WorldWideScience

Sample records for cadmium copper lead

  1. Transfer and accumulation of lead, zinc, cadmium and copper in ...

    African Journals Online (AJOL)

    Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. HK Chakroun, F Souissi, JL Bouchardon, R Souissi, J Moutte, O Faure, E Remon, S Abdeljaoued ...

  2. Determination of zinc, cadmium, lead and copper in wines by potentiometric stripping analysis.

    Science.gov (United States)

    Suturović, Z J; Marjanović, N J

    1998-02-01

    A method for determination of zinc, cadmium, lead and copper in wines by means of potentiometric stripping analysis (PSA) is described. Cadmium, lead and copper are determined directly, whereas the zinc determination is possible only after the wine samples decomposition. The results for five red and white Yugoslav wines are given. The content of zinc, cadmium, lead and copper in analyzed samples were in the range of 0.16-0.79, 0.010-0.045, 0.13-0.27 and 0.10-0.46 mg/l, respectively. The contents of the all analyzed metals were below the maximum ordered by the Yugoslav law.

  3. Copper, nickel, zinc, cadmium and lead contamination of soil at ...

    African Journals Online (AJOL)

    This paper discussed heavy metals such as coppper (Cu), nickel (Ni), zinc (Zn), cadmium (Cd) and lead (Pb) in the soil collected from three sites from the solid waste dumping ground at Kureepuzha, very close to Ashtamudi Lake. Also, control samples were collected and analyzed for the said heavy metals. The levels of all ...

  4. Critical loads and excess loads of cadmium, copper and lead for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Bril, J.; Vries, de W.; Groenenberg, J.E.; Breeuwsma, A.

    1995-01-01

    Recently, concern has arisen about the impact of the dispersion of heavy metals in Europe. Therefore, a study (ESQUAD) was initiated to assess critical loads and steady-state concentrations of cadmium, copper and lead for European forest soils. The calculation methods used strongly resemble those

  5. Assessment of levels of copper, cadmium and lead in secretion of ...

    African Journals Online (AJOL)

    The levels of copper, cadmium and lead were determined in milk samples from cows grazed on open fields. The use of H2O2 cleared the residual colours of the metal solutions following digestion with HNO3 acid. The results of the Atomic Absorption Spectrophotometric analysis of the metal solutions from the milk samples ...

  6. DETERMINATION OF ZINC, CADMIUM, LEAD AND COPPER IN SAMPLES OF COFFEE

    Directory of Open Access Journals (Sweden)

    E. Yu. Kupchik

    2015-12-01

    Full Text Available The potential pollutants which can get to the body using food products were explored in this work. The content of heavy metals such as zinc, cadmium, lead and copper are determined in coffee by inversion voltammetry. Sample preparation of samples was performed by oxidizing mineralization of paint sample in nitrate acid. It is shown that the method of inversion voltammetry can be successfully applied for the determination of zinc, cadmium, lead and copper at their combined presence in coffee. It is established that lead and zinc contain in all investigated samples, most of them contain cadmium and copper. Based on the analysis of experimental data discovered that the content of lead and cadmium don’t exceed permissible limits. It is noted that the average number of heavy metals increases in the order: coffee drinks- a soluble coffee – coffee beans and Grinded – green coffee. However, for an objective assessment of hair dyes quality, it is recommended to use a separate identification on each of heavy metals.

  7. Survey of lead, cadmium, iron, copper and zinc in Kaşar cheese.

    Science.gov (United States)

    Yüzbaşi, N; Sezgin, E; Yildirim, M; Yildirim, Z

    2003-05-01

    Lead, cadmium, iron, copper and zinc contents of Kaşar cheese sold in the markets of Ankara, Turkey, were determined over 12 months. A total of 240 samples comprising 10 different brands were analysed. Graphite-furnace atomic absorption was employed for the determination of lead and cadmium, and flame atomic absorption for iron, copper and zinc. The mean (range) of the lead, cadmium, iron, copper and zinc content of the samples were 86 (10-421) microg kg(-1), 1.8 (0.3-8.3) microg kg(-1), 4.2 (1.0-14.1) mg kg(-1), 0.7 (0.3-1.6) mg kg(-1) and 37.7 (26.5-63.0) mg kg(-1), respectively. The samples in November, December and January contained higher amounts of lead than those in other months (p cheese producers (p 0.05). These findings suggested that some contamination occurred during milk production and/or manufacturing of cheese depending on the equipment used. For a consumption of 100 g Kaşar cheese, one would ingest approximately 8.6 microg (4% of the provisional tolerable daily intake, PTDI) of lead, 0.2 microg (0.3%) of cadmium, 0.4 mg (0.9%) of iron, 0.07 mg (2%) of copper and 3.8 mg (6%) of zinc. Therefore, it was concluded that Kaşar cheese is not a significant contributor to the intake of investigated heavy metals.

  8. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Blazquez, M.L. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Department of Materials Science and Metallurgical Engineering, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-04-30

    This paper determines the effect of immobilized brown alga Fucus vesiculosus in the biosorption of heavy metals with alginate xerogels. Immobilization increased the kinetic uptakes and intraparticle diffusion rates of the three metals. The Langmuir maximum biosorption capacity increased twofold for cadmium, 10 times for lead, and decreased by half for copper. According to this model, the affinity of the metals for the biomass was as follows: Cu > Pb > Cd without alga and Pb > Cu > Cd with alga. FITR confirmed that carboxyl groups were the main groups involved in the metal uptake. Calcium in the gels was displaced by heavy metals from solution according to the 'egg-box' model. The restructured gel matrix became more uniform and organized as shown by scanning electron microscopy (SEM) characterization. F. vesiculosus immobilized in alginate xerogels constitutes an excellent biosorbent for cadmium, lead and copper, sometimes surpassing the biosorption performance of alginate alone and even the free alga.

  9. Cadmium, copper, lead, and zinc in five toothed whale species of the Mediterranean Sea.

    Science.gov (United States)

    Frodello, J P; Marchand, B

    2001-01-01

    The cadmium, lead, copper, and zinc levels were measured in six organs (lung, liver, kidney, skin, muscle, and bone) from 18 specimens of toothed whales, belonging to five species, found stranded along the Corsican coast between November 1993 and December 1998. The five species examined were the bottlenose dolphin Tursiops truncatus, the common dolphin Delphinus delphis, the striped dolphin Stenella coeruleoalba, the pilot whale Globicephala melas, and the Risso's dolphin Grampus griseus. The values obtained demonstrate that there is a great variability in the accumulation of toxic metals. A comparison of the values with those obtained in other geographical regions also demonstrates an extensive variability in metal levels. The presence of metals in the stomach contents of three of the individuals studied shows that the food source is responsible for a significant input of pollutants to the whales. Measured pollutant levels in whales are thus the result of an accumulation occurring throughout the animal's life.

  10. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Blazquez, M.L. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd {approx} Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  11. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  13. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  14. Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp., from solar salterns.

    Science.gov (United States)

    Shameer, Syed

    2016-12-01

    Extracellular Polysaccharides (EPS) from both prokaryotes and eukaryotes have a great deal of research interest as they protect the producer from different stresses including antibiotics, ionic stress, desiccation and assist in bio-film formation, pathogenesis, adhesion, etc. In this study haloalkaliphilic Bacillus sp., known to cope with osmophilic stress, was selected and screened for EPS production. The EPS were isolated, partially purified and chemical characteristics were documented using liquid FT-IR followed by assessment of heavy metal biosorption (lead, copper and cadmium) using Atomic Absorption Spectroscopy (AAS). The EPS extracted from three isolates B. licheniformis NSPA5, B. cereus NSPA8 and B. subtilis NSPA13 showed maximum biosorption of Lead followed by Copper and Cadmium. Of the tested isolates, the EPS from isolate B. cereus NSPA8 showed maximum (90 %) biosorption of the lead.

  15. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  16. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  17. Arsenic, cadmium, copper, lead, and selenium in migrating blue-winged teal (Anas discors L.).

    Science.gov (United States)

    Fedynich, A M; Ballard, B M; McBride, T J; Estrella, J A; Garvon, J M; Hooper, M J

    2007-11-01

    The blue-winged teal (Anas discors L.), an abundant waterfowl species in North America, winters primarily in Mexico, Central America, and South America. Its transcontinental migratory behavior provides the opportunity to examine contaminant acquisition across a diverse biogeographic landscape that has varied environmental regulations and wildlife laws. We determined concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and selenium (Se) in liver samples of blue-winged teal migrating through southern Texas during autumn 1998 (n = 47) and spring 1999 (n = 46). Concentrations for As (range 0.006 to 0.22 microg/g wet weight [ww]), Cd (range 0.007 to 8.14 microg/g ww), and Pb (range 0.012 to 1.79 microg/g ww) were at background levels for birds, whereas Cu (8.1 to 227.3 microg/g ww) and Se (0.36 to 5.07 microg/g ww) were increased in several individuals. All 24 hatch-year (HY) blue-winged teal had detectable levels of Cd, Cu, Pb, and Se, and eight had detectable levels of As. A seasonal effect was found for Cd, in which the mean Cd concentration in autumn was lower (p teal found the mean concentration of Cd was higher (p teal found that the mean concentration of Cu was higher (p 0.05) were found for the five elements examined. Results indicated that blue-winged teal were acquiring all five elements; that HY blue-winged teal were exposed to these elements in North America; and that increased Se concentrations in 15% of the 93-bird sample were at levels known to cause impairment in birds.

  18. Accumulation of copper, zinc, cadmium and lead from two contaminated sediments by three marine invertebrates: a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S.; McLeese, D.W.; Peterson, M.R.

    1981-03-01

    Animals from areas with contaminated sediments have been shown in some cases to contain high levels of trace metals. In other cases, the tissue levels of contaminants were relatively constant regardless of the metal contents of the sediments. The availability of sediment-bound metals to bottom-dwelling organisms has been the subject of a few studies. This study describes the uptake of copper, zinc, cadmium and lead from natural, highly contaminated sediments by three marine invertebrates: Nereis virens, Macoma balthica and Crangon septemspinosa.

  19. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  20. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  1. Electrochemical determination of the levels of cadmium, copper and lead in polluted soil and plant samples from mining areas in Zamfara State, Nigeria

    Directory of Open Access Journals (Sweden)

    Modupe Mabel Ogunlesi

    2017-12-01

    Full Text Available The concentrations of lead, copper and cadmium in soil and plant samples collected from Abare and Dareta villages in Anka local government area of Zamfara State, Nigeria have been electrochemically determined. The study was carried out because of the high mortality of women and children under five, reported for these areas in June 2010. The cause was ascribed to the lead poisoning which has been related to the mining and processing of gold-containing ores. Linear sweep anodic stripping voltammetry technique was used with the glassy carbon working, Ag/AgCl reference and platinum auxiliary electrodes. Voltammetric peaks for lead, copper and cadmium that were observed at -495 mV, -19.4 mV and -675 mV, respectively, have formed a basis for construction of the corresponding calibration plots. The concentrations (in mg/kg of lead, copper and cadmium in the soil samples were found in the ranges of 18.99−26087.70, 2.96−584.60 and 0.00−1354.25, respectively. The concentration values for lead were far above already established USEPA (2002 and WHO (1996 maximum permissible limits for residential areas. The concentrations of lead, copper and cadmium in the food samples ranged between 5.70−79.91, 11.17−41.21 and 0.00−5.74 mg/kg. Several of these values are found well above the FAO/WHO limits of 0.1, 2 and 0.1 mg/kg, respectively. The results indicate that in addition to the lead poisoning, copper and cadmium poisoning may also be responsible for sudden and high mortality in this population.

  2. The Role of Blood Lead, Cadmium, Zinc and Copper in Development and Severity of Acne Vulgaris in a Nigerian Population.

    Science.gov (United States)

    Ikaraoha, C I; Mbadiwe, N C; Anyanwu, C J; Odekhian, J; Nwadike, C N; Amah, H C

    2017-04-01

    Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals-lead (Pb) and cadmium (Cd)-globally, and trace metals-zinc (Zn) and copper (Cd)-particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals-cadmium and lead-and trace metals-zinc and copper-in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.

  3. Uptake of lead, zinc, cadmium, and copper by the pulmonate mollusc, Helix aspersa Muller, and its relevance to the monitoring of heavy metal contamination of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Coughtrey, P.J.; Martin, M.H.

    1977-01-13

    The occurrence of lead, zinc, cadmium, and copper in individuals of Helix aspersa from two sites of varying degrees of contamination was studied. Zinc, cadmium, and copper were shown to increase in a linear fashion with animal weight. The rate of uptake for zinc and cadmium in particular was significantly greater at the more contaminated site. Statistical analysis of the data, using correlation and regression techniques, provided information on apparent intermetallic effects. It is concluded that because metal uptake and body weight show a positive linear relationship only the use of animals of similar weight and/or size can be used for monitoring purposes. Even then, different patterns of uptake into different organs and interactions between metal uptakes are such as to seriously question the use of Helix, and other molluscs, for monitoring purposes unless specific organs from comparably sized and/or aged animals are used.

  4. Assessment of Four Heavy Metals Mercury, Lead, Copper and Cadmium Levels in Muscles of Import-ed Tilapia to Iran

    Directory of Open Access Journals (Sweden)

    Behsan Hemmatinezhad

    2017-04-01

    Full Text Available This study was conducted to determine the residues of mercury (Hg, lead (Pb, copper (Cu and cadmium (Cd in the imported tilapia fillets. Thirty random samples from imported tilapia fillets were collected from different markets in Isfahan City, central Iran. They were analyzed using Graphite Furnace Atomic Absorption Spectrometer (Perkin Elmer 800 for Pb, Cu, Cd and flow injection mercury system (Perkin Elmer 400 for Hg. Out of the 30 tested samples, concentration of Hg, Pb, Cu and Cd in the tilapia fillets samples as mean± standard deviation were 0.083±.016, 0.638±0.067, 0.521± 0.081 and 0.136 ± 0.025 mg/kg, respectively. Among these, amounts obtained for all metals except for lead were lower than the permissible level specified by WHO (P<1%. The Pb concentrations in all examined samples were higher than WHO standards. The continuous consumption of these contaminated fish regularly for long time may lead to health troubles.

  5. Analysis of total copper, cadmium and lead in refuse-derived fuels (RDF): study on analytical errors using synthetic samples.

    Science.gov (United States)

    Skutan, Stefan; Aschenbrenner, Philipp

    2012-12-01

    Components with extraordinarily high analyte contents, for example copper metal from wires or plastics stabilized with heavy metal compounds, are presumed to be a crucial source of errors in refuse-derived fuel (RDF) analysis. In order to study the error generation of those 'analyte carrier components', synthetic samples spiked with defined amounts of carrier materials were mixed, milled in a high speed rotor mill to particle sizes <1 mm, <0.5 mm and <0.2 mm, respectively, and analyzed repeatedly. Copper (Cu) metal and brass were used as Cu carriers, three kinds of polyvinylchloride (PVC) materials as lead (Pb) and cadmium (Cd) carriers, and paper and polyethylene as bulk components. In most cases, samples <0.2 mm delivered good recovery rates (rec), and low or moderate relative standard deviations (rsd), i.e. metallic Cu 87-91% rec, 14-35% rsd, Cd from flexible PVC yellow 90-92% rec, 8-10% rsd and Pb from rigid PVC 92-96% rec, 3-4% rsd. Cu from brass was overestimated (138-150% rec, 13-42% rsd), Cd from flexible PVC grey underestimated (72-75% rec, 4-7% rsd) in <0.2 mm samples. Samples <0.5 mm and <1 mm spiked with Cu or brass produced errors of up to 220% rsd (<0.5 mm) and 370% rsd (<1 mm). In the case of Pb from rigid PVC, poor recoveries (54-75%) were observed in spite of moderate variations (rsd 11-29%). In conclusion, time-consuming milling to <0.2 mm can reduce variation to acceptable levels, even given the presence of analyte carrier materials. Yet, the sources of systematic errors observed (likely segregation effects) remain uncertain.

  6. Direct Determination of Zinc, Cadmium, Lead, Copper Metal in Tap Water of Delhi (India by Anodic Stripping Voltammetry Technique

    Directory of Open Access Journals (Sweden)

    Raj J.

    2013-04-01

    Full Text Available Salts of Zinc, Cadmium, Lead and Copper are taken incidentally or accidently and has become of great toxicological importance having toxic effect. In the present study direct determination of Zn, Cd, Pb and Cu metal was carried out from tap water of Delhi (India using differential pulse anodic stripping Voltammeter (DPASV at Hanging mercury dropping electrode (HMDE.Determination of Zn, Cd, Pb, Cu was done using Ammonium acetate buffer (pH 4.6 with a sweep rate (scan rate of 59.5 mV/s and pulse amplitude 50mV by HMDE by standard addition method. The solution was stirred during pre-electrolysis at -1150mV (vs. Ag/AgCl for 90 seconds and the potential was scanned from -1150V to +100V (vs..Ag/AgCl. As a result the minimum level of Zn, Cd, Pb, Cu was Zero and the concentration observed in the tap water sample of Delhi (India was determined as 0.174 mg/L-1, 0.001 mg/L-1, 0.002 mg/L-1, 0.011 mg/L-1 respectively.

  7. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

    Directory of Open Access Journals (Sweden)

    Urbain Fifi

    2013-11-01

    Full Text Available The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb, copper (Cu and Cadmium (Cd during their transfer in a calcareous soil of Port-au-Prince (Haiti. Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax, the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  8. Assessing the mobility of lead, copper and cadmium in a calcareous soil of Port-au-Prince, Haiti.

    Science.gov (United States)

    Fifi, Urbain; Winiarski, Thierry; Emmanuel, Evens

    2013-11-04

    The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax), the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  9. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese) in drinking water resources of Nurabad city, Lorestan, Iran 2013

    OpenAIRE

    GHodratolah Shams Khorramabadi; Abdolah Dargahi; Lila Tabandeh; Hatam Godini; Parvin Mostafaee

    2016-01-01

    Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese) in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking...

  10. Copper, lead and cadmium loads and behavior in urban stormwater runoff in Curitiba, Brazil

    Directory of Open Access Journals (Sweden)

    Prestes Ellen C.

    2006-01-01

    Full Text Available We investigate the presence and behavior of Cu, Pb, and Cd in runoff waters from a residential area located in the city of Curitiba, Brazil. Samples were collected in twenty-one stormwater events in an intermediate traffic way located in the Bacacheri watershed. Metal concentrations were similar to range values compiled worldwide and followed the order: Pb>Cu>>Cd. Unit loads were estimated to the watershed, which cover an area of 30 km², revealing values of 1520, 950, 25 kg for Pb, Cu, and Cd, respectively. Among the three metals, lead showed the greatest affinity for the suspended solids (82% followed by Cd (66% and Cu (48%. Meanwhile, an association of the metals with the organic matter in the dissolved phase, following the order Cu>Pb>Cd. Metal loads and behavior in urban runoff also depends on factors such as the first flush and the dry period preceding a storm event.

  11. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  12. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  13. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  14. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  15. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Zhong, Wen-Si; Ren, Ting; Zhao, Li-Jiao

    2016-01-01

    The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5%) and recoveries (98.91-101.32%). The lead contents in tea leaves were 0.48-10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73-63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea. Copyright © 2015. Published by Elsevier B.V.

  16. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  17. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  18. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Mendez, J.R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico)], E-mail: rene@ipicyt.edu.mx; Monroy-Zepeda, R.; Leyva-Ramos, E. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Diaz-Flores, P.E. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico); Shirai, K. [Universidad Autonoma Metropolitana, Biotechnology Department, Laboratory of Biopolymers, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico City (Mexico)

    2009-02-15

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10{sup 3} g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb{sup 2+}, Cd{sup 2+}, and Cu{sup 2+}, respectively, and it decreased for Pb{sup 2+} and Cd{sup 2+} in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. Finally, the preliminary desorption experiments of Cd{sup 2+} conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.

  19. Simultaneous coprecipitation of lead, cobalt, copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxide prior to their flame atomic absorption spectrometric determination.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2009-09-01

    A simple and new coprecipitation procedure is developed for the determination of trace quantities of heavy metals (lead, cobalt, copper, cadmium, iron and nickel) in natural water and food samples. Analyte ions were coprecipitated by using zirconium(IV) hydroxide. The determination of metal levels was performed by flame atomic absorption spectrometry (FAAS). The influences of analytical parameters including pH, amount of zirconium(IV), sample volume, etc. were investigated on the recoveries of analyte ions. The effects of possible matrix ions were also examined. The recoveries of the analyte ions were in the range of 95-100%. Preconcentration factor was calculated as 25. The detection limits for the analyte ions based on 3 sigma (n=21) were in the range of 0.27-2.50 microgL(-1). Relative standard deviation was found to be lower than 8%. The validation of the presented coprecipitation procedure was performed by the analysis certified reference materials (GBW 07605 Tea and LGC 6010 Hard drinking water). The procedure was successfully applied to natural waters and food samples like coffee, fish, tobacco, black and green tea.

  20. Separation and Pre-concentration of Cadmium, Copper, Lead, Nickel and Zinc by Solid-Liquid Extraction of their Cocrystallized Naphthalene Dithizone Chelate in Saline Matrices

    Directory of Open Access Journals (Sweden)

    Costa Antônio C. Spínola

    2002-01-01

    Full Text Available A procedure for separation and pre-concentration of trace amounts of cadmium, copper, lead, nickel, and zinc in brine samples has been proposed. It is based on the adsorption of metal ions onto dithizone co-crystallized with microcrystalline naphthalene, in the pH range 8.5-9.1. Nitric acid is used to back-extract the cations from the solid phase, which are measured by ICP-OES. Various parameters, such as the effect of pH, stirring time, and amounts of solid phase, have been studied in detail, to optimize the conditions for the determination of trace amounts of Cd, Cu, Pb, Ni and Zn in synthetic brine samples. The limits of detection values expressed in mug L-1 are 44 (Zn, 11 (Ni, 30 (Cd, 47 (Pb and 11 (Cu. The precision of the procedure was determined by running 10 replicate samples, each one containing 250 mug L-1 of each element and the relative standard deviations were 2.71 % (Cd, 2.15 % (Cu, 1.53 % (Pb, 2.47 % (Ni, and 2.78 % (Zn. The accuracy of the procedure was confirmed by applying the analyte additions method and the results indicated that quantitative recoveries (superscript three 95 % were obtained.

  1. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were Cu and Zn had TF >1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  2. Copper and Lead levels in two popular leafy vegetables grown ...

    African Journals Online (AJOL)

    Cadmium, Mercury and Copper are cumulative poisons. They have been reported to be exceptionally toxic (Ellen et al., 1990). Lead has been associated with intoxications leading to problems in the kidney and liver, the central nervous system, reproductive organs and anaemia (IOCCC, 1996). Although Copper.

  3. How lethal concentration changes over time : toxicity of cadmium, copper, and lead to the freshwater isopod **Asellus aquaticus**

    OpenAIRE

    Ginneken, van, LPPP Lukas; Blust, Ronny; Bervoets, Lieven

    2017-01-01

    Abstract: Metal pollution is a serious threat to environmental health. While the aquatic isopod Asellus aquaticus L. (Isopoda) is an important decomposer of freshwater ecosystems, very little research has reported its long-term or incipient lethal concentrations for metals. Moreover, the lethal concentrations at a certain percentage (LCxs) that can be found in the literature are often based on unmeasured concentrations, which could lead to a severe underestimation of the actual toxicity. In t...

  4. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: spatial distribution and rainy season variability.

    Science.gov (United States)

    Horta-Puga, Guillermo; Cházaro-Olvera, Sergio; Winfield, Ignacio; Avila-Romero, Marisol; Moreno-Ramírez, Margarita

    2013-03-15

    This study focused on the spatial distribution of trace metals in the Veracruz Reef System in the Southern Gulf of Mexico, and its variability in the early (July) and late (September) rainy season of 2008, by analyzing the concentration of Cd, Cu and Pb in benthic macroalgae. Mean concentrations are lower (Pb 295 ± 347 ng g(-1), Cd 17.9 ± 15.0 ng g(-1)), or similar (Cu 3.4 ± 4.5 μg g(-1)) to those reported from other coastal areas. Cd and Pb concentrations are influenced by the discharge of the Jamapa River, evidencing a fluvial control on coastal trace metal levels. Also, Cd and Cu concentrations were lower in the late rainy season, when there is a high load of suspended sediments derived from fluvial discharge, which probably adsorb dissolved metals decreasing their bioavailability. Pb concentrations have been decreasing in the last two decades in the SGM, after the banning of leaded-gasoline in the late 20th century. Copyright © 2012. Published by Elsevier Ltd.

  5. A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population.

    Science.gov (United States)

    Nunes, Juliana A; Batista, Bruno L; Rodrigues, Jairo L; Caldas, Naise M; Neto, Jose A G; Barbosa, Fernando

    2010-01-01

    Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 microl of blood samples was mixed with 500 microl of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 microg//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 microg/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were

  6. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  7. Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water.

    Science.gov (United States)

    Vardy, David W; Santore, Robert; Ryan, Adam; Giesy, John P; Hecker, Markus

    2014-01-01

    Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9-25 μg Cu/L and 177-1,556 μg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 μg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 μg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed

  8. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  9. Cadmium, copper and nickel levels in vegetables from industrial and ...

    African Journals Online (AJOL)

    The levels of cadmium, copper and nickel in five different edible vegetables viz Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils on which they were grown from three industrial and three residential areas of Lagos City, in Nigeria, were determined using ...

  10. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    phenomena linked to the natural medium complexity and to evaluate the interactions between two heavy metals cadmium, (Cd) and copper (Cd), and a fungicide, diethyldithiocarbamate (DDTC). The choice of these three chemicals was based on the fact that Cd and Cu are common and worrying environmental pollutants ...

  11. Levels of Lead, Cadmium and Chromium in Oreochromis Niloticus ...

    African Journals Online (AJOL)

    Lead (Pb), Cadmium (Cd) and Chromium (Cr) levels in Oreochromis niloticus, aquatic plants, water and sawdust were collected and analyzed for Lead, Cadmium and Chromium using atomic absorption spectroscopy. Results obtained showed that sawdust had the highest Lead and Chromium contents of 32.0 + 0.99 μg/g ...

  12. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  13. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  14. Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique: Hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Es' haghi, Zarrin, E-mail: z_eshaghi@pnu.ac.i [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Khalili, Maryam; Khazaeifar, Ali [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Rounaghi, Gholam Hossein [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2011-03-30

    In the present work, a novel solid phase microextraction (SPME) technique using a hollow fiber-supported sol-gel combined with multi-walled carbon nanotubes, coupled with differential pulse anodic stripping voltammetry (DPASV) was employed in the simultaneous extraction and determination of lead, cadmium and copper in rice. In this technique, an innovative solid sorbent containing mixture of carbon nanotube and a composite microporous compound was developed by the sol-gel method via the reaction of tetraethylorthosilicate (TEOS) with 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS). The growth process was initiated in basic condition (pH 10-11). Afterward this sol was injected into a polypropylene hollow fiber segment for in situ gelation process. The main factors influencing the pre-concentration and extraction of the metal ions; pH of the aqueous feed solution, extraction time, aqueous feed volume, agitation speed, the role of carbon nanotube reinforcement (as-grown and functionalized MWCNT) and salting effect have been examined in detail. Under the optimized conditions, linear calibration curves were established for the concentration of Cd(II), Pb(II) and Cu(II) in the range of 0.05-500, 0.05-500 and 0.01-100 ng mL{sup -1}, respectively. Detection limits obtained in this way are, 0.01, 0.025 and 0.0073 ng mL{sup -1} for Cd(II), Pb(II) and Cu(II), respectively. The relative standard deviations (RSDs) were found to be less than 5% (n = 5, conc.: 1.0 ng mL{sup -1}).

  15. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties.

  16. Determination of cadmium, lead and mercury residual levels in meat ...

    African Journals Online (AJOL)

    Determination of cadmium, lead and mercury residual levels in meat of canned light tuna ( Katsuwonus pelamis and Thunnus albacares ) and fresh little tunny ( Euthynnus alletteratus ) in Libya. ... Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety.

  17. Levels of Cadmium and Lead in Water, Sediments and Selected ...

    African Journals Online (AJOL)

    Keywords: heavy metals, cadmium, lead, water, sediment, fish, Kenya coast. Flame absorption spectrophotometry was used to investigate the concentration and distribution of cadmium and lead in water, sediments and selected fish species in Makupa and Tudor creeks in Mombasa, Kenya between May 1997 and March ...

  18. Cadmium, lead and bromine in beached microplastics.

    Science.gov (United States)

    Massos, Angelo; Turner, Andrew

    2017-08-01

    Samples of microplastic (n = 924) from two beaches in south west England have been analysed by field-portable-x-ray fluorescence (FP-XRF) spectrometry, configured in a low-density mode and with a small-spot facility, for the heavy metals, Cd and Pb, and the halogen, Br. Primary plastics in the form of pre-production pellets were the principal type of microplastic (>70%) on both beaches, with secondary, irregularly-shaped fragments representing the remainder of samples. Cadmium and Pb were detected in 6.9% and 7.5% of all microplastics, respectively, with concentrations of either metal that exceeded 103 μg g-1 usually encountered in red and yellow pellets or fragments. Respective correlations of Cd and Pb with Se and Cr were attributed to the presence of the coloured, inorganic pigments, cadmium sulphoselenide and lead chromate. Bromine, detected in 10.4% of microplastics and up to concentrations of about 13,000 μg g-1, was mainly encountered in neutrally-coloured pellets. Its strong correlation with Sb, whose oxides are effective fire suppressant synergists, suggests the presence of a variety of brominated flame retardants arising from the recycling of plastics originally used in casings for heat-generating electrical equipment. The maximum bioaccessible concentrations of Cd and Pb, evaluated using a physiological extraction based on the chemical characteristics of the proventriculus-gizzard of the northern fulmar, were about 50 μg g-1 and 8 μg g-1, respectively. These concentrations exceed those estimated for the diet of local seabirds by factors of about 50 and 4, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of serum levels of cadmium and Lead in occupationally ...

    African Journals Online (AJOL)

    Cadmium and Lead are extremely toxic metals found in industrial workplaces. They are also found in some industrial paints and may represent hazards when sprayed.Exposure to Cadmium fumes may cause flu-like symptoms including chills, fever and muscle ache sometimes reffered to as "the cadium blues." Occupational ...

  20. Comparative Hepatotoxicity Test of Cadmium and Lead in Rats ...

    African Journals Online (AJOL)

    Conclusion: Studies indicate that liver function is impeded particularly with respect to protein synthesis, detoxification processes and the cellular integrity of the organ is damaged in the group that cadmium and lead were added (p<0.05). But the water sample from the mining pond, though containing higher cadmium and ...

  1. Cadmium free lead alloy for reusable radiotherapy shielding.

    Science.gov (United States)

    Blackwell, C R; Amundson, K D

    1990-01-01

    A low melting point cadmium free fusible lead alloy suitable for custom radiotherapy shielding blocks is described. The alloy, referred to here as Alloy-203, differs in composition from the more common Lipowitz's metal (Cerrobend) by being cadmium free, having a slightly higher lead content and a 203 degrees F melting temperature. Attenuation properties have been studied for 4-18 MV X-rays. Alloy-203 has lower transmission than Lipowitz's metal, primarily due to the higher content of lead and bismuth. Daily use for the past 2 years at Mayo Clinic has not indicated any major problems associated with the use of this cadmium free alloy for custom shield fabrication.

  2. Lead, mercury, and cadmium in breast milk

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2015-10-01

    Full Text Available Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in order to meet increased calcium needs of the fetus in pregnant women and for the calcium needs in human milk during lactation. Human fetus and infants are susceptible to heavy metal toxicity passing through placenta and breastmilk due to rapid growth and development of organs and tissues, especially central nervous system. However most of the damage is already done by the time the infant is born. Intrauterine lead exposure can cause growth retardation, cognitive dysfunction, low IQ scores on ability tests, and low performance in school. Biological samples, such as umbilical cord blood and breast milk, and less commonly infant hair, are used for biomonitoring of intra-uterine exposure to these toxic chemicals. Although toxic metals and other pollutants may be excreted into breast milk, their effects are unknown and this topic is subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. In fact, the species-specific components present in breast milk protect infants against infections; promote immune and neurologic system development; and may decrease the risk of disease, including allergies, obesity, insulin-dependent diabetes mellitus, inflammatory bowel disease, and sudden infant death syndrome. Breastfeeding also facilitates maternal-infant attachment. The potential risk of environmental contaminants that can be transferred from

  3. Analysis and determination of mercury, cadmium and lead in ...

    African Journals Online (AJOL)

    Analysis and determination of mercury, cadmium and lead in canned tuna fish marketed in Iran. E Rahimi, M Hajisalehi, HR Kazemeini, A Chakeri, A Khodabakhsh, M Derakhshesh, M Mirdamadi, AG Ebadi, A Rezvani, FM Kashkahi ...

  4. Levels of Cadmium and Lead in Water, Sediments and Selected ...

    African Journals Online (AJOL)

    Daisy Ouya

    Key words: heavy metals, cadmium, lead, water, sediment, fish, Kenya coast. Abstract—Flame absorption ... known essential role in living organisms, and are toxic at even low ... Changes in. pH and electrode potential (Eh) can mobilise heavy.

  5. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria.

    Science.gov (United States)

    Shetty, Ranjit S; Deo, Sapna K; Shah, Puja; Sun, Yan; Rosen, Barry P; Daunert, Sylvia

    2003-05-01

    Whole-cell-based sensing systems that respond to cadmium and lead ions have been designed and developed using genetically engineered bacteria. These systems take advantage of the ability of certain bacteria to survive in environments polluted with cadmium and lead ions. The bacteria used in this investigation have been genetically engineered to produce reporter proteins in response to the toxic ions. This was achieved by modifying a strain of Escherichia colito harbor plasmids pYSC1 and pYS2/pYSG1. In these dual-plasmid-based sensing systems, the expression of the reporters beta-galactosidase and red-shifted green fluorescent protein (rs-GFP) was controlled by CadC, the regulatory protein of the cad operon. Regulation of the expression of the reporter proteins is related to the amount of cadmium and lead ions employed to induce the bacteria. The bacterial sensing systems were found to respond to cadmium, lead, and zinc ions, and had no significant response to nickel, copper, manganese, and cobalt.

  6. Reproductive toxicity of lead, cadmium, and phthalate exposure in men.

    Science.gov (United States)

    Pant, Niraj; Kumar, G; Upadhyay, A D; Patel, D K; Gupta, Y K; Chaturvedi, P K

    2014-09-01

    Environmental toxicants viz lead or cadmium and phthalate esters (di(2-ethylhexyl) phthalate [DEHP], dibutyl phthalate [DBP], and diethyl phthalate [DEP]) widely found in different environmental strata are linked to deteriorating male reproductive health. The objective was to assess the relationships between the seminal lead, cadmium, and phthalate (DEHP, DBP, DEP) concentrations at environmental level and serum hormone levels and semen quality in non-occupationally exposed men and specify the effect of individual and combined exposure of toxicants on semen quality. A study of 60 male partners of couples attending the Andrology Laboratory of the Reproductive Biology Department, All India Institute of Medical Sciences (AIIMS), New Delhi, India for semen analysis to assess their inability to achieve a pregnancy was selected for the study. The results of univariate and stepwise multiple regression analysis in the unadjusted model showed a significant correlation between lead or cadmium and phthalates DEHP/DBP/DEP and sperm motility, sperm concentration, and DNA damage. After adjusting for potential confounders, an association with lead or DEHP was only observed. The present data shows that lead (Pb) or cadmium (Cd) or phthalates might independently contribute to decline in semen quality and induce DNA damage. Phthalates might influence reproductive hormone testosterone. These findings are significant in light of the fact that men are exposed to a volley of chemicals; however, due to the small sample size, our finding needs to be confirmed in a larger population.

  7. The Determination of Lead, Arsenic, Mercury, Cadmium Contents in ...

    African Journals Online (AJOL)

    A total of sixty samples per variety of fish used in this study was prepared for analysis by processes of homogenization and digestion of the whole fish (after their intestines have been removed); after which their individual lead, cadmium, arsenic and chromium contents were estimated by atomic absorption spectrophotometry ...

  8. Fertility of male workers exposed to cadmium, lead, or manganese.

    Science.gov (United States)

    Gennart, J P; Buchet, J P; Roels, H; Ghyselen, P; Ceulemans, E; Lauwerys, R

    1992-06-01

    The effect of exposure to cadmium, lead, or manganese on male reproductive function was examined in 1988-1989 in Belgian blue-collar workers. The workers were exposed to cadmium in two smelters (n = 83; geometric mean urinary cadmium level = 6.94 micrograms/g of creatinine; mean duration of exposure = 24 years), to lead in a battery factory (n = 74; mean blood lead level = 46.3 micrograms/dl; mean duration of exposure = 10.7 years), or to manganese (manganese dioxide) in a dry alkaline battery plant (n = 70; median atmospheric concentration of total manganese dust = 0.71 mg/m3; mean duration of exposure = 6.2 years). Fertility in these workers and in an unexposed population (n = 138) was assessed by examining the birth experiences of their wives through a logistic regression model. The probability of a live birth was not different between the unexposed workers and the cadmium- or manganese-exposed workers before or after the onset of exposure. While the fertility of the lead-exposed workers was somewhat greater than that of the unexposed before the onset of exposure, a significant decrease in fertility was observed during the period of exposure to the metal (odds ratio = 0.65, 95% confidence interval 0.43-0.98).

  9. Phytoextraction potential of cadmium and lead contamination using ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-12-31

    Dec 31, 2014 ... Lead accumulation in plant tissue impairs various morphological, physiological, and biochemical functions .... chlorophyll meter (based on light transmittance through leaves) was used as a non-destructive tool for .... of cadmium on the photosynthetic system cause several structural and functional disorders.

  10. Production of high purity granular metals: cadmium, zinc, lead

    Directory of Open Access Journals (Sweden)

    Shcherban A. P.

    2017-04-01

    Full Text Available Cadmium, zinc and lead are constituent components of many semiconductor compounds. The obtained high purity distillates and ingots are large-size elements, which is not always convenient to use, and thus require additional grinding, which does not always allow maintaining the purity of the original materials. For the growth of semiconductor and scintillation single crystals it is advisable to use "friable" granular high-purity distillates, which can be processed without the risk of contamination. For example, the European low-background experiment LUCIFER required more than 20 kg of high-purity granulated zinc, which was agreed to be supplied by NSC KIPT. This task was then extended to cadmium and lead. Motivated by these tasks, the authors of this paper propose complex processes of deep refining of cadmium, zinc and lead by vacuum distillation. A device producing granules has been developed. The process of granulation of high-purity metals is explored. The purity of produced granules for cadmium and zinc is >99,9999, and >99,9995% for lead granules. To prevent oxidation of metal granules during exposition to air, chemical methods of surface passivation were used. Organic solvent based on dimethylformamide used as a coolant improves the resistance of granules to atmospheric corrosion during the granulation of high purity Cd, Zn and Pb.

  11. Operational speciation of lead, cadmium, and zinc in farmlands ...

    African Journals Online (AJOL)

    This study was undertaken to evaluate the geochemical fractions and risk potential of lead (Pb), cadmium (Cd) and zinc (Zn) in farmlands around a polluted goldmine in Dareta, northern Nigeria. The total heavy metal concentrations were obtained through a mixed acid digestion. A modified sequential extraction procedure ...

  12. Effect of Pyrolysis Temperature on Cadmium and Lead ...

    African Journals Online (AJOL)

    Consumption of tobacco as cigarette or otherwise has been demonstrated to contribute to air pollution via smoke generation resulting in adverse health effect. Therefore, this study investigates the effect of pyrolysis temperature on the concentration, distribution of cadmium and lead between ash residue and smoke in some ...

  13. The biosorption of cadmium and lead ions from aqueous Solution ...

    African Journals Online (AJOL)

    The biosorption potentiality of Musa paradisiaca stalk at removing cadmium and lead ions from aqueous solution was investigated. The biosorption experiment was carried out as a function of contact time, initial pH, initial metal ion concentration and biosorbent dose. Adsorption equilibria were obtained from batch ...

  14. Adsorption kinetics of cadmium and lead by chitosan | Bamgbose ...

    African Journals Online (AJOL)

    An evaluation of the kinetics and capacity of chitosan to trap lead and cadmium ions in aqueous solution was carried out at 25oC using concentration and contact time as parameters. The experiments were done as batch process. Our results show that the adsorption process is concentration-driven with high capacity of ...

  15. Phytoextraction potential of cadmium and lead contamination using ...

    African Journals Online (AJOL)

    Vegetative growth, biomass, chemical content and uptake of cadmium (Cd) and lead (Pb) in Melia azedarach L. (chinaberry) and Populus alba L. (white poplar) seedlings were investigated using a 2-year pot experiment. The results indicated that P. alba and M. azedarach are tolerant to contaminated soil by Cd or Pb ...

  16. Lead and cadmium in wild birds in southeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A. [Univ. of Murcia (Spain); Jimenez-Montalban, P. [Regional Environmental Agency, Murcia (Spain). Centro de Recuperacion de Fauna Silvestre El Valle

    1995-12-01

    The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (mean 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.

  17. Lead and Cadmium Levels of Five Commonly and Widely ...

    African Journals Online (AJOL)

    ... Corchorus olitorius, and Corchorus tridens) consumed by Kano inhabitants were investigated and found to be at concentration below the environmental lead action level set by US EPA/WHO. Cadmium was not detected in the samples. Low concentration of Pb and absence of Cd in all the plant samples analyzed are clear ...

  18. Lead and Cadmium in Vinyl Children's Products. A Greenpeace Expose.

    Science.gov (United States)

    Di Gangi, Joseph

    Polyvinyl chloride (vinyl or PVC) is a substance widely used in children's products. Because children in contact with these products may ingest substantial quantities of potentially harmful chemicals during normal play, especially when they chew on the product, this Greenpeace study examined the levels of lead and cadmium in a variety of consumer…

  19. Cadmium, lead and zinc contents of sporocarps of some ...

    African Journals Online (AJOL)

    Zinc, cadmium and lead concentrations were determined in sporocarps of Ganoderma applanatum (Pers.ex Wallr.), Ganoderma lucidum (Leys.) Fr., Heteroporus biennis (Bull.exFr.), Lycoperdon molle (Pers.: Pers), Lycoperdon pyriforme (Schaeff.ex Pers.), Peniophora incarnata (Fr.) Karst.syn, Pisolithus tinctorius (Mich.ex ...

  20. Phytoextraction trials of cadmium and lead contaminated soil using ...

    African Journals Online (AJOL)

    Study on the phytoextraction of cadmium (Cd) and lead (Pb) artificially contaminated soil using 3 weed species (Ageratum conyzoides, Syndrella nodiflora and Cleome rutidosperma) was carried out at the Centre for Ecological Studies, University of Port Harcourt. A Randomized Complete Block Design consisting of 2 sets of ...

  1. Study of Sage (Salvia officinalis L. Cultivation in Condition of Using Irrigated Water Polluted By Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Sh. Amirmoradi

    2017-01-01

    concentrations caused to antagonistic effects of cadmium and lead absorption into shoots of sage. In this experiment cadmium and lead concentrations of all treatments were too below to detect by atomic absorption apparatus. In this study cadmium and lead could not enter to essential oil. Researchers stated that high doses of cadmium, lead, zinc and copper concentrations could not enter into essential oil in sage. Some researchers showed that cadmium, lead and copper were not transferred to essential oil of peppermint, dill and basil during the essential oil distillation process. This finding confirmed that selection of medicinal plants as alternative plants with crops in cadmium and lead contaminated soils. Conclusion: Fresh and dry weight of Sage in the condition of contaminated soil by 100 mg/kg cadmium and 600 mg/kg lead were declined 4.61 and 5.16 % as compare as control, respectively. At the highest doses of cadmium and lead the essential oil of sage were dropped but, these heavy metals were not detected in essential oil. So, it is seems that this medicinal plant may be applied in the contaminated soil or in the condition of using of contaminated irrigated water by cadmium and lead.

  2. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (lemna minor L.).

    Science.gov (United States)

    Cvjetko, Petra; Tolić, Sonja; Sikić, Sandra; Balen, Biljana; Tkalec, Mirta; Vidaković-Cifrek, Zeljka; Pavlica, Mirjana

    2010-09-01

    We investigated interactions between copper (in the concentrations of 2.5 μmol L-1 and 5 μmol L-1) and cadmium (5 μmol L-1) in common duckweed (Lemna minor L.) by exposing it to either metal or to their combinations for four or seven days. Their uptake increased with time, but it was lower in plants treated with combinations of metals than in plants treated with either metal given alone. In separate treatments, either metal increased malondialdehyde (MDA) level and catalase and peroxidase activity. Both induced DNA damage, but copper did it only after 7 days of treatment. On day 4, the combination of cadmium and 5 μmol L-1 copper additionally increased MDA as well as catalase and peroxidase activity. In contrast, on day 7, MDA dropped in plants treated with combinations of metals, and especially with 2.5 μmol L-1 copper plus cadmium. In these plants, catalase activity was higher than in copper treated plants. Peroxidase activity increased after treatment with cadmium and 2.5 μmol L-1 copper but decreased in plants treated with cadmium and 5 μmol L-1 copper. Compared to copper alone, combinations of metals enhanced DNA damage after 4 days of treatment but it dropped on day 7. In conclusion, either metal given alone was toxic/genotoxic and caused oxidative stress. On day 4 of combined treatment, the higher copper concentration was more toxic than either metal alone. In contrast, on day 7 of combined treatment, the lower copper concentration showed lower oxidative and DNA damage. These complex interactions can not be explained by simple antagonism and/or synergism. Further studies should go in that direction.

  3. Slurry procedures for the determination of cadmium and lead in cereal-based products using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, P. (Dept. of Analytical Chemistry, Murcia Univ. (Spain)); Campillo, N. (Dept. of Analytical Chemistry, Murcia Univ. (Spain)); Lopez Garcia, I. (Dept. of Analytical Chemistry, Murcia Univ. (Spain)); Hernandez Cordoba, M. (Dept. of Analytical Chemistry, Murcia Univ. (Spain))

    1994-06-01

    Simple and rapid methods for the determination of cadmium and lead in biscuits, bread and cerealbased products using the slurry-ETAAS approach are discussed. Suspensions were prepared in a 20% v/v ethanol medium. Phosphate was used as a chemical modifier for lead determination. For cadmium determination both palladium and a copper plus ammonia mixture were used. In both cases platform atomization was used and calibration was performed using aqueous standards. Results for two reference materials confirmed the reliability of the procedures. Relative standard deviations were in the range of 2.5-6.5% for cadmium and 4.5-14% for lead. Detection limits were, respectively, 0.5 and 8 ng/g. (orig.)

  4. Effect of lead and cadmium on germination and seedling growth of ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of different concentrations of lead and cadmium on seed germination and seedling growth of Leucaena leucocephala. Seed were grown under laboratory conditions at 25, 50, 75 and 100 ppm of metal ions of lead and cadmium. Both lead and cadmium treatments showed toxic ...

  5. Application of anodic stripping voltammetry for zinc, copper, and cadmium quantification in the aqueous humor: implications of pseudoexfoliation syndrome.

    Science.gov (United States)

    Panteli, Vassiliki S; Kanellopoulou, Dimitra G; Gartaganis, Sotirios P; Koutsoukos, Petros G

    2009-12-01

    Anodic stripping voltammetric (ASV) procedure, using mercury film electrode, was optimized and applied to determine the concentrations of zinc, cadmium, and copper in the aqueous humor. Concentration levels as low as 1 ppb of the test metals was possible to be detected using short electrolysis times (120 s) and microquantities of aqueous humor (up to 35 μL). As a first application of the voltammetric analysis of trace metals in the aqueous humor, the role of the three selected trace elements in the pseudoexfoliation (PEX) syndrome was examined. Samples from aqueous humor were collected during cataract extraction from patients with and without PEX. The zinc and copper concentration levels in the aqueous humor did not show statistically significant difference in the study and control group. Cadmium was detected in a small number of samples, without however statistical differences between the two groups. ASV proved to be a highly precise and sensitive tool for the quantification of heavy metal ions in aqueous humor. Further studies may lead to useful conclusions for the role of zinc, copper, or cadmium in PEX syndrome.

  6. Investigations of effects of magnesium, zinc and copper on cadmium excretion in rabbits

    Directory of Open Access Journals (Sweden)

    Bulat Zorica

    2012-01-01

    Full Text Available Cadmium (Cd is today one of the most significant metal poisons, both in the area of professional as well as of eco toxicology. In the organism, cadmium has a harmful effect on the kidneys, liver, bones, testicles, etc., and, based on evidence in humans that it causes lung carcinoma, it has been placed in the first group of carcinogens. In spite of numerous data in literature on the harmful effects of cadmium, the interactions between cadmium and bioelements as a significant mechanism for cadmium toxicity have still not been sufficiently explained. Since the data so far point to a positive effect of supplementation with certain bioelements regarding toxicity and cadmium content in the organism, the objective of this work was to investigate the effect of increased simultaneous intake of magnesium, zinc and copper on urinary elimination of cadmium in rabbits exposed to cadmium. Rabbits were divided into two groups: Cd group - for a period of 28 days the animals received per os 10 mg Cd/kg b.m/day and Cd+(Mg+Zn+Cu group - 10 mg Cd/kg b.m. + 40 mg Mg/kg b.m, 20 mg Zn/kg b.m. and 10 mg Cu/kg b.m/day. Daily urine was collected on days 0, 10, 15, 17, 19, 21, 23, 25, and 28 of the experiment. Following decomposition of urine samples with the help of concentrated HNO3 and HClO4 (4:1, the metal concentration was determined using the method of atomic absorption spectrophotometry. Supplementation with magnesium, zinc and copper did not result in significant changes in the elimination of cadmium through urine in animals poisoned with cadmium, in comparison with the animals that were administered only cadmium, while the concentration of all three applied bioelements in urine was significantly increased. It can be concluded that the simultaneous administration of increased doses of zinc, copper and magnesium does not have a positive effect on the elimination of cadmium in conditions when rabbits are poisoned with cadmium.

  7. Cadmium and lead retention in fresh and rotten red meat

    OpenAIRE

    Lopes,Mariangela V.; Korn,Mauro; Pereira,Madson de Godoi; Santana,Eliziane Pedra de; Oliveira,Fabio Santos de; Korn,Maria das Graças A.

    2007-01-01

    The metal sorption capacity in fresh and rotten red meat was evaluated for Cd2+ and Pb2+ ions at pH 6 and the process involved in the studied metal retention was discussed. For the experimental set, an eight channels multi-port selection valve was employed to mechanise the sample preparation. The cadmium and lead concentrations were determined by ICP-OES. A high retention (> 80%, m/m) of Cd2+ and Pb2+ ions, in fresh and rotten bovine muscle was found, indicating the potential contamination ri...

  8. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  9. Effect of copper and cadmium on three Malaysian tropical estuarine invertebrate larvae.

    Science.gov (United States)

    Ramachandran, S; Patel, T R; Colbo, M H

    1997-03-01

    Three species of tropical estuarine invertebrates were exposed to copper sulfate and cadmium chloride to investigate their potential as test specimens for sediment toxicity assays in the South-east Asian regions. The larvae of the reef sea urchin (Diadema setosum), the oyster (Crassostrea iradalei), and the mud crab (Scylla seratta Forskall) were used in the 48-hr assays with copper and cadmium as reference toxicants. In addition the sea urchin were tested for end point measurements at different stages of the larval development and a 60-min sperm bioassay. The study revealed that the sea urchin first cleavage, which is an assay end point and which takes place about 1 hr after fertilization, was the most sensitive stage for both toxicants, with copper being more toxic than cadmium. Sensitivity comparisons between the three invertebrate larvae revealed the mud crab zoea larvae to be most sensitive for cadmium with an LC50 value of 0.078 microgram/ml, while the sea urchin was more sensitive for copper, with EC50 values of 0.01 microgram/ml at the first cleavage stage and 0.04 microgram/ml at the pluteus larva stage. All the invertebrates tested gave responses that made them suitable test organisms for metal bioassays in the tropical estuarine environment.

  10. Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

    Directory of Open Access Journals (Sweden)

    Ptumporn Muangphra

    2011-01-01

    Full Text Available To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd and lead (Pb for 48 h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50 μg cm−2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32 μg cm−2. For Cd at 0.75 μg cm−2, in the micronucleus test (detects chromosomal aberrations, significant increases (<.05 in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks, tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29 μg cm−2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects.

  11. Survey of mercury, cadmium and lead content of household batteries.

    Science.gov (United States)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  13. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  14. Cadmium, lead and mercury exposure in non smoking pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Callan, A.C.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.Ø. [Department of Community Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2013-10-15

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  15. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  16. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Gareth J., E-mail: g.norton@abdn.ac.uk [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Deacon, Claire M. [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Mestrot, Adrien [Soil Science Group, Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern (Switzerland); Feldmann, Joerg [Department of Chemistry, School of Physical Sciences, University of Aberdeen, Meston Building, AB24 3UE (United Kingdom); Jenkins, Paul; Baskaran, Christina [Food Standards Agency, Aviation House, Kingsway, London WC2B 6NH (United Kingdom); Meharg, Andrew A. [Institute for Global Food Security, Queen' s University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN (United Kingdom)

    2015-11-15

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes.

  17. Epigenetics, obesity and early-life cadmium or lead exposure.

    Science.gov (United States)

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  18. Dietary Strategies for the Treatment of Cadmium and Lead Toxicity

    Directory of Open Access Journals (Sweden)

    Qixiao Zhai

    2015-01-01

    Full Text Available Cadmium (Cd and lead (Pb are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy.

  19. Dietary Strategies for the Treatment of Cadmium and Lead Toxicity

    Science.gov (United States)

    Zhai, Qixiao; Narbad, Arjan; Chen, Wei

    2014-01-01

    Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy. PMID:25594439

  20. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead

    Directory of Open Access Journals (Sweden)

    J.-J. Piadé

    2015-01-01

    Full Text Available Arsenic, cadmium and lead levels in tobacco filler and cigarette smoke were determined in a 568-sample worldwide survey. Median tobacco levels for arsenic, cadmium and lead were 237, 769 and 397 ng/g respectively, comparable to those previously reported albeit somewhat lower for lead and cadmium. Median mainstream smoke yields for arsenic, cadmium and lead were <3.75, 18.2, and <12.8 ng/cig. under ISO, and <8.71, 75.1 and <45.7 ng/cig. under Health Canada Intense (HCI smoking regime respectively. In the case of cigarettes with activated carbon, a selective retention of cadmium but not lead or arsenic was observed. This effect was more pronounced under ISO than under HCI smoking regimes. Cadmium selective retention by activated carbon was confirmed by testing specially designed prototype cigarettes and the causes for this selective filtration were investigated. The differences between cadmium, arsenic and lead in terms of their speciation in tobaccos and in cigarette smoke could be related to their distribution in the ash, butt, mainstream (in gas-phase and particulate-phase and sidestream smoke of a smoked cigarette. The possible formation of organometallic cadmium derivatives in the smoke gas-phase is discussed, the presence of which could adequately explain the observed cadmium selective filtration.

  1. Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products.

    Science.gov (United States)

    Behbahani, Mohammad; Abolhasani, Jafar; Amini, Mostafa M; Sadeghi, Omid; Omidi, Fariborz; Bagheri, Akbar; Salarian, Mani

    2015-04-15

    In this paper, we have introduced nanoporous carbon modified with mercapto groups as a new solid-phase method for extraction of cadmium(II) and copper(II) ions. The modified nanoporous carbon sorbent was characterised by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and nitrogen adsorption surface area (BET) measurements. Effects of pH value, flow rates, type, concentration and volume of the eluent, breakthrough volume, and effect of other ions were studied. The experimental results show that simultaneous trace cadmium(II) and copper(II) ions can be quantitatively preconcentrated at pH 6.0 with recoveries >97%. Under optimised conditions, limits of detection are 0.04 and 0.09 ng mL(-1) for the ions of cadmium and copper respectively, and the precision of the method for analysis of cadmium and copper ions (5.0 μg of each target ions, N=8) are 2.4% and 2.1%, respectively. The obtained capacities of mercapto-nanoporous carbon were found to be 145 and 95 mg g(-1) for cadmium and copper ions, respectively. The accuracy of the proposed procedure was verified by analysing standard reference material. Finally, the introduced sorbent was successfully applied for trace determination of cadmium and copper ions in food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Development of Lead-Free Copper Alloy-Graphite Castings

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K. [Univ. of Wisconsin-Milwaukee (US)

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  3. [Elution of lead and cadmium from imported gold-decorated glassware].

    Science.gov (United States)

    Hosogai, T; Ito, S; Sakurai, H; Tada, Y; Satou, Y; Shiomi, Y; Takeda, M; Ishiwata, H; Sugita, T; Yamada, T

    1993-01-01

    Lead and cadmium were known to be eluted from some imported gold-decorated glassware, which was bonded at a quarantine station. Elution of lead and cadmium was confirmed to be occurred from the gold-decorated portion, but not from glass itself. No elution of these heavy metals was observed from gold-decorated glassware in the market.

  4. Interlaboratory Comparison of Lead and Cadmium in Blood, Urine, and Aqueous Solutions

    DEFF Research Database (Denmark)

    Paulev, P. E.; Solgaard, Per Bent; Tjell, Jens Christian

    1978-01-01

    Analysis for lead and cadmium in biological liquids (blood and urine) is difficult. Results of such analyses from five laboratories are compared for samples with known additions of lead and cadmium. The data, evaluated in terms of inter- and intralaboratory reproducibility and accuracy, suggest t...

  5. Environmental cadmium and lead exposure and anti-Müllerian hormone in pregnant women

    DEFF Research Database (Denmark)

    Christensen, P. S.; Bonde, J. P.; Bungum, L.

    2016-01-01

    -AMH. MATERIALS AND METHOD: The associations between serum-AMH and whole blood cadmium or lead were investigated by general linear models in a population-based sample of 117 pregnant women. RESULTS: The mean concentrations of blood cadmium and lead were 0.71μg/L and 17.4μg/L, respectively. The mean serum...

  6. Critical loads of Cadmium, Lead and Mercury and their exceedances in Europe

    NARCIS (Netherlands)

    Hettelingh, J.P.; Schutze, G.; Vries, W. de; Denier van der Gon, H.A.C.; Ilyin, I.; Reinds, G.J.; Slootweg, J.; Travnikov, O.

    2015-01-01

    Cadmium (Cd), lead (Pb) and mercury (Hg) are known to be transported over relatively long distances from their sources. Deposited metals may accumulate over time in soils and catchments, and then follow varying pathways to endpoints in humans and the environment. Cadmium and lead, that are emitted

  7. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  8. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth

    Directory of Open Access Journals (Sweden)

    GORAN M. NIKOLIC

    2004-07-01

    Full Text Available Potentiometric stipping analysis (PSA was applied for the determination of lead and cadmium leaching from dental prosthetic materials and teeth. The soluble lead content in finished dental implants was found to be much lower than that of the individual components used for their preparation. Cadmium was not detected in dental implants and materials under the defined conditions. The soluble lead and cadmium content of teeth was slightly lower than the lead and cadmium content in whole teeth (w/w reported by other researchers, except in the case of a tooth with removed amalgam filling. The results of this work suggest that PSA may be a good method for lead and cadmium leaching studies for investigation of the biocompatibility of dental prosthetic materials.

  9. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  10. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [Ca; Pb; cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  11. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [3-week-old cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The purpose of the present studies was to elucidate the mechanism of lead transport, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined in 3-week old White Leghorn cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or 1 mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Certain differences were, however, observed in the absorption process. Increasing luminal stable lead concentration from 0.01 to 1.00 mM Pb, significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, and the effect on calcium outlasted that on lead, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  12. Cadmium and lead levels in some fish species from Azuabie creek ...

    African Journals Online (AJOL)

    The concentrations of cadmium and lead were determined in seven fish species from the Azuabie creek in the upper Bonny estuary of the Niger Delta, which is associated with industrial and abattoir discharges. Cadmium concentrations ranged from 0.01 to 0.06 mg/kg and show no significant difference between species.

  13. Male infertility and environmental exposure to lead and cadmium.

    Science.gov (United States)

    Benoff, S; Jacob, A; Hurley, I R

    2000-01-01

    Humans are exposed occupationally and environmentally to metal aerosols including lead (Pb2+) and cadmium (Cd2+). These toxicants accumulate in male reproductive organs. Epidemiological studies have been equivocal about effects of Pb2+ and Cd2+ on hormone concentrations, male fertility and sperm parameters. Comparison of Pb2+ and Cd2+ concentrations in fertile and infertile men are problematic. Problem areas include failure to control confounding variables, but genetic polymorphisms as in somatic diseases may modulate Pb2+ and Cd2+ damage. Multiple calcium (Ca2+) and potassium (K+) channel isoforms have been identified in human testes and spermatozoa. These Ca2+ and K+ channels are involved in early events of acrosome reactions. Ca2+ channel are susceptible to Cd2+ poisoning and K+ channels to Pb2+. These channels offer entry paths for metallic toxicants into mature spermatozoa. Ion channel polymorphisms may cause differential sensitivities to Cd2+ and Pb2+, explaining in part prospective blinded studies showing high Cd2+ in varicocele-related human infertility and high Pb2+ in unexplained infertility. In both forms of male infertility the ability to undergo an acrosome reaction decreases. Reverse transcriptase-polymerase chain reaction assays for Ca2+ and K+ channel isoforms may identify susceptibility subgroups with lower resistance to environmental exposures.

  14. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    Directory of Open Access Journals (Sweden)

    Nasser Sewalem

    2014-03-01

    Full Text Available Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower (Helianthus annuus L. plants as a potential phytoremediator to soils contaminated with cadmium (Cd and lead (Pb was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid peroxidation and membrane leakage with less affected photosynthesis in the leaves of the treated sunflower seedlings compared to the effects of Pb. The results presented here showed that a high amount of the total absorbed Cd (88.84% was accumulated in roots, while a high amount of the total absorbed Pb (71.39 was tranlocated to shoots of sunflower seedlings. Similar trends of Cd and Pb allocation between roots and shoots at the yield stage were recorded. We suggest here that sunflower plants may remediate Cd contaminated soils through phytostabilization, while may remediate Pb contaminated soils through phytoextraction. Finaly, the trace amounts of Cd and Pb that were accumulated in seeds recommends sunflower plants to be used safely and economically for cleaning up soils contaminated with Cd and/or Pb.

  15. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  16. Lead and cadmium exposure in children living around a coal-mining area in Yataan, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Gulcin Yapici; Gunay Can; Ali Riza Kiziler (and others) [Mersin University, Mersin (Turkey). Department of Public Health

    2006-09-15

    The study was designed to determine asymptomatic lead poisoning prevalence and cadmium exposure of preschool children living in a coal-mining area in Yataan, Mugla, Turkey. The research was conducted between May and June 2002. The study included 236 healthy children (53.4% female and 46.6% male) between the ages of 6 months and 6 years. Assessments of the levels of blood lead and cadmium were performed by an atomic absorption spectrophotometer. Themean blood lead level of the males was higher than the females.There was a negative correlation between blood lead level and age in both sex groups. The blood lead level was found to be > 10 {mu}g/dL in 95.7% and > 20 {mu}g/dL in 87.6% of all children. The mean blood cadmium level of all children was 1.31{+-}0.72 mg/dL. The blood cadmium level was found to be > 0.5 {mu}g/dL, which is considered to be toxic, in 85% of all children. The difference in blood cadmium levels between sexes was not significant. A negative correlation was found between blood cadmium level and age of all children. Although it is not possible to understand from this study what proportion of the biological lead and cadmium burden results from mining waste and what proportion comes from other sources, these results indicate that asymptomatic lead poisoning and cadmium exposure are significant problems in children living in the Yataan area. Environmental lead measurements must be performed, the results must be compared with the normal limits, and precautions must be taken if necessary in the Yataan area. Public health research efforts should focus on reducing the excessive levels of lead and cadmium in the environment.

  17. Bioaccumulation of Cadmium and Lead in Prickly Pen Shell in Seribu Archipelago

    Directory of Open Access Journals (Sweden)

    Etty Riani

    2017-04-01

    Full Text Available Jakarta Bay waters contaminated with heavy metals, so that the waters of the Thousand Islands are also potentially contaminated with heavy metals. The purpose of this study were to determine the condition of the water quality on the Panggang Island and Karya Island, analyze contamination of heavy metals (Cadmium and Lead in water, sediments and Prickly Pen Shell and then the correlation. Based on Ministry of Environment decree No. 51/2004, water quality in the Panggang Island and Karya Island tend toward to low category. Cadmium and lead concentration in the water on October exceed the quality standards. In the sediment on July and October at Karya Island, concentration of cadmium were exceed the quality standar by RNO. On the other hand, cadmium and lead concentration on Prickly Pen Shell still below standard quality from decree of Director General of POM RI No. 03725. We found highest positive correlation were found between cadmium and lead accumulation in the water and on the Prickly Pen Shell, then positive correlation between cadmium and lead in the water and in the sediment. For the heavy metal contamination, we found contamination of cadmium correlation were higher than lead contamination.

  18. [Assessment of cadmium and lead released from cigarette smoke].

    Science.gov (United States)

    Suna, S; Asakawa, F; Jitsunari, F; Manabe, Y; Gotou, A; Fukunaga, I; Nakajima, T

    1991-12-01

    Cigarette smoke, which contains many harmful compounds, affects not only the smoker's health but also indoor air quality. To evaluate indoor air contamination by cadmium (Cd) and lead (Pb), we measured Cd and Pb contained in the mainstream and sidestream smoke exhaled by experimental smoking of Japanese cigarettes and also determined urinary and blood Cd and Pb levels in smokers and non-smokers and air Cd and Pb levels in smoky environments. 1. One cigarette of each of 7 Japanese brands contained about 1 microgram each of Cd and Pb, of which about 50 ng each was released to the mainstream and 250 ng of Cd and 50 ng of Pb to the sidestream by smoking. 2. The blood Cd level in the smokers was significantly higher than that in the non-smokers. The urinary Cd level in the smokers was slightly higher than that in the non-smokers. The blood Cd level was related to the number of cigarettes smoked daily. Blood and urinary Pb levels did not differ between the smokers and non-smokers, but the blood Pb level was also related to the number of cigarettes smoked daily. 3. The air Cd levels in smoky places such as the smoking car of the special express train, an office, and a pachinko parlor were markedly higher than that in outdoor air. The air Cd concentration was well correlated with the environmental tobacco smoke concentration. On the other hand, the air Pb level was slightly higher in the above smoky places than outdoors. The mean air Pb concentration was not correlated with the environmental tobacco smoke concentration but was higher at higher environmental tobacco smoke concentration in each place.

  19. Transfer and accumulation of lead, zinc, cadmium and copper in ...

    African Journals Online (AJOL)

    TUOYO

    3National Institute of Research and Physico-chemical Analysis, Technopol of Sidi Thabet, Tunis, Tunisia. ... The chemical analysis of plants: ... MATERIALS AND METHODS. Site characteristics. The district of Jebel Hallouf Sidi Bouaouane, a Pb-Zn-mining area abandoned since 1986, is located in the North-West of Tunisia.

  20. Cadmium, lead, copper and zinc in breast milk in Poland.

    Science.gov (United States)

    Winiarska-Mieczan, Anna

    2014-01-01

    Mother's milk is the fundamental food for infants. It contains proteins, fat, carbohydrates and essential metals which are necessary to ensure correct functioning of the organism. Unfortunately, breast milk is a potential source of toxic metals, which are dangerous for a baby. In Poland, previous research concerning the content of metals in breast milk was very scarce or its results were unavailable. The present study aimed at assessing the content of Cd, Pb, Cu and Zn in human breast milk, as well as estimating the mean weekly intake of these metals by breast-fed infants from Poland. The average concentrations of Cd, Pb, Cu and Zn were 2.114 μg/l, 6.331 μg/l, 0.137 mg/l and 1.623 mg/l, respectively. The admissible levels of supply of these toxic metals has not been exceeded, but their contents were high, particularly in 6-month-old infants (nearly 85 % TWI for Cd and nearly 70 % BMDL₀₁ for Pb). The daily intake of Cu and Zn did not fully satisfy the infant's requirements determined by Polish standards and WHO recommendations. Since the lifestyle of lactating women has a direct influence on the content of these elements in breast milk, women should be educated in this respect with particular focus on eliminating tobacco smoking, both by breastfeeding mothers and by their direct environment.

  1. Chemical Fractionation of Lead, Copper, Zinc and Cadmium in Soils ...

    African Journals Online (AJOL)

    Knowledge of the mobility and bioavailability of heavy metals in soils is necessary for the design of remediation processes and the establishment of environmental guidelines for heavy metal pollution. Single extractions were used to fractionate four heavy metals (Pb, Zn, Cu and Cd) from a total of fifty-four roadside soil ...

  2. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus).

    Science.gov (United States)

    Dočekalová, Hana; Škarpa, Petr; Dočekal, Bohumil

    2015-03-01

    The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentrations measured by DGT. Significant correlation was found between metal fluxes to plant and metal fluxes into DGT. Pearson correlation coefficient for cadmium was 0.994 and for copper 0.998. The obtained results showed that DGT offers the possibility of simple test procedure for soils and can be used as a physical surrogate for plant uptake. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Associations of low-level urine cadmium with kidney function in lead workers

    Science.gov (United States)

    Weaver, Virginia M.; Kim, Nam-Soo; Jaar, Bernard G.; Schwartz, Brian S.; Parsons, Patrick J.; Steuerwald, Amy J.; Todd, Andrew C.; Simon, David; Lee, Byung-Kook

    2010-01-01

    Objectives Low-level cadmium exposure, e.g., urinary cadmium < 2.0 μg/g creatinine, is widespread; recent data suggest nephrotoxicity even at these lower levels. Few studies have examined the impact of low-level cadmium exposure in workers who are occupationally exposed to other nephrotoxicants such as lead. Methods We evaluated associations of urine cadmium, a measure of cumulative dose, with four glomerular filtration measures and N-acetyl-β-D-glucosaminidase (NAG) in lead workers. Recent and cumulative lead dose was assessed via blood and tibia lead, respectively. Results In 712 lead workers, mean (SD) blood and tibia lead, urine cadmium, and estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease equation were 23.1 (14.1) μg/dl, 26.6 (28.9) μg Pb/g bone mineral, 1.15 (0.66) μg/g creatinine, and 97.4 (19.2) ml/min/1.73m2, respectively. After adjustment for age, sex, body mass index, urine creatinine, smoking, alcohol, education, annual income, diastolic blood pressure, current or former lead worker job status, new or returning study participant, and blood and tibia lead, higher ln-urine cadmium was associated with higher calculated creatinine clearance, eGFR (β = 8.7 ml/min/1.73 m2; 95% CI = 5.4, 12.1) and ln-NAG but lower serum creatinine. Conclusions Potential explanations for these results include a normal physiologic response in which urine cadmium levels reflect renal filtration; the impact of adjustment for urine dilution with creatinine in models of kidney outcomes; and cadmium-related hyperfiltration. PMID:20974743

  4. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy...

  5. Environmental cadmium and lead exposure and anti-Müllerian hormone in pregnant women.

    Science.gov (United States)

    Christensen, P S; Bonde, J P; Bungum, L; Giwercman, A; Toft, G; Jönsson, B A G; Specht, I O

    2016-06-01

    Anti-Müllerian Hormone (AMH) has been suggested as a marker for ovarian function. Cadmium and lead have been suggested to reduce female fecundity. In this study we aimed to investigate whether environmental exposure to cadmium and lead was associated with alterations in serum-AMH. The associations between serum-AMH and whole blood cadmium or lead were investigated by general linear models in a population-based sample of 117 pregnant women. The mean concentrations of blood cadmium and lead were 0.71μg/L and 17.4μg/L, respectively. The mean serum-AMH was 17.3pmol/L. No association between lead and AMH was detected. In the cadmium analysis the adjusted mean AMH level (95% CI) in the highest exposure tertile was 12.4 (6.4;23.8) compared to 5.6 (2.7;11.4) in the lowest exposure tertile (p=0.06). The study provides suggestive evidence that environmental exposure to cadmium, but not lead, may alter the level of AMH. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Adsorption of Acetic Acid, Cadmium ions, Lead ions and Iodine ...

    African Journals Online (AJOL)

    Michael Horsfall

    pesticides, as plant nutrients and as a constituent of waste products. These heavy metals may include cadmium, zinc ... effluent might contain non-biodegradable matter, toxic heavy metals, organic matter and also might ..... (2003) Wastewater Engineering Treatment and. Reuse, 4th Edition, Tata McGraw-Hill Publishing.

  7. Calculation of critical loads for cadmium, lead and mercury; background document to a mapping manual on critical loads of cadmium, lead and mercury

    NARCIS (Netherlands)

    Vries, de W.; Schütze, G.; Lofts, S.; Tipping, E.; Meili, M.; Römkens, P.F.A.M.; Groenenberg, J.E.

    2005-01-01

    This report on heavy metals provides up-to-date methodologies to derive critical loads for the heavy metals cadmium (Cd), lead (Pb) and mercury (Hg) for both terrestrial and aquatic ecosystems. It presents background information to a Manual on Critical Loads for those metals. Focus is given to the

  8. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    Science.gov (United States)

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  9. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions.

    Science.gov (United States)

    Ibrahim, I; Lim, H N; Huang, N M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  10. Determination of copper, lead and zinc in fruit preserves

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, N.K.H.; Kolesnichenko, A.I.; Kesel' brener, E.I.

    Copper, lead and zinc content in canned fruit manufactured in Moldavia in 1979 and 1980 was determined by polarography and atomic-absorption spectrophotometry. The authors developed a method for determining the above trace elements in one sample using an atomic-absorption spectrophotometer. The errors of each method were calculated. It was ascertained that the data obtained by both the methods were identical. Analysis of the data indicates that the content of copper, lead and zinc is within the standards approved by the USSR Ministry of Health. The data obtained in the studies can be used in both toxicological work on setting standards of heavy metals content in canned food and in the tables of the chemical composition of canned food. The methods for copper, lead and zinc determination can be used as the basis for the development of standard procedures for heavy metals.

  11. Effects of cadmium on chick embryogenesis and some comparisons with lead

    Energy Technology Data Exchange (ETDEWEB)

    King, D.W.; Chen, D.C.C.; Hsu, J.L.

    1978-07-01

    During the last ten years because of the severity of the problem of pollution and the part that heavy metals play in it we have been doing research on the effects of some heavy metals on chick embryogenesis in order to get a comparative study and to elucidate their mechanisms of action. Experiments were performed using 431 fertilized white Leghorn eggs to study the effect of cadmium on chick embryogenesis. Cadmium acetate at 0.015, 0.030, 0.045, 0.060, 0.12 or 0.24 mg/egg and lead acetate at 0.02, 0.04 or 0.075 mg/egg was injected in ovo on the fourth day of incubation. The embryos were taken out on the 19th day and examined for gross defects. Electrocardiograms were recorded on some embryos. Hemoglobin determinations were done on others. The changes in plasma delta-aminolevulinic acid dehydrase (ALAD) of the embryos due to cadmium and lead acetate were also determined. It was found that the LD50 of cadmium acetate was close to 0.045 mg. The highest incidence of abnormality, 30.9% of the surviving embryos, appeared in the 0.030 mg group although malformed embryos were also found in the 0.015, 0.045 and 0.060 mg groups. The most common malformations occurred in the liver (58%) and the cardiovascular system, with edema totalling over 90%. Lesser abnormalities were observed in the limbs. Lead acetate affected ALAD more than cadmium acetate. There was no significant difference on hemoglobin concentration or EKG between the distilled water control and either the cadmium or lead treated groups. Thus, embryolethality, embryotoxicity, congenital abnormalities and changes in ALAD were all observed in the cadmium-treated chick embryos although lead acetate seemed to inhibit the ALAD activity more effectively than cadmium acetate.

  12. Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males

    Science.gov (United States)

    Taha, Emad A.; Sayed, Sohair K.; Ghandour, Nagwa M; Mahran, Ali M.; Saleh, Medhat A.; Amin, Magdy M.

    2013-01-01

    Introduction The exact causes of the decline in semen quality are not yet known, environmental factors have been considered to play an important role. Lead (Pb) and Cadmium (Cd) are two of the well-known reproductive toxicants to which humans are exposed occupationally and environmentally and can lead to negative effects on the testicular functions. The aim of this study was to evaluate lead and cadmium levels in seminal plasma of men with idiopathic oligoasthenozoospermia in comparison to fertile healthy controls and to correlate these levels with conventional semen parameters, sperm hypo-osmotic swelling (HOS) percentage, sperm DNA fragmentation percentage, and semen reactive oxygen species (ROS) levels. Material and Methods Thirty infertile male patients with idiopathic oligo and/or asthenozoospermia and thirty healthy fertile men, which was the control group, were included in the study. Lead and cadmium levels in seminal plasma, semen parameters, sperm HOS, sperm DNA fragmentation percentage and semen ROS assay were measured in all subjects. Results There was a significant increase in seminal lead and cadmium levels among infertile males in comparison to controls. There were significant negative correlations between seminal lead and cadmium levels on one hand and certain semen parameters especially progressive sperm motility and vitality (HOS). Importantly, significant positive correlations were noted between seminal lead and cadmium levels on one hand and sperm DNA fragmentation percentage and semen ROS level in infertile men and controls on the other hand. Conclusions Thus, men with idiopathic male infertility had higher levels of lead and cadmium in their semen which correlated with impairment of sperm motility and vitality percentages and more importantly with higher sperm DNA fragmentation% and semen ROS level. PMID:24579002

  13. Association of lead and cadmium exposure with frailty in US older adults

    Energy Technology Data Exchange (ETDEWEB)

    García-Esquinas, Esther, E-mail: esthergge@gmail.com [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Pérez-Gómez, Beatriz [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Environmental Epidemiology and Cancer Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid (Spain); Artalejo, Fernando Rodríguez [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2015-02-15

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  14. ASSESSMENT OF THE BLACK SEA ECOSYSTEM POLLUTION WITH COPPER AND CADMIUM IN SELECTED BAYS OF SEVASTOPOL REGION

    Directory of Open Access Journals (Sweden)

    Marcin Niemiec

    2015-11-01

    Full Text Available A high level of anthropopressure has been registered in Sevastopol region, connected with its strategic role as the main city in the region, but also due to Russian Black Sea Fleet stationing there for many years. A significant source of the Black Sea contamination in Sevastopol area is the industry located in this city, municipal waste and agriculture. Implementing measures aimed at protection of the Black Sea and the evolution of their results requires monitoring conducted in the regions with various levels of anthropopressure. The work was aimed at the assessment of copper and cadmium content in water and algae in selected bays of the Black Sea in the vicinity of Sevastopol. Samples of water and algae were collected in August 2012 from eight Sevastopol bays (Galubaja, Kozacha, Kamyshova, Kruhla, Strieletska, Pishchana, Pivdenna and Sevastopolska and from the open sea in the vicinity of Fiolent. Algae (Cystoseira barbata and Ulva rigida were collected from the same places. Collected water was preserved on the sampling place and brought to the laboratory where its copper and cadmium concentrations were assessed. Collected algae were rinsed in distilled water, dried, then homogenised and mineralised. Copper and cadmium content were determined in the mineralizates using ASA method with electrothermal atomisation. Cadmium concentration in water ranged from 0.13 to 1.74 µg Cd∙dm-3, and copper from 7.07 to 22.56 µg Cd∙dm-3. Considerable differences in the content of the analysed elements were registered in individual bays. The highest content was assessed in Galubaja and Sevastopolska bays, whereas the lowest one in the water collected in the open sea and in Pivdenna bay. Copper concentrations in the analysed algae fluctuated from 3.375 to 14.96 mg Cu∙kg-1 d.m. No differences were noted in this element content between the algae species. Cadmium content in the algae ranged from 0.133 to 1.133 mg Cd∙kg-1 d.m. Higher accumulation of cadmium

  15. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  16. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District

    Science.gov (United States)

    Beyer, W. Nelson; Casteel, Stan W.; Friedrichs, Kristen R.; Gramlich, Eric; Houseright, Ruth A.; Nichols, John W.; Karouna-Renier, Natalie; Kim, Dae Young; Rangen, Kathleen; Rattner, Barnett A.; Schultz, Sandra

    2018-01-01

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  17. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Lemière, Sébastien [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Hanotel, Julie; Lescuyer, Arlette [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Demuynck, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Bodart, Jean-François [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); and others

    2016-08-15

    Highlights: • First embryonic steps were studied. • Fertilization success was impacted by cadmium exposures. • Oocytes were most affected instead of spermatozoa by cadmium exposures. • First embryonic cleavages were slown down or stopped by cadmium exposures. • Lead exposures did not affected fertilization and segmentation. - Abstract: Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  18. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  19. Biosorption of cadmium, lead, and uranium by powder of poplar leaves and branches.

    Science.gov (United States)

    Al-Masri, M S; Amin, Y; Al-Akel, B; Al-Naama, T

    2010-02-01

    The removal of metal ions from aqueous solutions by biosorption plays an important role in water pollution control. In this study, dried leaves and branches of poplar trees were studied for removing some toxic elements (cadmium, lead, and uranium) from aqueous solutions. The equilibrium experiments were systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent size and dosage, initial cadmium, lead and uranium concentration, and pH of the aqueous solution. Adsorption behavior was found to follow Freundlich and Langmuir isotherms. The results have shown that both dried leaves and branches can be effectively used for removing uranium, while only branches were found to remove lead and cadmium completely from the aqueous solution. The maximum biosorption capacity of leaves for uranium was found to be 2.3 mg g(-1) and 1.7 mg g(-1) and 2.1 mg g(-1) for lead and cadmium on branches, respectively. In addition, the studied biomass materials were used in removing lead and cadmium from contaminated water and the method was found to be effective.

  20. Assessment of lead, copper and zinc contamination of soil from ...

    African Journals Online (AJOL)

    The extent of heavy metal contamination viz. lead (Pb), copper (Cu) and zinc (Zn) in the soil of the University of Cape Coast School of Agricultural farmland, Ghana, were assessed. Thirty soil samples were taken from six demarcated areas in the farm. The mean metal concentrations (mean ± cv) and ranges of the metals ...

  1. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sakurai Nozomu

    2009-03-01

    Full Text Available Abstract Background Rhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana. Results Roots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al ions, cadmium (Cd ions, copper (Cu ions and sodium (NaCl chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter in the Al-specific group and DREB (encoding dehydration responsive element binding protein in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms. Conclusion In order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization

  2. [Dosage of cadmium and lead in human blood by anodic stripping voltammetry].

    Science.gov (United States)

    Attar, Tarik; Harek, Yahia; Dennouni-Medjati, Nouria; Lahcen, Larabi

    2012-10-01

    The objective is the determination of the conditions operating optimal to determine the concentration of the cadmium and the lead dissolved in the human blood. An electroanalytical method has been developed for the determination of lead and cadmium in whole blood by differential pulse anodic stripping voltammetry (DPASV) on a hanging mercury drop electrode (HMDE). The best conditions were found to be electrolyte support perchloric acid 0.02 M, the accumulation potential is -900 mV, and the accumulation time is 320 s. The obtained limits of detection are equal to 0.46 and 0.08 ng/mL respectively for the lead and the cadmium. The developed method was validated by the analysis of reference materials certified by total blood.

  3. Assessment of cadmium and lead adsorption in organic and conventional coffee.

    Science.gov (United States)

    Marchioni, Camila; de Oliveira, Fagner Moreira; de Magalhães, Cristiana Schmidt; Luccas, Pedro Orival

    2015-01-01

    Many metals are toxic in human organism, as is the case of cadmium and lead. Therefore, the metal levels in food need to be controlled. In coffee, metals may present risks when they are extracted from the powder to be consumed as beverage. A flow injection analysis (FIA) system is proposed, with atomic absorption detection, to metal adsorption studies in coffee powder. Kinetic study, best isotherms and time, and mass influences were determined. They allowed analyzing the high lead and cadmium adsorption percentage in organic and conventional ground coffee. Metal adsorption occurs in multilayers, following Freundlich's model, and the kinetic model obeyed is the pseudo-second order. The cadmium adsorption suffered higher temperature influence, while the lead retention suffered higher mass influence. This study indicates that the majority of these toxic agents will be retained in the powder and will not be consumed by man, avoiding possible deleterious effects.

  4. Lead and cadmium levels in coastal benthic algae (seaweeds) of Tenerife, Canary Islands.

    Science.gov (United States)

    Lozano, Gonzalo; Hardisson, Arturo; Gutiérrez, Angel José; Lafuente, María Anunciación

    2003-01-01

    Lead and cadmium levels of some species of brown-algae (Phaeophyta) from the mesolittoral (intertidal area) of the Island of Tenerife (central-eastern Atlantic) were determined by Atomic Absorption Spectrometry. The quality control was carried out using a standard "CRM 279 Ulva lactuca". The mean, minimum and maximum concentrations were 11.21, 2.090 and 81.795 microg/g/dw; and 1.13, 0.190 and 5.130 microg/g/dw for lead and cadmium, respectively. The fact that samples registering the highest cadmium concentrations were the same as those which showed the highest lead level corresponding to a sampling station nearby an urban water outlet could be relevant.

  5. Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine.

    Science.gov (United States)

    Okyere, H; Voegborlo, R B; Agorku, S E

    2015-07-15

    Total mercury (Hg), cadmium (Cd) and lead (Pb) concentrations were determined in canned fish on the Ghanaian market. Total mercury was determined using an automatic mercury analyzer while cadmium and lead levels were determined by flame atomic absorption spectrophotometry. The metal contents in the samples, expressed in μg g(-1) (wet weight), varied from cadmium, and from <0.01 to 1.44 with an average value of 0.72 for lead. The results indicate that canned fish from the Ghanaian market have concentrations well below the permissible FAO/WHO for these toxic metals. Thus considering the Provisional Tolerable Weekly Intake (PTWI) of Hg, Pb and Cd the levels obtained in this study are unlikely to constitute a significant exposure to the public through consumption of moderate amounts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Determination of silver, antimony, bismuth, copper, cadmium and indium in ores, concentrates and related materials by atomic-absorption spectrophotometry after methyl isobutyl ketone extraction as iodides.

    Science.gov (United States)

    Donaldson, E M; Wang, M

    1986-03-01

    Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.

  7. Accumulation of toxic metals of cadmium and lead in the deciduous teeth of children

    Directory of Open Access Journals (Sweden)

    Khadijeh Pashmi

    2012-05-01

    Full Text Available Background and Aim: Lead and cadmium are as main environment pollutants, and even in low concentrations have harmful effects on human health. Baby teeth are efficient indicators of environmental exposure of children to heavy metals. The aim of the present study is to determine the concentration of lead and cadmium in deciduous teeth of 5-12 year old girls and boys in Birjand in 2010. Materials and Methods: In this applied research, teeth samples of children were collected from different clinics of Birjand. The samples were prepared by means of acidolysis method and metal levels were measured using graphite furnace atomic absorption spectrophotometer. Data analysis was conducted thanks to SPSS software (version 16 and P<0.05 was taken as the significant level. Results: Mean amount of lead and cadmium in teeth samples was 1.96±1.62 and 0.2±0.17 µg/g, respectively. The highest levels of lead was found in children’s molar teeth, while children’s incisor teeth had a higher level of cadmium. Besides, the amount of lead and cadmium was more in the boys' samples rather than the girls'. However, the difference between the two genders was not significant. Conclusion: Deciduous teeth are suitable bio indicators to monitor for environmental pollution with heavy metals. The metal levels of lead and cadmium in the teeth of boys are more than girls'. The main reason is the presence of these metals in the environment and the boys' long-term exposure to these pollutants.

  8. Lead and cadmium sorption mechanisms on magnetically modified biochars

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Veselská, V.; Šafařík, Ivo; Vítková, M.; Číhalová, S.; Komárek, M.

    2016-01-01

    Roč. 203, MAR (2016), s. 318-324 ISSN 0960-8524 R&D Projects: GA MŠk(CZ) LD14066 Institutional support: RVO:67179843 Keywords : pyrolysis bio-chars * aqueous-solutions * heavy-metals * removal * adsorption * water * contaminants * pb * temperatures * copper * Magnetic biochar * Fe oxide impregnation * Metal sorption * Cation release * Wastewater treatment Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.651, year: 2016

  9. EFFECTS OF LEAD AND CADMIUM UPON THE KIDNEY FUNCTION OF THE A TEMPORE NEWBORNS

    Directory of Open Access Journals (Sweden)

    Marina Jonović

    2002-09-01

    Full Text Available The aim of this paper is to examine the subjection of the embryo and the newborn to lead and cadmium as well as the effects of these metals upon the kidney function in the children newly born on time. The hypothetical framework of the paper was that lead and cadmium that are trans placental transmitted to the embryo organism lead to the change of the kidney function in the sence of damages done to the tubular system and to the interstitium along with changes in the urine sediment and in the levels of urea and creatinine in the serum; thus induced effects can be detected in the first week of life of the newborn babies.The examination was done in 1995 at Gynecological and Obstetric Clinic in Niš. The examined and the control group consisted of 30 newborns on time. The clinic examination was done on all the newborns. Regarding the kidney function examination, on the forth day of life all the newborn children were subjected to the determination of the value of urea and creatinine in the vein blood, the urine examination, the physical and physical-chemical features of the urine (outlook, specific weight, color, pH, the chemical status of the urine, the microscopic examination of the urine sediment, the ultrasonic examination of the kidneys. On the basis of the carried out examination and obtained results we came to the following conclusions:The lead concentration in the air at the localities related to the examined group is above G VI while for the control one below GVI. The cadmium concentration in the air from the examined localities in both the groups are above GVI. The lead and cadmium concentrations in the sediment materials at the localities related to the examined and control group are below GVI.The lead concentration in the umbilical cord blood is higher in the control group with respect to the examined one though without statistic significance. The lead concentration in the human milk is higher in the control group than in the examined one

  10. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions.

    Science.gov (United States)

    Kim, Ha Na; Ren, Wen Xiu; Kim, Jong Seung; Yoon, Juyoung

    2012-04-21

    Exposure to even very low levels of lead, cadmium, and mercury ions is known to cause neurological, reproductive, cardiovascular, and developmental disorders, which are more serious problems for children particularly. Accordingly, great efforts have been devoted to the development of fluorescent and colorimetric sensors, which can selectively detect lead, cadmium, and mercury ions. In this critical review, the fluorescent and colorimetric sensors are classified according to their receptors into several categories, including small molecule based sensors, calixarene based chemosensors, BODIPY based chemosensors, polymer based chemosensors, DNA functionalized sensing systems, protein based sensing systems and nanoparticle based sensing systems (197 references). This journal is © The Royal Society of Chemistry 2012

  11. Variability of cadmium, copper and zinc levels in molluscs and associated sediments from Chile.

    Science.gov (United States)

    De Gregori, I; Pinochet, H; Gras, N; Muñoz, L

    1996-01-01

    The concentrations of cadmium, copper and zinc in mussel and sediment samples collected together from eight different geographical coastal areas of Chile were determined. The mussels studied were 'Chorito Maico', 'Almejas' and 'Navajuelas Chilenas' (Perumytilus purpuratus, Semelle solida and Tagellus dombeii, respectively). Sampling was carried out in July and September 1992 and January and April 1993 (winter, spring, summer and autumn seasons in Chile, respectively). The metal levels in these mussels varied among species; there were several sites where the metal concentrations in molluscs approached or exceeded the criteria levels for Cd, Cu and Zn in shellfish products: 1, 10 and 50 ppm ww respectively, which are regarded as safe levels for human consumption. The results of metal levels in sediments showed two areas clearly polluted with Cu. Strong relationships between Cu concentrations in the three molluscs and sediments were found; weak correlations were observed for Zn in S. solida.

  12. Assessment of lead and cadmium levels in frequently used cosmetic products in Iran.

    Science.gov (United States)

    Nourmoradi, H; Foroghi, M; Farhadkhani, M; Vahid Dastjerdi, M

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08-5.2  µ g/g and 4.08-60.20  µ g/g, respectively. The eye shadow samples had a lead level of 0.85-6.90  µ g/g and a cadmium level of 1.54-55.59  µ g/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics.

  13. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    Science.gov (United States)

    Nourmoradi, H.; Foroghi, M.; Farhadkhani, M.; Vahid Dastjerdi, M.

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2 µg/g and 4.08–60.20 µg/g, respectively. The eye shadow samples had a lead level of 0.85–6.90 µg/g and a cadmium level of 1.54–55.59 µg/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics. PMID:24174937

  14. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    Directory of Open Access Journals (Sweden)

    H. Nourmoradi

    2013-01-01

    Full Text Available This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow in Iran. Fifty samples of lipstick (5 colors in 7 brands and eye shadow (3 colors in 5 brands were selected taken from large cosmetic stores in Isfahan (Iran and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2 µg/g and 4.08–60.20 µg/g, respectively. The eye shadow samples had a lead level of 0.85–6.90 µg/g and a cadmium level of 1.54–55.59 µg/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics.

  15. Isotherms and kinetics of lead and cadmium uptake from the waste leachate by natural and modified clinoptilolite

    Directory of Open Access Journals (Sweden)

    Maryam Faraji

    2012-01-01

    Conclusions: The modified zeolite with surfactant can be used as an appropriate adsorbent for the separation of heavy metals from waste Leachate. Lead and cadmium were absorbed in a single layer on the surface of the modified zeolite with surfactant, comparing different isoterm models, indicated that the capacity of the modified zeolite for lead adsorption was more than cadmium adsorption, but cadmium was absorbed with higher energy.

  16. Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight

    Directory of Open Access Journals (Sweden)

    Yiwen Luo

    2017-04-01

    Full Text Available Abstract Background Cadmium (Cd, lead (Pb and arsenic (As are common environmental contaminants that have been associated with lower birthweight. Although some essential metals may mitigate exposure, data are inconsistent. This study sought to evaluate the relationship between toxic metals, nutrient combinations and birthweight among 275 mother-child pairs. Methods Non-essential metals, Cd, Pb, As, and essential metals, iron (Fe, zinc (Zn, selenium (Se, copper (Cu, calcium (Ca, magnesium (Mg, and manganese (Mn were measured in maternal whole blood obtained during the first trimester using inductively coupled plasma mass spectrometry. Folate concentrations were measured by microbial assay. Birthweight was obtained from medical records. We used quantile regression to evaluate the association between toxic metals and nutrients due to their underlying wedge-shaped relationship. Ordinary linear regression was used to evaluate associations between birth weight and toxic metals. Results After multivariate adjustment, the negative association between Pb or Cd and a combination of Fe, Se, Ca and folate was robust, persistent and dose-dependent (p < 0.05. However, a combination of Zn, Cu, Mn and Mg was positively associated with Pb and Cd levels. While prenatal blood Cd and Pb were also associated with lower birthweight. Fe, Se, Ca and folate did not modify these associations. Conclusion Small sample size and cross-sectional design notwithstanding, the robust and persistent negative associations between some, but not all, nutrient combinations with these ubiquitous environmental contaminants suggest that only some recommended nutrient combinations may mitigate toxic metal exposure in chronically exposed populations. Larger longitudinal studies are required to confirm these findings.

  17. Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men.

    Science.gov (United States)

    Oldereid, N B; Thomassen, Y; Attramadal, A; Olaisen, B; Purvis, K

    1993-11-01

    The concentrations of lead in blood and the concentrations of lead, cadmium and zinc in tissues were determined in various reproductive organs, liver and kidney removed at necropsy from 41 men who had died suddenly. None of the reproductive organs specifically accumulated lead and no significant correlation could be demonstrated between blood and organ concentrations or between concentrations and age, occupation or urban/rural background of the subject. Unlike lead, the tissue concentrations of cadmium increased with increasing age in all of the reproductive organs examined. Of these, the epididymides and seminal vesicles contained the highest concentrations. Whereas prostatic zinc also exhibited a significant age-dependent increase, the concentrations in the testes declined with age. The age-dependent increase in testicular cadmium did not become apparent until after the fourth decade, when any potentially deleterious impact on male fertility has less relevance. It is concluded that measurable amounts of lead and cadmium are present in all of the human reproductive organs but their organ and age distribution do not offer strong support for their involvement in the aetiology of male infertility or in the genesis of glandular neoplasms.

  18. Effect of Cadmium and Copper Exposure on Growth, Secondary Metabolites and Antioxidant Activity in the Medicinal Plant Sambung Nyawa (Gynura procumbens (Lour. Merr

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2017-10-01

    Full Text Available A randomized complete block (RCBD study was designed to investigate the effects of cadmium (Cd and copper (Cu on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour. Merr. Nine treatments including (1 control (no Cd and Cu; (2 Cd 2 = cadmium 2 mg/L; (3 Cd 4 = cadmium 4 mg/L; (4 Cu 70 = copper 70 mg/L; (5 Cu 140 = copper 140 mg/L; (6 Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L; (7 Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L; (8 Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9 Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH, ferric reducing antioxidant potential (FRAP and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.

  19. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  20. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    Science.gov (United States)

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  1. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates.

    Science.gov (United States)

    van der Fels-Klerx, H J; Camenzuli, L; van der Lee, M K; Oonincx, D G A B

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.

  2. Cadmium and lead contents in drinking milk from selected regions of Poland

    Directory of Open Access Journals (Sweden)

    Renata Pietrzak-Fiećko

    2013-09-01

    Full Text Available Background. Cadmium and lead are classified as toxic metals. Toxicity is attributed to the adverse effect on the human body, and therefore the content of these elements is analyzed in the environment and in food products. Studies conducted by many researchers indicate that more of cadmium and lead accumulate in products of plant origin, however, food products of animal origin are also not free from these compounds. The aim of this study was to determine the content of cadmium and lead in drinking milk originating from four selected milk producers from two different regions. Methods. A total of 28 milk samples were tested. The tested material was mineralized dry. To determine the content of the analyzed elements the Flame Atomic Absorption Spectrometry method was used. There were no significant differences in the content of heavy metals in the analyzed samples of milk. Results. None of the samples revealed the exceedance of the highest permissible level of these elements. Conclusions. Cadmium and lead content in tested drinking milk does not pose a threat to human health

  3. Critical loads of cadmium, lead and mercury and their exceedances in Europe

    NARCIS (Netherlands)

    Hettelingh, J.P.; Schütze, G.; Vries, de W.; Denier van der Gon, H.A.C.; Ilyin, I.; Reinds, G.J.; Slootweg, J.; Travnikov, O.

    2015-01-01

    In this chapter information is summarized on the assessment of the risk of impacts of cadmium, lead and mercury emissions and related depositions of these metals, with an emphasis on natural areas in Europe. Depositions are compared to critical loads to identify areas in Europe where critical loads

  4. Mushroom contamination by mercury, cadmium and lead; Contaminazione di funghi commestibili con mercurio, cadmio e piombo

    Energy Technology Data Exchange (ETDEWEB)

    Dojmi Di Delupis, G.; Dojmi Di Delupis, F. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1996-12-01

    Occurrence and bioaccumulation of mercury, cadmium and lead were found in mushrooms by various researchers. Such mushrooms were often found in polluted areas. Pollution was mainly caused by industrial or mining plants, by some agricultural treatments and by road traffic. Considerations and recommendations concerning food consumption are made.

  5. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    This study also evaluated the sublethal effects of cadmium, manganese, lead, zinc and iron in plasma samples utilising plasma electrolyte parameters as a biomarker using an albino mice model, M. musculus. Mice were subjected to sublethal concentrations of the selected heavy metals (1/10th of 96 hrLC50). Blood plasma ...

  6. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus)

    Science.gov (United States)

    Increased cadmium (Cd) and lead (Pb) pollution from industrial, agricultural, energy and municipal sources may have a toxic impact on food chain quality in China. In plants, Cd is readily taken up, while Pb is slowly absorbed. The uptake of both metals interferes with many cellular functions in the ...

  7. Dietary intake of heavy metals (cadmium, lead and mercury) by the Dutch population

    NARCIS (Netherlands)

    Winter-Sorkina R de; Bakker MI; Donkersgoed G van; Klaveren JD van; RIKILT Wageningen; SIR

    2003-01-01

    The exposure of the Dutch population to cadmium, lead and mercury via food is assessed based on concentration data from 1999-2002 and on consumption data from the third Dutch National Food Consumption Survey. To this end, the dietary intake estimation method using the MCRA (Monte Carlo Risk

  8. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    Science.gov (United States)

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  9. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  10. Flow-injection analysis of traces of lead and cadmium by solvent extraction with dithizone.

    Science.gov (United States)

    Klinghoffer, O; Růzicka, J; Hansen, E H

    1980-02-01

    An automated solvent extraction method for determination of lead and cadmium down to the 50 ng/ml level has been developed. Optimum conditions for selective and sensitive determination were designed and verified by using the flow-injection scanning method.

  11. Cadmium, lead, arsenic and selenium levels in patients with type 2 ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the level of toxic elements: lead (Pb), cadmium (Cd) and arsenic (As) levels in whole blood and selenium (Se) (an antioxidant element) in serum of patients with type 2 diabetes mellitus. Fifty diabetic patients and 40 apparently healthy non-diabetic individuals were recruited into this ...

  12. Levels of lead and cadmium in hair and saliva of school children in ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the presence of cadmium (Cd) and lead (Pb) in the hair and saliva of schoolchildren (n=265) in Ceres district, rural and agricultural Town. The role of other factors, such as the socio-economic status, and anthropometric data of the children were also investigated including levels ...

  13. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  14. Cadmium, lead, arsenic and selenium levels in patients with type 2 ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... There is accumulating evidence that the metabolism of several trace metals are altered in diabetes mellitus and these micronutrients might have specific roles in the pathogenesis and progression of the disease. The aim of this study was to investigate the level of toxic elements: lead (Pb), cadmium (Cd).

  15. Method of analysis for the determination of lead and cadmium in fresh meat

    NARCIS (Netherlands)

    Ruig, de W.G.

    1980-01-01

    This report comprises the result of the RIKILT of an intercomparison on the determination of lead and cadmium in bovine liver and bovine kidney. The aim of this round robbin was to check a wet ashing procedure followed by a flame AAS determination as described too in EEC doc. 2266/VI/77. Special

  16. Investigation of Released Cadmium and Lead from Different Colors of Over Glaze Designs to Food Stuff in Different Conditions

    Directory of Open Access Journals (Sweden)

    H. Hashemi-Moghaddam

    2012-03-01

    Full Text Available In this paper, leaching of lead and cadmium was investigated from porcelain over glaze designs between different colors.  Also the effect of microwave heating was considered on leaching of lead and cadmium.  Dishes were selected with a decor with the dominant color of gray, red, yellow, blue, and dark blue. Amounts of cadmium and lead which leached from the container by acetic acid and orange juice were measured according to the standard ASTM C738.  The results showed that especially in the red and dark blue colors cadmium and lead could be released easily by either acetic acid or orange juice, and these amounts were much higher than the permissible standard amount. Also microwave heating could enhance releasing of lead and cadmium from decorated dinnerware. 

  17. Estimated long-term dietary exposure to lead, cadmium, and mercury in young Korean children.

    Science.gov (United States)

    Kim, D W; Woo, H D; Joo, J; Park, K S; Oh, S Y; Kwon, H J; Park, J D; Hong, Y S; Sohn, S J; Yoon, H J; Hwang, M S; Kim, J

    2014-12-01

    Controlling for day-to-day variation is a key issue in estimating long-term dietary exposure to heavy metals using 24-hour recall (24HR) data from a relatively small number of days. This study was conducted to estimate long-term dietary exposure to lead, cadmium and mercury among Korean children using the Iowa State University (ISU) method and to assess the contributions of different food groups to heavy metal intake. We analyzed 2 days of 24HR data from 457 children between 0 and 6 years of age in 2010. Using bootstrapped concentration data for 118 representative foods, 93.5% of total intake was included in the exposure estimates in this study. Using the 2-day exposure data, we estimated long-term exposure by controlling for within-individual variation using the ISU method. The long-term dietary exposure estimates (mean±standard deviation) for lead, cadmium, and mercury were 0.47±0.14, 0.38±0.20, and 0.22±0.08 μg/kg bw/day, respectively. For lead and cadmium, the percentages of children whose exposure was greater than the reference value were 35 and 42%, respectively. Fruits were an important source of lead exposure, and cereal and fish and shellfish made the greatest contributions to the total cadmium and mercury exposure. Our findings also suggest that the long-term exposure to lead and cadmium was somewhat greater than the reference values, whereas mercury exposure was well below than the reference value in this population. Further studies may be necessary to evaluate the food items contributing to heavy metal exposure, and continuous monitoring is needed to ensure the safety of food intake and dietary patterns among vulnerable groups in Korea.

  18. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Science.gov (United States)

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  19. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Directory of Open Access Journals (Sweden)

    Jinzhong Wan

    Full Text Available This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  20. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huifeng [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-11-15

    Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu + Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers.

  1. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mojtaba Panjehpour

    2010-01-01

    Full Text Available Background: Cadmium chloride is an important occupational and environmental pollutant. However, it can also be anti-carcinogenic under certain conditions. Copper, an essential trace element, has the ability to generate reactive oxygen species and induce cell apoptosis. This study was aimed to determine the growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. Methods: By using MTT cell viability test, treatment of monolayer cell cultures with different metal concentrations (1-1000 μM showed a significant dose dependent decrease (p < 0.05 of viable cells in different times. Results: A considerable cytotoxicity was observed for CdCl2 at 200 μM and 1 μM after 48 and 72 hours incubations, respectively. The highest concentration of CuCl2 (1000 μM had little cytotoxic effects after 48 hours incubation period, but 1 μM of CuCl2 revealed a considerable cytotoxicity after 72 hours. The maximum synergic cytotoxic effect was observed at 0.5 μM of both metals. Conclusions: The results of the present study indicate that cytotoxic effect of CuCl2 is somehow lesser than that of CdCl2. This may be due to vital role of copper which is not known for cadmium so far.

  2. Association of cadmium, lead and mercury with paraoxonase 1 activity in women.

    Directory of Open Access Journals (Sweden)

    Anna Z Pollack

    Full Text Available The activity of paraoxonase 1 (PON1, an antioxidant enzyme whose polymorphisms have been associated with cancer risk, may be associated with metals exposure.To evaluate PON1 activity in relation to cadmium, lead, and mercury levels in healthy, premenopausal women.Women from upstate New York were followed for ≥ two menstrual cycles. Repeated measures linear mixed models estimated the association between cadmium, lead, and mercury levels (by tertile: T1, T2, T3 and PON1 arylesterase (PON1A and PON1 paraoxonase (PON1P activity, separately. Analyses were stratified by PON1 Q192R phenotype and un-stratified.Median blood cadmium, lead, and mercury concentrations were 0.30 µg/L, 0.87 µg/dL, and 1.15 µg/L. In un-stratified analyses cadmium and mercury were associated with decreased PON1A activity (T2 vs. T1; not T3 vs. T1 but metals were not associated with PON1P. Phenotypes were distributed between QQ (n = 99, QR (n = 117, and RR (n = 34. Cadmium was associated with decreased PON1A activity for QR and RR phenotypes comparing T2 vs. T1 (-14.4% 95% confidence interval [CI] [-20.1, -8.4] and -27.9% [-39.5, -14.0],. Lead was associated with decreased PON1A (RR phenotype, T3 vs. T1 -18.9% [-32.5, -2.5]; T2 vs. T1 -19.6% [-32.4, -4.4]. Cadmium was associated with lower PON1P comparing T2 vs. T1 for the RR (-34.9% [-51.5, -12.5] and QR phenotypes (-9.5% [-18.1, 0.0] but not comparing T3 vs. T1. Cadmium was associated with increases in PON1P levels (QQ phenotype, T3 vs. T1 24.5% [7.0, 44.9] and mercury was associated with increased PON1A levels (QQ phenotype, T3 vs. T1 6.2% [0.2, 12.6]. Mercury was associated with decreased PON1P (RR phenotype, T2 vs. T1 -22.8 [-37.8, -4.1].Blood metals were associated with PON1 activity and these effects varied by phenotype. However, there was not a linear dose-response and these findings await replication.

  3. Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling.

    Science.gov (United States)

    Chen, Yi-ping; Liu, Qiang; Yue, Xiao-zhen; Meng, Zhong-wen; Liang, Jing

    2013-07-01

    Heavy metals have long-term adverse impacts on the health of soil ecosystems and even exhibit hazardous influences on human health. Literatures have shown that heavy metals could result in the reduction of crops growth and development and finally result in crops production decline. To determine whether or not ultrasonic vibration alleviate damage induced by cadmium and lead in crops, the wheat seeds, which is one of the most important agriculture crops in China and other countries in the world, were exposed to 10 min ultrasonic vibration and then the toxicological effects were investigated. Wheat seeds were soaked for 3 h with water and then the seeds were placed in clean beaker with some water, the beaker were placed in ultrasonic apparatus to vibrate (model, KQ-200VDV; frequency, 45 KHz; power, 160 W). Pretreatment seeds of 80 were sown in dishes (Ø 15 cm). After seeds emergence, the seedlings were thinned to 60 per dish. The dishes with seedlings were placed in a growth chamber maintained at 25 °C, 70% relative humidity and 380 μmol mol(-1) CO2 under dark condition. A 400 μmol m(-2) s(-1) photosynthetically active radiation was provided for 8 h (dark for 16 h) after the seed germination. When the seedlings were 2 days old, the seedlings were subjected to cadmium and lead for 4 days and then some selective biochemical and physiological parameters were measured. (1) Although each doses of ultrasonic vibration could improve seed germination, enhance biosynthesis of protein and chlorophyll and seedlings growth, the optimum dosage of ultrasonic vibration was 10 min. (2) Compared with the controls, cadmium and lead stress led to significant increase in the concentrations of malondialdehyde (MDA) and O(-2) and in the conductivity of electrolyte leakage, but the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), the glutathione concentration, and the shoot weight were decreased by Cd and Pb stress. In the case of the seeds

  4. Effect of oral cadmium administration to female rats during pregnancy on zinc, copper, and iron content in placenta, foetal liver, kidney, intestine, and brain

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, B.; Steibert, E.

    1985-02-01

    Cadmium chloride was administered in drinking water at a concentration of 50 ppm cadmium to female rats for 20 days of gestation. The foetuses were then removed from the uteri of the dams. Gestational exposure to oral cadmium resulted in decreased zinc, copper, iron, metallothionein, and thionein-bound zinc content in foetal liver as well as in reduced copper content in placenta and foetal intestine, brain and kidney. Subcellular fractionation of the foetal liver revealed decreased microsomal iron content. Pregnant rats exposed to oral cadmium revealed decreased serum zinc and iron concentration as well as reduced ceruloplasmin activity. The decreased zinc, copper, and iron content in foetal organs is suggested to be causally connected with the diminished availability of these metals in the maternal circulation.

  5. Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.

  6. Food safety - new EU-wide maximum levels for lead and cadmium in foodstuffs; Neue EU-weite Hoechstgehalte fuer Blei und Cadmium in Lebensmitteln

    Energy Technology Data Exchange (ETDEWEB)

    Solbach, C. [Referat ' Umwelteinwirkungen auf die menschliche Gesundheit' , Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Bonn (Germany); Ballin, U. [Niedersaechsisches Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit, Veterinaerinstitut fuer Fische und Fischwaren, Cuxhaven (Germany); Klein, H. [Bundesinstitut fuer Gesundheitlichen Verbraucherschutz und Veterinaermedizin, Berlin (Germany)

    2002-07-01

    As of 5 April 2002, the maximum levels of the environmental contaminants, lead and cadmium, in different foodstuffs are now applicable for the first time throughout the entire EU. The toxicological assessment of lead and cadmium provides the basis for establishing maximum levels for these heavy metals in foods. The fixation of maximum levels results in obligatory regulations concerning the admissible burden of foods with these contaminants and, consequently, contributes to a health-related protection of the consumer. On 8 March 2001, the Commission issued a directive laying down the sampling methods and the methods of analysis for the official control of the levels of lead, cadmium and mercury in foodstuffs. (orig.) [German] Ab dem 5. April 2002 gelten erstmals EU-weit Hoechstgehalte fuer die Umweltkontaminanten Blei und Cadmium in verschiedenen Lebensmitteln. Die toxikologische Bewertung von Blei und Cadmium setzt den Rahmen, innerhalb dessen Hoechstgehalte fuer diese Schwermetalle in Lebensmitteln festgelegt wurden. Die Festsetzung von Hoechstgehalten schafft verbindliche Regelungen ueber die zulaessige Belastung von Lebensmitteln mit Kontaminanten und ist damit ein Beitrag zum gesundheitlichen Verbraucherschutz. Fuer die amtliche Kontrolle der Umweltkontaminanten Blei, Cadmium und Quecksilber in Lebensmitteln hat die Kommission am 8. Maerz 2001 eine Richtlinie mit Probenahmeverfahren und Analysemethoden erlassen. (orig.)

  7. Cadmium, copper, iron, and zinc concentrations in kidneys of grey wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada).

    Science.gov (United States)

    Hoffmann, S R; Blunck, S A; Petersen, K N; Jones, E M; Koval, J C; Misek, R; Frick, J A; Cluff, H D; Sime, C A; McNay, M; Beckman, K B; Atkinson, M W; Drew, M; Collinge, M D; Bangs, E E; Harper, R G

    2010-11-01

    Cadmium, copper, iron, and zinc levels were measured in the kidneys of 115 grey wolves (Canis lupus) from Idaho, Montana and Alaska (United States), and from the Northwest Territories (Canada). No significant differences in the levels of iron or copper were observed between locations, but wolf kidneys from more northern locations had significantly higher cadmium levels (Alaska > Northwest Territories > Montana ≈ Idaho), and wolves from Alaska showed significantly higher zinc than other locations. Additionally, female wolves in Alaska had higher iron levels than males, and adult wolves in Montana had higher copper levels than subadults.

  8. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk.

    Science.gov (United States)

    Li, W C; Law, F Y; Chan, Y H M

    2017-04-01

    This study investigated the adsorption and removal behaviour of copper (Cu) (II) and cadmium (Cd) (II) ions using rice husk and rice straw in aqueous solutions. Different parameters were used to investigate their adsorption performance in saline conditions and the optimal level of biosorption at different pH levels. The main parameters were pH (3, 6 and 9), initial concentration level of heavy metals (Cu (II) 5, 10, 20, 40 and 60 mg/L and Cd (II) 0.5, 1, 2, 4 and 8 mg/L, respectively), salinity (0, 50 and 100 mM NaCl) and contact time (ranging from 3 to 60 min). Langmuir and Freundlich isotherm models were applied to analyse the removal efficiency and sorption capacity of the pretreated rice husk and rice straw. The removal efficiency and adsorption capacity generally increased with the pH and reached a plateau in alkaline conditions. The percentage removal of Cu (II) by rice husk reached 97 % at pH 9 and 95 % by rice straw at pH 6. Biosorption performance increased in the absence of NaCl. Kinetic studies for both metals revealed that the biosorption of Cu (II) and Cd (II) onto rice straw and husk was pseudo-second order.

  9. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  10. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription.

    Science.gov (United States)

    Qian, Haifeng; Li, Jingjing; Sun, Liwei; Chen, Wei; Sheng, G Daniel; Liu, Weiping; Fu, Zhengwei

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 microM Cu or 1.0 and 2.0 microM Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5)+Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO(2) assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  11. Acute toxicities of copper, cadmium and Cu: Cd mixture to larvae of the shrimp Penaeus Penicillatus

    Science.gov (United States)

    Munshi, A. B.; Su, Yong-Quan; Li, Shao-Jing

    1996-06-01

    This study showed lethal concentrations (LC) of copper for Peneaus penicillatus at various stages of its life cycle were 1000 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 vg/L for Zoea II, 2500 μg/L for Zoea III, 3000 μg/L for Mysis I, II and III and that for almost 100% mortality for postlarvae was 3000 μg/L. For cadmium LC were 100 μg/L for nauplii, 500 μg/L for Zoea I, 1000 μg/L for Zoea II, 2000 μg/L for Zoea III, 2500 μg/L for Mysis I and 3500 μg/L for Mysis II, III and postlarvae. For mixture of both metals, LC were 400 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 μg/L for Zoea II and 3000 μg/L for Mysis I, II, III and post larvae.

  12. Adsorption of cadmium and copper in representative soils of Eastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Deyvison Andrey Medrado Gonçalves

    2016-10-01

    Full Text Available Studies of heavy metals adsorption in soil play a key role in predicting environmental susceptibility to contamination by toxic elements. The objective of this study was to evaluate cadmium (Cd and copper (Cu adsorption in surface and subsurface soil. Samples of six soils: Xanthic Hapludox (XH1 and XH2, Typic Hapludox (TH, Typic Rhodudalf (TR, Typic Fluvaquent (TF, and Amazonian dark earths (ADE from Eastern Amazonian, Brazil. The soils were selected for chemical, physical and mineralogical characterization and to determine the adsorption by Langmuir and Freundlich isotherms. All soils characterized as kaolinitic, and among them, XH1 and XH2 showed the lowest fertility. The Langmuir and Freundlich isotherms revealed a higher Cu (H curve than Cd (L curve adsorption. Parameters of Langmuir and Freundlich isotherms indicate that soils TR, TF and ADE has the greatest capacity and affinity for metal adsorption. Correlation between the curve adsorption parameters and the soil attributes indicates that the pH, CEC, OM and MnO variables had the best influence on metal retention. The Langmuir and Freundlich isotherms satisfactorily described Cu and Cd soil adsorption, where TR, TF and ADE has a lower vulnerability to metal input to the environment. Besides the pH, CEC and OM the MnO had a significant effect on Cu and Cd adsorption in Amazon soils.

  13. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchelmore, Carys L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)], E-mail: Mitchelmore@cbl.umces.edu; Verde, E. Alan [Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420 (United States); Weis, Virginia M. [Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331 (United States)

    2007-11-15

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 {mu}g l{sup -1}) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 {mu}g l{sup -1} Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 {mu}g l{sup -1} metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response.

  14. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  15. Effects of Cadmium, Lead, Manganese, and Zinc at WHO Safe Limits ...

    African Journals Online (AJOL)

    In the present study, The in vitro availability of chloramphenicol was studied in the presence of lead (Pb), cadmium (Cd), manganese (Mn) and zinc (Zn) at 0.01, 0.003, 0.5 and 3 mg/L respectively corresponding to WHO safe limits in drinking water for each of the metals. The in vitro availability study was carried out in ...

  16. Lead and Cadmium Toxicity in Tile Manufacturing Workers in Assiut, Egypt

    Directory of Open Access Journals (Sweden)

    Ragaa M Abd Elmaaboud

    2016-06-01

    Full Text Available Occupational lead and cadmium exposure are important health issues in developing countries. This study aimed to detect toxic metal contents in raw materials used to make tiles and to assess exposure health impacts on workers. The study sample consisted of 74 tile workers, having a mean age of 35.2 years, in the Industrial City of Arab El Awamer, Assiut (Egypt. Elemental analysis of the raw materials was performed by using scanning electron microscopy. The data collection questionnaire was divided into two parts; the first included demographic data, symptoms attributed to toxic elements and possible sources of exposure to metals. The second part was designated to assess heavy metal exposure health impacts through clinical examination and biological  investigations. Many toxic elements were identified in the raw materials used to make tiles, and the most abundant were lead and cadmium. Analysis of the clinical data revealed that 66% of the workers suffered from headache, constipation (8%, abdominal colic (33.8% and 30% suffered from a variety of respiratory problems such as dyspnea (60%, cough (13% and chest tightness (27%. Fifty percent of the workers complained of weak grip, 33.8% of foot drop, and 54% had tremors. Burton’s line in gums was present in 28% of workers and 28.2% were diagnosed with constrictive lung diseases. Of the 74 workers, 90.5 % showed toxic lead levels and 80% had toxic cadmium levels. 10.8% had abnormal alpha glutathione levels with a positive strong linear correlation between lead and cadmium levels and years of work. It is mandatory to develop and implement measures to prevent these hazardous exposure effects among tile industry workers.

  17. Determination of Cadmium and Lead Concentration in Cosmetics (Sunscreen, Lipstick and Hair Color)

    OpenAIRE

    Mehrnoosh Mohammadi; Alireza Riyahi Bakhtiari; Saber Khodabandeh

    2013-01-01

    Background and Objectives: Development of cosmetics industry has increased the affinity to use these products by people especially women for makeup and toilet. Due to the presence of metals such as lead and cadmium as preservative and colored element in these products, concentrations of these metals in sunscreen cosmetics, lipstick and hair color were determined. Materials and Methods: Different brands of cosmetics were analyzed to determine Cd and Pb concentration (in µg/kg dry weight) us...

  18. Tracing source pollution in soils using cadmium and lead isotopes.

    Science.gov (United States)

    Cloquet, C; Carignan, J; Libourel, G; Sterckeman, T; Perdrix, E

    2006-04-15

    Tracing the source of heavy metals in the environment is of key importance for our understanding of their pollution and natural cycles in the surface Earth reservoirs. Up to now, most exclusively Pb isotopes were used to effectively trace metal pollution sources in the environment. Here we report systematic variations of Cd isotope ratios measured in polluted topsoils surrounding a Pb-Zn refinery plant in northern France. Fractionated Cd was measured in soil samples surrounding the refinery, and this fractionation can be attributed to the refining processes. Despite the Cd isotopic ratios being precisely measured, the obtained uncertainties are still large compared to the total isotopic variation. Nevertheless, for the first time, Cd isotopically fractionated by industrial processes may be traced in the environment. On the same samples, Pb isotope systematics suggested that materials actually used by the refinery were not the major source of Pb in soils, probably because refined ore origins changed over the 100 years of operation. On the other hand, Cd isotopes and concentrations measured in topsoils allowed identification of three main origins (industrial dust and slag and agriculture), assuming that all Cd ores are not fractionated, as suggested by terrestrial rocks so far analyzed, and calculation of their relative contributions for each sampling point. Understanding that this refinery context was an ideal situation for such a study, our results lead to the possibility of tracing sources of anthropogenic Cd and better constrain mixing processes, fluxes, transport, and phasing out of industrial input in nature.

  19. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Motoi, E-mail: machida@faculty.chiba-u.jp [Department of Chemistry and Biochemistry, Faulty of Science and Engineering, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada); Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Safety and Health Organization, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Fotoohi, Babak [Department of Chemistry and Biochemistry, Faulty of Science and Engineering, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada); Amamo, Yoshimasa [Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Safety and Health Organization, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Mercier, Louis [Department of Chemistry and Biochemistry, Faulty of Science and Engineering, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada)

    2012-07-15

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  20. Determining the content of lead and cadmium in infant food from the Polish market.

    Science.gov (United States)

    Winiarska-Mieczan, Anna; Kiczorowska, Bożena

    2012-09-01

    The present study aimed to analyse the toxic metals in the baby fruit and vegetable desserts, juices and dinners available on the Polish market, and find that these products a less are safe for infants. The average daily intake of cadmium and lead found in one jar of dessert, one bottle of juice and one jar of baby dinner is, respectively, 0.20 μg (2% of PTDI) and 0.82 μg (2.2% of PTDI), 0.15 μg (2% of PTDI) and 4.86 μg (13.6% of PTDI), and 0.98 μg (10% of PTDI) and 2.36 μg (6.7% of PTDI). It was confirmed that all the examined baby food met the requirements regarding lead and cadmium contamination, and the obtained results were lower than the maximum acceptable level of the contamination with these metals. It may be assumed that fruit and vegetable products available on the Polish market are safe for infants. However, in some products, the levels of cadmium and lead were high.

  1. Investigation of heavy metals (Cadmium, Lead in Chironomidae and Gammarus pulex Namrood River – Tehran Province

    Directory of Open Access Journals (Sweden)

    Rezaei M. Kamali A. and Shapoori M.

    2012-01-01

    Full Text Available Marine ecosystem pollution is one of the important problems of today environment. In this study the existence of heavy metal in the Namrood River, situated in Firoozkooh in Tehran province, Iran has been investigated. The Namrood River is located near Firoozkooh route, and is affected by pollutant from tourist centers, entertainment, gas stations, nearby villages’ sewage systems, farming effluent, and hatchery farms. In some areas, its water is heavily polluted possibly by heavy metals. After selecting two stations in upstream and downstream of the river, they were sampled three times in both cold and hot seasons of year (mid-March, and June for Chironomidae, and Gammarus plux sediments. The measured heavy metals were cadmium and lead. The results showed that the concentration of cadmium in measured samples varied from 0.010-0.2033 ppm. The concentration of lead in samples varied from 0.11-2.16 ppm. The results also indicated that sediments of samples taken from the upper station in the cold season had a higher proportion of cadmium and a higher concentration of lead  than  sediments in the lower station during the hot season.

  2. Contamination of Soil, Water, Plant and Dust by Zinc, Lead and Cadmium in Southwest Isfahan

    Directory of Open Access Journals (Sweden)

    Nastaran Esmaeilpourfard

    2016-02-01

    Full Text Available Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ofpollutions is contamination withheavy metals.The purpose of the present research has been to investigate the effect of heavy metals of mine on soil, water, plant and dust pollution. Materials and Methods: Gushfil mine is located 3 kilometers southwest of Sepahanshahr, Isfahan. Soil profiles were dug 500 meters apart along three parallel transects, between east of Sepahanshahr and Gushfil mine. The profiles were described and samples were collected from their horizons. Ore, wells, plant and dust were sampled as well. Total concentrations of lead, zinc and cadmium were measured in the samples. To find the origin of polluted dust and soil, lead isotopes contents in the samples were measured and regressional relationships between the ratios of these contents were investigated. Results and Discussion Sepahanshahr soils are not contaminated by zinc, lead and cadmium, but within a distance of one to two kilometers from the Gushfil mine, the soils are polluted by zinc and lead. Cadmium contamination was not observed in the studied soils. In all of the soils, the heavy metals content varies downwards irregularly. The reason for this variation trend is that the studied soils are alluvial. In different periods of time, alluvium parent materials have been transported by runoff water from the lead and zinc mines towards the alluvial piedmont plain. The studied heavy metals have been distributed irregularly in different horizons of the soils that have been formed in these parent materials. Lead and cadmium concentrations of drinking water in the studied area are much higher than the maximum amount allowed by the World Health Organization. Cadmium content in

  3. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, Agnes Y. [Sanexen Environmental Services Inc., 1471 Lionel-Boulet Boulevard, Varennes, Quebec J3X 1P7 (Canada)]. E-mail: arenoux@sanexen.com; Rocheleau, Sylvie [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sarrazin, Manon [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sunahara, Geoffrey I. [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada)]. E-mail: geoffrey.sunahara@cnrc-nrc.gc.ca; Blais, Jean-Francois [Institut national de la recherche scientifique (INRS-ETE), Centre Eau, Terre et Environnement, 490 rue de la Couronne street, Quebec, Quebec G1K 9A9 (Canada)]. E-mail: blaisjf@ete.inrs.ca

    2007-01-15

    The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45 {+-} 0.08 mg/kg in barley, 0.79 {+-} 0.27 mg/kg in ryegrass, and 21.82 {+-} 1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls. - Assessment of a sewage sludge treatment on metal bioavailability as measured by metal speciation, toxicity and bioaccumulation.

  4. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils.

    Science.gov (United States)

    Chamannejadian, Ali; Sayyad, Gholamabbas; Moezzi, Abdolamir; Jahangiri, Alireza

    2013-04-08

    The excessive amounts of cadmium and lead in food chain can cause health problems for humans and ecosystem. Rice is an important food in human diet. Therefore this study was conducted in order to investigate cadmium and Lead concentrations in seed rice (Oryza saliva) of paddy fields in southwest of Iran. A total of 70 rice seed samples were collected from paddy fields in five regions of Khuzestan province, Southwest Iran, during harvesting time. In the samples cadmium and Lead concentrations were measured. To assess the daily intake of Cadmium and Lead by rice, daily consumption of rice was calculated. The results showed that average concentrations of Cadmium and Lead in rice seeds were 273.6 and 121.8 μg/kg, respectively. Less than 72% of rice seed samples had Cadmium concentrations above 200 μg/kg (i.e. Guide value for cadmium); and less than 3% had Lead concentrations above 150 μg/kg (i.e. Guide value for Lead). The estimated daily intakes of cadmium by the local population was calculated to 0.59 μg/day kg bw, which corresponds to 59% of the tolerable daily intakes (i.e. 1 μg/day kg bw). Eleven out of 70 samples (15.71%) exceed the tolerable daily intakes. The dietary intakes for Lead in the local population ranged from 0.22 to 0.47 μg/day kg bw. Tolerable daily intakes for Lead is 3.6 μg/day kg bw. As a whole, long term consumption of the local rice may bear high risk of heavy metal exposure to the consumer in the study region.

  5. Toxicity of cadmium and lead on tropical midge larvae, Chironomus kiiensis Tokunaga and Chironomus javanus Kieffer (Diptera: Chironomidae)

    Science.gov (United States)

    Ebau, Warrin; Rawi, Che Salmah Md; Din, Zubir; Al-Shami, Salman Abdo

    2012-01-01

    Objective To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer. Methods Different larval instars (first-fourth) were exposed using a static non-replacement testing procedures to various concentrations of cadmium and lead. Results In general, younger larvae (first and second instars) of both species were more sensitive to both metals than older larvae (third and forth instars). The toxic effects of the metals on C. kiiensis and C. javanus were influenced by the age of the larvae (first to fourth instars), types of metals (cadmium or lead) and duration of larval exposure (24, 48, 72 and 96 h) to the metals. Conclusions Cadmium was more toxic to the chironomids than lead and C. javanus was significantly more sensitive to both metals than C. kiiensis (P<0.05). PMID:23569984

  6. Girl or boy? Prenatal lead, cadmium and mercury exposure and the secondary sex ratio in the ALSPAC study.

    Science.gov (United States)

    Taylor, C M; Golding, J; Emond, A M

    2014-07-01

    The aim of this study was to evaluate the effect of prenatal exposure to lead, cadmium and mercury levels on the secondary sex ratio. Whole blood samples were collected from pregnant women enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) study at a median gestational age of 11 weeks and were analyzed for lead, cadmium and mercury. Regression analysis was used to identify associations between maternal lead, cadmium and mercury levels and the secondary sex ratio with adjustment for confounders. There was no evidence for associations between maternal lead, cadmium or mercury levels and the secondary sex ratio in this sample. It appears unlikely that alterations in the secondary sex ratio are influenced by exposure to heavy metals, but further work should be done in large cohorts in other countries to confirm these findings. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Chigbo, F.E.; Smith, R.W.; Shore, F.L.

    1982-01-01

    The water hyacinth Eichornia crassipes was studied as a pollution monitor for the simultaneous accumulation of arsenic, cadmium, lead and mecury. After cultivation of the plants for 2 days in tanks containing 10 ppm of each of the metals in aqueous solution, the plants were harvested and rinsed with tap water. The leaves and stems were separated and analysed for each of the metals. The ratio of the concentration of arsenic and mercury in the leaves to the concentrations in the stems was found to be 2:1. Cadmium and lead showed a concentration ratio in leaves to stems of about 1:1. The leaf concentration of arsenic was the lowest of the metals of 0.3428 mg g/sup -1/ of dried plant material whilst the leaf concentration of cadmium was highest at 0.5740 mg g/sup -1/ of dried plant material. Control plants were grown in unpolluted water. Plants grown in Bay St. Louis, Mississippi sewage lagoon were also analysed. The mercury concentrations of the leaves of plants grown in the sewage lagoon were significantly different from the control sample which had a concentration of 0.0700 mg g/sup -1/ of dried plant material.

  8. Determination of Lead and Cadmium in cow’s Milk and Elimination by Using Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Haniyeh Moallem Bandani

    2016-10-01

    Full Text Available Background and Objectives: Heavy metals such as cadmium and lead are the most important toxins spreading through various ways like water, soil, and air in nature and easily enter human food chain. It is essential to determine the cumulative and harmful effects of these metals in nutrients, especially in cow milk because it is a unique source of food for all ages and it contains both essential and nonessential trace elements. Materials and Methods: A total of 100 milk samples were directly collected from healthy cows in Zabol located on east of Iran. The samples were tested to determine lead and cadmium residues. The rates of the heavy metals were determined using a Rayleigh atomic absorption spectrum equipped with hollow cathode lamps (HCL at 283.3 nm for lead (Pb and at 228.8 nm for cadmium (Cd. By using the photo-catalytic titanium dioxide nanoparticles, these toxic metals were removed. Results: The mean ± SD of the concentration of lead and cadmium in raw milk were 9.175± 2.5 and 4.557 ± 1.081 ppb, respectively. Also, the P-values of Kalmogorov– Smiranov test for lead and cadmium were respectively 0.057 ppb (P>0.05 and 0.435 ppb (P>0.05. TiO2 nanoparticles were used to eliminate and remove lead and cadmium in milk samples. The results showed that there was a significant difference between lead and cadmium contents before and after adding TiO2 nanoparticles (P<0.05. Conclusions: According to results of this study, there was a very low amount of toxic metals. So, it seems that it is not necessary to use TiO2 in milk samples but these days it used frequently as an additive to some samples like milk to remove these pollutants. Keywords: lead, cadmium, milk, atomic absorption spectroscopy, TiO2 nanoparticles

  9. Binary Component Sorption of Cadmium, and Copper Ions onto Yangtze River Sediments with Different Particle Sizes

    Directory of Open Access Journals (Sweden)

    Jianxin Fan

    2017-11-01

    Full Text Available Sorption is a crucial process that influences immobilization and migration of heavy metals in an aqueous environment. Sediments represent one of the ultimate sinks for heavy metals discharged into water body. Moreover, the particle size of sediments plays an extremely important role in the immobilization of heavy metals. In this study, the sorption and desorption of cadmium (Cd and copper (Cu onto sediments with different particle sizes were investigated to predict the rate and capacity of sorption, to understand their environmental behaviors in an aqueous environment. Batch sorption and kinetic experiments were conducted to obtain the retained amount and rate of Cd and Cu in a binary system. Experimental data were simulated using sorption models to ascertain the sorption capacity and the kinetic rate. Results of European Communities Bureau of Reference (BCR sequential extraction showed the highest concentration of Cd (0.344 mg kg−1, and its distribution varied with sediment particle size and site. Furthermore, most of Cu (approximately 57% to 84% existed as a residual fraction. The sorption of Cu onto six sediments followed a pseudo-first order reaction, whereas that of Cd followed a pseudo-second order reaction. Additionally, the competitive Langmuir model fitted the batch sorption experimental data extremely well. The highest sorption capacities of Cd and Cu reach 0.641 mmol kg−1 and 62.3 mmol kg−1, respectively, on the smallest submerged sediment particles. The amounts of Cu and Cd desorbed (mmol kg−1 increased linearly with the initial concentration increasing. Thus, sediment texture is an important factor that influences the sorption of heavy metal onto sediments.

  10. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Naddy, Rami B; Cohen, Adam S; Stubblefield, William A

    2015-04-01

    Traditionally, aquatic toxicity studies examine the toxicity of a single chemical to an organism. Organisms in nature, however, may be exposed to multiple toxicants. Given this is a more realistic exposure scenario in situ, the authors sought to understand the interactive toxicity of multiple metals to aquatic organisms. The authors performed a series of studies using equitoxic mixtures of cadmium, copper, and zinc to 2 aquatic organisms, rainbow trout (Oncorhynchus mykiss) and the waterflea, Ceriodaphnia dubia. Single metal toxicity tests were conducted to determine the acute median lethal concentration (LC50) values for O. mykiss and short-term, chronic median effective concentration (EC50) values for C. dubia. All 3 metals were then combined in equitoxic concentrations for subsequent mixture studies using a toxic unit (TU) approach (i.e., 1 TU = EC50 or LC50). For C. dubia, the mixture study showed greater-than-additive effects in hard water (TU-based EC50 = 0.74 TU), but less-than-additive effects in soft water (TU-based EC50 = 1.93 TU). The mixture effects for O. mykiss showed less-than-additive effects in both hard and soft waters, with TU-based LC50 values of 2.33 total TU and 2.22 total TU, respectively. These data are useful in helping understand metal mixture toxicity in aquatic systems and indicate that although in most situations the assumption of additivity of metal mixture toxicity is valid, under certain conditions it may not be sufficiently protective. © 2014 SETAC.

  11. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  12. Isolation, identification and cadmium adsorption of a high cadmium ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... P. chrysosporium was used to biosorp cadmium (II), lead (II), copper (II) and the adsorption capacities reached 23.04, 69.77 and 20.33mg/g dry biomass, respectively (Say et al. 2001). The maximum experimental biosorption capacities for entrapped live and dead fungal mycelia of L. sajur-caju were found ...

  13. Lead and cadmium contents in a medicinal plant/spice grown in an urban city of Nigeria

    Directory of Open Access Journals (Sweden)

    Olateju Dolapo Adeyolanu

    2016-12-01

    Full Text Available Human exposure to heavy metals is a growing concern across Nigerian urban settings due to potential danger from consuming plants grown on contaminated soils. This study assessed the contents of lead and cadmium in soil and basil (Ocimum basilicum Lamiaceae grown by vegetable farmers in Ojo Local Government Area of Lagos State, Nigeria. Using grid method, 36 points were located to collect soil samples at 0–15 and 15–30 cm depths, while plant samples were also collected simultaneously. The contents of lead and cadmium in soil and plants were determined and results were subjected to descriptive statistics while the transfer factor (TF was calculated. Lead ranged from 1.85 mg kg−1 at the topsoil to 2.54 mg kg−1 at subsoil. Cadmium varied from 0.99 mg kg−1 at the topsoil to 1.41 mg kg−1 at subsoil. Average TF were 0.21 for Pb and 0.35 for cadmium. Distribution of lead and cadmium increased in order leaf < stem < root indicating that the root of basil may be useful in bioremediation of metal-contaminated soils. Although, the levels of lead and cadmium contents in the basil leaf are lower than other parts, there could be accumulation of these metals through long-term consumption of the leaf.

  14. Preparation and thermal decomposition of copper(II, zinc(II and cadmium(II chelates with 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Crespi Marisa S.

    1999-01-01

    Full Text Available When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II chelates. Anhydrous copper(II complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II and cadmium(II hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.

  15. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection.

    Science.gov (United States)

    Schlichting, Daniela; Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project "Safety of game meat obtained through hunting" (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition.

  16. Copper and liquid crystal polymer bonding towards lead sensing

    Science.gov (United States)

    Redhwan, Taufique Z.; Alam, Arif U.; Haddara, Yaser M.; Howlader, Matiar M. R.

    2018-02-01

    Lead (Pb) is a highly toxic and carcinogenic heavy metal causing adverse impacts on environment and human health, thus requiring its careful monitoring. In this work, we demonstrate the integration of copper (Cu) film-based electrodes toward Pb sensing. For this, we developed a direct bonding method for Cu thin film and liquid crystal polymer (LCP) substrate using oxygen plasma treatment followed by contact and heat at 230 °C. The oxygen plasma activation forms hydroxyl groups (OH‑) on Cu and LCP. The activated surfaces further adsorb water molecules when exposed to clean room air during contact. After contact, hydrogen bonds are formed between the OH‑ groups. The interfacial water is removed when the contacted films are heated, leading to shrinkage of OH‑ chain. This results in an intermediate oxide layer linking the Cu and C sites of Cu and LCP respectively. A strong adhesion (670 N·m‑1) is obtained between Cu/LCP that may offer prolonged use of the electrode without delamination in wet sensing applications. Anodic stripping voltammetry of Pb using Cu thin film electrode shows a stronger current peak than sputtered Cu electrode, which implies the significance of the direct bonding approach to integrate thin films. We also studied the electrochemical impedance that will enable modeling of integrated environmental sensors for on-site monitoring of heavy metals.

  17. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  18. Heavy Metals (Lead and Cadmium in some Medicinal Herbal Products in Iranian Market

    Directory of Open Access Journals (Sweden)

    Zahra Mousavi

    2014-03-01

    Full Text Available Background: The use of herbal or medicinal plants in various forms has been popular for thousands of years. It is estimated that about 70–80% of the world’s population relies on alternative medicine, mainly of herbal origin. However, due to the nature and sources of these plants, they are sometimes contaminated with toxic heavy metals, which pose serious health risks to consumers. Herbal formulations, especially those used in the treatment of diseases such as hypertension, diabetes, and weight loss may require long-term usage and the patient might be at risk of heavy metal poisoning. In this study, the levels of toxic heavy metals (Pb, Cd were evaluated in 11 Iranian common herbal drugs for their health implications. Methods: In this investigation, concentrations of lead and cadmium were quantitatively determined in Iranian herbal drugs sampled from pharmacies in Tehran, Iran, using atomic absorption spectrophotometry (wet digestion. Results: The results indicated that lead and cadmium were present in all investigated herbal drugs. The concentrations of metals in drugs ranged from 0.19 to 1.75 µg/g for Cd and 9.61 to 52.74 µg/g for Pb. Conclusion: The concentrations of lead and cadmium were higher than the maximum permissible daily levels in the majority of these herbal drugs, whereas the quantities of Pb and Cd were well below provisional tolerable weekly intake (PTWI. Daily total intake of these metals is considered in accord with the recommended daily intake of their corresponding formulations.

  19. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    Science.gov (United States)

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed.

  20. Effect of environmental exposures to lead and cadmium on human lymphocytic detoxifying enzymes

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, S.J.; Narurkar, L.M.; Narurkar, M.V. (Bhabha Atomic Research Centre, Bombay (India))

    1994-09-01

    Lead (Pb) is among the most toxic heavy elements in the atmosphere. Aerosol lead enters the human blood stream by way of the respiratory tract and indirectly, by surface disposition in the alimentary tract followed by adsorption. Lead pollution is also known to occur through its presence in petrol, pain, glazed vessels and solder. Atmospheric lead pollution may be predominantly high around factories manufacturing Pb alloys. Lead toxicity is associated with inhibition of [alpha]-aminolevulinic acid dehydrase (ALAD) activity, rise in the blood porphyrin, inhibition of ATPase in erthrocytes, decreased blood haemoglobin and anemia. Elevated lead concentrations in pregnant women have been shown to cause hypertension and birth defects. Lead is also known to interact with other elements such as Fe, Zn, Ca and Cu in biological systems. Cadmium (Cd) is not essential for human body. It enters the human environment as a contaminant. Human intake of Cd is chiefly through the food chain (about 400-500 [mu]g/wk). Analysis of neuropsy material shows that smokers accumulate much more Cd than nonsmokers. Chronic Cd poisoning produces proteinuere and affects the proximal tubules of kidney, causing the formation of kidney stones. The reported hypertensive effect of Cd in man has been associated with high Cd/Zn ratio in kidney. Studies on air pollution have shown that Cd concentration in air could be positively correlated with heart disease, hypertension and arteriosclerosis. The present investigation was aimed at assessing the usefulness of human lymphocytic detoxicating enzyme activities and their ratios in an assessment of human health-risks during environmental exposures to Pb and Cd. The human subjects investigated comprised those exposed to highly contaminated lead and cadmium areas in the state of Maharashtra, India. 17 refs., 2 figs.

  1. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Sathe, V.; Chandramohan, D.

    . & Haanstra, L. (1979). Effects of lead on soil respiration and dehydrogenase activity. Soil Bioi. Biochern, 11, 475-9. Doyle, J. J., Marshall, R. T. & Pfander, W. H. (1975). Effects of cadmium on the growth and uptake ofcadmium by microorganisms. Appl... oftoxicity to growth of these metal salts in a lactate-based medium at 50 J1g mr 1 concentrations was Cd> Pb> Hg and to respiration Pb> Cd> Hg. Inhibitory concentrations (viz. 100 J1g mr 1 ofHgCl z and200 J1g mr 1 ofPb(N0 3 )z) hada stimulatory effect when...

  2. Cadmium and lead in cocoa powder and chocolate products in the US Market.

    Science.gov (United States)

    Abt, Eileen; Fong Sam, Jennifer; Gray, Patrick; Robin, Lauren Posnick

    2018-02-01

    Cocoa powder and chocolate products are known to sometimes contain cadmium (Cd) and lead (Pb) from environmental origins. A convenience sample of cocoa powder, dark chocolate, milk chocolate, and cocoa nib products was purchased at retail in the US and analysed using inductively coupled plasma mass spectrometry to assess Cd and Pb concentrations. Cd and Pb were evaluated in relation to the percent cocoa solids and to the reported origin of the cocoa powder and chocolate products. Cd ranged from 0.004 to 3.15 mg/kg and Pb ranged from chocolate products.

  3. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population.

    Science.gov (United States)

    Park, Sunmin; Lee, Byung-Kook

    2013-12-01

    Blood lead and cadmium levels are more than twofold to fivefold higher in the Korean population compared to that of the USA. This may be related to the foods consumed. We examined which food categories are related to blood lead and cadmium levels in the Korean adult population using the 2008-2010 Korean National Health and Nutrition Examination Survey (n = 5504). High and moderate consumption of bread and crackers, potatoes, meat and meat products, milk and dairy products, and pizza and hamburger resulted in significantly lower odds ratios for blood lead levels than their low consumption. However, consumption of salted fish, white fish, green vegetables, white and yellow vegetables, coffee, and alcohol resulted in significantly higher odds ratios of blood lead and cadmium. In conclusion, the typical Asian diet based on rice, fish, vegetables, regular coffee, and alcoholic drinks may be associated with higher blood cadmium and lead levels. This study suggests that lead and cadmium contents should be monitored and controlled in agricultural products to reduce health risks from heavy metals.

  4. Lead, Copper and Zinc Levels in Soils along Kaduna-Zaria Highway ...

    African Journals Online (AJOL)

    Lead and zinc levels may be attributed to pollution emanating from automobile emission and contamination while copper level could be due to pollution from fungicides and insecticides. KEYWORDS: Copper, lead, zinc, Energy Dispersive X-Ray Spectrometry, soil pollution. [Global Jnl Environ Sci Vol.1(1) 2002: 7-14] ...

  5. The sublethal effects of copper and lead on the haematology and ...

    African Journals Online (AJOL)

    Toxicity bioassays were conducted on groovy mullet, Liza dumerili, using copper and lead, in order to assess how these metals affected their blood haematology and acid-base balance. Short-term (96 hours) exposure to lead caused significantly more haematological response [PCO2] than copper, when compared to the ...

  6. Serum levels of lead and copper in a group of Egyptian children with ...

    African Journals Online (AJOL)

    Serum levels of lead and copper in a group of Egyptian children with bronchial asthma. ... Egyptian Journal of Pediatric Allergy and Immunology (The) ... Objective: Our study aims to investigate the serum levels of copper and lead in asthmatic children in correlation to disease severity to anticipate their role as oxidant ...

  7. Removal of Cadmium(II and Lead(II ions from aqueous phase on sodic bentonite

    Directory of Open Access Journals (Sweden)

    Luz Stella Gaona Galindo

    2013-04-01

    Full Text Available This paper describes the adsorption of Cd2+and Pb2+ions using sodic bentonite clay type Fluidgel modified. The Fluidgelbefore and after chemical modification and thermal activation was characterized by different techniques including X-ray diffraction, thermal analysis, Fourier transform infrared, surface area, helium pycnometry, cation exchange capacity and scanning electron microscopy. Pseudo-first order, pseudo-second order and intra-particle diffusion models were used to analyze the kinetic curves. Equilibrium data were analyzed using Langmuir and Freundlich models. The thermodynamic study indicated that lead adsorption process is endothermic and interactions between clays and solutions of lead occurred spontaneously, while cadmium adsorption revealed an exothermic and spontaneous nature. The maximum removal efficiencies were 97.62% for Cd(II using Fluidgelmodified chemically and 91.08% for lead by Fluidgel modified chemical and thermally.

  8. Lead and Cadmium: Priorities for action from UNEP’s perspective for addressing risks posed by these two heavy metals

    Directory of Open Access Journals (Sweden)

    Piper D.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP has been focusing on actions with regard to lead and cadmium since 2001 when the work of the Partnership for Clean Fuels and Vehicles (PCFV was initiated. The development and finalization of the reviews of scientific information on lead and cadmium facilitated discussions among Governments in relation to the need for global action with regard to these heavy metals. UNEP continues to address priority areas for focusing to reduce risks posed by lead and cadmium. The Global Alliance to Eliminate Lead Paint (GAELP is a clear example for addressing those risks; however more work is expected to be done in relation to these key issues.

  9. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics

    Science.gov (United States)

    Niu, Z. X.; Sun, L. N.

    2017-06-01

    Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.

  10. Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia.

    Science.gov (United States)

    Širić, Ivan; Kasap, Ante; Bedeković, Dalibor; Falandysz, Jerzy

    2017-03-04

    Lead (Pb), cadmium (Cd), and mercury (Hg) contents in ten species of edible mushrooms in Trakošćan, Croatia were determined. In addition, the similarity between the studied species was determined by cluster analysis. The caps and stipes of the fruiting bodies were analysed separately. The analyses were carried out by inductively coupled plasma - optical emission spectrometry (ICP-OES). The greatest mean lead concentrations of 1.91 and 1.60 mg kg -1 were determined in caps and stipes of Macrolepiota procera. The greatest mean concentrations of cadmium (3.23 and 2.24 mg kg -1 ) were determined in caps and stipes of Agaricus campestris and of mercury (2.56 and 2.35 mg kg -1 ) in Boletus edulis. In terms of the anatomical parts of the fruiting body (cap-stipe), a considerably greater concentration of the analysed elements was found in the cap for all mushroom species. According to calculated bio-concentration factors, all the examined species were found to be bio-accumulators of Cd and Hg. On the basis of the accumulation of the studied metals, great similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation was obtained by cluster analysis.

  11. Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content.

    Science.gov (United States)

    Hepp, Nancy M; Mindak, William R; Gasper, John W; Thompson, Christopher B; Barrows, Julie N

    2014-01-01

    As part of efforts to assess amounts of inorganic element contamination in cosmetics, the U.S. Food and Drug Administration contracted a private laboratory to determine the total content of seven potentially toxic or allergenic elements in 150 cosmetic products of 12 types (eye shadows, blushes, lipsticks, three types of lotions, mascaras, foundations, body powders, compact powders, shaving creams, and face paints). Samples were analyzed for arsenic, cadmium, chromium, cobalt, lead, and nickel by inductively coupled plasma-mass spectrometry and for mercury by cold vapor atomic fluorescence spectrometry. The methods used to determine the elements were tested for validity by using standard reference materials with matrices similar to the cosmetic types. The cosmetic products were found to contain median values of 0.21 mg/kg arsenic, 3.1 mg/kg chromium, 0.91 mg/kg cobalt, 0.85 mg/kg lead, and 2.7 mg/kg nickel. The median values for cadmium and mercury were below the limits of detection of the methods. The contract requirements, testing procedures, and findings from the survey are described.

  12. Monitoring the sensitivity of selected crops to lead, cadmium and arsenic

    Directory of Open Access Journals (Sweden)

    Piršelová B.

    2011-12-01

    Full Text Available Heavy metals are highly toxic environmental pollutants. In plants, these compounds cause numerous slighter or stronger toxic effects. They inhibit root and shoot growth and yield production, affect nutrient uptake and homeostasis, and are frequently accumulated by agriculturally important crops. Effects of heavy metals on five selected species of agricultural crops were monitored. We focused our attention to general and commonly used stress indicators such as seed germination, weight and length of roots and shoots. Each of these characteristics was dependent on the tested plant species and tested heavy metals. Dosage of lead (500 mg/l had little effect on seed germination, cadmium (300 mg/l significantly affected seed germination of pea and barley, arsenic (100 mg/l caused total inhibition of seed germination in all tested plant species. Plants grow in soil contaminated with heavy metals showed several symptoms of metal toxicity (chlorosis, necrosis of leaf tips, blackening of roots. In general, the highest tolerance to tested metal ions was observed in both varieties of bean, and the lowest sensitivity was observed in soybean plants. The highest degree of toxicity was shown to have tested doses of cadmium and arsenic, the lowest the doses of lead. In general, the lowest tolerance indexes were determined based on the decrease in fresh weight of roots.

  13. Cadmium, lead, and mercury levels in feathers of small passerine birds: noninvasive sampling strategy.

    Science.gov (United States)

    Bianchi, Nicola; Ancora, Stefania; di Fazio, Noemi; Leonzio, Claudio

    2008-10-01

    Bird feathers have been widely used as a nondestructive biological material for monitoring heavy metals. Sources of metals taken up by feathers include diet (metals are incorporated during feather formation), preening, and direct contact with metals in water, air, dust, and plants. In the literature, data regarding the origin of trace elements in feathers are not univocal. Only in the vast literature concerning mercury (as methyl mercury) has endogenous origin been determined. In the present study, we investigate cadmium, lead, and mercury levels in feathers of prey of Falco eleonorae in relation to the ecological characteristics (molt, habitat, and contamination by soil) of the different species. Cluster analysis identified two main groups of species. Differences and correlations within and between groups identified by cluster analysis were then checked by nonparametric statistical analysis. The results showed that mercury levels had a pattern significantly different from those of cadmium and lead, which in turn showed a significant positive correlation, suggesting different origins. Nests of F. eleonorae proved to be a good source for feathers of small trans-Saharan passerines collected by a noninvasive method. They provided abundant feathers of the various species in a relatively small area--in this case, the falcon colony on the Isle of San Pietro, Sardinia, Italy.

  14. Growth and characterization of thiourea mixed cadmium - lead chloride - a nonlinear optical crystal

    Energy Technology Data Exchange (ETDEWEB)

    Raman, S.K. [P.G. and Research Department of Physics, Nehru Memorial College, Puthanampatti, Tiruchirappalli, Tamil Nadu (India); Sundaram, R. [Department of Chemistry, L. N. Government College, Ponneri, Chennai, Tamil Nadu (India); Nagarajan, K.

    2009-04-15

    Nonlinear optical (NLO) crystal of thiourea mixed cadmium-lead chloride dihydrate Cd[(PbCl{sub 3})(NH{sub 2}CSNH{sub 2})].2H{sub 2}O (TCCPC) have been grown in solution by slow evaporation technique at room temperature. The powder X-ray diffraction pattern has been recorded and indexed. The UV-Vis-NIR transmittance and FT-IR spectrum have been recorded in the range 200-1090 nm and 400-4000 cm{sup -1}, respectively. The lower cut-off wavelength is 280 nm in the UV region, which is higher than that of pure Cd(PbCl{sub 3}) (CCPC) crystal. The presence of functional groups has been confirmed by FT-IR analysis. The TCCPC crystal was characterized by SEM and EDX spectrum. The second harmonic generation (SHG) of the thiourea mixed cadmium-lead chloride (TCCPC) crystal is demonstrated by the Kurtz Perry method using Nd:YAG laser and the results confirm that the grown crystal is roughly three times more efficient than ADP. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Accumulation of Cadmium and Lead in Soils and Vegetables of Lenjanat Region in Isfahan Province, Iran

    Directory of Open Access Journals (Sweden)

    Salehi M. H.

    2013-04-01

    Full Text Available Various heavy metals have been reported as dangerous agents to the human health and wildlife when they occur in the environment at high concentrations. Cadmium and lead compounds are classified as human carcinogens by several regulatory agencies. Vegetables grown at environmentally contaminated sites could take up and accumulate metals at concentrations that are probably toxic to human health. In this study, concentrations of cadmium and lead in some of vegetables and soil samples were investigated in different areas of a developed industrial city in Isfahan province, Central Iran. One hundred and thirty topsoil samples and fifty samples of vegetables were collected from agricultural lands and analyzed for heavy metals. The concentration of Pb and Cd was more than 5 and 0.5 mg kg−1, respectively. The total of Cd concentration in most of the soil samples exceeded the suggested Swiss thresholds (0.8 mg kg−1. The results showed that 48% and 75% of the vegetables samples had concentrations of Cd and Pb exceeded the FAO-WHO limits, respectively. Results from the present study demonstrate that the most of the plants grown on the soils of this region, contaminated with heavy metals, and pose a major health concern.

  16. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  17. [Hygienic evaluation of the content of heavy metals (lead and copper) in cosmetic products].

    Science.gov (United States)

    Tsankov, Iu; Iordanova, I; Lolova, D; Uzunova, S; Dinoeva, S

    1982-01-01

    Heavy metals /lead and copper/ content was studied in various cosmetic articles: creams and cleansing milk, shampoos, hair dyes, eye shadows, rouge, lipsticks, powders, fond de teint, tooth pastes. The method flame atom-absorption spectrometry with chelation and extraction was used for their determination. The subacute dermal toxicity on albino rats was studied with working doses: lead--1,10 and 100 mg/kg, and copper--5,50 and 500 mg/kg. The content of lead and copper was established to be low in the majority of the cosmetic articles studied /lead--to 2.08 mg/kg, copper--to 6,28 mg/kg/and only in some of the articles of decorative cosmetic, it is considerably higher /lead--to 41,1 mg/kg, copper--to 138,6 mg/kg. That is due to the inadequate purification of the initial raw materials or to the presence of copper-containing dyes in the composition of the respective cosmetic article. As a result from the toxicological and pathoanatomical studies the small doses /lead 1 mg/kg and copper 5 mg/kg are defined as ineffective, and the high doses--with a light biological effect. The maximum allowable concentration of lead is proposed to be--10 mg/kg, and copper--50 mg/kg as side /technical/ pollutants in the production of cosmetic articles.

  18. Health Assessment of Heavy Metal Pollution (Cadmium, Lead, Arsenic in Citrus Marketed in Tehran, Iran, 2015

    Directory of Open Access Journals (Sweden)

    Razieh Saleh

    2017-03-01

    Full Text Available Background & Aims of the Study: Today, the environment pollution with heavy metals has increased. It is important to study various types of pollutions specially those regarding fruits. The effect of pollutions on food safety for human consumption is a global concern.  This study was conducted for health assessment of heavy metals pollution (cadmium, lead, and arsenic in citrus marketed in Tehran, Iran in 2015. Materials & Methods: After collecting and preparing 2 samples from each citrus species (tangerine, grapefruit, sweet lime, sour orange, orange with acid digestion method, the citrus pulp and peel were surveyed. Inductively coupled plasma optical emission spectrometry (ICP-OES was used to determine the concentrations of heavy metals with three replications. Moreover, SPSS version 19 was employed to perform statistical analysis. Results: The results showed that the concentration average of Cadmium, Lead and Arsenic in citrus samples of the pulp parts were 19.73, 42.95 and 2.30 mg/kg and in peel parts were 20.09, 42.71 and 2.12 mg/kg, respectively. The average concentrations of heavy metals were higher than WHO maximum permissible limits. Conclusions: Based on these results, consumption of citrus species has no adverse effect on the consumers’ health (except Sweet lime, Orange, Tangerine and Grapefruit in lead is risky for adults and Sweet lime and Orange that Health Index in Lead and Arsenic and Sour Orange, Tangerine and Grapefruit that Health Index in Lead is more than 1 and is risky for children. Thus, individuals living in Tehran should be cautious about using these citrus fruits and researchers should try to obtain national standards in the field of entering these metals to food in environmental conditions that are in Iran.

  19. Immobilization of Trichosporon cutaneum R 57 Cells onto Methylcellulose/SiO2 Hybrids and Biosorption of Cadmium and Copper Ions

    Directory of Open Access Journals (Sweden)

    Georgieva N.

    2009-12-01

    Full Text Available Methylcellulose/Silica (MC/SiO2 hybrids were synthesized via poly step sol-gel method. SiO2 was included into the hybrids from two silica precursors - methyltriethoxysilane (MTES and ethyltrimethoxysilane (ETMS with different quantity of organic part-5, 20 and 50 wt.%. The filamentous yeasts Trichosporon cutaneum strain R 57 was immobilized onto the synthesized MC/SiO2 hybrids. After immobilization the hybrid materials were used in the processes of sorption of cadmium and copper ions. The obtained results of protein content analysis indicated that the amount of protein increased with increasing of MC in the hybrids. It was established that the maximal efficiency of copper and cadmium removal were observed for hybrid materials containing MTES and 50 wt.% MC - 66% and 26% respectively. For ETMS and 50 wt.% MC a high value of copper removal was 56% and for cadmium - 45% removal, respectively. FTIR analysis of free and immobilized cells with metal ions was conducted. SEM images showed successful immobilization of the yeasts cells. Second order model was employed in order to investigate the kinetics of copper and cadmium biosorption.

  20. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  1. Oxidation of Lead Frame Copper Alloys with Different Compositions and Its Effect on Oxide Film Adhesion

    Science.gov (United States)

    Chen, Xi; Hu, Anmin; Li, Ming; Mao, Dali

    2009-02-01

    Oxidation of four typical lead frame copper alloys was investigated. The oxidation rate and adhesion strength of oxide films to copper alloy substrates were studied by measuring the thickness and carrying out peel tests. The results show that, although copper alloys C5191 and C7025 have thinner oxide films, a lower adhesion strength and a higher proportion of CuO were obtained than in the other copper alloys EFTEC64T and C194. The adhesion strength is mainly influenced by the structure of the oxide film of the copper alloys, especially the CuO/Cu2O ratio in the film. The highest adhesion strength is obtained for the copper oxide film with a basic structure of CuO/Cu2O/Cu and a CuO/Cu2O ratio of about 0.1. The segregation of additional elements in the copper alloy plays an important role in the oxide film structure.

  2. Associations of cadmium and lead exposure with leukocyte telomere length: findings from National Health and Nutrition Examination Survey, 1999-2002

    National Research Council Canada - National Science Library

    Zota, Ami R; Needham, Belinda L; Blackburn, Elizabeth H; Lin, Jue; Park, Sung Kyun; Rehkopf, David H; Epel, Elissa S

    2015-01-01

    Cadmium and lead are ubiquitous environmental contaminants that might increase risks of cardiovascular disease and other aging-related diseases, but their relationships with leukocyte telomere length (LTL...

  3. Studies of cadmium, mercury and lead in man. The value of X-ray fluorescence measurements in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, J.

    1996-10-01

    Two XRF methods have been used for in vivo studies of mercury, cadmium and lead. Persons with a history of long-term occupational mercury exposure had elevated mercury concentrations in their kidneys (up to 65 {mu}g/g). The minimum detectable concentration varied between 12 and 45 {mu}g/g. Battery plant workers had elevated cadmium concentrations in their kidneys (up to 350 {mu}g/g) and liver (up to 80 {mu}g/g), with mean values about 3-5 times higher than the general population. The mean ratio between concentrations of cadmium in kidney and liver was 7. Levels in kidney and liver indicated that a simple integration of cadmium in work-place air is not sufficient to describe the body burden. Fingerbone lead in smelters was 6-8 times higher than in members of the general population. The half-time of bone lead in active workers was estimated to about 5 years during the accumulation phase. A model for description of a person`s lead exposure in terms of lead in fingerbone, lead in blood and time of exposure has been developed and can be used, e.g. for retrospective blood lead estimates if the period of exposure and the current fingerbone lead is known. This will be of value for the evaluation of toxic effects of long-term lead exposure when data on previous lead levels are lacking. In total, in vivo measurements of mercury, cadmium and lead give unique information, which has shown to be an important tool for understanding of metal kinetics and toxicity. If the precision and accuracy of the method can be further improved, the technique will also have a given place in the clinical practice. 168 refs, 9 figs, 3 tabs

  4. Assessment of Lead and cadmium contamination and influencing factors in raw milk from regions of Hamadan province

    Directory of Open Access Journals (Sweden)

    A Vahidinia

    2013-11-01

    Full Text Available Regarding the significance of harmful effects of heavy metals in human diet, this study aimed to investigate the concentrations of lead and cadmium in raw milk samples. To achieve this goal, a total number of 48 samples was collected from various regions of Hamadan province during April 2011. The samples were analyzed by atomic absorption spectroscopy. According to the results, the mean concentrations of lead and cadmium estimated at 4.48 and 3.21µg/kg, respectively which were below the approved level determined by WHO as well as FAO. Although, concentrations of Pb and Cd among the various sampling regions revealed a significant (p

  5. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Science.gov (United States)

    2010-07-01

    ... line materials when reading water meters or performing maintenance activities): (i) All plumbing codes... copper in tap water. 141.86 Section 141.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...

  6. Effects of copper and lead on growth, feeding and mortality of ...

    African Journals Online (AJOL)

    The effects of different concentration of copper and lead on feeding and growth response of Limicolaria flammea were studied. Low dose (1mg) of copper does not affect feeding activity in Limicolaria flammea whereas concentrations of 5mg and 6mg evoked a slow feeding rate. At low metal dosages there was no clear ...

  7. 40 CFR 141.88 - Monitoring requirements for lead and copper in source water.

    Science.gov (United States)

    2010-07-01

    ... copper in source water. 141.88 Section 141.88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.88 Monitoring requirements for lead and copper in source water. (a) Sample location, collection... make another sampling point more representative of each source or treatment plant. (ii) Surface water...

  8. Copper, lead and zinc concentrations of human breast milk as affected by maternal dietary practices

    Energy Technology Data Exchange (ETDEWEB)

    Umoren, J.; Kies, C.

    1986-03-01

    Maternal dietary practices have been found to affect the concentrations of some nutrients in human breast milk. Lead toxicity is a concern in young children. Lead, copper and zinc are thought to compete for intestinal absorption sites. The objective of the current project was to compare copper, lead and zinc contents of breast milk from practicing lacto-vegetarian and omnivore, lactating women at approximately four months post-partum. Analyses were done by atomic absorption spectrophotometry using a carbon rod attachment. Copper concentrations were higher in milk samples from lacto-ovo-vegetarians. Milk samples from the omnivores had the highest lead and zinc concentrations. Lead and copper concentrations in milk were negatively correlated. The higher zinc concentrations in the milk of the omnivore women may have been related to better utilization of zinc from meat than from plant food sources.

  9. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.)

    Science.gov (United States)

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Li, Miao; Yuan, Linxi

    2016-01-01

    The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd+2) and lead (Pb+2) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg-1) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals (O2•¯), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant. PMID:28018407

  10. Migration of iron, lead, cadmium and tin from tinplate-coated cans into chickpeas.

    Science.gov (United States)

    Kassouf, A; Chebib, H; Lebbos, N; Ouaini, R

    2013-01-01

    Migration studies of trace metals were carried out on coated chickpea cans marketed in Lebanon. Four elements--(Fe), tin (Sn), lead (Pb) and cadmium (Cd)--were analysed by atomic absorption spectrometry (AAS) after microwave digestion. Over 3 months, three different storage temperatures (5°C, room temperature and 40°C) were tested. In all cases, the migration of Fe reached a plateau after around 50 days of storage, while the migration of Pb was slow till 50 days, then it increased rapidly. Cd and Sn levels did not increase. Moreover, no effect of temperature was observed in the case of Fe, whereas Pb levels showed slower migration in cans stored at 5°C. Comparing cans from different chickpea brands (Lebanese and foreign) showed that the characteristics of the container have an effect on metal release.

  11. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.

  12. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions.

    Science.gov (United States)

    Cao, Chang-Yan; Qu, Jin; Wei, Fang; Liu, Hua; Song, Wei-Guo

    2012-08-01

    A facile method based on microwave-assisted solvothermal process has been developed to synthesize flowerlike MgO precursors, which were then transformed to MgO by simple calcinations. All the chemicals used (magnesium nitrate, urea, and ethanol) were low cost and environmentally benign. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution TEM, and N(2) adsorption-desorption methods. These flowerlike MgO nanostructures had high surface area and showed superb adsorption properties for Pb(II) and Cd(II), with maximum capacities of 1980 mg/g and 1500 mg/g, respectively. All these values are significantly higher than those reported on other nanomaterials. A new adsorption mechanism involving solid-liquid interfacial cation exchange between magnesium and lead or cadmium cations was proposed and confirmed.

  13. CADMIUM AND LEAD STATUS IN CORN HYBRIDS GROWN ON ACID SOIL OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    V. Kovačević

    2002-06-01

    Full Text Available Twenty corn (Zea mays L. hybrids were grown under field conditions in the west part of Brodsko-posavska county in Eastern Croatia during 2000 and 2001 growing seasons. The field trial was conducted in four replicates. The ear-leaf at beginning of silking stage (the second decade of July was taken for chemical analysis from each plot. Mean soil sample was taken by auger to 30 cm of depth. The total amounts of Cd and Pb in corn leaves were measured by ICP-AES technique after their microwave digestion using concentrated HNO3+H2O2. Mobile fraction of these elements in soil was extracted by ammonium acetate-EDTA solution. The experimental field is acid hydromorphic soil (locality Malino with moderate levels of mobile fractions of calcium, magnesium and aluminum. Also, mobile fraction of cadmium and lead are tolerable for growing of health food. Weather conditions during the study differed from the long-term mean. Low rainfall quantities during 5-months period and the higher air-temperatures characterized the 2000 growing season. Excess of rainfall in June and September, their shortage in July and August, as well as high temperatures in August, are main characteristics of weather during the corn growing seasons in 2001. Mean concentrations of cadmium and lead in corn leaves in our investigations were 0.14 ppm Cd and 0.420 ppm Pb. These amounts are low and not dangerous for plants, because critical concentrations of Cd and Pb in plants ranged from 5 to 10 ppm Cd and 10-20 ppm Pb. Considerable differences of cadmium and lead status in the ear-leaf were found among tested corn hybrids. For example, genetically induced differences from 0.07 to 0.21 ppm Cd were found, while these values for Pb were from 0.241 to 0.569 ppm Pb. Especially low Cd concentrations were found in six corn hybrids (OsSK373, E9917/99, Bc278, OsSK2-191, OsSK382 and Clarica: mean 0.092 ppm Cd, while in three hybrids it was considerably higher, but acceptable from the aspect of plant

  14. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  15. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Zhilin Wu

    2016-12-01

    Full Text Available The present study investigated the beneficial role of selenium (Se in protecting oilseed rape (Brassica napus L. plants from cadmium (Cd+2 and lead (Pb+2 toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10 and 15 mg kg-1 alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se enhanced superoxide free radicals (O2-, hydrogen peroxide (H2O2 and lipid peroxidation, as indicated by malondialdehyde (MDA accumulation, but decreased superoxide dismutase (SOD and glutathione peroxidase (GPx activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.

  16. Cadmium and lead occurrence in soil and grape from Murfatlar Vineyard

    Directory of Open Access Journals (Sweden)

    Matei Nicoleta

    2015-06-01

    Full Text Available The study investigates the pollution with heavy metals of grapes and soil. The grapes nourish from the respective soil, with all existing substances: either nutrients or toxic materials. This link, between grapes and soil, made mandatory to focus on observing the level of toxic materials in both samples grapes and land. The aim of this research is to analyze the level of Cd and Pb in Vitis vinifera L. grape fruits and soil, by flame atomic absorption spectrometry (FAAS method. The grapes and the soil used in this work were sampled from the Murfatlar City, a nonindustrial area, placed far from the car traffic pollution. Cd and Pb were quantified, after the chemical mineralization of the samples using nitric acid. It can be noticed that the values of cadmium and lead concentrations in grapes were lower than the recommendable maximum limit.

  17. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kossowska, Barbara, E-mail: barbara@immchem.am.wroc.pl [Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wroclaw (Poland); Dudka, Ilona, E-mail: ilona.dudka@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Bugla-Ploskonska, Gabriela, E-mail: gabriela.bugla-ploskonska@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Szymanska-Chabowska, Anna, E-mail: aszyman@mp.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Doroszkiewicz, Wlodzimierz, E-mail: wlodzimierz.doroszkiewicz@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Gancarz, Roman, E-mail: roman.gancarz@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Andrzejak, Ryszard, E-mail: ryszard@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Antonowicz-Juchniewicz, Jolanta, E-mail: jola@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland)

    2010-10-15

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  18. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: a preliminary study.

    Science.gov (United States)

    Kossowska, Barbara; Dudka, Ilona; Bugla-Płoskońska, Gabriela; Szymańska-Chabowska, Anna; Doroszkiewicz, Włodzimierz; Gancarz, Roman; Andrzejak, Ryszard; Antonowicz-Juchniewicz, Jolanta

    2010-10-15

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant.

    Science.gov (United States)

    Meeker, John D; Rossano, Mary G; Protas, Bridget; Diamond, Michael P; Puscheck, Elizabeth; Daly, Douglas; Paneth, Nigel; Wirth, Julia J

    2008-11-01

    Evidence on human semen quality as it relates to exposure to various metals, both essential (e.g., zinc, copper) and nonessential (e.g., cadmium, lead), is inconsistent. Most studies to date used small sample sizes and were unable to account for important covariates. Our goal in this study was to assess relationships between exposure to multiple metals at environmental levels and human semen-quality parameters. We measured semen quality and metals in blood (arsenic, Cd, chromium, Cu, Pb, manganese, mercury, molybdenum, selenium, and Zn) among 219 men recruited through two infertility clinics. We used multiple statistical approaches to assess relationships between metals and semen quality while accounting for important covariates and various metals. Among a number of notable findings, the associations involving Mo were the most consistent over the various statistical approaches. We found dose-dependent trends between Mo and declined sperm concentration and normal morphology, even when considering potential confounders and other metals. For example, adjusted odds ratios (ORs) for below-reference semen-quality parameters in the low, medium, and high Mo groups were 1.0 (reference), 1.4 [95% confidence interval (CI), 0.5-3.7], and 3.5 (95% CI, 1.1-11) for sperm concentration and 1.0 (reference), 0.8 (95% CI, 0.3-1.9), and 2.6 (95% CI, 1.0-7.0) for morphology. We also found preliminary evidence for interactions between Mo and low Cu or Zn. In stratified analyses, the adjusted ORs in the high Mo/low Cu group were 14.4 (1.6, 132) and 13.7 (1.6, 114) for below-reference sperm concentration and morphology, respectively. Our findings represent the first human evidence for an inverse association between Mo and semen quality. These relationships are consistent with animal data, but additional human and mechanistic studies are needed.

  20. Environmental, health, safety, and regulatory review of selected photovoltaic options: Copper sulfide/cadmium sulfide and polycrystalline silicon

    Science.gov (United States)

    Lawrence, K.; Morgan, S.; Schaller, D.; Wilczak, T.

    1981-06-01

    Emissions, effluents and solid wastes from the fabrication of both polycrystalline silicon and front-wall copper sulfide/cadmium sulfide photovoltaic cells are summarized. Environmental, health, and safety characteristics of cell fabrication material inputs and by products are listed. Candidate waste stream treatment methods and resultant effluents are reviewed. Environmental, health, and safety effects of photovoltaic cell/module/array installation, operation, maintenance, and decommission are summarized. Federal legislation is addressed and future regulatory trends under these laws as they may affect each cell process are discussed. Water quality, solid waste disposal, and occupational health and safety regulations will likely be those most applicable to commercial scale PV production. Currently available control technology appears sufficient to treat cell fabrication wastes.

  1. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    Science.gov (United States)

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-04

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution.

  2. Influence of chronic cadmium exposure on the tissue distribution of copper and zinc and oxidative stress parameters in rats.

    Science.gov (United States)

    Erdem, Onur; Yazihan, Nuray; Kocak, Mehtap Kacar; Sayal, Ahmet; Akcil, Ethem

    2016-08-01

    The aim of this study was to investigate the effect of oral cadmium (Cd) intoxication on the antioxidant response and its relationship with essential bioelements like copper (Cu) and zinc (Zn). The experimental group was chronically exposed to Cd daily for 8 weeks via consumption of water containing 15 ppm cadmium chloride. Cu, Zn, and Cd concentrations and oxidative stress parameters were analyzed in liver, kidney, and heart tissues. Exposure to Cd led to a significant decrease in the activities of superoxide dismutase in all considered samples while a significant increase in the activity of glutathione peroxidase except for the kidney. We found a significant increase in malondialdehyde concentration in the tissues except for heart. Also oral administration of Cd caused a significant reduction of Zn and Cu in the tissues. Our results allow us to hypothesize that higher Cd concentration in the tissues causes oxidative stress by increasing malondialdehyde as a means of altering antioxidant defense system and deterioration of bioelements in rat liver, kidney, and heart. In addition, further studies are needed to explain the effect of long-term, low-dose exposure to Cd on distribution of bioelements and its relationship with oxidative stress. © The Author(s) 2015.

  3. Accumulation in and effects of lead and cadmium on waterfowl and passerines in northern Idaho.

    Science.gov (United States)

    Blus, L J; Henny, C J; Hoffman, D J; Grove, R A

    1995-01-01

    Waterfowl and passerines in northern Idaho in 1987 had high levels of lead in their blood and tissues that originated primarily from mining and smelting activities. Four Canada geese (Branta canadensis) and one common goldeneye (Bucephala clangula) found dead contained 8 to 38 microg/g (wet mass) of lead in their livers. These levels exceed the lower lethal limit of 5 microg/g in experimental birds. Two of the Canada geese (one each from the contaminated and reference areas) died with ingested lead shotgun pellets (shot) in their gizzards, whereas the other three birds from the contaminated area contained no ingested shot and evidently died from ingesting environmental lead in sediment or biota. Lead burdens in most American robins (Turdus migratorius) and mallards (Anas platyrhynchos) were high, whereas those in tree swallows (Tachycineta bicolor) were slightly elevated. Lead accumulated to potentially hazardous levels in blood and tissues of some nestling robins (maxima of 0.87 microg/g in blood and 5.6 microg/g in liver) and mallards (maxima of 10.2 microg/g in blood and 2.8 microg/g in liver). In mallards, lead levels and associated physiological characteristics of blood were significantly different in juveniles (HY) versus adults (AHY). Activity of delta-aminolevulinic acid dehydratase (ALAD) was about 87 to 95% lower than values for control birds in experimental studies. Activity of ALAD was significantly inversely correlated with blood lead levels. Cadmium was detected in kidneys of most birds, but even the maximum concentration of 7.5 microg/g in an AHY mallard was below known harmful levels.

  4. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2015-04-01

    Full Text Available The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL, 4.4 (2.4 μg/L, 10.9 (9.2 μg/L, and 43.7 (17.7 μg/L, respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01. After controlling for maternal education level and socio-economic status (through ownership of a family car, the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01. Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations.

  5. [Levels of lead and cadmium in pregnant women and newborns and evaluation of their impact on child development].

    Science.gov (United States)

    Durska, G

    2001-01-01

    This study was done in 83 mothers and their 83 newborns with the aim of determining the levels of lead and cadmium in maternal venous and umbilical cord blood. Hair levels were also measured in 60 mothers and 14 newborns. The course of pregnancy was normal in each case and all deliveries were by natural forces at the Department of Obstetrics and Gynecology, Hospital in the City of Szczecin. The mean age of mothers was 26 and the postpartum Apgar score of each child was normal. The relationship between levels of lead and cadmium in blood and hair of mothers and newborns was examined and their influence on the general health status of the newborn was assessed, in particular on the body weight and length, head and chest circumferences. The influence of socio-economic conditions on levels of lead and cadmium in blood and hair of mothers and newborns was also examined. Levels of the two toxic metals in blood and hair were determined by means of atomic absorption spectrometry done in reference laboratories. The results were statistically compared taking the level of significance as p = 0.05. It was found that levels of lead and cadmium are lower in mothers and newborns from Szczecin than values reported by Polish and international investigators and are markedly below the upper permissible limit. Levels of lead and cadmium in maternal venous blood were 0.133 mumol/L (2.75 micrograms/dL) and 0.008 mumol/L (0.09 microgram/dL), respectively, and were significantly higher than levels in cord blood: 0.103 mumol/L (2.14 micrograms/dL) and 0.0025 mumol/L (0.028 microgram/dL). The concentration of lead and cadmium in cord blood was 78% and 33% of the concentration, respectively, in maternal blood. This difference seems to reflect the activity of the placental barrier which apparently is more effective in the case of cadmium. Contrary to this pattern, hair levels of both metals were lower in mothers (Pb 0.004 mumol = 0.86 microgram/g dry mass, Cd 0.0012 mumol = 0.13 microgram

  6. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium in dried bee pollen produced in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Gasparotto SATTLER

    2016-01-01

    Full Text Available Abstract Like other beehive products, such as honey, royal jelly and propolis, bee pollen has attracted great interest because of the health benefits it can provide when consumed. Bee pollen has high contents of sugars and proteins and a low content of lipids, it is also a rich source of vitamins and other bioactive compounds, which makes it an attractive micronutrient supplement. However, few studies have investigated its composition. Therefore, the aim of this study was to characterize the essential minerals and inorganic contaminants present in bee pollen produced at apiaries in Rio Grande do Sul State, Brazil. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES revealed the presence of 8 essential minerals (calcium, iron, copper, chromium, manganese, molybdenum, phosphorus and zinc in the 5 analyzed samples; 6 of them were in sufficiently high amounts to meet dietary requirements. Of the 5 inorganic contaminants assessed (barium, cadmium, lithium, lead and vanadium, only cadmium was present at levels over the International Honey Commission’s standards. All bee pollen samples showed a high content of the 8 essential minerals. Contamination usually results from the use of pesticides, fertilizers and other chemicals in agriculture; thus, monitoring of its levels must be included in bee pollen analysis.

  7. Bioakumulation Heavy Metals Lead (Pb) and Cadmium (Cd) Seagrass (Enhalus acroides) in Waai and Galala Island Ambon

    OpenAIRE

    Muhammad RIJAL; Rosmawati T; Nur Alim Natsir; Moh. Amin; Fathur Rochman; Dahlia Badwi; Farida Bahalwan

    2014-01-01

    All sea life's potential as one of the indicators of the level of pollution in the waters, one of them is Enhalus acroides. The results showed that in the waters of the Waai and Galala contained impurities of lead and cadmium, especially on Enhalus acroides which is one of the sea life that consumed by the people who lived around the coastal region.

  8. The learning machine in quantitative chemical analysis : Part I. Anodic Stripping Voltammetry of Cadmium, Lead and Thallium

    NARCIS (Netherlands)

    Bos, M.; Jasink, G.

    1978-01-01

    The linear learning machine method was applied to the determination of cadmium, lead and thallium down to 10-8 M by anodic stripping voltammetry at a hanging mercury drop electrode. With a total of three trained multicategory classifiers, concentrations of Cd, Pb and Tl could be predicted with an

  9. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    Science.gov (United States)

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  10. Cadmium, lead, mercury and arsenic in animal feed and feed materials – trend analysis of monitoring results

    NARCIS (Netherlands)

    Adamse, Paulien; Fels, van der Ine; Jong, de Jacob

    2017-01-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007–13

  11. Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children

    NARCIS (Netherlands)

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Vonk, Judith M; Wu, Weidong; Huo, Xia

    2017-01-01

    Blood lead (Pb) and cadmium (Cd) levels have been associated with lower lung function in adults and smokers, but whether this also holds for children from electronic waste (e-waste) recycling areas is still unknown. To investigate the contribution of blood heavy metals and lung function levels, and

  12. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ruth Alfaro-Cuevas-Villanueva

    2014-01-01

    Full Text Available The sorption of cadmium (Cd and lead (Pb by calcium alginate beads (CAB from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2 for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F and Dubinin-Radushkevich (D-R models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

  13. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Science.gov (United States)

    Alfaro-Cuevas-Villanueva, Ruth; Hidalgo-Vázquez, Aura Roxana; Cortés Penagos, Consuelo de Jesús; Cortés-Martínez, Raúl

    2014-01-01

    The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K 2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7. PMID:24587740

  14. Heavy Metals (Mercury, Lead and Cadmium Determination in 17 Species of Fish Marketed in Khorramabad City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ali Mortazavi

    2016-01-01

    Full Text Available Heavy metals entrance to fish body tissues and transferring to human body systems after their consuming makes numerous undesirable effects and health problems. The aim of this study was to determine some heavy metals (lead, cadmium and mercury in fresh fishes marketed in Khorramabad City, west of Iran. In this descriptive study, five samples of 17 fish species with high consumption were purchased randomly in 2014. Measurement of mercury, lead and cadmium was performed using atomic absorption spectrometry. All measurements were performed three times for each sample. Lead mean levels in fish samples was in the range 0.736 -1.005 ppm, cadmium range was from 0.196 to 0.015 ppm and mean content of mercury was  0.431 - 0.107 ppm. At present mean concentration of lead, mercury and cadmium in supplied fishes muscle is lower than maximum recommended levels according to WHO, EC and FDA guidelines. Based on the obtained results of this study and the importance of heavy metals in foods and their impacts on human health, continuous monitoring of heavy metals levels in foods is necessary.

  15. Widespread copper and lead contamination of household drinking water, New South Wales, Australia.

    Science.gov (United States)

    Harvey, P J; Handley, H K; Taylor, M P

    2016-11-01

    This study examines arsenic, copper, lead and manganese drinking water contamination at the domestic consumer's kitchen tap in homes of New South Wales, Australia. Analysis of 212 first draw drinking water samples shows that almost 100% and 56% of samples contain detectable concentrations of copper and lead, respectively. Of these detectable concentrations, copper exceeds Australian Drinking Water Guidelines (ADWG) in 5% of samples and lead in 8%. By contrast, no samples contained arsenic and manganese water concentrations in excess of the ADWG. Analysis of household plumbing fittings (taps and connecting pipework) show that these are a significant source of drinking water lead contamination. Water lead concentrations derived for plumbing components range from 108µg/L to 1440µg/L (n=28, mean - 328µg/L, median - 225µg/L). Analysis of kitchen tap fittings demonstrates these are a primary source of drinking water lead contamination (n=9, mean - 63.4µg/L, median - 59.0µg/L). The results of this study demonstrate that along with other potential sources of contamination in households, plumbing products that contain detectable lead up to 2.84% are contributing to contamination of household drinking water. Given that both copper and lead are known to cause significant health detriments, products for use in contact with drinking water should be manufactured free from copper and lead. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of Kiwi Shell and Incubation Time on Mobility of Lead and Cadmium in Contaminated Clay Soil

    Directory of Open Access Journals (Sweden)

    Bahareh Lorestani

    2014-06-01

    Full Text Available In this study, the effectiveness of kiwi shell was investigated to reduce the mobility of Lead and Cadmium in clay soil in different intervals. For this purpose a clay soil sample was contaminated with Lead and Cadmium in distinct dishes with 10 and 600 ppm concentrations respectively and mixed with 5% kiwi shell. Samples were placed in incubator, and then sampling of soil in incubator was performed in intervals 3 hours, 1, 3, 7, 14, 21 and 28 days. Heavy metals concentrations were determined in different fractions of soil including exchangeable, carbonate, Fe-Mn oxides, organic matter, and residual with sequential extraction procedure and atomic absorption spectrophotometry. The results showed that during incubation, Lead concentration in treatments with kiwi shell rather than control soil increased in carbonate from 19.48 to 26.18 and in organic matter from 9.06 to 18.66 percent. Exchangeable, Fe-Mn oxides and residual fractions decreased from 11.48 to 6.69, 45.72 to 39.83 and 14.21 to 7.90 percent respectively. In samples with absorbent compared with control soil, Cadmium concentration in carbonate and organic matter increased from 28.20 to 38.40 and 18.76 to 24.72, while in exchangeable, Fe-Mn oxides and residual decreased from 16.66 to 13.69, 37.25 to 19.65 and 6.24 to 3.61 percent respectively. This study revealed that kiwi shell function in decreasing Cadmium and Lead mobility in studied clay soil were increased with increasing incubation time, but Cadmium compared with Lead required additional time to transfer and mobility to constant and stable soil fractions such as, organic matter and Fe-Mn oxides.

  17. Environmental Exposures to Lead, Mercury, and Cadmium and Hearing Loss in Adults and Adolescents: KNHANES 2010-2012.

    Science.gov (United States)

    Choi, Yoon-Hyeing; Park, Sung Kyun

    2017-06-08

    The prevalence of hearing loss increases rapidly with aging. Hearing loss is common in all age groups, even in young adults and adolescents. A growing body of evidence has suggested that heavy metals have ototoxic effects, yet few epidemiological studies have investigated the association between heavy metals and hearing loss in a general population that includes adults and adolescents. We examined the association between environmental exposures to lead, mercury, and cadmium and the risk of hearing loss in adults and adolescents while controlling for potential confounding factors, including noise exposures and clinical factors. We analyzed cross-sectional data from 5,187 adults and 853 adolescents in the Korean National Health and Nutrition Examination Survey 2010-2012. Pure-tone average (PTA) of hearing thresholds at high frequency (3, 4, and 6 kHz) were computed, and hearing loss was defined as a PTA>25 dB in adults and PTA>15 dB in adolescents. In adults, the highest (vs. lowest) quartiles of blood lead and cadmium were associated with 1.70 (95% CI: 1.25, 2.31) and 1.47 (95% CI: 1.05, 2.05) odds ratios for high-frequency hearing loss (p-trendadults or adolescents. The results of the present study suggest that exposure to environmental lead and cadmium in adults and exposure to environmental cadmium in adolescents may play a role in the risk of hearing loss. https://doi.org/10.1289/EHP565.

  18. Mercury, lead, and cadmium in blue crabs, Callinectes sapidus, from the Atlantic coast of Florida, USA: a multipredator approach.

    Science.gov (United States)

    Adams, Douglas H; Engel, Marc E

    2014-04-01

    Blue crabs, Callinectes sapidus, from the Atlantic coast of Florida were analyzed for total mercury, methylmercury, lead, and cadmium. Paired samples of two tissue types were analyzed for each crab, (1) muscle tissue (cheliped and body muscles) and (2) whole-body tissue (all organs, muscle tissue and connective tissue), for evaluation of the concentration of metals available to human consumers as well as estuarine predators. There were clear patterns of tissue-specific partitioning for each metal. Total mercury was significantly greater in muscle tissue (mean=0.078 µg/g) than in whole-body tissue (mean=0.055 µg/g). Conversely, whole-body concentrations of lead and cadmium (means=0.131 and 0.079 µg/g, respectively) were significantly greater than concentrations in muscle (means=0.02 and 0.029 µg/g, respectively). There were no significant correlations between any metal contaminant and crab size. Cadmium levels were significantly greater in the muscle tissue of females, but, no other sex-related differences were seen for other metals or tissue types. Methylmercury composed 93-100% of the total mercury in tissues. Compared to previous blue crab studies from different regions of the United States, mean concentrations of mercury, lead, and cadmium were relatively low, although isolated groups or individual blue crabs accumulated high metal concentrations. © 2013 Published by Elsevier Inc.

  19. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010-2013): Body burden and risk factors.

    Science.gov (United States)

    Kim, Nam-Soo; Ahn, Jaeouk; Lee, Byung-Kook; Park, Jungsun; Kim, Yangho

    2017-07-01

    Limited information is available on the association of age and sex with blood concentrations of heavy metals in teenagers. In addition, factors such as a shared family environment may have an association. We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES, 2010-2013) to determine whether blood levels of heavy metals differ by risk factors such as age, sex, and shared family environment in a representative sample of teenagers. This study used data obtained in the KNHANES 2010-2013, which had a rolling sampling design that involved a complex, stratified, multistage, probability-cluster survey of a representative sample of the non-institutionalized civilian population in South Korea. Our cross-sectional analysis was restricted to teenagers and their parents who completed the health examination survey, and for whom blood measurements of cadmium, lead, and mercury were available. The final analytical sample consisted of 1585 teenagers, and 376 fathers and 399 mothers who provided measurements of blood heavy metal concentrations. Male teenagers had greater blood levels of lead and mercury, but sex had no association with blood cadmium level. There were age-related increases in blood cadmium, but blood lead decreased with age, and age had little association with blood mercury. The concentrations of cadmium and mercury declined from 2010 to 2013. The blood concentrations of lead, cadmium, and mercury in teenagers were positively associated with the levels in their parents after adjustment for covariates. Our results show that blood heavy metal concentrations differ by risk factors such as age, sex, and shared family environment in teenagers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna

    Science.gov (United States)

    Li, Ling; Sillanpää, Markus; Schultz, Eija

    2017-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have attracted considerable concerns due to the increasing production and widespread applications, while their influences on other co-existing pollutants in real environment are not well studied. In this paper, the colloidal stability of TiO2 NPs in the exposure medium was first evaluated, and then, the medium was modified so that TiO2 NP suspension remained stable over the exposure period. Finally, using the optimized exposure medium, the effects of cadmium (Cd) and lead (Pb) on Daphnia magna both in the absence and presence of TiO2 NPs were investigated. Results showed that 2 mg L-1 of TiO2 NPs was well dispersed in 1:20 diluted Elendt M7 medium without EDTA, and no immobility was observed. The presence of the nanoparticles increased the bioaccumulation and toxicity of Cd to the daphnias. On the contrary, while Pb bioaccumulation was enhanced by three to four times, toxicity of Pb was reduced in the presence of TiO2 NPs. The decreased toxicity of Pb was more likely attributed to the decreased bioavailability of free Pb ion due to adsorption and speciation change of Pb in the presence of TiO2 NPs. Additionally, surface-attached TiO2 NPs combined with adsorbed heavy metals caused adverse effects on daphnia swimming and molting behavior, which is supposed to lead to chronic toxicity.

  2. Mortality of copper cadmium alloy workers with special reference to lung cancer and non-malignant diseases of the respiratory system, 1946-92.

    Science.gov (United States)

    Sorahan, T; Lister, A; Gilthorpe, M S; Harrington, J M

    1995-01-01

    OBJECTIVES--To identify and quantify any relations between occupational exposure to cadmium oxide fume and mortalities from lung cancer and from chronic non-malignant diseases of the respiratory system. METHODS--The mortality experience of 347 copper cadmium alloy workers, 624 workers employed in the vicinity of copper cadmium alloy work (vicinity workers), and 521 iron and brass foundry workers (all men) was investigated for the period 1946-92. All subjects were first employed in these types of work in the period 1922-78 and for a minimum period of one year at one of two participating factories. Two analytical approaches were used, indirect standardisation and Poisson regression. RESULTS--Compared with the general population of England and Wales, mortality from lung cancer among copper cadmium alloy workers was close to expectation (observed deaths 18, expected deaths 17.8, standardised mortality ratio (SMR) 101, 95% confidence interval (95% CI) 60 to 159). A significant excess was shown for lung cancer among vicinity workers but not among iron and brass foundry workers (vicinity workers: observed 55, expected 34.3, SMR 160, 95% CI 121 to 209, P alloy workers: observed 54, expected 23.5, SMR 230, 95% CI 172 to 300, P copper cadmium alloy workers were combined with independent assessments of cadmium exposures over time to develop individual estimates of cumulative exposure to cadmium; this being a time dependent variable. Poisson regression was used to investigate risks of lung cancer and risks of chronic non-malignant diseases of the respiratory system in relation to three levels of cumulative cadmium exposure ( or = 4800 micrograms.m-3.y). After adjustment for age, year of starting alloy work, factory, and time from starting alloy work, there was a significant positive trend (P < 0.01) between cumulative exposure to cadmium and risks of mortality from chronic non-malignant diseases of the respiratory system. Relative to a risk of unity for the lowest exposure

  3. Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense).

    Science.gov (United States)

    Yang, Jen-Lee

    2014-04-01

    Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.

  4. Radiotracer study of the adsorption of organic compounds on gold. adsorption of chloroacetic and phenylacetic acid, and the effects of cadmium, copper, and silver adatoms on it

    Energy Technology Data Exchange (ETDEWEB)

    Horani, G.; Andreev, V.N.; Vazarinov, V.E.

    1986-04-01

    This paper studies the adsorption of monochloroacetic and phenylacetic acid (MA and PA, respectively) by the radiotracer technique on gold-plated gold electrodes in acidic solutions. The authors also study the effect of cadmium, copper, and silver adatoms on these processes. The adsorption of MA was measured as a function of potential of the electrode. Data from these measurements are presented. Data show that cadmium, copper, and silver ions present in the solution have no effect on the adsorption of PA at potentials where they are not adsorbed on the gold surface. It is confirmed that the radiotracer technique will be as effective in adsorption studies on the gold-plated gold electrode as it was in the case of the platinized platinum electrode.

  5. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes.

    Science.gov (United States)

    Klinck, J S; Green, W W; Mirza, R S; Nadella, S R; Chowdhury, M J; Wood, C M; Pyle, G G

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca(2+), principally that elevated dietary Ca(2+) reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  6. Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kantola, M. [Dept. of Chemistry, Univ. of Kuopio, Kuopio (Finland); Vartiainen, T. [Div. of Environmental Health, National Public Health Inst., Kuopio (Finland); Univ. of Kuopio, Dept. of Environmental Sciences, Kuopio (Finland)

    2001-07-01

    Sodium selenate has been supplemented to all agricultural fertilizers used in Finland since 1984. We followed the changes in selenium, cadmium, zinc and copper content in Finnish human milk between the years 1987 and 1993-1995. A total of 257 milk samples was collected, four weeks after delivery, in two areas: In Helsinki, an urban area, and in Kuopio, a rural area, where elevated copper concentrations have been found in the bedrock. Direct atomic absorption spectrophotometric methods without digestion were used for the analyses. The dependence of trace element content on study time, living area, smoking habits, fish eating frequency, and parity of mothers was studied by analysis of covariance. Inter-element correlations and correlations with mother's age and fat content in milk were studied by partial correlation. Significant increases were observed in mean selenium (16.4 {mu}g/l and 18.9 {mu}g/l, p < 0.001) and in fat contents (3.4% and 4.0%, p < 0.001), whereas significant decreases were seen in mean zinc (3.00 mg/l and 1.47 mg/l, p < 0.001), copper (0.52 mg/l and 0.43 mg/l, p < 0.001) and cadmium contents (0.095 {mu}g/l and 0.062 {mu}g/l, p < 0.01). In 1987, zinc had a positive correlation with copper and fat. Copper correlated inversely with the mothers' age. In 1993-1995, selenium correlated positively with copper, and zinc correlated inversely with mothers' age. Mothers living area had an effect on copper content in milk. Our results confirm that selenium supplementation to fertilizers in Finland has increased the selenium level in human maternal milk and most likely it also has an effect on the zinc and copper concentrations in maternal milk. (orig.)

  7. Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland).

    Science.gov (United States)

    Łaszczyca, Piotr; Augustyniak, Maria; Babczyńska, Agnieszka; Bednarska, Katarzyna; Kafel, Alina; Migula, Pawel; Wilczek, Grazyna; Witas, Ilona

    2004-09-01

    The aim of the study was to determine whether there are signs of adaptation of soil fauna to a gradient of heavy metal contamination. Earthworms Aporrectodea caliginosa, Lumbricus terrestris and Eisenia fetida were collected during the spring and summer of 2000 and 2001 from meadow sites situated between 2 and 32 km from the Bukowno-Olkusz complex of zinc-lead ore mines and smelters. The heavy metal content in the soil near smelters reaches 10,500 mg/kg (d.w.) for Zn, 2600 mg/kg for Pb and 81.9 mg/kg for Cd. The sites differ with respect to species composition of earthworm community, with A. caliginosa being dominant. Complete data was obtained only for A. caliginosa, since other species were not abundant at all investigated sites during the whole period of investigation. The body burdens of Zn, Pb, Cd and Cu in A. caliginosa reached 1500, 100, 220 and 10 microg/g, respectively, in the vicinity of the smelter (2-4 km), and decreased to 400, 2, 36 and 6 microg/g at the most distant site (32 km). Cadmium and lead content was significantly elevated in the whole body of L. terrestris collected at the site 2.5 km distant from the smelters when compared to more distant sites, while in E. fetida only the body burden of cadmium was elevated at the nearest site compared to the next site of transect. Activities of glutathione peroxidase (GPX; EC 1.11.1.9) against hydrogen peroxide (H2O2) or cumene hydroperoxide (cumOOH), glutathione reductase (GR; EC 1.6.4.2), glutathione S-transferase (GST; EC 2.5.1.18) and catalase (CAT; EC 1.11.1.6) were assayed in postmitochondrial supernatant obtained from whole body homogenates. Seasonal and annual variations of enzyme activity were reflected by higher GPX activity in the late summer of 2001 in comparison with the spring and summer of 2000. This may reflect severe drought in the spring and summer of 2000. The activity of both GPX isozymes, GR and GST in A. caliginosa and L. terrestris increased with increasing distance from the

  8. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  9. Screening of cadmium and copper phytoremediation ability of Tagetes erecta, using biochemical parameters and scanning electron microscopy-energy-dispersive X-ray microanalysis.

    Science.gov (United States)

    Goswami, Sunayana; Das, Suchismita

    2017-09-01

    Tagetes erecta thrived in phytotoxic levels of cadmium (Cd; 50-300 mg kg-1 ) and copper (Cu; 150-400 mg kg-1 ) for 21 d. It accumulated high metal contents in its above-ground tissues (3675 mg Cd kg-1 dry wt and 3948 mg Cu kg-1 dry wt) and showed greater root to shoot translocation and a high extraction coefficient, all of which pointed toward its potential as a hyperaccumulator. Both Cd stress and Cu stress reduced the plant biomass, foliar area, and number. In addition, there were significant declines in pigment contents as well as boosts in lipid peroxidation levels. However, the plant triggered a number of stress-mitigation strategies to abate reactive oxygen species formed as a result of Cd/Cu excess, mostly via significant augmentation of superoxide dismutase, catalase, glutathione peroxidase, and ascorbate peroxidase activities. Though the root and leaf anatomy revealed some signs of toxic symptoms at 50 mg Cd kg-1 and at 150 mg Cu kg-1 , as evidenced by scanning electron microscopy, the root showed maximum tolerance, with tolerance indexes of 85.4% and 91.7%, respectively. Energy-dispersive X-ray microanalysis showed specific Ca2+ signals in both root and stomata, which could be associated with a specific signaling pathway leading to increased root metal uptake and stomatal closure. Environ Toxicol Chem 2017;36:2533-2542. © 2017 SETAC. © 2017 SETAC.

  10. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO{sub 2} core-Au shell nanoparticles by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, S. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Akman, S., E-mail: akmans@itu.edu.tr [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Kahraman, M. [Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, 34755 Kayisdagi-Istanbul (Turkey)

    2011-02-15

    Separation/preconcentration of copper and cadmium using TiO{sub 2} core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and their slurry analysis by flame atomic absorption spectrometry were described. For this purpose, at first, titanium dioxide nanoparticles were coated with gold shell by reducing the chloroauric acid with sodium borohydride and then modified with 11-mercaptoundecanoic acid. The characterization of modified nanoparticles was performed using ultra-violet spectroscopy and dynamic light scattering. Copper and cadmium were then collected on the prepared sorbent by batch method. The solid phase loaded with the analytes was separated by centrifugation and the supernatant was removed. Finally, the precipitate was slurried and directly aspirated into the flame for the determination of analytes. Thus, elution step and its all drawbacks were eliminated. The effects of pH, amount of sorbent, slurry volume, sample volume and diverse ions on the recovery were investigated. After optimization of experimental parameters, the analytes in different certified reference materials and spiked water samples were quantitatively recovered with 5% RSD. The analytes were enriched up to 20-fold. Limits of detection (N = 10, 3{sigma}) for copper and cadmium were 0.28 and 0.15 ng mL{sup -1}, respectively.

  11. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Junenette L., E-mail: petersj@bu.edu; Patricia Fabian, M., E-mail: pfabian@bu.edu; Levy, Jonathan I., E-mail: jonlevy@bu.edu

    2014-07-15

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  13. Accumulation of heavy metals (cadmium, zinc, and copper) from smelter in forest ecosystems and their uptakes by Shiitake mushroom (Lentinus edodes (Berk) Sing. ) and Nameko mushroom (Pholiota glutinosa Kawamura) through polluted bed logs

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, T.; Fujita, K.; Furukawa, H.; Yoshimoto, M.

    1977-12-01

    Mushrooms cultivated on sawdust medium which had been innoculated with heavy metals accumulated the metals increasingly in stems, pileus, gill and spores, in that order. There were strain differences, in accumulation, and highest concentration was found in the first-born fruit body. At 2 ppm, cadmium did not affect yield of the fruiting body. At 20 ppm, however, yield was seriously reduced. Species differences in absorption capacity for heavy metals were noted. Seasonal variations in cadmium and copper accumulation were noted, along with zinc. Cadmium concentration in fruiting bodies increased with increase of cadmium concentration in the growth substrate. 23 figures, 16 tables.

  14. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    Science.gov (United States)

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  15. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stephani [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Arora, Monica [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States); Fernandez, Cristina [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States); Landero, Julio; Caruso, Joseph [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States); Chen, Aimin, E-mail: aimin.chen@uc.edu [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)

    2013-10-15

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.

  16. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children.

    Science.gov (United States)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-10-01

    There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5-8, 9-12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07-5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. © 2013 Published by Elsevier Inc.

  17. Assessment of exposure to soils contaminated with lead, cadmium, and arsenic near a zinc smelter, Cassiopée Study, France, 2008.

    Science.gov (United States)

    Durand, Cécile; Sauthier, Nicolas; Schwoebel, Valérie

    2015-06-01

    After 150 years of industrial activity, significant pollution of surface soils in private gardens and locally produced vegetables with lead, cadmium, and arsenic has recently been observed in Viviez (Southern France). A public health intervention was conducted in 2008 to identify individual health risks of Viviez inhabitants and to analyze their environmental exposure to these pollutants. Children and pregnant women in Viviez were screened for lead poisoning. Urinary cadmium testing was proposed to all inhabitants. Those with urinary cadmium levels over 1 μg/g creatinine were then tested for kidney damage. Urinary cadmium and arsenic levels were compared between participants with non-occupational exposure from Viviez and Montbazens, a nearby town not exposed to these two pollutants, in order to identify environmental factors contributing to impregnation. No case of lead poisoning was detected in Viviez, but 23 % of adults had urinary cadmium over 1 μg/g creatinine, 14 % of whom having markers of kidney damage. Viviez adults had higher levels of urinary cadmium, and to a lesser extent, higher levels of urinary arsenic than those from Montbazens. Consumption of local produce (vegetables and animals) and length of residence in Viviez were associated with higher urinary cadmium levels, independently of known confounding factors, suggesting persisting environmental exposure to contaminated soil. To conclude, health risks related to cadmium exposure were identified in the Viviez population living on contaminated soils. Lead and arsenic exposure did not pose health concerns. Interventions were proposed to reduce exposure and limit health consequences.

  18. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead.

    Science.gov (United States)

    Ollson, Cameron J; Smith, Euan; Herde, Paul; Juhasz, Albert L

    2017-02-01

    Incidental ingestion of contaminated soil and dust is a major pathway for human exposure to many inorganic contaminants. To date, exposure research has focused on arsenic (As), cadmium (Cd) and lead (Pb), however, these studies have typically assessed metal(loid) bioavailability individually, even when multiple elements are present in the same matrix. As a consequence, it is unclear whether interactions between these elements occur within the gastro-intestinal tract, which may impact absorption and accumulation. In this study, the influence of contaminant co-exposure was assessed using a mouse bioassay and soluble forms of As, Cd and Pb supplied in mouse chow as individual, binary and tertiary elemental combinations. Arsenic urinary excretion and Pb-liver accumulation were unaffected by As-Pb co-exposure (1-10 mg As kg-1 and 3-30 mg Pb kg-1) while Cd-kidney accumulation was unaffected by the presence of As and/or Pb. However, Cd co-exposure decreased As urinary excretion and increased Pb-liver accumulation. It was hypothesized that Cd influenced arsenate absorption as a consequence of the impairment of phosphate transporters. Although the reason for increasing Pb-liver accumulation following Cd co-exposure is unclear, enhanced Pb accumulation may occur as a result of transport protein overexpression or changes in divalent metal compartmentalization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture.

    Science.gov (United States)

    Zhi-xin, Niu; Sun, Li-na; Sun, Tie-heng; Li, Yu-shuang; Wang, Hong

    2007-01-01

    Soil contaminated with heavy metals cadmium (Cd) and lead (Pb) is hard to be remediated. Phytoremediation may be a feasible method to remove toxic metals from soil, but there are few suitable plants which can hyperaccumulate metals. In this study, Cd and Pb accumulation by four plants including sunflower (Helianthus annuus L.), mustard (Brassica juncea L.), alfalfa (Medicago sativa L.), ricinus (Ricinus communis L.) in hydroponic cultures was compared. Results showed that these plants could phytoextract heavy metals, the ability of accumulation differed with species, concentrations and categories of heavy metals. Values of BCF (bioconcentration factor) and TF (translocation factor) indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals. Changes on the biomass of plants, pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures. Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals, such as pH and Eh regulations, and so forth.

  20. [Migration tests of cadmium and lead from paint film of baby toys].

    Science.gov (United States)

    Kawamura, Yoko; Mutsuga, Motoh; Yamauchi, Tomoko; Ueda, Shinji; Tanamoto, Kenichi

    2009-04-01

    The migration tests of cadmium (Cd) and lead (Pb) from paint film on baby toys set out in the Japanese Food Sanitation Law (official standard) and International Standard 8124-3 (ISO) were compared. Vinyl chloride resin enamel and acrylic resin enamel containing 1,000 mg/kg Cd and Pb on a dried basis were painted on glass plates and then dried. According to the official standard, the paint films on the glass plates were soaked in water at 40 degrees C for 30 min and the solutions were analyzed by ICP-AES. Cd and Pb were below the limit of determinotion (paint was scratched from the glass plates and the powder was soaked in 0.07 mol/L HCl at 37 degrees C for 1 hr either with shaking and without shaking. The migration of Cd and Pb reached 310 to 910 mg/kg, i.e., 3.5-12 times more than the migration limits. Cd migrated more extensively than Pb, and they both migrated more readily from the acrylic resin enamel than from the vinyl chloride enamel. In conclusion, the migration test of Cd and Pb from paint films on toys based on the ISO standards is stricter than that based on the Japanese Food Sanitation Low.

  1. Haematological, blood biochemical and histopathological effects of sublethal cadmium and lead concentrations in common carp

    Directory of Open Access Journals (Sweden)

    M.K.Khalesi

    2017-06-01

    Full Text Available The present research aimed at examining the effects of common carp (Cyprinus carpio exposure to sublethal concentrations of two non-essential heavy metals: cadmium (Cd: 8.4 mg/L and lead (Pb: 6.2 mg/L for 15 days to evaluate occurring biochemical and haematological effects. The examined parameters included haematocrit (Hct, haemoglobin (Hb, lymphocytes (Lym, neutrophils (Neu, total protein (TP, albumin (Alb, immunoglobulin M (IgM, glucose, red and white blood cells counts (RBC & WBC, mean corpuscular volume (MCV, mean corpuscular haemoglobin (MCH, and mean corpuscular haemoglobin concentration (MCHC. Exposure to both metals significantly (P<0.05 reduced the amounts of WBC and MCHC. MCV values decreased (P<0.05 after the Pb treatment but MCV estimates with Cd exposure showed no differences. MCH levels increased in both treatments (P<0.05 whereas Hct, Hb, RBC, Lym, and Neu following both metal exposures were almost similar to those in the control. IgM values were elevated in fish contaminated with both Pb and Cd (P<0.05. The exposed fish showed fusion of gill lamellae, vessel dilatation, hyperaemia, and hyperplasia of gill epithelial cells whereas muscle histology remained unchanged. The observed responses can be secondary to low heavy metals concentrations reflecting the trigger of stress reactions in affected fish

  2. Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results.

    Science.gov (United States)

    Adamse, Paulien; Van der Fels-Klerx, H J Ine; de Jong, Jacob

    2017-08-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007-13 were used. Data covered a variety of feed materials and compound feeds in the Netherlands. Trends in the percentage of samples that exceeded the maximum limit (ML) set by the European Commission, and trends in average, median and 90th percentile concentrations of each of these elements were investigated. Based on the results, monitoring should focus on feed material of mineral origin, feed material of marine origin, especially fish meal, seaweed and algae, as well as feed additives belonging to the functional groups of (1) trace elements (notably cupric sulphate, zinc oxide and manganese oxide for arsenic) and (2) binders and anti-caking agents. Mycotoxin binders are a new group of feed additives that also need attention. For complementary feed it is important to make a proper distinction between mineral and non-mineral feed (lower ML). Forage crops in general do not need high priority in monitoring programmes, although for arsenic grass meal still needs attention.

  3. Hearing loss in children with e-waste lead and cadmium exposure.

    Science.gov (United States)

    Liu, Yu; Huo, Xia; Xu, Long; Wei, Xiaoqin; Wu, Wengli; Wu, Xianguang; Xu, Xijin

    2018-05-15

    Environmental chemical exposure can cause neurotoxicity and has been recently linked to hearing loss in general population, but data are limited in early life exposure to lead (Pb) and cadmium (Cd) especially for children. We aimed to evaluate the association of their exposure with pediatric hearing ability. Blood Pb and urinary Cd were collected form 234 preschool children in 3-7years of age from an electronic waste (e-waste) recycling area and a reference area matched in Shantou of southern China. Pure-tone air conduction (PTA) was used to test child hearing thresholds at frequencies of 0.25, 0.5, 1, 2, 4 and 8kHz. A PTA≥25dB was defined as hearing loss. A higher median blood Pb level was found in the exposed group (4.94±0.20 vs 3.85±1.81μg/dL, pe-waste polluted areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lead, cadmium and zinc in mineral structure of deposits of the gallbladder in men and women

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapuliński

    2012-11-01

    Full Text Available Introduction: The former studies have shown the presence of As and Sb in deposits of the gallbladder. The aim of studies: The aim of the studies was to define the level of accumulation of Pb, Cd, Zn in deposits of the gallbladder as supplementary biological test for exposure assessment in a long run. Materials and methods: Pb, Cd and Zn content was investigated with inductive coupled plasmaatomic emission spectrometry were deposits of the gallbladder in men and women living in the Silesia Region. Results: The change of these elements content was analyzed in connection with behavioral factors ( diet, alcohol, coffee, obesity and tobacco addiction of the gender. Attention was drawn to the probability of interaction of Pb, Cd, Zn with other elements during their accumulation in deposits of the gallbladder. It appeared that deposits of the gall bladder can be used as an additional biological test in individual exposure assessment to Pb, Cd and Zn. It was noted that the level of content of Pb, Zn and Cd in deposits of the gallbladder is impacted by behavioral factors (diet, alcohol, coffee, obesity tobacco addiction. A characteristic impact of the tobacco addiction on the rise in the content of lead, cadmium and zinc was demonstrated as well as significant role of the presence of these elements in the total environmental pollution in relevant living areas.

  5. Concentrations and bioavailability of cadmium and lead in cocoa powder and related products.

    Science.gov (United States)

    Mounicou, S; Szpunar, J; Andrey, D; Blake, C; Lobinski, R

    2003-04-01

    Concentrations and bioavailability of cadmium (Cd) and lead (Pb) were determined in cocoa powders and related products (beans, liquor, butter) of different geographical origins. Particular attention was paid to the fractionation of these metals, which was investigated by determining the metal fraction soluble in extractant solutions acting selectively with regard to the different classes of ligands. The targeted classes of Cd and Pb species included: water-soluble compounds, polypeptide and polysaccharide complexes, and compounds soluble in simulated gastrointestinal conditions. The bioavailability of Cd and Pb from cocoa powder, liquor and butter was evaluated using a sequential enzymolysis approach. The data obtained as a function of the geographical origin of the samples indicated strong differences not only in terms of the total Cd and Pb concentrations, but also with regard to the bioavailability of these metals. The Cd concentrations in the cocoa powders varied from 94 to 1833 microg kg(-1), of which 10-50% was potentially bioavailable. The bioavailability of Pb was generally below 10% and the concentrations measured in the cocoa powders were in the 11-769 microg kg(-1) range. Virtually all the Cd and most of Pb were found in the cocoa powder after the pressing of the liquor.

  6. The influence of cadmium and lead on Ulmus pumila L. seed germination and early seedling growth

    Directory of Open Access Journals (Sweden)

    Đukić Matilda

    2014-01-01

    Full Text Available The aim of this paper was to examine how the heavy metals cadmium (Cd and lead (Pb influence the germination and early growth of seedlings of the fast-growing tree species Ulmus pumila L. Seeds were germinated and seedlings were hydroponically grown in a solution with Cd-nitrate and Pb-nitrate at concentrations of 20 μM, 50 μM and 90 μM. Our results show that seeds can germinate in the presence of these two heavy metals at all of the applied concentrations with no significant reduction in qualitative (germination capacity, germination energy or quantitative (germination intensity, mean germination period germination parameters as compared to the controls. Early seedling development was also possible at higher concentrations of both heavy metals. Cd reduced hypocotyl length, but not significantly the length of radicles. Pb did not influence hypocotyl length and stimulated radicle length significantly (95%. These results could mark a step forward in defining the tolerance of U. pumila to the presence of Cd and Pb, and to the possibility of using this fast-growing tree which is resistant to different abiotic and biotic stresses, for phytoremediation or soil reclamation purposes. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  7. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  8. Arsenic, cadmium, lead and mercury in canned sardines commercially available in eastern Kentucky, USA.

    Science.gov (United States)

    Shiber, John G

    2011-01-01

    Seventeen samples of canned sardines, originating from six countries and sold in eastern Kentucky, USA, were analyzed in composites of 3-4 fish each for total arsenic (As), cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrophotometry (AAS) and for mercury (Hg) by thermal decomposition amalgamation and AAS. Results in μg/g wet: As 0.49-1.87 (mean: 1.06), Cd<0.01-0.07 (0.03), Pb<0.06-0.27 (0.11), Hg ND <0.09. Values fall generally within readings reported by others, but no internationally agreed upon guidelines have yet been set for As or Cd in canned or fresh fish. The incidence of cancers and cardiovascular diseases associated with As ingestion is extraordinarily high here. With the role of food-borne As in human illness presently under scrutiny and its maximum allowable limits in fish being reviewed, more studies of this nature are recommended, especially considering the potential importance of small pelagic fishes as future seafood of choice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  10. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta).

    Science.gov (United States)

    Wu, Bing; Liu, Zhengtao; Xu, Yun; Li, Dingsheng; Li, Mei

    2012-07-01

    Cadmium (Cd) and lead (Pb) in soil have received extensive attention due to their potential toxicological effects. This study analyzed the combined toxicity of Cd and Pb on the earthworm Eisenia fetida. Cellulase activity and DNA damage were chosen as toxic endpoints. Factorial analysis was applied to identify the interaction of Cd and Pb. The results showed that single Pb and Cd could increase the cellulase activity and DNA damage of coelomocytes. The combination of both metals could significantly inhibit cellulase activity. For low Cd concentration, the addition of Pb could increase the DNA damage. However, for high Cd concentration, Pb could decrease the DNA damage. Factorial analysis showed that the changes of Cd concentrations exerted the highest influence on the combined toxicity, followed by factor "Cd*Pb" and "Pb". The combined toxicological effects between Cd and Pb were complex, which might be influenced by the competition adsorption of both metals in soil and biomembrane and their bioavailability. The results of this study are useful for understanding of combined toxicity of Cd and Pb on terrestrial invertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  12. THE SIGNIFICANCE OF "STAGNATION CURVES" FOR LEAD AND COPPER, AND WATER QUALITY FACTORS AFFECTING THEM

    Science.gov (United States)

    "Stagnation curves" are the response of metal levels, particularly lead and copper, to time under conditions of no water flow. Research on lead pipe in the early 1980's in the United States, Germany, and in the United Kingdom suggested that they were characterized by rapid incre...

  13. Determination of lead and cadmium contaminations in UF-Cheese and yoghurt produced in Esfahan and GolpayeganPegah Dairy Processing Establishments

    OpenAIRE

    E Jaberi; A Shakerian; E Rahimi

    2013-01-01

    Milk is a complicated liquid that contains necessary components for the growth of mammalian neonate. Milk can get polluted by heavy metals such as lead and cadmium. In this study, the concentrations of lead and cadmium were measured in 12 yoghurt and 12 UF cheese samples produced in each of the Isfahan and Golpayegan-Pegah Dairy Processing Establishments. The samples were analyzed using atomic absorption spectrometry by furnace according to AOAC instruction. According to the results, lead con...

  14. The status of lead and cadmium in soils of high prevalenct gastrointestinal cancer region of Isfahan

    Directory of Open Access Journals (Sweden)

    Reza Mohajer

    2013-01-01

    Full Text Available Background: Cadmium and lead compounds are classified as human carcinogens by several regulatory agencies. Twenty five percent of all cancer-related deaths are attributed to gastrointestinal cancers (GI Ca. We investigated the levels of 2 different heavy metals (Cd and Pb in the soils of the Lenjanat region, Isfahan province, Central Iran where intensive agriculture is surrounded by different industries like steel and cement-making factories and mining and gastrointestinal cancers are very common in this province. Materials and methods: Two hundred topsoil samples (0-20 cm depth were collected from agricultural and non-agricultural soils of the region and were analyzed for heavy metals. The metal contents were determined by flame atomic absorption spectrometry. Results: The findings of this study showed that frequency of gastrointestinal cancers in the study area have been increased in the recent years. Results of soil samples in this region showed that the mean concentration of Pb and Cd were more than 16 and 1 mg kg−1 , respectively. The total Cd concentration in most of the samples exceeded the suggested Swiss thresholds (0.8 mg kg−1 but the mean value of Pb concentration in soil was less than the threshold of 50 mg kg−1 set by Swiss Federal Office of Environmental, Forest and Landscape. Compared to the threshold values for heavy metals (Cd and Pb in soils, data showed that the studied fields were contaminated especially by Cd. Conclusion: High heavy metals content in the soils seems to play an important etiological role in the carcinogenesis. Excessive accumulation of heavy metals in agricultural soils may not only result in soil contamination, but also lead to elevated heavy metal uptake by crops, and thus affect food quality and safety. Thus, analyzing heavy metals content in crops, water and dust could provide us a better insight to solve the problem.

  15. Comparison of lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions: Cracow region of Poland.

    Science.gov (United States)

    Kapusta-Duch, Joanna; Leszczyńska, Teresa; Florkiewicz, Adam; Filipiak-Florkiewicz, Agnieszka

    2011-01-01

    The aim of the present study was to compare lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions for three consecutive years, independently of the climatic and agrotechnical conditions. The research was conducted in the Cracow region of Poland and tests vegetables near the Steelworks, from ecological farms, and from local markets. The heavy metal contents were determined using the validated Atomic Absorption Spectrometry method, including electrothermal atomization, with an ET-AAS graphite cuvette (Varian AA240Z, made by Varian). Cruciferous vegetables cultivated in the areas surrounding the steelworks were characterized by alarmingly high lead content versus ecological and commercially available vegetables, while the contents of this metal in vegetables from the two latter locations did not differ. It cannot be definitively stated that the origin of vegetables influenced their cadmium content.

  16. Quantification of lead and cadmium in poultry and bird game meat by square-wave anodic-stripping voltammetry.

    Science.gov (United States)

    Trevisani, M; Cecchini, M; Taffetani, L; Vercellotti, L; Rosmini, R

    2011-02-01

    A square-wave anodic-stripping voltammetric method for the analysis of lead and cadmium in chicken muscle and liver was developed and validated, and the results of a monitoring study relative to chicken and pigeon meat are reported. The voltammetric method allows the analysis of lead and cadmium at the same time in samples after acid digestion. The use of perchloric acid for digestion and of acetate buffer in the supporting electrolyte are suitable to reduce matrix interferences and obtain limits of quantification which were below 10 ng g⁻¹ for meat and liver samples. The regression between the analytical signal and the concentration of the target analytes in spiked samples and Certified Reference Materials proved to be linear within the 10-100 ng g⁻¹ range for meat and within the 50-500 ng g⁻¹ range for liver. The analytical method was verified using available Certified Reference Materials BCR-184 (cattle meat) and BCR-185R (cattle liver) as well as with spiked chicken samples. Precision (i.e. repeatability and intermediate precision) and accuracy (percentage recovery and bias) were of the order of 0.3-4.5% for both lead and cadmium The level of lead in muscle was in the range between 6.4 and 59.8 ng g⁻¹ in chickens and between 7.9 and 63.6 ng g⁻¹ in farmed pigeons, whereas it was between 8.0 and 84.4 ng g⁻¹ in chicken liver. The cadmium concentration was 0.4-10.4 ng g⁻¹ in chicken muscle, 10.4-90.6 ng g⁻¹ in chicken liver and 2.2-8.0 ng g⁻¹ in farmed pigeons.

  17. Bioaccumulation of arsenic, cadmium, mercury, lead and selenium in the benthic and pelagic food chain of Lake Baikal

    OpenAIRE

    Leeves, Sara Ann

    2011-01-01

    Increased anthropogenic release of potentially toxic trace elements such as arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb) and selenium (Se) into freshwater ecosystems over the past century has caused much concern. These elements are well known toxicants in aquatic ecosystems and may exert toxic effects even if present at relatively low concentrations in organisms. In this study, bioaccumulation of As, Cd, Hg, Pb and Se in the pelagic and benthic food chain of Lake Baikal have been inves...

  18. Do cadmium, lead, and aluminum in drinking water increase the risk of hip fractures? A NOREPOS study.

    Science.gov (United States)

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2014-01-01

    The aim of this study was to investigate relations between cadmium, lead, and aluminum in municipality drinking water and the incidence of hip fractures in the Norwegian population. A trace metals survey in 566 waterworks was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all those supplied from these waterworks, 5,438 men and 13,629 women aged 50-85 years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, region of residence, urbanization, and type of water source as well as other possibly bone-related water quality factors. Effect modification by background variables and interactions between water quality factors were examined (correcting for false discovery rate). Men exposed to a relatively high concentration of cadmium (IRR = 1.10; 95 % CI 1.01, 1.20) had an increased risk of fracture. The association between relatively high lead and hip fracture risk was significant in the oldest age group (66-85 years) for both men (IRR = 1.11; 95 % CI 1.02, 1.21) and women (IRR = 1.10; 95 % CI 1.04, 1.16). Effect modification by degree of urbanization on hip fracture risk in men was also found for all three metals: cadmium, lead, and aluminum. In summary, a relatively high concentration of cadmium, lead, and aluminum measured in drinking water increased the risk of hip fractures, but the associations depended on gender, age, and urbanization degree. This study could help in elucidating the complex effects on bone health by risk factors found in the environment.

  19. Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis, light and electron microscopy.

    Science.gov (United States)

    Abdallah, A T; Moustafa, M A

    2002-01-01

    The potential value of the marine prosobranch Nerita saxtilis as an efficient biological monitor to heavy metal pollution in the Red Sea was investigated. Storage ability of lead and cadmium was compared in shell, headfoot and digestive gland of the marine snail N. saxtilis collected from Al-Hamrauin area at El-kuseir (lead, 300.35 +/- 28.53 microg/l, 1,716 +/- 16.14. cadmium 20.01 +/- 1.8 microg/l, 161.72 +/- 21.4 mean +/- S.D. for water and sediment, respectively) relative to that of inhabiting marine water and sediment employing atomic absorption spectrometry to determine the organ with highest capability of heavy metal accumulation. The influence of metal storage on light microscopic structure of that organ was investigated. Also, the ultrastructure localization of storage sites in the same organ was determined employing transmission electron microscopy. The digestive gland was shown to accumulate both metals at conccntrations that are several orders of magnitude higher than those in the surrounding marine water. The bioaccumulation capability of lead and cadmium was ranked in the following order; digestive gland > headfoot > shell for lead and digestive gland > shell > headfoot for cadmium. In spite of its evident highest metal storage capability, no histopathological changes were observed in the digestive gland of that marine prosobranch. Enlarged electron dense vesicles and many granules were observed in ultrathin sections in digestive cells of these snails and are suggested to be the sites of storage of detoxified metals. The results of that finding indicate the possibility of using the marine prosobranch N. saxtilis as biomonitor for heavy metal contaminants in the Red Sea.

  20. Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm

    Energy Technology Data Exchange (ETDEWEB)

    Sag, Y.; Kaya, A.; Kutsal, T. [Dept. of Chemical Engineering, Hacettepe Univ., Beytepe, Ankara (Turkey)

    2000-07-01

    The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calcualted. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. (orig.)

  1. Dietary exposure to cadmium, lead and nickel among students from the south-east region of Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Marzec

    2014-11-01

    Full Text Available Dietary intake of cadmium, lead and nickel was determined among students from three universities in Lublin to assess the levels of exposure to these contaminants compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students from the south–east region of Poland. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one – MIBK in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70 % of PTWI/TDI values and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years whereas the exposures to nickel remain on stable levels.

  2. Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population.

    Science.gov (United States)

    Al-Saleh, Iman; Shinwari, Neptune; Mashhour, Abdullah; Rabah, Abdullah

    2014-03-01

    This cross-sectional study was conducted to assess the association between exposure to heavy metals (lead, cadmium and mercury) during pregnancy and birth outcomes in 1578 women aged 16-50 years who delivered in Al-Kharj hospital, Saudi Arabia, in 2005 and 2006. The levels of lead, cadmium and mercury were measured in umbilical cord blood, maternal blood and the placenta. Outcome variables were anthropometric measures taken at birth, along with the risk of being small-for-gestational age (SGA). We selected the 10th percentile as the cutoff for dichotomizing measures of birth outcome. Cadmium, despite its partial passage through the placenta had the most prominent effect on several measures of birth outcome. After adjustment for potential confounders, logistic regression models revealed that crown-heel length (p=0.034), the Apgar 5-minute score (p=0.004), birth weight (p=0.015) and SGA (p=0.049) were influenced by cadmium in the umbilical cord blood. Significant decreases in crown-heel length (p=0.007) and placental thickness (p=0.022) were seen with higher levels of cadmium in maternal blood. As placental cadmium increased, cord length increased (p=0.012) and placental thickness decreased (p=0.032). Only lead levels in maternal blood influenced placental thickness (p=0.011). Mercury in both umbilical cord and maternal blood was marginally associated with placental thickness and placental weight, respectively. Conversely, placental mercury levels significantly influenced head circumference (p=0.017), the Apgar 5-minute score (p=0.01) and cord length (p=0.026). The predictions of these models were further assessed with the area under the curve (AUC) of the receiver operating curves (ROCs), which were modest (larger than 0.5 and smaller than 0.7). The independence of gestational age or preterm births on the observed effect of metals on some measures of birth outcome, suggested detrimental effects of exposure on fetal development. The magnitude of the estimated effects

  3. Development of lead-free copper alloy-graphite castings. Technical report, January 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K.

    1995-07-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of graphite particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which Ti was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the addition of graphite particles into the copper melt. In the second stage, a specially designed stirrer was used for uniform particle distribution while avoiding the formation of vortex in the melt. The two-stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single-stage stirring and resulting in a more uniform particle distribution. In addition, graphite recoveries increased with increasing Ti content in the range investigated. Floatation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Fluidity tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to-date remained adequate to make a variety of castings. The observations of casting microstructure under directional solidification and floatation showed that in certain castings the graphite particles remained agglomerated, and they readily floated to the upper part of the castings where they reduced the size of gains. However, even in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The results of the first year work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity.

  4. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio holthius

    Energy Technology Data Exchange (ETDEWEB)

    Keteles, K.A.; Fleeger, J.W. [Louisiana State Univ., Dept. of Biological Sciences, Baton Rouge, LA (United States)

    2001-07-01

    Depuration through ecdysis by grass shrimp, Palaemonetes pugio, was examined by exposure to a sublethal mixture of copper, zinc and cadmium for 72 h, followed by placement in uncontaminated water to molt. Percent eliminated with the exuviae varied for each metal; of the total intermolt body burden, 11% Cu, 18% Zn and 26% Cd was associated with the exuviae. Cu concentrations of intermolt exoskeletons were significantly higher than of the exuviae of post-ecdysis shrimp suggesting that Cu contained in the exoskeleton was reabsorbed before molting. Exuvial Cd concentration was not significantly different than the concentration of the intermolt exoskeleton, suggesting that most Cd in the exoskeleton was depurated with the exuviae. Although Zn whole-body burdens were lower after a molt, Zn losses were most likely due to excretion because exuvial concentrations were significantly lower than in the intermolt exoskeleton. Cu, Cd and Zn concentrations in exuvaie shed in metal-enriched water were significantly higher due to adsorption than exuvaie produced in uncontaminated water. (Author)

  5. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  6. Early defense responses in the freshwater bivalve Corbicula fluminea exposed to copper and cadmium: Transcriptional and histochemical studies.

    Science.gov (United States)

    Bigot, Aurélie; Minguez, Laëtitia; Giambérini, Laure; Rodius, François

    2011-11-01

    The aim of the present study was to measure the early effects of copper (10 and 50 μg L(-1)), cadmium (2, 10, and 50 μg L(-1)) and mixtures of these metals in the freshwater bivalve Corbicula fluminea exposed for 12 h in laboratory. Transcription levels of superoxide dismutase (SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GPx), pi-class glutathione S-transferase (pi-GST), metallothionein (MT) in digestive gland and gills, and response of lysosomal system and neutral lipids in digestive gland were determined after the exposure period. Results showed that lysosomal system, neutral lipids content, and mRNA levels were modified, suggesting their early response against oxidative stress and their important role in cell integrity. The integrated biomarker response was calculated and showed that the effects of the combinations of Cu and Cd on the biomarker responses are additive. MT and pi-GST mRNA expression correspond to the largest ranges of response. As efficient biomarkers should have an early warning capacity, SOD, CAT, Se-GPx, pi-GST, MT transcripts levels, lysosomal system, and neutral lipids could be used as biomarkers of metal contamination in the aquatic environment. Copyright © 2010 Wiley Periodicals, Inc.

  7. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    Science.gov (United States)

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  8. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  9. Some effects of copper, cobalt, cadmium, zinc, nickel, and chromium on growth and mineral element concentration in chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.M.; Wallace, A.; Mueller, R.T.

    1976-09-01

    Different levels of Cu, Co, Cd, Zn, Ni, and Cr (10/sup -6/, 10/sup -5/, and 10/sup -4/M) were studied in a glasshouse to evaluate effects on the yield and interactions among heavy metals in chrysanthemum (Chrysanthemum morifolium Ramat. cv. Bright Golden Anne). A 70 percent growth reduction was observed at the highest level (10/sup -4/M) of Cd, Cu, and Cr. The same level of Co, Ni, and Zn depressed growth 45, 45, and 21 percent, respectively. Added Cd in solution had the greatest effect on growth depression at ,,10/sup -5/M. Copper, Co, Cd, Zn, Ni, and Cr concentrations in leaves, stems, and roots were increased with their rate of application in nutrient solution. Most Cu, Co, Cd, Ni, and Cr were associated with roots, followed by leaves and stems. No gradient from root to shoot was observed with Zn. Root to stem metal ratios were in the following order: Cr greater than Co greater than Cd greater than Ni greater than Cu greater than Zn. Cadmium decreased Mn concentration in leaves, stems, and roots, and increased Zn concentration in leaves. Other interactions were also noted.

  10. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid.

    Science.gov (United States)

    Yan, Zhongzheng; Li, Xiuzhen; Chen, Jun; Tam, Nora Fung-Yee

    2015-03-01

    Seedlings of Avicennia marina were exposed to single and combined metal treatments of cadmium (Cd) and copper (Cu) in a factorial design, and the combined toxicity of Cu and Cd was tested. The effects of the exogenous jasmonic acid (JA) on chlorophyll concentration, lipid peroxidation, Cd and Cu uptake, antioxidative capacity, endogenous JA concentration, and type-2 metallothionein gene (AmMT2) expression in seedlings of A. marina exposed to combined metal treatments were also investigated. A binary mixture of low-dose Cd (9 µmolL(-1)) and high-dose Cu (900 µmolL(-1)) showed toxicity to the seedlings, indicated by the significant augmentation in leaf malondialdehyde (MDA) and reduction in leaf chlorophylls. The toxicity of the combined metals was significantly alleviated by the addition of exogenous JA at 1 µmolL(-1), and the chlorophyll and MDA contents were found to be restored to levels comparable to those of the control. Compare to treatment with Cd and Cu only, 1 and 10 µmolL(-1) JA significantly enhanced the ascorbate peroxidase activity, and 10 µmolL(-1) JA significantly decreased the uptake of Cd in A. marina leaves. The relative expression of leaf AmMT2 gene was also significantly enhanced by 1 and 10 µmolL(-1) JA, which helped reduce Cd toxicity in A. marina seedlings. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  12. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  13. Feasibility of using direct determination of cadmium and lead in fresh meat by electrothermal atomic absorption spectrometry for screening purposes

    Energy Technology Data Exchange (ETDEWEB)

    Damin, Isabel C.F. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre - RS (Brazil); Silva, Marcia M. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre - RS (Brazil)], E-mail: mmsilva@iq.ufrgs.br; Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre - RS (Brazil); Welz, Bernhard [Instituto de Quimica, Universidade Federal da Bahia, 40170-290 Salvador - BA (Brazil)

    2007-09-15

    A method for the direct determination of cadmium and lead in fresh meat for screening purposes is proposed using electrothermal atomic absorption spectrometry. The fresh meat samples were homogenized, weighed directly onto solid sampling platforms and introduced into a transversely heated solid sampling graphite tube. The main challenges associated with this procedure, such as weighing errors and optimization of the temperature program were investigated in detail. Calibration was performed against aqueous standards and two modifiers were investigated: 0.05% Pd + 0.03% Mg + 0.05% Triton X-100 and 0.01% Pd + 10% NH{sub 4}NO{sub 3} + 0.05% Triton X-100. The former one is recommended due to the higher pyrolysis temperature obtained for cadmium and the better limits of detection of 1.9 {mu}g kg{sup -} {sup 1} for lead and 0.13 {mu}g kg{sup -} {sup 1} for cadmium, based on 10 mg of sample mass. The results obtained for cadmium and lead in two certified reference materials were statistically not different from the certified values on a 95% confidence level, indicating that calibration against aqueous standards is suitable for this application. In order to evaluate weighing errors the fresh samples were dried (at 60 deg. C) to constant weight; the results obtained with fresh and dried samples were in agreement, taking the loss of weight into consideration for the latter ones. The average relative standard deviation of 14% is in concordance with the results of others using fresh meat. Comparison with the digestion method adopted by the Brazilian Ministry of Agriculture shows no significant differences between the results at the 95% confidence level. This study shows that direct analysis of fresh meet can be applied as a rapid routine screening procedure for residue control in products of animal origin, helping the implementation and maintenance of sanitary control.

  14. Total mercury, cadmium and lead levels in main export fish of Sri Lanka.

    Science.gov (United States)

    Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I

    2014-01-01

    Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb.

  15. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shahram AMIRMORADI

    2012-11-01

    Full Text Available Cadmium (Cd and lead (Pb are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replications. Rhizomes with uniform weight were planted in pots 30�50�35 cm. Plants were irrigated with Cd and Pb chloride after germination of all rhizomes. Results demonstrated that with increasing concentrations of Cd and Pb there was a decrease in fresh and dry weights, main stem height, leaf area per plant, leaf number, number of nodes per main stem and essential oil of peppermint compared to the control. Fresh weights were decreased at 100 ppm of Cd and 1500 ppm of Pb, 18.16% and 24.55%, respectively compared to the control at the first harvest. At the second harvest, these decreases were 15.24% and 32.72%, respectively. At the highest concentrations of Cd and Pb, dry weight of peppermint was dropped 22.92% and 39.01% at the first harvest. For the second harvest, decreased dry weights were 25.88% and 26.77% respectively. It seems that peppermint can tolerate waste water or soil polluted with medium range of Cd and Pb concentrations and the essential oil percentage was not affected by these concentrations.

  16. High levels of migratable lead and cadmium on decorated drinking glassware.

    Science.gov (United States)

    Turner, Andrew

    2018-03-01

    Externally decorated glassware used for the consumption of beverages, purchased new or sourced second-hand, and including tumblers, beer glasses, shot glasses, wine glasses and jars, has been analysed for Pb and Cd by portable x-ray fluorescence (XRF) spectrometry. Out of 197 analyses performed on distinctly different colours and regions of enamelling on 72 products, Pb was detected in 139 cases and among all colours tested, with concentrations ranging from about 40 to 400,000μgg -1 (median=63,000μgg -1 ); Cd was detected in 134 cases and among all colours apart from gold leaf, with concentrations ranging from about 300 to 70,000μgg -1 (median=8460μgg -1 ). The frequent occurrence of these metals is attributed to their use in both the oxidic fluxes and coloured pigments of decorative enamels employed by the glass industry. A standard test involving extraction of the external surface to within 20mm of the rim (lip area) by 4% acetic acid and subsequent analysis by ICP was applied to selected positive samples (n=14). Lead concentrations normalised to internal volume exceeded limit values of 0.5mgL -1 in all but one case, with concentrations over 100mgL -1 returned by three products. Cadmium concentrations exceeded limit values of 4mgL -1 in five cases, with a maximum concentration of about 40mgL -1 . Repeating the experiment on five positive samples using a carbonated drink (Coca Cola Classic) resulted in lower extractable concentrations but non-compliance for Pb in all cases. The presence of high concentrations of total and extractable Pb and Cd in the decorated lip areas of a wide range of products manufactured in both China and Europe is cause for concern from a health and safety perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions

    Science.gov (United States)

    Dabeka, Robert; Fouquet, Andre; Belisle, Stephane; Turcotte, Stephane

    2011-01-01

    Lead (Pb), cadmium (Cd) and aluminum (Al) were determined in 437 individual samples of infant formulae, oral electrolytes and 5% glucose solutions available in Canada. In the electrolytes, Cd and Pb concentrations were all below 0.01 and 0.041 ng g−1, respectively. In the 5% glucose solutions, Pb and Cd levels averaged 0.01 and 0.09 ng g−1, respectively. Reported on an as-consumed basis, Pb levels in milk- and soya-based formulae averaged 0.90 and 1.45 ng g−1, respectively, while Cd levels averaged 0.23 and 1.18 ng g−1, respectively Average Al levels on an as-consumed basis were 440 ng g−1 (range 10–3400 ng g−1) in milk-based formulae and 730 ng g−1 (range 230–1100 ng g−1) in soy-based formulae. Al concentrations increased in the following order: plain formula contained between 100 and 300 ng g−1 more Al than the same formulae stored in cans. The source of the increased Al did not appear to be the glass itself, because most electrolytes and glucose solutions, also stored in glass, contained less than 8 ng g−1 Al. Corresponding differences in Pb and Cd levels were not observed. Al concentrations varied substantially among manufacturers; however, all manufacturers were able to produce plain milk-based formulae containing less than 50 ng g−1 Al, i.e. within the range of Al concentrations found in human milk. Next to soya-based and hypoallergenic formulae, premature formulae contained among the highest concentrations of Al, ranging 851–909 ng g−1 from one manufacturer and 365–461 ng g−1 from another. PMID:21623498

  18. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shahram AMIRMORADI

    2012-11-01

    Full Text Available Cadmium (Cd and lead (Pb are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replications. Rhizomes with uniform weight were planted in pots 305035 cm. Plants were irrigated with Cd and Pb chloride after germination of all rhizomes. Results demonstrated that with increasing concentrations of Cd and Pb there was a decrease in fresh and dry weights, main stem height, leaf area per plant, leaf number, number of nodes per main stem and essential oil of peppermint compared to the control. Fresh weights were decreased at 100 ppm of Cd and 1500 ppm of Pb, 18.16% and 24.55%, respectively compared to the control at the first harvest. At the second harvest, these decreases were 15.24% and 32.72%, respectively. At the highest concentrations of Cd and Pb, dry weight of peppermint was dropped 22.92% and 39.01% at the first harvest. For the second harvest, decreased dry weights were 25.88% and 26.77% respectively. It seems that peppermint can tolerate waste water or soil polluted with medium range of Cd and Pb concentrations and the essential oil percentage was not affected by these concentrations.

  19. Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran

    Directory of Open Access Journals (Sweden)

    Shekoohiyan Sakine

    2012-12-01

    Full Text Available Abstract Tea is one of the most common drinks in all over the world. Rapid urbanization and industrialization in recent decades has increased heavy metals in tea and other foods. In this research, heavy metal contents such as lead (Pb, cadmium (Cd and arsenic (As were determined in 105 black tea samples cultivated in Guilan and Mazandaran Provinces in north of Iran and their tea infusions. The amount of heavy metals in black tea infusions were analyzed using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP - AES. The mean ± SD level of Pb in 5, 15 and 60 min in infusion tea samples were 0.802 ± 0.633, 0.993 ± 0.667 and 1.367 ± 1.06 mg/kg of tea dry weight, respectively. The mean level of Cd in 5, 15 and 60 min in infusion tea samples were 0.135 ± 0.274, 0.244 ± 0.46 and 0.343 ± 0.473 mg/kg of tea dry weight, respectively. The mean level of As in 5, 15 and 60 min in infusion tea samples were 0.277 ± 0.272, 0.426 ± 0.402 and 0.563 ± 0.454 mg/kg of tea dry weight, respectively. Also, the results showed that the locations and the infusion times influenced upon the amount of these metals (P 

  20. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study.

    Science.gov (United States)

    Dogan, Muhammet; Karatas, Mehmet; Aasim, Muhammad

    2018-02-01

    Cadmium (Cd) and lead (Pb) pollutions caused by industrial activities are one of the most serious threats to aquatic ecosystems. The aim of this study is to investigate the Cd and Pb bioaccumulations and diverse physiological and biochemical properties of Ceratophyllum demersum L. exposed to different concentrations of Cd (0.5-2.0mg/L) and Pb (25-100mg/L) in aqueous media for 1, 3 and 5 days. Cd and Pb accumulations increased with increase in the exposure times and concentrations, and the highest accumulation values of Cd and Pb were recorded at 2mg/L (2668.33mg/kg dw) and 100mg/L (22,504.10mg/kg dw), respectively, after 5 days. However, higher bioconcentration factors (BCF) were calculated as 645.43 at 25mg/L Pb and as 1357.92 at 1mg/L Cd after 5 days. The results showed that photosynthetic pigments (chlorophyll a, b and carotenoids) and protein contents of the plants exposed to Cd and Pb toxicities decreased with increasing metal concentration and exposure time, whereas their malondialdehyde (MDA) contents increased. Additionally, the single and synergistic effects of duration and metal concentration on the fresh and dry weights of the plant were determined. The results of this study reveal that C. demersum, propagated by tissue culture technique, can be used effectively in the phytoremediation of aquatic environments contaminated by Cd and Pb. This study will also make a positive contribution to the progression of new phytotechnologies on the purpose of the remediation of wastewater by plants in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Investigation of lead and cadmium in counterfeit cigarettes seized in the United States.

    Science.gov (United States)

    He, Yi; von Lampe, Klaus; Wood, Laura; Kurti, Marin

    2015-07-01

    Information of toxic elements such as lead (Pb) and cadmium (Cd) in counterfeit cigarettes offers insight on the potential public health impact of consuming counterfeit cigarettes and the technology used by counterfeiters in the illicit cigarette trade. In this study, the concentration of Pb and Cd in twenty-three packs of counterfeit cigarettes seized in the US by various law enforcement agencies were evaluated and compared with their genuine equivalents using microwave digestion followed by inductively coupled plasma - mass spectrometry (ICP-MS) analysis. Both Pb and Cd concentration in counterfeit cigarettes were markedly higher than those in their genuine equivalents, and exhibited greater sample to sample variability. The average Pb and Cd mass fraction values in counterfeit cigarettes were (5.13 ± 2.50) mg/kg (n = 23) and (5.13 ± 1.95) mg/kg (n = 23) respectively, compared with (0.59 ± 0.08) mg/kg (n = 9) and (1.08 ± 0.08) mg/kg (n = 9) respectively in the genuine equivalents. Results suggest that counterfeit cigarettes may impose higher risks to public health. Studying these toxic elements could provide important information regarding the illicit trade, including the level of organization among counterfeiters, who broker between availability of supplies and consumer demand for a cheaper product that is assumed to be genuine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Petkovšek, Samar Al Sayegh, E-mail: samar.petkovsek@erico.si; Pokorny, Boštjan

    2013-01-15

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000–2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. and Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. - Highlights: ► The Pb contents were higher in saprophytic fungi in comparison with mycorrhizal

  3. Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc

    Science.gov (United States)

    Besser, John M.; Mebane, Christopher A.; Mount, David R.; Ivey, Chris D.; Kunz, James L.; Greer, I. Eugene; May, Thomas W.; Ingersoll, Christopher G.

    2007-01-01

    Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 μg/L for Missouri sculpins and 37 μg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 μg/L (Missouri) and 1.9 μg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 μg/L) than Missouri sculpins (chronic ChV = 219 μg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.

  4. Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc.

    Science.gov (United States)

    Besser, John M; Mebane, Christopher A; Mount, David R; Ivey, Chris D; Kunz, James L; Greer, I Eugene; May, Thomas W; Ingersoll, Christopher G

    2007-08-01

    Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.

  5. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  6. Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology

    National Research Council Canada - National Science Library

    Breton, Jérôme; Daniel, Catherine; Vignal, Cécile; Body-Malapel, Mathilde; Garat, Anne; Plé, Coline; Foligné, Benoît

    2016-01-01

    Although the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated...

  7. Protective role of N-Acetyl L-Cysteine against reproductive toxicity due to interaction of lead and cadmium in male Wistar rats

    National Research Council Canada - National Science Library

    Kumar, Banothu Anil; Reddy, Alla Gopala; Kumar, Pentela Ravi; Reddy, Yerradoddi Ramana; Rao, Thirtham Madava; Haritha, Chiluka

    2013-01-01

    .... An experimental study was conducted to evaluate the molecular mechanisms of lead (Pb) and cadmium (Cd) toxicity, their toxicodynamic interaction and to evaluate therapeutic potential of N-Acetyl L-cysteine...

  8. Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction?

    Science.gov (United States)

    Valverde, M; Trejo, C; Rojas, E

    2001-05-01

    Even though the toxic effects of lead and cadmium compounds have been studied over many years, inconsistent results have been obtained about their mutagenic, clastogenic and carcinogenic properties. However, these metals are considered to be potential human carcinogens. The mechanism of metal-induced carcinogenesis is still unknown, but one possible pathway may involve the interaction of metals with DNA, either directly or indirectly. In this work we explore the capacity of lead, cadmium or a mixture of both metals to interact with acellular DNA, by employing a variant of the comet assay. Our results, using low non-cytotoxic metal concentrations (0.01, 0.1 and 1.0 microM) with the standard protocol for the acellular assay, showed an induction of DNA damage in cells of all organs studied; however, basal DNA damage was different in each organ. To confirm that we were working with pure DNA, proteinase K was added to the lysis solution. With this enriched-lysis solution we found a negative response in the induction of DNA damage in cells derived from the liver, kidney and lung of CD-1 male mice. To support the results obtained by the enriched-acellular assay, we studied the capacity of lead and cadmium (0.1 microM) to induce breaks in pooled genomic DNA in cells of the same organs, with negative results. Consistent with these findings, these metals do not induce DNA breaks in the plasmid pUSE amp+. On the whole, we did not detect direct induction of DNA strand breaks by lead acetate, cadmium chloride or a mixture of both metals, all at low non-cytotoxic concentrations. However, we found an induction of lipid peroxidation and an increase in free radical levels in the different organs of CD-1 male mice after inhalation of lead acetate (0.0068 microg/cc) or cadmium chloride (0.08 microg/cc) for 1 h, suggesting the induction of genotoxicity and carcinogenicity by indirect interactions, such as oxidative stress.

  9. Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite

    Science.gov (United States)

    Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter

    2013-11-01

    Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).

  10. Cadmium and lead levels along the estuarine ecosystem of Tigre River-San Andres Lagoon, Tamaulipas, Mexico.

    Science.gov (United States)

    Vázquez-Sauceda, María de la Luz; Pérez-Castañeda, Roberto; Sánchez-Martínez, Jesús Genaro; Aguirre-Guzmán, Gabriel

    2012-10-01

    Cadmium and lead levels were evaluated in water and sediment along the estuarine ecosystem of Tigre River-San Andres Lagoon (Gulf of Mexico) during September to December 2009. Significant highest metal concentration in water (0.45 mg L(-1) Cd and 3.94 mg L(-1) Pb) and sediment (2.83 mg kg(-1) Cd and 6.61 mg kg(-1) Pb) were found at the mouth of the Tigre River, where the fishing town of El Moron is located. Cadmium levels in sediment were above limits associated with adverse biological effects on aquatic fauna, so negative impacts on natural populations of aquatic organisms would be expected to occur. This in turn could affect the fishery resources inhabiting this ecosystem.

  11. Evaluation and Determination of Toxic Metals, Lead and Cadmium, in Incoming Raw Milk from Traditional and Industrial Farms to Milk Production Factories in Arak, Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Delavar

    2012-08-01

    Full Text Available Background: Milk is regarded as a unique source of food for all ages. When milk is exposed to various contaminants, including lead and cadmium, it is considered a risk to humans. The presence of some metal pollutants, especially Cd and Pb, facilitates their entry into the food chain and thus increases the possibility of their toxic effects on humans and animals. Therefore, we decided to check lead and cadmium levels in incoming raw milk in milk production factories in Arak city, Iran. Methods: In this study, 48 samples of milk were obtained from 28 industrial and 20 traditional farms. After the digestion process, at first, the metals were extracted with complexing agents, APDC, and MIBK solvent. Then atomic absorption method with graphite furnace was applied. Results: The results were analyzed by analytical tests such as Npar, Mann-Whitney, Kruskal-Wallis, and t-test using SPSS software and it was specified that the means of lead and cadmium were equal to 16.0456 and 20.09 ppb in raw milk. P-values equal to 0.009 and 0.002 ppb were considered significant for lead and cadmium, respectively. The standard levels for lead and cadmium in milk were 1000 and 100 ppb, respectively. In all milk samples, lead and cadmium pollution were less than the standard limit. Conclusion: The amounts of toxic metals (lead and cadmium in raw milk produced in traditional and industrial farms in all seasons were lower than the standard limits. Also, the mean amounts of lead and cadmium in all milk samples were less than the standard limits for milk.

  12. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease.

    Science.gov (United States)

    Gorell, J M; Johnson, C C; Rybicki, B A; Peterson, E L; Kortsha, G X; Brown, G G; Richardson, R J

    1999-01-01

    A population-based case-control study was conducted in the Henry Ford Health System (HFHS) in metropolitan Detroit to assess occupational exposures to manganese, copper, lead, iron, mercury and zinc as risk factors for Parkinson's disease (PD). Non-demented men and women 50 years of age who were receiving primary medical care at HFHS were recruited, and concurrently enrolled cases (n = 144) and controls (n = 464) were frequency-matched for sex, race and age (+/- 5 years). A risk factor questionnaire, administered by trained interviewers, inquired about every job held by each subject for 6 months from age 18 onward, including a detailed assessment of actual job tasks, tools and environment. An experienced industrial hygienist, blinded to subjects' case-control status, used these data to rate every job as exposed or not exposed to one or more of the metals of interest. Adjusting for sex, race, age and smoking status, 20 years of occupational exposure to any metal was not associated with PD. However, more than 20 years exposure to manganese (Odds Ratio [OR] = 10.61, 95% Confidence Interval [CI] = 1.06, 105.83) or copper (OR = 2.49, 95% CI = 1.06,5.89) was associated with PD. Occupational exposure for > 20 years to combinations of lead-copper (OR = 5.24, 95% CI = 1.59, 17.21), lead-iron (OR = 2.83, 95% CI = 1.07,7.50), and iron-copper (OR = 3.69, 95% CI = 1.40,9.71) was also associated with the disease. No association of occupational exposure to iron, mercury or zinc with PD was found. A lack of statistical power precluded analyses of metal combinations for those with a low prevalence of exposure (i.e., manganese, mercury and zinc). Our findings suggest that chronic occupational exposure to manganese or copper, individually, or to dual combinations of lead, iron and copper, is associated with PD.

  13. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia.

    Science.gov (United States)

    Petkovšek, Samar Al Sayegh; Pokorny, Boštjan

    2013-01-15

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000-2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. & Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Studies on the Conduction Process of Cadmium-Substituted Copper Chromite Spinels

    Science.gov (United States)

    Basak, D.; Ghose, J.

    1994-10-01

    Electrical resistivity (ρp) and thermoelectric power (α) measurements were carried out in air on Cu1-xCdxCr2O4 (0 ≤ x ≤ 1.0) spinel oxides in the temperature ranges 300-873 K and 300-723 K, respectively. Thermal activation energy (Ea), carrier concentration (n), activation energy for carrier concentration generation (En), and mobility (μ) values have been calculated from the resistivity and thermoelectric power data. The results show that conduction in cadmium-substituted CuCr2O4 samples is by hopping of charge carriers on the octahedral sites. The charge carrier hopping is, however, impeded at lower temperatures due to the larger Crocl-Crocl distance when the large Cd2+ ion (97 pm) is substituted for the Cu2+ ion (72 pm) in the tetrahedral site of the CuCr2O4 lattice. The temperature dependence of α shows a change in the sign of the slope at the temperature at which hopping conduction becomes evident.

  15. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Erin W. [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Schaumberg, Debra A. [Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School and Department of Epidemiology, Harvard School of Public Health, Boston, MA (United States); Center for Translational Medicine, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT (United States); Park, Sung Kyun, E-mail: sungkyun@umich.edu [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2014-08-15

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  16. Bioaccumulation of copper, lead and zinc in the organs and tissue of ...

    African Journals Online (AJOL)

    Bioaccumulation of copper (Cu), lead (Pb) and Zinc (Zn) in the intestine, gill and muscle of Clarias gariepinus in Eleyele Lake, Ibadan, Nigeria was investigated between February and July 2002. Samples of C. gariepinus were taken monthly from the fishermen's catches. These samples were analysed for Cu, Pb and Zn.

  17. Acute effects of copper and lead on some blood parameters on ...

    African Journals Online (AJOL)

    The present study was to evaluate whether short-term exposures (3 h) to high concentrations of heavy metals may induce blood cells in Coruh trout (Salmo coruhensis). It was investigated that copper and lead have effects on haematocrit, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic and pyruvic ...

  18. Removal of copper (II), iron (III) and lead (II) ions from Mono ...

    African Journals Online (AJOL)

    EJIRO

    Removal of copper (II), iron (III) and lead (II) ions from. Mono-component Simulated Waste Effluent by. Adsorption on Coconut Husk. Oyedeji O. Abdulrasaq* and Osinfade G. Basiru. Department of Science Laboratory Technology, Federal Polytechnic, Ilaro, Ogun State, Nigeria. Accepted 28 April 2010. The use of coconut ...

  19. Ion Flotation of Copper(II) and Lead(II) from Environmental Water ...

    African Journals Online (AJOL)

    The present study aims to develop a simple, rapid and economic procedure for copper(II) and lead(II) removal under the optimum conditions investigated. It is based on the complex formation between Cu2+ and Pb2+ ions and diphenylcarbazone (HDPC) followed by flotation with oleic acid (HOL) surfactant. The different ...

  20. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health.

    Science.gov (United States)

    Taylor, Mark Patrick; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-01

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1-4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m(2)) with the highest lead in surface dust (59,900 μg/m(2)) and post-play hand wipes (60,900 μg/m(2)) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ((206)Pb/(207)Pb, (208)Pb/(207)Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Study of adsorption of organic compounds on gold with radioactive tracers - adsorption of chloroacetic and phenylacetic acids and effect on it of cadmium, copper and silver adsorbed atoms

    Energy Technology Data Exchange (ETDEWEB)

    Khorani, G.; Andreev, V.N.; Kazarinov, V.E.

    1985-10-01

    Compared with platinum, gold is less active as a catalyst and the adsorption of organic compounds on its surface my therefore be less subject to destructive changes. This opens up the possibility of conducting new reactions of organic synthesis on its surface. Results of a study of the adsorption of monochloroacetic and phenylacetic acids on a gilded fold electrode in acid medium employing radioactive HCl and the effects of copper, cadmium and silver adsorbed atoms are reported. The results show that at E > 0.7v the presence of copper ions has no effect on the adsorption of organic compounds on the gold electrode. At E approx. = 0.7v, adsorption increases. Cadmium, copper and silver present in solution have no effect on the adsorption of phenylacetic acid at those potentials where these ions are not adsorbed on a gold surface, although they do suppress phenylacetic acid adsorption at potentials where they are adsorbed. The results confirm that the radioactive tracer method is just as effective for studying gilded gold electrodes as it was for platinized platinum. 19 references, 4 figures.

  3. Copper, Manganese, Zinc, and Cadmium in Tea Leaves of Different Types and Origin.

    Science.gov (United States)

    Podwika, W; Kleszcz, K; Krośniak, M; Zagrodzki, P

    2017-09-02

    Concentrations of selected metals (Cu, Mn, Zn, Cd) in tea leaves were investigated. Samples included black, green, and other (red, white, yellow, and oolong) teas. They were purchased on a local market but they covered different countries of origin. Beverages like yerba mate, rooibos, and fruit teas were also included in the discussion. Metal determinations were performed using atomic absorption spectrometry. In black teas, Mn/Cd ratio was found to be significantly higher (48,091 ± 35,436) vs. green (21,319 ± 16,396) or other teas (15,692 ± 8393), while Cd concentration was lower (31.4 ± 18.3 μg/kg) vs. other teas 67.0 (67.0 ± 24.4). Moreover, Zn/Cu and Cu/Cd ratios were, respectively, lower (1.1 ± 0.2 vs. 2.2 ± 0.5) and higher (1086 ± 978 vs. 261 ± 128) when comparing black teas with other teas. Intake of each metal from drinking tea was estimated based on the extraction levels reported by other authors. Contributions to recommended daily intake for Cu, Mn, and Zn were estimated based on the recommendations of international authorities. Except for manganese, tea is not a major dietary source of the studied elements. From the total number of 27 samples, three have shown exceeded cadmium level, according to local regulations.

  4. Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica.

    Science.gov (United States)

    Sangvanich, Thanapon; Morry, Jingga; Fox, Cade; Ngamcherdtrakul, Worapol; Goodyear, Shaun; Castro, David; Fryxell, Glen E; Addleman, Raymond S; Summers, Anne O; Yantasee, Wassana

    2014-04-23

    We have developed a thiol-modified nanoporous silica material (SH-SAMMS) as an oral therapy for the prevention and treatment of heavy metal poisoning. SH-SAMMS has been reported to be highly efficient at capturing heavy metals in biological fluids and water. Herein, SH-SAMMS was examined for efficacy and safety in both in vitro and in vivo animal models for the oral detoxification of heavy metals. In simulated gastrointestinal fluids, SH-SAMMS had a very high affinity (Kd) for methyl mercury (MeHg(I)), inorganic mercury (Hg(II)), lead (Pb(II)), and cadmium (Cd(II)) and was superior to other SAMMS with carboxylic acid or phosphonic acid ligands or commercially available metal chelating sorbents. SH-SAMMS also effectively removed Hg from biologically digested fish tissue with no effect on most nutritional minerals found in fish. SH-SAMMS could hold Hg(II) and MeHg(I) tightly inside the nanosize pores, thus preventing bacteria from converting them to more absorbable forms. Rats fed a diet containing MeHg(I), Cd(II), and Pb(II) and SH-SAMMS for 2 weeks had blood Hg levels significantly lower than rats fed the metal-rich diet only. Upon cessation of the metal-rich diet, continued administration of SH-SAMMS for 2 weeks facilitated faster and more extensive clearance of Hg than in animals not continued on oral SH-SAMMS. Rats receiving SH-SAMMS also suffered less weight loss as a result of the metal exposure. Retention of Hg and Cd in major organs was lowest in rats fed with SH-SAMMS throughout the entire four weeks. The reduction of blood Pb by SH-SAMMS was significant. SH-SAMMS was safe to intestinal epithelium model (Caco-2) and common intestinal bacteria (Escherichia coli). Altogether, it has great potential as a new oral drug for the treatment of heavy metal poisoning. This new application is enabled by the installation of tailored interfacial chemistry upon nontoxic nanoporous materials.

  5. Breast milk lead and cadmium levels from suburban areas of Ankara

    Energy Technology Data Exchange (ETDEWEB)

    Oruen, Emel, E-mail: emelorun@hotmail.com [Department of Pediatrics, Fatih University Hospital, Ankara (Turkey); Yalcin, S. Songuel, E-mail: siyalcin@hacettepe.edu.tr [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Aykut, Osman; Orhan, Guennur; Morgil, Goeksel Koc [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey); Yurdakoek, Kadriye [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Uzun, Ramazan [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey)

    2011-06-01

    The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 {mu}g/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 {mu}g/l). Breast milk Cd levels were > 1 {mu}g/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 {mu}g/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 {mu}g/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 {mu}g/l, p = 0.023; vitamin: 0.78, 0.00 {mu}g/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = - 0.257, p = 0.041 and r = - 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study. - Research highlights: {yields} Breast milk Pb levels were higher than the advised safety limits. {yields

  6. Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis.

    Science.gov (United States)

    Chen, Kuan-Ling; Jiang, Shiuh-Jen; Chen, Yen-Ling

    2017-03-01

    International limits have been established for metal impurities in cosmetics to prevent overexposure to heavy metal ions. Sweeping via dynamic chelation was developed using capillary electrophoresis to analyze lead (Pb), cadmium (Cd) and mercury (Hg) impurities in cosmetics. The sweeping via dynamic chelation mechanism involves a large volume of metal ions being swept by a small quantity of chelating agents that were electrokinetically injected into the capillary to chelate metal ions and increase the detection sensitivity. The optimized conditions were as follows: Firstly, the capillary was rinsed by a 0.6 mM TTAB solution to reverse the EOF. The sample solution, which was diluted using 25 mM ammonium acetate (pH 6.0), was injected into the capillary using a pressure of 3.5 psi for 99.9 s. Then, EDTA was injected at -25 kV for 1 min from the EDTA buffer (25 mM ammonium acetate containing 0.6 mM TTAB and 5 mM EDTA), and the metal ions were swept and stacked simultaneously. Finally, the separation was performed at -20 kV using a separation buffer (100 mM ammonium acetate (pH 6.0)). A small quantity of chelating agents introduced into the capillary could yield 33-, 50- and 100-fold detection improvements for Pb, Cd and Hg, respectively, more sensitive than conventional capillary zone electrophoresis. Correlation coefficients greater than 0.998 indicated that this method exhibited good linearity. The relative standard deviation and relative error were less than 8.7%, indicating high precision and accuracy. The recovery value of the homemade lotion, which was employed to simulate the real sample matrix, was 93-104%, which indicated that the sample matrix does not affect the quantitative results. Finally, commercial cosmetics were employed to demonstrate the feasibility of the method to determine Pb, Cd and Hg without complicated sample pretreatment. Graphical Abstract The procedure of analyzing metal ions in cosmetics by sweeping via dynamic chelation.

  7. Accumulation and effects of lead and cadmium on wood ducks near a mining and smelting complex in Idaho.

    Science.gov (United States)

    Blus, L J; Henny, C J; Hoffman, D J; Grove, R A

    1993-06-01

    : A study of wood ducks (Aix sponsa) was conducted along the Coeur d'Alene River system in northern Idaho in 1986 and 1987. Most of this area has been subjected to severe contamination from lead and other metals from mining and smelting since the 1880s. In 1986, a preliminary study of wood duck nesting was conducted in the contaminated area; incubating hens captured in nest boxes were bled and weighed. Blood samples were used to determine lead and cadmium concentrations and physiological characteristics. In 1987, an intensive study of wood ducks involved trapping and monitoring nest boxes in the contaminated area. Blood and tissue samples were also taken from wood ducks from a reference area without known contamination from metals. Lead levels in blood and tissues of most wood ducks from the contaminated area frequently exceeded those considered hazardous to birds; maximum levels (wet weight) of lead were 8 μg g(-1) in blood and 14 μg g(-1) in liver. Changes in physiological characteristics constituted the only evidence of potentially adverse effects from lead. In the contaminated area, nesting success (55% unadjusted, 35% Mayfield estimate) was less than in other areas where predation was low and nest boxes were used; but lead concentrations and physiological characteristics of blood were similar in successful and unsuccessful hens.Values of ALAD, hemoglobin, and body mass were negatively correlated with blood concentrations of lead, whereas protoporphyrin was positively correlated with lead levels in the blood. Some of the protoporphyrin values (1,091 μg dl(-1) in a male and 756 μg dl(-1) in a female) equalled those associated with lead toxicosis in experimental birds. ALAD activity was low in most birds from the contaminated area; values of 0 were obtained from 11 birds. Lead levels in blood, ALAD, protoporphyrin, and hemoglobin were significantly different between birds from the contaminated and reference areas. Concentrations of lead in ingesta of wood

  8. Accumulation and effects of lead and cadmium on wood ducks near a mining and smelting complex in Idaho

    Science.gov (United States)

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1993-01-01

    A study of wood ducks (Aix sponsa) was conducted along the Coeur d'Alene River system in northern Idaho in 1986 and 1987. Most of this area has been subjected to severe contamination from lead and other metals from mining and smelting since the 1880s. In 1986, a preliminary study of wood duck nesting was conducted in the contaminated area; incubating hens captured in nest boxes were bled and weighed. Blood samples were used to determine lead and cadmium concentrations and physiological characteristics. In 1987, an intensive study of wood ducks involved trapping and monitoring nest boxes in the contaminated area. Blood and tissue samples were also taken from wood ducks from a reference area without known contamination from metals. Lead levels in blood and tissues of most wood ducks from the contaminated area frequently exceeded those considered hazardous to birds; maximum levels (wet weight) of lead were 8 :g g?1 in blood and 14 :g g?1 in liver. Changes in physiological characteristics constituted the only evidence of potentially adverse effects from lead. In the contaminated area, nesting success (55% unadjusted, 35% Mayfield estimate) was less than in other areas where predation was low and nest boxes were used; but lead concentrations and physiological characteristics of blood were similar in successful and unsuccessful hens. Values of ALAD, hemoglobin, and body mass were negatively correlated with blood concentrations of lead, whereas protoporphyrin was positively correlated with lead levels in the blood. Some of the protoporphyrin values (1,091 :g dl?1 in a male and 756 :g dl?1 in a female) equalled those associated with lead toxicosis in experimental birds. ALAD activity was low in most birds from the contaminated area; values of 0 were obtained from 11 birds. Lead levels in blood, ALAD, protoporphyrin, and hemoglobin were significantly different between birds from the contaminated and reference areas. Concentrations of lead in ingesta of wood ducks ranged

  9. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Science.gov (United States)

    2010-07-01

    ... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100...

  10. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); MacPhail, Ruth [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2011-10-15

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal-metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing ({mu}g/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken

  11. Association of Blood and Seminal Plasma Cadmium and Lead Levels With Semen Quality in Non-Occupationally Exposed Infertile Men in Abakaliki, South East Nigeria

    Directory of Open Access Journals (Sweden)

    Ademola C Famurewa

    2017-10-01

    Full Text Available Objective: To evaluate association of blood and seminal plasma lead and cadmium with sperm quality of non-occupationally exposed male partners of couples with infertility.Materials and methods: A cross-sectional study was conducted on 75 men aged 20-45 years (mean = 37.1 ± 7.0 yrs. with infertility recruited from the Fertility Clinic of a hospital in Abakaliki. Sperm count done in accordance with the WHO guidelines was used to classify the participants as normospamia, oligospermia and azospermia. Atomic absorption spectrophotometer was used to determine lead and cadmium levels in plasma from blood and semen.Results: There were 15 azospermics, 22 oligospermics and 36 normospermics. Seminal and blood plasma cadmium as well as blood plasma lead were significantly (p < 0.01 higher in azospermic and oligospermic men compared to normospermic men. However, while seminal plasma lead was significantly (p < 0.05 higher in oligospermic and normospernic men than in azospermic men, the seminal plasma lead was comparable between oligospermic and normospermic men. Significant inverse associations (p < 0.01 were found between blood and seminal cadmium levels and sperm count, motility and morphology; blood lead was inversely correlated with sperm count only.Conclusion: The study suggests that environmental exposure to cadmium and lead may contribute to development of poor sperm quality and infertility in men of reproductive age in Nigeria.

  12. Association between secondhand smoke exposure and blood lead and cadmium concentration in community dwelling women: the fifth Korea National Health and Nutrition Examination Survey (2010-2012).

    Science.gov (United States)

    Jung, Se Young; Kim, Suyeon; Lee, Kiheon; Kim, Ju Young; Bae, Woo Kyung; Lee, Keehyuck; Han, Jong-Soo; Kim, Sarah

    2015-07-16

    To assess the association between secondhand smoke exposure and blood lead and cadmium concentration in women in South Korea. Population-based cross-sectional study. South Korea (Korea National Health and Nutrition Examination Survey V). 1490 non-smoking women who took part in the fifth Korea National Health and Nutrition Examination Survey (2010-2012), in which blood levels of lead and cadmium were measured. The primary outcome was blood levels of lead and cadmium in accordance with the duration of secondhand smoke exposure. The adjusted mean level of blood cadmium in women who were never exposed to secondhand smoke was 1.21 (0.02) µg/L. Among women who were exposed less than 1 h/day, the mean cadmium level was 1.13 (0.03) µg/L, and for those exposed for more than 1 h, the mean level was 1.46 (0.06) µg/L. In particular, there was a significant association between duration of secondhand smoke exposure at the workplace and blood cadmium concentration. The adjusted mean level of blood cadmium concentration in the never exposed women's group was less than that in the 1 h and more exposed group, and the 1 h and more at workplace exposed group: 1.20, 1.24 and 1.50 µg/L, respectively. We could not find any association between lead concentration in the blood and secondhand smoke exposure status. This study showed that exposure to secondhand smoke and blood cadmium levels are associated. Especially, there was a significant association at the workplace. Therefore, social and political efforts for reducing the exposure to secondhand smoke at the workplace are needed in order to promote a healthier working environment for women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Speciation of cadmium, copper, lead and zinc in the waters of River ...

    African Journals Online (AJOL)

    The water of river Mzimbazi and its attributaries are known to contain heavy metals originating from industry and the water is used for domestic and vegetable irrigation purposes. The present study describes chemical forms of some of the heavy metals found in the water. Water samples from different locations along river ...

  14. Accumulation of cadmium, copper, lead, zinc and iron in the edible ...

    African Journals Online (AJOL)

    TANIMA

    The coastal region of West Bengal has exhibited signs of impaired ecological health due to rapid urbanization and industrialization. In the last century, these regions were highly polluted with heavy metals which caused a great concern to the health of ecosystem as well as human beings. There is high probability of ...

  15. Analysis of cadmium, copper, lead and zinc in sea-water interlaboratory comparison among Australian laboratories

    National Research Council Canada - National Science Library

    Major, G.A; Pettis, R.W

    1978-01-01

    This study was designed to determine the degree to which different Australian laboratories, working independently, could obtain the same values for specified trace metals in one sample of sea-water...

  16. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    Science.gov (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (PPTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: xxye@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: gzhwang@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2015-05-30

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  18. Accumulation of cadmium, copper, lead, zinc and iron in the edible ...

    African Journals Online (AJOL)

    TANIMA

    an important buffer zone and filtering system for the coastal ecosystem. All these components are ... textile, chemical, pharmaceuticals, plastic, shellac, food, leather, jute, tires and cycle rims near the lower part of ... The digested solution was filtered through Whatman filter paper and diluted with double distilled water and ...

  19. Cadmium, Copper, Lead, and Zinc Contents of Fish Marketed in NW Mexico

    Directory of Open Access Journals (Sweden)

    Martín G. Frías-Espericueta

    2014-01-01

    Full Text Available To assess if they were within the safety limits for human consumption, the Cd, Cu, Pb, and Zn contents of fish muscles, bought from separate stalls of the fish markets of nine cities of NW Mexico, were determined by atomic absorption spectrophotometry. Considering all fish and markets, the mean contents were Zn: 23.23±5.83, Cu: 1.72±0.63, Cd: 0.27 ± 0.07, and Pb: 0.09 ± 0.04 µg/g (dry weight. Cu, Zn, and Pb did not reach levels of concern for human consumption, but the high Cd values determined in Mazatlán (Mugil cephalus: 0.48±0.15; Diapterus spp.: 0.57±0.33; Lutjanus spp.: 0.72±0.12; small shark: 0.87±0.19 µg/g dry weight indicate that this was the only metal of concern for human health because the daily individual consumption of fish muscle to reach the PTDI would be within 0.27 and 0.41 kg.

  20. A binderless, covalently bulk modified electrochemical sensor: Application to simultaneous determination of lead and cadmium at trace level

    Energy Technology Data Exchange (ETDEWEB)

    Gunigollahalli Kempegowda, Raghu [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India); Malingappa, Pandurangappa, E-mail: mprangachem@gmail.com [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Proposed sensor is a new type of binderless covalent bulk modified electrode. Black-Right-Pointing-Pointer Surface can be easily renewed by simple mechanical polishing using emery sheets. Black-Right-Pointing-Pointer Free from modifier leaching during electrochemical measurements. Black-Right-Pointing-Pointer Provides long term storage stability with good reproducibility. Black-Right-Pointing-Pointer Nanomolar level detection limit achieved with selectivity. - Abstract: A new type of covalent binderless bulk modified electrode has been fabricated and used in the simultaneous determination of lead and cadmium ions at nanomolar level. The modification of graphitic carbon with 4-amino salicylic acid was carried out under microwave irradiation through the amide bond formation. The electrochemical behavior of the fabricated electrode has been carried out to decipher the interacting ability of the functional moieties present on the modifier molecules toward the simultaneous determination of Pb{sup 2+} and Cd{sup 2+} ions using cyclic and differential pulse anodic stripping voltammetry. The possible mode of interaction of functional groups with metal ions is proposed based on the pKa values of the modifier functionalities present on the surface of graphitic carbon particles. The analytical utility of the proposed sensor has been validated by measuring the lead and cadmium content from pretreated waste water samples of lead acid batteries.

  1. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  2. Arsenic, Cadmium, Chromium, Lead, Mercury and Selenium Concentrations in Pine Snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Zappalorti, Robert; Pittfield, Taryn; DeVito, Emile

    2017-05-01

    Top trophic level predators are at risk from bioaccumulation of heavy metals from their prey. Using nondestructively collected tissues as a method of assessing metal concentrations in snakes is useful for populations that are threatened or declining. This paper reports concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in tissues of Northern pine snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens, a relatively pristine, undisturbed habitat. We also determined if skin is an appropriate indicator of internal concentrations and identified the factors (tissue, year of collection, length, sex) that might explain variations in metal concentrations. Because they can grow to 2-m long and live for 25 years, we suggest that these snakes might accumulate heavy metals. Multiple regression models were significant, explaining 16% (lead) to 61% (mercury) of variation by tissue type. For mercury and chromium, size also was significant. The highest concentrations were in liver and kidney for all metals, except chromium and lead. Mercury concentrations in tissues were within the range reported for other snakes and were below effects concentrations in reptiles. The concentrations in skin were correlated with all internal tissues for mercury and for all internal tissues except heart for cadmium. These data show that shed skin can be used as an indicator of metals in pine snakes and that, at present, concentrations of heavy metals in this population are within the range of those found in other snake species from uncontaminated sites.

  3. Development of copper sulfide/cadmium sulfide thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Szedon, J.R.; Biter, W.J.; Abel, J.A.; Dickey, H.C.; Shirland, F.A.

    1981-02-27

    The purpose of this work has been to identify aspects of cell fabrication and treatment which are critical for achieving high efficiency Cu/sub 2/S/CdS solar cells. In approaching the problem several comparisons were made of the effects of specific steps in two methods of cell fabrication. These methods had previously given cells of about 6% and a maximum of 9% efficiency. Three areas requiring special attention and specific means to achieve acceptable results were identified. (1) The Cu/sub 2/S/CdS heterojunction area must be minimized. If single source evaporations of CdS are made on substrates whose temperatures (approx. 220/sup 0/C) are monitored and controlled using welded thermocouples, the CdS films will have adequately large grains (grain diameter greater than or equal to 2 ..mu..m) and will not develop significant etch pits during texturing in a mild etchant solution. (2) The termination of the wet barrier processing steps must be done carefully. An acceptable termination involves minimizing the amount of cuprous chloride retained on the cell surface during transfer to a rinsing stage while providing adequate exclusion of air from the space above the surface of the cuprous chloride solution. (3) Once formed, the Cu/sub 2/S layer should not be exposed to high temperatures (>100/sup 0/C) for long periods of time (> 5 min) if surface adsorbed moisture or oxygen are present. Heat treatments in ampoules under flowing hydrogen atmospheres should be preceded and followed by periods of at least 30 minutes at room temperature in the reducing ambient. If all these precautions are taken, wet chemical barrier processing of thermally evaporated CdS films on zinc-plated copper foil substrates yields cells of nearly 8% conversion efficiency without AR coating.

  4. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    Energy Technology Data Exchange (ETDEWEB)

    Tsipoura, Nellie [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States); Burger, Joanna, E-mail: burger@biology.rutgers.edu [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Newhouse, Michael [NJ Meadowlands Commission, One DeKorte Park Plaza, Lyndhurst, NJ 07071 (United States); Jeitner, Christian [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Gochfeld, Michael [Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Environmental and Occupational Medicine. Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Mizrahi, David [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States)

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may pose a

  5. Comparison between Removal Efficiency of Slag, zeolite, and Conventional media in slow sand Filter for Removal of Lead and Cadmium from Water Resources

    Directory of Open Access Journals (Sweden)

    A Ebrahimi

    2016-03-01

    Full Text Available Introduction: Heavy metals owing to their health hazards and high toxicity in low concentration for human and environment have very concern and attention. Slow sand filter is one of the simple and cost-effective for removal of these pollutants. In this method, media play an important role for removal of pollutant. Therefore, the aim of this study was investigation of different media like slag, zeolite, and conventional media in slow sand filter for removal of lead and cadmium. Methods: In this research there are three beds filter include typical filter bed, slag and zeolite that used in pilot plant for investigation of lead and cadmium removal at three concentration of 0.1T 1 and 10 ppm. Each of filters has an internal diameter of 8 cm and a height of 120 cm with Plexiglas, which have a continuous flow operation. Results: The removal efficiency of turbidity by three typical filter bed, slag, and zeolite with initial turbidity of 13 NTU was 46%, 77%, and 89% respectively. Removal efficiency of lead without turbidity was 70.3%, 79%, and 59.8% respectively for 0.1 ppm lead. For 1 ppm, concentration of lead removal efficiency was 51.8%, 52.7% and 52.6% respectively and for 10 ppm it was 53.4%, 57.8%, and 59.8% respectively. Cadmium removal for these media was 23.4%, 37.5%, and 59.4% respectively at 0.1 ppm cadmium. At 1 ppm of cadmium concentration, it was 37.9%, 45% and 41.3% respectively and at 10 ppm concentration of cadmium it was 68.3%, 68.6% and 67% respectively. Conclusion: Slag and zeolite beds are more efficiently than the conventional sand beds in the slow sand filter, so it can be used instead of the usual sand for removing lead and cadmium from resources water.

  6. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    OpenAIRE

    Haseeb Zubair; Shafquat Azim; Husain Yar Khan; Mohammad Fahad Ullah; Daocheng Wu; Ajay Pratap Singh; Sheikh Mumtaz Hadi; Aamir Ahmad

    2016-01-01

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To furth...

  7. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    Science.gov (United States)

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  8. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples.

    Science.gov (United States)

    Es'haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2014-11-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol-gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05-500 ng mL(-1) for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL(-1) and 0.012 ng mL(-1), respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively.

  9. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    Directory of Open Access Journals (Sweden)

    Zarrin Es’haghi

    2014-11-01

    Full Text Available A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV using a hanging mercury drop electrode (HMDE was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H-one and 2-{[2-(2-Hydroxy-ethylamino-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II and Pb (II. The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II and Pb (II in 5 mL of water sample, respectively.

  10. Determination of lead and cadmium contaminations in UF-Cheese and yoghurt produced in Esfahan and GolpayeganPegah Dairy Processing Establishments

    Directory of Open Access Journals (Sweden)

    E Jaberi

    2013-11-01

    Full Text Available Milk is a complicated liquid that contains necessary components for the growth of mammalian neonate. Milk can get polluted by heavy metals such as lead and cadmium. In this study, the concentrations of lead and cadmium were measured in 12 yoghurt and 12 UF cheese samples produced in each of the Isfahan and Golpayegan-Pegah Dairy Processing Establishments. The samples were analyzed using atomic absorption spectrometry by furnace according to AOAC instruction. According to the results, lead concentrations (Mean ± SD in yoghurt and UF cheese samples produced in Isfahan and Golpayegan-Pegah were estimated at 54.96 ± 35.21, 61.65 ± 19.62, 105.38 ± 59.09, 141.94 ± 63.44 μg/Kg, respectively. In the case of cadmium, the concentrations were determined as 19.03 ± 1.23, 16.84 ± 8.08, 53.79 ± 19.29, 37.67 ± 22.58 μg/Kg, respectively. Results revealed a significant difference (P≥0.05 in lead and cadmium concentrations among the cheese samples of the two Dairy Processing Establishments. However, lead and cadmium concentrations in all samples were within the international approved limit (200 ppb.

  11. What do we know of childhood exposures to metals (arsenic, cadmium, lead, and mercury) in emerging market countries?

    Science.gov (United States)

    Horton, Lindsey M; Mortensen, Mary E; Iossifova, Yulia; Wald, Marlena M; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  12. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    Science.gov (United States)

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. What Do We Know of Childhood Exposures to Metals (Arsenic, Cadmium, Lead, and Mercury in Emerging Market Countries?

    Directory of Open Access Journals (Sweden)

    Lindsey M. Horton

    2013-01-01

    Full Text Available Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  14. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method.

    Science.gov (United States)

    Kong, Bo; Tang, Biyu; Liu, Xiaoying; Zeng, Xiandong; Duan, Haiyan; Luo, Shenglian; Wei, Wanzhi

    2009-08-15

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd(2+) and Cu(2+) appear at -0.13 and 0.34V respectively, at the concentration range of 5-50 microM, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd(2+) and Cu(2+) was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (q(e)) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  15. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  16. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-15

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m{sup 2}) with the highest lead in surface dust (59,900 μg/m{sup 2}) and post-play hand wipes (60,900 μg/m{sup 2}) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 207}Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust.

  17. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells.

    Science.gov (United States)

    Tardito, Saverio; Bassanetti, Irene; Bignardi, Chiara; Elviri, Lisa; Tegoni, Matteo; Mucchino, Claudio; Bussolati, Ovidio; Franchi-Gazzola, Renata; Marchiò, Luciano

    2011-04-27

    We report a quantitative structure-activity relationship study of a new class of pyrazole-pyridine copper complexes that establishes a clear correlation between the ability to promote copper accumulation and cytotoxicity. Intracellular metal accumulation is maximized when ligand lipophilicity allows the complex to rapidly cross the membrane. Copper and ligand follow different uptake kinetics and reach different intracellular equilibrium concentrations. These results support a model in which the ligand acts as an ionophore for the metal ion, cycling between intra- and extracellular compartments as dissociated or complexed entities. When treating cancer cells with structurally unrelated disulfiram and pyrazole-pyridine copper complexes, as well as with inorganic copper, the same morphological and molecular changes were reproduced, indicating that copper overload is responsible for the cytotoxic effects. Copper-based treatments drive sensitive cancer cells toward paraptotic cell death, a process hallmarked by endoplasmic reticulum stress and massive vacuolization in the absence of apoptotic features. A lack of caspase activation, as observed in copper-treated dying cells, is a consequence of metal-mediated inhibition of caspase-3. Thus, copper acts simultaneously as an endoplasmic reticulum (ER) stress inducer and a caspase-3 inhibitor, forcing the cell into caspase-independent paraptotic death. The establishment of a mechanism of action common to different copper binding agents provides a rationale for the exploitation of copper toxicity as an anticancer tool.

  18. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium.

    Science.gov (United States)

    He, Yongji; Ma, Wenli; Li, Yingjun; Liu, Jinping; Jing, Weixin; Wang, Lan

    2014-01-01

    Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins and play a major role in metal homeostasis and/or detoxification in all organisms. In a previous study, a novel full length MT gene was isolated from the freshwater crab (Sinopotamon henanense), a species widely distributed in Shanxi and Henan Provinces, China. In this report, the gene for the crab MT was inserted into a PET-28a-6His-SUMO vector and recombinant soluble MT was over-expressed as fusions with SUMO in Escherichia coli. The recombinant fusion protein was purified by affinity chromatography and its biochemical properties were analyzed. In addition, on the basis of constructing SUMO-MT, two mutants, namely SUMO-MTt1 and SUMO-MTt2, were constructed to change the primary structure of SUMO-MT using site-directed mutagenesis techniques with the amino acid substitutions D3C and S37C in order to increase metal-binding capacity of MT. E. coli cells expressing SUMO-MT and these single-mutant proteins exhibited enhanced metal tolerance and higher accumulation of metal ions than control cells. The results showed that the bioaccumulation and tolerance of Zn(2+), Cu(2+) and Cd(2+) in these strains followed the decreasing order of SUMO-MTt1 > SUMO-MTt2 > SUMO-MT. E. coli cells have low tolerance and high accumulation towards cadmium compared to zinc and copper. These results show that the MT of S. henanense could enhance tolerance and accumulation of metal ions. Moreover, we were able to create a novel protein based on the crab MT to bind metal ions at high density and with high affinity. Therefore, SUMO-MT and its mutants can provide potential candidates for heavy metal bioremediation. This study could help further elucidate the mechanism of how the crab detoxifies heavy metals and provide a scientific basis for environment bioremediation of heavy metal pollution using the over-expression of the crab MT and mutant proteins.

  19. Home Plumbing Simulator for the Study of Copper and Lead Corrosion and Release, Disinfectant Demand, and Biofilm Activity - abstract

    Science.gov (United States)

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from “blue” water to copper pinhole leaks. If left untreated, these problems can lead to health...

  20. Balance ability in 7- and 10-year-old children: associations with prenatal lead and cadmium exposure and with blood lead levels in childhood in a prospective birth cohort study.

    Science.gov (United States)

    Taylor, Caroline M; Humphriss, Rachel; Hall, Amanda; Golding, Jean; Emond, Alan M

    2015-12-30

    Most studies reporting evidence of adverse effects of lead and cadmium on the ability to balance have been conducted in high-exposure groups or have included adults. The effects of prenatal exposure have not been well studied, nor have the effects in children been directly studied. The aim of the study was to identify the associations of lead (in utero and in childhood) and cadmium (in utero) exposure with the ability to balance in children aged 7 and 10 years. Prospective birth cohort study. Maternal blood lead (n=4285) and cadmium (n=4286) levels were measured by inductively coupled plasma mass spectrometry in women enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) during pregnancy. Child lead levels were measured in a subsample of 582 of ALSPAC children at age 30 months. Children completed a heel-to-toe walking test at 7 years. At 10 years, the children underwent clinical tests of static and dynamic balance. Statistical analysis using SPSS V.19 included logistic regression modelling, comparing categories of ≥ 5 vs lead, and ≥ 1 vs lead or cadmium exposure (adjusted OR for balance dysfunction: Pb 1.01 (95% CI 0.95 to 1.01), n=1732; Cd 0.95 (0.77 to 1.20), n=1734), or with elevated child blood lead level at age 30 months (adjusted OR 0.98 (0.92 to 1.05), n=354). Similarly, neither measures of static nor dynamic balance at age 10 years were associated with in utero lead or cadmium exposure, or child lead level. These findings do not provide any evidence of an association of prenatal exposure to lead or cadmium, or lead levels in childhood, on balance ability in children. Confirmation in other cohorts is needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  2. Cadmium and copper induced changes in growth, oxidative metabolism and terpenoids of Tanacetum parthenium.

    Science.gov (United States)

    Hojati, Mostafa; Modarres-Sanavy, Seyed Ali Mohammad; Enferadi, Sattar Tahmasebi; Majdi, Mohammad; Ghanati, Faezeh; Farzadfar, Soudeh; Pazoki, Alireza

    2017-05-01

    Morphological and biochemical responses of feverfew plants exposed to low (5 μM) and high (35 and 70 μM) levels of Cd or Cu were investigated. Increasing metal supply notably reduced the plant biomass. Elevated Cd and Cu levels also resulted in an increase in the leaf proline content. Besides, decrease in ascorbic acid (AsA) and glutathione (GSH) contents was similar in the leaves of Cd- and Cu-treated plants, indicating altered biosynthesis of AsA and GSH under metal excess. High metal doses stimulated increase in antioxidative enzyme activities that could be related to elevated hydrogen peroxide (H 2 O 2 ) content and subsequent lipid peroxidation. Cd was typically more accumulated in shoots and roots than Cu, leading to higher translocation factor at high Cd doses. In terms of essential oil content, it seems that Cd had an inhibitory effect during the experiment, whereas Cu was found to stimulate it only at 5 μM. Furthermore, high Cd supply enhanced the relative proportion of monoterpene hydrocarbons, while Cu increased the proportion of sesquiterpenes, especially at 5 μM. This result provides the first evidence of the response of feverfew plants to Cd or Cu by associating stress-related responses with changes in terpenoids.

  3. Oral bioaccessibility and human exposure assessment of cadmium and lead in market vegetables in the Pearl River Delta, South China.

    Science.gov (United States)

    Zhuang, Ping; Li, Yingwen; Zou, Bi; Su, Feng; Zhang, Chaosheng; Mo, Hui; Li, Zhian

    2016-12-01

    A systematic investigation into cadmium (Cd) and lead (Pb) concentrations and their oral bioaccessibility in market vegetables in the Pearl River Delta region were carried out to assess their potential health risks to local residents. The average concentrations of Cd and Pb in six species of fresh vegetables varied within 0.09-37.7 and 2.3-43.4 μg kg-1, respectively. Cadmium and Pb bioaccessibility were 35-66 % and 20-51 % in the raw vegetables, respectively, and found to be significantly higher than the cooked vegetables with 34-64 % for Cd and 11-48 % for Pb. The results indicated that Cd bioaccessibility was higher in the gastric phase and Pb bioaccessibility was higher in the small intestinal phase (except for fruit vegetables). Cooking slightly reduced the total concentrations and bioaccessibility of Cd and Pb in all vegetables. The bioaccessible estimated daily intakes of Cd and Pb from vegetables were far below the tolerable limits.

  4. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities.

    Science.gov (United States)

    Ojekunle, O; Banwo, K; Sanni, A I

    2017-05-01

    Thirty-two lactic acid bacteria (LAB) isolates were obtained from fermenting cassava mash and wara (African soft cheese) and screened for their resistance to cadmium and lead toxicities at 550-1050 mg l -1 and probiotic potentials. Four LAB strains that tolerated the heavy metals at 1050 mg l -1 were selected for antioxidative capacities, tolerance to acid, bile salts and simulated gastric and intestinal tract and safety status. The results revealed that Weissella cibaria WD2 and Lactobacillus plantarum CaD1 exhibited comparatively higher antioxidative capacities, survived in simulated gastric and intestinal transit, tolerated acid and bile salt and possessed safety status. The two strains were employed for the in vivo studies, which was monitored in male albino Wistar rats using skim milk as a carrier for the cultures over a period of 28 days. The rats given the cultures of W. cibaria WD2 and L. plantarum CaD1 in addition with the administration of heavy metals had improved renal and hepatic impairment, while damage was observed in rats fed with cadmium and lead only. Weissella cibaria WD2 and L. plantarum CaD1 demonstrated probiotic potentials and safety status. These strains can be used to effectively amend hepatic and renal histopathological alterations in rats caused by ingestion of cadmium and lead. This present study highlights the presence of lactic acid bacteria (LAB) from traditional fermented foods that were cadmium and lead resistant and possessed probiotic potentials. Weissella cibaria WD2 and Lactobacillus plantarum CaD1 selected for the in vivo studies ameliorated the build-up of cadmium and lead in the organs of the animals. This indicated that good cadmium and lead binding and probiotic lactic acid bacteria can be used to prevent exposure to these heavy metals. © 2017 The Society for Applied Microbiology.

  5. Monitoring the effects of exposure to lead and cadmium in working and living environment through standard biochemical blood parameters and liver endonucleases activity

    Directory of Open Access Journals (Sweden)

    Nikolić Ružica S.

    2011-01-01

    Full Text Available Heavy metals as pollutants in the working and living environment are a serious health and environmental problem because they are toxic, non-biodegradable, accumulate in living systems and have a long half-life in soil. Sources of lead contamination are combustion products in the chemical industry and metallurgy, industrial waste water, landfills, traffic etc. Lead enters into the body via the food chain and drinking water. In the body lead is deposited in the liver, kidneys, brain and mineral tissues. Excretion of lead causes damage to the epithelial cells of certain organs. High level exposure to cadmium is usually the result of environmental pollution by human activities. Exposure to cadmium can lead to acute and chronic tissue damage of various organs, including liver and kidneys in humans and in animals. In this paper we analyzed the effects of lead and cadmium exposure, in working and living environment, on the model system of experimental animals, particularly the activity of certain liver enzymes, acid and alkaline DNase, and standard biochemical blood parameters. The study showed that lead and cadmium significantly affect the protein content, red blood cells, hemoglobin and hematocrit, and the activity of liver enzymes. This harmful effect of this toxic metal can be reduced by the supplements.

  6. Toxicity of cadmium, lead and lindane to Egeria radiata Lamarck (Lamelibranchia, Donacidae)

    OpenAIRE

    Udoidiong, O.M.; Akpan, P.M.

    1991-01-01

    La toxicité du cadmium, du plomb, et d'un insecticide, le lindane (Gammalin 20) a été testée sur le bivalve d'eau douce #Egeria radiata$ Lamarck au cours de quatre incubations de 96 heures chacune. Auune mortalité n'a été notée dans les témoins. Dans tous les tests l'effet de la concentration est apparu. Les LC 50 pour 96 heures ont été de 21,4 mgl-1 de Cd, 219 mgl-1 de Pb, 145 mgl-1 de lindane et 200 mgl-1 d'un mélange de Cd et Pb (40 : 160 mgl-1 respectivement). Ces résultats soulignent la...

  7. Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Holan, Z.R.; Volesky, B. [McGill Univ., Montreal (Canada)

    1995-05-01

    Native fungal biomass of fungi Absidia orchids, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nugricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference: Pb>Cd>Ni. The highest metal uptake was q{sub max}=351 mg Pb/g for A. orchidis biomass. P. chrysogenum biomass could accumulate cadmium best at 56 mg Cd/G. The sorption of nickel was the weakest always at >5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosorylated sawdust reaching q{sub max}=224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The latter value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass. 40 refs., 5 figs., 3 tabs.

  8. seasonal variation in chromium hexavalent and copper ...

    African Journals Online (AJOL)

    Admin

    that chromium hexavalent and copper enrichment occurred in the rainy season in the order of Cr+6lead, lithium, cadmium, zinc and barium. The results revealed the presence of only chromium hexavalent and ...

  9. Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water

    Directory of Open Access Journals (Sweden)

    Waldemar Grzybowski

    2000-12-01

    Full Text Available The complexation of cadmium and lead with humic substances was studied using differential pulse anodic stripping voltammetry and a standard addition technique. The titration was done for humic substances of different molecular weight that had been isolated from seawater and subsequently redissolved in organic-free seawater. The different molecular weight fractions were obtained by ultrafiltration using 1000 D (Dalton, 5000 D and 10 000 D pore size filters. Comparison of the calculated stability constants suggests that the strengths of lead complexes in the analysed fractions are similar and that cadmium is complexed by the fraction smaller than 1000 D.

  10. Health risk assessment and dietary exposure of polycyclic aromatic hydrocarbons (PAHs), lead and cadmium from bread consumed in Nigeria.

    Science.gov (United States)

    Udowelle, Nnaemeka Arinze; Igweze, Zelinjo Nkeiruka; Asomugha, Rose Ngozi; Orisakwe, Orish Ebere

    A risk assessment and dietary exposure to polycyclic aromatic hydrocarbons (PAHs), lead and cadmium from bread, a common food consumed in Nigeria. Sixty samples of bread were collected from different types of bakeries where the heat is generated by wood (42 samples) or by electricity (18 samples) from twenty bakeries located in Gusau Zamfara (B1- B14) and Port Harcourt Rivers States (B15-B20) in Nigeria. PAHs in bread were determined by gas chromatography. Lead and cadmium were determined using atomic absorption spectrophotometry. Non-carcinogenic PAHs pyrene (13.72 μg/kg) and genotoxic PAHs (PAH8), benzo[a]anthracene (9.13 μg/ kg) were at the highest concentrations. Total benzo[a]pyrene concentration of 6.7 μg/kg was detected in 100% of tested samples. Dietary intake of total PAHs ranged between 0.004-0.063 μg/kg bw. day-1 (children), 0.002-0.028 μg/kg day-1 (adolescents), 0.01-0.017 μg/kg day-1 (male), 0.002-0.027 μg/kg day-1 (female), and 0.002-0.025 μg/kg day-1 (seniors). The Target Hazard Quotient (THQ) for Pb and Cd were below 1. Lead ranged from 0.01-0.071 mg/kg with 10.85 and 100% of bread samples violating the permissible limit set by USEPA, WHO and EU respectively. Cadmium ranged from 0.01-0.03 mg/kg, with all bread samples below the permissible limits as set by US EPA, JECFA and EU. The daily intake of Pb and Cd ranged from 0.03-0.23 μg/kg bw day-1 and 0.033-0.36 μg/kg bw day-1 respectively. Incremental lifetime cancer risk (ILCR) was 3.8 x 10-7. The levels of these contaminants in bread if not controlled might present a possible route of exposure to heavy metals and PAHs additional to the body burden from other sources.

  11. Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

    Science.gov (United States)

    Anson, Scott J.

    Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007. Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study. Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder. This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product

  12. Opiatergic participation in the thirst-inhibiting effect of acute third ventricle injections of cadmium (Cd2+ and lead (Pb2+

    Directory of Open Access Journals (Sweden)

    E. De-Castro-e-Silva

    1998-06-01

    Full Text Available We have previously demonstrated that acute third ventricle injections of both lead and cadmium prevent the dipsogenic response elicited by dehydration or by central injections of dipsogenic agents such as angiotensin II, carbachol and isoproterenol in rats. We have also shown that the antidipsogenic action of cadmium may be due, at least in part, to activation of thirst-inhibitory central serotonergic pathways. In the present paper we show that in Wistar male rats the antidipsogenic effect of both lead acetate (3.0 nmol/rat and cadmium chloride (3.0 nmol/rat may be partially dependent on the activation of brain opiatergic pathways since central injections of naloxone (82.5 nmol/rat, a non-selective opioid antagonist, blunt the thirst-inhibiting effect of these metals. One hundred and twenty minutes after the second third ventricle injections, dehydrated animals (14 h overnight receiving saline + sodium acetate displayed a high water intake (7.90 ± 0.47 ml/100 g body weight whereas animals receiving saline + lead acetate drank 3.24 ± 0.47 ml/100 g body weight. Animals receiving naloxone + lead acetate drank 6.94 ± 0.60 ml/100 g body weight. Animals receiving saline + saline drank 8.16 ± 0.66 ml/100 g body weight whilst animals receiving saline + cadmium chloride drank 1.63 ± 0.37 ml/100 g body weight. Animals receiving naloxone + cadmium chloride drank 8.01 ± 0.94 ml/100 g body weight. It is suggested that acute third ventricle injections of both lead and cadmium exert their antidipsogenic effect by activating thirst-inhibiting opioid pathways in the brain.

  13. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039 (Turkey); Nanotechnology Research Center (ERNAM), Erciyes University, Kayseri 38039 (Turkey); Ozdemir, Nalan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey)

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L{sup −1} and 8.8 μg L{sup −1}, respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. - Highlights: • The synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers is reported. • The nanoflowers were utilized for solid phase microextraction of

  14. Determination of cadmium and lead in perch fish samples by differential pulse anodic stripping voltammetry and furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ahmed F. Al-Hossainy

    2017-02-01

    Full Text Available Lead and cadmium contents in the edible parts (muscle, fillet of 17 commercially used fish species from South Egypt River Nile (Aswan were determined by means of DPSAV (differential pulse stripping anodic voltammetry. In the sample preparation step, all fish samples were lyophilised, milled in a ball mill and finally decomposed by using mixed acid (HNO3 + HClO4. The accuracy of the concentrations determined in this study was checked by the measurements of the certified reference material CRM No. 422, cod muscle from the Commission of the European Communities, Community Bureau of Reference. All Pb2+ and Cd2+ concentrations observed from species of Egypt River Nile showed that fish from this area are a good source of these essential elements and the developed method is accepted as a good analytical routine method for these samples.

  15. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables

    Science.gov (United States)

    McBride, Murray B.; Shayler, Hannah A.; Spliethoff, Henry M.; Mitchell, Rebecca G.; Marquez-Bravo, Lydia G.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Casey, Linda; Bachman, Sharon

    2014-01-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429

  16. Effect of thermal processing and canning on cadmium and lead levels in California market squid: the role of metallothioneins.

    Science.gov (United States)

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2013-01-01

    The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.

  17. Morton arboretum bioassays: earthworm bioassay procedures to evaluate the extent of aerially dispersed lead and cadmium in an urban arboretum

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, G.S.; Simmers, J.W.; Marquenie, J.M.; Kelsey, P.D.

    1987-01-27

    Aerially dispersed heavy metals from a high-speed motorway have been shown to be entering an urban arboretum. Lead (Pb) and cadmium (Cd) were found as remote as 930 m from an east-west, multi-lane motorway. Both Pb and Cd were bioavailable to earthworms (Eisenia foetida) and both metals were more concentrated in surface soils than at depths of 1 meter. Seven sampling stations were established at progressive intervals along the 930 m transect. At all sampling stations, soil cores 15 cm deep and replicated four times were collected. The sod was removed from each sample except for one station 33 m away from the motorway. This was retained and tested along with some additional 1 m depth soil cores. All samples were transported to the U.S. Army Engineer Waterways Experiment Station (WES) where bioassay tests utilizing the earthworm (Eisenia foetida) were conducted under controlled conditions.

  18. Arsenic, cadmium and lead concentrations in Yerba mate commercialized in Southern Brazil by inductively coupled plasma mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lisia Maria Gobbo dos Santos

    2017-12-01

    Full Text Available ABSTRACT: “Mate” or “Yerba Mate” (Ilex paraguariensis is a native South American plant, commonly consumed in Argentina, Paraguay, Uruguay and southern Brazil. Recent research has detected the presence of many vitamins and metals in this plant. Theses metals are also part of yerba mate’s mineral composition, due to soil and water contamination by pesticides and fertilizers, coal and oil combustion, vehicle emissions, mining, smelting, refining and the incineration of urban and industrial waste. Regardless of their origin, some inorganic elements, such as arsenic, cadmium and lead, are considered toxic, since they accumulate in all plant tissues and are, thus, introduced into the food chain. In this context, the aim of the present study was to determine and compare arsenic, cadmium, lead concentrations in 104 samples of yerba mate (Ilex paraguariensis marketed, and consumed in three southern Brazilian States, namely Paraná (PR, Santa Catarina (SC and Rio Grande do Sul (RS. Each element was determined by inductively coupled plasma mass spectrometry (ICP-MS, on a Nexion 300D equipment (Perkin Elmer. As, Cd and Pb concentrations in yerba mate leaves ranged from 0.015 to 0.15mg kg-1, 0.18 to 1.25mg kg-1 and 0.1 to 1.20mg kg-1, respectively. Regarding Cd, 84% of the samples from RS, 63% from PR and 75% from SC showed higher concentrations than the maximum permissible limit of 0.4mg kg-1 established by the Brazilian National Sanitary Surveillance Agency (ANVISA, while 7% of the samples from RS and 5% from PR were unsatisfactory for Pb. Concentrations were below the established ANVISA limit of 0.6mg kg-1 for all samples.

  19. Investigate of atmospheric arsenic, cadmium, chromium, lead, and mercury levels in moss species found around Zilkale, by EDXRF Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Akçay, Nilay, E-mail: nilay.akcay@erdogan.edu.tr [Recep Tayyip Erdoğan University, Faculty of Art and Science, Department of Physics, Rize (Turkey); Batan, Nevzat, E-mail: nbatan@ktu.edu.tr [Karadeniz Technical University, Maçka Vocational School, Trabzon (Turkey); Çinar, Yunus, E-mail: yunus.cinar@erdogan.edu.tr [Recep Tayyip Erdoğan University, Vocational School of Technical Studies, Rize (Turkey)

    2016-04-18

    Zilkale is a castle located in Fırtına Valley and it is one of the most important historical structures in Çamlihemşin district of Rize Province in the Black Sea Region of Turkey. The castle surrounded by very high mountains that poke up into the clouds, and it rains here all year round. Tourism businesses or industrial plants are not so much there yet. In recent years, Zilkale region has begun the attract tourist, people on treaking holidays in the Kaçkar. But many domestic and foreign tourists come to this region by own car or tour buses. The aim of this study is to investigate the atmospheric concentrations of arsenic, cadmium, chromium, lead, and mercury levels in five different moss species collected around Zilkale by using Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometry. The average concentrations of heavy metals in moss samples ranged from 0.79-4.63 ppm for arsenic, 54.47-143.39 ppm for chromium, 39.97-81.03 ppm for lead. The values of cadmium and mercury were found below the detection limit. This study has shown that Hypnum cupressiforme, Abietinella abietina, Rhytidium rugosum, Plagiomnium undulate, and Thuidium tamariscinum samples collected around Zilkale were used to assess the potential contamination of atmospheric As, Cd, Cr, Pb, Hg contamination in the region and made important contributions toward the understanding of atmospheric As, Cd, Cr, Pb, Hg baseline data can be used for identification of changes in the levels of these heavy metals in the studied area.

  20. Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates

    Science.gov (United States)

    Losego, Mark D.; Jimison, Leslie H.; Ihlefeld, Jon F.; Maria, Jon-Paul

    2005-04-01

    We demonstrate films of the well-known ferroelectric lead zirconate titanate (PZT) prepared directly on copper foils by chemical solution deposition (CSD). The films exhibit saturating polarization hysteresis, remanent polarization values of 26μC/cm2, and permittivities of 800; these properties are comparable to those achieved using semiconductor-grade substrates. The preparation methodology is founded upon an understanding of solution chemistry as opposed to conventional gas-phase / condensed-phase equilibrium approaches. By adopting this technique, base-metal compatibility can be achieved using much lower temperatures, and a broader set of devices can be prepared offering intimate contact with high conductivity, easily patternable, or ferromagnetic metals.

  1. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  2. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Anacleto, Patrícia; van den Heuvel, Freek H M; Oliveira, C

    2017-01-01

    The presence of contaminants in aquatic ecosystems can cause serious problems to the environment and marine organisms. This study aims to evaluate the phycoremediation capacity of macroalgae Laminaria digitata for pesticides (diflubenzuron and lindane) and toxic elements (cadmium and copper......) in seawater with the presence or absence of mussels. The photosynthetic activity was monitored in the macroalgae to assess its "physiological status". The results showed that the presence of algae decreased diflubenzuron concentration in mussels by 70% after 120 h of exposure. Additionally, this macroalgae...... was efficient to reduce lindane, Cu and Cd in seawater; even though not was able to reduce these contaminants in mussels. The studied pollutants did not affect the physiological status of algae. This study reveals that the application of phycoremediation with macroalgae can be an useful and effective mitigation...

  3. Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples.

    Science.gov (United States)

    Ebrahimzadeh, Homeira; Moazzen, Elahe; Amini, Mostafa M; Sadeghi, Omid

    2013-04-01

    A novel sorbent based on pyridine-2,6-diamine-functionalized Fe(3)O(4) nanoparticles was developed and characterized by X-ray powder diffraction (XRD), elemental analysis, IR spectroscopy and scanning electron microscopy (SEM). The application of the sorbent was investigated for pre-concentration and determination of lead and cadmium ions in aqueous samples. Effects of various factors such as the sample pH, eluent parameters (type, concentration and volume) and time (adsorption and desorption) were appraised. The effects of several interfering ions on method recovery were also investigated. The limit of detection (LOD) was found to be 1.3 and 0.089 μg L(-1) for lead and cadmium ions, respectively. Recovery and precision (RSD%) of the method were above 97.9% and below 0.6%, respectively. Validation of the outlined method was performed by analysing several certified reference materials. This method was successfully used for determination of lead and cadmium ions in several cosmetic samples, which are usually contaminated by lead and cadmium ions. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Simultaneous simulations of uptake in plants and leaching to groundwater of cadmium and lead for arable land amended with compost or farmyard manure

    DEFF Research Database (Denmark)

    Legind, Charlotte Nielsen; Rein, Arno; Serre, Jeanne

    2012-01-01

    The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year...

  5. Associated factors for higher lead and cadmium blood levels, and reference values derived from general population of São Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kira, Carmen Silvia, E-mail: carmkira@ial.sp.gov.br [Instituto Adolfo Lutz, Centro de Materiais de Referência, Av. Dr. Arnaldo, 355, São Paulo, SP CEP 01246-000 (Brazil); Sakuma, Alice Momoyo [Instituto Adolfo Lutz, Centro de Materiais de Referência, Av. Dr. Arnaldo, 355, São Paulo, SP CEP 01246-000 (Brazil); De Capitani, Eduardo Mello [Universidade Estadual de Campinas — UNICAMP, Faculdade de Ciências Médicas, Departamento de Clínica Médica, Centro de Controle de Intoxicações (Brazil); Umbelino de Freitas, Clarice [Secretaria de Estado da Saúde/SP, Coordenadoria de Controle de Doenças (Brazil); Cardoso, Maria Regina Alves [Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia (Brazil); Gouveia, Nelson [Universidade de São Paulo — USP, Faculdade de Medicina, Departamento de Medicina Preventiva (Brazil)

    2016-02-01

    Human activities are associated with emissions of various metals into the environment, among which the heavy metals lead and cadmium stand out, as they pose a risk to human life even at low concentrations. Thus, accurate knowledge of the levels of these metals exhibited by the overall population, including children, is important. The aim of this study was to estimate the concentrations of lead and cadmium in the blood of adults, adolescents and children residing in the city of São Paulo, assess factors associated with higher lead and cadmium blood levels, and to establish reference values for this population. The study sample consisted of 669 adults over 20 years old, 264 adolescents aged 12 to 19 years old and 391 children under 11 years old from both genders. The samples were collected at the end of 2007 and during 2008 in different city zones. Higher blood lead concentration was significantly associated with gender, smoking, offal intake, area of residence and age. The blood cadmium concentration was significantly associated with gender, smoking, consumption of distilled beverages and age. The reference values of lead and cadmium established for adults above 20 years old were 33 μg/L and 0.6 μg/L, respectively, for adolescents (12 to 19 years old) were 31 μg/L and 0.6 μg/L, respectively and for children under 11 years old were 29 μg/L and 0.2 μg/L, respectively. The results of this study indicate that the exposure levels of the investigated population to lead and cadmium are low. - Highlights: • The exposure of population of São Paulo city to lead and cadmium is low. • Pb level was associated with gender, smoking, offal intake, area of residence, age. • Cd level was associated with gender, smoking, distilled beverages, age. • RV for Pb in blood for children and adolescents were 29 and 31 μg/L, respectively. • RV for Cd in blood for children and adolescents were 0.2 and 0.6 μg/L, respectively.

  6. Antimony migration trends from a small arms firing range compared to lead, copper, and zinc.

    Science.gov (United States)

    Martin, W Andy; Lee, Linda S; Schwab, Paul

    2013-10-01

    Small arms firing ranges (SAFRs) contain a mixed amount of bullets and bullet fragments accumulated throughout their designed lifetime. Lead-antimony (Pb-Sb) alloy copper (Cu) jacketed bullets are a common modern ammunition used at SAFRs. The impact of bullets with berm material (i.e., soil) generates a heterogeneous distribution of bullets and bullet fragments in the surrounding soil. As bullets and bullet fragments corrode in the berm soil, the migration potential for antimony compared to other metals is quite high. The goal of this study was to evaluate the spatial Sb migration potential from an SAFR as compared to lead, copper, and zinc (Zn) migration from the same SAFR. Berm soil samples were collected along with surface and ground water samples for a preliminary investigation of the Sb migration from an active SAFR. In addition, different aqueous sample preservation techniques were used and evaluated. Soil sample analysis results show the presence of the metals (i.e., Pb, Sb, Cu, and Zn) in the range floor soil samples, indicating the migration of these metals from the berm to the range floor. The groundwater samples indicate that Sb was migrating from the SAFR more readily than the other metals based on the concentration of Sb in the monitoring well farthest from the SAFR berm. Published by Elsevier B.V.

  7. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and cadmium contamination in sub-Saharan wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Ciliberti, Alexandre [Universite de Lyon, F-69000, Lyon, Vetagro-Sup, Campus Veterinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy-l' Etoile, UMR 1233 Mycotoxines et Toxicologie Comparee des Xenobiotiques (France); Berny, Philippe, E-mail: p.berny@vetagro-sup.fr [Universite de Lyon, F-69000, Lyon, Vetagro-Sup, Campus Veterinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy-l' Etoile, UMR 1233 Mycotoxines et Toxicologie Comparee des Xenobiotiques (France); Delignette-Muller, Marie-Laure [Universite de Lyon, F-69000, Lyon, Vetagro-Sup, Campus Veterinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy-l' Etoile (France); Universite de Lyon, F-69000, Lyon, Universite Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, F-69622, Villeurbanne (France); Buffrenil, Vivian de [Museum National d' Histoire Naturelle, CC 48, 57 rue Cuvier, F-75005 Paris, Departement Histoire de la Terre, UMR 7207 CR2P (France)

    2011-10-15

    Wetland pollution is a matter of concern in sub-Saharan Africa. Though regularly exploited, the Nile monitor (Varanus niloticus), a large amphibious lizard, is not threatened. This work aims at assessing the value of this varanid as a sentinel species in surveys of environmental contamination by metals. Lead and cadmium quantifications were performed by graphite furnace-atomic absorption spectrophotometry in bone, intestine, kidney, liver and muscle in 71 monitors from three unevenly polluted sites in Mali and Niger, plus a reference site. The effects of sex, size and fat reserves as well as factors related to the sampling strategy (tissue sampled, sampling site) were studied with a mixed linear model. Metal contamination is moderate at the four sites but clear differences nevertheless occur. Lead levels are generally maximal in bone, with a gender-independent median value 320 ng.g{sup -1}. Median cadmium concentrations never exceed 70.2 ng.g{sup -1} in females (kidney) and 57.5 ng.g{sup -1} in males (intestine). Such levels should have no detrimental effects on the monitors. Lead and cadmium levels in muscles are generally below 200 and 20 ng.g{sup -1}, respectively, and should provoke no health hazard to occasional consumers of monitor meat. Metal organotropisms are consistent with those observed in other studies about Squamates: for lead: bone > [kidney, intestine, liver] > muscle in males and [bone, kidney] > [intestine, liver] > muscle in females; for cadmium: [liver, intestine, kidney] > [bone, muscle] for both genders. Females are more contaminated, especially in their kidneys. In this tissue, median values in ng.g{sup -1} are 129.7 and 344.0 for lead and 43.0 and 70.2 for cadmium, for males and females, respectively. Nile monitors can reveal subtle differences in local pollution by metals; moreover, the spatial resolution of the pollution indication that they give seems to be very sharp. The practical relevance of this new tool is thus validated.

  8. Representative levels of blood lead, mercury, and urinary cadmium in youth: Korean Environmental Health Survey in Children and Adolescents (KorEHS-C), 2012-2014.

    Science.gov (United States)

    Burm, Eunae; Song, Inmyung; Ha, Mina; Kim, Yu-Mi; Lee, Kee Jae; Kim, Hwan-Cheol; Lim, Sinye; Kim, Soo-Young; Lee, Chul-Gab; Kim, Su Young; Cheong, Hae-Kwan; Sakong, Joon; Kang, Hee-Tae; Son, Mia; Oh, Gyung-Jae; Kim, Yeni; Yang, Ji-Yeon; Hong, Soo-Jong; Seo, Ju-Hee; Kim, Jeongseon; Oh, Seyong; Yu, Jeesuk; Chang, Seong-Sil; Kwon, Ho-Jang; Choi, Youn-Hee; Choi, Wookhee; Kim, Suejin; Yu, Seung Do

    2016-07-01

    This study examined levels of blood lead and mercury, and urinary cadmium, and associated sociodemographic factors in 3-18 year-old Korean children and adolescents. We used the nationally representative Korean Environmental Health Survey in Children and Adolescents data for 2012-2014 and identified 2388 children and adolescents aged 3-18 years. The median and 95th percentile exposure biomarker levels with 95% confidence intervals (CIs) were calculated. Multivariate regression analyses were performed on log transformed exposure biomarker levels adjusted for age, sex, area, household income, and father's education level. The median exposure biomarker levels were compared with data from Germany, the US, and Canada, as well as the levels of Korean children measured at different times. The median levels of blood lead and mercury, as well as urinary cadmium were 1.23μg/dL, 1.80μg/L, and 0.40μg/L (95% CIs, 1.21-1.25, 1.77-1.83, and 0.39-0.41, respectively). The blood lead levels were significantly higher in boys and younger children (pchildren with less educated fathers (p=0.004) after adjusting for covariates. Urinary cadmium level increased with age (pmercury and urinary cadmium were much higher in Korean children and adolescents than those in their peers in Germany, the US, and Canada. Blood lead levels tended to decrease with increasing age and divergence between the sexes, particularly in the early teen years. Median levels of blood lead and urinary cadmium decreased since 2010. Sociodemographic factors, including age, sex, and father's education level were associated with environmental exposure to heavy metals in Korean children and adolescents. These biomonitoring data are valuable for ongoing surveillance of environmental exposure in this vulnerable population. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  10. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Quentin Hurdebise

    2015-04-01

    Full Text Available Zinc, lead and cadmium are metallic trace elements (MTEs that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed.

  11. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Influence of lead and cadmium fluoride variation on white light emission characteristics in oxyfluoride glasses and glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Gopi, E-mail: sharmagopi28@yahoo.com [Department of Physics, Kanya Maha Vidyalaya, Jalandhar, Punjab 144004 (India); Bagga, Ruchika; Mahendru, Nancy [Department of Physics, Kanya Maha Vidyalaya, Jalandhar, Punjab 144004 (India); Falconieri, Mauro [ENEA, UTAPRAD, C.R.Casaccia, via Anguillarese 301, 00123 Rome (Italy); Achanta, Venu Gopal [Department of Condensed Matter Physics, TIFR, Mumbai (India); Goel, Ashutosh [Department of Material Science and Engineering, Rutgers-The State University of New Jersey, NJ (United States); Rasool, Shaik Nayab; Vijaya, Navooru [Department of Physics, Sri Venkateswara University, Tirupati (India)

    2015-03-15

    The radiative properties of Dy-doped glasses and glass–ceramic phosphors with varying lead and cadmium fluoride content are investigated in the present study for white light emitting applications. The precipitation of cubic lead fluoride phase of 10–18 nm crystallites was determined with the help of x-ray diffraction studies and the nanocrystalline nature was confirmed with scanning electron microscopy studies. The small size of the nanocrystallites enables the fabrication of transparent glass–ceramics which is verified by UV–vis spectroscopic study. The photoluminescence and lifetime measurements indicate towards progressive changes in the Dy{sup 3+} ion surroundings and propose enhanced energy transfers taking place post-heat treatments. Finally, CIE chromaticity coordinates are found to lie in the white region proposing the suitability of the present studied materials for color display devices. - Highlights: • Enhanced energy transfer in glass ceramics. • Depolymerization of network with variation in heavy metal fluoride. • Radiative properties of Dy{sup 3+} doped glass as W-LED.

  13. Lead and Cadmium Contamination in Seeds and Oils of Brassica napus L and Carthamus tinctorius Grown in Isfahan Province/Iran

    Directory of Open Access Journals (Sweden)

    Abbasali Palizban

    2014-12-01

    Full Text Available Background: Lead and cadmium are toxic heavy metals found as major contaminants in food products and edible oils. The aims of this study were to investigate the lead and cadmium contaminations in seeds and extracted oils from Brassica napus L and Carthamus tinctorius grown in the vicinity of industrial sites (Isfahan Zobe Ahan near Isfahan province/Iran. Methods: In this study, the seeds of B. napus and C. tinctorius were randomly sampled from the farms. The oils of seeds were provided by factory and extracted as well in our laboratory. The two series of washed and unwashed seeds digested with nitric acid and the amount of elements in seeds and oils were measured using GF-AA spectrometer equipped with Zeeman Effect. Results: Cadmium was found in all samples below the Method Detection Limit (MDL, 0.04 μg/L. Lead contaminations were found in all seeds and oils except washed B. napus seeds. The highest levels of lead contaminations were observed in oils of C. tinctorius and B. napus with the amount of 24.74 μg/L and 11.85 μg/L, respectively. The level of lead in unwashed seed oils were significantly higher than washed seed oils (P<0.05. Conclusions: The contamination rate of cadmium compared with lead was very low. The higher lead contaminations in unwashed seeds oils compared with washed seeds oils indicated that the contaminant should have been be transferred through the air. Although these observations suggest that the levels of contaminations in edible oils are below the toxic level, long-term exposure may lead to potential health risks.

  14. Lead and cadmium content of Brazilian beers Teores de chumbo e cádmio em cervejas brasileiras

    Directory of Open Access Journals (Sweden)

    Lucia Maria Valente Soares

    2003-08-01

    Full Text Available The elements called heavy metals when ingested are not completely eliminated from animal bodies and are responsible for chronic and acute intoxications. Sixty-three samples of beer, produced in the states of São Paulo, Paraná, Rio de Janeiro, Rio Grande do Sul, Minas Gerais, and Pará, were analysed for lead and cadmium content by atomic absorption spectrometry with graphite furnace atomization and Zeeman correction. The concentrations of Pb and Cd of dark differed significantly from light beers, being higher in the former. No significant difference was found between the beers produced in predominantly rural areas and the ones produced in industrialized areas. The concentrations of lead and cadmium in all samples were bellow the maximum accepted by present Brazilian regulations and ranged from not detected to 290mugPb/L and from not detected to 14.3mugCd/L. The average concentrations were 37mugPb/L and 1.6mugCd/L.Os elementos chamados de metais pesados quando ingeridos não são completamente eliminados dos organismos animais e são responsáveis por intoxicações crônicas e agudas. Sessenta e duas amostras de cerveja, produzida nos estados de São Paulo, Paraná, Rio de Janeiro, Rio Grande do Sul, Minas Gerais e Pará, foram analisadas para chumbo e cádmio por espectrometria de absorção atômica com atomização em forno de grafite e corretor de Zeeman. As concentrações de Pb and Cd nas cervejas escuras foram mais elevadas e diferiram significativamente das concentrações em cervejas claras. Nenhuma diferença significativa foi encentrada nas concentrações destes elementos em cervejas produzidas em áreas predominantemente rurais ou em áreas industrializadas, e ainda em cervejas embaladas em latas de alumínio ou em garrafas de vidro. As concentrações de chumbo e cádmio estavam abaixo do máximo aceito pela regulamentação brasileira atual e variaram de não detectado a 290migPb/L e de não detectado a 14.3migCd/L. As concentra

  15. assessment of cadmium and lead in soil and tomatoes grown in ...

    African Journals Online (AJOL)

    MAHMUD IMAM

    sources of contamination such as fertilizers, pesticides, sewage sludge and organic waste. Keywords: Soil ... stations. Lead can trigger both acute and chronic symptoms of poisoning. Acute intoxication only occurs through the consumption of relatively large doses of .... irrigation by municipal waste water on a daily basis. 18.

  16. Cadmium, lead, arsenic and selenium levels in patients with type 2 ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... serum of diabetic patients when compared with the control (p < 0.01) but there was no significant difference in ... as a possible cause of type 2 diabetes and a role for ... The effects of lead poisoning in diabetes subjects have.

  17. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    caleb

    plasma K+ level (hyperkalemia) by Cd observed in the exposed group might occur due to erythrocyte destruction caused by the Cd exposures which probably lead to the release of K+. Hyperkalemia has been reported to arise in condition characterized by excess destruction of cells with redistribution of K+ from the ...

  18. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  19. Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions.

    Science.gov (United States)

    Torres, Robinson; Lapidus, Gretchen T

    2017-02-01

    An integral closed circuit hydrometallurgical process is presented for base metal recovery from electronic waste. The leaching medium consists of a sodium citrate solution, from which base metals are retrieved by direct electrowinning, and the barren solution is recycled back to the leaching stage. This leaching-electrowinning cycle was repeated four times. The redox properties of the fresh citrate solution, as well as the leach liquors, were characterized by cyclic voltammetry to determine adequate conditions for metal reduction, as well as to limit citrate degradation. The leaching efficiency of electronic waste, employing the same solution after four complete cycles was 71, 83 and 94% for copper, iron and lead, respectively, compared to the original leach with fresh citrate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk.

    Science.gov (United States)

    Al-Saleh, Iman; Abduljabbar, Mai

    2017-10-01

    The levels of heavy metals (lead, cadmium, methylmercury and arsenic) were determined in 37 brands of imported rice commonly consumed in Saudi Arabia after soaking and rinsing with water, and their potential health risks to residents were estimated by three indices: hazard quotient (HQ), hazard index (HI) and cancer risk (CR). The mean levels of lead, cadmium, methylmercury and total arsenic in soaked (rinsed) rice grains were 0.034 (0.057), 0.015 (0.027), 0.004 (0.007) and 0.202 (0.183) μg/g dry weight, respectively. Soaking or rinsing rice grains with water decreased lead and cadmium levels in all brands to safe levels. All brands had total arsenic above the acceptable regulatory limits, irrespective of soaking or rinsing, and eight soaked and 12 rinsed brands contained methylmercury. The levels of all heavy metals except cadmium were above the acceptable regulatory limits when the rice was neither rinsed nor soaked. Weekly intakes of lead, cadmium, methylmercury and total arsenic from soaked (rinsed) grains were 0.638 (1.068), 0.279 (0.503), 0.271 (0.309) and 3.769 (3.407) μg/kg body weight (bw). The weekly intakes of lead and methylmercury from the consumption of one rinsed and two soaked rice brands respectively, exceeded the Provisional Tolerance Weekly Intake set by the Food and Agriculture Organization and the World Health Organization. The weekly intake of total arsenic for all brands was above the lowest benchmark dose lower confidence limit (BMDL 01 ) level of 0.3μg/kg bw/d for an increased cancer risk set by European Food Safety Authority. Either soaking or rinsing grains before consumption can minimize the non-carcinogenic health risks to residents from cadmium and lead (HQ1 all brands) and to a lesser extent with methylmercury (HQ>1 in 4 brands), even when soaked or rinsed with water before consumption. The combined non-carcinogenic effect of all metals expressed as HI was >1, including soaked or rinsed rice, with total arsenic the major

  1. WETTING OF COPPER BY LEAD-FREE Sn-Cu SOLDERS AND SHEAR STRENGTH OF Cu – Cu JOINTS

    Directory of Open Access Journals (Sweden)

    Pavol Šebo

    2009-04-01

    Full Text Available Developing and microstructure of lead-free Sn-Cu solders containing 3, 5 and 10 wt. % of copper in bulk as well as in ribbon form is presented. Wetting of copper substrate by these solders at the temperatures 300, 350 and 400°C in air (partially in N2+10H2 during 1800 s was studied by sessile drop method. Joints Cu – solder – Cu were prepared at 300°C and 1800 s in air as well as in gas mix and their shear strength was measured. The microstructure was studied by light and scanning electron microscopy (SEM equipped with energy dispersive X-ray analyzer and standard X-ray diffraction machine. Wetting angle decreases with increasing wetting temperature. Wetting angle increased for higher (10 wt. % amount of copper in solder. Shear strength of the joints decreases with increasing the copper concentration in solder.

  2. Zinc, cadmium, and copper mobility and accumulation in reeds (Phragmites australis) in urban sediments from two stormwater infiltration basins

    Science.gov (United States)

    Bedell, J.-P.; Saulais, S.; Delolme, C.

    2012-04-01

    Infiltration basins are stormwater management techniques that are widely used to reduce stormwater volume. The settling of stormwater particles leads to a contaminated sediment layer at the basin surface. Phragmites australis used in constructed wetlands are widely present in infiltration basins. Such plant can play a role on the fate of heavy metals either directly by their uptake or indirectly by modification of physico-chemical characteristics of the sediment. The aim of this study is to assess Zn, Cd and Cu potential mobility and their bioaccumulation by reeds during plant's growth in urban sediments offering two different geochemical contexts. Methodology is based on the monitoring (in june, august and december) of physico-chemical characteristics of sediment deposit in two basins. These basins, "Minerve" and "Grézieu", located on both sides of Lyon city are characteristic of two different geochemical context. "Minerve" is in the east and "Grézieu" in the west part. The geology of the eastern part of Lyon is characterized by carbonated fluvio-glacial deposits. In the western part, the subsoil is mainly composed of gneiss and granit. Moreover, 20 cm of gravel and a sand layer were initially added at the surface of the "Grézieu" basin. In "Minerve", a clay material was initially added and a filter trench was built along the basin to allow water infiltration. We characterized the sediment deposit by the identification of their geochemical characteristics (Zn, Cu, Cd, total content, pH, CEC, C/N, carbonates and major elements contents …). Then we studied the potential mobility of the three metals by single chemical extraction (CaCl2 for the exchangeable phase, acetate buffer for the acido-soluble phase and diethylenetriamine-pentaacetic acid (DTPA) for the fraction associated to the organic matter). The accumulation of Zn, Cd and Cu in aerial parts and roots of the reeds was also measured. The results show clearly that "Grézieu" sediment is more enriched in

  3. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI)

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yanju [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China) and Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: liuyanju@hotmail.com; Zhu Yongguan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ding Hui [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2007-01-15

    Lead and cadmium uptake was investigated for common deciduous street trees in Beijing in this study. Species having Cd accumulation included Populus tomentosa, Sophora japonica and Catalpa speciosa. P. tomentosa had the highest ratios between leaf and soil Cd (0.848), followed by S. japonica (0.536), C. speciosa (0.493), Paulownia tomentosa (0.453) and Juglans regia (0.415). Pb levels were high in leaves of C. speciosa, J. regia and Pa. tomentosa. S. japonica had the highest ratio between leaf Pb and soil Pb (0.146), followed by Pa. tomentosa (0.143), Ginko biloba (0.103) and C. speciosa (0.095). A predictive foliar metal accumulation index (MAI) was developed and C. speciosa was calculated to have the highest MAI value (53.8). This suggests that C. speciosa would be a good choice for planting in areas of Beijing where soil contamination with Cd and Pb may be a problem. - Catalpa speciosa had the highest MAI value.

  4. Lead and cadmium levels in cattle muscle and edible tissues collected from a slaughter slab in Nigeria.

    Science.gov (United States)

    Adetunji, V O; Famakin, I O; Chen, J

    2014-01-01

    Contamination levels of lead (Pb) and cadmium (Cd) in muscles, liver and kidney of 50 randomly selected, freshly slaughtered cattle in Ogun State, Nigeria were assessed using an official procedure and atomic absorption spectrophotometry. Results showed that Pb and Cd were present in all of the tested samples. Mean Pb concentrations were 0.721 ± 0.180 mg kg(-1), 0.809 ± 0.220 mg kg(-1) and 0.908 ± 0.422 mg kg(-1) in muscle, liver and kidney tissues, respectively. Mean Cd concentrations were 0.157 ± 0.049 mg kg(-1), 0.172 ± 0.071 mg kg(-1) and 0.197 ± 0.070 mg kg(-1) in muscle, liver and kidney tissues, respectively. Pb and Cd levels in muscle versus kidney tissues and also in liver versus kidney samples were significantly different (p tissues were significantly higher than the International Standards while the mean Cd concentrations in liver and kidney samples were within the limits of these standards.

  5. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  6. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge

    Science.gov (United States)

    Mebane, C.A.; Hennessy, D.P.; Dillon, F.S.

    2008-01-01

    In order to estimate acute-to-chronic toxicity ratios (ACRs) relevant to a coldwater stream community, we exposed rainbow trout (Oncorhynchus mykiss) to cadmium (Cd), lead (Pb), and zinc (Zn) in 96-h acute and 60+ day early-life stage (ELS) exposures. We also tested the acute and sublethal responses of a mayfly (Baetis tricaudatus) and a midge (Chironomus dilutus, formerly C. tentans) with Pb. We examine the statistical interpretation of test endpoints and the acute-to-chronic ratio concept. Increasing the number of control replicates by 2 to 3x decreased the minimum detectable differences by almost half. Pb ACR estimates mostly increased with increasing acute resistance of the organisms (rainbow trout ACRs choice of test endpoint and statistical analysis influenced ACR estimates by up to a factor of four. When calculated using the geometric means of the no- and lowest-observed effect concentrations, ACRs with rainbow trout and Cd were 0.6 and 0.95; Zn about 1.0; and for Pb 3.3 and 11. The comparable Pb ACRs for the mayfly and Chironomus were 5.2 and 51 respectively. Our rainbow trout ACRs with Pb were about 5-20x lower than earlier reports with salmonids. We suggest discounting previous ACR results that used larger and older fish in their acute tests. ?? 2007 GovernmentEmployee: U.S. Geological Survey.

  7. Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions.

    Science.gov (United States)

    Rosolina, Samuel M; Chambers, James Q; Lee, Carlos W; Xue, Zi-Ling

    2015-09-17

    A new electrochemical method has been developed to detect and quantify the elemental impurities, cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)), either simultaneously or individually in pharmaceutical matrices. The electro-analytical approach, involving the use of anodic stripping voltammetry (ASV) on an unmodified glassy carbon electrode, was performed in both aqueous and in a 95/5 dimethyl sulfoxide (DMSO)/water solutions, without acid digestion or dry ashing to remove organic matrices. Limits of detection (LODs) in the μg L(-1) [or parts per billion (ppb), mass/volume] range were obtained for both heavy metals - in the presence and absence of representative pharmaceutical components. To the best of our knowledge, the work demonstrates the first analysis of heavy metals in DMSO/water solutions through ASV. The strong reproducibility and stability of the sensing platform, as well as obviation of sample pretreatment show the promise of utilizing ASV as a sensitive, robust, and inexpensive alternative to inductively-coupled-plasma (ICP)-based approaches for the analysis of elemental impurities in, e.g., pharmaceutical-related matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. On-line preconcentration and determination of lead and cadmium by sequential injection/anodic stripping voltammetry.

    Science.gov (United States)

    Ninwong, Benjawan; Chuanuwatanakul, Suchada; Chailapakul, Orawon; Dungchai, Wijitar; Motomizu, Shoji

    2012-07-15

    The highly sensitive determination of lead (Pb(II)) and cadmium (Cd(II)) ions, with a limit of detection of 0.01μgL(-1) for Pb(II) and Cd(II), by on-line preconcentration and anodic stripping voltammetry (ASV) controlled by a sequential injection analysis (SIA) system is reported here. The SIA system consisted of a syringe pump, an 8-port selection valve and a 6-port switching valve and was incorporated with a bismuth coated screen-printed carbon nanotube electrode (Bi-SPCNTE). The preconcentration of metal ions was performed by solid phase extraction using an Analig TE-05 chelating resin mini-column on a switching valve. The metal ions collected were then eluted from the resin with 1M hydrochloric acid (HCl), deposited on the electrode surface at -1.3V vs. Ag/AgCl and then measured with ASV. The pH of the sample, eluent volume, flow rate, concentration of the bismuth plating solution and the square-wave voltammetric parameters were optimized. Under the optimum conditions, an enrichment factor of 11.9-fold and 6.6-fold for Pb(II) and Cd(II) ions, respectively, was attained. Detection of Pb(II) and Cd(II) had two different linear ranges (0.5-15μgL(-1) and 15-70μgL(-1)). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants

    Directory of Open Access Journals (Sweden)

    Jastrzębska Magdalena

    2018-02-01

    Full Text Available Recycling phosphorus from waste for fertilization purposes appears to be an alternative for non-renewable sources and a solution for managing harmful products of civilisation. Fertilizers from secondary raw materials are considered to be safe to the environment. This study presents an assessment of the effects of five new biofertilizers made from sewage sludge ash and/or animal bones on the content of cadmium and lead in the soil, in wheat grains and straw (test plant, in the mass of the the accompanying weeds and in the post-harvest residues. Biofertilizers were produced in the form of suspension or granules and activated using Bacillus megaterium or Acidithiobacillus ferrooxidans bacteria. They were tested in four field experiments. The Cd and Pb contents of the soil and plant material were determined using the ICP-MS technique. Similar to superphosphate, new biofertilizers showed no change in the Cd and Pb contents of the soil and plants biomass when applied at amounts up to 80 kg; P2O5 ha−1. Both Cd and Pb in the soil and plants occurred naturally, and the amounts were within the acceptable standards. Biofertilizers from renewable raw materials, with low toxic element contents, are not thought to pose a hazard to the soil and plants when applied in reasonable amounts. They can be a substitute for conventional phosphorus fertilizers.

  10. The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa.

    Science.gov (United States)

    Tvrdá, Eva; Kňažická, Zuzana; Lukáčová, Jana; Schneidgenová, Monika; Goc, Zofia; Greń, Agnieszka; Szabó, Csaba; Massányi, Peter; Lukáč, Norbert

    2013-01-01

    The aim of this study was to investigate the effects of lead (Pb) and cadmium (Cd) content on basic motility characteristics (motility-MOT, progressive motility-PROG) as well as selected markers of the prooxidant-antioxidant balance (catalase-CAT, glutathione-GSH, malondialdehyde-MDA) in bovine seminal plasma and spermatozoa. Twenty five semen samples were collected from breeding bulls and used in the study. Motility analysis was carried out using the Computer Assisted Sperm Analysis (CASA) system. The samples were centrifuged, fractions of seminal plasma and spermatozoa were separated, lysates were prepared from the sperm cell fractions. Pb and Cd concentrations were determined by the voltametric method (ASV), antioxidants and MDA were analyzed by UV/Vis spectrophotometry. The analysis showed that the average concentration of Pb in the seminal plasma was 0.23 ± 0.02 μg/mL, while its amount in the sperm cells was significantly higher (0.41 ± 0.07 μg/mL; P 0.05). The correlation analysis revealed that both heavy metals were significantly negatively correlated with MOT and PROG (P male fertility.

  11. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge

    Science.gov (United States)

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-09-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g-1 and 65 mg g-1, which were much more than those on the gelatin sponge (9.75 mg g-1 and 9.35 mg g-1). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg-1 and 5.69 mg kg-1, respectively, which were much lower than those (15.78 mg kg-1 and 27.98 mg kg-1) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals.

  12. Concentration of lead, cadmium, and mercury in tissues of European beaver (Castor fiber from the north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Giżejewska Aleksandra

    2014-03-01

    Full Text Available The aim of the study was to determine the concentrations of lead (Pb, cadmium (Cd, and mercury (Hg in the liver, kidneys, and muscles of European beavers (Castor fiber and thus to evaluate the degree of heavy metals contamination in Warmia and Mazury region in Poland. The study was conducted on free-living beavers captured in region of Warmia and Mazury during autumn 2011. Concentrations of the elements were determined by atomic absorption spectrometry. The presence of the metals was detected in all individual tissue samples. Mean Pb and Hg concentrations were relatively low. However, the high mean Cd level, especially in the kidneys (7.933 mg/kg and liver (0.880 mg/kg was demonstrated. Despite the fact that region of Warmia and Mazury is considered to be “ecologically clean”, the conducted studies indicate that systematic monitoring for the presence of heavy metals is necessary not only in industrialised but also in agricultural regions, as well as in natural ecosystems.

  13. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots

    Energy Technology Data Exchange (ETDEWEB)

    Vadas, Timothy M., E-mail: tvadas@umbc.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States); Ahner, Beth A., E-mail: baa7@cornell.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States)

    2009-08-15

    This study examines a new mechanism for the uptake of Pb and Cd into Brassica napus and Zea mays roots. During hydroponic experiments, the uptake of Pb and Cd was enhanced in the presence of cysteine and glutathione, whereas no or very low uptake was observed in EDTA and penicillamine controls. Uptake rates were also enhanced after pre-exposure to cysteine or glutathione and inhibited in the presence of vanadate, suggesting a biological mechanism of uptake. Increasing concentrations of glutathione in solution resulted in decreasing Pb uptake rates, indicating competition for transport between free-glutathione and Pb-glutathione species. Pb uptake in the presence of increasing cysteine concentrations resulted in decreased uptake initially but linearly increasing uptake at higher concentrations. Experimentation showed concentration dependent Pb uptake rates. We speculate that there are specific transporters for these thiol ligands and describe what barriers remain for application of this novel transport mechanism in chelator-assisted phytoremediation. - Cysteine and glutathione mediate the transport of lead and cadmium into plant roots.

  14. Comparative analysis on the effect of Lycopersicon esculentum (tomato) in reducing cadmium, mercury and lead accumulation in liver.

    Science.gov (United States)

    Nwokocha, Chukwuemeka R; Nwokocha, Magdalene I; Aneto, Imaria; Obi, Joshua; Udekweleze, Damian C; Olatunde, Bukola; Owu, Daniel U; Iwuala, Moses O

    2012-06-01

    L. esculentum (tomato) contain compounds with anti-oxidant and anti-inflammatory properties, able to synthesize metal chelating proteins. We examined the ability of fruit extract to protect against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. Rats were fed on tomato mixed with rat chow (10% w/w), while Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) was given in drinking water. Tomato was administered together with the metals (group 2), a week after exposure (group 3) or a week before metal exposure (group 4) for a period of six weeks. The metal accumulations in the liver were determined using AAS. There was a significant (Ptomato to Cd and Hg accumulation but not to Pb (PTomato reduces uptake while enhancing the elimination of these metals in a time dependent manner. The highest hepatoprotective effect was to Cd followed by Hg and least to Pb. Its administration is beneficial in reducing heavy metal accumulation in the liver. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. [Environmental concerns on geochemical mobility of lead, zinc and cadmium from zinc smelting areas: western Guizhou, China].

    Science.gov (United States)

    Lin, Wen-Jie; Xiao, Tang-Fu; Zhou, Wan-Chun; Ao, Zi-Qiang; Zhang, Jun-Fang

    2009-07-15

    Indigenous zinc smelting activity, widely spread in western Guizhou, China, had caused serious pollution of heavy metals of lead (Pb), zinc (Zn) and cadmium (Cd) in soil and water and posed risk to the local ecosystem. Geochemical distribution and mobility of Pb, Zn and Cd in soil, waste residue and waters were investigated in a small watershed in order to provide scientific base for the approach to pollution control and remediation. Concentrations of Pb, Zn and Cd in smelting residues averaged at 4 632 mg/kg, 8 968 mg/kg, and 58 mg/kg, respectively; whereas Pb 234 mg/kg, Zn 400 mg/kg and Cd 9.6 mg/kg in average in the soils around the smelting areas were measured. The sequential geochemical extraction test showed that Pb, Zn and Cd in the contaminated soils had high mobility and bioavailability for the metals, whereas smelting waste residues had lower mobility and bioavailability because their concentrations presented small percentages (all less than 0.2%) in the exchangeable fraction. Concentrations of Pb, Zn and Cd were high in the local stream water but low in groundwater. In the surface water, Pb, Zn and Cd were significantly concentrated in the suspended sediment. The results indicated that metal-rich erosion process of smelting residue and contaminated soil contributed to mobility of the metals into stream water.

  16. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam.

    Science.gov (United States)

    Bui, Anh T K; Nguyen, Ha T H; Nguyen, Minh N; Tran, Tuyet-Hanh T; Vu, Toan V; Nguyen, Chuyen H; Reynolds, Heather L

    2016-09-01

    The effect of environmental pollution on the safety of vegetable crops is a serious global public health issue. This study was conducted to assess heavy metal concentrations in soil, irrigation water, and 21 local vegetable species collected from four sites near mining activities and one control site in Northern Vietnam. Soils from vegetable fields in the mining areas were contaminated with cadmium (Cd), lead (Pb), and arsenic (As), while irrigation water was contaminated with Pb. Average concentrations of Pb and As in fresh vegetable samples collected at the four mining sites exceeded maximum levels (MLs) set by international food standards for Pb (70.6 % of vegetable samples) and As (44.1 % of vegetable samples), while average Cd concentrations in vegetables at all sites were below the MLs of 0.2. The average total target hazard quotient (TTHQ) across all vegetable species sampled was higher than the safety threshold of 1.0, indicating a health risk. Based on the weight of evidence, we find that cultivation of vegetables in the studied mining sites is an important risk contributor for local residents' health.

  17. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Directory of Open Access Journals (Sweden)

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  18. Estimation of calcium, magnesium, cadmium, and lead in biological samples from paralyzed quality control and production steel mill workers.

    Science.gov (United States)

    Afridi, Hassan Imran; Talpur, Farah Naz; Kazi, Tasneem Gul; Kazi, Naveed; Arain, Sadaf Sadia; Shah, Faheem

    2015-06-01

    The determination of trace and toxic metals in the biological samples of human beings is an important clinical screening procedure. The aim of the present study was to compare the level of essential trace and toxic elements cadmium (Cd), calcium (Ca), lead (Pb), and magnesium (Mg) in biological samples (whole blood, urine, and scalp hair) of male paralyzed production (PPW) and quality control workers (PQW) of a steel mill, age ranged (35-55 years). For comparison purposes, healthy age-matched exposed referent subjects (EC), working in steel mill and control subjects (NEC), who were not working in industries and lived far away from the industrial areas, were selected as control subjects. The concentrations of electrolytes and toxic elements in biological samples were measured by atomic absorption spectrometry after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked using certified reference materials. The results of this study showed that the mean values of Cd and Pb were significantly higher in scalp hair, blood, and urine samples of PPW and PQW as compared to NEC and EC (p < 0.001), whereas the concentrations of Ca and Mg were found to be lower in the scalp hair and blood but higher in the urine samples of PPW and PQW. The results show the need for immediate improvements in workplace, ventilation, and industrial hygiene practices.

  19. Rapid determination of lead and cadmium in sewage sludge samples using electrothermal atomic absorption spectrometry with slurry sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, I.; Vinas, P.; Arroyo-Cortez, J.; Hernandez-Cordoba, M. [Dept. of Analytical Chem., Univ. of Murcia (Spain)

    2000-08-01

    Lead and cadmium concentrations in sewage sludge samples are determined by suspending the ground samples in a solution containing 10% (v/v) concentrated hydrofluoric acid, 1% (v/v) concentrated nitric acid, 0.5% (m/v) dihydrogen ammonium phosphate and 0.1% (m/v) sodium hexametaphosphate. Aliquots of 20 {mu}L of these suspensions (4 mg/mL) are diluted to 1000 {mu}L with the same solution and then injected into the electrothermal atomizer. The drying stage is performed by programming a 400 C temperature, a ramp time of 20 s and a hold time of 15 s on the power supply of the atomizer. No ashing step is used. Platform atomization is carried out at 1600 and 1800 C for Pb and Cd, respectively. Calibration is performed using aqueous standards in the 5-75 and 0.2- 5 {mu}g/L Pb and Cd ranges, respectively. Results obtained for three certified reference materials and four samples demonstrate the reliability of the procedures described. (orig.)

  20. Predictors of mercury, lead, cadmium and antimony status in Norwegian never-pregnant women of fertile age.

    Science.gov (United States)

    Fløtre, Christina Herland; Varsi, Kristin; Helm, Thea; Bolann, Bjørn; Bjørke-Monsen, Anne-Lise

    2017-01-01

    The toxic trace elements mercury (Hg), lead (Pb), cadmium (Cd) and antimony (Sb) are transferred over the placenta to the fetus and secreted into the breastmilk. All four elements bioaccumulate in the body and as maternal age at delivery is increasing in industrialized countries, the burden of toxic trace elements in never-pregnant women of fertile age is of concern. Healthy, never-pregnant women aged 18 to 40 years (n = 158) were recruited between June 2012 and March 2015 in Bergen, Norway. Clinical data were collected and non-fasting venous blood samples were analyzed for whole blood Hg, Pb and Cd and serum Sb by ICP-MS and related to diet and life style factors. In a multiple linear regression model, increasing age was associated with higher levels of Hg and Sb, but diet and life style factors were more important predictors. Median whole blood Hg was increased by a factor of 70 in women who had fish for dinner ≥1/week, compared to women who rarely or never ate fish (pnever-pregnant women, age contributed to Hg and Sb levels, but diet and life style factors were stronger determinants of whole blood Hg, Pb, Cd and serum Sb levels. Continuous public actions are needed to reduce modifiable and preventable sources of potentially deleterious toxins to minimize the exposure in children and fertile women.

  1. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  2. Interaction of lead nitrate and cadmium chloride with Escherichia coli K-12 and Salmonella typhimurium global regulatory mutants.

    Science.gov (United States)

    LaRossa, R A; Smulski, D R; Van Dyk, T K

    1995-01-01

    To investigate the interactions of heavy metals with cells, a minimal medium for the growth of enteric bacteria using glycerol-2-phosphate as the sole phosphorus source was developed that avoided precipitation of Pb2+ with inorganic phosphate. Using this medium, spontaneous mutants of Escherichia coli resistant to addition of Pb(NO3)2 were isolated. Thirty-five independent mutants all conferred a low level of resistance. Disk diffusion assays on solid medium were used to survey the response of E. coli and Salmonella typhimurium mutants altered in global regulatory networks to Pb(NO3)2 and CdCl2. Strains bearing mutations in oxyR and rpoH were the most hypersensitive to these compounds. Based upon the response of strains completely devoid of isozymes needed to inactivate reactive oxygen species, this hypersensitivity to lead and cadmium is attributable to alteration in superoxide dismutase rather than catalase levels. Similar analysis of chaperone-defective mutants suggests that these metals damage proteins in vivo.

  3. The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead.

    Science.gov (United States)

    Tomaszewska, Ewa; Dobrowolski, Piotr; Winiarska-Mieczan, Anna; Kwiecień, Małgorzata; Tomczyk, Agnieszka; Muszyński, Siemowit

    2017-03-02

    Toxic elements such as cadmium (Cd) and lead (Pb) accumulate to the largest extent in bones. Rats at the age of 12 weeks were used to check whether tannic acid (TA) at the concentration of 0.5%, 1.0%, 1.5%. 2.0% or 2.5% would have a protective effect on the structure and properties of bones in the case of exposure to Cd and Pb (diet: 7mg Cd/kg and 50mg Pb/kg) for 12 weeks. The effects of administration of TA in Cd- and Pb-poisoned rats on bone mechanical and geometric properties, trabecular histomorphometry as well as the morphology of articular and growth cartilages were determined. All the rats co-exposured to Cd and Pb had enhanced heavy metals concentration in blood plasma and bone and reduced bone Ca content irrespective of the tannic acid administration. Heave metals given to adult rats did not influence the morphology and geometry of the femur, but reduced the mechanical endurance and histomorphometric parameters of trabecular bone irrespective of the treatment. A diet rich in TA improved articular cartilage and growth plate constituents in heavy metal-poisoned rats, as indicated by the measurement of the thickness of particular zones. It seems that a use of alimentary TA supplementation in adult rats can counteract, in a dose-dependent manner, only some of the destructive changes evoked by Cd and Pb excess. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Lead, cadmium and other metals in serum of pet dogs from an urban area of NW Poland.

    Science.gov (United States)

    Tomza-Marciniak, Agnieszka; Pilarczyk, Bogumiła; Bąkowska, Małgorzata; Ligocki, Marek; Gaik, Marcelina

    2012-12-01

    This study was designed to evaluate the degree of exposure of pet dogs from an urban area of NW Poland to selected metals, including toxic Cd and Pb. The study was conducted on a group of 48 healthy dogs. The serum concentration of the analysed elements followed the order Fe > Al > Zn > Cu > Mn > As > Sr > Pb > Cd > Cr > Ni > V. The presence of cadmium and lead was found in all the serum samples tested. The average contents of these elements were 0.309 and 0.489 μg/mL. The factors that played the greatest role in the intake of the analysed elements were diet and breed-dependent size of dogs. Small-sized dogs had higher concentrations of all elements compared with large dogs, with statistically significant differences noted for Cu, Pb, Cd and Sr. It was also found that dogs receiving commercial and mixed food had more metals in serum compared with dogs on homemade food (except strontium). The present study showed elevated concentrations of some heavy metals (Pb, Cd, Fe and Cu) in serum of pet dogs, which is probably due to the excess elemental load of this area. Given that no information is available on the concentrations of strontium, vanadium and aluminium in dogs, further research is necessary to determine certain reference values which would allow for an easier interpretation of results and evaluation of exposure to these elements.

  5. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, A. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto (N) (Colombia); Maldonado, J. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); De los Rios, A. [Museo Nacional de Ciencias Naturales(CSIC), Serrano 115 dpdo, 28006 Madrid (Spain); Solé, A. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Esteve, I., E-mail: isabel.esteve@uab.cat [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto (N) (Colombia); Museo Nacional de Ciencias Naturales(CSIC), Serrano 115 dpdo, 28006 Madrid (Spain)

    2013-09-15

    Highlights: •We studied the tolerance-resistance of phototrophic microorganisms to copper and lead. •We determined the capacity of consortia of microorganisms to sequester copper and lead. •CLSM-λscan is a technique for evaluating in vivo effect of metals on microorganisms. •SEM-EDX and TEM-EDX determined the capacity of microorganisms to sequester metals. -- Abstract: The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover

  6. Structural, optical and electrical properties of cadmium-doped lead chalcogenide (PbSe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shamshad A., E-mail: shamshad_phys@yahoo.co [Department of Physics, Faculty of Science, King Abdul Aziz University, Jeddah 21589 (Saudi Arabia); Khan, Zishan H. [Center of Nanotechnology, King Abdul Aziz University, Jeddah 21589 (Saudi Arabia); El-Sebaii, A.A.; Al-Marzouki, F.M.; Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdul Aziz University, Jeddah 21589 (Saudi Arabia)

    2010-08-15

    (PbSe){sub 100-x}Cd{sub x} thin films of thickness 3000 A with variable concentrations of Cd (x=5, 10, 15 and 20) were prepared by thermal evaporation on glass substrates at room temperature at a base pressure of 10{sup -6} Torr. The structural, optical and electrical properties of these films were studied. X-ray diffraction patterns were used to determine the crystal structure of the films. Films were of polycrystalline texture over the whole range of study. Optical constants of all films were determined by absorbance and reflection measurements in a wavelength range 400-1200 nm. Analysis of the optical absorption data showed that the rule of direct transitions predominates. The values of the absorption coefficient ({alpha}), extinction coefficient (k) and imaginary part of the dielectric constant were found to increase with increasing Cd content in lead chalcogenides while the refractive index (n) and real part of dielectric constant were increased with increasing Cd concentration up to 15% and then they decreased with 20% of Cd content in PbSe. These results were interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities and activation energies of the films were measured in the temperature range 298-398 K. It was observed that the dc conductivity increases at all temperatures with the increase of Cd content in lead chalcogenide system. The experimental data suggests that the conduction is due to the thermally assisted tunneling of the carriers in the localized states near the band edges. The activation energy and optical band gap were found to decrease with increasing Cd concentration in lead chalcogenide.

  7. End-stage renal disease and low level exposure to lead, cadmium and mercury; a population-based, prospective nested case-referent study in Sweden

    Science.gov (United States)

    2013-01-01

    Background Cadmium (Cd), lead (Pb), and mercury (Hg) cause toxicological renal effects, but the clinical relevance at low-level exposures in general populations is unclear. The objective of this study is to assess the risk of developing end-stage renal disease in relation to Cd, Pb, and Hg exposure. Methods A total of 118 cases who later in life developed end-stage renal disease, and 378 matched (sex, age, area, and time of blood sampling) referents were identified among participants in two population-based prospective cohorts (130,000 individuals). Cd, Pb, and Hg concentrations were determined in prospectively collected samples. Results Erythrocyte lead was associated with an increased risk of developing end-stage renal disease (mean in cases 76 μg/L; odds ratio (OR) 1.54 for an interquartile range increase, 95% confidence interval (CI) 1.18-2.00), while erythrocyte mercury was negatively associated (2.4 μg/L; OR 0.75 for an interquartile range increase, CI 0.56-0.99). For erythrocyte cadmium, the OR of developing end-stage renal disease was 1.15 for an interquartile range increase (CI 0.99-1.34; mean Ery-Cd among cases: 1.3 μg/L). The associations for erythrocyte lead and erythrocyte mercury, but not for erythrocyte cadmium, remained after adjusting for the other two metals, smoking, BMI, diabetes, and hypertension. Gender-specific analyses showed that men carried almost all of the erythrocyte lead and erythrocyte cadmium associated risks. Conclusions Erythrocyte lead is associated with end-stage renal disease but further studies are needed to evaluate causality. Gender-specific analyses suggest potential differences in susceptibility or in exposure biomarker reliability. PMID:23343055

  8. Estimation of Seasonal Risk Caused by the Intake of Lead, Mercury and Cadmium through Freshwater Fish Consumption from Urban Water Reservoirs in Arid Areas of Northern Mexico

    Directory of Open Access Journals (Sweden)

    Myrna Nevárez

    2015-02-01

    Full Text Available Bioavailability and hence bioaccumulation of heavy metals in fish species depends on seasonal conditions causing different risks levels to human health during the lifetime. Mercury, cadmium and lead contents in fish from Chihuahua (Mexico water reservoirs have been investigated to assess contamination levels and safety for consumers. Muscle samples of fish were collected across the seasons. Lead and cadmium were analyzed by inductively coupled plasma-optical emission spectrometry, and mercury by cold-vapor atomic absorption spectrometry. The highest concentrations of cadmium (0.235 mg/kg, mercury (0.744 mg/kg and lead (4.298 mg/kg exceeded the maximum levels set by European regulations and Codex Alimentarius. Lead concentrations found in fish from three water reservoirs also surpassed the limit of 1 mg/kg established by Mexican regulations. The provisional tolerable weekly intake (PTWI suggested by the World Health Organization for methyl mercury (1.6 µg/kg bw per week was exceeded in the spring season (1.94 µg/kg bw per week. This might put consumers at risk of mercury poisoning.

  9. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    Science.gov (United States)

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  11. Multi-technique quantitative analysis and socioeconomic considerations of lead, cadmium, and arsenic in children's toys and toy jewelry.

    Science.gov (United States)

    Hillyer, Margot M; Finch, Lauren E; Cerel, Alisha S; Dattelbaum, Jonathan D; Leopold, Michael C

    2014-08-01

    A wide spectrum and large number of children's toys and toy jewelry items were purchased from both bargain and retail vendors and analyzed for arsenic, cadmium, and lead metal content using multiple analytical techniques, including flame and furnace atomic absorption spectroscopy as well as X-ray fluorescence spectroscopy. Particularly dangerous for young children, metal concentrations in toys/toy jewelry were assessed for compliance with current Consumer Safety Product Commission (CPSC) regulations (F963-11). A conservative metric involving multiple analytical techniques was used to categorize compliance: one technique confirmation of metal in excess of CPSC limits indicated a "suspect" item while confirmation on two different techniques warranted a non-compliant designation. Sample matrix-based standard addition provided additional confirmation of non-compliant and suspect products. Results suggest that origin of purchase, rather than cost, is a significant factor in the risk assessment of these materials with 57% of toys/toy jewelry items from bargain stores non-compliant or suspect compared to only 15% from retail outlets and 13% if only low cost items from the retail stores are compared. While jewelry was found to be the most problematic product (73% of non-compliant/suspect samples), lead (45%) and arsenic (76%) were the most dominant toxins found in non-compliant/suspect samples. Using the greater Richmond area as a model, the discrepancy between bargain and retail children's products, along with growing numbers of bargain stores in low-income and urban areas, exemplifies an emerging socioeconomic public health issue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Relationship between the level of zinc, lead, cadmium, nickel and chromium in hair of people with diabetes

    Directory of Open Access Journals (Sweden)

    Tadayon F.

    2014-07-01

    Full Text Available It has long been believed that some metals possess many adverse health effects. Recently, certain elements have been identified as essential trace elements that play an important role in the genesis and progression of several diseases. Some toxic metals have also been shown to be elevated in biological samples of diabetes mellitus patients. The status of trace elements in diabetes patients is also influenced by their diet, drugs administered and, to a large extent, by environmental factors. Pollutants due to the presence of toxic metals in environment not only enter the body by breading, water, and foodstuff accumulates in hair, but they could be adsorbed directly on the hair from environment. The aim of present study was to investigate the relationship between the level of zinc, lead, cadmium, nickel and chromium in hair samples of diabetic women from Tehran (Iran. The study population consisted of 100 women between 30 to 70 years of age from Tehran. The hair samples were washed with 1% (w/v (DDTC, 0.1M HCL and deionized water. Afterwards, the hair sample dried in oven at 70° C for 5 hours and then digested the next day. Dry ashing digestion procedure was carried out. The concentration of elements was measured by means of an atomic absorption spectrophotometer. The statistical analysis confirmed that mean concentrations of lead and nickel did not differ significantly from the control group. The results of this study showed that the mean values of Cr and Zn were significantly decreased in scalp hair samples of diabetic patients as compared to control subjects. Hair Cd level was significantly higher in type 2 diabetic patients. Values of Pearson correlation coefficient showed positive correlation between these elements.

  13. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany.

    Science.gov (United States)

    Schlecht, Martin Thomas; Säumel, Ina

    2015-09-01

    Health effects by consuming urban garden products are discussed controversially due to high urban pollution loads. We sampled wild edible mushrooms of different habitats and commercial mushroom cultivars exposed to high traffic areas within Berlin, Germany. We determined the content of cadmium and lead in the fruiting bodies and analysed how the local setting shaped the concentration patterns. EU standards for cultivated mushrooms were exceeded by 86% of the wild mushroom samples for lead and by 54% for cadmium but not by mushroom cultures. We revealed significant differences in trace metal content depending on species, trophic status, habitat and local traffic burden. Higher overall traffic burden increased trace metal content in the biomass of wild mushrooms, whereas cultivated mushrooms exposed to inner city high traffic areas had significantly lower trace metal contents. Based on these we discuss the consequences for the consumption of mushrooms originating from urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Lead, cadmium and mercury in the blood of the blue-footed booby (Sula nebouxii) from the coast of Sinaloa, Gulf of California, Mexico.

    Science.gov (United States)

    Lerma, Miriam; Castillo-Guerrero, José Alfredo; Ruelas-Inzunza, Jorge; Fernández, Guillermo

    2016-09-15

    We used blood samples of the Blue-footed Booby, considering sex (female and male) and age-class (adult and chick) of individuals at different breeding stages during two breeding seasons (2010-2011 and 2011-2012) in Isla El Rancho, Sinaloa, to determine lead, cadmium, and mercury concentrations. Lead and cadmium concentrations were below our detection limit (0.05 and 0.36ppm, respectively). A higher concentration of mercury was found in early stages of breeding, likely related to changes in mercury environmental availability. Mercury concentrations in adults did not relate with their breeding output. Males and adults had higher mercury concentration than females and chicks. We provide information of temporal, sex and age-related variations in the concentrations of mercury in blood of the Blue-footed Booby. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town.

    Science.gov (United States)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-02-15

    This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both Pe-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β=0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β=0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β=0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Science.gov (United States)

    Zubair, Haseeb; Azim, Shafquat; Khan, Husain Yar; Ullah, Mohammad Fahad; Wu, Daocheng; Singh, Ajay Pratap; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach. PMID:27331811

  17. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  18. Chemical and Mineralogical Characterization of Arsenic, Lead, Chromium, and Cadmium in a Metal-contaminated Histosol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.; Schulze, D

    2010-01-01

    The chemical and mineralogical forms of As, Pb, Cr, and Cd were studied in a metal-contaminated organic soil (Histosol) that received runoff and seepage water from a site that was once occupied by a lead smelter. Soil samples were collected from different depth intervals during both wet and dry seasons and analyzed using bulk powder X-ray diffraction (XRD), synchrotron-based micro X-ray diffraction ({mu}-XRD), and micro X-ray fluorescence ({mu}-SXRF) spectroscopy. There was a clear pattern of mineral distribution with depth that indicated the presence of an intense redox gradient. The oxidized reddish brown surface layer (0-10 cm) was dominated by goethite ({alpha}-FeOOH) and poorly crystalline akaganeite ({beta}-FeOOH). Lead and arsenic were highly associated with these Fe oxides, possibly by forming inner-sphere surface complexes. Gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O) was abundant in the layer as well, particularly for samples collected during dry periods. Fe(II)-containing minerals, such as magnetite (Fe{sub 3}O{sub 4}) and siderite (FeCO{sub 3}), were identified in the intermediate layers (10-30 cm) where the reductive dissolution of Fe(III) oxides occurred. A number of high-temperature minerals, such as mullite (3Al{sub 2}O{sub 3} {center_dot} 2Si{sub 2}O), corundum ({alpha}-Al{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}), and wustite (FeO) were identified in the subsurface and they probably formed as a result of a burning event. Several sulfide minerals were identified in the most reduced layers at depths > 30 cm. They included realgar (AsS), alacranite (As{sub 4}S{sub 4}), galena (PbS), and sphalerite (Zn, Fe{sup 2+})S, and a series of Fe sulfides, including greigite (Fe{sup 2+}Fe{sub 2}{sup 3+} S{sub 4}), pyrrhotite (Fe{sub 1-x}S), mackinawite (FeS), marcasite (FeS{sub 2}), and pyrite (FeS{sub 2}). Most of these minerals occurred as almost pure phases in sub-millimeter aggregates and appeared to be secondary phases that had precipitated from

  19. Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete lumbricus rubellus

    NARCIS (Netherlands)

    Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.; Hankard, P.K.; Stubberud, H.E.; Kammenga, J.E.

    2003-01-01

    Demographic methods can translate toxicant effects on individuals into consequences for populations. To date few such studies have been conducted with longer-lived invertebrates. This is because full life-cycle experiments are difficult with such species. Here we report the effects of copper and

  20. Development of a predictive model for lead, cadmium and fluorine soil-water partition coefficients using sparse multiple linear regression analysis.

    Science.gov (United States)

    Nakamura, Kengo; Yasutaka, Tetsuo; Kuwatani, Tatsu; Komai, Takeshi

    2017-11-01

    In this study, we applied sparse multiple linear regression (SMLR) analysis to clarify the relationships between soil properties and adsorption characteristics for a range of soils across Japan and identify easily-obtained physical and chemical soil properties that could be used to predict K and n values of cadmium, lead and fluorine. A model was first constructed that can easily predict the K and n values from nine soil parameters (pH, cation exchange capacity, specific surface area, total carbon, soil organic matter from loss on ignition and water holding capacity, the ratio of sand, silt and clay). The K and n values of cadmium, lead and fluorine of 17 soil samples were used to verify the SMLR models by the root mean square error values obtained from 512 combinations of soil parameters. The SMLR analysis indicated that fluorine adsorption to soil may be associated with organic matter, whereas cadmium or lead adsorption to soil is more likely to be influenced by soil pH, IL. We found that an accurate K value can be predicted from more than three soil parameters for most soils. Approximately 65% of the predicted values were between 33 and 300% of their measured values for the K value; 76% of the predicted values were within ±30% of their measured values for the n value. Our findings suggest that adsorption properties of lead, cadmium and fluorine to soil can be predicted from the soil physical and chemical properties using the presented models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of phytoavailability of the cadmium, lead and chromium in soybean cultivated in the latossolo vermelho escuro, treated with commercial fertilizers

    OpenAIRE

    Gonçalves Junior Affonso Celso; Luchese Eduardo Bernardi; Lenzi Ervim

    2000-01-01

    The aim of this work was to evaluate the availability of the toxic heavy metals: cadmium, lead and chromium, in soybean, from some fertilizers. Five fertilizers and soluble salts contend Cd, Pb and Cr were used. All the treatments were accomplished in vases of 2,5 L with application of two doses, 50 and 100 kg.ha-1 for the fertilizers and 25 and 50 kg.ha-1 for the salts.

  2. Distributions of cadmium and lead in peri-urban wetlands as influenced by soil organic matter, clay fraction, and moisture content

    OpenAIRE

    Ayodele O. Adelana; Gabriel A. Oluwatosin; Celinah Agunbiade; Kayode S. Are; Olateju D. Adeyolanu

    2016-01-01

    Environmental distribution of cadmium (Cd) and lead (Pb) were studied in two wetlands (alluvial plain and inland depression) in Ibadan, Nigeria. Mean and median values of variables measured across the wetlands showed that soil properties varied considerably. Hydraulic conditions, soil organic matter (SOM), and particle size distribution contributed to the distribution of heavy metals recorded. Profile distribution of Cd and Pb maintained two patterns: (1) linear distribution pattern, where co...

  3. Blood levels of lead, cadmium, and mercury in the Korean population: Results from the Second Korean National Human Exposure and Bio-monitoring Examination

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ji-Young [Department of Public Health, Graduate School of Hanyang University, Hanyang University, Seoul (Korea, Republic of); Lee, Jinheon [Department of Environmental Education, Kongju National University (Korea, Republic of); Paek, Domyung [Department of Environmental Health, School of Public Health, Seoul National University, Seoul (Korea, Republic of); Lee, Jong-Tae, E-mail: jtlee@korea.ac.kr [Department of Environmental Health, College of Health Science, Korea University, San 1 Jeongreung-dong, Seongbuk-gu, Seoul, Korea 136-703 (Korea, Republic of)

    2009-08-15

    In Korea, there have been a number of efforts to measure levels of exposure to environmental pollutants among the population. This paper focuses on investigating the distribution of, extent of, and factors influencing the blood levels of lead, cadmium, and mercury in the Korean population, working from data obtained from the Second Korean National Human Exposure and Bio-monitoring Examination. To that end, blood metal concentrations were analyzed from a total of 2369 participants who were 18 years of age and older. The geometric mean concentrations and their 95% confidence intervals of metals in blood were found to be lead, 1.72 {mu}g/dL (95% CI, 1.68-1.76); cadmium, 1.02 {mu}g/L (95% CI, 1.00-1.05); and mercury, 3.80 {mu}g/L (95% CI, 3.66-3.93). Regression analyses indicate that the levels of metals in the blood are mainly influenced by gender, age, and the education levels of the participants. Current smoking status is also found to be a significant factor for increasing both lead and cadmium levels. Although our study, as the first nationwide survey of exposure to environmental pollutants in Korea, has value on its own, it should be expanded and extended in order to provide information on environmental exposure pathways and to watch for changes in the level of exposure to environmental pollutants among the population.

  4. Histopathology of liver and kidneys of wild living Mallards Anas platyrhynchos and Coots Fulica atra with considerable concentrations of lead and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Binkowski, Łukasz J., E-mail: ljbinkowski@gmail.com [Institute of Biology, Pedagogical University of Cracow, Podbrzezie 3, 31-054 Cracow (Poland); Sawicka-Kapusta, Katarzyna, E-mail: katarzyna.sawicka-kapusta@uj.edu.pl [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Cracow (Poland); Szarek, Józef, E-mail: szarek@uwm.edu.pl [Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn (Poland); Strzyżewska, Emilia, E-mail: emijel@wp.pl [Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn (Poland); Felsmann, Mariusz, E-mail: felsmann.mariusz@wp.pl [Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn (Poland)

    2013-04-15

    Concentrations of cadmium and lead were measured in liver and kidneys of Mallard (n = 60) and Coot (n = 50). Free living birds were collected by hunters in years 2006–2008 in the area of fishponds near Zator in southern Poland. Age group was determined according to the appearance of the plumage (Mallards) and iris color (Coot). Concentrations of metals were measured with ET-AA spectrometer. Among all birds specimens with negligible (n = 5) and high concentrations (Mallards n = 18 and Coots n = 17) of cadmium and lead were chosen for further analysis. Histopathological alterations were observed, ranging from circulatory disturbances, retrogressive changes, inflammations to leukocytic infiltration in liver and kidney. They dominated among birds with the highest concentrations of metals. The control group of birds was characterized by a very small number of mentioned lesions. Probably the higher cadmium and lead concentrations in tissues are co-factors in the development of lesions. - Highlights: ► High levels