed to welding fumes

    International Nuclear Information System (INIS)

    A flow injection procedure involving continuous acid leaching for lead and cadmium determination in hair samples of persons in permanent contact with a polluted workplace environment by flame atomic absorption spectrometry is proposed. Variables such as sonication time, nature and concentration of the acid solution used as leaching solution, leaching temperature, flow-rate of the continuous manifold, leaching solution volume and hair particle size were simultaneously studied by applying a Plackett-Burman design approach. Results showed that nitric acid concentration (leaching solution), leaching temperature and sonication time were statistically significant variables (confidence interval of 95%). These last two variables were finally optimised by using a central composite design. The proposed procedure allowed the determination of cadmium and lead with limits of detection 0.1 and 1.0 μg g-1, respectively. The accuracy of the developed procedure was evaluated by the analysis of a certified reference material (CRM 397, human hair, from the BCR). The proposed method was applied with satisfactory results to the determination of Cd and Pb in human hair samples of workers exposed to welding fumes

  19. Electrochemical Microsensors for the Detection of Cadmium(II and Lead(II Ions in Plants

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-05-01

    Full Text Available Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab, a commercially available miniaturized potentiostat (PalmSens and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II and lead(II ions. The lowest detection limits (hundreds of pM for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM and the homemade instrument (hundreds of nM. Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract with artificially added cadmium(II and lead(II. Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.

  20. Monitoring the sensitivity of selected crops to lead, cadmium and arsenic

    Directory of Open Access Journals (Sweden)

    Piršelová B.

    2011-12-01

    Full Text Available Heavy metals are highly toxic environmental pollutants. In plants, these compounds cause numerous slighter or stronger toxic effects. They inhibit root and shoot growth and yield production, affect nutrient uptake and homeostasis, and are frequently accumulated by agriculturally important crops. Effects of heavy metals on five selected species of agricultural crops were monitored. We focused our attention to general and commonly used stress indicators such as seed germination, weight and length of roots and shoots. Each of these characteristics was dependent on the tested plant species and tested heavy metals. Dosage of lead (500 mg/l had little effect on seed germination, cadmium (300 mg/l significantly affected seed germination of pea and barley, arsenic (100 mg/l caused total inhibition of seed germination in all tested plant species. Plants grow in soil contaminated with heavy metals showed several symptoms of metal toxicity (chlorosis, necrosis of leaf tips, blackening of roots. In general, the highest tolerance to tested metal ions was observed in both varieties of bean, and the lowest sensitivity was observed in soybean plants. The highest degree of toxicity was shown to have tested doses of cadmium and arsenic, the lowest the doses of lead. In general, the lowest tolerance indexes were determined based on the decrease in fresh weight of roots.

  1. Lead, cadmium, and mercury contents of fungi in the Helsinki area and in unpolluted control areas

    Energy Technology Data Exchange (ETDEWEB)

    Kuusi, T.; Liukkonen-Lilja, H.; Piepponen, S.; Laaksovirta, K.; Lodenius, M.

    1981-10-01

    More than 40 species of wild-growing fungi in Finland have been investigated with regard to their contents of lead, cadmium and mercury. A total of 326 samples was studied, 242 being from the urban area of Helsinki and 84 from unpolluted rural areas. The lead content ranged from < 0.5 to 78 mg/kg of dry matter. In the control areas the mean contents for the different species ranged from < 0.5 to 13 mg/kg, and in the urban area from 0.5 to 16.8 mg/kg. The cadmium content ranged from < 0.2 to 101 mg/kg of dry matter. In the control areas the mean contents for the different species ranged from < 0.2 to 16.8 mg/kg, and in the urban area from < 0.2 to 17.3 mg/kg. The mercury content ranged from < 0.01 to 95 mg/kg of dry matter. In the rural areas the mean contents for the diferent species ranged from 0.03 to 4.2 mg/kg, and in the urban area from 0.02 to 14.1 mg/kg. In conclusion, consumption of those fungi that grow in unpolluted rural areas carries no risk, particularly when they belong to mycorrhizal species. In urban areas the risk is somewhat greater. The Agaricus species show the highest contents of the metals studied and their use as food requires caution.

  2. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.

    Science.gov (United States)

    Daniel, Sheril; Limson, Janice L; Dairam, Amichand; Watkins, Gareth M; Daya, Santy

    2004-02-01

    Curcumin, the major constituent of turmeric is a known, naturally occurring antioxidant. The present study examined the ability of this compound to protect against lead-induced damage to hippocampal cells of male Wistar rats, as well as lipid peroxidation induced by lead and cadmium in rat brain homogenate. The thiobarbituric assay (TBA) was used to measure the extent of lipid peroxidation induced by lead and cadmium in rat brain homogenate. The results show that curcumin significantly protects against lipid peroxidation induced by both these toxic metals. Coronal brain sections of rats injected intraperitoneally with lead acetate (20 mg/kg) in the presence and absence of curcumin (30 mg/kg) were compared microscopically to determine the extent of lead-induced damage to the cells in the hippocampal CA1 and CA3 regions, and to establish the capacity of curcumin to prevent such damage. Lead-induced damage to the neurons was significantly curtailed in the rats injected with curcumin. Possible chelation of lead and cadmium by curcumin as its mechanism of neuroprotection against such heavy metal insult to the brain was investigated using electrochemical, ultraviolet spectrophotometric and infrared spectroscopic analyses. The results of the study show that there is an interaction between curcumin and both cadmium and lead, with the possible formation of a complex between the metal and this ligand. These results imply that curcumin could be used therapeutically to chelate these toxic metals, thus potentially reducing their neurotoxicity and tissue damage.

  3. Effects of copper and cadmium on development and superoxide dismutase levels in horseshoe crab (Limulus polyphemus) embryos.

    Science.gov (United States)

    Hamilton, Mary G; Esposito, Christopher; Malin, Mia; Cusumano, Lucas R; Botton, Mark L

    2015-01-01

    Pollution by metals may adversely affect organisms through the generation of reactive oxygen species (ROS). In this study, we examined the sublethal effects of two metals, copper and cadmium, on horseshoe crab (Limulus polyphemus) embryos. Exposure to copper or cadmium at concentrations of 0.01-10 mg/L for periods of 4, 8, 16 and 24 h had minimal effect on embryo survival except at 100 mg/L Cu. However, metal-exposed embryos took significantly longer to hatch into first instar ("trilobite") larvae than seawater controls. Levels of superoxide dismutase (SOD), believed to be important in the response to oxidative stress, were determined by Western blotting. Both the Cu/Zn and Mn cofactor forms of SOD tended to be somewhat elevated in metal-exposed embryos, but the increases were neither dose nor time-dependent. Likewise, SOD enzymatic activity showed no significant differences comparing embryos exposed to metals with seawater controls. We conclude that the protective role of SOD's against ROS produced in response to metal exposure appears to be limited in horseshoe crab embryos, at least under our experimental conditions. PMID:26405624

  4. Studies of cadmium, mercury and lead in man. The value of X-ray fluorescence measurements in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, J.

    1996-10-01

    Two XRF methods have been used for in vivo studies of mercury, cadmium and lead. Persons with a history of long-term occupational mercury exposure had elevated mercury concentrations in their kidneys (up to 65 {mu}g/g). The minimum detectable concentration varied between 12 and 45 {mu}g/g. Battery plant workers had elevated cadmium concentrations in their kidneys (up to 350 {mu}g/g) and liver (up to 80 {mu}g/g), with mean values about 3-5 times higher than the general population. The mean ratio between concentrations of cadmium in kidney and liver was 7. Levels in kidney and liver indicated that a simple integration of cadmium in work-place air is not sufficient to describe the body burden. Fingerbone lead in smelters was 6-8 times higher than in members of the general population. The half-time of bone lead in active workers was estimated to about 5 years during the accumulation phase. A model for description of a person`s lead exposure in terms of lead in fingerbone, lead in blood and time of exposure has been developed and can be used, e.g. for retrospective blood lead estimates if the period of exposure and the current fingerbone lead is known. This will be of value for the evaluation of toxic effects of long-term lead exposure when data on previous lead levels are lacking. In total, in vivo measurements of mercury, cadmium and lead give unique information, which has shown to be an important tool for understanding of metal kinetics and toxicity. If the precision and accuracy of the method can be further improved, the technique will also have a given place in the clinical practice. 168 refs, 9 figs, 3 tabs

  5. Wood anatomical changes due to uptake of cadmium and lead from contaminated soils in Acer velutinum seedlings

    Institute of Scientific and Technical Information of China (English)

    Zeynab Shahpoori; Vilma Bayramzadeh; Vahid Reza Safdari; Manoochehr Khan Zarinkafsh; Pedram Attarod; Roghayeh Jirroodnejad

    2012-01-01

    We investigated wood anatomical changes due to uptake and accumulation of cadmium and lead from contaminated soils in Acer velutinum Boiss seedlings.Two-year old seedlings were exposed for 180 days to soil concentrations with varying cadmium and lead concentrations.We measured three wood anatomical traits,average vessel area (μm2),vessel number per square millimetre,and vessel lumen area percentage (%).For assessing the cadmium and lead accumulation,we measured the concentrations in the soil,leaf,stem,and root.Average vessel area and vessel lumen area percentage were similar (p>0.05) in control and treated seedlings.Vessel number per square millimetre showed a decreasing trend from pith to bark in control and treated seedlings,and the trend was more pronounced in treated seedlings.We conclude that vessel number per square millimetre in A.velutinum is influenced by soil contamination.A.velutinum Boiss is not a suitable species for remediation of soils contaminated by cadmium and lead but it can be used as an indicator of the soil lead contamination,because lead concentrations in seedlings increased with increasing amount of lead in the soil.

  6. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    Science.gov (United States)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  7. Electrical conductivity in directionally solidified lead-9 and -20 wt pct copper alloys

    Science.gov (United States)

    Kim, Shinwoo; Flanagan, W. F.; Lichter, B. D.; Grugel, R. N.

    1993-01-01

    Composites consisting of aligned copper dendrites in a lead matrix have been produced by directional solidification processing for potential application as grids in lead-acid batteries. To promote a uniform composite of aligned copper dendrites in a protective lead matrix, two alloy compositions, Pb-9 and -20 wt pct Cu, have been directionally solidified through a temperature gradient of 4.5 K/mm at constant growth velocities which ranged from 1 to 100 micron/s. With slow growth rates (below about 10 microns/s), the copper dendrites were generally columnar and continuous along the sample length; at higher velocities (above 60 microns/s), they assumed an intricate and equiaxed morphology. In accordance with copper content and growth rate, the electrical conductivity of the directionally solidified composites was found to be as much as a 2.5 times that of pure lead. The results are compared with that predicted by a model based on a geometrical dendrite.

  8. Determination of serum cadmium and lead in patients of ischemic hear disease associated with or without hypertension and diabetes mellitus

    International Nuclear Information System (INIS)

    Human health and trace minerals are closely associated with each other. The vital role of trace elements has become clear in the recent years. The relation of trace elements in serum varies with the state of human health, ecology and under different pathological conditions. Determination of cadmium, and lead in the blood serum of normal, hypertensive patients, Ischemic heart patients, diabetic patients, hypertensive patients having diabetes, ischemic heart patients with diabetes, and hypertensive patients having ischemic heart disease, was carried out by using atomic absorption spectroscopic techniques. The results indicated that the concentration of cadmium and lead was elevated as compared with the normal and discussed in this paper. (author)

  9. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    International Nuclear Information System (INIS)

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 μg/g (wet weight) for cadmium, 0.21 μg/g for mercury, and 0.08 μg/g for lead. Kidney Cd increased by 3.9 μg/g for a 10 year increase in age, and by 3.7 μg/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 μg/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  10. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    Energy Technology Data Exchange (ETDEWEB)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Fabricius-Lagging, Elisabeth [Department of Nephrology, Sahlgrenska University Hospital and Boras Hospital (Sweden); Lundh, Thomas [Department of Occupational and Environmental Medicine, Lund University Hospital and Lund University (Sweden); Moelne, Johan [Department of Clinical Pathology, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Wallin, Maria [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Olausson, Michael [Department of Transplantation and Liver Surgery, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Modigh, Cecilia; Sallsten, Gerd [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden)

    2010-01-15

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 {mu}g/g (wet weight) for cadmium, 0.21 {mu}g/g for mercury, and 0.08 {mu}g/g for lead. Kidney Cd increased by 3.9 {mu}g/g for a 10 year increase in age, and by 3.7 {mu}g/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 {mu}g/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  11. Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem.

    Science.gov (United States)

    Motawei, Shimaa M; Gouda, Hossam E

    2016-06-01

    Heavy metals toxicity is a prevalent health problem particularly in developing countries. Mercury and cadmium are toxic elements that have no physiologic functions in human body. They should not be present in the human body by any concentration. Copper, on the other hand, is one of the elements that are essential for normal cell functions and a deficiency as well as an excess of which can cause adverse health effects. To test blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt. Using atomic absorption spectrophotometry, blood levels of cadmium, mercury, and copper were measured in 150 pregnant women attending to the antenatal care in Mansoura University Hospital in Dakahlia governorate, Egypt. The mean ± SD of blood mercury, cadmium, and copper levels were found to be far from their levels in the population surveys carried in developed countries like United States of America (USA) and Canada. Heavy metal intoxication and accumulation is a major health hazard. Developing countries, including Egypt, still lack many of the regulatory policies and legislations to control sources of pollution exposure. This should be dealt with in order to solve this problem and limit its health consequences. PMID:26521060

  12. Sorption of mono ethanol amine and mono ethanol aminate of copper(II) and cadmium(II) on hydrated zirconium dioxide

    International Nuclear Information System (INIS)

    The sorption of mono ethanol amine and mono ethanol aminate of copper(II) and cadmium(II) on hydrated zirconium dioxide is studied. Influence of ph of equilibrium solution, nature of central cation and outer-sphere anion on sorption of mono ethanol amine on hydrated zirconium dioxide is considered.

  13. Immobilization of Trichosporon cutaneum R 57 Cells onto Methylcellulose/SiO2 Hybrids and Biosorption of Cadmium and Copper Ions

    Directory of Open Access Journals (Sweden)

    Georgieva N.

    2009-12-01

    Full Text Available Methylcellulose/Silica (MC/SiO2 hybrids were synthesized via poly step sol-gel method. SiO2 was included into the hybrids from two silica precursors - methyltriethoxysilane (MTES and ethyltrimethoxysilane (ETMS with different quantity of organic part-5, 20 and 50 wt.%. The filamentous yeasts Trichosporon cutaneum strain R 57 was immobilized onto the synthesized MC/SiO2 hybrids. After immobilization the hybrid materials were used in the processes of sorption of cadmium and copper ions. The obtained results of protein content analysis indicated that the amount of protein increased with increasing of MC in the hybrids. It was established that the maximal efficiency of copper and cadmium removal were observed for hybrid materials containing MTES and 50 wt.% MC - 66% and 26% respectively. For ETMS and 50 wt.% MC a high value of copper removal was 56% and for cadmium - 45% removal, respectively. FTIR analysis of free and immobilized cells with metal ions was conducted. SEM images showed successful immobilization of the yeasts cells. Second order model was employed in order to investigate the kinetics of copper and cadmium biosorption.

  14. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive MPC

  15. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.

    Science.gov (United States)

    Long, Xin-Xian; Zhang, Yu-Gang; Jun, Dai; Zhou, Qixing

    2009-04-01

    A field survey was conducted to study the characteristics of zinc, cadmium, and lead accumulation and rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance growing natively on an old lead/zinc mining site. We found significant hyperaccumulation of zinc and cadmium in field samples of S. alfredii, with maximal shoot concentrations of 9.10-19.61 g kg(-1) zinc and 0.12-1.23 g kg(-1) cadmium, shoot/root ratios ranging from 1.75 to 3.19 (average 2.54) for zinc, 3.36 to 4.43 (average 3.85) for cadmium, shoot bioaccumulation factors of zinc and cadmium being 1.46-4.84 and 7.35-17.41, respectively. While most of lead was retained in roots, thus indicating exclusion as a tolerance strategy for lead. Compared to the non-rhizosphere soil, organic matter and total nitrogen and phosphorus content, CEC and water extractable zinc, cadmium, and lead concentration were significantly higher, but pH was smaller in rhizosphere soil. The rhizosphere soil of S. alfredii harbored a wide variety of microorganism. In general, significantly higher numbers of culturable bacteria, actinomycetes, and fungi were found in the rhizosphere compared to bulk soil, confirming the stimulatory effect of the S. alfredii rhizosphere on microbial growth and proliferation. Analyses of BIOLOG data also showed that the growth of S. alfredii resulted in observable changes in BIOLOG metabolic profiles, utilization ability of different carbon substrates of microbial communities in the rhizosphere soil were also higher than the non-rhizosphere, confirming a functional effect of the rhizosphere of S. alfredii on bacterial population. PMID:19183820

  16. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    Science.gov (United States)

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay.

  17. Target hazard quotient evaluation of cadmium and lead in fish from Caspian Sea.

    Science.gov (United States)

    Basim, Yalda; Khoshnood, Zahra

    2016-02-01

    Heavy metals are being increasingly released into the natural waters from geological and anthropogenic sources. The distributions of several heavy metals such as cadmium (Cd) and lead (Pb) were investigated in muscle and liver of three different fish species seasonally collected from Caspian Sea (autumn 2011-summer 2012). The concentrations of all metals were lower in flesh than those recorded in liver due to their physiological roles. The target hazard quotient (THQ) index for fish was calculated. Estimation of THQ calculations for the contaminated fish consumption was calculated to evaluate the effect of pollution on health. Total metal THQ values of Pb and Cd for adults were 0.05 and 0.04 in Anzali and Noshahr, respectively, and for children were 0.08 and 0.05 in Anzali and Noshahr, respectively.

  18. [Migration tests of cadmium and lead from paint film of baby toys].

    Science.gov (United States)

    Kawamura, Yoko; Mutsuga, Motoh; Yamauchi, Tomoko; Ueda, Shinji; Tanamoto, Kenichi

    2009-04-01

    The migration tests of cadmium (Cd) and lead (Pb) from paint film on baby toys set out in the Japanese Food Sanitation Law (official standard) and International Standard 8124-3 (ISO) were compared. Vinyl chloride resin enamel and acrylic resin enamel containing 1,000 mg/kg Cd and Pb on a dried basis were painted on glass plates and then dried. According to the official standard, the paint films on the glass plates were soaked in water at 40 degrees C for 30 min and the solutions were analyzed by ICP-AES. Cd and Pb were below the limit of determinotion (toys based on the ISO standards is stricter than that based on the Japanese Food Sanitation Low.

  19. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes. PMID:26858082

  20. Speciation and distribution of cadmium and lead in salinized horizons of antrosols

    Science.gov (United States)

    Bulgariu, D.; Bulgariu, L.; Astefanei, D.

    2009-04-01

    The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of

  1. Cadmium and lead occurrence in soil and grape from Murfatlar Vineyard

    Directory of Open Access Journals (Sweden)

    Matei Nicoleta

    2015-06-01

    Full Text Available The study investigates the pollution with heavy metals of grapes and soil. The grapes nourish from the respective soil, with all existing substances: either nutrients or toxic materials. This link, between grapes and soil, made mandatory to focus on observing the level of toxic materials in both samples grapes and land. The aim of this research is to analyze the level of Cd and Pb in Vitis vinifera L. grape fruits and soil, by flame atomic absorption spectrometry (FAAS method. The grapes and the soil used in this work were sampled from the Murfatlar City, a nonindustrial area, placed far from the car traffic pollution. Cd and Pb were quantified, after the chemical mineralization of the samples using nitric acid. It can be noticed that the values of cadmium and lead concentrations in grapes were lower than the recommendable maximum limit.

  2. CADMIUM AND LEAD STATUS IN CORN HYBRIDS GROWN ON ACID SOIL OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    V. Kovačević

    2002-06-01

    Full Text Available Twenty corn (Zea mays L. hybrids were grown under field conditions in the west part of Brodsko-posavska county in Eastern Croatia during 2000 and 2001 growing seasons. The field trial was conducted in four replicates. The ear-leaf at beginning of silking stage (the second decade of July was taken for chemical analysis from each plot. Mean soil sample was taken by auger to 30 cm of depth. The total amounts of Cd and Pb in corn leaves were measured by ICP-AES technique after their microwave digestion using concentrated HNO3+H2O2. Mobile fraction of these elements in soil was extracted by ammonium acetate-EDTA solution. The experimental field is acid hydromorphic soil (locality Malino with moderate levels of mobile fractions of calcium, magnesium and aluminum. Also, mobile fraction of cadmium and lead are tolerable for growing of health food. Weather conditions during the study differed from the long-term mean. Low rainfall quantities during 5-months period and the higher air-temperatures characterized the 2000 growing season. Excess of rainfall in June and September, their shortage in July and August, as well as high temperatures in August, are main characteristics of weather during the corn growing seasons in 2001. Mean concentrations of cadmium and lead in corn leaves in our investigations were 0.14 ppm Cd and 0.420 ppm Pb. These amounts are low and not dangerous for plants, because critical concentrations of Cd and Pb in plants ranged from 5 to 10 ppm Cd and 10-20 ppm Pb. Considerable differences of cadmium and lead status in the ear-leaf were found among tested corn hybrids. For example, genetically induced differences from 0.07 to 0.21 ppm Cd were found, while these values for Pb were from 0.241 to 0.569 ppm Pb. Especially low Cd concentrations were found in six corn hybrids (OsSK373, E9917/99, Bc278, OsSK2-191, OsSK382 and Clarica: mean 0.092 ppm Cd, while in three hybrids it was considerably higher, but acceptable from the aspect of plant

  3. Occurrence of high levels of cadmium, mercury and lead in medicinal plants of India

    Directory of Open Access Journals (Sweden)

    Deepa T Vasudevan

    2009-01-01

    Plants can contain heavy metals from their presence in the soil, water or air. High levels of toxic metals can occur when the plants are grown in polluted areas, such as near roadways or metal mining and smelting operations. In addition, high levels can be found when agricultural expedients are used, including Cadmium containing fertilizers, organic mercury or lead based pesticides, and contaminated irrigation water. Quality has to be built into the whole process beginning from the selection of starting material to the final product reaching the consumer. In the present study were carried out, to evaluate the quality and safety of crude drug. The result shows that Indian herbal drug industry needs to ensure procurement of standardized authentic raw material free from toxic contaminants. Such approaches remain important in global promotion of medicinal plants & herbal medicinal products from India.

  4. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  5. Exposure of Prague's homeless population to lead and cadmium, compared to Prague's general population.

    Science.gov (United States)

    Hrncírová, Dana; Batáriová, Andrea; Cerná, Milena; Procházka, Bohumír; Dlouhý, Pavel; Andel, Michal

    2008-10-01

    Homelessness is a growing problem in the Czech Republic where homeless people represent a specific minority group beset by many problems linked to their divergent lifestyle. It was therefore expected that the homeless population would be at greater risk of exposure to environmental pollutants than the general population. The aim of our study was to compare blood lead (B-Pb) and blood cadmium (B-Cd) levels in the homeless population (HP) with those obtained from the Human Biomonitoring Project (CZ-HBM), which used blood donors considered representative of the general population (GP). We present data obtained between 2004 and 2006 for B-Pb and B-Cd in 257 Prague homeless adults and compare them to B-Pb and B-Cd levels in 104 Prague adult blood donors from the CZ-HBM project in 2005. The mean (geometric) B-Pb levels in men were 36.5 (HP) and 35.4microg/l (GP), which is not significantly different. However, statistically significant differences were observed between men and women in the GP (Phomeless nonsmokers (geometric means 1.06 and 1.18microg/l in men and women, respectively) were more than 2.5 times higher than in the nonsmoking GP (0.36 and 0.38microg/l for men and women, respectively). B-Cd levels were significantly (Phomeless population under study might be exposed to lead and cadmium more extensively than the general population of Prague and that homeless women represent a particularly vulnerable population group.

  6. Roman lead and copper mining in Germany : their origin and development through time, deduced from lead and copper isotope provenance studies

    OpenAIRE

    Durali-Müller, Soodabeh

    2006-01-01

    The present work was devised to address the systematic analysis of samples from a range of Roman non-ferrous metal artefacts from different archaeological contexts and sites in the Roman provinces of Germania Superior. One of the focal points of this study is the provenancing of different lead objects from five important Roman settlements between 15 BC and the beginning of fourth century AD. For this purpose, measurements were made on lead and copper ore samples from the Siegerland, Eifel, Hu...

  7. Mechanical characterization based in the impact test of the cadmium-zinc and cadmium-zinc-copper alloys; Caracterizacion mecanica basada en la prueba de impacto de las aleaciones cadmio-zinc y cadmio-zinc-cobre

    Energy Technology Data Exchange (ETDEWEB)

    Casolco, S.R.; Torres V, G. [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D.F. (Mexico)

    1999-11-01

    The present work is a study carried out in the Institute for Materials Research of the UNAM, of the alloys cadmium-zinc and cadmium-zinc-copper with the fundamental objective of knowing their behavior to the impact that which will allow to establish structural applications of these alloys. This work consists mainly on impact tests of the type Charpy at different temperatures in a range of - 150 Centigrade to 250 Centigrade and to study their fracture morphologies with the help of a scanning electron microscope to recognize the tendency of the material toward the fracture of the fragile type and to determine the ductile-fragile transition. (Author)

  8. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium in dried bee pollen produced in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Gasparotto SATTLER

    2016-01-01

    Full Text Available Abstract Like other beehive products, such as honey, royal jelly and propolis, bee pollen has attracted great interest because of the health benefits it can provide when consumed. Bee pollen has high contents of sugars and proteins and a low content of lipids, it is also a rich source of vitamins and other bioactive compounds, which makes it an attractive micronutrient supplement. However, few studies have investigated its composition. Therefore, the aim of this study was to characterize the essential minerals and inorganic contaminants present in bee pollen produced at apiaries in Rio Grande do Sul State, Brazil. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES revealed the presence of 8 essential minerals (calcium, iron, copper, chromium, manganese, molybdenum, phosphorus and zinc in the 5 analyzed samples; 6 of them were in sufficiently high amounts to meet dietary requirements. Of the 5 inorganic contaminants assessed (barium, cadmium, lithium, lead and vanadium, only cadmium was present at levels over the International Honey Commission’s standards. All bee pollen samples showed a high content of the 8 essential minerals. Contamination usually results from the use of pesticides, fertilizers and other chemicals in agriculture; thus, monitoring of its levels must be included in bee pollen analysis.

  9. Effect of air pollution on trees. VIII. Heavy metals in leaves of street trees: lead nickel, chrome, and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, M.

    1971-01-01

    The nickel, lead, chromium, and cadmium contents of leaves of plants grown in Tokyo were measured. The nickel content ranged from 7-15 ppm, the lead content from 14-34 ppm, chromium from 4-16 ppm, and cadmium from 0.7-1.3 ppm. Fluctuations in metal contents were most pronounced for paulownia. High contents of nickel, lead, and chromium were found in highly polluted industrial areas. The differences in lead content in industrial areas compared to that in residential and commercial areas was less significant. This was attributed to the contribution of lead in exhaust gases. Correlation coefficients between metal content and insoluble materials adhering to leaves were calculated for individual plants.

  10. DETERMINATION OF BACKGROUND LEVELS OF LEAD AND CADMIUM IN RAW AGRICULTURAL CROPS BY USING DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY

    Science.gov (United States)

    A method is described for the simultaneous determination of ultratrace levels of lead and cadmium in selected agricultural crop samples by differential pulse anodic stripping voltametry. Samples are dry ashed at high temperature with H2SO4 as an ashing aid. Techniques are describ...

  11. Screening of cadmium and lead in potentially contaminated waters using a spectrophotometric sequential injection lab-on-valve methodology.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-10-01

    The present work describes the development of a µSI-LOV method for the simultaneous screening of cadmium and lead in potentially contaminated water samples. To attain the biparametric determination, dithizone was chosen as the spectrophotometric reagent as it forms a colored complex with both metal ions, at different pH conditions. The cadmium determination was attained in strong alkaline conditions (pH≈12); the lead determination was calculated by the difference with the determination of both metals in mild alkaline conditions (pH≈8). The colored complex was measured at 550 nm and the method presented a LOD of 34 μg L(-1) for cadmium and 56 μg L(-1) for lead, with a sample consumption of 20 µL per assay and a determination rate of 55 h(-1). The results obtained were in agreement with those obtained by FAAS. The developed method was efficiently applied to the screening of cadmium and lead in marine port waters. PMID:26078171

  12. Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays

    International Nuclear Information System (INIS)

    Highlights: • Branchial plate and muscle tissue from mobulid rays were analysed for certain metals. • Mean concentrations of cadmium in Mobula japanica were above the EC ML. • Mean inorganic arsenic concentration in Mobula japanica muscle equalled the FSANZ ML. • Mean concentration of lead in Manta alfredi muscle tissue exceeded EC and Codex MLs. • There were significant correlations between the types of tissues for some metals. - Abstract: Mobulid rays are targeted in fisheries for their branchial plates, for use in Chinese medicine. Branchial plate and muscle tissue from Mobula japanica were collected from fish markets in Sri Lanka, and muscle tissue biopsies from Manta alfredi in Australia. These were analysed for arsenic, cadmium, lead and mercury and compared to maximum levels (MLs) set by Food Standards Australia and New Zealand (FSANZ), European Commission (EC) and Codex Alimentarius Commission. The estimated intake for a vulnerable human age group was compared to minimal risk levels set by the Agency for Toxic Substances and Disease Registry. The mean inorganic arsenic concentration in M. japanica muscle was equivalent to the FSANZ ML while cadmium exceeded the EC ML. The mean concentration of lead in M. alfredi muscle tissue exceeded EC and Codex MLs. There were significant positive linear correlations between branchial plate and muscle tissue concentrations for arsenic, cadmium and lead

  13. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    Science.gov (United States)

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  14. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ruth Alfaro-Cuevas-Villanueva

    2014-01-01

    Full Text Available The sorption of cadmium (Cd and lead (Pb by calcium alginate beads (CAB from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2 for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F and Dubinin-Radushkevich (D-R models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

  15. The morphology of the artery of heart and aorta after combined irradiation and cadmium and lead salts treatment

    Directory of Open Access Journals (Sweden)

    Ostrovskaya S.S.

    2007-01-01

    Full Text Available The purpose of the work was to study the morphology of the heart and aorta in combined action of irradiation with cadmium and lead. 60 Vistar line male rats divided into 6 groups were used. Rats of the 1,2, and 3 groups were treated by a total single gamma-irradiation in the dose 0,5 Gr. 3 months after irradiation they were treated with 1/10 LD50 in 1 ml 0,9% NaC1 chloride cadmium (1,4 groups and lead acetate (2,5 groups intraperitoneally during 10 with following 15-day regeneration period. Rats of the 3 and 6 groups irradiated and non-irradiated (the last group was a control one were treated 1 ml 0,9% of NaC1. In 10 and 15 days the heart and portion of the aorta at the level of valves were dissected for histologic examination. Combined action of irradiation, salts of cadmium and lead causes the increase of vessel index in heart arteries, thickening of aorta walls in rats that suggest that sclerosis of arteries develops. In cadmium intoxication this process accelerates predominantly in the vessels of a small caliber, while in lead intoxication – in large vessels. In both cases this process has reversible character. Combined action of irradiation and lead, irradiation and cadmium induces progressed development of sclerosis of arteries. We conclude that accelerated development of sclerosis of arteries and the aorta is one of the manifestation of potentiating effect of a combined influence of irradiation and heavy metals.

  16. Effects of Single and Joint Subacute Exposure of Copper and Cadmium on Heat Shock Proteins in Common Carp (Cyprinus carpio).

    Science.gov (United States)

    Jiang, Xuyang; Guan, Xueting; Yao, Linlin; Zhang, Hong; Jin, Xian; Han, Ying

    2016-02-01

    Copper (Cu) and cadmium (Cd) are the most common heavy metals that are easily detected in aquatic environments on a global scale. In this paper, we investigated the messenger RNA (mRNA) and protein levels of HSPs (HSP60, HSP70, and HSP90) in the liver of the common carp exposed to Cu, Cd, and a combination of both metals by real-time quantitative PCR and Western blot. The results indicated that in each exposure group, the mRNA levels of HSP60, HSP70, and HSP90 were increased significantly compared to the corresponding controls after 96 h of exposure (P challenges of stressful environments. PMID:26105544

  17. Baseline Evaluation of Thin-Film Amorphous Silicon, Copper Indium Diselenide, and Cadmium Telluride for the 21st Century: Preprint

    International Nuclear Information System (INIS)

    This paper examines three thin-film PV technologies: amorphous silicon, cadmium telluride, and copper indium selenide. The purpose is to: (1) assess their status and potential; (2) provide an improved set of criteria for comparing these existing thin films against any new PV technological alternatives, and examining the longer-term (c. 2050) potential of thin films to meet cost goals that would be competitive with conventional sources of energy without any added value from the substantial environmental advantages of PV. Among the conclusions are: (1) today's thin films have substantial economic potential, (2) any new approach to PV should be examined against the substantial achievements and potential of today's thin films, (3) the science and technology base of today's thin films needs substantial strengthening, (4) some need for alternative technologies exists, especially as the future PV marketplace expands beyond about 30 GW of annual production

  18. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system.

    Science.gov (United States)

    Ge, Liqiang; Cang, Long; Liu, Hui; Zhou, Dongmei

    2015-10-01

    Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.

  19. Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment.

    Science.gov (United States)

    Silva da Araújo, Cecilia Freitas; Lopes, Mariângela Vieira; Vaz Ribeiro, Mirian Rocha; Porcino, Thiago Santos; Vaz Ribeiro, Amanda Santos; Rodrigues, Juliana Lima Gomes; do Prado Oliveira, Sérgio Soares; Menezes-Filho, José Antonio

    2016-04-01

    This study aimed to evaluate cadmium (Cd) and lead (Pb) levels in seafood and perform a risk assessment based on individual food consumption frequency of inhabitants of the Aratu Bay, Brazil. From December 2013 to November 2014, ready-to-market seafood, including fish [pititinga (Lile piquitinga) and small green eel (Gobionellus oceanicus)], mollusks [mussel (Mytella guyanensis) and oyster (Crassostrea rhizophorae)], and crustaceans [white shrimp (Litopenaeus schmitti) and blue crab (Callinectes exasperatus)], were purchased bimonthly from a local artisanal shellfish harvester. Metal levels were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Based on the volunteer’ seafood consumption, estimates of the non-carcinogenic target hazard quotients (THQs) were calculated. The annual concentrations (μg/g, w/w) of Cd were 0.007 (±0.001) in crustaceans, 0.001 (±0.0003) in fish, and 0.446 (±0.034) in mollusks. Lead levels were fish, and 0.111 (±0.009) in mollusks. All values were within the international guidelines. We observed that 90.9 % of the responders presented an average THQ < 1, which is classified as negligible risk; however, 9.1 % presented THQs between ≥1 and <9.9. These data are important to inform the community of the imminent exposure risk through communication strategies, with the purpose of minimizing exposure and, consequently, the health effects associated with it.

  20. Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment.

    Science.gov (United States)

    Silva da Araújo, Cecilia Freitas; Lopes, Mariângela Vieira; Vaz Ribeiro, Mirian Rocha; Porcino, Thiago Santos; Vaz Ribeiro, Amanda Santos; Rodrigues, Juliana Lima Gomes; do Prado Oliveira, Sérgio Soares; Menezes-Filho, José Antonio

    2016-04-01

    This study aimed to evaluate cadmium (Cd) and lead (Pb) levels in seafood and perform a risk assessment based on individual food consumption frequency of inhabitants of the Aratu Bay, Brazil. From December 2013 to November 2014, ready-to-market seafood, including fish [pititinga (Lile piquitinga) and small green eel (Gobionellus oceanicus)], mollusks [mussel (Mytella guyanensis) and oyster (Crassostrea rhizophorae)], and crustaceans [white shrimp (Litopenaeus schmitti) and blue crab (Callinectes exasperatus)], were purchased bimonthly from a local artisanal shellfish harvester. Metal levels were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Based on the volunteer’ seafood consumption, estimates of the non-carcinogenic target hazard quotients (THQs) were calculated. The annual concentrations (μg/g, w/w) of Cd were 0.007 (±0.001) in crustaceans, 0.001 (±0.0003) in fish, and 0.446 (±0.034) in mollusks. Lead levels were

  1. Lead and cadmium in public health in Nigeria: physicians neglect and pitfall in patient management

    Directory of Open Access Journals (Sweden)

    Orish Ebere Orisakwe

    2014-01-01

    Full Text Available Low-level heavy metals exposure may contribute much more toward the causation of chronic disease and impaired functioning than previously thought. Among the suggested preventive and intervention measures for the control of renal diseases are the reduction in the exposure to heavy metals. Although these indicate knowledge and awareness of possible role of some heavy metals in the etiogenesis of some chronic diseases by Nigerian Physicians, heavy metal assay as diagnostic guide in patient management is often omitted in most healthcare settings. This is a synoptic capture of the increased incidence and prevalence of some metabolic disorders where heavy metals may be implicated. A search of the terms heavy metal exposure, source, toxicity, metabolic disorders, poisoning in Nigeria, in bibliographical databases (in English language such as PubMed, Scopus, Google Scholar, and Africa Journal Online (AJOL digital library was conducted. Leaded gasoline, refuse dumping, absence of poison information centers, and poor record keeping characterize environmental health in Nigeria. Lead and cadmium are of most significant public health importance in Nigeria. The recognition and inclusion of heavy metals assays in the diagnosis of metabolic disorders may ensure early diagnosis and improve management.

  2. Accumulation of Zinc, Cadmium, and Lead in Four Populations of Sedum alfredii Growing on Lead/Zinc Mine Spoils

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Deng; Jin-Chuan Deng; Jin-Tian Li; Jun Zhang; Min Hu; Zhou Lin; Bin Liao

    2008-01-01

    Sedum alfredii Hance is a newly reported zinc (Zn) and cadmium (Cd) hyperaccumulator native to China. In this study,four populations of S. alfredii were collected from Yejiwei (YJW), Jinchuantang (JCT) and Qiaokou (QK) lead (Pb)/Zn mines located in Hunan Province as well as Quzhou (QZ) Pb/Zn mine located in Zhejiang Province for exploring the intraspecies difference of this plant in metal accumulation. Although they grew in the Pb/Zn spoils with relatively similar levels of Zn,Cd and Pb, remarkable differences among the four populations in tissue heavy metal concentrations were observed. The shoot Zn concentration of QZ population (11 116 mg/kg) was highest and nearly five times higher than that of the JCT population (1930 mg/kg). Furthermore, the shoot Cd concentration observed in the QZ population (1 090 mg/kg) was also highest and 144 times higher than that found in the JCT population (7.5 mg/kg). As for Pb concentrations In the shoot of different populations, a fourfold difference between the highest and the lowest was also found. Such difference on metal accumulation was opulation-specific and may be significantly explained by differences in the soil properties such as pH, organic matter (OM), and electrical conductivity (EC). Taking biomass and metal concentration in plants into consideration, the QZ, YJW and QK populations may have high potential for Zn phytoremediation, the QZ population may have the highest potential in Cd phytoremediation, and the QK population may be the most useful in Pb phytoremediation.

  3. Cadmium and lead interaction with diatom surfaces: A combined thermodynamic and kinetic approach

    Science.gov (United States)

    Gélabert, A.; Pokrovsky, O. S.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.

    2007-08-01

    This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom-water interfaces for two marine planktonic ( Thalassiosira weissflogii, TW; Skeletonema costatum, SC) and two freshwater periphytic species ( Achnanthidium minutissimum, AMIN; Navicula minima, NMIN) by combining adsorption measurements with surface complexation modeling. Adsorption kinetics was studied as a function of pH and initial metal concentration in sodium nitrate solution and in culture media. Kinetic data were consistent with a two-step mechanism in which the loss of a water molecule from the inner coordination sphere of the metal is rate limiting. Reversible adsorption experiments, with 3 h of exposure to metal, were performed as a function of pH (2-9), metal concentration in solution (10 -9-10 -3 M), and ionic strength (10 -3-1.0 M). While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. Measurements of electrophoretic mobilities ( μ) revealed negative surface potential for AMIN diatom, however, the absolute value of μ decreases with increase of [Pb 2+] aq suggesting the metal adsorption on negative surface sites. These observations allowed us to construct a surface complexation model (SCM) for cadmium and lead binding by diatom surfaces that postulates the Constant Capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. In the full range of investigated Cd concentration, the SCM is able to describe the concentration of adsorbed metal as a function of [Cd 2+] aq without implying the presence of high affinity, low abundance sites, that are typically used to model the metal interactions with natural multi-component organic substances. At the same time, Cd fast initial reaction requires the presence of "highly reactive sites" those concentration represents only 2.5-3% of the

  4. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    Science.gov (United States)

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  5. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stephani [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Arora, Monica [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States); Fernandez, Cristina [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States); Landero, Julio; Caruso, Joseph [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States); Chen, Aimin, E-mail: aimin.chen@uc.edu [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)

    2013-10-15

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.

  6. Soil Pollution with Copper, Lead and Zinc in the Surroundings of Large Copper Ore Tailings Impoundment

    Directory of Open Access Journals (Sweden)

    Musztyfaga Elżbieta

    2014-12-01

    Full Text Available Analysis of the top-soil total content of heavy metals was carried out inthe vicinity of large copper ore tailings pound in the south-western Poland with regard to soil properties, direction and distance from the tailings pound. None of the soils under study ex-ceeded the limits admitted in the official standards for soil quality, but the assessment made in accordance with IUNG-guidelines to soil contamination determination showed that more than half of the monitoring sites have elevated metal content, Cu, in par-ticular. The results confirmed high effectiveness of dust control preventing its eolian spread from the tailings pound.

  7. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Junenette L., E-mail: petersj@bu.edu; Patricia Fabian, M., E-mail: pfabian@bu.edu; Levy, Jonathan I., E-mail: jonlevy@bu.edu

    2014-07-15

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  8. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    International Nuclear Information System (INIS)

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  9. Assessment of exposure to soils contaminated with lead, cadmium, and arsenic near a zinc smelter, Cassiopée Study, France, 2008.

    Science.gov (United States)

    Durand, Cécile; Sauthier, Nicolas; Schwoebel, Valérie

    2015-06-01

    After 150 years of industrial activity, significant pollution of surface soils in private gardens and locally produced vegetables with lead, cadmium, and arsenic has recently been observed in Viviez (Southern France). A public health intervention was conducted in 2008 to identify individual health risks of Viviez inhabitants and to analyze their environmental exposure to these pollutants. Children and pregnant women in Viviez were screened for lead poisoning. Urinary cadmium testing was proposed to all inhabitants. Those with urinary cadmium levels over 1 μg/g creatinine were then tested for kidney damage. Urinary cadmium and arsenic levels were compared between participants with non-occupational exposure from Viviez and Montbazens, a nearby town not exposed to these two pollutants, in order to identify environmental factors contributing to impregnation. No case of lead poisoning was detected in Viviez, but 23 % of adults had urinary cadmium over 1 μg/g creatinine, 14 % of whom having markers of kidney damage. Viviez adults had higher levels of urinary cadmium, and to a lesser extent, higher levels of urinary arsenic than those from Montbazens. Consumption of local produce (vegetables and animals) and length of residence in Viviez were associated with higher urinary cadmium levels, independently of known confounding factors, suggesting persisting environmental exposure to contaminated soil. To conclude, health risks related to cadmium exposure were identified in the Viviez population living on contaminated soils. Lead and arsenic exposure did not pose health concerns. Interventions were proposed to reduce exposure and limit health consequences.

  10. Simulation analysis of minimum bending radius for lead frame copper alloys

    OpenAIRE

    Su, Juanhua; Shuguo, Jia; Fengzhang, Ren

    2013-01-01

    Copper alloy has a lot of excellent properties, so it becomes an important alloy for lead frame materials for the integrated circuit. The minimum bending radius of three different copper alloys (Cu-Fe-P, Cu-Ni-Si, Cu-Cr-Sn-Zn) for lead frame materials was analyzed by using finite element. Tensile tests for the three kinds of materials were done to obtain yield stress, ultimate strength and other parameters. The strain-hardening exponent n and normal anisotropy index r of the materials were ob...

  11. Lead, mercury, and cadmium in umbilical cord serum and birth outcomes in Chinese fish consumers.

    Science.gov (United States)

    Tang, Mengling; Xu, Chenye; Lin, Nan; Liu, Kai; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-01

    Heavy metals such as lead (Pb), mercury (Hg), and cadmium (Cd) were detected in the islands of Yangtze River estuary and Hangzhou bay and their exposure caused potential health risk for the residents. To assess the exposure levels of Pb, Hg, and Cd, the umbilical cord serum samples were collected from 103 mother-newborn pairs as the noninvasive specimens. The association of the concentration of Pb, Hg, and Cd with the birth outcomes was evaluated. Pb, Hg, and Cd had high exposure levels with the median concentrations at 76.20 μg L(-1) [interquartile range (IQR): 44.71, 115.80], 21.94 μg L(-1) (IQR: 15.10, 27.64), and 6.36 μg L(-1) (IQR: 3.63, 13.34), respectively. A unit increase in the Pb umbilical cord serum concentration (μg L(-1)) was significantly associated with a 0.29 cm (95% CI: -0.50, -0.09) decrease in birth height and a 0.22 cm (95%CI: -0.44, 0.00) decrease in head circumference. The middle tertile Pb and Hg exposure levels were found significantly negative effects on birth outcomes compared with low tertile exposure levels. Exposure to Cd showed no apparent effect on birth outcomes. Our results suggested that Pb and Hg exposure has potential adverse effects on birth outcomes in Chinese fish consumers from Yangtze River outlet and Hangzhou bay estuary regions.

  12. Betel quid chewing elevates human exposure to arsenic, cadmium and lead

    International Nuclear Information System (INIS)

    Several studies have reported increased skin lesions in betel quid (a mixture of Piper betel leaves, areca nut, tobacco/flavoured tobacco, lime) chewers compared to non-chewers, exposed to arsenic (As) contaminated drinking water in Bangladesh and India. The current study has determined As, cadmium (Cd) and lead (Pb) levels of betel quids and its components using inductively coupled plasma mass spectrometry (ICP-MS). The highest concentrations of As were found in slaked lime (4.56 mg kg-1) followed by Piper betel leaves (0.406 mg kg-1) and flavoured tobacco (zarda) (0.285 mg kg-1), with a mean concentrations of As in betel quids of 0.035 mg kg-1 (SD 0.02 mg kg-1). Mean concentrations of Cd and Pb in ordinary quids were 0.028 (SD 0.07 mg kg-1) and 0.423 (SD 1.4 mg kg-1), respectively. We estimated that a daily intake of 6 betel quids could contribute 1.2, 1.9 and 8.5% of the provisional maximum tolerable daily intake (PMDTI) for As, Cd and Pb, respectively. Since betel quid chewing is most prevalent among women, our finding raises concern that women chewers - especially pregnant chewers - may be harming their health and that of their unborn babies through increased exposure to a mixture of toxic elements (As, Cd and Pb).

  13. KINETIC AND EQUILIBRIUM STUDIES OF LEAD AND CADMIUM BIOSORPTION FROM AQUEOUS SOLUTIONS BY SARGASSUM SPP. BIOMASS

    Directory of Open Access Journals (Sweden)

    R. Nabizadeh, K. Naddafi, R. Saeedi, A. H. Mahvi, F. Vaezi, K. Yaghmaeian and S. Nazmara

    2005-07-01

    Full Text Available Contamination of the aqueous environment by heavy metals is a worldwide environmental problem. Biosorption of lead (II and cadmium (II from aqueous solutions by brown algae Sargassum spp.biomass was studied in a batch system. The heavy metals uptake was found to be rapid and reached to 88-96% of equilibrium capacity of biosorption in 15min. The pseudo second-order and saturation rate equations were found in the best fitness with the kinetic data (R2 > 0.99. The data obtained from experiments of single-component biosorption isotherm were analyzed using the Freundlich, Langmuir, Freundlich-Langmuir and Redlich-Peterson isotherm models. The Redlich-Peterson equation described the biosorption isotherm of Pb2+ and Cd2+ with high correlation coefficient (R2 > 0.99 and better than the other equations. The effect of Na+, K+, Mg2+ and Ca2+ on the biosorption of Pb2+ was not significant, but the metal ions affected the biosorption of Cd2+ considerably. According to the Langmuir model, the maximum uptake capacities (qm of Sargassum spp. for Pb2+ and Cd2+ were obtained as 1.70 and 1.02mmol/g, respectively. Although the Sargassum spp. used in this study can be classified as an efficient biosorbent.

  14. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  15. Effects of Cadmium,Lead ,and Zinc on Size of Microbial Biomass in Red Soil

    Institute of Scientific and Technical Information of China (English)

    K.S.KHAN; XIEZHENGMIAO; 等

    1998-01-01

    A laboratory incubation experiment was conducted to study the influence of cadmium(Cd),lead (Pb) and zinc( Zn) on the size of the microbial biomass in red soil.All the three metals were applied,separately,at five different levels that were:Cd at 5,15,30,60, and 100μgg-1;Pb at 100,200,300,450 and 600μg g-1 and Zn at 50,100,150,200 and 250μg g-1 soil,In Comparison to uncaontaminated soil ,the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd,Pb and Zn,A more considerable increase in the microbial biomass C:N ratio was observed in the metal contaminated soils than the non-treated control.Among the tested metals ,Cd displayed the greatest biocidal effect followed by Zn and Pb,showin their relative toxicity in the order of Cd>Zn>Pb.

  16. Levels of cadmium, mercury, and lead in Magellanic penguins (Spheniscus magellanicus) stranded on the Brazilian coast.

    Science.gov (United States)

    Vega, Claudia M; Siciliano, Salvatore; Barrocas, Paulo R G; Hacon, Sandra S; Campos, Reinaldo C; do Couto Jacob, Silvana; Ott, Paulo Henrique

    2010-02-01

    Cadmium (Cd), mercury (Hg), and lead (Pb) were determined in samples of liver and breast muscles of first-year Magellanic penguins (Spheniscus magellanicus), from two different areas on the Brazilian coast, 35 on the Rio de Janeiro coast and 12 on the Rio Grande do Sul coast. In both areas, Cd concentrations in muscle samples were <0.025 microg/g. However, the Cd and Hg concentrations found in liver and Hg concentrations found in muscle showed a significant difference between the two regions. The geometric mean of the concentrations was higher in the specimens from Rio de Janeiro (Cd--6.8 microg/g; Hg--liver, 1.6 microg/g, and muscle, 0.4 microg/g wet weight) than in those from Rio Grande do Sul (Cd--2.3 microg/g; Hg--liver, 0.9 microg/g, and muscle, 0.1 microg/g wet weight). The site differences could be related to differences in diet influenced by geographic factors. Brazil's southeastern coast is highly urbanized, and its coastal waters are contaminated by the waste of agricultural and industrial activities. There is a lack of information on the levels of heavy metals in S. magellanicus, however, their wide distribution and top position in the trophic chain make the use of stranded specimens an attractive source of information for monitoring heavy metals in the South Atlantic coast. PMID:19582498

  17. Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China

    Institute of Scientific and Technical Information of China (English)

    XU Zhiqiang; ZHOU Qixing; LIU Weitao

    2009-01-01

    In northeastern China,large area of vegetable land has been simultaneously polluted by cadmium (Cd) and lead (Pb).Joint effects of Cd and Pb on Chinese cabbage (Brassica pekinensis L.) were investigated using the seed germination and sand culture method.Four Chinese cabbage cultivars including Kangbingjinchun (KB),Dongyangchunxia (DY),Qinglvwang (QL) and Qiangshi (QS) from Shenyang in northeastern China were adopted in this study.The results showed that there were positive linear relationships between the inhibitory rate of biomass,root and shoot elongation and the concentrations of Cd and Pb.In particular,root elongation was more sensitive to joint stress of Cd and Pb.The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA),soluble protein (SP) and proline (PRO) changed significantly with increasing exposure concentration of Cd and Pb.The decrement in the activity of antioxidative enzymes,the content of SP and accumulation of MDA were relatively low in KB and QS.PRO played an important role in resisting Cd and Pb stress.

  18. Lead and Cadmium Contamination of Different Roadside Soils and Plants in Peshawar City, Pakistan

    Institute of Scientific and Technical Information of China (English)

    S.KHAN; M.A.KHAN; S.REHMAN

    2011-01-01

    Soil and plant samples were collected from roadside sites (along with primary, secondary and tertiary roads) and reference site to investigate the contamination of soils and old common plant species with lead (Pb) and cadmium (Cd) in Peshawar City, Pakistan. All the data were analyzed using ANOVA analysis that showed a significant (P ≤ 0.01) variation in Pb and Cd concentrations in the roadside soils and plants ss compared to the reference site. The mean concentrations of Pb and Cd were 53.9 and 6.0 mg kg-1 in soils and 49.1 and 10.9 mg kg-1 in plants, respectively. Significant variation (P ≤ 0.01) in concentrations of Pb and Cd in soil and plant samples along with primary, secondary and tertiary roads might be due to different traffic densities. The highest value (9.4) of metal accumulation index (MAI) was observed for Eucalyptus camaldulensis. In selected plant species, the Pb and Cd accumulation was found in the order of E. camaldulensis > Ficus elastica > Dalbergia sissoo > Alstonia scholaris. The roadside soils and plants were highly contaminated with Pb and Cd as compared to the reference site.

  19. Evaluation and Determination of Heavy Metals (Mercury, Lead and Cadmium in Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available Mercury, Lead and Cadmium were determined in 100 samples of human breast milk samples from urban and rural mothers in Isfahan (IRAN. A questionnaire about area of residence, nutrition, smoking habits, and dental fillings was filled out by the lactating mothers. The combination of nitric acid, hydrogen peroxide and perchloric acid was found to be one of the most suitable acids in wet digestion of milk. Cold vapor atomic absorption was used to determine the mercury content in milk after wet digestion. The effect of concentration of nitric acid, influence of flow rate and tin(П chloride were investigated. The mean concentration of mercury in human breast milk samples was 0.96 ppb. Extraction of Pb and Cd were performed with ammonium pyrrolidine dithiocarbamate (APDC to methyl isobutyl ketone (MIBK and were determined by Flame Atomic Absorption Spectrometry. The factors influencing, the complex formation, pH, time and buffer were optimized. The mean concentration of Pb and Cd in human breast milk was 0.0147 and 0.0121 ppm, respectively. The maximum concentrations were found in breast milk of rural mothers.

  20. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil contaminated with heavy metals cadmium (Cd) and lead (Pb) is hard to be remediated. Phytoremediation may be a feasible method to remove toxic metals from soil, but there are few suitable plants which can hyperaccumulate metals. In this study, Cd and Pb accumulation by four plants including sunflower (Helianthus annuus L.), mustard (Brassica juncea L.), alfalfa (Medicago sativa L.), ricinus (Ricinus communis L.) in hydroponic cultures was compared. Results showed that these plants could phytoextract heavy metals, the ability of accumulation differed with species, concentrations and categories of heavy metals. Values of BCF (bioconcentration factor) and TF (translocation factor) indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals. Changes on the biomass of plants, pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures. Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals, such as pH and Eh regulations, and so forth.

  1. Betel quid chewing elevates human exposure to arsenic, cadmium and lead

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rmalli, Shaban W.; Jenkins, Richard O. [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH (United Kingdom); Haris, Parvez I., E-mail: pharis@dmu.ac.uk [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH (United Kingdom)

    2011-06-15

    Several studies have reported increased skin lesions in betel quid (a mixture of Piper betel leaves, areca nut, tobacco/flavoured tobacco, lime) chewers compared to non-chewers, exposed to arsenic (As) contaminated drinking water in Bangladesh and India. The current study has determined As, cadmium (Cd) and lead (Pb) levels of betel quids and its components using inductively coupled plasma mass spectrometry (ICP-MS). The highest concentrations of As were found in slaked lime (4.56 mg kg{sup -1}) followed by Piper betel leaves (0.406 mg kg{sup -1}) and flavoured tobacco (zarda) (0.285 mg kg{sup -1}), with a mean concentrations of As in betel quids of 0.035 mg kg{sup -1} (SD 0.02 mg kg{sup -1}). Mean concentrations of Cd and Pb in ordinary quids were 0.028 (SD 0.07 mg kg{sup -1}) and 0.423 (SD 1.4 mg kg{sup -1}), respectively. We estimated that a daily intake of 6 betel quids could contribute 1.2, 1.9 and 8.5% of the provisional maximum tolerable daily intake (PMDTI) for As, Cd and Pb, respectively. Since betel quid chewing is most prevalent among women, our finding raises concern that women chewers - especially pregnant chewers - may be harming their health and that of their unborn babies through increased exposure to a mixture of toxic elements (As, Cd and Pb).

  2. Characterization of lead, chromium, and cadmium in dust emitted from municipal solid waste incineration plants

    International Nuclear Information System (INIS)

    The dust is emitted from municipal solid waste incinerators (MSWIs). Volatile toxic heavy metals are abundant in smaller dust particles and influence the toxicity of particulate matter such as fine particles 2.5). However, little is known about the properties of these metals in fine dust particles. Therefore, X-ray absorption fine structure (XAFS) spectroscopy was used to investigate the chemical states of lead (Pb), chromium (Cr), and cadmium (Cd) in MSWI dust collected for nine particle size fractions at the inlet of the dust collector and the stacks of two MSWI plants. XAFS spectroscopy of the dust in the inlet of the dust collectors showed that finer dust contained predominantly Pb as PbCl2 with some PbSiO3, coarser dust consisted of Cr forms, including more toxic Cr(VI) species, and all dust contained CdCl2. Although the dust collector removed almost all of the Pb, trace amounts of PbCl2 remained in the stack gas after passing through the dust collector.

  3. Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite

    Science.gov (United States)

    Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter

    2013-11-01

    Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).

  4. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  5. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  6. An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination.

    Science.gov (United States)

    Suguihiro, Talita Mayumi; de Oliveira, Paulo Roberto; de Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2013-09-01

    This work describes for first time the use of electroanalytical techniques for evaluation of adsorptive proprieties of biochar using it as electrode modifier and its application for preconcentration and determination of Lead(II) and Cadmium(II) under differential pulse adsorptive voltammetric conditions (DPAdSV). Samples of biochars were obtained from castor oil cake using a predefined set of experimental conditions varying the heating rate (V), final temperature (T) and warm-up period (P) and subsequently used for carbon paste modified electrode (CPME) preparation. The proposed method was applied for Lead(II) and Cadmium(II) determination in spiked simulated industrial effluents and the limit of detection obtained for both metals were adequated for determination of these evaluated ions taking into account the limits established by Brazilian legislation. For all samples analyzed, recoveries ranged from 95% to 104% were obtained and no significative interferences were observed for common cations in water samples.

  7. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  8. Sanitary Risks Connected to the Consumption of Infusion from Senna rotundifolia L. Contaminated with Lead and Cadmium in Cotonou (Benin

    Directory of Open Access Journals (Sweden)

    S. A. Montcho

    2014-01-01

    Full Text Available This study carried out an assessment of sanitary risks connected to the consumption of Senna rotundifolia Linn. contaminated with lead and cadmium. This plant was collected and analyzed by atomic absorption spectrophotometry. The results revealed a contamination of plants from markets of Dantokpa, Vossa, and Godomey with heavy metals. Senna from Vossa was higher in cadmium and lead levels (Pb: 2.733 mg/kg ± 0.356 mg/kg; Cd: 0.58 mg/kg ± 0.044 mg/kg compared to the two other places (Pb: 1.825 mg/kg ± 0.133 mg/kg, Cd: 0.062 mg/kg ± 0.015 mg/kg and Pb: 1.902 mg/kg ± 0.265 mg/kg, Cd: 0.328 mg/kg ± 0.024 mg/kg, respectively, for Dantokpa and Godomey. In terms of risk assessment through the consumption of Senna, the values recorded for lead were nine times higher with children and six times higher with adults than the daily permissive intake (Pb: 3.376 × 10−2 mg/kg/day for children and 2.105 × 10−2 mg/kg/day for adults versus 3.6 × 10−3 mg/kg/day for DPI. With respect to cadmium, there was no significant difference between the recorded values and the DPI (Cd: 1 × 14 10−3 mg/ kg/day for children and Cd: 0.71 × 10−3 mg/ kg/day for adults versus Cd: 1 × 10−3 mg/kg/day for adults. This exposure of the population to lead and cadmium through the consumption of antimalarial healing plants could pose public health problems.

  9. Correlation between the Results of Sequential Extraction and Effectiveness of Immobilization Treatment of Lead- and Cadmium-Contaminated Sediment

    OpenAIRE

    Milena B. Dalmacija; Miljana D. J. Prica; Dalmacija, Bozo D.; Roncevic, Srdjan D.; Rajic, Ljiljana M.

    2010-01-01

    The assessment of the quality of sediment from the Great Backi Canal (Serbia), based on the pseudo-total lead (Pb) and cadmium (Cd) content according to the corresponding Dutch standards and Canadian guidelines, showed its severe contamination with these two metals. A microwave-assisted BCR (Community Bureau of Reference of the Commission of the European Union) sequential extraction procedure was employed to assess their potential mobility and risk to the aquatic environment. Comparison of th...

  10. Atmospheric Emissions and Depositions of Cadmium, Lead, and Zinc in Europe During the Period 1955-1987

    OpenAIRE

    Olendrzynski, K.; Anderberg, S.; Bartnicki, J.; PACYNA J.; Stigliani, W.M.

    1995-01-01

    This paper presents a preliminary estimate of atmospheric emissions of cadmium, lead and zinc in Europe during the period 1955-1987. The emission data are used as input to the IIASA's atmospheric transport model, TRACE m a c e toxic Air concentrations in Europe), to compute cumulative deposition loads of heavy metals onto European soils during the investigated time period. To the authors' knowledge, this is the first attempt of this kind in the open literature. The computed with the TRACE mod...

  11. Bioakumulation Heavy Metals Lead (Pb and Cadmium (Cd Seagrass (Enhalus acroides in Waai and Galala Island Ambon

    Directory of Open Access Journals (Sweden)

    Muhammad RIJAL

    2014-11-01

    Full Text Available All sea life's potential as one of the indicators of the level of pollution in the waters, one of them is Enhalus acroides. The results showed that in the waters of the Waai and Galala contained impurities of lead and cadmium, especially on Enhalus acroides which is one of the sea life that consumed by the people who lived around the coastal region.

  12. Do cadmium, lead, and aluminum in drinking water increase the risk of hip fractures? A NOREPOS study.

    Science.gov (United States)

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2014-01-01

    The aim of this study was to investigate relations between cadmium, lead, and aluminum in municipality drinking water and the incidence of hip fractures in the Norwegian population. A trace metals survey in 566 waterworks was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all those supplied from these waterworks, 5,438 men and 13,629 women aged 50-85 years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, region of residence, urbanization, and type of water source as well as other possibly bone-related water quality factors. Effect modification by background variables and interactions between water quality factors were examined (correcting for false discovery rate). Men exposed to a relatively high concentration of cadmium (IRR = 1.10; 95 % CI 1.01, 1.20) had an increased risk of fracture. The association between relatively high lead and hip fracture risk was significant in the oldest age group (66-85 years) for both men (IRR = 1.11; 95 % CI 1.02, 1.21) and women (IRR = 1.10; 95 % CI 1.04, 1.16). Effect modification by degree of urbanization on hip fracture risk in men was also found for all three metals: cadmium, lead, and aluminum. In summary, a relatively high concentration of cadmium, lead, and aluminum measured in drinking water increased the risk of hip fractures, but the associations depended on gender, age, and urbanization degree. This study could help in elucidating the complex effects on bone health by risk factors found in the environment.

  13. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-01

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. PMID:26388376

  14. Dietary exposure to cadmium, lead and nickel among students from the south-east region of Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Marzec

    2014-11-01

    Full Text Available Dietary intake of cadmium, lead and nickel was determined among students from three universities in Lublin to assess the levels of exposure to these contaminants compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students from the south–east region of Poland. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one – MIBK in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70 % of PTWI/TDI values and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years whereas the exposures to nickel remain on stable levels.

  15. Analysis of arsenic, lead and cadmium in wines from the Canary Islands, Spain, by ICP/MS.

    Science.gov (United States)

    Barbaste, M; Medina, B; Perez-Trujillo, J-P

    2003-02-01

    Because of their high toxicity, arsenic, lead and cadmium need to be quantified in food and beverages. For the first time, in this study the content of arsenic, lead and cadmium was investigated in 152 wine samples from the Canary Islands, Spain, belonging to eight Denominations of Origin (DO) and four islands by inductively coupled plasma mass spectrometry (ICP-MS). The ranges of concentration found were 0.58-8.45 microg l(-1) for arsenic, 0.20-1.73 microg l(-1) for cadmium and 3.89-159.5 microg l(-1) for lead, and the mean content was 3.13, 0.63 and 28.74 microg l(-1), respectively. None of the wines contained levels above the limits set by the International Office of Vine and Wine (OIV), and thus did not pose a health hazard. Significant differences in mean content of those elements between harvest, type of wine, islands and DO were observed. PMID:12623662

  16. Thermodynamic modeling of lead distribution among matte, slag, and liquid copper

    Science.gov (United States)

    Degterov, Sergei A.; Pelton, Arthur D.

    1999-12-01

    Recently, a thermodynamic database was developed for the calculation of equilibria involved in the production of copper. The present study is concerned with the further development of the thermodynamic models and the database of model parameters for the matte, slag, and blister copper phases with a view to including Pb in the database and permitting calculations in the seven-component system Pb-Cu-Ca-Fe-Si-O-S. Thermodynamic and phase equilibrium data available in the literature are reviewed, critically assessed, and optimized with the modified quasi-chemical model. When used with the Gibbs energy minimization software and other databases of the FACT thermodynamic computing system, the database developed in the present study can be used for the calculation of matte-slag-copper-gas phase equilibria during copper smelting and converting. The distribution of lead among these phases can be computed. For example, the distribution of lead among matte, silica-saturated slag, and copper has been calculated at metal saturation, or under fixed partial pressure of SO2, and has been compared with the available experimental data. The Pb distributions among the equilibrium phases have been calculated under various conditions, which are difficult to study experimentally, such as at magnetite saturation or under various oxygen partial pressures and iron to silica ratios in the slag.

  17. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    Science.gov (United States)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  18. Relation between anemia and blood levels of lead, copper, zinc and iron among children

    Directory of Open Access Journals (Sweden)

    Morsy Amal A

    2010-05-01

    Full Text Available Abstract Background Anemia is a health problem among infants and children. It is often associated with a decrease in some trace elements (iron, zinc, copper and an increase in heavy metals as lead. This study was done to determine the association of blood lead level > 10 μg/dl, with the increased risk to anemia, also, to investigate the relationship between anemia and changes in blood iron, zinc and copper levels, and measure lead level in drinking water. The study is a cross-sectional performed on 60 children. Venous blood samples were taken from the studied population for estimating hematological parameters as well as iron and ferritin levels. The concentrations of zinc, copper, and lead were measured. The studied population was divided into anemic and non-anemic (control groups. The anemic group was further classified into mild, moderate and severe anemia. The study subjects were also categorized into low and high blood lead level groups. Findings Approximately 63.33% of children had blood lead levels ≥ 10 μg/dl. At the blood lead level range of 10-20 μg/dl, a significant association was found for mild and severe anemia. The blood level of iron and ferritin was found to be significantly lower in high blood lead level and anemic groups than those of the low blood lead level and control groups. Lead level in drinking water was higher than the permissible limit. Conclusion Lead level ≥ 10 μg/dl was significantly associated with anemia, decreased iron absorption and hematological parameters affection. High blood lead levels were associated with low serum iron and ferritin. Lead level in drinking water was found to be higher than the permissible limits.

  19. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii.

    Science.gov (United States)

    Sun, Qin; Ye, Zhi Hong; Wang, Xiao Rong; Wong, Ming Hung

    2007-11-01

    Sedum alfredii has been reported to be a cadmium (Cd) hyperaccumulator. Phytochelatins (PCs) and other thiol (SH)-containing compounds have been proposed to play an important role in the detoxification and tolerance of some heavy metals, but it is not clear whether PCs are responsible for Cd hyperaccumulation and tolerance in S. alfredii. In this study, two geographically isolated populations of S. alfredii were studied: one population grew on an old Pb/Zn mine site, while the other on a non-mine site. The mine population of this species exhibited a stronger heavy metal tolerance than in the other population. Root-to-shoot transport of Cd was higher in population located at the mine site than at the non-mine site. Considerable amounts of Cd were accumulated in leaves and stems of mine plants, while most Cd was distributed in roots of non-mine plants. Non-protein SH in plant tissues of two populations were further investigated by a HPLC pre-column derivatization system. Upon exposure to Cd, no PCs were detected in all tissues of mine population, while an appreciable amount of glutathione (GSH) was observed in the descending order of stem>root>leaf. The concentrations of GSH consistently increased with the increase of exogenous Cd concentrations and time. On the contrary, Cd exposure strongly induced the production of PCs (mainly PC(2) and PC(3)) and GSH in plant tissues of non-mine population, and the concentrations of GSH showed an initial drop over the duration of 7-d exposure. The present results provided strong evidence that PCs are not involved in Cd transport, hyperaccumulation and tolerance in mine population of S. alfredii.

  20. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii.

    Science.gov (United States)

    Sun, Qin; Ye, Zhi Hong; Wang, Xiao Rong; Wong, Ming Hung

    2007-11-01

    Sedum alfredii has been reported to be a cadmium (Cd) hyperaccumulator. Phytochelatins (PCs) and other thiol (SH)-containing compounds have been proposed to play an important role in the detoxification and tolerance of some heavy metals, but it is not clear whether PCs are responsible for Cd hyperaccumulation and tolerance in S. alfredii. In this study, two geographically isolated populations of S. alfredii were studied: one population grew on an old Pb/Zn mine site, while the other on a non-mine site. The mine population of this species exhibited a stronger heavy metal tolerance than in the other population. Root-to-shoot transport of Cd was higher in population located at the mine site than at the non-mine site. Considerable amounts of Cd were accumulated in leaves and stems of mine plants, while most Cd was distributed in roots of non-mine plants. Non-protein SH in plant tissues of two populations were further investigated by a HPLC pre-column derivatization system. Upon exposure to Cd, no PCs were detected in all tissues of mine population, while an appreciable amount of glutathione (GSH) was observed in the descending order of stem>root>leaf. The concentrations of GSH consistently increased with the increase of exogenous Cd concentrations and time. On the contrary, Cd exposure strongly induced the production of PCs (mainly PC(2) and PC(3)) and GSH in plant tissues of non-mine population, and the concentrations of GSH showed an initial drop over the duration of 7-d exposure. The present results provided strong evidence that PCs are not involved in Cd transport, hyperaccumulation and tolerance in mine population of S. alfredii. PMID:17207552

  1. Cadmium sulfide and lead sulfide quantum dots in glass: Processing, growth, and optical absorption

    Science.gov (United States)

    Rao, Pratima Gattu Naga

    Glasses containing cadmium sulfide and lead sulfide particles were prepared, and their properties were studied. These particles exhibit quantum confinement behavior when they are smaller than their Bohr exciton radii. Quantum confinement leads to size dependence in the optical absorption of particles. This size dependence can tune the optical absorption of the material to a particular wavelength or energy and possibly enhances the nonlinear optical absorption of the particles. These properties have potential applications in photonic devices. To control the growth of these semiconductor particles in glass, the glass processing conditions were studied. CdS-doped glasses were initially prepared with CdO and ZnS. The sublimation temperature for ZnS is at 1185°C; whereas, CdO sublimes at 1559°C, and CdS at 980°C. Loss of both cadmium and sulfur was observed in open crucible melts, even when CdO and ZnS were used. Improvements in glass processing were made by use of preheat and a cover during the glass melting, resulting in better retention of both dopants. Direct CdS addition to the glasses was possible with these improvements, thus eliminating complications of zinc incorporation during the growth of the semiconductor particles. These methods were successfully applied to the synthesis of PbS-doped glasses. CdS and PbS particles were grown in alkali borosilicate glasses, and their optical absorption spectra were measured as a function of heat treatment temperature and time. The position of the absorption peak and edge shifted to longer wave-lengths, or lower energies, with longer heat treatments at a constant temperature. Both CdS and PbS particles exhibited quantum confinement. These measurements were used to calculate particle sizes from quantum confinement models. Comparisons with transmission electron microscopy (TEM) demonstrated that the 1-term effective-mass approximation was appropriate for estimating CdS particle sizes. A sophisticated four-band envelope

  2. The determination of cadmium, lead and vanadium by high resolution ICP-MS in Antarctic snow samples

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, F. [Joh. Gutenberg Univ., Mainz (Germany). Inst. fuer Anorganische und Analytische Chemie; Trincherini, P. [European Union Joint Research Centre, Ispra, VA (Italy). Inst. of Environment

    2000-02-01

    Double focusing ICP-MS was successfully used in this research for the direct determination of the cadmium, lead and vanadium content of a set of Antarctic samples collected during the 11. Italian Expedition to Antarctica. For cadmium and lead measurements the low resolution mode was chosen since it ensured the highest ion sensitivity and it allowed the highest detection limits to be attained; in the case of vanadium the high resolution mode was used to solve the isobaric interference. As far as vanadium and cadmium are concerned by GFAAS coupled with different preconcentration procedures. The vanadium, cadmium and lead content measured in a riverine water reference material (SRLS-3) was found in agreement with the certified values. [Italian] Si e' utilizzato uno spettrometro ICP-MS a doppia focalizzazione per la determinazione diretta di cadmio, piombo e vanadio in una serie di campioni di neve antartica superficiale raccolta durante l'undicesima spedizione italiana in Antartide. Per le determinazioni di cadmio e piombo si e' scelta la procedura a bassa risoluzione, che ha garantito la piu' elevata sensibilita' ed ha permesso di ottenere limiti di determinazione migliori; nel caso del vanadio si e' utilizzata la procedura ad alta risoluzione che ha permesso di risolvere problemi di interferenza isobarica. Per quanto riguarda cadmio e vanadio, i risultati delle determinazioni mediante ICP-MS sono risultati in buon accordo con quelli ottenuti mediante GFAAS accoppiata a diverse procedure di preconcentrazione. Il contenuto di cadmio, piombo e vanadio misurato con le procedure sviluppate in un campione certificato di acqua di fiume (SRLS-3) e' risultato in accordo con i valori certificati.

  3. Total mercury, cadmium and lead levels in main export fish of Sri Lanka.

    Science.gov (United States)

    Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I

    2014-01-01

    Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb.

  4. Lead, cadmium and organochlorine pesticide residues in hunted red deer and wild boar from northern Italy.

    Science.gov (United States)

    Chiari, Mario; Cortinovis, Cristina; Bertoletti, Marco; Alborali, Loris; Zanoni, Mariagrazia; Ferretti, Enrica; Caloni, Francesca

    2015-01-01

    The objectives of the present study were to assess heavy metal cadmium (Cd), lead (Pb) and organochlorine pesticide concentrations in tissues of red deer (Cervus elaphus) and wild boar (Sus scrofa) from nine hunting areas and to evaluate related risk factors for the host animal. Over a period of 2 years, a total of 1055 and 210 masseters, 424 and 201 livers, 642 and 152 kidneys were collected from wild boar and red deer, respectively, and concentrations of Cd, Pb and organochlorine pesticides were determined. Comparing the two species, Cd concentration in the kidney (3.72 mg/kg), liver (0.67 mg/kg) and muscle (0.02 mg/kg) of wild boar was found to be significantly higher than in the organs of red deer (1.02 mg/kg in the kidneys, 0.07 mg/kg in the liver and 0.006 mg/kg in muscle). Mean Pb concentrations were found to be similar in both animals, with 0.39, 0.52 and 2.60 mg/kg detected in the wild boar kidney, liver and muscle, respectively, and 0.24, 0.21 and 2.04 mg/kg in the respective organs of the red deer. No difference in concentrations were found based on age class, location of tissue sample or contaminant in the case of wild boar. By contrast, a significantly lower Cd concentration was found in the kidney of the young red deer. The search for organochlorine pesticides in both red deer and wild boar produced negative results with values below the limits of detection. Due to the high levels of renal Cd and muscle Pb detected in wild boar and red deer, further research needs to be carried out in an effort to identify the source of contamination and preserve the health of animals and humans. PMID:26365428

  5. Phytoremediation potential of charophytes: Bioaccumulation and toxicity studies of cadmium, lead and zinc

    Institute of Scientific and Technical Information of China (English)

    Najjapak Sooksawat; Metha Meetam; Maleeya Kruatrachue; Prayad Pokethitiyook; Koravisd Nathalang

    2013-01-01

    The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb)and zinc (Zn) from wastewater was examined.C aculeolata and N.opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L),Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days.C.aculeolata was more tolerant of Cd and Pb than N.opaca.The relative growth rate of N.opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn.Both macroalgae showed a reduction in chloroplast,chlorophyll and carotenoid content after Cd and Pb exposure,while Zn exposure had little effects.The bioaccumulation of both Cd and Pb was higher in N.opaca (1544.3 μg/g at 0.5 mg/L Cd,21657.0 μg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C.aculeolata (6703.5 μg/g at 10 mg/L Zn).In addition,high bioconcentration factor values (> 1000) for Cd and Pb were observed in both species.C.aculeolata showed higher percentage of Cd and Pb removal (> 95%) than N.opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.

  6. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shahram AMIRMORADI

    2012-11-01

    Full Text Available Cadmium (Cd and lead (Pb are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replications. Rhizomes with uniform weight were planted in pots 30�50�35 cm. Plants were irrigated with Cd and Pb chloride after germination of all rhizomes. Results demonstrated that with increasing concentrations of Cd and Pb there was a decrease in fresh and dry weights, main stem height, leaf area per plant, leaf number, number of nodes per main stem and essential oil of peppermint compared to the control. Fresh weights were decreased at 100 ppm of Cd and 1500 ppm of Pb, 18.16% and 24.55%, respectively compared to the control at the first harvest. At the second harvest, these decreases were 15.24% and 32.72%, respectively. At the highest concentrations of Cd and Pb, dry weight of peppermint was dropped 22.92% and 39.01% at the first harvest. For the second harvest, decreased dry weights were 25.88% and 26.77% respectively. It seems that peppermint can tolerate waste water or soil polluted with medium range of Cd and Pb concentrations and the essential oil percentage was not affected by these concentrations.

  7. Determination of lead, cadmium and nickel in hennas and other hair dyes sold in Turkey.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-08-01

    The concentrations of lead, nickel and cadmium in various hennas and synthetic hair dyes were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS). For this purpose, 1 g of sample was digested using 4 mL of hydrogen peroxide (30%) and 8 mL of nitric acid (65%). The digests were diluted to 15 mL and the analytes were determined by HR-CS GFAAS. All determinations of Pb and Cd were performed using NH4H2PO4 as a modifier. The analytes in hair certified reference materials (CRMs) were found within the uncertainty limits of the certified values. In addition, the analyte concentrations added to hair dye were recovered between 95 and 110%. The limits of detection of the method were 48.90, 3.90 and 12.15 ng g(-1) for Pb, Cd and Ni, respectively and the characteristic concentrations were 8.70, 1.42 and 6.30 ng g(-1), respectively. Finally, the concentrations of the three analytes in various synthetic hair dyes with different brands, shades and formulae as well as in two henna varieties were determined using aqueous standards for calibration. The concentrations of Pb, Cd and Ni in hair dyes were in the ranges of LOD-0.56 μg g(-1), LOD-0.011 ng g(-1) and 0.030-0.37 μg g(-1), respectively, whereas those in the two hennas were 0.60-0.93 μg g(-1), 0.033-0.065 ng g(-1) and 0.49-1.06 μg g(-1), respectively. PMID:27184940

  8. Cadmium and lead levels consumed by patients with oral hospital diets prescriptions

    Directory of Open Access Journals (Sweden)

    Júlia S. Manzoli de Sá

    2014-01-01

    Full Text Available Introduction: The levels of cadmium (Cd and lead (Pb in foods should be monitored as a function of health risks. Objective: To evaluate Cd and Pb levels in oral hospital diets and in an oral food complement (OFC according to their respective consumption by patients, and to estimate the patient's exposition risk. Methods: The levels of Cd and Pb were determined by ICP-OES in samples of regular, blend, soft and renal diets and OFC, collected on 6 weekdays. About 14.3% of the diets and OFC served were analyzed. Results and discussion: 163 patients participated, with mean weights and ages of 62.7 kg and 56.5 years, respectively, the majority being men (59.5%. The mean Cd content consumed was greater for men fed the regular and blend diets and similar amongst the sexes for the soft diet. The consumption of Cd (max. 21.02 µg/day was below the provisional tolerable monthly intake (PTMI. The mean Pb ingested (max. 199.49 µg/day was similar amongst the sexes. The soft diet showed the highest Pb content in September/2010, whereas the other showed no variation according to season. In September/2010 and January/2011, the soft and regular diets associated with the OFC offered 207.50 and 210.50 µg/day of Pb, respectively. Conclusions: The combination of the diet with the OFC increased the risk of an excessive ingestion of Pb, and the vulnerability of the patients to an excessive exposition to Pb could be greater due to water and medications. It was concluded that whereas the calculated ingestion of Cd conformed to the PTMI, the Pb level and ingestion represented a risk to the health of the patients.

  9. Simultaneous determination of lead, cadmium and zinc in Metro Manila air particulates by anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Air particulate samples were collected from two monitoring stations in Metro Manila using a 'Gent' type dichotomous sampler for pollutant source apportionment studies. Samples were collected in two fractions: a fine fraction with aerodynamic diameter, dpp3: HCL: HF, 4: 1: 1) for at least 20 minutes with subsequent heating at lower power settings for a total of 20 minutes more, effectively decomposed the sample with complete recovery of the elements. The digests were evaporated to near dryness to eliminate the troublesome effect of HF and HNO3 and to decrease acidity of the electrolytic solution to pH ≥ 2. At pH 2, the addition of at least 0.01 M KCl was needed to improve sensitivity. The formation of Zn-Cu intermetallic compounds which interfered in the accurate quantitation of zinc was eliminated by addition of gallium as a 'third' element. The amount of gallium needed varied from sample to sample and was affected by the pH of the solution. The DPASV parameters found to be optimum for the analysis of the air particulate samples are as follows: pulse amplitude, 50 mV; scan rate, 10 mV/sec; Edep, - 1.30 V; tdep, 2 min; and RDE rotation rate, 1500 rpm. Detection limits of 0.2 ppb for zinc, 0.6 ppb for lead, and 0.05 ppb for cadmium in the sample matrix were obtained. The standard addition method was found to be reliable for the quantitative determination of the analytes in the sample. All R2 values obtained were > 0.9900 at 95% confidence level. Validation of the established analytical methodology by analyzing certified reference standards and performing parallel analysis by GF-AAS and flame AAS showed acceptable accuracy of the DPASV measurements. (Author)

  10. Effects of Exposure to Lead and Cadmium on the Oxidative Damage of Livers in Laying Hens

    Institute of Scientific and Technical Information of China (English)

    Chen; Dawei; Pu; Junhua; Tang; Xiujun; Lu; Junxian; Liu; Yinyin; Jia; Xiaoxu; Ge; Qinglian; Gao; Yushi

    2014-01-01

    [Objective] To detect the effects of exposure to lead and cadmium on the oxidative damage of livers in laying hens. [Methods] One hundred and twenty 40-week-old Hyline brown hens were randomly divided into four groups. 100 mg / L Pb and / or 50 mg / L Cd was added into the drinking water for eight weeks. [Results] Compared with control group,AST and ALT activities in Pb group enhanced; but there were no significant differences. AST and ALT activities in Cd group and( Pb + Cd) group significantly or extremely significantly increased( P < 0. 05 or P < 0. 01). SOD activity,GSH- Px activity and GSH content in( Pb + Cd) group,Cd group and Pb group were significantly or extremely significantly lower than those in control group( P <0. 05 or P <0. 01). Among them,( Pb + Cd) group showed the greatest reduction( P <0. 01). MDA contents in the three groups were significantly higher than that of control group; and( Pb +Cd) group was significantly higher than Pb group and Cd group. Cu,Fe and Zn contents in three groups were higher than those in control group in different degrees( P <0. 05 or P <0. 01). Se contents in Cd group and( Pb + Cd) group were significantly lower than that in control group( P <0. 01). Residue contents in livers in Pb group and Cd group were significantly greater than that in control group; while residue content in( Pb + Cd) group was significantly higher than those in Pb group and Cd group. Ultrastructure showed that there were symptoms of mitochondrial swelling and fractured cristae in liver cells of laying hens after the exposure to Cd and Pb. In( Pb + Cd) group,these symptoms were even greater. [Conclusion] Oxidative damage and disturbance of trace element metabolism were one of the mechanisms for hepatotocity in laying hens induced by Pb and Cd,and synergistic effect lied in the coadministration.

  11. Arsenic, cadmium, lead and mercury in canned sardines commercially available in eastern Kentucky, USA

    International Nuclear Information System (INIS)

    Research highlights: → Total As, Cd, Pb and Hg in canned sardines within ranges of other studies. → As highest in samples from Norway (1.87 μg/g) and Thailand (1.63 μg/g). → Cd highest in Moroccan (0.07 μg/g), Pb in Canadian (0.27 μg/g); Hg not detected. → Lack of established limits for As and Cd in fish restricts interpretation of results. → Rise of small pelagics in human diet warrants more scrutiny on their metal content. - Abstract: Seventeen samples of canned sardines, originating from six countries and sold in eastern Kentucky, USA, were analyzed in composites of 3-4 fish each for total arsenic (As), cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrophotometry (AAS) and for mercury (Hg) by thermal decomposition amalgamation and AAS. Results in μg/g wet: As 0.49-1.87 (mean: 1.06), Cd < 0.01-0.07 (0.03), Pb < 0.06-0.27 (0.11), Hg ND < 0.09. Values fall generally within readings reported by others, but no internationally agreed upon guidelines have yet been set for As or Cd in canned or fresh fish. The incidence of cancers and cardiovascular diseases associated with As ingestion is extraordinarily high here. With the role of food-borne As in human illness presently under scrutiny and its maximum allowable limits in fish being reviewed, more studies of this nature are recommended, especially considering the potential importance of small pelagic fishes as future seafood of choice.

  12. Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran

    Directory of Open Access Journals (Sweden)

    Shekoohiyan Sakine

    2012-12-01

    Full Text Available Abstract Tea is one of the most common drinks in all over the world. Rapid urbanization and industrialization in recent decades has increased heavy metals in tea and other foods. In this research, heavy metal contents such as lead (Pb, cadmium (Cd and arsenic (As were determined in 105 black tea samples cultivated in Guilan and Mazandaran Provinces in north of Iran and their tea infusions. The amount of heavy metals in black tea infusions were analyzed using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP - AES. The mean ± SD level of Pb in 5, 15 and 60 min in infusion tea samples were 0.802 ± 0.633, 0.993 ± 0.667 and 1.367 ± 1.06 mg/kg of tea dry weight, respectively. The mean level of Cd in 5, 15 and 60 min in infusion tea samples were 0.135 ± 0.274, 0.244 ± 0.46 and 0.343 ± 0.473 mg/kg of tea dry weight, respectively. The mean level of As in 5, 15 and 60 min in infusion tea samples were 0.277 ± 0.272, 0.426 ± 0.402 and 0.563 ± 0.454 mg/kg of tea dry weight, respectively. Also, the results showed that the locations and the infusion times influenced upon the amount of these metals (P 

  13. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia

    International Nuclear Information System (INIS)

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000–2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. and Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. - Highlights: ► The Pb contents were higher in saprophytic fungi in comparison with mycorrhizal

  14. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Petkovšek, Samar Al Sayegh, E-mail: samar.petkovsek@erico.si; Pokorny, Boštjan

    2013-01-15

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000–2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. and Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. - Highlights: ► The Pb contents were higher in saprophytic fungi in comparison with mycorrhizal

  15. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  16. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  17. Global pollution shown by lead and cadmium contents in precipitation of polar regions and Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The analysis of the major ions, lead and cadmium has been performed for snow-pit samples collected from the Arctic, the Qinghai-Tibetan Plateau and the Antarctic Ice Sheet. These snow pits were excavated respectively from the snowpack in Canadian Northwest Territory (NWT) and the central Arctic, three glaciers on the Qinghai-Tibetan Plateau and surface snow along the route of the International Trans-Antarctic Expedition (ITAE). The source regions for the lead pollution of central Arctic have been identified by analyzing of stable lead isotopic ratios, meteorological and atmospheric chemistry studies. It shows that the central Arctic is still under intensive lead input, despite the fact that lead content in Greenland Ice Sheet displays a rapid decreasing since the 1970s due to US and some European countries' campaigns to reduce lead-containing gasoline-additives. This is because there are multiple lead sources for the central Arctic, including the countries that have not performed gasoline-additives reducing. The backgrounds of atmospheric aerosol compositions, as well as the concentrations of lead and cadmium in precipitation of the early 1990s, are contrasted among the Arctic, Antarctica and Qinghai-Tibetan Plateau. The measured lead content in the snowfall at the typical sites of the three regions is divided into natural (background) and anthropogenic components. It is found that natural lead concentration (mainly crustal and/or sea-salt lead) is roughly equal among the three regions (50% in Antarctic precipitation, >97% in the Arctic and the Qinghai-Tibetan Plateau ) is mainly responsible for the lead input to both polar regions and to the Qinghai-Tibetan Plateau. Lead pollution may have spread into the whole troposphere and the most remote regions on earth.

  18. Jiangrun Copper Limited Company Set its Eyes on the Leading Position of Copper Processing Industry in China

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Jiangrun Copper Limited Company’s total investment volume for projects of stranded copper wire with high strength and high conductivity as well as high-performance copper and copper alloy wire are 500 million yuan and 360 million yuan, respectively. The company plans to introduce 85 units (sets) of high-end

  19. Evaluation and Determination of Toxic Metals, Lead and Cadmium, in Incoming Raw Milk from Traditional and Industrial Farms to Milk Production Factories in Arak, Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Delavar

    2012-08-01

    Full Text Available Background: Milk is regarded as a unique source of food for all ages. When milk is exposed to various contaminants, including lead and cadmium, it is considered a risk to humans. The presence of some metal pollutants, especially Cd and Pb, facilitates their entry into the food chain and thus increases the possibility of their toxic effects on humans and animals. Therefore, we decided to check lead and cadmium levels in incoming raw milk in milk production factories in Arak city, Iran. Methods: In this study, 48 samples of milk were obtained from 28 industrial and 20 traditional farms. After the digestion process, at first, the metals were extracted with complexing agents, APDC, and MIBK solvent. Then atomic absorption method with graphite furnace was applied. Results: The results were analyzed by analytical tests such as Npar, Mann-Whitney, Kruskal-Wallis, and t-test using SPSS software and it was specified that the means of lead and cadmium were equal to 16.0456 and 20.09 ppb in raw milk. P-values equal to 0.009 and 0.002 ppb were considered significant for lead and cadmium, respectively. The standard levels for lead and cadmium in milk were 1000 and 100 ppb, respectively. In all milk samples, lead and cadmium pollution were less than the standard limit. Conclusion: The amounts of toxic metals (lead and cadmium in raw milk produced in traditional and industrial farms in all seasons were lower than the standard limits. Also, the mean amounts of lead and cadmium in all milk samples were less than the standard limits for milk.

  20. Assessment of Long Term Impacts of Cadmium and Lead Load to Agricultural Soils in the Upper Elbe and Oder River Basins

    OpenAIRE

    Prieler, S.; Anderberg, S.

    1996-01-01

    This report investigates effects of long term load of two heavy metals, cadmium and lead to agricultural soils for a project area in Central Europe. The time frame for the historic analysis is 1955 to 1994. The major source of lead is atmospheric deposition. In the case of cadmium, besides atmospheric deposition, agricultural activities, such as P-fertilizer and manuring, are additional sources of heavy metal input to agricultural soils. Extremely high depositions that were measured in a "hot...

  1. Estimation of Seasonal Risk Caused by the Intake of Lead, Mercury and Cadmium through Freshwater Fish Consumption from Urban Water Reservoirs in Arid Areas of Northern Mexico

    OpenAIRE

    Myrna Nevárez; Leal, Luz O.; Myriam Moreno

    2015-01-01

    Bioavailability and hence bioaccumulation of heavy metals in fish species depends on seasonal conditions causing different risks levels to human health during the lifetime. Mercury, cadmium and lead contents in fish from Chihuahua (Mexico) water reservoirs have been investigated to assess contamination levels and safety for consumers. Muscle samples of fish were collected across the seasons. Lead and cadmium were analyzed by inductively coupled plasma-optical emission spectrometry, and mercur...

  2. Five Major State-Level Copper,Lead, Zinc Resource Succession Bases in Tibet Have Initially Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    According to the Chengdu Center of China Geological Survey,five major state-level copper-lead-zinc resource succession bases in Tibet have initially taken shape,featuring tremendous resource potentials.It has been learned that these five major resource succession bases are respectively copper-lead-zinc molybdenum iron prospecting development base in Central Tibet,chromite

  3. Jiangxi Copper Lead Zinc Smelting Project with an Investment of Nearly 5 billion yuan Started Construction in Hukou

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Recently,Jiangxi Copper Group Lead Zinc Smelting Project,a key construction project of Jiangxi Province’s "Ten,Hundred,Thousand Project" (referring to the plan to have a number of leading enterprises with annual sales topping

  4. Effects of cadmium and copper on sialic acid levels in blood and brain tissues of Cyprinus carpio L.

    Institute of Scientific and Technical Information of China (English)

    Utku Gner; Elvan Bakar

    2014-01-01

    Objective: To investigate the effects of cadmium (Cd) and copper (Cu) on sialic acid levels of brain and blood tissues of Cyprinus carpio.Methods:Adult carps were exposed to 0.1, 0.5 mg/L Cu, 0.1, 0.5 and 1.0 mg/L Cd and 0.1 mg/L Cu+0.1 mg/L Cd under static experiment conditions for 1 week. At the end of exposure period, heavy metal accumulations and sialic acid levels in blood and brain tissues of the test animals were analyzed.Results:Cu and Cd accumulated in tissues in a dramatically increasing dose-dependent manner. Sialic acids level of the fish exposed to 0.1, 0.5 and 1.0 mg/L Cu and Cd and control grups for 1 week were 0.834, 1.427, 0.672, 0.934, 2.968, 4.714 mg/mL respectively. The results also showed that Cu has an antagonistic effect on tissue sialic acid level.Conclusions:We propose that Cd and Cu make a complex with sialic acids of membranes in the tissues researched. This complex between metal ions and sialic acid migth account for the cellular toxicity based on Cu and Cd.

  5. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  6. Accumulation of cadmium and copper by female Oxya chinensis(Orthopera: Acridoidea) in soil-plant-insect system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    One purpose of this research is to present accumulation of cadmium (Cd) and copper (Cu) by female Oxya chinensis (Orthopera: Acridoidea) in a simulated soil-plant-insect ecosystem treated with Cd. Fourth-instar nymphs of O. chinensis had been fed on wheat (Triticum aestivum) seedlings contaminated with Cd and Cu for one month. In the ecosystem, the Cd concentration in wheat seedlings rose greatly with the increasing of Cd in the soil, but the Cu concentration in wheat seedlings was not found elevated. There was a highly significant difference(P<0.05) in Cd concentrations of wheat seedlings and not any significant difference(P>0.05) in Cu concentrations of wheat seedlings. The Cd and Cu concentration in different body part-head, thorax, abdomen, and hind femur, varied under different Cd concentrations in soil. There were significant differences (P<0.05) in the four parts of Cd and Cu accumulations with all treatments. The order of Cd accumulation was thorax >abdomen >head >hind femur and the Cu was abdomen > thorax >head > hind femur. The results indicated that Cd and Cu were accumulated from the soil to grasshoppers through the plant; that is to say, Cd and Cu in environment could be transported to animal or human via food chain.

  7. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LI Ping; WANG Xingxiang; ZHANG Taolin; ZHOU Dongmei; HE Yuanqiu

    2008-01-01

    Heavy metals in variable charge soil are highly bioavailable and easy to transfer into plants.Since it is impossible to completely eliminate rice planting on contaminated soils,some remediation and mitigation techniques are necessary to reduce metal bioavailability and uptake by rice.This pot experiment investigated the effects of seven amendments on the growth of rice and uptake of heavy metals from a paddy soil that was contaminated by copper and cadmium.The best results were from the application of limestone that increased grain yield by 12.5-16.5 fold,and decreased Cu and Cd concentrations in grain by 23.0%-50.4%.Application of calcium magnesium phosphate,calcium silicate,pig manure,and peat also inereased the grain yield by 0.3-15.3 fold,and effectively decreased the Cu and Cd concentrations in grain.Cd concentration in grain was slightly reduced in the treatments of Chinese milk vetch and zinc sulfate.Concentrations of Cu and Cd in grain and straw were dependent on the available Cu and Cd in the soils.and soil availabie Cu and Cd Were significantly affected by the soil pH.

  8. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  9. Changes in phototactic behavior of Daphnia magna clone C1242 in response to copper, cadmium and pentachlorophenol

    Institute of Scientific and Technical Information of China (English)

    YUAN Ling; E. Michels; L. De Meester

    2003-01-01

    In order to develop a round biotechnique for monitoring water quality that builds on the previous experiments carried out in our laboratory, a specific D. magna clone C1 242 was used to study the effects of pollutants on phototactic behavior. In all experiments, the animals showed a stable and repeatable phototactic index approximated 0.2 in the presence and 0.4 in the absence of fish kairomones, which decreased significantly in response to pollutants. There existed no pollutant × fish kairomone interaction, indicating the changes in phototactic behavior of animals imposed by pollutants were independent of the presence of fish kairomones. The detection limits for changes in phototactic behavior of D. mgna clone C1242 are 0.04 mg/L for copper, 0.02 mg/L for cadmium, and 0.80 mg/L for PCP, respectively, quite lower than LC50 (48 h). The changes in phototactic behavior in presence to pollutants occurred quickly(3 h) compared to the period over whole acute toxicity tests. Therefore, D. magna clone C1242 could be potentially used to monitor water quality. Moreover, the phototactic behavior did not decrease further in the pollutant mixtures employed in our experiments compared to individual pollutants, except in the Cd-PCP treatment.This fact suggests that the formation of water quality criteria must be based upon pollutant mixture tests.

  10. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health.

    Science.gov (United States)

    Taylor, Mark Patrick; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-01

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1-4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m(2)) with the highest lead in surface dust (59,900 μg/m(2)) and post-play hand wipes (60,900 μg/m(2)) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ((206)Pb/(207)Pb, (208)Pb/(207)Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. PMID:25462679

  11. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health.

    Science.gov (United States)

    Taylor, Mark Patrick; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-01

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1-4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m(2)) with the highest lead in surface dust (59,900 μg/m(2)) and post-play hand wipes (60,900 μg/m(2)) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ((206)Pb/(207)Pb, (208)Pb/(207)Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children.

  12. Pilot study for utilization of dried blood spots for screening of lead, mercury and cadmium in newborns.

    Science.gov (United States)

    Chaudhuri, Sanwat N; Butala, Steven J M; Ball, R Wayne; Braniff, Christopher T

    2009-03-01

    The exposure of pregnant women and young children to environmental pollutants is an ongoing concern of state and local public health departments. Of primary concern is the exposure to lead in lead-based paints, methyl mercury in contaminated fish and cadmium present at mining sites. The feasibility, utility and methodology of using blood spot cards collected for new born health screening purposes was studied for use in conducting routine state-wide surveillance of blood lead, mercury and cadmium levels in infants. Homogeneity of different lots of blank filter paper was examined. Mass measurements (weights) of filter paper punches were taken across three different lots of filter paper. Statistical analysis of the data was performed using one-way ANOVA, which indicated no significant difference in the means of all three lots, but high variances were noted. The three metals were examined in three different lots of filter papers purchased from the manufacturer. The lots had measurable amounts of cadmium and lead, but not mercury. Lead spike values were observed for roughly about 7% of the blank samples, indicating heterogeneous distribution of this metal. Statistical analysis of the data was also performed using a two-way ANOVA calculation with Tukey's pairwise comparisons. The results found that total mean metal loadings across the three lots were different. The concentration of the metals can be different from each other and the concentration of any one metal can differ across lots. Stability at different concentrations of the heavy metals in blood spotted onto filter paper with time and storage conditions was examined. Results indicate acceptable performance for at least 8.5 months for lead (near CDC's concern level) and for mercury (near NRC's concern level). The filter paper and blood spots were analyzed for metals using an acid extraction, followed by analysis using an inductively coupled plasma mass spectrometer (ICP-MS). Blood spot cards were studied from four

  13. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Erin W. [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Schaumberg, Debra A. [Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School and Department of Epidemiology, Harvard School of Public Health, Boston, MA (United States); Center for Translational Medicine, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT (United States); Park, Sung Kyun, E-mail: sungkyun@umich.edu [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2014-08-15

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  14. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    International Nuclear Information System (INIS)

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  15. Assessment of soil contamination. Measuring devices for arsenic, berryllium, lead, cadmium, mercury and selenium. Wirkung von Bodenkontaminationen. Messlatten fuer Arsen, Beryllium, Blei, Cadmium, Quecksilber und Selen

    Energy Technology Data Exchange (ETDEWEB)

    Blumenbach, D.; Kloke, A.; Luehr, H.P.

    1991-12-01

    To assess soil contamination with respect to the suitability of the site concerned, it is essential to obtain knowledge of the relationship between soil contamination levels and the effect of the contaminants on a targets meriting protection (e.g. human beings, plants, soil organisms). In this final report, data obtained from literature on the inorganic pollutants arsenic, lead, cadmium, mercury, selenium and beryllium are compiled, and for selected targets an overview is given of the damage occurring at the various concentration levels studies. The present data, together with information on the envisaged use of the site and on soil properties influencing the pollutant's transport to the protected target, can be used to assess soil quality. Threshold values for use in decision-making cannot be derived directly from the presented data, as such data can only convey a picture of the range of the harmful concentrations given in the literature. (orig.).

  16. Quantitative in vivo elemental analysis using X-ray fluorescence and scattering techniques. Applications to cadmium, lead and bone mineral

    International Nuclear Information System (INIS)

    The X-ray fluorescence technique for in vivo determination of cadmium concentration in the human body has been considerably improved so that the minimum concentration now is 10 μg/g for a skin-organ distance of 50 mm and a measurement time of 30 minutes. The technique has been used for measurements of cadmium in the kidney cortex of 60 non-occupationally exposed persons, showing twice the concentration (26±9 μg/g) in a sub-group of frequent tobacco smokers compared with a group of non-smokers (10±11 μg/g). Concentrations of lead in the skeleton of 112 persons have been measured at three bone sites (finger bone, tibia, heel bone) using in vivo XRF techniques either based on Co-57 or Cd-109 sources. There was a good correlation between lead levels at the three bone sites as well as to cumulative exposure index. However, the association between the amount of chelatable lead and measured bone lead levels was poor. The retention of lead in the skeleton of 14 retired workers, now studied for up to 18 years after retirement, shows a half-time of 16 years. 43 refs

  17. Determination of cadmium, lead and zinc in a candidate reference materials using isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    The growing demands placed on analytical laboratories to ensure the reliability of their results, due to the introduction of systems of quality and to the increasing use of metrology in chemical measurements has led most laboratories to validate their methodologies and to control them statistically. One of the techniques used most often for these purposes is based on the use of reference materials. The proper use of these materials means that laboratory results may be traced to the International System of Units, analytical methodologies can be validated, instruments calibrated and chemical measurements harmonized. One of the biggest challenges in developing reference materials is that of certifying their properties, a process that has been defined as assigning a concentration value that is as close as possible to the true value together with its uncertainty. Organizations that produce reference materials use several options for their certification process, and among these is the use of a primary method. Among the primary methods recognized by the International Office of Weights and Measures is the Isotope Dilution Mass Spectrometry technique. The Chilean Nuclear Energy Commission, through its Reference Materials Program, has prepared a reference material of clam tissue, which has been chemically defined by different analytical methodologies applied in different national and international laboratories. This work describes the methodology developed with the CIEMAT for determining the elements lead, cadmium and zinc in the clam tissue reference material using the primary technique of Isotope Dilution Mass Spectrometry. The calculation is described for obtaining the spike amounts to be added to the sample and the procedure is explained for carrying out the isotopic exchange. The isotopic relationships 204Pb/205Pb, 111Cd/114Cd and 66Zn/67Zn were determined in an atomic emission spectrometer with a plasma source with the following characteristics: plasma ionization

  18. Breast milk lead and cadmium levels from suburban areas of Ankara

    Energy Technology Data Exchange (ETDEWEB)

    Oruen, Emel, E-mail: emelorun@hotmail.com [Department of Pediatrics, Fatih University Hospital, Ankara (Turkey); Yalcin, S. Songuel, E-mail: siyalcin@hacettepe.edu.tr [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Aykut, Osman; Orhan, Guennur; Morgil, Goeksel Koc [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey); Yurdakoek, Kadriye [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Uzun, Ramazan [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey)

    2011-06-01

    The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 {mu}g/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 {mu}g/l). Breast milk Cd levels were > 1 {mu}g/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 {mu}g/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 {mu}g/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 {mu}g/l, p = 0.023; vitamin: 0.78, 0.00 {mu}g/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = - 0.257, p = 0.041 and r = - 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study. - Research highlights: {yields} Breast milk Pb levels were higher than the advised safety limits. {yields

  19. Cadmium and lead determination by ICPMS: Method optimization and application in carabao milk samples

    Directory of Open Access Journals (Sweden)

    Riza A. Magbitang

    2012-06-01

    Full Text Available A method utilizing inductively coupled plasma mass spectrometry (ICPMS as the element-selective detector with microwave-assisted nitric acid digestion as the sample pre-treatment technique was developed for the simultaneous determination of cadmium (Cd and lead (Pb in milk samples. The estimated detection limits were 0.09ìg kg-1 and 0.33ìg kg-1 for Cd and Pb, respectively. The method was linear in the concentration range 0.01 to 500ìg kg-1with correlation coefficients of 0.999 for both analytes.The method was validated using certified reference material BCR 150 and the determined values for Cd and Pb were 18.24 ± 0.18 ìg kg-1 and 807.57 ± 7.07ìg kg-1, respectively. Further validation using another certified reference material, NIST 1643e, resulted in determined concentrations of 6.48 ± 0.10 ìg L-1 for Cd and 21.96 ± 0.87 ìg L-1 for Pb. These determined values agree well with the certified values in the reference materials.The method was applied to processed and raw carabao milk samples collected in Nueva Ecija, Philippines.The Cd levels determined in the samples were in the range 0.11 ± 0.07 to 5.17 ± 0.13 ìg kg-1 for the processed milk samples, and 0.11 ± 0.07 to 0.45 ± 0.09 ìg kg-1 for the raw milk samples. The concentrations of Pb were in the range 0.49 ± 0.21 to 5.82 ± 0.17 ìg kg-1 for the processed milk samples, and 0.72 ± 0.18 to 6.79 ± 0.20 ìg kg-1 for the raw milk samples.

  20. Non-occupational lead and cadmium exposure of adult women in Bangkok, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.-W.; Shimbo, S. [Department of Food and Nutrition, Kyoto Women' s University, Kyoto (Japan); Watanabe, T. [Miyagi University of Education, Sendai (Japan); Srianujata, S. [Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok (Thailand); Banjong, O.; Chitchumroonchokchai, C. [Institute of Nutrition, Mahidol University, Salaya, Phuthamonthon, Nakhonpathom (Thailand); Nakatsuka, H.; Matsuda-Inoguchi, N. [Miyagi University, Taiwa-cho (Japan); Higashikawa, K.; Ikeda, M. [Kyoto Industrial Health Association, Kyoto (Japan)

    1999-02-02

    This survey was conducted to examine the extent of the exposure of Bangkok citizens to lead (Pb) and cadmium (Cd), and to evaluate the role of rice as the source of these heavy metals. In practice, 52 non-smoking adult women in an institution in the vicinity of Bangkok, volunteered to offer blood, spot urine, boiled rice and 24-h total food duplicate samples. Samples were wet-ashed, and then analyzed for Pb and Cd by ICP-MS. Geometric means for the levels in blood (Pb-B and Cd-B) and urine (Pb-U and Cd-U as corrected for creatinine concentration), and also for dietary intake (Pb-F and Cd-F) were 32.3 {mu}g/l for Pb-B, 0.41 {mu}g/l for Cd-B, 2.06 {mu}g/g creatinine for Pb-U, 1.40 {mu}g/g creatinine for Cd-U, 15.1 {mu}g/day for Pb-F and 7.1 {mu}g/day for Cd-F. Rice contributed 30% and 4% of dietary Cd and Pb burden, respectively. When compared with the counterpart values obtained in four neighboring cities in southeast Asia (i.e. Nanning, Tainan, Manila, and Kuala Lumpur), dietary Pb burden of the women in Bangkok was middle in the order among the values for the five cities. Pb level in the blood was the lowest of the levels among the five cities and Pb in urine was also among the low group. This apparent discrepancy in the order between Pb-B (i.e. the fifth) and Pb-F (the third) might be attributable to recent reduction of Pb levels in the atmosphere in Bangkok. Regarding Cd exposure, Cd levels in blood and urine as well as dietary Cd burden of Bangkok women were either the lowest or the next lowest among those in the five cities. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis.

    Science.gov (United States)

    Gouveia, Claudiane; Kreusch, Marianne; Schmidt, Éder C; Felix, Marthiellen R de L; Osorio, Luz K P; Pereira, Debora T; dos Santos, Rodrigo; Ouriques, Luciane C; Martins, Roberta de Paula; Latini, Alexandra; Ramlov, Fernanda; Carvalho, Tiago José G; Chow, Fungyi; Maraschin, Marcelo; Bouzon, Zenilda L

    2013-06-01

    The effect of lead and copper on apical segments of Gracilaria domingensis was examined. Over a period of 7 days, the segments were cultivated with concentrations of 5 and 10 ppm under laboratory conditions. The samples were processed for light, confocal, and electron microscopy, as well as histochemistry, to evaluate growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, and carotenoids. After 7 days of exposure to lead and copper, growth rates were slower than control, and biomass loss was observed on copper-treated plants. Ultrastructural damage was primarily observed in the internal organization of chloroplasts and cell wall thickness. X-ray microanalysis detected lead in the cell wall, while copper was detected in both the cytoplasm and cell wall. Moreover, lead and copper exposure led to photodamage of photosynthetic pigments and, consequently, changes in photosynthesis. However, protein content and glutathione reductase activity decreased only in the copper treatments. In both treatments, decreased mitochondrial NADH dehydrogenase activity was observed. Taken together, the present study demonstrates that (1) heavy metals such as lead and copper negatively affect various morphological, physiological, and biochemical processes in G. domingensis and (2) copper is more toxic than lead in G. domingensis.

  2. Tolerance and Bioaccumulation of Agaricus bisporus to Lead and Cadmium%双孢蘑菇对Pb2+.Cd2+的耐受与富集

    Institute of Scientific and Technical Information of China (English)

    刘敏; 吴小建; 李明娟; 黎金锋; 刘斌

    2011-01-01

    [目的]研究双孢蘑菇对Pb2+、Cd2+的耐受与富集效应.[方法]在双孢蘑菇培养基中添加不同浓度的Pb2+、Cd2+,采用原子吸收法测定其子实体和菌丝体的Pb2+、Cd2+含量.[结果]在试验浓度范围内,双孢蘑菇对Pb2+、Cd2+的富集量随Pb2+、Cd2+浓度的增加而增加,子实体不同部位畜集量由高到低依次为菌褶>菌盖>菌柄,其中Pb2+含量分别为19.42、16.42、15.30 mg/kg,Cd2+含量分别为38.56、35.73、11.80 mg/kg.复合胁迫下,Pb2+的富集量高于单一Pb2+胁迫而Cd2+的富集量低于单一Cd2+胁迫.[结论]双孢蘑菇对Pb2+、Cd2+具有较强的耐受与富集作用.%[Objective] The research aimed to explore the tolerance and accumulation of Agaricus bisporus to lead and cadmium. [Method] A. Bisporus was cultivated in medium with different concn. Of lead and cadmium, and the lead and the cadmium contents in fruiting body and my-celia of A. Bisporus were measured by the flame atomic absorption spectrophotometry. [Result] In the tested concn. Range, the bioaccumulation of lead and cadmium in A. Bisporus were increased with increasing lead and cadmium concn. In the medium, the contents of lead and cadmium were different in different parts of fruiting body and they were in the order of lamellae > pileus > stipe, being 19.42, 16.42 and 15.30 mg/kg for the lead content, and 38.56, 35.73 and 11. 80 mg/kg for the cadmium content resp. The bioaccumulation amount of lead in A. Bisporus was generally higher under the combined stress than under the single lead stress, but the bioaccumulation amount of cadmium was lower than that under the single cadmium stress. [Conclusion]A. Bisporus had a high tolerance and accumulation to the lead and cadmium.

  3. Effects of lead exposure on the concentration of cadmium, selenium and values of morphology in the blood

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozłowska

    2015-06-01

    Full Text Available Introduction. Heavy metals, including cadmium and lead are both environmental and industrial toxins which cause metabolic disorders. Effects of these elements are long lasting and usually take a long time to show themselves. Also of importance is the active and passive exposure to tobacco smoke, which is also a source of heavy metals. Heavy metals exhibit nephrotoxic activity, hepatotoxic and neurotoxic, and mutagenic and carcinogenic activity. This study aimed to determine the relationship between occupational exposure to lead (Pb, cadmium (Cd and the level of selenium (Se, and values of morphology of employees of zinc and lead smelter. Material and methods. 334 occupationally exposed males (tested group and 60 males not exposed (control group were involved in the study. The men were between 19 and 62 years of age. The study population lived and/or worked in the industrial region of Upper Silesia. Blood cadmium concentration (Cd-B, blood lead concentration (Pb-B and serum concentrations of Se (Se-S were studied. The level of elements was determined by flameless atomic absorption spectrometry. Results. The average concentration of each metal in the exposed group was 2.42±2.20 µg/l (Cd-B, 33±9.6 µg/dl (Pb-B and 73.99±20.44 µg/l (Se-S. In the entire study population (exposed and control, a statistically significant negative linear relationship was found between Pb-B and Se-S (r=–0.16, p<0.05. There was no correlation between Cd-B and Se-S, whereas a statistically significant positive correlation was observed between Pb-B and Cd-B (r=0.48, p<0.05. Spearman Rank Correlation analysis showed that in the study population there was observed statistically significant (p<0.05 negative correlation between Se-S in smokers group. Conclusions. Higher concentrations of Cd and Pb were observed in the exposed group compared to the control group. Occupational exposure to cadmium and lead may be a factor lowering the blood Se in the tested group. The most

  4. Determination of copper, scandium, molybdenum, tin, lead, and iron group elements in lunar surface materials

    Science.gov (United States)

    Pavlenko, L. I.; Simonova, L. V.; Karyakin, A. V.

    1974-01-01

    Distribution regularities of copper, scandium, molybdenum, tin, lead, and iron group elements were investigated in basaltoid rocks of lunar and terrestrial origin. Samples of various regolith zones taken in the area of the Sea of Fertility were analyzed, along with samples of basic and ultrabasic rocks of the East African Rift for their content of the trace admixtures listed. Data obtained on the abundance of copper, scandium, molybdenum, tin, lead, cobalt, nickel, chromium, and vanadium in Luna 16 lunar surface material were compared with the abundance of these elements in samples of lunar rocks returned by Apollo 11, Apollo 12, and Apollo 14, with the exception of scandium; its content in the latter samples was considerably higher.

  5. Copper, zinc and lead bioaccumulation in marine snail, Strombus gigas, from Guacanayabo Gulf, Cuba.

    Science.gov (United States)

    Díaz Rizo, O; Olivares Reumont, S; Viguri Fuente, J; Díaz Arado, O; López Pino, N; D'Alessandro Rodríguez, K; Arado López, J O; Gelen Rudnikas, A; Arencibia Carballo, G

    2010-09-01

    Levels of copper, zinc and lead were determined in sediments and edible muscle of marine snail Strombus gigas collected from Guacanayabo Gulf, Cuba. The concentration range of each metal in marine snail muscle on mg kg(-1) wet weight varied as follows: Cu = 6.4-32.6, Zn = 20.4-31.1 and Pb = 0.2-2.3; and in corresponding sediments (on mg kg(-1) dry weight) as: Cu = 157-186, Zn = 56-94 and Pb = 20-37. The average biota-sediment accumulation factors (BSAFs) obtained for studied metals are less than unity in all cases, indicating that only a little fraction of metal content in the sediments is bioavailable, independently of their possible enrichments in the sediments. The concentrations of copper and lead in some of the marine snails are above typical public health recommended limits. PMID:20676604

  6. The effect of lead content and surface roughness on wetting and spreading of low-lead and no-lead solders on copper-clad FR-4 laminates

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Roberts, J.L.; Davidson, R.N.; Yost, F.G.; Hosking, F.M.

    1997-02-01

    Environmental and health concerns pertaining to lead have encouraged research into low-lead alloys for electronic soldering. The development of solder alloys containing lower amounts of lead than Sn/Pb eutectic (37 wt.% lead), but possessing similar properties, is an industry-wide goal. To determine the wettability of low-lead solders, 21 alloys each of Sn/Ag and Sn/Cu eutectic (containing 0 to 10 wt.% lead and/or indium) were tested on as-received copper-clad FR-4. Contact angles for the alloys ranged from 12.5 to 38.9{degrees} and area of spread measurements ranged from 5.2 to 17.3 mm{sup 2} compared with 5 to 150 and {approximately}19 mm{sup 2}, respectively, for Sn/Pb eutectic. Alloys with 8 to 10 wt.% lead showed contact angles and areas of spread similar to Sn/Pb eutectic under similar conditions. The best results on the as-received substrates, compared to the Sn/Pb eutectic, were obtained from the Sn/Ag eutectic with 10 wt.% lead. The very low-lead (less than 10 wt.% lead) and lead-free alloys, however, failed to achieve the performance level of eutectic Sn/Pb solders. A desire to improve the spreading of very low-lead and lead-free solders provided the impetus for these efforts to produce {open_quotes}engineered{close_quotes} rough surfaces. In an attempt to improve the wettability and spreading behavior of very low-lead and lead-free alloys, the very low-lead and lead-free members of the Sn/Ag system were tested on roughened copper-clad FR-4. Every alloy in the test suite demonstrated improvement in area of spread on the roughened substrates. The best results on the roughened substrates, compared to the Sn/Pb eutectic, were obtained from the Sn/Ag eutectic with 8 wt.% lead. The effects of surface roughness on the wettability and flow behavior of solder alloys has provided insight into surface morphologies that lead to improved solderability.

  7. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    OpenAIRE

    Q. R. Wu; Wang, S. X.; Zhang, L.; J. X. Song; Yang, H.; Meng, Y.

    2012-01-01

    China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting process is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China during 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting process, mercury removal efficiencies of air pollution control de...

  8. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    OpenAIRE

    Meng, Y.; Yang, H.; J. X. Song; Zhang, L.; Wang, S. X.; Q. R. Wu

    2012-01-01

    China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China between 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting processes, mercury removal efficiencies of air pollution control devices (APCDs...

  9. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  10. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    Directory of Open Access Journals (Sweden)

    Y. Meng

    2012-11-01

    Full Text Available China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China between 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting processes, mercury removal efficiencies of air pollution control devices (APCDs and the application percentage of a certain type of APCD combinations. Our study indicated that atmospheric mercury emissions from nonferrous metal smelters in 2000, 2003, 2005, 2007 and 2010 were 67.6, 100.1, 86.7, 80.6 and 72.5 t, respectively. In 2010, the amounts of mercury emitted into atmosphere were 39.4 ± 31.5, 30.6 ± 29.1, and 2.5 ± 1.1 t from primary zinc, lead and copper smelters, respectively. The largest amount of mercury was emitted from the Gansu province, followed by Henan, Yunnan, Hunan, Inner Mongolia and Shaanxi provinces. Hg2+, Hg0 and Hgp emissions from zinc smelters were 25.6, 11.8 and 1.97 t, respectively. The emissions percentages of Hg2+ and Hg0 were almost the same from lead and copper smelters. The average mercury removal efficiency was 90.5 ± 52.5%, 71.2 ± 63.7% and 91.8 ± 40.7% in zinc, lead, and copper smelters, respectively.

  11. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

    Directory of Open Access Journals (Sweden)

    Q. R. Wu

    2012-07-01

    Full Text Available China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting process is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China during 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting process, mercury removal efficiencies of air pollution control devices (APCDs and installation rate of a certain type of APCD combination. Our study indicated that atmospheric mercury emission from nonferrous metal smelters in 2000, 2003, 2005, 2007 and 2010 was 67.6, 100.1 86.7 80.6 and 72.5 t, respectively. In 2010, the mercury in metal concentrates consumed by primary zinc, lead and copper smelters were 543 t. The mercury emitted into atmosphere, fly ash, other solids, waste water and acid was 72.5, 61.5, 2.0, 3774 and 27.2 t, respectively. Mercury retrieved directly from flue gas as byproduct of nonferrous metal smelting was about 2.4 t. The amounts of mercury emitted into atmosphere were 39.4, 30.6 and 2.5 t from primary zinc, lead and copper smelters, respectively. The largest amount of mercury was emitted from Gansu province, followed by Henan, Yunnan, Hunan, Inner Mongolia and Shaanxi provinces. The average mercury removal efficiency was 90.5%, 71.2% and 91.8% in zinc, lead, and copper smelters, respectively.

  12. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)], E-mail: edsonqmc@hotmail.com; Santos Roldan, Paulo dos [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L{sup -1} HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 {mu}g L{sup -1} for lead and cadmium, respectively. For a solution containing 100 and 10 {mu}g L{sup -1} of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%.

  13. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry.

    Science.gov (United States)

    Silva, Edson Luiz; Roldan, Paulo Dos Santos

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3molL(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75microgL(-1) for lead and cadmium, respectively. For a solution containing 100 and 10microgL(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n=7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. PMID:18456398

  14. Chronic Cadmium Exposure Lead to Inhibition of Serum and Hepatic Alkaline Phosphatase Activity in Wistar Rats.

    Science.gov (United States)

    Treviño, Samuel; Andrade-García, Alejandra; Herrera Camacho, Irma; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Flores, Gonzalo; Brambila, Eduardo

    2015-12-01

    Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.

  15. Determining of the level of lead and cadmium contamination in pregnant women living in an exposed mining area of Peru

    International Nuclear Information System (INIS)

    It is the objective of this study to determine in the first year the level of acute pollution and their nutritional status in pregnant women living in a lead and cadmium exposed mining area of Peru. The complete project will focus on delivering women and their infants who are one of the most vulnerable groups of the life cycle. It is of particular interest to investigate the impact of pollution not only in the mother but also the possible transfer to the infant. (author)

  16. Cadmium, copper, lead, and zinc contents of fish marketed in NW Mexico.

    Science.gov (United States)

    Frías-Espericueta, Martín G; Zamora-Sarabia, Francia K G; Osuna-López, J Isidro; Muy-Rangel, María D; Rubio-Carrasco, Werner; Aguilar-Juárez, Marisela; Voltolina, Domenico

    2014-01-01

    To assess if they were within the safety limits for human consumption, the Cd, Cu, Pb, and Zn contents of fish muscles, bought from separate stalls of the fish markets of nine cities of NW Mexico, were determined by atomic absorption spectrophotometry. Considering all fish and markets, the mean contents were Zn: 23.23 ± 5.83, Cu: 1.72 ± 0.63, Cd: 0.27 ± 0.07, and Pb: 0.09 ± 0.04 µg/g (dry weight). Cu, Zn, and Pb did not reach levels of concern for human consumption, but the high Cd values determined in Mazatlán (Mugil cephalus: 0.48 ± 0.15; Diapterus spp.: 0.57 ± 0.33; Lutjanus spp.: 0.72 ± 0.12; small shark: 0.87 ± 0.19 µg/g dry weight) indicate that this was the only metal of concern for human health because the daily individual consumption of fish muscle to reach the PTDI would be within 0.27 and 0.41 kg.

  17. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline

    Institute of Scientific and Technical Information of China (English)

    JIANG Kan; SUN Tie-heng; SUN Li-na; LI Hai-bo

    2006-01-01

    The adsorption characteristics of heavy metals: Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently fiom aqueous solution with selectivity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Cd(Ⅱ)>Zn(Ⅱ).The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium.Tourmaline could also increase pH value of metal solution. Themaximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ), respectively. The temperature (25-55℃) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb>Cu>Zn>Cd and inhibition dominance observed in two metal systems was Pb>Cu, Pb>Zn, Pb>Cd, Cu>Zn, Cu>Cd, and Cd>Zn.

  18. Biochar Reduces Zinc and Cadmium but not Copper and Lead Leaching on a Former Sewage Field.

    Science.gov (United States)

    Schweiker, Carolin; Wagner, Anne; Peters, Andre; Bischoff, Wolf-Anno; Kaupenjohann, Martin

    2014-11-01

    The leaching of trace metals from anthropogenically contaminated sites poses the risk of groundwater pollution. Biochar has recently been proposed as a soil additive to reduce trace-metal concentrations in the soil solution and to increase water retention, thus reducing drainage. However, field studies on the effects of biochar addition on trace-metal leaching are scarce. Therefore, we added 0, 1, 2.5, and 5 g 100 g of biochar derived from giant miscanthus ( × J.M. Greef & Deuter ex Hodk. & Renvoize) to soil contaminated by former wastewater irrigation and examined water retention and cumulative leaching of Zn, Cd, Cu, and Pb in a 2-yr field study. Cumulative trace-metal leaching was determined by self-integrating accumulators (SIAs) based on ion-exchange resins and compared with data calculated from mean concentrations in the soil solution collected with tension lysimeter plates and groundwater recharge rate. The highest rate of biochar addition increased water retention and thus reduced the amount of drainage water. Mean cumulative Zn and Cd fluxes decreased due to both reduced concentrations in the soil solution and reduced drainage. Although Cu and Pb concentrations in the soil solution increased with biochar addition, the reduced drainage resulted in similar fluxes in the biochar and the control treatment. The cumulative Zn, Cd, and Cu fluxes determined with SIAs were in the same range as the calculated values, while SIA-based Pb fluxes were much higher than those calculated. Since the suction plates excluded colloids, the high SIA-based Pb fluxes indicate colloidal transport and reveal the importance to elucidate the colloidal pathway for risk assessment. PMID:25602205

  19. Removal of Lead, Copper, Zinc and Cadmium from Water Using Phosphate Rock

    Institute of Scientific and Technical Information of China (English)

    Alessia CORAMI; Silvano MIGNARDI; Vincenzo FERRINI

    2008-01-01

    Removal of Pb2+,Cu2+,Zn2+ and Cd2+ from aqueous solutions by sorption on a natural phosphate rock (FAP) was investigated. The effects of the contact time and initial metal concentration were examined in the batch method. The percentage sorption of heavy metals from solution ranges generally between 50% and 99%. The amount of sorbed metal ions follows the order Cu>Pb>Cd>Zn. Heavy metal immobilization was attributed to both surface complexation of metal ions on the surface of FAP grains and partial dissolution and precipitation of a heavy metal-containing phosphate. The very low desorption ratio of heavy metals further supports the effectiveness of FAP as an alternative and low-cost material to remove toxic Pb2+, Cu2+, Zn2+ and Cd2* from polluted waters.

  20. Cadmium, Copper, Lead, and Zinc Contents of Fish Marketed in NW Mexico

    Directory of Open Access Journals (Sweden)

    Martín G. Frías-Espericueta

    2014-01-01

    Full Text Available To assess if they were within the safety limits for human consumption, the Cd, Cu, Pb, and Zn contents of fish muscles, bought from separate stalls of the fish markets of nine cities of NW Mexico, were determined by atomic absorption spectrophotometry. Considering all fish and markets, the mean contents were Zn: 23.23±5.83, Cu: 1.72±0.63, Cd: 0.27 ± 0.07, and Pb: 0.09 ± 0.04 µg/g (dry weight. Cu, Zn, and Pb did not reach levels of concern for human consumption, but the high Cd values determined in Mazatlán (Mugil cephalus: 0.48±0.15; Diapterus spp.: 0.57±0.33; Lutjanus spp.: 0.72±0.12; small shark: 0.87±0.19 µg/g dry weight indicate that this was the only metal of concern for human health because the daily individual consumption of fish muscle to reach the PTDI would be within 0.27 and 0.41 kg.

  1. Release of cadmium, copper and lead from urban soils of Copenhagen.

    Science.gov (United States)

    Li, Lijun; Holm, Peter E; Marcussen, Helle; Bruun Hansen, Hans Christian

    2014-04-01

    We studied the bonding and release kinetics of Cd, Cu and Pb from different soils in the older metropolitan area of Copenhagen. Total Cd, Cu and Pb concentrations were elevated 5-27 times in the urban soils compared to an agricultural reference soil, with Cd and Pb in mainly mobilisable pools and Cu in strongly bound pools. The soils were subjected to accelerated leaching studies in Ca(NO3)2 or HNO3 solutions resulting in release up to 78, 18 and 15% of total Cd, Cu and Pb soil concentrations over a period of 15 weeks. The relative initial Cd and Pb release rates increased 10 fold when pH decreased 2 and 3 units, respectively, while increases in Cu release rates were only seen at pH below 4. The total leachable Cu and Pb pools were higher in urban soils compared the agricultural reference soil but not for Cd.

  2. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    Science.gov (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (Psoils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  3. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: xxye@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: gzhwang@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2015-05-30

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  4. Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

    OpenAIRE

    Shidvash Dowlatshahi; Ahmad Reza Haratinezhad Torbati; Mahshid Loloei

    2014-01-01

    Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the present research was to provide an appropriate and cost-effective adsorbent to remove heavy metals from...

  5. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  6. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    Science.gov (United States)

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead).

  7. Lead and cadmium contents in selected macrofauna species from the Dogger Bank and the eastern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kroencke, I.

    1987-01-01

    Lead and cadmium concentrations were measured in the polychaetes Nephtys hombergi and N. caeca, in the sea-urchin Echinocardium cordatum, and in the bivalve Venus striatula obtained from the Dogger Bank and the eastern North Sea. The cadmium concentrations determined in all four species from these areas were relatively equal, except for an increase in concentration found in those species from the northeastern part of the Dogger Bank. A lower lead content was generally observed in the individuals taken from the German Bight than in those from the Dogger Bank, especially from its northeastern part. In the case of lead, it is possible to divide the southern North Sea into three regions according to the different concentration levels by statistical treatment: The less contaminated German Bight, the more contaminated central Dogger Bank and the highly affected northeastern Dogger Bank. The results obtained contradict the prevailing opinion that offshore invertebrate populations are, in comparison to individuals from coastal regions, less affected by contaminants such as heavy metals.

  8. Lead and cadmium contents in selected macrofauna species from the Dogger Bank and the eastern north Sea

    Science.gov (United States)

    Kröncke, Ingrid

    1987-12-01

    Lead and cadmium concentrations were measured in the polychaetes Nephtys hombergi and N. caeca, in the sea-urchin Echinocardium cordatum, and in the bivalve Venus striatula obtained from the Dogger Bank and the eastern North Sea. The cadmium concentrations determined in all four species from these areas were relatively equal, except for an increase in concentration found in those species from the northeastern part of the Dogger Bank. A lower lead content was generally observed in the individuals taken from the German Bight than in those from the Dogger Bank, especially from its northeastern part. In the case of lead, it is possible to divide the southern North Sea into three regions according to the different concentration levels by statistical treatment: the less contaminated German Bight, the more contaminated central Dogger Bank and the highly affected northeastern Dogger Bank. The results obtained contradict the prevailing opinion that offshore invertebrate populations are, in comparison to individuals from coastal regions, less affected by contaminants such as heavy metals.

  9. A binderless, covalently bulk modified electrochemical sensor: Application to simultaneous determination of lead and cadmium at trace level

    Energy Technology Data Exchange (ETDEWEB)

    Gunigollahalli Kempegowda, Raghu [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India); Malingappa, Pandurangappa, E-mail: mprangachem@gmail.com [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Proposed sensor is a new type of binderless covalent bulk modified electrode. Black-Right-Pointing-Pointer Surface can be easily renewed by simple mechanical polishing using emery sheets. Black-Right-Pointing-Pointer Free from modifier leaching during electrochemical measurements. Black-Right-Pointing-Pointer Provides long term storage stability with good reproducibility. Black-Right-Pointing-Pointer Nanomolar level detection limit achieved with selectivity. - Abstract: A new type of covalent binderless bulk modified electrode has been fabricated and used in the simultaneous determination of lead and cadmium ions at nanomolar level. The modification of graphitic carbon with 4-amino salicylic acid was carried out under microwave irradiation through the amide bond formation. The electrochemical behavior of the fabricated electrode has been carried out to decipher the interacting ability of the functional moieties present on the modifier molecules toward the simultaneous determination of Pb{sup 2+} and Cd{sup 2+} ions using cyclic and differential pulse anodic stripping voltammetry. The possible mode of interaction of functional groups with metal ions is proposed based on the pKa values of the modifier functionalities present on the surface of graphitic carbon particles. The analytical utility of the proposed sensor has been validated by measuring the lead and cadmium content from pretreated waste water samples of lead acid batteries.

  10. Effects of low-level lead and arsenic exposure on copper smelter workers

    Energy Technology Data Exchange (ETDEWEB)

    Lilis, R.; Valciukas, J.A.; Malkin, J.; Weber, J.P.

    An analysis of reported symptoms and their relationship with indicators of lead absorption - blood lead (Pb-B) and zinc protoporphyrin (ZPP) - and of arsenic absorption - urinary arsenic (As-U) - was undertaken among 680 active copper smelter workers. Lead and arsenic absorption in the copper smelter employees were characterized by the median values of 30.4 ..mu..g/dl for Pb-B, 41.5 ..mu..g/dl for ZPP, and 26 ..mu..g/L for As-U. Blood lead was 40 ..mu..g/dl or higher in 16.7% or cases, ZPP was 50 ..mu..g/dl or higher in 31.2%, and urinary arsenic was 50 ..mu..g/L or higher in 16.4% of currently active copper smelter workers. The number of reported symptoms (from a total of 14 symptoms) increased with ZPP levels; the relationship with Pb-B was less marked. Arsenic contributed relatively little. Mean Pb-B, ZPP, and As-U levels for subjects reporting each of the 14 symptoms were compared with those of subjects who did not report the symptoms. Mean Pb-B was found to differ significantly for one symptom, fatigue. Significant differences in mean ZPP levels were found for fatigue, sleep disturbances, weakness, paresthesia, and joint pain. Prevalence rates for these symptoms rose more markedly with increasing ZPP than with Pb-B levels. The results indicate a relationship between certain CNS and musculo-skeletal symptoms and increased lead absorption in this population. Adherence to exposure standards that preclude undue lead absorption and appropriate biological monitoring including ZPP levels, are necessary to prevent adverse, especially long-term, health effects.

  11. Syntheses and structures of discrete copper(II) and cadmium(II) supramolecular complexes based on 1,4-diacylthiosemicarbazone ligands.

    Science.gov (United States)

    Jiao, Chen; Zhang, Si-Si; Li, Zuo-Yin; Liu, Jian-Jun; Lin, Mei-Jin; Huang, Chang-Cang

    2016-02-01

    Thiosemicarbazides and their metal complexes have attracted considerable interest because of their biological activities and their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Discrete copper(II) and cadmium(II) complexes have been prepared by crystallization of N-[2-(2-hydroxybenzoyl)hydrazinecarbonothioyl]propanamide (H3L) with Cu(CH3COO)2 or Cd(NO3)2 in a dimethylformamide/methanol mixed-solvent system at room temperature, affording the complexes di-μ-acetato-bis{μ4-1-[(2-oxidophenyl)carbonyl]-2-(propanamidomethanethioyl)hydrazine-1,2-diido}tetracopper(II) dimethylformamide disolvate, [Cu4(C11H10N3O3S)2(C2H3O2)2]·2C3H7NO, (I), and bis{μ2-[(2-hydroxyphenyl)formamido](propanamidomethanethioyl)azanido}bis[(4,4'-bipyridine)nitratocadmium(II)] dihydrate, [Cd2(C11H12N3O3S)2(NO3)2(C10H8N2)2]·2H2O, (II). Complex (I) consists of four Cu(II) cations, two μ4-bridging trianionic ligands and two μ2-bridging acetate ligands, while complex (II) is composed of two Cd(II) cations, two μ2-bridging monoanionic ligands, two nitrate ligands and two 4,4'-bipyridine ligands. These discrete complexes are connected by hydrogen bonds and van der Waals interactions to form a three-dimensional supramolecular architecture. Compared with (I), the phenolic hydroxy group and hydrazide N atom of the thiosemicarbazide ligand of (II) are not involved in coordination and lead to a binuclear Cd(II) complex. This different coordination mode may be attributed to the larger ionic radius of the Cd(II) ion compared with the Cu(II) ion. PMID:26846495

  12. Adsorption of cadmium, copper, nickel, and zinc to a poly(tetrafluorethene) porous soil solution sampler.

    Science.gov (United States)

    Andersen, M K; Raulund-Rasmussen, K; Strobel, B W; Hansen, H C B

    2002-01-01

    Suction cups made of poly(tetrafluorethene) (PTFE) are widely used for sampling of soil solution. A brand (Prenart) of PTFE cups was tested for adsorption of Cd, Cu, Ni, and Zn at low concentrations under different conditions. In a laboratory experiment adsorption from a 10 microg L(-1) heavy metal solution with a 0.01 M NaCl background electrolyte was investigated at pH 3.6, 4.5, and 5.8 by pumping the solutions through the cups. The effect of three different ionic compositions was also investigated using 0.01 M CaCl2, 0.01 M NaCl, and no background electrolyte at pH 4.5. In 0.01 M NaCl electrolyte at pH 5.8 the cups acted as effective filters. At pH 3.6 after 300 mL of solution had passed through the cup, equivalence between the Cd and Ni concentrations in influent and effluent was found. No equivalence between effluent and influent concentrations was found for Zn and Cu at pH 4.5 and 5.8. With Ca as the electrolyte, no adsorption of Cd, Ni, or Zn was found. In Na electrolyte, equivalence between influent and effluent concentrations for Cd, Ni, and Zn was reached. The difference between effluent and influent concentrations of Zn, Ni, and Cd remained significant in the absence of electrolyte. For all pH values and electrolytes the difference between effluent and influent concentrations of Cu was significant. It is concluded that PTFE cups affect the concentrations of heavy metals sampled at low soil solution concentrations. Cadmium, Cu, Ni, and Zn adsorb to the cup at pH > 4.5 and low ionic strength. PMID:11841062

  13. Home Plumbing Simulator for the Study of Copper and Lead Corrosion and Release, Disinfectant Demand, and Biofilm Activity - abstract

    Science.gov (United States)

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from “blue” water to copper pinhole leaks. If left untreated, these problems can lead to health...

  14. Risk Assessment of Non-Carcinogenic Heavy Metals (Barium, Cadmium, and Lead in Hair Color in Markets of Tehran

    Directory of Open Access Journals (Sweden)

    F Khalili

    2016-06-01

    Full Text Available Background and Objectives: Chemical hair color are one of the most widely used cosmetics. The presence of heavy metals in these products can affect the health of consumers. Unlike other cosmetics, no study has been conducted on the heavy metal levels in the synthetic chemical hair colors. This study determined the concentration of heavy metals in these products and the risk assessment of non-carcinogenic effects by these elements were calculated. Material and Method: 32 samples of chemical hair color from eight brands (3 local and 5 imported ones and four most used colors were collected from the markets in Tehran. The concentration of cadmium, lead, and barium was determined using ICP-MS. The information required to assess exposure risk was gathered through  a questionnaire distributed among citizens of Tehran. The assessment of exposure was conducted using Mont Carlo method and  non-carcinogenic risk was determined using the index of Hazard Quotient. . Results: Barium concentration measured was 0.86 mg/kg and concentrations of Cadmium and Lead were 0.45 and 185.34 µg/kg respectively. Among the elements, Pb with Hazard Quotient equals to 7.46×10-4 had the most risk and cadmium with Hazard Quotient equals to 3.57×10-5 had the lowest risk. Moreover, the Iranian brand and blond had the highest risk among the samples. Conclusion: Based on the index of Hazard Quotient, heavy metals in the studied samples had no risk for consumers of these products.

  15. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  16. Breast Milk Lead and Cadmium Levels in Suburban Areas of Nanjing,China

    Institute of Scientific and Technical Information of China (English)

    Kang-sheng Liu; Jia-hu Hao; Yu-qing Xu; Xiao-qi Gu; Juan Shi; Chun-fang Dai; Fei Xu; Rong Shen

    2013-01-01

    Objective To evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk in the second post-partum month,to investigate the relationship between Pb/Cd levels in breast milk and some sociodemo-graphic parameters,and to explore whether these levels affect the infants' physical status or the mothers' psychological status (postpartum depression). Methods A cross-sectional study was conducted between November 2009 and December 2010. Al-together 170 healthy mothers were enrolled from Nanjing Maternity and Child Health Care Hospital. The inclusion criteria were: voluntary to participate in this study,healthy,with no chronic disease,breastfeeding in the second postpartum month,living in a suburban but not non-industrial area of Nanjing,and not occupa-tionally exposed to toxic metals. All the mothers completed a questionnaire and were evaluated based on the Edinburgh Postpartum Depression Scale (EPDS) to identify the risk of postpartum depression. Pb and Cd levels in breast milk were determined by inductively coupled plasma mass spectroscopy. The infants of these mothers were examined for their z scores of weight for age,length for age,head circumference for age,and body mass index for age. Results The median breast milk levels of Pb and Cd were 40.6 μg/L and 0.67 μg/L,respectively. In 164 (96.5%) of the 170 samples,Pb levels were higher than the limit reported by the World Health Or-ganization (> 5 μg/L). Breast milk Cd level was > 1 μg/L in 54 (31.8%) mothers. The mothers with a his-tory of anemia had a higher breast milk Pb level than those without a history of anemia (41.1 μg/L vs. 37.9 μg/L,P = 0.050). The median breast milk Cd level in those who were active and passive smokers dur-ing pregnancy was significantly higher than that in non-smokers (0.88 μg/L vs. 0.00 μg/L,P = 0.025). The breast milk Cd level in the mothers not taking iron and vitamin supplements for 2 months postpartum was higher than in those taking the supplements (iron supplement: 0.74

  17. Geochemical Fractionations and Mobility of Arsenic, Lead and Cadmium in Sediments of the Kanto Plain, Japan.

    Science.gov (United States)

    Hossain, Sushmita; Oguchi, Chiaki T.; Hachinohe, Shoichi; Ishiyama, Takashi; Hamamoto, Hideki

    2014-05-01

    Lowland alluvial and floodplain sediment play a major role in transferring heavy metals and other elements to groundwater through sediment water interaction in changing environmental conditions. However identification of geochemical forms of toxic elements such as arsenic (As), lead (Pb) and cadmium (Cd) requires risk assessment of sediment and subsequent groundwater pollution. A four steps sequential extraction procedure was applied to characterize the geochemical fractionations of As, Pb and Cd for 44 sediment samples including one peat sample from middle basin area of the Nakagawa river in the central Kanto plain. The studied sediment profile extended from the bottom of the river to 44 m depth; sediment samples were collected at 1m intervals from a bored core. The existing sedimentary facies in vertical profile are continental, transitional and marine. There are two aquifers in vertical profile; the upper aquifer (15-20m) contains fine to medium sand whereas medium to coarse sand and gravelly sand contain in lower aquifer (37-44m). The total As and Pb contents were measured by the X-Ray Fluorescence analysis which ranged from 4 to 23 mg/kg of As and 10 to 27 mg/kg of Pb in sediment profile. The three trace elements and major heavy metals were determined by ICP/MS and ICP/AES, and major ions were measured by an ion chromatograph. The marine sediment is mainly Ca-SO4 type. The Geochemical analysis showed the order of mobility trends to be As > Pb > Cd for all the steps. The geochemical fractionations order was determined to be Fe-Mn oxide bound > carbonate bound > ion exchangeable > water soluble for As and Pb whereas the order for Cd is carbonate bound > Fe-Mn oxide bound > ion exchangeable > water soluble. The mobility tendency of Pb and Cd showed high in fine silty sediment of marine environment than for those from continental and transitional environments. In the case of As, the potential mobility is very high (>60%) in the riverbed sediments and clayey silt

  18. Effects of pollution on lead and cadmium concentration and correlation with biochemical parameters in blood of human population nearby Kosovo thermo power plants

    Directory of Open Access Journals (Sweden)

    L. Zeneli

    2008-01-01

    Full Text Available This study describes an investigation of lead and cadmium pollution of Kosovo environment as a result of outflow from the coal processing industry. In a comparative study of lead and cadmium concentration in blood of human population of two different environments in Kosovo, one nearby Kosovo Thermo Power Plants, (Obiliq a highly polluted environment and the other that is considered as relatively clean rural environment (Dragash. Analysis has shown that emission of particulate in fly ash from Thermo Power Plants during 2005 has exceeded EU standards by 400-500% and that lead concentration was 18mg kg-1 and cadmium concentration was -1 of ash. A series of determinations of lead and cadmium concentrations in blood of population that lives in this environment, have shown direct effects in biochemical parameters CRE (Creatinin, DB (Direct Bilirubine, TB (Total Bilirubine, AST (Aspartat Aminotransferaza, CK (Creatin Kinaza and CHE (Cholenisteraza in human organism. The results that were achieved in this study showed a significant difference in average lead and cadmium concentration in the blood of the investigated group of peoples that lives in the area near by the Power Plants, from a control group that lives in a rural unpolluted environment. Lead and cadmium has been analyzed in 50 samples taken from persons from industrial zone and 25 samples in controlled group. The level of lead concentration was 23.0-112.1 µg L-1in geometric average 46.05 µg L-1, cadmium concentration was 0.44-6.02 µg L-1 in geometric average of 1.56µg L-1. Controlled group from the rural relatively clean environment showed lead concentration of 6.7-33.8 µg L-1 in geometric avarage 17.76 µg L-1 and cadmium concentration of 0.21-1.8 µg L-1 or in geometric average of 0.73 µg L-1. In conclusion in exposed subjects, pollution from coal burning in Power Plant is very important factor for level of lead and cadmium concentration in blood of tested population.

  19. Determination of lead and cadmium using an ionic liquid and dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2013-06-15

    A procedure for the determination of ultratrace levels of lead and cadmium using dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry (ETAAS) has been developed. The ionic liquid, 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C8MIm][NTf2]), is formed in situ and used to extract the lead and cadmium complexes with ammonium pyrrolidinedithiocarbamate. The very fine droplets of ([C8MIm][NTf2]) allow effective dispersion without the need for organic solvents. After centrifugation, the concentrations of lead and cadmium in the sedimented phase can be determined by ETAAS. Using a 10 mL aqueous sample, the enrichment factor of the procedure was 280 and detection limits of 0.2 and 3 ng L(-1) were obtained for cadmium and lead, respectively. The relative standard deviations for 10 replicates at the 10 ng L(-1) cadmium and 0.2 μg L(-1) lead levels were 6.5 and 7.3%, respectively. The method was successfully applied to the analysis of waters as well as to lixiviates obtained from toys made of plastic materials. PMID:23618174

  20. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    Science.gov (United States)

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers.

  1. What do we know of childhood exposures to metals (arsenic, cadmium, lead, and mercury) in emerging market countries?

    Science.gov (United States)

    Horton, Lindsey M; Mortensen, Mary E; Iossifova, Yulia; Wald, Marlena M; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  2. A rugged and transferable method for determining blood cadmium, mercury, and lead with inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    McShane, William J.; Pappas, R. Steven; Wilson-McElprang, Veronica; Paschal, Dan

    2008-06-01

    A simple, high-throughput method for determining total cadmium, mercury, and lead in blood in cases of suspected exposure, using inductively coupled plasma-mass spectrometry (ICP-MS), has been developed and validated. One part matrix-matched standards, blanks, or aliquots of blood specimens were diluted with 49 parts of a solution containing 0.25% (w/w) tetramethylammonium hydroxide; 0.05% v/v Triton X-100 (blood cell membranes and protein solubilization); 0.01% (w/v) ammonium pyrolidinedithiocarbamate (mercury memory effect prevention and oxidation state stabilization, solubilization by complexation of all three metals); 1% v/v isopropanol (signal enhancement); and 10 μg/L iridium (internal standard). Thus the final dilution factor is 1 + 49. The method provides the basis for the determination of total cadmium, mercury, and lead for assessment of environmental, occupational, accidental ingestion or elevated exposures from other means. Approximately 80 specimens, including blanks, calibration standards, and quality control materials can be processed in an 8-h day. The method has been evaluated by examining reference materials from the National Institute of Standards and Technology, as well as by participation in six rounds of proficiency testing intercomparisons led by the Wadsworth Center of the New York State Department of Health. This method was developed for the purpose of increasing U.S. emergency response laboratory capacity. To this end, 33 U.S. state, and 1 district health department laboratories have validated this method in their own laboratories.

  3. Effects of lead and cadmium on the growth and cation contents of beech seedlings on forest soils

    International Nuclear Information System (INIS)

    The influence of lead and cadmium on the growth and Ca, K and Mg contents of beech seedlings (Fagus sylvatica L.) was investigated. The seedlings were cultivated for three months on mineral soil of pH = 3.6 that was treated with various concentrations of either lead or cadmium or combinations of both. Growth was significantly reduced by levels of 280 ppm plant-available Pb and 5 ppm Cd in soil. The reduction in growth seems to be synergistically affected by the treatment with the heavy metals. Cd decreased the contents of Ca and Mg in the plants while the concentration of K was not affected. Among other things there are two reasons discussed for this decrease: (I) the competition of Cd with Ca and Mg in uptake and translocation; (II) an inhibiting effect of Cd on transpiration. The addition of Pb to the Cd-treated plants weakened the influence of Cd on the Ca and Mg concentrations of the seedlings. (orig.)

  4. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l-1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g-1 Cd and 1.6 μg g-1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  5. Factors affecting lead, cadmium, and arsenic levels in house dust in a smelter town in eastern Germany.

    Science.gov (United States)

    Meyer, I; Heinrich, J; Lippold, U

    1999-07-01

    Hettstedt, a city in eastern Germany with a long history of mining and smelting of nonferrous ores, has several industrial sources of heavy metals. The indoor exposure to metals of children (5 to 14 years old) in the Hettstedt area was assessed by measuring the levels of lead, cadmium, and arsenic contamination in sedimented house dust. Factors which influence the dust loading rate and the surface loading rates of these contaminants in house dust were investigated. The geometric mean of the dust loading rate was 8.9 mg/m2 day. The geometric means of surface loading rates were 1.14, 0. 024, and 0.023 microg/m2 day for lead, cadmium, and arsenic, respectively. Factors that were significantly associated with surface loading rates included the city area of residence, automobile traffic near home, parent with occupational exposure to heavy metals, type of heating, housing characteristics, whether child's home is damp, number of persons living in the child's home, and parents' education. The most significant of these factors was the city area of residence, which reflects the distance from the metal sources; this factor accounted for about half of the variances explained by the regression models.

  6. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    International Nuclear Information System (INIS)

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m2) with the highest lead in surface dust (59,900 μg/m2) and post-play hand wipes (60,900 μg/m2) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions (206Pb/207Pb, 208Pb/207Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust

  7. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-15

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m{sup 2}) with the highest lead in surface dust (59,900 μg/m{sup 2}) and post-play hand wipes (60,900 μg/m{sup 2}) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 207}Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust.

  8. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    Science.gov (United States)

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay. PMID:23792913

  9. Development of copper sulfide/cadmium sulfide thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Szedon, J. R.; Biter, W. J.; Dickey, H. C.

    1982-03-08

    The most important accomplishments during this period were to demonstrate and to elucidate further the complex effects that occur during the aging of Cu/sub 2/S/CdS thin-film solar cells in flowing wet oxygen. There are two distinct effects. At constant illumination, the short-circuit current of cells aged at room temperature consistently decreases with time. The second effect, related to diode opposing current, is more involved and may result from several competing mechanisms. Over the short term (approx. 4 to 5 hours), the magnitude of diode opposing current decreases. After approx. 20 hours of aging, opposing current generally returns to the level achieved after hydrogen annealing which immediately preceded the aging sequence. Optical measurements of the spectral transmission of the Cu/sub 2/S layers in a cell content have been made using a silicon detector epoxied to the back of a CdS cell after the copper foil substrate was removed. There is no significant change in Cu/sub 2/S transmission behavior for wavelengths ranging from 525 to 1000 nm during wet-oxygen aging for periods of 2 to 36 hours. This suggests that the decrease in J/sub SC/ at constant illumination, for the aging experiments in a flowing wet-oxygen ambient, arises because of changes in minority-carrier transport properties of the Cu/sub 2/S. Before developing a method for using an epoxied silicon detector to measure optical behavior of the Cu/sub 2/S layer, we explored the possibility of using a junction-containing wafer of silicon as a substrate for deposited CdS films. Some monolithic structures were successfully fabricated. Comparisons were made of CdS grain structure details in the junction detector area and in an adjacent metallized area.

  10. Crippling effects of lead, steel, and copper shot on experimental mallards

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, K.L.

    1976-11-01

    In order to ascertain their capabilities in bagging or crippling farm raised mallards, No. 4 copper, No. 4 steel, and No. 6 steel shot pellets were compared to a 2.75-inch (6.985-cm) magnium (Winchester-Western Super XX) loaded with No. 4 lead shot. A total of 2400 ducks was experimentally shot, fluoroscoped, and analyzed biologically. Classification of a duck into the categories of bagged, crippled, or survivor was not affected by age or sex in any of the shot types tested. No. 4 lead shot broke significantly more bones than No. 4 steel shot when the categories of bagged, crippled, and survivor totals were compared. The overall performance of No. 4 steel compared to No. 4 lead in this experiment indicated No. 4 lead to be the best shotshell. No. 4 lead shot bagged more ducks and crippled fewer ducks than No. 4 steel. No. 4 steel shot pushed significantly more feather wads into shot wounds than No. 4 lead. Biologically, under the conditions of this experiment, the best lead shotshell available outperformed the best steel shotshell in that it produced fewer cripples at normal shooting ranges (up to 60 m). Whether or not the increase of crippling with steel shot is a lesser malady than poisoning awaits more precise data on lead poisoning and evaluation as to what constitutes normal shooting ranges for waterfowl hunters. Without such data, a change from lead to steel would be an arbitrary trade off. 6 references, 1 figure, 11 tables.

  11. Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water

    OpenAIRE

    Kocabaş, Özlem Züleyha; Kocabas, Ozlem Zuleyha; YÜRÜM, YUDA; Yurum, Yuda

    2013-01-01

    The existences of lead, copper, and arsenic in water supplies are great concern due to their potential effects on human health. This study demonstrates beneficial adsorptive eliminations of lead, copper, and arsenic from water using anatase nanoadsorbent produced by sol-gel method followed by calcination at 400 degrees C. The structure of the resulting sample and the surface species of anatase nanoadsorbent were determined using X-ray diffraction (XRD), Raman spectroscopy and X-ray photo...

  12. Histopathology of liver and kidneys of wild living Mallards Anas platyrhynchos and Coots Fulica atra with considerable concentrations of lead and cadmium.

    Science.gov (United States)

    Binkowski, Łukasz J; Sawicka-Kapusta, Katarzyna; Szarek, Józef; Strzyżewska, Emilia; Felsmann, Mariusz

    2013-04-15

    Concentrations of cadmium and lead were measured in liver and kidneys of Mallard (n=60) and Coot (n=50). Free living birds were collected by hunters in years 2006-2008 in the area of fishponds near Zator in southern Poland. Age group was determined according to the appearance of the plumage (Mallards) and iris color (Coot). Concentrations of metals were measured with ET-AA spectrometer. Among all birds specimens with negligible (n=5) and high concentrations (Mallards n=18 and Coots n=17) of cadmium and lead were chosen for further analysis. Histopathological alterations were observed, ranging from circulatory disturbances, retrogressive changes, inflammations to leukocytic infiltration in liver and kidney. They dominated among birds with the highest concentrations of metals. The control group of birds was characterized by a very small number of mentioned lesions. Probably the higher cadmium and lead concentrations in tissues are co-factors in the development of lesions.

  13. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  14. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Science.gov (United States)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  15. Monitoring the effects of exposure to lead and cadmium in working and living environment through standard biochemical blood parameters and liver endonucleases activity

    Directory of Open Access Journals (Sweden)

    Nikolić Ružica S.

    2011-01-01

    Full Text Available Heavy metals as pollutants in the working and living environment are a serious health and environmental problem because they are toxic, non-biodegradable, accumulate in living systems and have a long half-life in soil. Sources of lead contamination are combustion products in the chemical industry and metallurgy, industrial waste water, landfills, traffic etc. Lead enters into the body via the food chain and drinking water. In the body lead is deposited in the liver, kidneys, brain and mineral tissues. Excretion of lead causes damage to the epithelial cells of certain organs. High level exposure to cadmium is usually the result of environmental pollution by human activities. Exposure to cadmium can lead to acute and chronic tissue damage of various organs, including liver and kidneys in humans and in animals. In this paper we analyzed the effects of lead and cadmium exposure, in working and living environment, on the model system of experimental animals, particularly the activity of certain liver enzymes, acid and alkaline DNase, and standard biochemical blood parameters. The study showed that lead and cadmium significantly affect the protein content, red blood cells, hemoglobin and hematocrit, and the activity of liver enzymes. This harmful effect of this toxic metal can be reduced by the supplements.

  16. Secondary side corrosion of Doel 4 steam generators. Are lead and copper implicate

    International Nuclear Information System (INIS)

    The 3SG's of Doel 4 are degraded to various extents by several types of secondary cracking, which differently concern the 3 SG's and unevenly grow, which points to several mechanisms. The likely corrosion processes are proposed and discussed, basing on the results of the site controls and on direct investigation of pulled tubes, taking into account the chemical data of the plant and the main events during service. Lead and copper appear as key elements, which could contribute to the differentiation of behaviours. The interaction with the chemical cleaning is discussed. (authors). 1 fig., 4 tabs., 6 refs

  17. Influence of “Chelavite” Mineral Supplement Use on Cadmium and Lead Content in Blood, Wool and Milk of Heavy Cows

    Directory of Open Access Journals (Sweden)

    Anna Borisovna ANDREEVA

    2015-07-01

    Full Text Available The purpose of this research was to study the influence of this supplement use on the concentration of cadmium and lead in blood serum, wool and milk of heavy cows. The cows of milking herd of black-and-white breed, of 3-5 years old were the object of research. Their yearly milk production was 6 thousand litters (control and experimental group, each having 15 heads. The cows have been fed according to the balanced ration for heavy cows. The mineral supplement dose was determined according to the instruction for application for cows of experimental group with feed. The curative dose was 0.6 ml for 10 kg of body mass 1 time a day during 30 days. The samples were taken before giving the mineral supplement “Chelavite” and after the course had finished. The device Unicam AAS-939 was used to determine the cadmium and lead content in blood, wool and milk by way of atomic absorption spectrophotometry. It has been found that the cadmium level reduced by 2.35 times, the lead level reduced by 1,5 times in cows blood, the cadmium level reduced by 1.33 times, the lead level reduced by 4.34 times in cows wool, the cadmium level reduced by 2.2 times, the lead level reduced by 3.7 times in cows milk after giving them mineral supplement “Chelavite”. Thus, the application of chelate compounds in form of “Chelavite” for cows reduces concentration of heavy metals such as cadmium and lead. Then this is one of the ways to improve the milk quality.

  18. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method

    International Nuclear Information System (INIS)

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd2+ and Cu2+ appear at -0.13 and 0.34 V respectively, at the concentration range of 5-50 μM, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd2+ and Cu2+ was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (qe) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  19. 土壤对重金属Cu(Ⅱ)、Cd(Ⅱ)的吸附研究%Study of the adsorption of copper and cadmium in soil

    Institute of Scientific and Technical Information of China (English)

    许丹; 马琳; 董岁明; 吴书凤; 师东

    2013-01-01

    采用等温吸附平衡法研究了土壤对重金属Cu2+和Cd2+的吸附,研究了浓度、搅拌时间、静置时间以及pH对土壤吸附铜和镉影响.结果表明,土壤对铜的吸附量大于镉,土壤对重金属吸附的最佳条件是搅拌15 min,静置20 min,pH为7.0,初步确定土壤对铜和隔的吸附属于Freundlich吸附.%Abstract:The adsorption of Cu2+ and Cd2+ features in soil through the method of the balanced isothermal adsorption.The effect of the soil adsorption of copper and cadmium in different concentration,stirring time and standing time and pH value on copper and cadmium adsorption by soil.The results show that the adsorption of Cu2+ is higher than Cd2+ and the optimum condition of the soil adsorption of heavy metals is stirred for 15 min,standing 20 min and the pH is 7.0,the type of the adsorption preliminary determined the Freundlich adsorption.

  20. Monitoring the content of fluorine, lead and cadmium in water for human consumption in a sector of Santa Barbara of Heredia

    International Nuclear Information System (INIS)

    Samples of drinking water from natural sources and distribution tanks in a specific area of Santa Barbara of Heredia were analyzed. The content of fluorine, lead and cadmium was determined applying the Spans method and Anodic Stripping Voltamperometry respectively, over a period of nine months. During July 1994 to February 1995, levels of lead, cadmium and fluoride in the samples, remained under the permissible limits according to the Norma Nacional para la Calidad del Agua Potable, and therefore do not represent a toxicological danger to the population of Santa Barbara of Heredia. (author)

  1. Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC-ICP-MS and HPLC-ESI-MSn.

    Science.gov (United States)

    Barałkiewicz, Danuta; Kózka, Małgorzata; Piechalak, Aneta; Tomaszewska, Barbara; Sobczak, Paweł

    2009-07-15

    An analytical approach based on hyphenated techniques was used for studying the speciation of cadmium and lead in Pisum sativum. Proper preservation conditions were employed to avoid the oxidation of -SH groups and corresponding decomposition of metal-binding complexes. SEC column was washed with 5 mM beta-mercaptoethanol and then samples were analysed using ICP-MS as a detector. Results showed that cadmium is the inhibitor of lead uptake. HPLC-ESI-MS(n) assays revealed fragmentation pathways of phytochelatins.

  2. Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura city, Nile Delta, Egypt

    International Nuclear Information System (INIS)

    A random sample of 68 males and 25 females who reside in Mansoura city, Egypt, was examined for concentrations of cadmium, lead, and mercury in blood, urine, hair, and nails. The effect of gender and smoking on such levels was studied. The influence of dental amalgam on the levels of mercury in these biological samples were also examined. The results obtained show that only blood lead, which increased among males, was affected by gender. Blood levels of cadmium and lead as well as hair lead appeared to increase with smoking habit. Mercury levels in blood and urine were related to the presence of dental amalgam fillings. International comparisons between our results and the corresponding levels in other localities in the world showed that there ere environmentally related variations in terms of cadmium levels in hair, lead levels in blood, urine, hair, and nails, and mercury levels in blood, air, and nails. In conclusion, reference intervals of cadmium, lead, and mercury in the biological samples are environmentally related parameters. Some factors, such as gender, smoking habit, and the presence of dental amalgam fillings, may affect such levels and therefore should be considered

  3. Opiatergic participation in the thirst-inhibiting effect of acute third ventricle injections of cadmium (Cd2+ and lead (Pb2+

    Directory of Open Access Journals (Sweden)

    E. De-Castro-e-Silva

    1998-06-01

    Full Text Available We have previously demonstrated that acute third ventricle injections of both lead and cadmium prevent the dipsogenic response elicited by dehydration or by central injections of dipsogenic agents such as angiotensin II, carbachol and isoproterenol in rats. We have also shown that the antidipsogenic action of cadmium may be due, at least in part, to activation of thirst-inhibitory central serotonergic pathways. In the present paper we show that in Wistar male rats the antidipsogenic effect of both lead acetate (3.0 nmol/rat and cadmium chloride (3.0 nmol/rat may be partially dependent on the activation of brain opiatergic pathways since central injections of naloxone (82.5 nmol/rat, a non-selective opioid antagonist, blunt the thirst-inhibiting effect of these metals. One hundred and twenty minutes after the second third ventricle injections, dehydrated animals (14 h overnight receiving saline + sodium acetate displayed a high water intake (7.90 ± 0.47 ml/100 g body weight whereas animals receiving saline + lead acetate drank 3.24 ± 0.47 ml/100 g body weight. Animals receiving naloxone + lead acetate drank 6.94 ± 0.60 ml/100 g body weight. Animals receiving saline + saline drank 8.16 ± 0.66 ml/100 g body weight whilst animals receiving saline + cadmium chloride drank 1.63 ± 0.37 ml/100 g body weight. Animals receiving naloxone + cadmium chloride drank 8.01 ± 0.94 ml/100 g body weight. It is suggested that acute third ventricle injections of both lead and cadmium exert their antidipsogenic effect by activating thirst-inhibiting opioid pathways in the brain.

  4. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429

  5. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability.

  6. Investigate of atmospheric arsenic, cadmium, chromium, lead, and mercury levels in moss species found around Zilkale, by EDXRF Spectrometry

    Science.gov (United States)

    Akçay, Nilay; Batan, Nevzat; Ćinar, Yunus

    2016-04-01

    Zilkale is a castle located in Fırtına Valley and it is one of the most important historical structures in Çamlihemşin district of Rize Province in the Black Sea Region of Turkey. The castle surrounded by very high mountains that poke up into the clouds, and it rains here all year round. Tourism businesses or industrial plants are not so much there yet. In recent years, Zilkale region has begun the attract tourist, people on treaking holidays in the Kaçkar. But many domestic and foreign tourists come to this region by own car or tour buses. The aim of this study is to investigate the atmospheric concentrations of arsenic, cadmium, chromium, lead, and mercury levels in five different moss species collected around Zilkale by using Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometry. The average concentrations of heavy metals in moss samples ranged from 0.79-4.63 ppm for arsenic, 54.47-143.39 ppm for chromium, 39.97-81.03 ppm for lead. The values of cadmium and mercury were found below the detection limit. This study has shown that Hypnum cupressiforme, Abietinella abietina, Rhytidium rugosum, Plagiomnium undulate, and Thuidium tamariscinum samples collected around Zilkale were used to assess the potential contamination of atmospheric As, Cd, Cr, Pb, Hg contamination in the region and made important contributions toward the understanding of atmospheric As, Cd, Cr, Pb, Hg baseline data can be used for identification of changes in the levels of these heavy metals in the studied area.

  7. An investigation of environmental levels of cadmium and lead in airborne matter and surface soils within the locality of a municipal waste incinerator.

    Science.gov (United States)

    Collett, R S; Oduyemi, K; Lill, D E

    1998-01-19

    The results of an investigation into the environmental impact of heavy metals in the airborne emissions from the Baldovie municipal waste incinerator, Scotland, are presented. A sampling network of 1-km grid squares covering a 7 x 9 km area was established over the incinerator plant and its surroundings. Surface soil core samples were collected from within each 1 km2 and analysed for cadmium and lead content. The spatial distribution of lead levels in soils showed a marked variation downwind from the Baldovie incinerator in comparison with the background level for the area but remained well within the typical range of lead in rural, unpolluted, British soils. A comparison of the observed levels of lead in local soils, with the predicted downwind long-term ground level lead distribution in air indicates that atmospheric emissions of lead originating from the Baldovie incinerator directly determine concentrations of lead in soils within a radius of 5 km of the incinerator. An empirical relationship between the levels of lead in soils and the long-term levels in air was established. In the case of cadmium, the spatial distribution of the heavy metal showed neither a marked nor extensive contamination of the sampled area around the incinerator and remained within the typical range of cadmium levels in rural, unpolluted, British soils. The work concludes that atmospheric emissions of lead from the Baldovie incinerator significantly determines the local distribution of lead in soils within the immediate vicinity of the incinerator. PMID:9514037

  8. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days.

  9. Provenance of early bronze age metal artefacts in western Switzerland using elemental and lead isotopic compositions and their possible relation with copper minerals of the nearby Valais

    OpenAIRE

    Cattin, Florence; Guénette-Beck, Barbara; Curdy, Philippe; Meisser, Nicolas; Ansermet, Stefan; Hofmann, Beda; Kündig, Rainer; Hubert, Vera; Wörle, Marie; Hametner, Kathrin; Günther, Detlef; Wichser, Adrian; Ulrich, Andrea; Villa, Igor M.; Besse, Marie

    2011-01-01

    Ten Early Bronze Age (BzA1, 2200-2000 BC) copper artefacts from the central Valais region from Switzerland were studied for their elemental composition and lead isotope ratios. In order to answer the archaeological question of a local copper supply, a database for copper minerals across the Valais (Switzerland) has been established. This database contains 69 data on lead isotope ratios as well as additional information on the minerals and geochemical associations for copper minerals from 38 l...

  10. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  11. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  12. Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures

    Science.gov (United States)

    Calfee, Robin D.; Little, Edward E.; Puglis, Holly J.; Scott, Erinn L.; Brumbaugh, William G.; Mebane, Christopher A.

    2014-01-01

    The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model–normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.

  13. Lead isotopic systematics for native copper-chalcocite mineralization in basaltic lavas of the Emeishan large igneous province, SW China:Implications for the source of copper

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; WANG Dapeng; ZHU Xiaoqing; ZHANG Zhengwei; ZHU Chaohui

    2009-01-01

    The Emeishan continental flood basalt, which is widespread in Yunnan, Guizhou and Sichuan provinces of Southwest China, is the volcanic product of a Permian mantle plume, and native copper-chalcocite mineralization associated with the basalt is very common in the border area of Yunnan and Guizhou provinces. The mineralization occurred in the tuff intercalation and terrestrial sedimentary rock intercalation which were formed during the main period of basalt eruption. The orebodies are controlled by the stratigraphic position and faults. Metal ore minerals in the ores are mainly native copper, chalcocite and tenorite, with small amounts of chalcopyrite, bomite, pyrite and malachite, and sometimes with large amounts of bitumen, carbon and plant debris. Several decades of ore deposits are distributed in the neighboring areas of the two provinces, while most of them are small-scale deposits or only ore occurrences. By comparing the lead isotopic composition of the ores with that of the wall-rocks, cover and basement rocks of various periods, the source of copper in this type of ore deposits was studied in this paper. The results showed that: (1) The Pb isotopic composition of the ores from ten deposits is absolutely different from that of sili-ceous-argillaceus rocks of the Upper Permian Xuanwei Formation, limestones of the Lower Permian Series and Carboniferous, Cambrian sandstone-shale and recta-sedimentary rock and dolomite from the upper part of the Meso-Proterozoic Kunyang Group, This indicates that ore lead was derived neither from the cover rock nor from the basement rocks; (2) Although the Neo-Proterozoic Siman dolomite and silicalite, and dolomite in the lower part of the Kunyang Group are similar in Pb isotopic composition to the ores, lead and copper contents in these rocks are very low and they have not made great contributions to copper mineralization; (3) The ores have the same Pb iso-topic composition as the basalt, the latter being enriched in copper

  14. A screening-level assessment of lead, cadmium, and zinc in fish and crayfish from Northeastern Oklahoma, USA.

    Science.gov (United States)

    Schmitt, Christopher J; Brumbaugh, William G; Linder, Gregory L; Hinck, Jo Ellen

    2006-10-01

    The objective of this study was to evaluate potential human and ecological risks associated with metals in fish and crayfish from mining in the Tri-States Mining District (TSMD). Crayfish (Orconectes spp.) and fish of six frequently consumed species (common carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; flathead catfish, Pylodictis olivaris; largemouth bass, Micropterus salmoides; spotted bass, M. punctulatus; and white crappie, Pomoxis annularis) were collected in 2001--2002 from the Oklahoma waters of the Spring River (SR) and Neosho River (NR), which drain the TSMD. Samples from a mining-contaminated site in eastern Missouri and from reference sites were also analyzed. Individual fish were prepared for human consumption in the manner used locally by Native Americans (headed, eviscerated, and scaled) and analyzed for lead, cadmium, and zinc. Whole crayfish were analyzed as composite samples of 5--60 animals. Metals concentrations were typically higher in samples from sites most heavily affected by mining and lowest in reference samples. Within the TSMD, most metals concentrations were higher at sites on the SR than on the NR and were typically highest in common carp and crayfish than in other taxa. Higher concentrations and greater risk were associated with fish and crayfish from heavily contaminated SR tributaries than the SR or NR mainstems. Based on the results of this and previous studies, the human consumption of carp and crayfish could be restricted based on current criteria for lead, cadmium, and zinc, and the consumption of channel catfish could be restricted due to lead. Metals concentrations were uniformly low in Micropterus spp. and crappie and would not warrant restriction, however. Some risk to carnivorous avian wildlife from lead and zinc in TSMD fish and invertebrates was also indicated, as was risk to the fish themselves. Overall, the wildlife assessment is consistent with previously reported biological effects attributed to metals

  15. Cytotoxic and Oxidative Stress Caused by Cadmium and Lead on Human Skin Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Ali Beman Zaree Mahmodabady

    2006-01-01

    Full Text Available Introduction: Heavy metals are important occupational andenvironmental pollutants that cause damage to various organs.Although there is no effective therapy for such a poisoning,metallothionein has been shown to play a key role in thedetoxification of cadmium (Cd. Evidence in the literature suggeststhat superoxide dismutase, glutathione peroxidase, and catalaseconstitute important defense mechanisms against oxygen toxicity inthe cells. The aim of this study was to investigate the effect ofcadmium chloride and Pb-acetate on antioxidant enzymes in thehuman skin fibroblast cells (HF2FF.Material and Methods: The human skin fibroblast (HF2FF cellswere incubated in serum-free medium containing 20 μM CdCl2 for18 hr three times a week. The same exposure to an equimolar doseof Pb-acetate was performed. After each exposure and after threetimes exposure the cells were collected and cell viability, thecontents of superoxide dismutase (SOD, catalase, glutathioneperoxidase (GSH-Px, GSH and malondialdehyde (MDA weremeasured.Results: Cd caused cytotoxicity and inhibition of glutathioneperoxidase (GSH-Px and SOD activity, as well as depletion of thereduced form of glutathione (GSH in the cell. The level of lipidperoxidation (LP was increased, but catalase activity was notsignificantly altered. These defects were increased with repeatedexposures. The same exposure to an equimolar dose of Pb-acetateevoked only inhibition of GSH-Px and SOD. The values of GSH,catalase and LP activity remained unchanged.Conclusion: The inhibition of GSH-Px and SOD may be consideredas an important biomarker of the toxic effect of metals.

  16. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and cadmium contamination in sub-Saharan wetlands

    International Nuclear Information System (INIS)

    Wetland pollution is a matter of concern in sub-Saharan Africa. Though regularly exploited, the Nile monitor (Varanus niloticus), a large amphibious lizard, is not threatened. This work aims at assessing the value of this varanid as a sentinel species in surveys of environmental contamination by metals. Lead and cadmium quantifications were performed by graphite furnace-atomic absorption spectrophotometry in bone, intestine, kidney, liver and muscle in 71 monitors from three unevenly polluted sites in Mali and Niger, plus a reference site. The effects of sex, size and fat reserves as well as factors related to the sampling strategy (tissue sampled, sampling site) were studied with a mixed linear model. Metal contamination is moderate at the four sites but clear differences nevertheless occur. Lead levels are generally maximal in bone, with a gender-independent median value 320 ng.g-1. Median cadmium concentrations never exceed 70.2 ng.g-1 in females (kidney) and 57.5 ng.g-1 in males (intestine). Such levels should have no detrimental effects on the monitors. Lead and cadmium levels in muscles are generally below 200 and 20 ng.g-1, respectively, and should provoke no health hazard to occasional consumers of monitor meat. Metal organotropisms are consistent with those observed in other studies about Squamates: for lead: bone > [kidney, intestine, liver] > muscle in males and [bone, kidney] > [intestine, liver] > muscle in females; for cadmium: [liver, intestine, kidney] > [bone, muscle] for both genders. Females are more contaminated, especially in their kidneys. In this tissue, median values in ng.g-1 are 129.7 and 344.0 for lead and 43.0 and 70.2 for cadmium, for males and females, respectively. Nile monitors can reveal subtle differences in local pollution by metals; moreover, the spatial resolution of the pollution indication that they give seems to be very sharp. The practical relevance of this new tool is thus validated.

  17. Simulation of aging process of lead frame copper alloy by an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    苏娟华; 董企铭; 刘平; 李贺军; 康布熙

    2003-01-01

    The aging hardening process makes it possible to get higher hardness and electrical conductivity of lead frame copper alloy.The process has only been studied empirically by trial-and-error method so far.The use of a supervised artificial neural network(ANN)was proposed to model the non-linear relationship between parameters of aging process with respect to hardness and conductivity properties of Cu-Cr-Zr alloy.The improved model was developed by the Levenberg-Marquardt training algorithm.A basic repository on the domain knowledge of aging process was established via sufficient data mining by the network.The results show that the ANN system is effective and successful for predicting and analyzing the properties of Cu-Cr-Zr alloy.

  18. Exogenous salicylate application affects the lead and copper accumulation characteristics of Lemna gibba L.

    Energy Technology Data Exchange (ETDEWEB)

    Duman, Fatih; Aksoy, Ahmet; Ozturk, Fatma; Ceylan, Ahmet [Erciyes Univ., Kayseri (Turkey). Dept. of Biology

    2010-11-15

    Previous studies have shown that salicylates can change the ion permeability of root cells. Therefore the possible effects of exogenous salicylate application on lead (Pb) and copper (Cu) accumulation and its protective role against DNA damage due to metal exposure in Lemna gibba were studied. L. gibba was exposed to 5, 10, and 25 {mu}M Pb and Cu for six days in the presence and absence of sodium salicylate (SA) (0.1, 0.5, and 1 mM). At all concentrations tested, SA application decreased Pb accumulation. On the other hand, application of 0.5 mM SA increased Cu accumulation. SA did not reduce DNA damage resulting from Pb and Cu toxicity. In summary, SA may be useful for reducing Pb accumulation, and application of SA at 0.5 mM may be useful for the phytoextraction of Cu. (orig.)

  19. Exogenous salicylate application affects the lead and copper accumulation characteristics of Lemna gibba L.

    Science.gov (United States)

    Duman, Fatih; Aksoy, Ahmet; Ozturk, Fatma; Ceylan, Ahmet

    2010-01-01

    Previous studies have shown that salicylates can change the ion permeability of root cells. Therefore the possible effects of exogenous salicylate application on lead (Pb) and copper (Cu) accumulation and its protective role against DNA damage due to metal exposure in Lemna gibba were studied. L. gibba was exposed to 5, 10, and 25 microM Pb and Cu for six days in the presence and absence of sodium salicylate (SA) (0.1, 0.5, and 1 mM). At all concentrations tested, SA application decreased Pb accumulation. On the other hand, application of 0.5 mM SA increased Cu accumulation. SA did not reduce DNA damage resulting from Pb and Cu toxicity. In summary, SA may be useful for reducing Pb accumulation, and application of SA at 0.5 mM may be useful for the phytoextraction of Cu. PMID:21319709

  20. Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper.

    Science.gov (United States)

    Scholz, Miklas; Xu, Jing

    2002-06-01

    The aim of this study was to investigate the treatment efficiency of passive vertical-flow wetland filters containing different macrophytes (Phragmites and/or Typha) and granular media with different adsorption capacities. Gravel, sand, granular activated carbon, charcoal and Filtralite (light expanded clay) were used as filter media. Different concentrations of lead and copper sulfate were added to polluted urban stream inflow water to simulate pretreated mine wastewater. The relationships between growth media, microbial and plant communities as well as the reduction of predominantly lead, copper and five-day biochemical oxygen demand (BOD5) were investigated. An analysis of variance showed that concentration reductions (mg l(-1)) of lead, copper and BOD5 were significantly similar for the six experimental wetlands. Microbial diversity was low due to metal pollution and similar for all filters. There appears to be no additional benefit in using adsorption media and macrophytes to enhance biomass performance during the first 10 months of operation. PMID:12056494

  1. Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry.

    Science.gov (United States)

    Hurdebise, Quentin; Tarayre, Cédric; Fischer, Christophe; Colinet, Gilles; Hiligsmann, Serge; Delvigne, Frank

    2015-01-01

    Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pP(ZntA)gfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pP(ZntA)gfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pP(ZntA)gfp could be used as a monitoring tool for contaminated soils being processed.

  2. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Quentin Hurdebise

    2015-04-01

    Full Text Available Zinc, lead and cadmium are metallic trace elements (MTEs that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed.

  3. 34. Effect and the Possible Mediated Pathway of Cortisol Secretion in Adrenocortical Cells Induced by Lead and Cadmium in Vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To understand the direct effect on the secretion of adreno-cortical cells induced by lead and cadmium and the possible mediated pathway. Methods: The adrenocortical cells of male guinea pigs were dispersed and primarily cultured, then the cells were incubated wich cadmiun chloride and lead acetate in dosage as 0,6.25, 12.5, 25, 50, 100 μmol/L respectively for different periods (30, 60, 120 and 240 minutes). The cortisol levels in culture medium and cellular cAMP concentration were measured with RIA. Results: Under the existence of ACTH, the levels of cortisol secreted from the cultured cells were showed significantly declined in dose-dependent manner when the cells were treated in 6.25-100μmol/L CdCl2 for 30 to 240 minutes. There would be an interaction for cortisol secretion between the dose of CdCl2 and the incubatal period. Nevertheless, it seemed to have no obvious linear relation in the alterations of cortisol secretion after 12.5~100μmol/L PbAc incubated for 30~240 minutes. It appeared to have a tendency of dual-phase response in a manner of inhibiting the cortisol secretion in low dose (lower than 25μmol/L) and stimulating the secretion function in high dose (50 and 100μmol/L). The cAMP level was presented a remarkably decrease after 6.25~100 μmol/L CdCl2 incubated with the cells. It was proved that the cAMP level had does-effect relations with the CdCl2 dose. PbAc appeared not only dual response with the tendency of cAMP inhibition in low dose and activating to raise in high dose but also dose-effect relationship. Conclusion: CdCl2 could directly inhibit the secretion of cortisol. PbAc is also of the toxic effect on the cortisol secretion with the characteristic of dual-response as inhibition in early phase and low dose while induction to raising in high dose. cAMP, as an important second messenger, play a role in synthesis and secretion of adrenocorticoids. The toxic effects on steroids secretion induced by cadmium and lead were

  4. Bioaccumulation Pattern of Cadmium and Lead in the Head Capsule and Body Muscle of Clarias gariepinus [Burchell, 1822] Exposed to Paint Emulsion Effluent

    OpenAIRE

    S. O. Dahunsi; S.U. Oranusi; R.O. Ishola

    2012-01-01

    The toxicity of Sub-lethal concentrations of effluents from a paint emulsion industry were investigated on African catfish Clarias gariepinus in order to determine the bioaccumulation pattern of two heavy metals i.e., Lead and Cadmium in the Head capsule and Body muscle using a renewable static bioassay. The trend of bioconcentration of metals in the head capsule and muscle of the test organisms differs significantly (phead capsule. In the muscle, the highest bioaccumulation of lead was 0.468...

  5. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil.

    Science.gov (United States)

    Liu, Hongtao

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. PMID:27208784

  6. Influence of lead and cadmium fluoride variation on white light emission characteristics in oxyfluoride glasses and glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Gopi, E-mail: sharmagopi28@yahoo.com [Department of Physics, Kanya Maha Vidyalaya, Jalandhar, Punjab 144004 (India); Bagga, Ruchika; Mahendru, Nancy [Department of Physics, Kanya Maha Vidyalaya, Jalandhar, Punjab 144004 (India); Falconieri, Mauro [ENEA, UTAPRAD, C.R.Casaccia, via Anguillarese 301, 00123 Rome (Italy); Achanta, Venu Gopal [Department of Condensed Matter Physics, TIFR, Mumbai (India); Goel, Ashutosh [Department of Material Science and Engineering, Rutgers-The State University of New Jersey, NJ (United States); Rasool, Shaik Nayab; Vijaya, Navooru [Department of Physics, Sri Venkateswara University, Tirupati (India)

    2015-03-15

    The radiative properties of Dy-doped glasses and glass–ceramic phosphors with varying lead and cadmium fluoride content are investigated in the present study for white light emitting applications. The precipitation of cubic lead fluoride phase of 10–18 nm crystallites was determined with the help of x-ray diffraction studies and the nanocrystalline nature was confirmed with scanning electron microscopy studies. The small size of the nanocrystallites enables the fabrication of transparent glass–ceramics which is verified by UV–vis spectroscopic study. The photoluminescence and lifetime measurements indicate towards progressive changes in the Dy{sup 3+} ion surroundings and propose enhanced energy transfers taking place post-heat treatments. Finally, CIE chromaticity coordinates are found to lie in the white region proposing the suitability of the present studied materials for color display devices. - Highlights: • Enhanced energy transfer in glass ceramics. • Depolymerization of network with variation in heavy metal fluoride. • Radiative properties of Dy{sup 3+} doped glass as W-LED.

  7. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, A. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto (N) (Colombia); Maldonado, J. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); De los Rios, A. [Museo Nacional de Ciencias Naturales(CSIC), Serrano 115 dpdo, 28006 Madrid (Spain); Solé, A. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Esteve, I., E-mail: isabel.esteve@uab.cat [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto (N) (Colombia); Museo Nacional de Ciencias Naturales(CSIC), Serrano 115 dpdo, 28006 Madrid (Spain)

    2013-09-15

    Highlights: •We studied the tolerance-resistance of phototrophic microorganisms to copper and lead. •We determined the capacity of consortia of microorganisms to sequester copper and lead. •CLSM-λscan is a technique for evaluating in vivo effect of metals on microorganisms. •SEM-EDX and TEM-EDX determined the capacity of microorganisms to sequester metals. -- Abstract: The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover

  8. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses.

    Science.gov (United States)

    Tang, Yulin; Cao, Yan; Gao, Zhan; Ou, Zhonghua; Wang, Yajing; Qiu, Jianbin; Zheng, Yizhi

    2014-01-01

    The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC) assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd(2+), Co(2+), Ni(2+), Zn(2+) and Cu(2+)) but not hard metal ions (Ca(2+) and Mg(2+)) in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu(2+) or Cd(2+) stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES) analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd(2+)) and copper (Cu(2+)) tolerance to plants by helping plants to sequester Cd(2+) or Cu(2+) in the root and reduce the amount of heavy metals transported to the shoots. PMID:24901737

  9. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2 enhances tolerance to cadmium and copper stresses.

    Directory of Open Access Journals (Sweden)

    Yulin Tang

    Full Text Available The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd(2+, Co(2+, Ni(2+, Zn(2+ and Cu(2+ but not hard metal ions (Ca(2+ and Mg(2+ in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu(2+ or Cd(2+ stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd(2+ and copper (Cu(2+ tolerance to plants by helping plants to sequester Cd(2+ or Cu(2+ in the root and reduce the amount of heavy metals transported to the shoots.

  10. Neutron production from 158 GeV/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 degree

    CERN Document Server

    Silari, Marco; Birattari, C; Foglio-Para, A; Gini, L; Mitaroff, Angela; Ulrici, L

    2002-01-01

    The neutron emission from 5, 10 and 20 mm thick lead and 10 and 20 mm thick copper targets bombarded by a lead ion beam with momentum of 158 GeV/c per nucleon were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident ion on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 degree with respect to beam direction. Monte Carlo simulations with the FLUKA code were performed to establish a guess spectrum for the unfolding of the experimental data. The results have shown that, lacking Monte Carlo radiation transport codes dealing with ions with masses larger than 1 amu, a reasonable prediction can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number to the power of 0.85-0.95 for a lead target and 0.88-1.03 for a copper target.

  11. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  12. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge

    Science.gov (United States)

    Mebane, C.A.; Hennessy, D.P.; Dillon, F.S.

    2008-01-01

    In order to estimate acute-to-chronic toxicity ratios (ACRs) relevant to a coldwater stream community, we exposed rainbow trout (Oncorhynchus mykiss) to cadmium (Cd), lead (Pb), and zinc (Zn) in 96-h acute and 60+ day early-life stage (ELS) exposures. We also tested the acute and sublethal responses of a mayfly (Baetis tricaudatus) and a midge (Chironomus dilutus, formerly C. tentans) with Pb. We examine the statistical interpretation of test endpoints and the acute-to-chronic ratio concept. Increasing the number of control replicates by 2 to 3x decreased the minimum detectable differences by almost half. Pb ACR estimates mostly increased with increasing acute resistance of the organisms (rainbow trout ACRs ACR estimates by up to a factor of four. When calculated using the geometric means of the no- and lowest-observed effect concentrations, ACRs with rainbow trout and Cd were 0.6 and 0.95; Zn about 1.0; and for Pb 3.3 and 11. The comparable Pb ACRs for the mayfly and Chironomus were 5.2 and 51 respectively. Our rainbow trout ACRs with Pb were about 5-20x lower than earlier reports with salmonids. We suggest discounting previous ACR results that used larger and older fish in their acute tests. ?? 2007 GovernmentEmployee: U.S. Geological Survey.

  13. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  14. The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead.

    Science.gov (United States)

    Veselý, Tomás; Tlustos, Pavel; Száková, Jirina

    2011-10-01

    The effectiveness of heavy metal uptake from contaminated nutrient solution by four aquatic macrophytes (Pistia stratiotes L., Salvinia auriculata AubL, Salvinia minima Baker, and Azolla filiculoides Lam) was estimated in this study. The influence of cadmium (3.5 mg L(-1) and 10.5 mg L(-1)) and lead (25 mg L(-1) and 125 mg L(-1)) on the stress symptoms was observed through the determination of chlorophyll content and transpiration rate over 14 days of the experiment. The results of the present study showed extreme reductions in Cd and Pb concentrations in solution during the first 4 days. The accumulation of Pb in plant tissues was the highest during the first 4 days and was more than 10 times higher in the roots (42,862 mg kg(-1)) than in the leaves (3867 mg kg(-1)). The accumulation of Cd slowly increased and was the highest at the end of the experiment. Concentrations in roots (3923 mg kg(-1)) were roughly 6 times higher than in the leaves (624 mg kg(-1)). Results showed significant decrease in the transpiration rate at Pb treatment and a significant increase at Cd treatment during 48 hours of exposition. PMID:21972509

  15. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  16. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam.

    Science.gov (United States)

    Bui, Anh T K; Nguyen, Ha T H; Nguyen, Minh N; Tran, Tuyet-Hanh T; Vu, Toan V; Nguyen, Chuyen H; Reynolds, Heather L

    2016-09-01

    The effect of environmental pollution on the safety of vegetable crops is a serious global public health issue. This study was conducted to assess heavy metal concentrations in soil, irrigation water, and 21 local vegetable species collected from four sites near mining activities and one control site in Northern Vietnam. Soils from vegetable fields in the mining areas were contaminated with cadmium (Cd), lead (Pb), and arsenic (As), while irrigation water was contaminated with Pb. Average concentrations of Pb and As in fresh vegetable samples collected at the four mining sites exceeded maximum levels (MLs) set by international food standards for Pb (70.6 % of vegetable samples) and As (44.1 % of vegetable samples), while average Cd concentrations in vegetables at all sites were below the MLs of 0.2. The average total target hazard quotient (TTHQ) across all vegetable species sampled was higher than the safety threshold of 1.0, indicating a health risk. Based on the weight of evidence, we find that cultivation of vegetables in the studied mining sites is an important risk contributor for local residents' health. PMID:27542667

  17. Lipid Peroxidation and Ultrastructural Modifications in Brain after Perinatal Exposure to Lead and/or Cadmium in Rat Pups

    Institute of Scientific and Technical Information of China (English)

    YU-MEI ZHANG; XUE-ZHONG LIU; HAO LU; LI MEI; ZONG-PING LIU

    2009-01-01

    Objective To assess lipid peroxidation and ultrastructural modifications in rat brains following perinatal exposure to lead (Pb) and/or cadmium (Cd). Methods Female rats were divided into four groups: control group, Pb (300 mg/L) group, Cd group (10 mg/L) and Pb+Cd (300 mg/L, 10 mg/L) group. The compounds were delivered in the drinking water throughout pregnancy and lactation. Results The levels of compounds in blood and brain of the Pb+Cd group were similar to those of other groups, but the effects of Pb+Cd on pups' body and brain weights were higher than on other compounds. Electron microscopy revealed that Pb and Cd had effects on mitochondrial swelling, disruption and cristae loss, Nissl body dissolution, degenerated organelles and vacuoles, cytomembrane disappearance, and nuclear ehromoplasm concentration. The activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (ACHE) was decreased, whereas the activity of maleic dialdehyde (MDA) was increased. Conclusion Perinatal exposure to low doses of Pb and Cd can produce alterations in lipid peroxidation and ultrastructural modifications in rat brains, and exposure to both metals can result in greater damages.

  18. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Directory of Open Access Journals (Sweden)

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  19. Biosorption of lead(II) and cadmium(II) by protonated Sargassum glaucescens biomass in a continuous packed bed column

    Energy Technology Data Exchange (ETDEWEB)

    Naddafi, Kazem [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of); Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of); Saeedi, Reza [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of)]. E-mail: reza.saeedi@gmail.com; Mahvi, Amir Hossein [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of); Vaezi, Forough [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of); Yaghmaeian, Kamyar [Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan (Iran, Islamic Republic of); Ghasri, Azar [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of); Nazmara, Shahrokh [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran (Iran, Islamic Republic of)

    2007-08-25

    Biosorption of lead(II) and cadmium(II) from aqueous solutions by protonated Sargassum glaucescens biomass was studied in a continuous packed bed column. The selective uptake of Pb{sup 2+} and Cd{sup 2+} was investigated in a binary system with initial concentration of 1 mM for each metal ion. The selective uptake capacities of Pb{sup 2+} and Cd{sup 2+} at complete exhaustion point were obtained 1.18 and 0.22 mmol/g, respectively; therefore, the biosorbent showed much higher relative affinity for Pb{sup 2+} than for Cd{sup 2+}. The optimum range of empty bed contact time (EBCT) was identified as 5-10 min in the packed bed column. The efficiency of biosorbent regeneration by 0.1 M HCl was achieved about 60%, so that the maximum uptake capacity of Pb{sup 2+} by the regenerated biomass was determined to be 0.75 mmol/g while the same value for the original biomass was 1.24 mmol/g. The Thomas model was found in a suitable fitness with the experimental data (R {sup 2} > 0.90 and {epsilon}% < 50%) at all different operation stages. Monitoring of pH in the effluent of the column presented the simultaneous release of H{sup +} with the uptake of heavy metals; hence, ion exchange was confirmed to be one of the main biosorption mechanisms.

  20. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge

    Science.gov (United States)

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-09-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g‑1 and 65 mg g‑1, which were much more than those on the gelatin sponge (9.75 mg g‑1 and 9.35 mg g‑1). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg‑1 and 5.69 mg kg‑1, respectively, which were much lower than those (15.78 mg kg‑1 and 27.98 mg kg‑1) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals.

  1. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.

    Science.gov (United States)

    Benhima, H; Chiban, M; Sinan, F; Seta, P; Persin, M

    2008-01-15

    In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity). The adsorption process is affected by various parameters such as contact time, solution volume to mass of plant particles ratio (m/V), particle size, solution pH and metal concentration. A dose of 25 g/l of adsorbent was optimal to obtain maximum adsorption of both metal ions. The maximum metal uptake was obtained with particles of organic matter of E. echinus>S. anthophorbium>L. arborescens, however, the differences are rather small. Two different waste water types (domestic and industrial) were tested and good results were obtained for removal of Pb(II) and Cd(II) at more than 90%. The removal of the metal and mineral ions waste water was observed for PO(4)(3-) at 88%, for NO(3)(-) at 96.5% and for metal ions (Pb(II), Cd(II), Cu(II) and Zn(II)) at about 100%, using IOM as absorbent. PMID:17869071

  2. Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead.

    Science.gov (United States)

    Varaksin, Anatoly N; Katsnelson, Boris A; Panov, Vladimir G; Privalova, Larisa I; Kireyeva, Ekaterina P; Valamina, Irene E; Beresneva, Olga Yu

    2014-02-01

    Rats were exposed intraperitoneally (3 times a week up to 20 injections) to either Cadmium and Lead salts in doses equivalent to their 0.05 LD50 separately or combined in the same or halved doses. Toxic effects were assessed by more than 40 functional, biochemical and morphometric indices. We analysed the results obtained aiming at determination of the type of combined toxicity using either common sense considerations based on descriptive statistics or two mathematical models based (a) on ANOVA and (b) on Mathematical Theory of Experimental Design, which correspond, respectively, to the widely recognised paradigms of effect additivity and dose additivity. Nevertheless, these approaches have led us unanimously to the following conclusions: (1) The above paradigms are virtually interchangeable and should be regarded as different methods of modelling the combined toxicity rather than as reflecting fundamentally differing processes. (2) Within both models there exist not merely three traditionally used types of combined toxicity (additivity, subadditivity and superadditivity) but at least 10 variants of it depending on exactly which effect is considered and on its level, as well as on the dose levels and their ratio.

  3. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  4. Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles.

    Science.gov (United States)

    Xiong, Tiantian; Leveque, Thibault; Shahid, Muhammad; Foucault, Yann; Mombo, Stéphane; Dumat, Camille

    2014-09-01

    When plants are exposed to airborne particles, they can accumulate metals in their edible portions through root or foliar transfer. There is a lack of knowledge on the influence of plant exposure conditions on human bioaccessibility of metals, which is of particular concern with the increase in urban gardening activities. Lettuce, radish, and parsley were exposed to metal-rich ultrafine particles from a recycling factory via field atmospheric fallouts or polluted soil. Total lead (Pb) and cadmium (Cd) concentrations in of the edible plant parts and their human bioaccessibility were measured, and Pb translocation through the plants was studied using Pb isotopic analysis. The Pb and Cd bioaccessibility measured for consumed parts of the different polluted plants was significantly higher for root exposure (70% for Pb and 89% for Cd in lettuce) in comparison to foliar exposure (40% for Pb and 69% for Cd in lettuce). The difference in metal bioaccessibility could be linked to the metal compartmentalization and speciation changes in relation to exposure conditions. Metal nature strongly influences the measured bioaccessibility: Cd presents higher bioaccessibility in comparison to Pb. In the case of foliar exposure, a significant translocation of Pb from leaves toward the roots was observed. To conclude, the type of pollutant and the method of exposure significantly influences the phytoavailability and human bioaccessibility of metals, especially in relation to the contrasting phenomena involved in the rhizosphere and phyllosphere. The conditions of plant exposure must therefore be taken into account for environmental and health risk assessment. PMID:25603245

  5. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI)

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yanju [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China) and Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: liuyanju@hotmail.com; Zhu Yongguan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ding Hui [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2007-01-15

    Lead and cadmium uptake was investigated for common deciduous street trees in Beijing in this study. Species having Cd accumulation included Populus tomentosa, Sophora japonica and Catalpa speciosa. P. tomentosa had the highest ratios between leaf and soil Cd (0.848), followed by S. japonica (0.536), C. speciosa (0.493), Paulownia tomentosa (0.453) and Juglans regia (0.415). Pb levels were high in leaves of C. speciosa, J. regia and Pa. tomentosa. S. japonica had the highest ratio between leaf Pb and soil Pb (0.146), followed by Pa. tomentosa (0.143), Ginko biloba (0.103) and C. speciosa (0.095). A predictive foliar metal accumulation inde