WorldWideScience

Sample records for cadmium copper lead

  1. Assessment of Copper, Cadmium and Lead in Organical Matrix

    International Nuclear Information System (INIS)

    Gutierrez, Ariel

    2000-08-01

    In this report the electrochemical method of differential pulse anode voltametry redisolution voltametry is used to quantitative assessment of copper, cadmium and lead in solution. The methodology is described in the preparation of samples for measurement

  2. A study of copper, lead and cadmium speciation in some estuarine and coastal marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Batley, G E; Gardner, D

    1978-07-01

    The significance of the measured changes in heavy metal distribution for different sampled environments was ascertained. The potential of a heavy metal speciation scheme to reflect differences in marine metal distributions was evaluated in a study of soluble copper, lead, and cadmium speciation in water samples from Port Hacking Estuary and one coastal Pacific station in Australia. In all samples, the percentages of metals associated with colloidal matter were high40-60% of total copper, 45-75% of total lead, and 15-35% of total cadmium. (1 map, 26 references, 4 tables)

  3. Interaction of copper, magnesium, zinc, cadmium and lead formiates

    International Nuclear Information System (INIS)

    Gyunner, Eh.A.; Mel'nichenko, L.M.; Yakhkind, N.D.; Vel'mozhnyj, I.S.; Katseva, G.N.

    1979-01-01

    Measurements of the residual concentrations of the interacting ions and refraction index of liquid phases were useful in determining the precipitate composition in the system MA 2 -NaOH-H 2 O(A - -HCOO - ; M 2+ -Cu 2+ , Mg 2+ , Zn 2+ , Cd 2+ , Pb 2+ ). It is shown that in the system CdA 2 -NaOH-H 2 O containing as high as 40 mole% of NaOH the precipitate composition is approximately constant and corresponds to hydroxoformiate Cd(OH)A which is formed by the equation Cd 2+ +OH - +A - =Cd(OH)A. Further increase in the NaOH content leads to the formation of varying-composition precipitates and, at a NaOH content >=66.6 mole%, - to cadmium hydroxide

  4. Critical loads and excess loads of cadmium, copper and lead for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Bril, J.; Vries, de W.; Groenenberg, J.E.; Breeuwsma, A.

    1995-01-01

    Recently, concern has arisen about the impact of the dispersion of heavy metals in Europe. Therefore, a study (ESQUAD) was initiated to assess critical loads and steady-state concentrations of cadmium, copper and lead for European forest soils. The calculation methods used strongly resemble those

  5. Heavy metals (copper, cadmium, lead, mercury) in mute swans from Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Elvestad, K.; Karlog, O.; Clausen, B.

    1982-03-01

    During the severe winter of 1978-79, large numbers of mute swans died in coastal areas of Denmark. Of these, 2111 were collected for examination. The analyses confirm previous findings of relatively high copper levels in mute swans (mean for 178 livers was 2680 mg/kg dry weight (Dw) and for 110 kidneys 34 mg/kg Dw) (Table I, Fig. 1). The copper content was not related to sex or age (Table II). The highest liver levels of copper were found in swans from Western Jutland. Cadmium was found at the same relatively low levels as recorded for waterfowl elsewhere (mean for 178 livers was 12 mg/kg Dw, for 110 kidneys 24 mg/kg Dw) (Table I, Fig. 2). The cadmium content was not sex-related, but it increased with age (Table II). The mean mercury content (liver) was 1.4 mg/kg Dw in the 10 birds analysed (Table I). The mean lead content was 15 mg/kg Dw in the 178 livers analysed and 31 mg/kg Dw in 110 sternum (Table I and Fig. 3). The lead content was not sex-related. In sternum, but not in livers, it was related to age (Table II). One third of the swans were found lead-contaminated probably after ingestion of lead pellets. None of the swans carried high levels of both copper, cadmium, and lead (Table III).

  6. Kinetic investigation of myeloperoxidase upon interaction with copper, cadmium, and lead ions

    International Nuclear Information System (INIS)

    Shabani, M.; Ani, M.; Movahedian, A.; Samsam Shariat, Z. A.

    2011-01-01

    Myeloperoxidase, which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that Myeloperoxidase-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is of great importance. For clarifying some possible mechanism of the enzyme activity, kinetic investigations of Myeloperoxidase in the presence of Copper, Cadmium, and Lead ions were carried out in vitro. Methods: Myeloperoxidase was partially purified from human white blood cells using ion-exchange and gel-filtration chromatography techniques. Its activity was measured spectrophotometrically by using tetramethyl benzidine as substrate. Results: Purified enzyme had a specific activity of 21.7 U/mg protein with a purity index of about 0.71. Copper inhibited Myeloperoxidase activity progressively up to a concentration of 60 m M at which about 80% of inhibition achieved. The inhibition was non-competitive with respect to tetramethyl benzidine. An inhibitory constant (Ki) of about 19 m M was calculated from the slope of repot. Cadmium and Lead did not show any significant inhibitory effect on the enzyme activity. Conclusion: The results of the present study may indicate that there are some places on the enzyme and enzyme-substrate complex for Copper ions. Binding of Copper ions to these places result in conformational changes of the enzyme and thus, enzyme inhibition. This inhibitory effect of Copper on the enzyme activity might be considered as a regulatory mechanism on Myeloperoxidase activity.

  7. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2008-01-01

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd ∼ Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups

  8. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Chemical sensors in natural water: peculiarities of behaviour of chalcogenide glass electrodes for determination of copper, lead and cadmium ions

    International Nuclear Information System (INIS)

    Seleznev, B.L.; Legin, A.V.; Vlasov, Yu.G.

    1996-01-01

    Specific features of chemical sensors (chalcogenide glass and crystal ion-selective electrodes) behaviour have been studied to determine copper (2), lead, cadmium and fluorine in the course of in situ measurements, including long-term uninterrupted testing, for solving the problem of inspection over natural water contamination. 16 refs., 3 figs., 2 tabs

  10. Removal of Cadmium, Zinc, Lead and Copper by Sorption on Leaching Residue from Nickel Production

    Directory of Open Access Journals (Sweden)

    Miroslava Václavíková

    2006-12-01

    Full Text Available A leaching resudue from the nickel production (LRNi, was used to study the removal of selected bivalent cations (Cd, Pb, Cu and Zn from model aqueous solutions. Batch-type experiments have been performed in solutions with initial concentrations of heavy metals in the range of 20-400 mg.L-1 and the adsorbent dosage 2 g.L-1. All adsorption experiments were carried out at ambient temperature (22+1°C in orbital shaker. The experimental data were modeled with Langmuir and Freundlich isotherms. The relatively high uptake indicated that LRNi can adsorb considerable amounts of cadmium and zinc (maximum uptake capacity for cadmium: 25 mg/g at pH 7.2 and ca. 40 mg/g for zinc at pH 7. A significant uptake was also observed for copper and lead at pH 5.8 and 6 respectively, which was attributed to the precipitation of the respective insoluble hydroxides.

  11. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  12. Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea.

    Science.gov (United States)

    Kim, Yong-Dae; Eom, Sang-Yong; Yim, Dong-Hyuk; Kim, In-Soo; Won, Hee-Kwan; Park, Choong-Hee; Kim, Guen-Bae; Yu, Seung-Do; Choi, Byung-Sun; Park, Jung-Duck; Kim, Heon

    2016-04-01

    Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urinary arsenic (As) level did not decrease according to the distance from the smelter, regardless of gender and working history in smelters and mines. However, in subjects who had no occupational exposure to toxic metals, blood lead (Pb) and cadmium (Cd) and urinary Cd decreased according to the distance from the smelter, both in men and women. Additionally, the distance from the smelter was a determinant factor for a decrease of As, Pb, and Cd in multiple regression models, respectively. On the other hands, urinary Cd was a risk factor for renal tubular dysfunction in populations living near the smelter. These results suggest that Janghang copper smelter was a main contamination source of As, Pb, and Cd, and populations living near the smelter suffered some adverse health effects as a consequence. The local population should be advised to make efforts to reduce exposure to environmental contaminants, in order to minimize potential health effects, and to pay close attention to any health problems possibly related to toxic metal exposure.

  13. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  14. Assessment of cadmium, copper and lead in marine species of the atlantic and pacific oceans of Guatemala by voltametry techniques

    International Nuclear Information System (INIS)

    Chun, Evelyn

    2000-01-01

    In this thesis results of measurements of cooper, lead, and cadmium were made using voltametry. Three points in the pacific ocean and one in the atlantic were selected to obtain samples of fish and shrimp as species that are contaminated with toxic metals. The samples were treated by physical and chemical methods to turn soluble the metals and the chemical determination could be done using voltametry or differential polarography of pulse. The results shown that copper, lead and cadmium are present in the samples in traces level. The precision of measurements was verified measuring certified by the National Institute of Standard and Technology NIST of the Commerce Departmento of the United States

  15. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    International Nuclear Information System (INIS)

    Giannis, Apostolos; Nikolaou, Aris; Pentari, Despina; Gidarakos, Evangelos

    2009-01-01

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  16. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  17. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  18. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  19. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  20. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    International Nuclear Information System (INIS)

    Zhang, Long-Lian; Lu, Ling; Pan, Ya-Juan; Ding, Chun-Guang; Xu, Da-Yong; Huang, Chuan-Feng; Pan, Xing-Fu; Zheng, Wei

    2015-01-01

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established

  1. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  2. Evaluation of Lead, Cadmium, Zinc and Copper Levels in Blood, Hair and Teeth of Children

    International Nuclear Information System (INIS)

    Abdel -Latif, A.; EL- Bedewi, A.F.; Gad, A.; Mortada, A.A.

    2004-01-01

    There is a general agreement that children are a population that suffered increased risk of lead (Pb) and cadmium (Cd) exposure with adverse health effects. The aim of this study is to evaluate the environmental exposure to Pb and Cd in children living in Cairo since birth and their effects on other essential elements such as zinc (Zn) and copper (Cu). The relationships between these indicators for exposure and children characteristics such as sex, weight, height, blood pressure and smoking habits of parents were also estimated. Forty children (23 males and 17 females) aged 5-7 years had been included in this study. Levels of elements in the samples were determined using atomic absorption spectroscopy. The levels of Pb in blood (Pb-B), hair (Pb-H) and teeth (Pb-T) were 18.17 ± 5.35 fig/dl, 6.29 ± 2.07 fig/g and 8.07± 1.98 fig/g, respectively. Significant differences were observed between boys and girls as regards Pb-H (P<0.001)and Pb-T(P<0.05). The Cd levels were 0.603 ±0.08 μg/dl in blood (Cd-B), 0.933 ± 0.18 fig/g in hair (Cd-H) and 4.825± 0.57 μg/g in teeth (Cd-T). Boys showed higher significant increases in Cd-B than girls (P < 0.001). Concerning Zn, the levels were 57.43± 6.86 μg/dl,148.18± 11.76μg/g and 100.32± 20.28 μg/dl in blood (Zn-B), hair (Zn-H) and teeth(Zn-T),correspondingly Girls displayed significant higher levels of Zn-H than boys (P < 0.05). Regarding Cu in blood (Cu-B), in hair (Cu-H) and in teeth (Cu-T), they were 113.42± 9.89 μg/dl, 17.9±4.18 μg/g and 10.6± 3.04 μg/g, respectively. Girls showed significant higher levels of Cu-H than boys (P < 0.05). The passive smoking children exhibited significant increased levels of Pb, Cd and Cu in blood, hair and teeth when compared to the non-exposed children. On the other hand, passive smoking leads to decrease in Zn concentrations in the three studied samples. The proper mechanism of Zn affection was explained by interactions with Cd, Pb and Cu. Correlation between Pb and Cd with

  3. Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features.

    Science.gov (United States)

    dos Santos, Rodrigo W; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz K; Kreusch, Marianne; Pereira, Debora T; Costa, Giulia B; Simioni, Carmen; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-07-01

    Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50μM and 100μM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  5. Copper, Cadmium and Lead in superficial sediment, water and the fish Cyprinodon Dearborni, in two Lagoons of Venezuela

    International Nuclear Information System (INIS)

    Toledo, J.; Lemus, M.; Chung, K. S

    2000-01-01

    The concentration of copper, cadmium and lead in superficial sediment, water and the fish Cyprenodon dearborni was determined in two coastal lagoons of Sucre State, Venezuela. Chacopata lagoon is hyper saline while Los Patos Lagoon is hypo saline and receives significant waste water from Cumana city. Water, sediment and fish samples were collected in Frebruary 1998. In the laboratory, samples underwent acid digestion and were analysed by atomic absorption spectrophotometry. The mean values of the metals in C dearborni from the Chacopata lagoon were: 159.26± 210.68 μg/g for Cu, 44.71±45.58 μg/g for Cd, and 9.31±23.34 μg/g for Pb, while for Los Patos lagoon the mean values were: 64.88±16.30, 19.48± 5.81 and 22.85±20.00, respectively. In the water column, the metal concentration ranges were: 2.3-11.6, 3.9-5.4 and 21-32 mg/l for cooper, cadmium and lead, respectively. These results suggest that metal levels in sediment, water column and organisms in both lagoons do not differ, except for lead, even though only Los Patos receives waste water. (Author) [es

  6. Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Khayamian, T.; Benvidi, A.; Mirmomtaz, E.

    2006-01-01

    In this work, simultaneous determination of two groups of elements consisting of Pb(II)-Cd(II) and Cu(II)-Pb(II)-Cd(II) using adsorptive cathodic stripping voltammetry are described. The method is based on accumulation of these metal ions on mercury electrode using xylenol orange as a suitable complexing agent. The potential was scanned to the negative direction and the differential pulse stripping voltammograms were recorded. The instrumental and chemical factors were optimized using artificial neural network. The optimized conditions were obtained in pH of 5.5, xylenol orange concentration of 4.0 μM, accumulation potential of -0.50 V, accumulation time of 30 s, scan rate of 10 mV/s and pulse height of 70 mV. The relationship between the peak current versus concentration was linear over the range of 5.0-150.0 ng ml -1 for cadmium and 5.0-150.0 ng ml -1 for lead. The limits of detection were 0.98 and 1.18 ng ml -1 for lead and cadmium ions, respectively. In simultaneous determination of Cu(II), Pb(II) and Cd(II) there are inter-metallic interactions, which result a non-linear relationship between the peak current and the ionic concentration for each of the element. Therefore, an artificial neural network was used as the multivariate calibration method. The ANN was constructed with three neurons as the output layer for the simultaneous determination of the three elements. The constructed model was able to predict the concentration of the elements in the ranges of 1.0-50.0, 5.0-200.0 and 10.0-200.0 ng ml -1 , for Cu(II), Pb(II) and Cd(II), respectively

  7. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  8. Electrochemical determination of the levels of cadmium, copper and lead in polluted soil and plant samples from mining areas in Zamfara State, Nigeria

    Directory of Open Access Journals (Sweden)

    Modupe Mabel Ogunlesi

    2017-12-01

    Full Text Available The concentrations of lead, copper and cadmium in soil and plant samples collected from Abare and Dareta villages in Anka local government area of Zamfara State, Nigeria have been electrochemically determined. The study was carried out because of the high mortality of women and children under five, reported for these areas in June 2010. The cause was ascribed to the lead poisoning which has been related to the mining and processing of gold-containing ores. Linear sweep anodic stripping voltammetry technique was used with the glassy carbon working, Ag/AgCl reference and platinum auxiliary electrodes. Voltammetric peaks for lead, copper and cadmium that were observed at -495 mV, -19.4 mV and -675 mV, respectively, have formed a basis for construction of the corresponding calibration plots. The concentrations (in mg/kg of lead, copper and cadmium in the soil samples were found in the ranges of 18.99−26087.70, 2.96−584.60 and 0.00−1354.25, respectively. The concentration values for lead were far above already established USEPA (2002 and WHO (1996 maximum permissible limits for residential areas. The concentrations of lead, copper and cadmium in the food samples ranged between 5.70−79.91, 11.17−41.21 and 0.00−5.74 mg/kg. Several of these values are found well above the FAO/WHO limits of 0.1, 2 and 0.1 mg/kg, respectively. The results indicate that in addition to the lead poisoning, copper and cadmium poisoning may also be responsible for sudden and high mortality in this population.

  9. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  10. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    International Nuclear Information System (INIS)

    Lu, W.-B.; Shi, J.-J.; Wang, C.-H.; Chang, J.-S.

    2006-01-01

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH ≤ 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb

  11. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W.-B. [Department of Cosmetic Science, Chung Hwa College of Medical Technology, Tainan, Taiwan (China); Shi, J.-J. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Wang, C.-H. [Department of Biological Engineering, Yung Ta Institute of Technology and Commerce, Pingtung, Taiwan (China); Chang, J.-S. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China)]. E-mail: changjs@mail.ncku.edu.tw

    2006-06-30

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH {<=} 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb.

  12. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.

    Science.gov (United States)

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2010-10-01

    The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.

  13. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2004-01-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed

  14. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium

    International Nuclear Information System (INIS)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-01-01

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb , and Cd (0, 0.5, 5, 50 μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers. - Highlights: • Anti-oxidative feedback of Zostera japonica to the heavy metals Cu, Pb, and Cd was determined. • The endangered intertidal seagrass Z. japonica had a high metal accumulation potential. • Z. japonica might be a potential indicator in monitoring programs using SOD, CAT, GPX, POD and MDA as biomarkers.

  15. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H.; Ye, Z.H.; Wong, M.H

    2004-11-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.

  16. The direct determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium, lead and copper

    International Nuclear Information System (INIS)

    Lee, A.F.

    1981-01-01

    This report describes the development and application of a voltammetric procedure for the direct, simultaneous determination of cadmium, lead, and copper in three SAROC reference materials (carbonatite, magnesite, and quartz). The electrolyte was a mixture of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. No interferences were encountered from Fe(III), As(III), Sb(V), Tl(I), or In(III) at the concentrations present in the samples. Intermetallic interferences were eliminated by the use of thin mercury-film electrodes not less than 80nm thick. Limits of detection were determined by the degree to which the supporting electrolyte could be purified, and were estimated to be 10ng/g, 250ng/g, and 150ng/g for cadmium, lead, and copper respectively

  17. Determination of Manganese, Copper, Cadmium and Lead by FAAS after Solid-Phase Extraction of Their Phenylpiperazine Dithiocarbamate Complexes on Activated Carbon

    OpenAIRE

    CESUR, Hasan

    2014-01-01

    A solid-phase extraction method was developed for the pre-concentration of manganese, copper, cadmium and lead in water samples prior to their determination by flame atomic absorption spectrometry using phenylpiperazine dithiocarbamate as a new reagent. The optimum pre-concentration conditions have been investigated such as pH, volume of sample solution and the effects of some matrix elements. The obtained recovery was nearly 90 to 100, while the enrichment factor was 400 for metal s...

  18. Release of cadmium, copper and lead from urban soils of Copenhagen

    International Nuclear Information System (INIS)

    Li, Lijun; Holm, Peter E.; Marcussen, Helle; Bruun Hansen, Hans Christian

    2014-01-01

    We studied the bonding and release kinetics of Cd, Cu and Pb from different soils in the older metropolitan area of Copenhagen. Total Cd, Cu and Pb concentrations were elevated 5–27 times in the urban soils compared to an agricultural reference soil, with Cd and Pb in mainly mobilisable pools and Cu in strongly bound pools. The soils were subjected to accelerated leaching studies in Ca(NO 3 ) 2 or HNO 3 solutions resulting in release up to 78, 18 and 15% of total Cd, Cu and Pb soil concentrations over a period of 15 weeks. The relative initial Cd and Pb release rates increased 10 fold when pH decreased 2 and 3 units, respectively, while increases in Cu release rates were only seen at pH below 4. The total leachable Cu and Pb pools were higher in urban soils compared the agricultural reference soil but not for Cd. - Highlights: • Total Cd, Cu and Pb concentrations were elevated 5–27 times in the urban soils. • Cd and Pb are potentially available from acid leachable and reducible soil fractions. • Up to 78, 18 and 15% of total soil Cd, Cu and Pb could be acid leached. • Initial Cd and Pb release rates increase 10 fold with pH decrease of 2 and 3 units. • The mobility of Cu and Pb were higher in urban compared to agricultural soils. - Cadmium, Cu and Pb were studied in Copenhagen urban soils. These soils show similar initial relative release rates but higher total mobility of Cu and Pb compared to a reference soil

  19. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    Science.gov (United States)

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  20. Removal of cadmium, copper, lead and zinc from simulated industrial effluents using silica powder

    International Nuclear Information System (INIS)

    Javed, T.; Awan, A.; Arshad, M.; Khan, S.N.

    2013-01-01

    Rapid industrial development have led to the recognition and increasing understanding of interrelationship between pollution, public health and environment. Industrial development results in the generation of industrial effluents, and if untreated results in water, sediment and soil pollution. In Pakistan most of the industrial effluents are discharged into surrounding ecosystems without any treatment. Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health. Extensive efforts are being made around the world for the removal of heavy metal from industrial effluents. A laboratory scale study was designed for removal of Cd, Cu, Pb and Zn from simulated solutions at various weight of silica (0.5gm, 1gm, 2 gm, 3gm and 4 gm), Voltammeter was used to quantify the metals. Maximum removal of all metals was achieved with 4 gm of silica. Absorption of lead onto silic a was higher than other metals. (author)

  1. Determination of presence and quantification of cadmium, lead and copper in Nile tilapia (Oreochromis niloticus fillets obtained from three cold storage plants in the state of Parana, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Nobuhiro Tajiri

    2011-06-01

    Full Text Available Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.

  2. Factors affecting the simultaneous determination of copper, lead, cadmium, and zinc concentrations in human head hair using differential pulse anodic stripping voltammetry method

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    Conditions of analysis of copper, lead, cadmium and zinc content in human hair using differential pulse anodic stripping voltammetry (DPASV) and hanging mercury drop electrode (HMDE) have been established. Sample digestion using using the mixture HCI; H 2 O 2 ;HNO 3 in the ratio 2:1:40 by volume gave the best wet-ashing procedure. The peak currents and peak potentials of zinc, cadmium and lead, copper were maximum at pH 6-7 and 1-3 respectively, when excess H 2 O 2 was eliminated with subsequent addition of hydroxyamine hydrochloride. Matrix concentration effects were minimized by digesting weights not exceeding 50 mg per sample. The effect of selenium (IV) was negligible and was ignored. The detection limit of 0.0036 ng/cm 3 for Cd + 2 was obtained while the values for zinc, lead and copper were 0.0230, 0.0287 and 0.0269 ng/cm 3 respectively at the 95% confidence limit. The observed DPASV condition of analysis of these metals are useful for routine determination of the metals in human hair and should complement the conventional flame absorption spectrophotometry method. (author)

  3. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  4. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  5. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  6. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    Science.gov (United States)

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  7. Temporal evolution of cadmium, copper and lead concentration in the Venice Lagoon water in relation with the speciation and dissolved/particulate partition.

    Science.gov (United States)

    Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele

    2018-04-01

    In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  9. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  10. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  11. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  12. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.

    Science.gov (United States)

    del Carmen Hernández-Soriano, Maria; Peña, Aránzazu; Mingorance, M Dolores

    2011-10-01

    Accumulation of metals in soil at elevated concentrations causes risks to the environmental quality and human health for more than one hundred million people globally. The rate of metal release and the alteration of metal distribution in soil phases after soil washing with a sulfosuccinamate surfactant solution (Aerosol 22) were evaluated for four contaminated soils. Furthermore, a sequential extraction scheme was carried out using selective extractants (HAcO, NH(2)OH·HCl, H(2)O(2) + NH(4)AcO) to evaluate which metal species are extracted by A22 and the alteration in metal distribution upon surfactant-washing. Efficiency of A22 to remove metals varied among soils. The washing treatment released up to 50% of Cd, 40% of Cu, 20% of Pb and 12% of Zn, mainly from the soluble and reducible soil fractions, therefore, greatly reducing the fraction of metals readily available in soil. Metal speciation analysis for the solutions collected upon soil washing with Aerosol 22 further confirmed these results. Copper and lead in solution were mostly present as soluble complexes, while Cd and Zn were present as free ions. Besides, redistribution of metals in soil was observed upon washing. The ratios of Zn strongly retained in the soil matrix and Cd complexed with organic ligands increased. Lead was mobilized to more weakly retained forms, which indicates a high bioavailability of the remaining Pb in soil after washing. Comprehensive knowledge on chemical forms of metals present in soil allows a feasible assessment of the environmental impact of metals for a given scenario, as well as possible alteration of environmental conditions, and a valuable prediction for potential leaching and groundwater contamination.

  13. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Mendez, J.R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico)], E-mail: rene@ipicyt.edu.mx; Monroy-Zepeda, R.; Leyva-Ramos, E. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Diaz-Flores, P.E. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico); Shirai, K. [Universidad Autonoma Metropolitana, Biotechnology Department, Laboratory of Biopolymers, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico City (Mexico)

    2009-02-15

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10{sup 3} g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb{sup 2+}, Cd{sup 2+}, and Cu{sup 2+}, respectively, and it decreased for Pb{sup 2+} and Cd{sup 2+} in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. Finally, the preliminary desorption experiments of Cd{sup 2+} conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.

  14. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  15. Trace metal detection in Sibenik Bay, Croatia: Cadmium, Lead and Copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study

    International Nuclear Information System (INIS)

    Omanovic, D.; Kwokal, Z.; Goodwin, A.; Lawrence, A.; Banks, C.E.; Compton, R.G.; Komersky-Lovric, S.

    2006-01-01

    The vertical profiles of the concentration of reactive Mn and total concentrations of Cd, Pb, and Cu ions in the water column of the Sibenik Bay (Krka river estuary) were determined. The measured ranges of concentrations are: 60-1300 ng 1 -1f or Mn, 5-13 ng 1 -1 for Cd, 70-230 ng 1 -1f or Pb, and 375-840 ng 1 -1f or Cu. These values are comparable with the concentrations found in the unpolluted estuaries. The Krka river estuary is highly stratified, with the measured salinity gradient of 20% within a half meter of the freshwater-seawater interface . The main changes in the vertical profiles of the measured parameters occur in the freshwater-seawater interface: the temperature increases for 1 d ig C and the pH decreases for 0.1 unit, whereas the metal concentrations show different behaviour. Generally, Mn, Pb, and Cd ions show the increase of concentrations in the freshwater-seawater interface , while copper concentration profile indicates anthropogenic pollution in the brackish layer caused by agriculture activities and by the paint with copper basis used as an antifoulant biocide for the ships. UV-digested samples show an increase in manganese concenbations for at least 3.5 times comparing to non UV-digested. This suggests that in natural water manganese exists mainly in the form of inert complexes and as associated to particulate matter (about 70-80%). UV irradiation has no influence on the concentration of cadmium, while for lead an increase of 50% in the seawater layer is observed. The twofold increase of the copper concentration in the upper freshwater layer and at least the fourfold one in the seawater layer were measured in the UV-digested samples. These results show that copper is strongly bound to inert complexes, and that UV-digestion is necessary step in determination of the total metal concentrations in natural water samples. No significant increase of the metal concentrations in the deeper seawater layer was observed, indicating the absence of the

  16. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  17. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  18. Separation and Pre-concentration of Cadmium, Copper, Lead, Nickel and Zinc by Solid-Liquid Extraction of their Cocrystallized Naphthalene Dithizone Chelate in Saline Matrices

    Directory of Open Access Journals (Sweden)

    Costa Antônio C. Spínola

    2002-01-01

    Full Text Available A procedure for separation and pre-concentration of trace amounts of cadmium, copper, lead, nickel, and zinc in brine samples has been proposed. It is based on the adsorption of metal ions onto dithizone co-crystallized with microcrystalline naphthalene, in the pH range 8.5-9.1. Nitric acid is used to back-extract the cations from the solid phase, which are measured by ICP-OES. Various parameters, such as the effect of pH, stirring time, and amounts of solid phase, have been studied in detail, to optimize the conditions for the determination of trace amounts of Cd, Cu, Pb, Ni and Zn in synthetic brine samples. The limits of detection values expressed in mug L-1 are 44 (Zn, 11 (Ni, 30 (Cd, 47 (Pb and 11 (Cu. The precision of the procedure was determined by running 10 replicate samples, each one containing 250 mug L-1 of each element and the relative standard deviations were 2.71 % (Cd, 2.15 % (Cu, 1.53 % (Pb, 2.47 % (Ni, and 2.78 % (Zn. The accuracy of the procedure was confirmed by applying the analyte additions method and the results indicated that quantitative recoveries (superscript three 95 % were obtained.

  19. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  20. Use of Eichhornia crassipes modified Nano-chitosan as a biosorbent for lead (II), cadmium (II), and copper (II) ion removal from aqueous solutions

    Science.gov (United States)

    Alkaff, A. H.; Hendri, H.; Farozy, I. H.; Annisa, M.; Aritonang, R. P.

    2018-01-01

    Industrial waste in a major city poses a considerable threat to water environment from the accumulation of heavy metals. Additionally, uncontrolled growth of Eichhornia crassipes will also damage the water environment by lowering the levels of dissolved oxygen. Therefore, we conduct research to not only treat industrial waste in water but also reduce the population of E. crassipes in water. We made this biosorbent by mixing E. crassipes with nano-chitosan in various compositions. Its absorptivity was tested against single metal solutions of lead (II), cadmium (II), and copper (II) to get the best biosorbent composition. The chosen biosorbent then went through an adsorptivity test against a mixture of three solutions, with each test was carried at various pH. The best biosorbent composition is the mixture of 1 g of E. crassipes with 30 mL of nano-chitosan 0.01%, while adsorption tests in single or three metals solution show that the biosorbent performs better in neutral pH.

  1. Development of laboratory experiments serving as a basis for modeling the transport behaviour of arsenate, lead, cadmium and copper in water-saturated columns

    International Nuclear Information System (INIS)

    Hamer, K.

    1993-01-01

    The aim of the study was to work out laboratory experiments which might serve as a link between the bench and the application of CoTAM (Column Transport and Absorption Model) in real practice, thus thanking the development of this computer model which is to permit the simulation of the transport behaviour of heavy metals in porous aquilers. Efforts were made to find a process-oriented concept so as to provide a wide field of application. In developing the model and the laboratory experiments, this meant studying all the processes in groundwater separately as far as possible and avoiding case-specific sum parameters. The work centered on an examination of sorption processes during transport in groundwater, as this combination of processes is always found in natural porous aquifers. In water-saturated-column experiments on combinations of arenaceous quartz, feldspar, montmorillonite, goethite, peat and manganese oxide as the aquifer material, the transport of cadmium, copper, lead and arsenate was simulated on the bench scale. These case examples served to study sorption processes and their diverse kinetics as well as hydrodynamic processes. (orig./BBR) [de

  2. Lead and cadmium in food

    International Nuclear Information System (INIS)

    Gliesmann, S.; Kruse, H.; Kriews, M.; Mangels, H.

    1992-08-01

    The amounts of lead and cadmium produced and processed in these days are considerable. As a result, our environment is increasingly polluted by heavy metals and industrial installations, motor vehicles or incinerating plants appear to be among the main culprits here. Air and water are the media permitting the entry of heavy metals into our natural environment where they accumulate in the soil and then gradually migrate into the plants. Their further transport in the food constitutes the third step in the environmental spread of heavy metals. The consumption of muscle and organ meats, of vegetables, fruits, canned food and drinking water is unavoidably associated with some ingestion of lead and cadmium. The degree to which they are taken up and stored in different tissues is determined by absorption properties and the nutritional state of the organism. Cadmium tends to accumulate in the kidneys, lead is mainly stored in the bones. A continuously increasing uptake finally results in health injuries that range from unspecific complaints to damaged kidneys or bones and disorders of liver function. Children and elderly people are at a particular risk here. The level of food contamination is such that screening for heavy metals must be rigorously carried out once appropriate legal thresholds have been set, which ought to be based on proven detrimental effects of lead and cadmium on our health and also take account of infants and children or any other risk groups, where particular caution must be exercised. It should be pointed out that such thresholds have so far not been determined. (orig./MG) [de

  3. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability

    International Nuclear Information System (INIS)

    Horta-Puga, Guillermo; Cházaro-Olvera, Sergio; Winfield, Ignacio; Avila-Romero, Marisol; Moreno-Ramírez, Margarita

    2013-01-01

    Highlights: ► Cd, Cu, and Pb were determined in macroalgae from Veracruz Reefs, Gulf of Mexico. ► Mean concentrations were lower or similar to those from other coastal areas. ► Cd and Pb levels are controlled by fluvial discharge. ► Sediment scavenging also controls environmental trace metal levels. ► Pb environmental concentrations have been decreasing in the lasts two decades. -- Abstract: This study focused on the spatial distribution of trace metals in the Veracruz Reef System in the Southern Gulf of Mexico, and its variability in the early (July) and late (September) rainy season of 2008, by analyzing the concentration of Cd, Cu and Pb in benthic macroalgae. Mean concentrations are lower (Pb 295 ± 347 ng g −1 , Cd 17.9 ± 15.0 ng g −1 ), or similar (Cu 3.4 ± 4.5 μg g −1 ) to those reported from other coastal areas. Cd and Pb concentrations are influenced by the discharge of the Jamapa River, evidencing a fluvial control on coastal trace metal levels. Also, Cd and Cu concentrations were lower in the late rainy season, when there is a high load of suspended sediments derived from fluvial discharge, which probably adsorb dissolved metals decreasing their bioavailability. Pb concentrations have been decreasing in the last two decades in the SGM, after the banning of leaded-gasoline in the late 20th century

  4. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Abstract. Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, .... mining 50% morbid concentrations (MC50) and 50% inhibition .... WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper.

  5. Simultaneous Determination of Copper, Lead, and Cadmium Ions at a Mo6S9-xIx Nanowires Modified Glassy Carbon Electrode Using Differential Pulse Anodic Stripping Voltammetry

    International Nuclear Information System (INIS)

    Lin, Hong; Li, Meixian; Mihailovič, Dragan

    2015-01-01

    Highlights: • An electrochemical sensor based on Mo 6 S 9-x I x nanowires was constructed. • Mo 6 S 9-x I x nanowires can amplify electrochemical responses of heavy metal ions. • Mo 6 S 9-x I x nanowires can promote electron transfer. • Mo 6 S 9-x I x nanowires can accumulate metal ions due to large surface area. • The preparation of the sensor is simple, short-time and it does not require a special apparatus. -- ABSTRACT: A novel electrochemical sensor based on a new kind of nanomaterials Mo 6 S 9-x I x nanowires modified glassy carbon electrode (GCE) was constructed for simultaneous determination of cadmium(II), lead(II) and copper(II) using differential pulse anodic stripping voltammetry (DPASV). Various experimental parameters such as the modified amount, pH, deposition time and deposition potential were optimized. Under the optimal conditions, the stripping peak currents increase linearly with increasing concentrations of Cd(II), Pb(II) and Cu(II) ions in the ranges of 0.5∼150 μg · L −1 , 1.5∼450 μg · L −1 and 0.8~240 μg · μg·L −1 , 1.5∼450 μg·L −1 and 0.8∼240 μg·L −1 , respectively. And the limits of detection (S/N = 3) are estimated to be 0.10 μg · L −1 for Cd (II), 0.45 μg·L −1 for Pb(II) and 0.20 μg·L −1 for Cu(II), which are two orders of magnitude lower than those obtained at the unmodified electrodes. Most importantly, the sensor has been successfully applied to the determination of trace metal ions in the tap water samples. This developed electrochemical sensor exhibits high sensitivity, good stability and reproducibility

  6. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  7. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dust – concentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  9. Potentiometric stripping analysis of Cadmium and Lead in superficial waters

    International Nuclear Information System (INIS)

    Arias, Juan Miguel; Marciales Castiblanco, Clara

    2003-01-01

    This paper contains the implementation and validation of an analytical method for determining cadmium and lead in surface waters. This is a valuable tool for the description of actual conditions and qualitative and quantitative control of dangerous heavy metals discharge in water bodies. Test were run for selecting stripping potentiometry conditions that as indicated by results were: sample oxidant concentration 36.4 μg/L Hg 2+ stirring frequency 2400 rpm, electrolysis time 80 s., electrolysis potential -950 mV and pH of 2.0. Interference of Cu 2+ and Fe 2+ showed that copper concentrations larger than 150 μg/L and 500 μg/L negatively influence the analytical response for Cadmium and lead respectively; [Fe 3+ ] larger than 60 μg/L and 400 μg/L cause variations in cadmium and lead read content respectively. Linear concentration range for cadmium lies between 5 and 250 μg/L; for lead range goes from 10 to 250 μg/L. Precision expressed as repeatability for both system and method, exhibit good reproducibility with variation coefficients below 6%. Accuracy, assessed from recuperation, is strongly influenced by concentration level therefore standard addition is recommended for lead and cadmium quantification. Analysis performed on surface waters from Colombian Magdalena and Cauca rivers pointed lead and cadmium contents below detection limits

  10. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  11. Cloud point extraction of copper, lead, cadmium, and iron using 2,6-diamino-4-phenyl-1,3,5-triazine and nonionic surfactant, and their flame atomic absorption spectrometric determination in water and canned food samples.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2012-01-01

    A cloud point extraction procedure was optimized for the separation and preconcentration of lead(II), cadmium(II), copper(II), and iron(III) ions in various water and canned food samples. The metal ions formed complexes with 2,6-diamino-4-phenyl-1,3,5-triazine that were extracted by surfactant-rich phases in the nonionic surfactant Triton X-114. The surfactant-rich phase was diluted with 1 M HNO3 in methanol prior to its analysis by flame atomic absorption spectrometry. The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, surfactant concentration, temperature, and incubation time, were optimized. LOD values based on three times the SD of the blank (3Sb) were 0.38, 0.48, 1.33, and 1.85 microg/L for cadmium(II), copper(II), lead(II), and iron(III) ions, respectively. The precision (RSD) of the method was in the 1.86-3.06% range (n=7). Validation of the procedure was carried out by analysis of National Institute of Standards and Technology Standard Reference Material (NIST-SRM) 1568a Rice Flour and GBW 07605 Tea. The method was applied to water and canned food samples for determination of metal ions.

  12. Lead and cadmium content of spices

    Energy Technology Data Exchange (ETDEWEB)

    Bielig, H J; Dreyer, H; Askar, A

    1977-02-02

    The lead and cadmium content of various spices was determined by flameless atomic absorption (AAS). With the exception of one sample, the lead content was lower than 5 ppm, averaging a value of 2,2 ppm Pb. Thus, the maximum permissible level of 5 ppm Pb as recommended by different DIN standards, is not exceeded. The cadmium content was - except for one sample - lower than 0,5 ppm averaging a value of 0,23 ppm Cd. It can be assumed, that by spicing our dishes, the ingestion of lead and cadmium stays at a low level.

  13. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  14. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  15. [A comparative study of cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc in brown rice and fish by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectrometry].

    Science.gov (United States)

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-10-01

    A study was conducted to evaluate the applicability of ICP-MS techniques for determination of metals in brown rice and fish. Cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc were determined by this method. An open digestion with nitric acid (Method A) and a rapid open digestion with nitric acid and hydrochloric acid (Method B) were used to solubilize analytes in samples, and these procedures were followed by ICP-MS analysis. Recovery of certified elements from standard reference materials by Method A and Method B ranged from 92 to 110% except for mercury (70 to 100%). Analytical results of brown rice and fish samples obtained by this ICP-MS agreed with those obtained by atomic absorption spectrometry (AAS). The results of this study demonstrate that quadrupole ICP-MS provides precise and accurate measurements of the elements tested in brown rice and fish samples.

  16. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  17. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    International Nuclear Information System (INIS)

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  18. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  19. Effect of Cadmium, Copper and Lead on the Growth of Rice in the Coal Mining Region of Quang Ninh, Cam-Pha (Vietnam

    Directory of Open Access Journals (Sweden)

    J. Eduardo Marquez

    2018-05-01

    Full Text Available The goal of this study was to quantify the mobility and partitioning of trace elements originating from mine waste rocks derived from open pit coal extraction activities. The results showed that native rice plants were adapted to growing in metal contaminated soils, posing a severe health risk to local population. Sequential extraction procedures and bulk soil chemical analyses both suggest enrichment of Cd, Pb and Cu in rice paddy soils. Lead was shown to be evenly partitioned among all mineral and organic phases. Copper was associated with carbonates and organic matter. Smaller fractions of Pb and Cu were also bound to Fe and Mn oxides. Only 25% of Cd, 9% of Pb and 48% of Cu were associated with the exchangeable fraction, considered mobile and thus bioavailable for plant uptake. Effects of Cd, Cu and Pb on local Cam Pha Nep cai Hoa vang, and control Asia Italian rice, showed marked differences in growth. The local Vietnamese variety grew close to control values, even upon exposure to higher trace metal concentrations. Whereas the development of the control rice species was significantly affected by increasing trace metal concentrations. This result suggests toxic trace elements accumulation in the edible parts of crops.

  20. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.; Rastogi, S.C.

    1977-08-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analyzed for cadmium, chromium, copper, manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chromium and nickel levels were significantly higher (P < 0.01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P < 0.1). Nineteen percent of autoworkers were found to have an abnormally high blood level of carboxyhemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed.

  1. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  2. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 μCi 203 Pb (and/or 0.1 μCi 47 Ca), and 0.01 mM lead acetate (and/or mM CaCl 2 ) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma 47 Ca into the lumen but did not affect the transfer of plasma 203 Pb. Intravenous administration of 1,25(OH) 2 CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport

  3. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  4. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  5. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  6. Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique: Hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Es' haghi, Zarrin, E-mail: z_eshaghi@pnu.ac.i [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Khalili, Maryam; Khazaeifar, Ali [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Rounaghi, Gholam Hossein [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2011-03-30

    In the present work, a novel solid phase microextraction (SPME) technique using a hollow fiber-supported sol-gel combined with multi-walled carbon nanotubes, coupled with differential pulse anodic stripping voltammetry (DPASV) was employed in the simultaneous extraction and determination of lead, cadmium and copper in rice. In this technique, an innovative solid sorbent containing mixture of carbon nanotube and a composite microporous compound was developed by the sol-gel method via the reaction of tetraethylorthosilicate (TEOS) with 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS). The growth process was initiated in basic condition (pH 10-11). Afterward this sol was injected into a polypropylene hollow fiber segment for in situ gelation process. The main factors influencing the pre-concentration and extraction of the metal ions; pH of the aqueous feed solution, extraction time, aqueous feed volume, agitation speed, the role of carbon nanotube reinforcement (as-grown and functionalized MWCNT) and salting effect have been examined in detail. Under the optimized conditions, linear calibration curves were established for the concentration of Cd(II), Pb(II) and Cu(II) in the range of 0.05-500, 0.05-500 and 0.01-100 ng mL{sup -1}, respectively. Detection limits obtained in this way are, 0.01, 0.025 and 0.0073 ng mL{sup -1} for Cd(II), Pb(II) and Cu(II), respectively. The relative standard deviations (RSDs) were found to be less than 5% (n = 5, conc.: 1.0 ng mL{sup -1}).

  7. Influence of photochemical transformations upon optic-spectral characteristics of iodine cadmium crystals with copper dopant

    International Nuclear Information System (INIS)

    Novosad, S.S.

    2000-01-01

    The influence of photochemical transformations upon absorption. X-ray, photo- and thermostimulated luminescence of crystals CdI 2 :CuI, CdI 2 :CuI and CdI 2 :CuO grown by Stockbarger - Czochralski method has been studied. The photochemical reactions in crystals of iodine cadmium with the dopant of copper leads to reducing the intensity of X-ray, photo- and thermostimulated luminescence, the appearance of new luminescent centers is not observed

  8. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties

  9. Determination of cadmium, lead and mercury residual levels in meat ...

    African Journals Online (AJOL)

    Determination of cadmium, lead and mercury residual levels in meat of canned light tuna ( Katsuwonus pelamis and Thunnus albacares ) and fresh little tunny ( Euthynnus alletteratus ) in Libya. ... Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety.

  10. Lead, mercury, and cadmium in breast milk

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2015-10-01

    Full Text Available Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in order to meet increased calcium needs of the fetus in pregnant women and for the calcium needs in human milk during lactation. Human fetus and infants are susceptible to heavy metal toxicity passing through placenta and breastmilk due to rapid growth and development of organs and tissues, especially central nervous system. However most of the damage is already done by the time the infant is born. Intrauterine lead exposure can cause growth retardation, cognitive dysfunction, low IQ scores on ability tests, and low performance in school. Biological samples, such as umbilical cord blood and breast milk, and less commonly infant hair, are used for biomonitoring of intra-uterine exposure to these toxic chemicals. Although toxic metals and other pollutants may be excreted into breast milk, their effects are unknown and this topic is subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. In fact, the species-specific components present in breast milk protect infants against infections; promote immune and neurologic system development; and may decrease the risk of disease, including allergies, obesity, insulin-dependent diabetes mellitus, inflammatory bowel disease, and sudden infant death syndrome. Breastfeeding also facilitates maternal-infant attachment. The potential risk of environmental contaminants that can be transferred from

  11. Adsorption kinetics of cadmium and lead by chitosan

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... The lead and cadmium adsorption kinetic behavior could not be described using the Langmuir ... by chemical or by physical adsorption (Dean and Dixon,. 1992 ... phate fertilizer burning fuels, cement production, mining.

  12. Lead and cadmium content of some canned fruit and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B; Roughan, J A; Watters, E D

    1973-01-01

    The levels of lead and cadmium have been determined in samples of canned tomatoes, blackcurrants, grapefruit, pineapples, apricots, oranges, peaches, rhubarb, apples, prunes, damsons, plums, spinach and baked beans. The lead content of the 76 samples was in the range 0.10 to 3.90 parts/million, the mean being 0.56 parts/million; the range and mean of the cadmium content were 0.01 to 0.18 and 0.02 parts/million, respectively.

  13. Lead and cadmium in indoor air and the urban environment

    International Nuclear Information System (INIS)

    Komarnicki, Guenter J.K.

    2005-01-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM 10 , and PM 2.5 were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM 2.5 , both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals

  14. Study on damage of DNA in mice induced by mercury cadmium and/or lead

    International Nuclear Information System (INIS)

    Hu Xiaopan; Zhou Jianhua; Shi Xijing; Yan Liping

    2004-01-01

    Objective: To explore the joint injury actions of mercury, cadmium and/or lead on DNA in peripheral blood lymphocytes of mice. Methods: The blood specimens were obtained from mice at the 2 day after the peritoneal injections. DNA damages were determined by single cell gel electrophoresis (SCGE) and 3 H-TdR incorporation. Results: Acquired by SCGE technique, tail movement of DNA in mercury-cadmium-lead group was significantly greater than that in the single exposure group, the difference was significant too between mercury-cadmium group and cadmium group, cadmium-lead group and cadmium group. The results of 3 H-TdR incorporation showed: the values of DPM in mercury-cadmium group and cadmium-lead group were lower than that in the single exposure group and the value of DPM lowered more significantly after exposure to mercury-cadmium-lead. Conclusion: The combined effects of mercury, cadmium, lead on DNA damage are more significant. (author)

  15. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  16. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.

    Science.gov (United States)

    Prakash, Nagan; Latha, Srinivasan; Sudha, Persu N; Renganathan, N Gopalan

    2013-02-01

    The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan-clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k (1), for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu(2+) ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the

  17. Effect of Pyrolysis Temperature on Cadmium and Lead ...

    African Journals Online (AJOL)

    Consumption of tobacco as cigarette or otherwise has been demonstrated to contribute to air pollution via smoke generation resulting in adverse health effect. Therefore, this study investigates the effect of pyrolysis temperature on the concentration, distribution of cadmium and lead between ash residue and smoke in some ...

  18. Phytoextraction trials of cadmium and lead contaminated soil using ...

    African Journals Online (AJOL)

    Study on the phytoextraction of cadmium (Cd) and lead (Pb) artificially contaminated soil using 3 weed species (Ageratum conyzoides, Syndrella nodiflora and Cleome rutidosperma) was carried out at the Centre for Ecological Studies, University of Port Harcourt. A Randomized Complete Block Design consisting of 2 sets of ...

  19. Lead and cadmium in wild birds in southeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A. [Univ. of Murcia (Spain); Jimenez-Montalban, P. [Regional Environmental Agency, Murcia (Spain). Centro de Recuperacion de Fauna Silvestre El Valle

    1995-12-01

    The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (mean 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.

  20. Differents remediation methodos for lead, chromium and cadmium contaminated soils

    International Nuclear Information System (INIS)

    Trelles, G; Pochintesta, L; Ehrlich, S.

    2008-01-01

    The usage of phosphates in the remediation of plots contaminated with heavy metals appears to be a good strategy to lessen the danger of these metals. This study analyses the effect of the mobilization of: Lead, chromium and cadmium by utilizing diverse forms of phosphates in contaminated soils of three different origins with ph modification and without it

  1. The biosorption of cadmium and lead ions from aqueous Solution ...

    African Journals Online (AJOL)

    The biosorption potentiality of Musa paradisiaca stalk at removing cadmium and lead ions from aqueous solution was investigated. The biosorption experiment was carried out as a function of contact time, initial pH, initial metal ion concentration and biosorbent dose. Adsorption equilibria were obtained from batch ...

  2. Production of high purity granular metals: cadmium, zinc, lead

    Directory of Open Access Journals (Sweden)

    Shcherban A. P.

    2017-04-01

    Full Text Available Cadmium, zinc and lead are constituent components of many semiconductor compounds. The obtained high purity distillates and ingots are large-size elements, which is not always convenient to use, and thus require additional grinding, which does not always allow maintaining the purity of the original materials. For the growth of semiconductor and scintillation single crystals it is advisable to use "friable" granular high-purity distillates, which can be processed without the risk of contamination. For example, the European low-background experiment LUCIFER required more than 20 kg of high-purity granulated zinc, which was agreed to be supplied by NSC KIPT. This task was then extended to cadmium and lead. Motivated by these tasks, the authors of this paper propose complex processes of deep refining of cadmium, zinc and lead by vacuum distillation. A device producing granules has been developed. The process of granulation of high-purity metals is explored. The purity of produced granules for cadmium and zinc is >99,9999, and >99,9995% for lead granules. To prevent oxidation of metal granules during exposition to air, chemical methods of surface passivation were used. Organic solvent based on dimethylformamide used as a coolant improves the resistance of granules to atmospheric corrosion during the granulation of high purity Cd, Zn and Pb.

  3. Determination of lead and cadmium in biological materials

    International Nuclear Information System (INIS)

    Stoeppler, M.; Backhaus, F.; Dahl, R.; Hagedorn-Goetz, H.; Hilpert, K.; Klahre, P.; Rutzel, H.; Valenta, P.; Nuernberg, H.W.; Dumont, M.

    1975-01-01

    Sampling techniques and experience, and decomposition methods are presented. The processes used in flameless atomic absorption spectrometry (including the method using automatic insertion of samples), pulse polarography and isotope dilution mass spectrometry are described. Finally, the results of lead and cadmium measurements in bovine liver, blood, urine and hair samples are reported and discussed with a comparison of methods in some cases

  4. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.

    Science.gov (United States)

    Wu, Longhua; Li, Zhu; Han, Cunliang; Liu, Ling; Teng, Ying; Sun, Xianghui; Pan, Cheng; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2012-07-01

    A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.

  5. Study of Sage (Salvia officinalis L. Cultivation in Condition of Using Irrigated Water Polluted By Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Sh. Amirmoradi

    2017-01-01

    concentrations caused to antagonistic effects of cadmium and lead absorption into shoots of sage. In this experiment cadmium and lead concentrations of all treatments were too below to detect by atomic absorption apparatus. In this study cadmium and lead could not enter to essential oil. Researchers stated that high doses of cadmium, lead, zinc and copper concentrations could not enter into essential oil in sage. Some researchers showed that cadmium, lead and copper were not transferred to essential oil of peppermint, dill and basil during the essential oil distillation process. This finding confirmed that selection of medicinal plants as alternative plants with crops in cadmium and lead contaminated soils. Conclusion: Fresh and dry weight of Sage in the condition of contaminated soil by 100 mg/kg cadmium and 600 mg/kg lead were declined 4.61 and 5.16 % as compare as control, respectively. At the highest doses of cadmium and lead the essential oil of sage were dropped but, these heavy metals were not detected in essential oil. So, it is seems that this medicinal plant may be applied in the contaminated soil or in the condition of using of contaminated irrigated water by cadmium and lead.

  6. Interactions of cadmium with copper, zinc, and iron in different organs and tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Julshamn, K.; Utne, F.; Brackkan, O.R.

    1977-01-01

    The effect of cadmium on tissue concentrations of iron, zinc and copper was studied in male rats. Two littermate groups were fed a stock diet with or without a supplement of 100 ..mu..g cadmium per g. Every three weeks ten animals from each group were sampled and the liver, kidneys, heart, lungs, spleen, testes, muscle, fur, feces and urine were individually analyzed. Except for the fur, all the other organs showed highly significantly increased levels of cadmium when compared with the control group. The iron levels were significantly depressed in all organs. As the content in the feces remained unchanged and the urinary excretion showed an increase, it could be concluded that the cadmium supplementation resulted in a depletion of the body stores of iron. The zinc levels showed a significant increase in the liver and testes and a correspondingly significant decrease in the spleen. The levels of copper generally showed no significant changes.

  7. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium.

    NARCIS (Netherlands)

    Keltjens, W.G.; Beusichem, van M.L.

    1998-01-01

    Abstract

    Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil

  8. The role of microRNAs in copper and cadmium homeostasis

    International Nuclear Information System (INIS)

    Ding, Yan-Fei; Zhu, Cheng

    2009-01-01

    Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

  9. Remediation of lead and cadmium-contaminated soils.

    Science.gov (United States)

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  10. Mass spectrometry of submicrogram quantities of lead and cadmium

    International Nuclear Information System (INIS)

    Moraes, Noemia M.P. de; Kakazu, M.H.; Iyer, S.S.

    1980-01-01

    Isotope analyses of submicrogram quantities of lead and cadmium are carried out by single filament solid source mass spectrometry. Thermionic emission of Pb and Cd is enhanced using silica gel as an emitter. Details of the chemical and mass spectrometric techniques are described. The low blank levels are maintained by extra purification of the reagents. The applications of isotope ratios of Pb and Cd in environmental sciences and geochemistry are discussed. (Author) [pt

  11. Biochemical and Physiological Responses in Atlantic Salmon (Salmo salar) Following Dietary Exposure to Copper and Cadmium

    International Nuclear Information System (INIS)

    Lundebye, A.-K.; Berntssen, M.H.G.; Bonga, S.E.Wendelaar; Maage, A.

    1999-01-01

    Three experiments were conducted with Atlantic salmon (Salmo salar) to assess the effects of dietary exposure to copper and cadmium. The results presented here provide an overview, details of each experiment will be published in full elsewhere. In the first experiment, salmon parr exposed for four weeks to 35 and 700 mg Cu kg -1 diet had significantly elevated intestinal copper concentrations, cell proliferation (PCNA) and apoptosis rates compared to control fish. No differences were observed in gill or plasma copper concentrations among the groups. In contrast to the controls, the Cu exposed groups did not grow significantly during the exposure period. The second experiment (three months exposure) was conducted to assess the effects of dietary copper (control, 35, 500, 700, 900 or 1750 mg Cu kg -1 diet) on growth and feed utilization in salmon fingerlings. Growth was significantly reduced after three months exposure to dietary Cu concentrations above 500 mg kg -1 . Similarly, copper body burdens were significantly higher in fish exposed to elevated dietary copper concentrations (above 35 mg Cu kg -1 diet). In the third experiment, salmon parr were exposed to one of six dietary cadmium concentrations (0, 0.5, 5, 25, 125 or 250 mg Cd kg -1 diet) for four months. Cadmium accumulated in the liver>intestine>gills of exposed fish. Rates of apoptosis and cell proliferation in the intestine increased following exposure to dietary cadmium. Exposure to elevated concentrations of dietary cadmium had no effect on growth in salmon parr. Results from these studies indicate that cellular biomarkers have potential as early warning signs of negative effects on the overall fitness of an organism

  12. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  13. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  14. Copper and cadmium adsorption on pellets made from fired coal fly ash

    International Nuclear Information System (INIS)

    Papandreou, A.; Stournaras, C.J.; Panias, D.

    2007-01-01

    Studies on the utilization of low cost adsorbents for removal of heavy metals from wastewaters are gaining attention. Fired coal fly ash, a solid by-product that is produced in power plants worldwide in million of tonnes, has attracted researchers' interest. In this work, fly ash was shaped into pellets that have diameter in-between 3-8 mm, high relative porosity and very good mechanical strength. The pellets were used in adsorption experiments for the removal of copper and cadmium ions from aqueous solutions. The effect of agitation rate, equilibration time, pH of solution and initial metal concentration were studied. The adsorption of both cations follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 72 h. The experimental results for copper and cadmium adsorption fit well to a Langmuirian type isotherm. The calculated adsorption capacities of pellets for copper and cadmium were 20.92 and 18.98 mg/g, respectively. Desorption experiments were performed in several extraction media. The results showed that both metals were desorbed substantially from pellets under acidic solutions. For this reason, metal saturated pellets were encapsulated in concrete blocks synthesized from cement and raw pulverized fly ash in order to avoid metal desorption. The heavy metals immobilization after encapsulation in concrete blocks was tested through desorption tests in several aqueous media. The results showed that after 2 months in acidic media with pH 2.88 and 4.98 neither copper nor cadmium were desorbed thus indicating excellent stabilization of heavy metals in the concrete matrix. As a conclusion, the results showed that fly ash shaped into pellets could be considered as a potential adsorbent for the removal of copper and cadmium from wastewaters. Moreover, the paper proposes an efficient and simple stabilization process of the utilized adsorbents thus guarantying their safe disposal in industrial landfills and eliminating the risk of pollution

  15. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    OpenAIRE

    Nasser Sewalem; Soad Elfeky; Fatma El- Shintinawy

    2014-01-01

    Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower ( Helianthus annuus L.) plants as a potential phytoremediator to soils contaminated with cadmium (Cd) and lead (Pb) was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid pero...

  16. Analyses of soil cadmium and copper contents on a Domérien soil ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... 2Institut National de la Recherche Agronomique(INRA), Unité de ... The aim of this study is to determine the availability of cadmium (Cd) in the soil of Yonne district, ... Since cadmium (Cd) occurs in zinc (Zn), lead (Pb) and.

  17. Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

    Directory of Open Access Journals (Sweden)

    Ptumporn Muangphra

    2011-01-01

    Full Text Available To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd and lead (Pb for 48 h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50 μg cm−2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32 μg cm−2. For Cd at 0.75 μg cm−2, in the micronucleus test (detects chromosomal aberrations, significant increases (<.05 in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks, tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29 μg cm−2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects.

  18. Survey of mercury, cadmium and lead content of household batteries

    Energy Technology Data Exchange (ETDEWEB)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  19. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  20. Removal of cadmium and lead from water by activated carbon

    International Nuclear Information System (INIS)

    Abdel-Shafy, H.I.; Abdel-Sabour, M.F.; El-Gamal, I.M.; Abo-El-Wafa, O.

    1989-01-01

    Adsorption of cadmium and lead from water by carbon was studied using powdered or granular carbon. The studied water artificially contaminated by cadmium and lead amounting to 1 mg/dm 3 each. Batch as well as continuous system were carried out. The batch system was used to determine the time to maintain equilibrium followed by adsorption isotherm. Results obtained by using the powered carbon were found to match with Freundlich's equation where 1/n was 2.12 and 2.096 for Cd and Pb, respectively. Corresponding constants (K) were 4.2·10 -2 and 76.0·10 -2 . The amount of powdered activated carbon required to reduce residual Cd and Pb concentration to 0.01 mg/dm 3 for each are 26.98 and 2.86 mg, respectively. Similar batch system study was carried out for the granular carbon. When granular carbon was used in a continuous system, two different contact times, namely 10 to 20 min were examined. The results obtained showed that increasing the contact time from 10 to 20 min increases the metal to carbon removal efficiency. The overall results indicated that the breakthrough point for either Cd or Pb is the reverse of their adsorption as indicated by K value. (author). 22 refs, 10 figs, 7 tabs

  1. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  2. Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2012-01-01

    Full Text Available Arsenic, cadmium, lead, and mercury exposures are ubiquitous. These toxic elements have no physiological benefits, engendering interest in minimizing body burden. The physiological process of sweating has long been regarded as “cleansing” and of low risk. Reports of toxicant levels in sweat were sought in Medline, Embase, Toxline, Biosis, and AMED as well as reference lists and grey literature, from inception to March 22, 2011. Of 122 records identified, 24 were included in evidence synthesis. Populations, and sweat collection methods and concentrations varied widely. In individuals with higher exposure or body burden, sweat generally exceeded plasma or urine concentrations, and dermal could match or surpass urinary daily excretion. Arsenic dermal excretion was severalfold higher in arsenic-exposed individuals than in unexposed controls. Cadmium was more concentrated in sweat than in blood plasma. Sweat lead was associated with high-molecular-weight molecules, and in an interventional study, levels were higher with endurance compared with intensive exercise. Mercury levels normalized with repeated saunas in a case report. Sweating deserves consideration for toxic element detoxification. Research including appropriately sized trials is needed to establish safe, effective therapeutic protocols.

  3. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  4. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  5. Essential elements, cadmium, and lead in raw and pasteurized cow and goat milk

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Collins, W.F.; Williams, H.L.

    1985-08-01

    Fifteen essential elements plus cadmium and lead were determined in raw and pasteurized cow and goat milks by atomic absorption spectrophotometry. When results were compared on a wet weight basis, there were no significant differences between the raw and pasteurized milks except for cobalt, iron, and lead in goat milk. When copper in goat milk was expressed on a dry weight basis, there was a significant difference between raw and pasteurized milk. There were significantly higher amounts of cobalt, copper, iron, lead, magnesium, and phosphorus, wet weight basis, in pasteurized goat milk than in pasteurized cow milk. Significantly more nickel and sodium were in pasteurized cow milk. No difference in the content of chloride, calcium, potassium, and zinc was significant between the two milks. When dry weights of the two milks were compared, statistical differences were the same, except there was significantly more calcium and potassium in pasteurized cow milk than in pasteurized goat milk and there were no significant differences in the content of lead and phosphorus between the two milks. Percentages of the established and estimated recommended daily allowances show both cow and goat milk to be excellent sources of calcium, phosphorus, and potassium and fair sources of iron, magnesium, and sodium.

  6. Cadmium, lead and mercury exposure in non smoking pregnant women

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Callan, A.C.; Ramalingam, M.; Boyce, M.; Heyworth, J.; McCafferty, P.; Odland, J.Ø.

    2013-01-01

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  7. Cadmium, lead and mercury exposure in non smoking pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Callan, A. C.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J. Ø. [Department of Community Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2013-10-15

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  8. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  10. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  11. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Deacon, Claire M.; Mestrot, Adrien; Feldmann, Joerg; Jenkins, Paul; Baskaran, Christina; Meharg, Andrew A.

    2015-01-01

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes

  12. Interlaboratory Comparison of Lead and Cadmium in Blood, Urine, and Aqueous Solutions

    DEFF Research Database (Denmark)

    Paulev, P. E.; Solgaard, Per Bent; Tjell, Jens Christian

    1978-01-01

    Analysis for lead and cadmium in biological liquids (blood and urine) is difficult. Results of such analyses from five laboratories are compared for samples with known additions of lead and cadmium. The data, evaluated in terms of inter- and intralaboratory reproducibility and accuracy, suggest t...... that laboratories should voluntarily participate in quality control programs. Users of routine laboratories are advised to use their own quality control program......Analysis for lead and cadmium in biological liquids (blood and urine) is difficult. Results of such analyses from five laboratories are compared for samples with known additions of lead and cadmium. The data, evaluated in terms of inter- and intralaboratory reproducibility and accuracy, suggest...

  13. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Gareth J., E-mail: g.norton@abdn.ac.uk [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Deacon, Claire M. [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Mestrot, Adrien [Soil Science Group, Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern (Switzerland); Feldmann, Joerg [Department of Chemistry, School of Physical Sciences, University of Aberdeen, Meston Building, AB24 3UE (United Kingdom); Jenkins, Paul; Baskaran, Christina [Food Standards Agency, Aviation House, Kingsway, London WC2B 6NH (United Kingdom); Meharg, Andrew A. [Institute for Global Food Security, Queen' s University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN (United Kingdom)

    2015-11-15

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes.

  14. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Couture, Patrice; Rajender Kumar, Puja

    2003-01-01

    This study examined variations in resting oxygen consumption rate (ROCR), post-exercise oxygen consumption rate, relative scope for activity (RSA), liver and muscle aerobic and anaerobic capacities (using citrate synthase (CS) and lactate dehydrogenase, respectively, as indicators), and tissue biosynthetic capacities (using nucleoside diphosphate kinase (NDPK) as an indicator), in wild yellow perch from four lakes varying in copper (Cu) and cadmium (Cd) contamination. Liver Cu and Cd concentrations largely reflected environmental contamination and were positively correlated with liver protein concentrations and NDPK activities. Our results suggest that metal contamination leads to an upregulation of liver protein metabolism, presumably at least in part for the purpose of metal detoxification. In contrast, muscle NDPK activities decreased with increasing liver Cd concentrations and NDPK activities. There was a 25% decrease in ROCR for a doubling of liver Cu concentrations and a 42% decrease in RSA for a doubling of liver Cd concentrations in the range studied. Cu contamination was also associated with lower muscle CS activities. Our results support previous findings of impaired aerobic capacities in the muscle of metal-contaminated fish, and demonstrate that this impairment is also reflected in aerobic capacities of whole fish. The evidence presented suggests that mitochondria may be primary targets for inhibition by Cu, and that Cd may reduce gill respiratory capacity. Muscle aerobic and anaerobic capacities were inversely related. This work indicates that metal exposure of wild yellow perch leads to a wide range of disturbances in metabolic capacities

  15. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  16. Epigenetics, obesity and early-life cadmium or lead exposure.

    Science.gov (United States)

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  17. Localization and toxic effects of cadmium, copper, and uranium in Azolla

    International Nuclear Information System (INIS)

    Sela, M.; Tel-Or, E.; Fritz, E.; Huttermann, A.

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients

  18. Localization and toxic effects of cadmium, copper, and uranium in azolla.

    Science.gov (United States)

    Sela, M; Tel-Or, E; Fritz, E; Huttermann, A

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  19. Localization and Toxic Effects of Cadmium, Copper, and Uranium in Azolla1

    Science.gov (United States)

    Sela, Mordechai; Tel-Or, Elisha; Fritz, Eberhardt; Huttermann, Aloys

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients. Images Fig. 1 Fig. 2 Fig. 5 Fig. 7 PMID:16666274

  20. Fitoremediation for the Rehabilitation of Agricultural Land Contaminated by Cadmium and Copper

    OpenAIRE

    SA'AD, N. SUTRISNO; ARTANTI, R; DEWI, T

    2009-01-01

    There are many agricultural land using irrigation water from polluted industrial waste of heavy metals. Improvement of agricultural land quality using fitoremediation is needed to overcome heavy metal pollution. The reasearch aims to make remedies for paddy field polluted by cadmium (Cd) and copper (Cu) using plants that have the ability to absorb heavy metals in order to increase the quality of the land. This research was conducted at the screen house of Indonesian Agricultural Enviroment Re...

  1. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China

    International Nuclear Information System (INIS)

    Cai Qiu; Long Meili; Zhu Ming; Zhou Qingzhen; Zhang Ling; Liu Jie

    2009-01-01

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. - Cd and Pb from lead-zinc smelters contaminate the environment and accumulate in bovine tissues.

  2. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  3. Certification of lead and cadmium in three lyophilized blood materials. CRM No. 194, 195, 196

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, W B; Colinet, E; Griepink, B

    1985-01-01

    The report describes the work for certification of lead and cadmium in three lyophilized samples of bovine blood materials. Homogeneity and stability tests were carried out and are presented in the report. The concentrations of lead and cadmium in each sample of the reconstituted blood are certified. A variety of well established methods were used for certification of the materials.

  4. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  5. [Estimation of maximum acceptable concentration of lead and cadmium in plants and their medicinal preparations].

    Science.gov (United States)

    Zitkevicius, Virgilijus; Savickiene, Nijole; Abdrachmanovas, Olegas; Ryselis, Stanislovas; Masteiková, Rūta; Chalupova, Zuzana; Dagilyte, Audrone; Baranauskas, Algirdas

    2003-01-01

    Heavy metals (lead, cadmium) are possible dashes which quantity is defined by the limiting acceptable contents. Different drugs preparations: infusions, decoctions, tinctures, extracts, etc. are produced using medicinal plants. The objective of this research was to study the impurities of heavy metals (lead, cadmium) in medicinal plants and some drug preparations. We investigated liquid extracts of fruits Crataegus monogyna Jacq. and herbs of Echinacea purpurea Moench., tinctures--of herbs Leonurus cardiaca L. The raw materials were imported from Poland. Investigations were carried out in cooperation with the Laboratory of Antropogenic Factors of the Institute for Biomedical Research. Amounts of lead and cadmium were established after "dry" mineralisation using "Perkin-Elmer Zeeman/3030" model electrothermic atomic absorption spectrophotometer (ETG AAS/Zeeman). It was established that lead is absorbed most efficiently after estimation of absorption capacity of cellular fibers. About 10.73% of lead crosses tinctures and extracts, better cadmium--49.63%. Herbs of Leonurus cardiaca L. are the best in holding back lead and cadmium. About 14.5% of lead and cadmium crosses the tincture of herbs Leonurus cardiaca L. We estimated the factors of heavy metals (lead, cadmium) in the liquid extracts of Crataegus monogyna Jacq. and Echinacea purpurea Moench., tincture of Leonurus cardiaca L. after investigations of heavy metals (lead, cadmium) in drugs and preparations of it. The amounts of heavy metals (lead, cadmium) don't exceed the allowable norms in fruits of Crataegus monogyna Jacq., herbs of Leonurus cardiaca L. and Echinacea purpurea Moench. after estimation of lead and cadmium extraction factors, the maximum of acceptable daily intake and the quantity of drugs consumption in day.

  6. A Survey on Lead and Cadmium Content in Bread Produced in Yazd

    Directory of Open Access Journals (Sweden)

    B Hajimohammadi

    2015-11-01

    Full Text Available Introduction: Due to such complications of absorbing lead and cadmium heavy metals as kidney and liver dysfunction, vascular and heart diseases, anemia, digestive complications, nervous and skeletal problems and due to importance of bread as one of the most important food diets in Iran, especially in Yazd, the amount of lead and cadmium was evaluated in a variety of breads in Yazd. Methods: This descriptive cross-sectional study was carried out in 2013. Out of 69 bakeries, random probability proportionate sampling was applied in order to measure the heavy metals (lead and cadmium content in samples by ash and atomic absorption equipped with grafiti furnace(ETAAS with correction of background time. The study data were analyzed using SPSS (v.17 considering p-value of less than 0.05 as significant. Results: The average amounts of lead and cadmium were 99.05 and 7.49 mg/kg respectively. The amount of lead in Sangak bread was higher than that of other types of breads, whereas lead amounts of fantasy bread was reported less than those of other breads. Cadmium content demonstrated no significant differences among breads. Lead amount was higher in direct heat breads. Whereas, cadmium amount showed no significant differences between direct and indirect heat breads. It is worth mentioning that lead and cadmium content were reported lower than allowable levels in all samples. Conclusions: As the study results revealed and considering per capita consumption of bread in Iran (about 160 kg, it seems that weekly intake of lead and cadmium in Yazd is at an acceptable level, though possible risk of heavy metals(lead and cadmium need to decrease in order to prevent the probable risks of lead and cadmium heavy metals.

  7. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    Science.gov (United States)

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  8. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth

    Directory of Open Access Journals (Sweden)

    GORAN M. NIKOLIC

    2004-07-01

    Full Text Available Potentiometric stipping analysis (PSA was applied for the determination of lead and cadmium leaching from dental prosthetic materials and teeth. The soluble lead content in finished dental implants was found to be much lower than that of the individual components used for their preparation. Cadmium was not detected in dental implants and materials under the defined conditions. The soluble lead and cadmium content of teeth was slightly lower than the lead and cadmium content in whole teeth (w/w reported by other researchers, except in the case of a tooth with removed amalgam filling. The results of this work suggest that PSA may be a good method for lead and cadmium leaching studies for investigation of the biocompatibility of dental prosthetic materials.

  9. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  10. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  11. Flotation process of lead-, copper-, uranium-, and rare earth minerals

    International Nuclear Information System (INIS)

    Broman, P.G.; Kihlstedt, P.G.; Du Rietz, C.

    1977-01-01

    This invention relates to a flotation process of oxide or sulfide ores containing lead-, copper-, uranium-, and rare earth minerals applicating a new collector. Flotation is in the presence of a tertiary amine

  12. Physical, optical and structural studies of copper-doped lead ...

    Indian Academy of Sciences (India)

    2018-05-23

    May 23, 2018 ... Physical, optical and structural studies of copper-doped lead oxychloro ... to the borate glass system increases the Raman scattering cross-section by ..... equations (6) and (7), molar refraction and electronic polariz- ability are ...

  13. Cadmium, zinc, copper, sodium and potassium concentrations in rooster and turkey semen and their correlation.

    Science.gov (United States)

    Massanyi, Peter; Weis, Jan; Lukac, Norbert; Trandzik, Jozef; Bystricka, Judita

    2008-04-01

    The purpose of this study was to assess concentration of selected elements (cadmium, zinc, copper, sodium and potassium) in rooster and turkey semen and to find possible correlations between these elements. Samples were analyzed on the atomic absorption spectrophotometer. The analysis of cadmium showed that the concentration in rooster is 9.06 +/- 7.70 and in turkey 4.10 +/- 3.59 microg/mL. In zinc 5.25 +/- 1.96 microg/mL in rooster and 3.70 +/- 1.26 microg/mL in turkey were detected. Higher concentration of copper was found in rooster semen (6.79 +/- 6.42 microg/mL) in comparison with turkey semen (4.29 +/- 5.43 microg/mL). The level of sodium (3.96 +/- 1.02 microg/mL; 3.14 +/- 0.85 microg/mL) and potassium (2.88 +/- 0.65 microg/mL; 3.42 +/- 1.41 microg/mL) was very similar in both species. Correlation analysis detected high positive correlation between cadmium and zinc (r = 0.701) in rooster and between sodium and potassium (r = 0.899) in turkey semen.

  14. Associations of lead and cadmium with sex hormones in adult males

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, Jacob K., E-mail: jkreso2@uic.edu; Argos, Maria; Turyk, Mary E.

    2015-10-15

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999–2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood lead was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. - Highlights: • We used a nationally representative dataset (NHANES) and employed sample weighting. • We examined associations between lead and cadmium with sex-hormone levels. • Blood lead level was positively associated with serum testosterone and SHBG levels. • Blood cadmium level was positively associated with SHBG levels, modified by lead. • Diabetes, smoking and cadmium modified lead and testosterone association.

  15. Associations of lead and cadmium with sex hormones in adult males

    International Nuclear Information System (INIS)

    Kresovich, Jacob K.; Argos, Maria; Turyk, Mary E.

    2015-01-01

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999–2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood lead was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. - Highlights: • We used a nationally representative dataset (NHANES) and employed sample weighting. • We examined associations between lead and cadmium with sex-hormone levels. • Blood lead level was positively associated with serum testosterone and SHBG levels. • Blood cadmium level was positively associated with SHBG levels, modified by lead. • Diabetes, smoking and cadmium modified lead and testosterone association.

  16. Poplar response to cadmium and lead soil contamination.

    Science.gov (United States)

    Radojčić Redovniković, Ivana; De Marco, Alessandra; Proietti, Chiara; Hanousek, Karla; Sedak, Marija; Bilandžić, Nina; Jakovljević, Tamara

    2017-10-01

    An outdoor pot experiment was designed to study the potential of poplar (Populus nigra 'Italica') in phytoremediation of cadmium (Cd) and lead (Pb). Poplar was treated with a combination of different concentrations of Cd (w = 10, 25, 50mgkg -1 soil) and Pb (400, 800, 1200mgkg -1 soil) and several physiological and biochemical parameters were monitored including the accumulation and distribution of metals in different plant parts (leaf, stem, root). Simultaneously, the changes in the antioxidant system in roots and leaves were monitored to be able to follow synergistic effects of both heavy metals. Moreover, a statistical analysis based on the Random Forests Analysis (RFA) was performed in order to determine the most important predictors affecting growth and antioxidative machinery activities of poplar under heavy metal stress. The study demonstrated that tested poplar could be a good candidate for phytoextraction processes of Cd in moderately contaminated soils, while in heavily contaminated soil it could be only considered as a phytostabilisator. For Pb remediation only phytostabilisation process could be considered. By using RFA we pointed out that it is important to conduct the experiments in an outdoor space and include environmental conditions in order to study more realistic changes of growth parameters and accumulation and distribution of heavy metals. Also, to be able to better understand the interactions among previously mentioned parameters, it is important to conduct the experiments during prolonged time exposure., This is especially important for the long life cycle woody species. Copyright © 2017. Published by Elsevier Inc.

  17. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    Directory of Open Access Journals (Sweden)

    Nasser Sewalem

    2014-03-01

    Full Text Available Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower (Helianthus annuus L. plants as a potential phytoremediator to soils contaminated with cadmium (Cd and lead (Pb was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid peroxidation and membrane leakage with less affected photosynthesis in the leaves of the treated sunflower seedlings compared to the effects of Pb. The results presented here showed that a high amount of the total absorbed Cd (88.84% was accumulated in roots, while a high amount of the total absorbed Pb (71.39 was tranlocated to shoots of sunflower seedlings. Similar trends of Cd and Pb allocation between roots and shoots at the yield stage were recorded. We suggest here that sunflower plants may remediate Cd contaminated soils through phytostabilization, while may remediate Pb contaminated soils through phytoextraction. Finaly, the trace amounts of Cd and Pb that were accumulated in seeds recommends sunflower plants to be used safely and economically for cleaning up soils contaminated with Cd and/or Pb.

  18. Phytoextraction potential of cadmium and lead contamination using ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-12-31

    Dec 31, 2014 ... Vegetative growth, biomass, chemical content and uptake of cadmium (Cd) and ... Vegetative growth and chemical properties of M. azedarach are ..... MSc thesis. ... In: Environmental Science, Engineering and Technology.

  19. Transfer and accumulation of lead, zinc, cadmium and copper in ...

    African Journals Online (AJOL)

    TUOYO

    Ninety percent of the mining wastes come from the extraction of metals as sulfides (Moore and Luoma,. 1990). High concentrations of toxic metals (e.g. Cu, Zn,. Cd and Pb) are usually contained in these wastes (Levy et al., 1997). These metals can cause widespread contamination of soils and sediments in the vicinity of the.

  20. Effect of in vitro exposure to cadmium and copper on sea bass blood cells

    Directory of Open Access Journals (Sweden)

    Vincenzo Arizza

    2010-01-01

    Full Text Available Blood cells freshly collected from sea bass (Dicentrarchus labrax were exposed in vitro to different concentrations of cadmium (Cd and copper (Cu at 10-7 M, 10-5 M, 10-3 M, and exam- ined for neutral red retention capacity and for cell vitality with MTT assay. A relationship between heavy metal exposure and alteration in responses of blood cells in a dose-time-dependent was found. Our results showed that fish blood cells may constitute an interesting biological model for experimen- tal and applied toxicology, especially in the case of environmental pollution.

  1. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    Science.gov (United States)

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  2. The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment.

    Science.gov (United States)

    Szczygłowska, Marzena; Bodnar, Małgorzata; Namieśnik, Jacek; Konieczka, Piotr

    2014-01-01

    Lead and cadmium emitted from various anthropogenic sources have the ability to accumulate in tissues of living organisms. The phenomenon of accumulation of metals in the body is harmful and undesirable. The ability of plants to accumulate heavy metals from the individual elements of the environment has been used in biomonitoring of pollution. Leaves and roots of vegetables have particular predisposition for accumulating toxic metals such as lead and cadmium and therefore can be used for biomonitoring of the environment, mainly as a tool for assessing the extent of soil contamination. The article discusses information in the literature on entry paths of lead and cadmium into the body, toxic effects of lead and cadmium on the human organism, and the use of vegetables as a tool in the biomonitoring of heavy metals in different elements of the environment.

  3. Cadmium, lead, arsenic and selenium levels in patients with type 2 ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... Full Length Research Paper. Cadmium, lead, arsenic ... Increasing rates of type 2 diabetes in the developed and developing countries ... Measurement of height was taken in standing position using a stadiometer. The height ...

  4. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium.

    Science.gov (United States)

    Varun, Mayank; D'Souza, Rohan; Pratas, João; Paul, M S

    2011-07-01

    Root and shoot samples of Prosopis juliflora were assessed for their heavy metal content to evaluate the species as a green solution to decontaminate soils contaminated with lead and cadmium. The highest uptake of both the metals was observed in plants from industrial sites. Sites with more anthropogenic disturbance exhibited reduced chlorophyll levels, stunted growth, delayed and shortened reproductive phase. The ratios of lead and cadmium in leaves to lead and cadmium in soil were in the range of 0.62-1.46 and 0.55-1.71, respectively. Strong correlation between the degree of contamination and concentrations of lead and cadmium in plant samples identifies P. juliflora as an effective heavy metal remediator coupled with environmental stress.

  5. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid...

  6. Determination of lead and cadmium in urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vasil'eva, L.A.; Grinshtejn, I.L.; Gucher, Sh.; Izgi, B.

    2008-01-01

    The applicability of a DETATA sorbent to the preconcentration of lead and cadmium followed by the determination of these elements in urine using atomic absorption spectrometry with electrothermal atomization was demonstrated. After preconcentration by a factor of 10, the limits of detection were 0.01 and 0.2 μg/l for cadmium and lead, respectively. The accuracy of the results was supported by the analysis of Seronorm TM Trace Elements Urine Batch no.101021 [ru

  7. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    The toxicological evaluations of cadmium, iron, manganese, lead and zinc were carried out against albino mice model, Mus musculus. On the basis of 96 hrLC50 value, cadmium (0.47 mM) was found to be the most toxic followed by zinc (2.40 mM), lead (2.42 mM), iron (4.25 mM) and manganese (5.70 mM) was least toxic.

  8. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    Science.gov (United States)

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  9. Isolation and Identification of Cadmium and Lead Resistant Bacteria and their Bacterial Removal from Wastewater

    Directory of Open Access Journals (Sweden)

    Sanaz Abbasi

    2017-01-01

    Full Text Available Municipal and industrial effluents continually release into the environment heavy metals of a variety of physical and chemical forms and at various concentrations. Biological treatment processes have attracted a growing attention for the removal of heavy metals from these effluents. For the purposes of the present study, bacteria that are relatively resistant to heavy metals, such as cadmium and lead, were isolated from municipal waste and purified. They were then subjected to biochemical tests for identification and their minimum inhibitory concentrations were determined. Bacterial minimum inhibitory concentrations were initially measured in flasks containing 25, 50, 75, 100, 150, 300, 500, and 700 ppm of lead and cadmium before superior bacteria at populations of 108 CFU/ml were evaluated in terms of their ability to remove lead and cadmium at concentrations of 50, 100, 150, and 300 ppm from enriched municipal wastewater. Base on the results, Bacillus laterosporous and Yersinia pseudotuberculosis were identified as the resistant bacteria and the minimum lead and cadmium inhibitory concentrations for these bacteria were determined to be 300 and 500 ppm, respectively. Moreover, Bacillus laterosporous and Yersinia pseudotuberculosis recorded maximum removal efficiencies of around 50.6% and 45.7%, respectively, with wastewater containing 100 mg/l of lead and 36.18% and 21.41% in the case of cadmium from wastewater enriched with 100 mg/l of lead and 150 mg/l of cadmium.

  10. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  11. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-01-01

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola

  12. Copper and lead levels in two popular leafy vegetables grown ...

    African Journals Online (AJOL)

    A study was carried out to determine the levels of two heavy metals, Lead (Pb) and Copper (Cu), in two popular leafy vegetables grown around Morogoro Municipality in Tanzania. Vegetable samples of Pumpkin leaves ( Cucurbita moschata) and Chinese cabbage ( Brassica chinensis) were collected from three sites and ...

  13. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the ... and sediment were collected and trace element concentrations were measured with an ICP-MS. ..... Clay minerals are known to have high sorption affinities ..... sediment/water quality interaction with particular reference to the.

  14. Copper and Lead levels in two popular leafy vegetables grown ...

    African Journals Online (AJOL)

    forming an important source of vitamins and minerals ... and the interaction with other metals (Zurera et al., ... is an essential trace element in the functions of the ... The levels of Lead and Copper varied between the vegetable varieties and from ...

  15. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  16. Effects of cadmium on chick embryogenesis and some comparisons with lead

    Energy Technology Data Exchange (ETDEWEB)

    King, D W; Chen, D C.C.; Hsu, J L

    1978-07-01

    During the last ten years because of the severity of the problem of pollution and the part that heavy metals play in it we have been doing research on the effects of some heavy metals on chick embryogenesis in order to get a comparative study and to elucidate their mechanisms of action. Experiments were performed using 431 fertilized white Leghorn eggs to study the effect of cadmium on chick embryogenesis. Cadmium acetate at 0.015, 0.030, 0.045, 0.060, 0.12 or 0.24 mg/egg and lead acetate at 0.02, 0.04 or 0.075 mg/egg was injected in ovo on the fourth day of incubation. The embryos were taken out on the 19th day and examined for gross defects. Electrocardiograms were recorded on some embryos. Hemoglobin determinations were done on others. The changes in plasma delta-aminolevulinic acid dehydrase (ALAD) of the embryos due to cadmium and lead acetate were also determined. It was found that the LD50 of cadmium acetate was close to 0.045 mg. The highest incidence of abnormality, 30.9% of the surviving embryos, appeared in the 0.030 mg group although malformed embryos were also found in the 0.015, 0.045 and 0.060 mg groups. The most common malformations occurred in the liver (58%) and the cardiovascular system, with edema totalling over 90%. Lesser abnormalities were observed in the limbs. Lead acetate affected ALAD more than cadmium acetate. There was no significant difference on hemoglobin concentration or EKG between the distilled water control and either the cadmium or lead treated groups. Thus, embryolethality, embryotoxicity, congenital abnormalities and changes in ALAD were all observed in the cadmium-treated chick embryos although lead acetate seemed to inhibit the ALAD activity more effectively than cadmium acetate.

  17. Association of lead and cadmium exposure with frailty in US older adults

    Energy Technology Data Exchange (ETDEWEB)

    García-Esquinas, Esther, E-mail: esthergge@gmail.com [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Pérez-Gómez, Beatriz [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Environmental Epidemiology and Cancer Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid (Spain); Artalejo, Fernando Rodríguez [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2015-02-15

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  18. Association of lead and cadmium exposure with frailty in US older adults

    International Nuclear Information System (INIS)

    García-Esquinas, Esther; Navas-Acien, Ana; Pérez-Gómez, Beatriz; Artalejo, Fernando Rodríguez

    2015-01-01

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  19. Contamination of urban garden soils with copper, boron, and lead

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D

    1967-04-01

    Spectrochemical analysis of representative samples of topsoil from urban gardens and from individual fields in rural areas indicates that the level of total copper, EDTA-extractable copper, water-soluble boron, and acetic-acid extractable lead are markedly enhanced in urban areas. No significant differences were discovered between levels of these elements in soils from built-up areas in small towns and large conurbations. These results suggest the possibility of general enhancement of the trace element content of plants grown in private gardens in built-up areas.

  20. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District.

    Science.gov (United States)

    Beyer, W Nelson; Casteel, Stan W; Friedrichs, Kristen R; Gramlich, Eric; Houseright, Ruth A; Nichols, John R; Karouna-Renier, Natalie K; Kim, Dae Young; Rangen, Kathleen L; Rattner, Barnett A; Schultz, Sandra L

    2018-01-29

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  1. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District

    Science.gov (United States)

    Beyer, W. Nelson; Casteel, Stan W.; Friedrichs, Kristen R.; Gramlich, Eric; Houseright, Ruth A.; Nichols, John W.; Karouna-Renier, Natalie; Kim, Dae Young; Rangen, Kathleen; Rattner, Barnett A.; Schultz, Sandra

    2018-01-01

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  2. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...

  3. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus)

    Czech Academy of Sciences Publication Activity Database

    Dočekalová, H.; Škarpa, P.; Dočekal, Bohumil

    2015-01-01

    Roč. 134, March (2015), s. 153-157 ISSN 0039-9140 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : radish * cadmium * copper * DGT technique * bioaccesibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.035, year: 2015

  4. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44 ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  5. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Lemière, Sébastien [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Hanotel, Julie; Lescuyer, Arlette [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Demuynck, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Bodart, Jean-François [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); and others

    2016-08-15

    Highlights: • First embryonic steps were studied. • Fertilization success was impacted by cadmium exposures. • Oocytes were most affected instead of spermatozoa by cadmium exposures. • First embryonic cleavages were slown down or stopped by cadmium exposures. • Lead exposures did not affected fertilization and segmentation. - Abstract: Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  6. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: A public health concern?

    International Nuclear Information System (INIS)

    Orisakwe, Orish Ebere; Nduka, John Kanayochukwu

    2009-01-01

    Fifty different pediatric syrups were randomly sampled from patent medicine stores and pharmaceutical shops within Awka, in Anambra State between November 2007 and May 2008. Syrups were ashed before digestion using conc. aqua regia, HCl:HNO 3 (3:1) and lead and cadmium were assayed with AAS 205A. Results revealed that 60 and 98% of the sample size had lead and cadmium respectively. The lead levels ranged from 0.01 in chloroquine to 1.08 mg/l in magcid suspension. The highest level of cadmium was seen in magcid suspension with concentration of 2.45 mg/l while lowest concentration of 0.01 in emzolyn and colipan. About 41.2% of the locally made syrup had none detectable levels of lead while all the syrup had detectable levels of cadmium. Lead levels ranged from 0.01 mg/l in cadiphen manufactured in Dholka, India to 0.09 in maxiquine made in England. About 68.8% of the imported syrups of the imported syrups had non detectable levels of lead. Chloramphenicol and zentel albendazole syrups had 0.60 and 0.88 mg/l of cadmium respectively. Bellis cough syrup showed the lowest level (0.01 mg/l) of cadmium. Only erythromycin suspension representing 6.3% had non detectable level of cadmium of the imported syrups. Due to the Cd and Pb levels found, we suggest that the behaviour scenario (here, self administration without medical assistance) should be properly taken under control. Along with this, contamination sources or vulnerable practices during syrups preparation should be also assessed in a tiered approach, towards the minimization of noxious presence in syrups and the promotion of quality of Nigerian-made products.

  7. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: A public health concern?

    Energy Technology Data Exchange (ETDEWEB)

    Orisakwe, Orish Ebere, E-mail: eorish@aol.com [Toxicology Unit, Department of Pharmacology,College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Nduka, John Kanayochukwu [Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, P.M.B. 5025, Awka Anambra State (Nigeria)

    2009-11-15

    Fifty different pediatric syrups were randomly sampled from patent medicine stores and pharmaceutical shops within Awka, in Anambra State between November 2007 and May 2008. Syrups were ashed before digestion using conc. aqua regia, HCl:HNO{sub 3} (3:1) and lead and cadmium were assayed with AAS 205A. Results revealed that 60 and 98% of the sample size had lead and cadmium respectively. The lead levels ranged from 0.01 in chloroquine to 1.08 mg/l in magcid suspension. The highest level of cadmium was seen in magcid suspension with concentration of 2.45 mg/l while lowest concentration of 0.01 in emzolyn and colipan. About 41.2% of the locally made syrup had none detectable levels of lead while all the syrup had detectable levels of cadmium. Lead levels ranged from 0.01 mg/l in cadiphen manufactured in Dholka, India to 0.09 in maxiquine made in England. About 68.8% of the imported syrups of the imported syrups had non detectable levels of lead. Chloramphenicol and zentel albendazole syrups had 0.60 and 0.88 mg/l of cadmium respectively. Bellis cough syrup showed the lowest level (0.01 mg/l) of cadmium. Only erythromycin suspension representing 6.3% had non detectable level of cadmium of the imported syrups. Due to the Cd and Pb levels found, we suggest that the behaviour scenario (here, self administration without medical assistance) should be properly taken under control. Along with this, contamination sources or vulnerable practices during syrups preparation should be also assessed in a tiered approach, towards the minimization of noxious presence in syrups and the promotion of quality of Nigerian-made products.

  8. The determination of levels of mercury, cadmium and lead in water samples from Naivasha area, Kenya

    International Nuclear Information System (INIS)

    Muigai, P.G.; Kamau, G.N.; Kinyua, A.M.

    1995-01-01

    The analysis of mercury, cadmium and lead in water samples from different environments (Lake Naivasha, River Malewa boreholes and Olkaria geothermal wells) in Naivasha region and their possible origins are reported. The levels of mercury and lead in the water samples were above the maximum permissible limits of 0.005 mg/1 and 0.1 mg/1 respectively, as stipulated by the WHO. On the other hand, 83.3% of the samples had cadmium levels above the maximum permissible limit of 0.01mg/1 in drinking water by WHO. The mercury and lead levels were also higher than those previously obtained from different regions of Kenya, while those for cadmium were within the corresponding range. Possible sources of elevated values were the geology of the surrounding area, sewage treatment works, use of phosphate rock fertilizers and lead fuels.(author)

  9. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Vimala, R., E-mail: vimararagu@yahoo.co.in [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India); Das, Nilanjana [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India)

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q{sub max} 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q{sub max} 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  10. Voltammetric determination of cadmium and lead in human hair as healthy indicator

    International Nuclear Information System (INIS)

    Nasser, H.; Kherbik, R.

    2010-01-01

    Cadmium and Lead level were examined in hair of patients and healthy donors. Hair sample were collected and analyzed for their contents of the trace metals (Cd, Pb) by Voltammetry. It was found that the existence of Cadmium and Lead in the hair was significantly higher in the patients (19.7 μg/g - 38.2 μg/g) for lead, (0.4 μg/g - 2.1 μg/g) for cadmium. On the other hand, the healthy had lower concentration (7.8 μg/g - 8.8 μg/g) for Lead, (0.2 μg/g - 0.3 μg/g) for cadmium. In this study, hairs were analyzed to find the effect these elements on health. Correlation coefficients between the levels of the elements in hair found in this study showed that hair is a good indicator of Cadmium and Lead in the hair. The method is applicable as a tool for monitoring pollution level of groups.(author)

  11. Cadmium-containing waste and recycling possibilities

    International Nuclear Information System (INIS)

    Wiegand, V.; Rauhut, A.

    1981-01-01

    To begin with, the processes of cadmium production from zinc ores in smelting plants or from intermediates of other metal works are described. A considerable amount of the cadmium is obtained in the recycling process in zinc, lead, and copper works. The way of the cadmium-containing intermediaries, processing, enrichment, and disposal of cadmium waste are described. Uses of cadmium and its compounds are mentioned, and cadmium consumption in the years 1973-1977 in West Germany is presented in a table. Further chapters discuss the production and the way of waste during production and processing of cadmium-containing products, the problem of cadmium in household refuse and waste incineration plants, and the problem of cadmium emissions. (IHOE) [de

  12. The cadmium and lead content of the grain produced by leading Chinese rice cultivars.

    Science.gov (United States)

    Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S

    2017-02-15

    The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    Science.gov (United States)

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Future supply of, and demand for, titanium, copper and lead

    International Nuclear Information System (INIS)

    Grover, L.K.

    1991-01-01

    A literature survey has been conducted to assess the future world supply of, and demand for, titanium, copper and lead. These metals are candidates for the fabrication of containers for the immobilization and disposal of Canada's nuclear used-fuel in an underground disposal vault at a Used-Fuel Disposal Centre. The Centre is assumed to begin operation by the year 2020 and continue for about 40 years. The survey has shown that the world has abundant supplies of titanium minerals (mostly in the form of ilmenite), which are expected to last up to at least 2110. However, for copper and lead, the balance between supply and demand may warrant increased monitoring beyond the year 2000. A number of factors that can influence supply and demand are discussed

  15. On the physicochemical states of cadmium and lead in sea water and sediment pollution

    International Nuclear Information System (INIS)

    Aoyama, Isao; Sakai, Takashi; Inoue, Yoriteru

    1976-01-01

    The existence states of cadmium and lead in sea water taken from Wakasa Bay in Japan were experimentally studied and their transfer to bottom sand layer was tested. Sample water was filtered through a glass wool filter and a 0.45 μ-m membrane filter. Cadmium chloride and lead chloride were fed so that the concentrations of the metals became the environmental standard values (0.01 ppm for cadmium and 0.1 ppm for lead). Cd-115m and lead-210 were added to the sample as tracers. The existence states were measured by dialysis, the filtration with a membrane filter and the adsorption on an ion-exchange resin. As a result, the ionic state of cadmium decreased to 85% and the deposition factor on the membrane filter increased to about 30% when pH is 9.6. The distribution factor of the cation exchange resin was 2 - 5, whereas that of the anion exchange resin was 1000 or more at pH 8,4 or less, but was reduced to 541 at pH 9.6. The ion existence ratio of lead was 80% - 90% at pH 8 or less, and was 10% or less at pH 8.8. The deposition factor of lead was higher than that of cadmium. The distribution factor of lead showed similar tendency to that of cadmium. As a result of measuring the radioactivity adsorbed by the bottom sand in the experimental tank, it was found that the transfer of very small amount of heavy metals to the bottom material depended upon the physicochemical existence states of the metals in water. (Iwakiri, K.)

  16. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    Breckenridge, R.L.; Russell, G.M.; Watson, A.E.

    1976-01-01

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  17. Perinatal exposure to lead and cadmium affects anxiety-like behaviour

    International Nuclear Information System (INIS)

    Leret, M.Luisa; Millan, Jose Antonio San; Antonio, M.Teresa

    2003-01-01

    The present study examines the effects of early simultaneous exposure to low level of lead and cadmium on anxiety-like behaviour in the rat, and on monoamine levels in the hypothalamus and hippocampus at weaning and adult animals. Rats were intoxicated with cadmium acetate (10 mg/l) and lead acetate (300 mg/l) in drinking water from the beginning of pregnancy until weaning. Maternal co-exposure to lead and cadmium produced mainly alterations in dopaminergic and serotoninergic systems of hippocampus in both age studied, while noradrenaline content in hypothalamus and hippocampus remained unchanged at 75 days of age. The intoxicated rats showed an increased on indices of anxiety on the elevated plus-maze. These long-term changes in anxiety-like behaviour can be related to dopaminergic and serotoninergic alterations detected in hippocampus

  18. Lead, arsenic, and copper content of crops grown on lead arsenate-treated and untreated soils

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, D

    1972-01-01

    Increased lead and arsenic concentrations in the surface soil (0-15 cm), resulting from applications of lead arsenate (PbHAs0/sub 1/), increased both lead and arsenic levels in crops grown on treated plots. The lead levels in some crops approached or exceeded the Canadian residue tolerance of 2.0 ppM. Lead arsenate soil treatments did not affect copper absorption by crops. On areas such as old orchard land contaminated with lead arsenate residues it may be advisable to ascertain crops, and also to determine the lead affinity and arsenic sensitivity of the plants to be grown.

  19. Lead and cadmium sorption mechanisms on magnetically modified biochars

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Veselská, V.; Šafařík, Ivo; Vítková, M.; Číhalová, S.; Komárek, M.

    2016-01-01

    Roč. 203, MAR (2016), s. 318-324 ISSN 0960-8524 R&D Projects: GA MŠk(CZ) LD14066 Institutional support: RVO:67179843 Keywords : pyrolysis bio-chars * aqueous-solutions * heavy-metals * removal * adsorption * water * contaminants * pb * temperatures * copper * Magnetic biochar * Fe oxide impregnation * Metal sorption * Cation release * Wastewater treatment Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.651, year: 2016

  20. Assessment of the pollution and ecological risk of lead and cadmium in soils.

    Science.gov (United States)

    Wieczorek, Jerzy; Baran, Agnieszka; Urbański, Krzysztof; Mazurek, Ryszard; Klimowicz-Pawlas, Agnieszka

    2018-03-27

    The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.

  1. EFFECTS OF LEAD AND CADMIUM UPON THE KIDNEY FUNCTION OF THE A TEMPORE NEWBORNS

    Directory of Open Access Journals (Sweden)

    Marina Jonović

    2002-09-01

    Full Text Available The aim of this paper is to examine the subjection of the embryo and the newborn to lead and cadmium as well as the effects of these metals upon the kidney function in the children newly born on time. The hypothetical framework of the paper was that lead and cadmium that are trans placental transmitted to the embryo organism lead to the change of the kidney function in the sence of damages done to the tubular system and to the interstitium along with changes in the urine sediment and in the levels of urea and creatinine in the serum; thus induced effects can be detected in the first week of life of the newborn babies.The examination was done in 1995 at Gynecological and Obstetric Clinic in Niš. The examined and the control group consisted of 30 newborns on time. The clinic examination was done on all the newborns. Regarding the kidney function examination, on the forth day of life all the newborn children were subjected to the determination of the value of urea and creatinine in the vein blood, the urine examination, the physical and physical-chemical features of the urine (outlook, specific weight, color, pH, the chemical status of the urine, the microscopic examination of the urine sediment, the ultrasonic examination of the kidneys. On the basis of the carried out examination and obtained results we came to the following conclusions:The lead concentration in the air at the localities related to the examined group is above G VI while for the control one below GVI. The cadmium concentration in the air from the examined localities in both the groups are above GVI. The lead and cadmium concentrations in the sediment materials at the localities related to the examined and control group are below GVI.The lead concentration in the umbilical cord blood is higher in the control group with respect to the examined one though without statistic significance. The lead concentration in the human milk is higher in the control group than in the examined one

  2. [Comparative characteristics of lead and cadmium intoxication in the Khanty-Mansi autonomous district].

    Science.gov (United States)

    Korchina, T Ia; Korchin, V I

    2011-01-01

    The Khanty-Mansi Autonomous District (KMAD) occupies a prominent place in the economy of Russia in oil and gas production and energy generation. The development of hydrocarbon raw material extraction in the district does great damage to the environment and nature. This results in the accumulation of toxic chemical elements in man. The levels of lead, cadmium, calcium, and zinc were measured in the hair of indigenous and non-indigenous populations of the district. High lead and cadmium and low calcium and zinc concentration were found in indigenous adults and children in the KMAD.

  3. Luminescence properties of copper(I), zinc(II) and cadmium(II) coordination compounds with picoline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan Grzegorz, E-mail: gmalecki@us.edu.pl; Maroń, Anna

    2017-06-15

    Mononuclear coordination compounds of copper(I) – [Cu(PPh{sub 3}){sub 2}(picoline)(NO{sub 3})], zinc(II) – [ZnCl{sub 2}(picoline){sub 2}] (picoline=3– and 4–methylpyridine) and polymeric cadmium(II) – [CdCl{sub 2}(β-picoline){sub 2}]{sub n} were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. Single crystal X-ray crystallography revealed distorted tetrahedral geometry around the central ions of the compounds. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. The emission of copper(I) compounds originated from metal-to-ligand charge transfer state combined with nitrato-to-picoline charge transfer state i.e. ({sup 1}(M+X)LCT). The presence of nitrato ligand in the coordination sphere of copper(I) compounds quenches the emission. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution). - Graphical abstract: Coordination compounds of copper(I), zinc(II) and polymeric cadmium(II) with picoline ligands were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. Emission of copper(I) compounds originated from {sup 1}(M+X)LCT state. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution).

  4. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  5. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    Science.gov (United States)

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil soil-root interface (or rhizosphere) soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  6. Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice

    International Nuclear Information System (INIS)

    Smith, Euan; Gancarz, Dorota; Rofe, Allan; Kempson, Ivan M.; Weber, John; Juhasz, Albert L.

    2012-01-01

    Highlights: ► We investigate the exposure of pregnant and non-pregnant mice to cadmium (Cd) on lead (Pb) contaminated soil. ► We examine the changes in lead accumulation in mice due to the presence of cadmium in soil. ► Lead accumulation is higher in pregnant compared to non-pregnant mice. ► Cadmium decreases lead accumulation in all mice irrespective of status. - Abstract: People are frequently exposed to combinations of contaminants but there is a paucity of data on the effects of mixed contaminants at low doses. This study investigated the influence of cadmium (Cd) on lead (Pb) accumulation in pregnant and non-pregnant mice following exposure to contaminated soil. Exposure to Pb from contaminated soils increased Pb accumulation in both pregnant and non-pregnant mice compared to unexposed control animals (pregnant and non-pregnant). Lead accumulation in the liver and kidneys of exposure pregnant mice (40 ± 15 mg Pb kg −1 ) was significantly higher (P −1 ). The presence of Cd in contaminated soil had a major effect on the Pb and Fe accumulation in the kidneys and liver, respectively. This study shows that Pb uptake is mediated by the presence of Cd in the co-contaminated soil and demonstrates that further research is required to investigate the influence of co-contaminants on human exposure at sub-chronic concentrations.

  7. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    Science.gov (United States)

    Nourmoradi, H.; Foroghi, M.; Farhadkhani, M.; Vahid Dastjerdi, M.

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2 µg/g and 4.08–60.20 µg/g, respectively. The eye shadow samples had a lead level of 0.85–6.90 µg/g and a cadmium level of 1.54–55.59 µg/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics. PMID:24174937

  8. Isotherms and kinetics of lead and cadmium uptake from the waste leachate by natural and modified clinoptilolite

    Directory of Open Access Journals (Sweden)

    Maryam Faraji

    2012-01-01

    Conclusions: The modified zeolite with surfactant can be used as an appropriate adsorbent for the separation of heavy metals from waste Leachate. Lead and cadmium were absorbed in a single layer on the surface of the modified zeolite with surfactant, comparing different isoterm models, indicated that the capacity of the modified zeolite for lead adsorption was more than cadmium adsorption, but cadmium was absorbed with higher energy.

  9. Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.

  10. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates.

    Science.gov (United States)

    van der Fels-Klerx, H J; Camenzuli, L; van der Lee, M K; Oonincx, D G A B

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.

  11. Deposition of heavy metal in the environment. Balances of the consumption and fate of lead and cadmium 1984-1989

    International Nuclear Information System (INIS)

    Balzer, D.

    1991-10-01

    The data on the consumption and fate of lead and cadmium as well as their compounds was compiled in a balance for the Federal Republic of Germany for the period between 1984 and 1989. To obtain a general overview of the known mass flows, additional flow sheets for lead and cadmium were drawn up. (orig./BBR) [de

  12. Wild Boar Tissue Levels of Cadmium, Lead and Mercury in Seven Regions of Continental Croatia

    Science.gov (United States)

    Sedak, Marija; Đokić, Maja; Šimić, Branimir

    2010-01-01

    Concentrations of cadmium, mercury and lead were analysed by atomic absorption spectrometry in the kidney and muscle of free-living wild boar (n = 169) from hunting grounds in seven counties of continental Croatia. Mean levels of metals (mg/kg) in muscle and kidney of boars ranged as follows: Cd: 0.005–0.016 and 0.866–4.58, Pb: 0.033–0.15 and 0.036–0.441, Hg: 0.004–0.012 and 0.04–0.152. In all seven regions, concentrations exceeded the permitted values (muscle and kidney mg/kg: cadmium 0.05/1; lead 0.1/0.5; mercury 0.03/0.1) in 13.6% and 71.6% of samples (muscle and kidney, respectively) for cadmium; 13.6% and 8.9% for lead; 19.5% and 2.4% for mercury. There were significant differences among the regions. Vukovar-Srijem and Virovitica-Podravina Counties were highly contaminated with cadmium, Sisak-Moslavina and Virovitica-Podravina Counties with lead and Brod-Posavina County had highest mercury concentrations. These results suggest a detailed investigation of physiological and environmental factors contributing to accumulation of metals in boars. PMID:20405101

  13. Updated assessment of critical loads of lead and cadmium for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Vries, de W.; Groenenberg, J.E.

    2002-01-01

    At its 20th session the Working Group on Effects (WGE) of the Convention on Long-range Transboundary Air Pollution of the United Nations Economic Commission for Europe (UNECECLRTAP), noted the need to further develop and test the methodology for mapping critical loads for cadmium and lead. To this

  14. Trace analysis of lead and cadmium in seafoods by differential pulse anodic stripping voltametry

    International Nuclear Information System (INIS)

    Sumera, F.C.; Verceluz, F.P.; Kapauan, P.A.

    1979-01-01

    A method for the simultaneous determination of cadmium and lead in seafoods is described. The sample is dry ashed in a muffle furnace elevating the temperature gradually up to 500 0 C. The ashed sample is treated with concentrated nitric acid, dried on a heating plate and returned to the muffle furnace for further heating. The treated ash is then dissolved in 1 N HCL acetate buffer and citric acid are added and the pH adjusted to 3.6-4. The resulting solution is analyzed for lead and cadmium by differential pulse anodic stripping voltametry (DPASV) using a wax-impregnated graphite thin film electrode. The average recoveries of 0.4 of cadmium and lead added to 5 fish samples were 97% and 99% respectively. The standard deviations, on a homogenized shark sample for lead and cadmium analysis were 6.7 ppb and 12.3 ppb, respectively, and the relative standard deviations were 21.0% and 15.5% respectively. Studies on instrumental parameters involved in the DPASV step of analysis and methods of measuring peak current signals were also made. (author)

  15. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  16. Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me-BTANC

    International Nuclear Information System (INIS)

    Moreira Gama, Ednilton; Silva Lima, Adriana da; Azevedo Lemos, Valfredo

    2006-01-01

    In this work, polyurethane foam (PUF) loaded with 2-(6'-methyl-2'-benzothiazolylazo)chromotropic acid (Me-BTANC) was packed in a minicolumn and it was used in an on-line preconcentration system for cadmium and lead determination. Optimum hydrodynamic and chemical conditions for metal sorption were investigated. The effects of several foreign substances on the adsorption of cadmium and lead were also reported. The enrichment factor obtained was 37 (Cd and Pb) for 180 s preconcentration time. The proposed procedures allowed the determination of metals with detection limits (3σ) of 0.80 and 3.75 μg L -1 (0.10 and 0.47 μg g -1 of solid sample) for cadmium and lead, respectively. The precision of the procedures was also calculated: 3.1 (Cd 10 μg L -1 ) and 4.4% (Pb 100 μg L -1 ). The accuracy of the procedure was checked by analysis of the certified reference materials Spinach Leaves and Fish Tissue. Cadmium and lead contents in environmental samples (black tea, spinach leaves, natural and tap water) were determined by applying the proposed procedure

  17. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  18. Mushroom contamination by mercury, cadmium and lead; Contaminazione di funghi commestibili con mercurio, cadmio e piombo

    Energy Technology Data Exchange (ETDEWEB)

    Dojmi Di Delupis, G.; Dojmi Di Delupis, F. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1996-12-01

    Occurrence and bioaccumulation of mercury, cadmium and lead were found in mushrooms by various researchers. Such mushrooms were often found in polluted areas. Pollution was mainly caused by industrial or mining plants, by some agricultural treatments and by road traffic. Considerations and recommendations concerning food consumption are made.

  19. Method of analysis for the determination of lead and cadmium in fresh meat

    NARCIS (Netherlands)

    Ruig, de W.G.

    1980-01-01

    This report comprises the result of the RIKILT of an intercomparison on the determination of lead and cadmium in bovine liver and bovine kidney. The aim of this round robbin was to check a wet ashing procedure followed by a flame AAS determination as described too in EEC doc. 2266/VI/77. Special

  20. Lead, cadmium and chromium in raw and boiled portions of Norway lobster.

    Science.gov (United States)

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2014-01-01

    Lead, cadmium and chromium levels were determined in different raw and boiled portions of Norway lobster caught in the central Adriatic Sea (Italy). In raw specimens, the lowest concentrations were always detected in the white meat. Lead and cadmium content in the edible portion never exceeded the maximum levels set by European legislation. The highest cadmium and chromium values (0.47 ± 0.04 and 0.62 ± 0.13 mg/kg wet weight, respectively) were detected in the brown meat, while the highest lead concentrations were found in the exoskeleton (0.21 ± 0.01 mg/kg wet weight). Also, the boiled samples showed the lowest metal levels in the white meat, even if a significant increase (p < 0.01) was found for lead and cadmium compared to the corresponding raw portions. Among metals, chromium showed the highest concentrations in both raw and boiled portions, but up to now, the European legislation did not envisage any limits in seafood.

  1. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    Science.gov (United States)

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  2. Cadmium and lead contents in drinking milk from selected regions of Poland

    Directory of Open Access Journals (Sweden)

    Renata Pietrzak-Fiećko

    2013-09-01

    Full Text Available Background. Cadmium and lead are classified as toxic metals. Toxicity is attributed to the adverse effect on the human body, and therefore the content of these elements is analyzed in the environment and in food products. Studies conducted by many researchers indicate that more of cadmium and lead accumulate in products of plant origin, however, food products of animal origin are also not free from these compounds. The aim of this study was to determine the content of cadmium and lead in drinking milk originating from four selected milk producers from two different regions. Methods. A total of 28 milk samples were tested. The tested material was mineralized dry. To determine the content of the analyzed elements the Flame Atomic Absorption Spectrometry method was used. There were no significant differences in the content of heavy metals in the analyzed samples of milk. Results. None of the samples revealed the exceedance of the highest permissible level of these elements. Conclusions. Cadmium and lead content in tested drinking milk does not pose a threat to human health

  3. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis

    International Nuclear Information System (INIS)

    Wu Huifeng; Wang Wenxiong

    2010-01-01

    Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu + Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers.

  4. Investigation of Released Cadmium and Lead from Different Colors of Over Glaze Designs to Food Stuff in Different Conditions

    Directory of Open Access Journals (Sweden)

    H. Hashemi-Moghaddam

    2012-03-01

    Full Text Available In this paper, leaching of lead and cadmium was investigated from porcelain over glaze designs between different colors.  Also the effect of microwave heating was considered on leaching of lead and cadmium.  Dishes were selected with a decor with the dominant color of gray, red, yellow, blue, and dark blue. Amounts of cadmium and lead which leached from the container by acetic acid and orange juice were measured according to the standard ASTM C738.  The results showed that especially in the red and dark blue colors cadmium and lead could be released easily by either acetic acid or orange juice, and these amounts were much higher than the permissible standard amount. Also microwave heating could enhance releasing of lead and cadmium from decorated dinnerware. 

  5. Residues of lead, cadmium, and arsenic in livers of Mexican free-tailed bats

    Energy Technology Data Exchange (ETDEWEB)

    Thies, M.; Gregory, D. (Oklahoma State Univ., Stillwater (United States))

    1994-05-01

    Since 1936, the size of the summer population of Mexican free-tailed bats, Tadarida brasiliensisat Carlsbad Caverns, New Mexico, declined from an estimated 8.7 million to 700,000 in 1991. This decline has been attributed primarily to human disturbance and the heavy agricultural use of organochlorine pesticides. Members of this species forage extensively over heavily agricultural areas, feeding on insects potentially contaminated with high levels of insecticides and trace metals. However, contamination from elements such as lead, cadmium, and arsenic have not been examined. The accumulation of these elements in wild vertebrates is often a primary reflection of contamination of the food supply. The presence of elemental contaminants in body tissues of bats is poorly documented. The objectives of this study were to examine and compare lead, cadmium, and arsenic contamination in livers of adult T. Brasiliensis from Carlsbad Caverns and Vickery Cave, a maternity colony in northwestern Oklahoma. Lead, cadmium, and arsenic were specifically selected because of their documented toxic and/or reproductive effects and their potential availability to this species. Large quantities of tetraethyl lead have been released into the environment and other lead compounds continue to be released by industrial manufacturing and petroleum refinement processes. Cadmium is used in a number of industrial processes such as metal plating and fabrication of alloys and is released from phosphate fertilizers and combusted coals. Teratogenicity appears to be greater for cadmium than for other elements. Arsenical compounds have been commonly used as herbicides and defoliants. These compounds have been demonstrated to cause abnormal embryonic development, degenerative tissue changes, cancer, chromosomal damage, and death in domestic animals.

  6. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum.

    Science.gov (United States)

    Zhang, Xu; Li, Xinxin; Yang, Huanhuan; Cui, Zhaojie

    2018-08-15

    This study focused on the bioremediation mechanisms of lead (0, 100, 500, 1000 mg kg -1 ) and cadmium (0,10,50,100 mg kg -1 ) contaminated soil using two indigenous fungi selected from mine tailings as the phytostimulation of Arabidopsis thaliana. The two fungal strains were characterized as Mucor circinelloides (MC) and Trichoderma asperellum (TA) by internal transcribed spacer sequencing at the genetic levels. Our research revealed that Cadmium was more toxic to plant growth than lead and meanwhile, MC and TA can strengthen A. thaliana tolerance to cadmium and lead with 40.19-117.50% higher root length and 58.31-154.14% shoot fresh weight of plant compared to non-inoculation. In this study, TA exhibited a higher potential to the inactivation of cadmium; however, MC was more effective in lead passivation. There was a direct correlation between the type of fungi, heavy metal content, heavy metal type and oxidative damage in plant. Both lead and cadmium induced oxidative damage as indicated by increased superoxide dismutase and catalase activities, while the antioxidant levels were significantly higher in fungal inoculated plants compared with those non-inoculated. The analysis of soil enzyme activity and taxonomic richness uncovered that the dominant structures of soil microbial community were altered by exogenous microbial agents. MC enhanced higher microbial diversity and soil enzyme activity than TA. The two indigenous fungi lessened several limiting factors with respect to phytoremediation technology, such as soil chemistry, contamination level and transformation, and metal solubility. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    Science.gov (United States)

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  8. Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea.

    Science.gov (United States)

    Hwang, Y O; Park, S G; Park, G Y; Choi, S M; Kim, M Y

    2010-01-01

    Total arsenic, mercury, lead, and cadmium contents were determined in 426 samples of seaweed sold in Korea in 2007-08. The average concentrations, expressed in mg kg(-1), dry weight, were: total arsenic 17.4 (less than the limit of detection [LOD] to 88.8), Hg 0.01 (from 0.001 to 0.050), lead 0.7 (less than the LOD to 2.7), and cadmium 0.50 (less than the LOD to 2.9). There were differences in mercury, cadmium, and arsenic content in seaweed between different kinds of products and between coastal areas. The intakes of total mercury, lead, and cadmium for Korean people from seaweed were estimated to be 0.11, 0.65, and 0.45 µg kg(-1) body weight week(-1), respectively. With respect to food safety, consumption of 8.5 g day(-1) of the samples analysed could represent up to 0.2-6.7% of the respective provisional tolerable weekly intakes established by the World Health Organization (WHO). Therefore, even if Korean people have a high consumption of seaweed, this study confirms the low probability of health risks from these metals via seaweed consumption.

  9. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Science.gov (United States)

    2010-07-01

    ... copper in tap water. 141.86 Section 141.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the... the water system can collect the number of lead and copper tap samples required in paragraph (c) of...

  10. SOLVING COPPER CORROSION PROBLEMS WHILE MAINTAINING LEAD CONTROL IN A HIGH ALKALINITY WATER USING ORTHOPHOSPHATE

    Science.gov (United States)

    Lead and Copper Rule sampling in 1992 uncovered high copper levels in many homes in the Indian Hill Water Works, Ohio (IHWW) water system. The 90th percentile copper and lead levels were 1.63 mg/L and 0.012 mg/L, respectively. IHWW supplies water to several suburban communities t...

  11. Concentrations of heavy metals (lead, manganese, cadmium) in blood and urine of former uranium workers

    International Nuclear Information System (INIS)

    Apostolova, D.; Pavlova, S.; Paskalev, Z.

    1999-01-01

    Uranium ores contain heavy metals and other stable chemical elements as oxides, hydro-carbonates, sulphates, etc. During chemical processing of ore they could be transformed into compounds soluble in biologic liquids. The purpose of this study was to determine the combined intoxication of uranium miners and millers by heavy metals and radiation. Heavy metal (lead, manganese and cadmium) concentrations in blood and urine od 149 former uranium miners and millers were determined by AAS method. Data of significantly increased lead and manganese concentration in blood (p<0.05) of two groups were established in comparison with a control group. There is no statistical significant differences in the cadmium concentrations. The lead and manganese blood levels at the uranium millers were significant higher than those of the uranium miner group (p<0.05). Tendency towards increased blood lead concentrations of uranium millers depending on the length of service was established

  12. Corrosion characteristics of copper and leaded bronze in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Ann, L.J.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel has become more attractive as alternative fuel for automobiles because of its environmental benefits and the fact that it is made from renewable sources. However, corrosion of metals in biodiesel is one of the concerns related to biodiesel compatibility issues. This study aims to characterize the corrosion behavior of commercial pure copper and leaded bronze commonly encountered in the automotive fuel system in diesel engine. Static immersion tests in B0, B50 and B100 fuels were carried out at room temperature for 2640 h. Similar immersion tests in B0, B100 and B100 (oxidized) fuels were also conducted at 60 C for 840 h. At the end of the test, corrosion behavior was investigated by weight loss measurements and changes in surface morphology. Fuels were analyzed by using TAN analyzer, FTIR, MOA (multi-element oil analyzer) to investigate acid concentration, oxidation level with water content and corrosive impurities respectively. Results showed that under the experimental conditions, pure copper was more susceptible to corrosion in biodiesel as compared to leaded bronze. (author)

  13. Effect of cadmium, lead and arsenic on the oviposition, hatching and embryonic survival of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Ansaldo, Martin; Nahabedian, Daniel E.; Di Fonzo, Carla; Wider, Eva A.

    2009-01-01

    Biomphalaria glabrata is a widespread freshwater gastropod mollusc. The easy aquaculture of these organisms allow its use as an accessible tool for contamination bioassays. B. glabrata showed marked metabolic responses when exposed to cadmium, lead and arsenic. Those responses could also affect the reproduction of the snails. Taking into account this hypothesis, B. glabrata were exposed for 96 h (acute laboratory bioassays) to different concentrations of cadmium (0.1, 0.05 and 0 mg/L), lead (0.5, 0.1, 0.05 and 0 mg/L) and arsenic (0.5, 0.1, 0.05 and 0 mg/L). Snails were removed from the aquaria while eggs were left in the same contaminant concentrations. The effect of the assayed toxicants on snail reproduction was registered as the alterations of the total number of laid eggs (TNLE), hatching time and embryonic survival. At 0.10 mg/L cadmium significantly decreased the TNLE (p < 0.05) and no embryos survived. The lowest assayed level (0.05 mg/L) of cadmium, delayed the hatching time twice when it was compared with the control group (p < 0.01). Lead decreased the TNLE at 0.5 mg/L level (p < 0.01). The other assayed doses (0.05 and 0.10 mg/L) also decreased embryonic survival significantly (p < 0.05 and p < 0.01 respectively) and extended twice the time to hatching (p < 0.01). The 0.50 mg/L level killed all embryos. Arsenic at all studied concentrations decreased the TNLE (p < 0.05) while the hatching time was increased by 50%. Embryo survival only decreased at the highest level (0.5 mg/L) of arsenic assayed. In summary, the acute exposure (96 h) to cadmium lead and arsenic, altered the reproduction of B. glabrata, modifying the TNLE, hatching time and embryonic survival

  14. Histopathological changes in kidneys of free ranging animals in relation to lead and cadmium residues

    International Nuclear Information System (INIS)

    Beiglboeck, C.

    2000-05-01

    Kidney samples of 234 roe deer and 45 wild boars were collected in Lower Austria and Vienna, and were analyzed for lead and cadmium contents. Samples of the organs were examined histologically, considering 12 different morphological parameters. Influences of age, sex and origin of the animals on heavy metal burdens were assessed, and the possible correlation between histopathological changes and age, sex, origin and heavy metal concentrations in the kidneys was tested. Lead concentrations were low with medians (mg/kg wet tissue) being 0,062 in roe deer and 0,044 in wild boars. Neither age nor sex nor origin influenced the lead contents of the kidneys. Cadmium burden was fairly high, both in roe deer (median: 0,954) and wild boars (median: 3,009). It increased with age in both species, while female roe deer showed higher contents as well. No influence of the animals' origin was found. The correlation between histopathological changes and age, sex, origin and heavy metal concentrations in the kidneys was tested in 208 roe deer and 44 wild boars which showed no signs of kidney related diseases. In roe deer, the frequency of vacuolic degeneration, pycnotic nuclei, caryolysis and necrosis was related with increased cadmium concentrations. Increasing age correlated with lymphohistiocytic infiltration, interstitial fibrosis and swelling of glomeruli. Pigment deposits and thickening of the Bowman's capsule could be related to both cadmium and age. Furthermore, roe deer from Vienna more frequently showed alterations as observed in animals from Lower Austria. No correlation existed between morphological changes and lead concentrations or sex. In wild boars, there was no obvious relationship between all parameters tested and the frequency of histopathologic changes, except changes in pigmentation. Possible nephrotoxic agents in free ranging animals and the demonstrated influence of cadmium on severe kidney damage are discussed. (author)

  15. Assessment of copper, cadmium and zinc remobilization in Mediterranean marine coastal sediments

    Science.gov (United States)

    Sakellari, Aikaterini; Plavšić, Marta; Karavoltsos, Sotiris; Dassenakis, Manos; Scoullos, Michael

    2011-01-01

    The remobilization of copper, cadmium and zinc in sediments of three selected coastal microenvironments of the Aegean Sea (Eastern Mediterranean) is assessed. Various analytical methods and techniques were employed providing concentrations, profiles and forms of metals and organic matter in sediments and pore waters. At Loutropyrgos, a non-industrial site located, however, within an intensively industrialized enclosed gulf, an intense resupply of zinc in pore water from sediment was recorded, correlating with the highest value of weakly bound fraction of zinc determined at this area. The comparatively high zinc concentrations measured in the pore waters (394 nM), exceed considerably those in the overlying seawater (12.5 nM determined by DGT; 13.5 nM total), resulting in the formation of a strong concentration gradient at the sediment-water interface. Potential zinc flux at the sediment-water interface at Loutropyrgos (based on 0.4 mm DGT profile) was calculated equal to 0.8 mmol.m -2.d -1. The half lives of trace metals at Loutropyrgos site, based on the aforementioned DGT profiles, amount to 0.1 y (Zn), 2.8 y (Cd), 4.5 y (Cu), 2.2 y (Mn) and 0.4 y (Fe) pointing out to the reactivity of these metals at the sediment-water interface. The concentration of dissolved organic carbon (DOC) in pore waters of the three selected sites (2.7-5.2 mg/L) was up to four times higher compared to that of the corresponding overlying seawater. Similarly, the concentrations of carbohydrates in pore waters (0.20-0.91 mg/L monosaccharides; 0.71-1.6 mg/L polysaccharides) are an order of magnitude higher than those of seawater, forming a concentration gradient at the sediment-water interface. Total carbohydrates contribute between 34 and 48% of the organic carbon of the pore waters, being significantly higher than those of seawater from the corresponding areas, which were in the range of 15-21%. The complexing capacity as for copper ions (CCu) determined in pore water ranges widely, from 0

  16. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Azusa; Yang, Wen-Yi; Petit, Thibault; Zhang, Zhen-Yu; Gu, Yu-Mei; Wei, Fang-Fei; Jacobs, Lotte [Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven (Belgium); Odili, Augustine N. [Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven (Belgium); Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences University of Abuja (Nigeria); Thijs, Lutgarde [Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven (Belgium); Nawrot, Tim S. [Centre for Environmental Sciences, University of Hasselt (Belgium); Staessen, Jan A., E-mail: jan.staessen@med.kuleuven.be [Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven (Belgium); R& D Group VitaK, Maastricht University, Maastricht (Netherlands)

    2016-02-15

    Whether environmental exposure to nephrotoxic agents that potentially interfere with calcium homeostasis, such as lead and cadmium, contribute to the incidence of nephrolithiasis needs further clarification. We investigated the relation between nephrolithiasis incidence and environmental lead and cadmium exposure in a general population. In 1302 participants randomly recruited from a Flemish population (50.9% women; mean age, 47.9 years), we obtained baseline measurements (1985–2005) of blood lead (BPb), blood cadmium (BCd), 24-h urinary cadmium (UCd) and covariables. We monitored the incidence of kidney stones until October 6, 2014. We used Cox regression to calculate multivariable-adjusted hazard ratios for nephrolithiasis. At baseline, geometric mean BPb, BCd and UCd was 0.29 µmol/L, 9.0 nmol/L, and 8.5 nmol per 24 h, respectively. Over 11.5 years (median), nephrolithiasis occurred in 40 people. Contrasting the low and top tertiles of the distributions, the sex- and age-standardized rates of nephrolithiasis expressed as events per 1000 person-years were 0.68 vs. 3.36 (p=0.0016) for BPb, 1.80 vs. 3.28 (p=0.11) for BCd, and 1.65 vs. 2.95 (p=0.28) for UCd. In continuous analysis, with adjustments applied for sex, age, serum magnesium, and 24-h urinary volume and calcium, the hazard ratios expressing the risk associated with a doubling of the exposure biomarkers were 1.35 (p=0.015) for BPb, 1.13 (p=0.22) for BCd, and 1.23 (p=0.070) for UCd. In conclusion, our results suggest that environmental lead exposure is a risk factor for nephrolithiasis in the general population. - Highlights: • Prevalence and incidence rates of nephrolithiasis are increasing worldwide. • Lead and cadmium interfere with calcium homeostasis and might cause nephrolithiasis. • Environmental exposure to lead, not cadmium, predicts nephrolithiasis in the population. • Safety standards for environmental lead exposure need to account for nephrolithiasis. • Reducing environmental

  17. Cadmium and lead availability for rapeseed grown on an artificial ISO soil

    International Nuclear Information System (INIS)

    Baryla, A.; Sahut, C.

    2000-01-01

    Accumulations of heavy metals in soils have become a major concern for food crop production. Of these metals, cadmium and lead are recognized as the most widespread elements, that are non-essential for plant growth. While the toxicity of these metals is often investigated on plants grown in nutrient solution, soil is a complex medium. Metals may be dissolved in the soil solution or chelated to carbonates, to oxides of iron or manganese, or to organic matter. This chemical state of the metal is important because it determines the availability of the metal for the crop. Yet its study is complicated by numerous factors (soil pH, temperature, humidity..) which modify this chemical equilibrium. To standardize the experiments, an artificially reconstituted soil was prepared from clay, sand and peat according to standards ISO 11268-1 (May 1994). Metals (lead and cadmium) were added as nitrate salts. Plants used were rapeseeds. Seeds were sown on 20 cm diameter pots and placed in a controlled growth chamber. At harvest, roots, leaves and stems were separated, dried, and mineralized with concentrated nitric acid. Sequential analysis of the soil was carried out to assess the chemical behavior of the cadmium. The chemical speciation of cadmium is shown. The metal is essentially soluble in the soil and poorly complexed to the organic matter. This indicates that contamination is recent and derives from metal salts; cadmium complexation to organic matter appears only after years of soil evolution. The metal is then essentially available for plants but equilibrium is established between the different forms. Plant growth is shown. Cadmium has a strong effect on biomass production at 50 μg / g in the soil. No toxic effect of lead was observed from 0 to 2000 μg / g in the soil, probably because lead is strongly complexed to the soil and less toxic for plants. Metal concentrations in plants after two months of growth are shown in Figures 4 and 5. Plant cadmium content reached 150

  18. UHF-plasma torch emission spectrometry for cadmium, lead and zinc by vaporization introduction

    International Nuclear Information System (INIS)

    Nakashima, Ryozo

    1978-01-01

    As the introduction technique of aerosol into the plasma torch, vaporization introduction of metals was studied. An aliquot of metal nitrates was pipetted in a graphite crucible and dried with a vacuum pump. The dried sample was heated in a high-frequency induction furnace under inert gas carrier such as argon or nitrogen (reduction introduction). Chlorination introduction with hydrogen chloride was also studied. High-purity grade of argon, nitrogen and hydrogen chloride was used as carrier. Intensities were based on the peak area of intensity-time curves at 228.8 nm (cadmium), 405.8 nm (lead), and 213.9 nm (zinc). In the reduction introduction, the minimum temperatures to attain a constant peak area, which means a complete vaporization were 700 0 C (cadmium), 1500 0 C (lead), and 1100 0 C (zinc), respectively. In the chlorination, this temperature was 500 0 C (cadmium), 700 0 C (lead), and 300 0 C (zinc) respectively. For two introduction techniques, the latter was more sensitive than the former for cadmium and zinc, while the former was more sensitive for lead. The optimum temperature, detection limits, and the coefficients of variance calculated from the measurements of 1.0 μg of metals were as follows: Cadmium: chlorination at 850 0 C, D.L. 5ng, C.V. 10%. Lead: reduction at 1600 0 C, D.L. 10ng, C.V. 15%. Zinc: chlorination at 850 0 C, D.L. 5ng, C.V. 9%. Linear calibration lines having 45 0 slope at log-log plots, were obtained over the range from 0.05 to 6 μg for cadmium and zinc, 0.06 to 6 μg for lead on the conditions above. These techniques were also applied for analyses of biological materials for three metals without prior separations. Although the sensitivity of the chlorination introduction technique for lead was rather poor compared with that of reduction technique, the chlorination technique was applied to minimize the introduction of coexisting materials such as alkali and alkaline earth metals. The analytical results agreed reasonably with the

  19. Comparative Hepatotoxicity Test of Cadmium and Lead in Rats ...

    African Journals Online (AJOL)

    Background: Adverse environmental impacts include contamination of water, soil, and phytotoxicity from excessive heavy metals dispersed from mines and smelter sites leading to potential risk to human health. This study investigated the comparative hepatotoxicity test of mining pond waters used for domestic purposes in ...

  20. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  1. Concentrations of Cadmium, Copper, and Zinc in Macrobrachium rosenbergii (Giant Freshwater Prawn) from Natural Environment.

    Science.gov (United States)

    Idrus, Farah Akmal; Basri, Masania Mohd; Rahim, Khairul Adha A; Rahim, Nur Syazwani Abd; Chong, Melissa Dennis

    2018-03-01

    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p < 0.05) were observed with increase in length except for Cu in gills. No relationship was found between metals level in exoskeleton and length. The concentrations of Cd, Cu and Zn were significantly higher (p < 0.05) in males (muscle tissues and exoskeleton) except for Cd in exoskeleton. In gills, only Cu was significantly higher (p < 0.05) in female than male. All samples contained metals below the permissible limit for human consumption (i.e., Cd < 2.00 mg/kg; Cu < 30.00 mg/kg; Zn < 150 mg/kg). Annual metals monitoring in prawn and environmental samples is recommended to evaluate changes of metals bioaccumulation and cycling in the system, which is useful for resources management.

  2. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    Science.gov (United States)

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  3. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    International Nuclear Information System (INIS)

    Mitchelmore, Carys L.; Verde, E. Alan; Weis, Virginia M.

    2007-01-01

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 μg l -1 ) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 μg l -1 Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 μg l -1 metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response

  4. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    International Nuclear Information System (INIS)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping; Fu Zhengwei

    2009-01-01

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 μM Cu or 1.0 and 2.0 μM Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO 2 assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  5. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  6. Adsorption of cadmium and copper in representative soils of Eastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Deyvison Andrey Medrado Gonçalves

    2016-10-01

    Full Text Available Studies of heavy metals adsorption in soil play a key role in predicting environmental susceptibility to contamination by toxic elements. The objective of this study was to evaluate cadmium (Cd and copper (Cu adsorption in surface and subsurface soil. Samples of six soils: Xanthic Hapludox (XH1 and XH2, Typic Hapludox (TH, Typic Rhodudalf (TR, Typic Fluvaquent (TF, and Amazonian dark earths (ADE from Eastern Amazonian, Brazil. The soils were selected for chemical, physical and mineralogical characterization and to determine the adsorption by Langmuir and Freundlich isotherms. All soils characterized as kaolinitic, and among them, XH1 and XH2 showed the lowest fertility. The Langmuir and Freundlich isotherms revealed a higher Cu (H curve than Cd (L curve adsorption. Parameters of Langmuir and Freundlich isotherms indicate that soils TR, TF and ADE has the greatest capacity and affinity for metal adsorption. Correlation between the curve adsorption parameters and the soil attributes indicates that the pH, CEC, OM and MnO variables had the best influence on metal retention. The Langmuir and Freundlich isotherms satisfactorily described Cu and Cd soil adsorption, where TR, TF and ADE has a lower vulnerability to metal input to the environment. Besides the pH, CEC and OM the MnO had a significant effect on Cu and Cd adsorption in Amazon soils.

  7. Acute toxicities of copper, cadmium and Cu: Cd mixture to larvae of the shrimp Penaeus Penicillatus

    Science.gov (United States)

    Munshi, A. B.; Su, Yong-Quan; Li, Shao-Jing

    1996-06-01

    This study showed lethal concentrations (LC) of copper for Peneaus penicillatus at various stages of its life cycle were 1000 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 vg/L for Zoea II, 2500 μg/L for Zoea III, 3000 μg/L for Mysis I, II and III and that for almost 100% mortality for postlarvae was 3000 μg/L. For cadmium LC were 100 μg/L for nauplii, 500 μg/L for Zoea I, 1000 μg/L for Zoea II, 2000 μg/L for Zoea III, 2500 μg/L for Mysis I and 3500 μg/L for Mysis II, III and postlarvae. For mixture of both metals, LC were 400 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 μg/L for Zoea II and 3000 μg/L for Mysis I, II, III and post larvae.

  8. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchelmore, Carys L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)], E-mail: Mitchelmore@cbl.umces.edu; Verde, E. Alan [Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420 (United States); Weis, Virginia M. [Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331 (United States)

    2007-11-15

    Coral-reef ecosystems are increasingly being impacted by a wide variety of anthropogenic inputs, including heavy metals, which could be contributing to coral reef stress and bleaching episodes. Fragments of Pocillopora damicornis were exposed in the laboratory to cadmium (Cd) or copper (Cu) chlorides (0, 5, 50 {mu}g l{sup -1}) for 14 days and analyzed for metal content in the whole association, algal or animal fractions. Various physiological and biochemical parameters were also measured, such as, algal cell counts, mitotic index, chlorophyll content and levels of the antioxidant glutathione (GSH). Cd and Cu accumulation were observed at all time points and doses; there was no evidence of differential metal partitioning between the algal or animal fractions. No changes in algal cell density, mitotic index or chlorophyll content from the controls were observed in any of the metal treatments. GSH levels were significantly higher in the 5 {mu}g l{sup -1} Cd (Day 4) and Cu (Days 4 and 14) treatments compared with controls at the same time point. Although no evidence of a bleaching response occurred, corals in both 50 {mu}g l{sup -1} metal exposures sloughed off tissues and did not survive the duration of the exposure period. Our results demonstrate the accumulation of Cd and Cu in P. damicornis and mortality in the absence of a bleaching response.

  9. Spatial and temporal variation in lead and cadmium in the Laughing Gull, Larus atricilla

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M; Hacker, C S

    1982-11-01

    Lead and cadmium concentrations were measured in eggs and in bone, kidney, liver and stomach contents of downy young, prefledgling, and adult Laughing Gulls collected from Matagorda Bay and Galveston Bay, Texas. Matagorda Bay drains a rural, moderately industrialized region while the Galveston Bay area is heavily urbanized and industrialized. Lead levels were lower in birds from Matagorda Bay and decreased in birds from Galveston Bay between 1977 and 1980. Cadmium levels were also lower in birds from Matagorda Bay but increased over the three-year period in those from Galveston Bay. The temporal decrease in lead may be associated with such environmental control efforts as reduced point source emissions and substitution of unleaded gasoline.

  10. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  11. Cadmium, lead, mercury and 137cesium in fruticose lichens of northern Quebec

    International Nuclear Information System (INIS)

    Crete, M.; Zikovsky, L.

    1992-01-01

    Cadmium, lead and mercury concentration averaged 0.171, 4.09 and 0.09 μg·g -1 (dry wt.) in terrestrial lichens over a 640000-km 2 study area of northern Quebec; average cesium level reached 378 Bq·kg -1 (dry wt.). Cadmium and lead were the most closely related pollutants in lichens, while there was little relationship between 137 Cs and the 3 trace metals. Distribution of elements over the territory was not uniform and the altitude influenced 3 of them. The cesium concentration increased along with this variable, while lead levels were higher in the middle altitude class (200-400 m) than in the 2 other classes. There was a significant interaction between altitude and biome for mercury concentration, this element being almost twice more abundant in tundra below 400m than in forest tundra and boreal forest. Mercury level was related to percent ground cover by Alectoria ochroleuca, Cornicularia divergens and Cetraria nivalis, 3 lichen species typical of a wind-exposed habitat. Lead concentration was related only to Cornicularia divergens ground cover. In general concentration of cadmium, lead and mercury was higher in the northwest quarter of the study area than elsewhere, while cesium contamination was highest in the southeast quarter. It seems preferable that caribou should be harvested at low elevation when they are taken in winter in order to minimize the risk associated with cesium consumption by humans. (author). 37 refs.; 2 figs.; 5 tabs

  12. Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Euan, E-mail: euan.smith@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gancarz, Dorota; Rofe, Allan [Veterinary Services Division, Institute of Medical and Veterinary Science, Gilles Plains, SA 5086 (Australia); Kempson, Ivan M. [Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan (China); Weber, John; Juhasz, Albert L. [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We investigate the exposure of pregnant and non-pregnant mice to cadmium (Cd) on lead (Pb) contaminated soil. Black-Right-Pointing-Pointer We examine the changes in lead accumulation in mice due to the presence of cadmium in soil. Black-Right-Pointing-Pointer Lead accumulation is higher in pregnant compared to non-pregnant mice. Black-Right-Pointing-Pointer Cadmium decreases lead accumulation in all mice irrespective of status. - Abstract: People are frequently exposed to combinations of contaminants but there is a paucity of data on the effects of mixed contaminants at low doses. This study investigated the influence of cadmium (Cd) on lead (Pb) accumulation in pregnant and non-pregnant mice following exposure to contaminated soil. Exposure to Pb from contaminated soils increased Pb accumulation in both pregnant and non-pregnant mice compared to unexposed control animals (pregnant and non-pregnant). Lead accumulation in the liver and kidneys of exposure pregnant mice (40 {+-} 15 mg Pb kg{sup -1}) was significantly higher (P < 0.05) than concentrations detected in control pregnant mice (<1 mg Pb kg{sup -1}). The presence of Cd in contaminated soil had a major effect on the Pb and Fe accumulation in the kidneys and liver, respectively. This study shows that Pb uptake is mediated by the presence of Cd in the co-contaminated soil and demonstrates that further research is required to investigate the influence of co-contaminants on human exposure at sub-chronic concentrations.

  13. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    International Nuclear Information System (INIS)

    Fang, J.; Yu, T.; Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J.

    2013-01-01

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current

  14. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Yu, T. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J. [China Electric Power Research Institute, Haidian District, Beijing (China)

    2013-11-15

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current.

  15. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    SH Amirmoradi

    2017-09-01

    Full Text Available **Introduction Industrialization has been the cause of environmental pollution and one of significant pollutant is that of heavy metals. These hazardous elements can cause to water and soil pollution. These metals can accumulate in the food chain and create damages for human and livestock. Researchers revealed that increasing Cd, Pb, Cu, Mn and Zn concentrations caused to decreasing of shoot fresh weight and essential oil yield. Scavroni et al (2005 indicated that peppermint was able to accumulate the heavy metals in shoot tissues but did not enter into essential oil. Therefore study the effect of heavy metals on morphological and quantitative traits of medicinal plants is essential. Material and Method The experiment was done in the research greenhouse of the Agricultural Faculty of Ferdowsi University of Mashhad in 2011.The treatments were arranged basis on a randomized block design with three replications. Treatments were included T1:0, T2:10 ppm cd , T3:20 ppm cd,T4:40 ppm cd,T5:60 ppm cd,T6:80 ppm cd cd,T7:100 ppm cd,T8:100ppm pb, T9:300 ppm pb, T10: 600 ppm pb, T11: 900 ppm pb, T12: 1200 ppm pb and T13: 1500 ppm pb. Peppermint was cultivated with uniform weight rhizomes harvested from the research farm of Ferdowsi University of Mashhad. Every rhizome had two buds and six rhizomes were planted in pots of dimensions 30×50×35 cm. Treatments were irrigated with cdcl2 and pbcl2 with the administered doses and control was irrigated with distilled water. Plants were harvested two times at the first stages of flowering. The essential oil percentage was measured with 30 grams of dried leaves by Clevenger device. Result and Discussion Increasing cadmium and lead concentrations caused a decline of fresh and dry weight, main stem height, leaf area per plant, leaf number per plant, number of nodes per plant and essential oil percentage compared to the control. At the first harvest, increasing doses of Cd caused a decrease of fresh weight. This

  16. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  17. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    Science.gov (United States)

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO.

  18. [The occurance lead and cadmium in hip joint in aspect of exposure on tobacco smoke].

    Science.gov (United States)

    Bogunia, Mariusz; Brodziak-Dopierała, Barbara; Kwapuliński, Jerzy; Ahnert, Bozena; Kowol, Jolanta; Nogaj, Ewa

    2008-01-01

    The objective of this study was qualification of content cadmium and lead in selected elements of the hip joint in aspect of tobacco smoking. The material for the research were 5 elements of hip joint (articular cartilage, trabecular bone and cortical bone femur head, fragment articular capsule and fragment trabecular bone from region intertrochanteric femoral bone), obtained intraoperatively during endoprothesoplastic surgeries. The samples come from habitants of Upper Silesian Region. Determination of trace elements contents were performed by ASA method (Pye Unicam SP-9) in acetylene-oxygen flame. Higher contents of lead were observed for smoking people, however in case of cadmium the differences of this element were not statistical essential between smokers and non-smokers.

  19. Monitoring of the content of lead and cadmium in the waters of the river Tuis

    International Nuclear Information System (INIS)

    Arce Urbina, Maria Elena; Molina Salazar, Ofelia; Hidalgo Paniagua, David

    2007-01-01

    The content of lead and cadmium was monitored in the waters of the river Tuis for 11 months. The method of digestion most suitable was determined for this type of matrix. The chemical analyses were realized by means of the technique of anodic stripping voltammetry by differential pulse, for which some parameters of measurement were optimized and there decided the limits of detection and quantification. The veracity of the method was evaluated by means of the percentage of recovery for each of the analytes. The limit of detection of the lead is of 0,46 μgL-1 and limit of quantification is 1, 5 μgL-1, the cadmium has a limit of detection of 0,40 μgL-1 and 1,3 μgL-1 of quantification. (author) [es

  20. In vivo detection of the toxic heavy elements, lead and cadmium

    International Nuclear Information System (INIS)

    Thomas, B.J.; Thomas, B.W.; Davey, J.F.; Baddeley, H.; Summers, V.; Craswell, P.

    1986-01-01

    Portable systems for the in vivo measurement of the toxic heavy elements, cadmium and lead are described. The cadmium concentration in either the liver or left kidney is determined using a technique of thermal neutron capture gamma-ray analysis. X-ray fluorescence analysis is used to measure lead within the bone of the second phalanx of the index finger. Each of the measurements is used as an index of long term exposure to the element and applied to screening of exposed industrial workers. The results of these industrial health applications are presented. Clinical application of the measurements to the study of the involvement of these elements in renal disease is described in brief. (author)

  1. Effects of iron deficiency on the absorption and distribution of lead and cadmium in rats

    International Nuclear Information System (INIS)

    Ragan, H.A.

    1977-01-01

    In order to evaluate the effects of iron deficiency on the absorption of pollutant metals, an iron-deficient diet was fed to young rats until their tissue-iron stores were depleted. Prior to the development of anemia, the iron-deficient rats and littermate controls were administered an intragastric gavage of lead-210 or cadmium-109 and were killed 48 hr later. The body burden of lead was approximately 6 times greater, and that of cadmium approximately 7 times greater, in iron-deficient rats than in the controls. No consistent effects were observed on concentrations of serum total lipids or serum proteins nor on protein electrophoretic patterns in rats with a deficit in iron stores

  2. Elements in rice from the Swedish market: 1. Cadmium, lead and arsenic (total and inorganic).

    Science.gov (United States)

    Jorhem, L; Astrand, C; Sundström, B; Baxter, M; Stokes, P; Lewis, J; Grawé, K Petersson

    2008-03-01

    A survey of the levels of cadmium, lead and arsenic in different types of rice available on the Swedish retail market was carried out in 2001--03. The types of rice included long and short grain, brown, white, and parboiled white rice. The mean levels found were as follows: total As: 0.20 mg kg(-1), inorganic As: 0.11 mg kg(-1); Cd: 0.024 mg kg(-1); and Pb: 0.004 mg kg(-1). ICP-MS was used for the determination of As (total and inorganic) after acid digestion. Lead and cadmium were determined using graphite furnace atomic absorption spectrometry (GFAAS) after dry ashing. In countries where rice is a staple food, it may represent a significant contribution in relation to the provisional tolerable weekly intake for Cd and inorganic As.

  3. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar [Department of Biotechnology, Gandhi Institute of Engineering and Technology, Gunupur, Rayagada 765 022, Odisha (India); Mohapatra, Pradeep Kumar Das, E-mail: pkdmvu@gmail.com [Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-01-30

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.

  4. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    International Nuclear Information System (INIS)

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar; Mohapatra, Pradeep Kumar Das

    2014-01-01

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis

  5. Lead and Cadmium Toxicity in Tile Manufacturing Workers in Assiut, Egypt

    Directory of Open Access Journals (Sweden)

    Ragaa M Abd Elmaaboud

    2016-06-01

    Full Text Available Occupational lead and cadmium exposure are important health issues in developing countries. This study aimed to detect toxic metal contents in raw materials used to make tiles and to assess exposure health impacts on workers. The study sample consisted of 74 tile workers, having a mean age of 35.2 years, in the Industrial City of Arab El Awamer, Assiut (Egypt. Elemental analysis of the raw materials was performed by using scanning electron microscopy. The data collection questionnaire was divided into two parts; the first included demographic data, symptoms attributed to toxic elements and possible sources of exposure to metals. The second part was designated to assess heavy metal exposure health impacts through clinical examination and biological  investigations. Many toxic elements were identified in the raw materials used to make tiles, and the most abundant were lead and cadmium. Analysis of the clinical data revealed that 66% of the workers suffered from headache, constipation (8%, abdominal colic (33.8% and 30% suffered from a variety of respiratory problems such as dyspnea (60%, cough (13% and chest tightness (27%. Fifty percent of the workers complained of weak grip, 33.8% of foot drop, and 54% had tremors. Burton’s line in gums was present in 28% of workers and 28.2% were diagnosed with constrictive lung diseases. Of the 74 workers, 90.5 % showed toxic lead levels and 80% had toxic cadmium levels. 10.8% had abnormal alpha glutathione levels with a positive strong linear correlation between lead and cadmium levels and years of work. It is mandatory to develop and implement measures to prevent these hazardous exposure effects among tile industry workers.

  6. Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring

    International Nuclear Information System (INIS)

    Brender, Jean D.; Suarez, Lucina; Felkner, Marilyn; Gilani, Zunera; Stinchcomb, David; Moody, Karen; Henry, Judy; Hendricks, Katherine

    2006-01-01

    Arsenic, cadmium, lead, and mercury are neurotoxins, and some studies suggest that these elements might also be teratogens. Using a case-control study design, we investigated the relation between exposure to these heavy metals and neural tube defects (NTDs) in offspring of Mexican-American women living in 1 of the 14 Texas counties bordering Mexico. A total of 184 case-women with NTD-affected pregnancies and 225 control-women with normal live births were interviewed about their environmental and occupational exposures during the periconceptional period. Biologic samples for blood lead and urinary arsenic, cadmium, and mercury were also obtained for a subset of these women. Overall, the median levels of these biomarkers for heavy metal exposure did not differ significantly (P>0.05) between case- and control-women. However, among women in the highest income group, case-women were nine times more likely (95% confidence interval (CI) 1.4-57) than control-women to have a urinary mercury >=5.62μg/L. Case-women were 4.2 times more likely (95% CI 1.1-16) to report burning treated wood during the periconceptional period than control-women. Elevated odds ratios (ORs) were observed for maternal and paternal occupational exposures to arsenic and mercury, but the 95% CIs were consistent with unity. The 95% CIs of the ORs were also consistent with unity for higher levels of arsenic, cadmium, lead, and mercury in drinking water and among women who lived within 2 miles at the time of conception to industrial facilities with reported emissions of any of these heavy metals. Our findings suggest that maternal exposures to arsenic, cadmium, or lead are probably not significant risk factors for NTDs in offspring. However, the elevated urinary mercury levels found in this population and exposures to the combustion of treated wood may warrant further investigation

  7. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    OpenAIRE

    Mataveli, Lidiane Raquel Verola; Buzzo, Márcia Liane; Arauz, Luciana Juncioni de; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and rep...

  8. Contamination of Soil, Water, Plant and Dust by Zinc, Lead and Cadmium in Southwest Isfahan

    Directory of Open Access Journals (Sweden)

    Nastaran Esmaeilpourfard

    2016-02-01

    Full Text Available Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ofpollutions is contamination withheavy metals.The purpose of the present research has been to investigate the effect of heavy metals of mine on soil, water, plant and dust pollution. Materials and Methods: Gushfil mine is located 3 kilometers southwest of Sepahanshahr, Isfahan. Soil profiles were dug 500 meters apart along three parallel transects, between east of Sepahanshahr and Gushfil mine. The profiles were described and samples were collected from their horizons. Ore, wells, plant and dust were sampled as well. Total concentrations of lead, zinc and cadmium were measured in the samples. To find the origin of polluted dust and soil, lead isotopes contents in the samples were measured and regressional relationships between the ratios of these contents were investigated. Results and Discussion Sepahanshahr soils are not contaminated by zinc, lead and cadmium, but within a distance of one to two kilometers from the Gushfil mine, the soils are polluted by zinc and lead. Cadmium contamination was not observed in the studied soils. In all of the soils, the heavy metals content varies downwards irregularly. The reason for this variation trend is that the studied soils are alluvial. In different periods of time, alluvium parent materials have been transported by runoff water from the lead and zinc mines towards the alluvial piedmont plain. The studied heavy metals have been distributed irregularly in different horizons of the soils that have been formed in these parent materials. Lead and cadmium concentrations of drinking water in the studied area are much higher than the maximum amount allowed by the World Health Organization. Cadmium content in

  9. Deposition of lead and cadmium released by cigarette smoke in dental structures and resin composite.

    Science.gov (United States)

    Takeuchi, Cristina Yoshie Garcia; Corrêa-Afonso, Alessandra Marques; Pedrazzi, Hamilton; Dinelli, Welingtom; Palma-Dibb, Regina Guenka

    2011-03-01

    Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. Copyright © 2010 Wiley-Liss, Inc.

  10. Dietary exposure to cadmium, lead and nickel among students from south-east Poland.

    Science.gov (United States)

    Marzec, Zbigniew; Koch, Wojciech; Marzec, Agnieszka; Żukiewicz-Sobczak, Wioletta

    2014-01-01

    The dietary intake of cadmium, lead and nickel was determined among students from three universities in the city of Lublin in south-east Poland to assess the levels of exposure to these contaminants, compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one–MIBK, in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70% of PTWI/TDI values, and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years, whereas the exposures to nickel remains on a stable level.

  11. Investigation of heavy metals (Cadmium, Lead in Chironomidae and Gammarus pulex Namrood River – Tehran Province

    Directory of Open Access Journals (Sweden)

    Rezaei M. Kamali A. and Shapoori M.

    2012-01-01

    Full Text Available Marine ecosystem pollution is one of the important problems of today environment. In this study the existence of heavy metal in the Namrood River, situated in Firoozkooh in Tehran province, Iran has been investigated. The Namrood River is located near Firoozkooh route, and is affected by pollutant from tourist centers, entertainment, gas stations, nearby villages’ sewage systems, farming effluent, and hatchery farms. In some areas, its water is heavily polluted possibly by heavy metals. After selecting two stations in upstream and downstream of the river, they were sampled three times in both cold and hot seasons of year (mid-March, and June for Chironomidae, and Gammarus plux sediments. The measured heavy metals were cadmium and lead. The results showed that the concentration of cadmium in measured samples varied from 0.010-0.2033 ppm. The concentration of lead in samples varied from 0.11-2.16 ppm. The results also indicated that sediments of samples taken from the upper station in the cold season had a higher proportion of cadmium and a higher concentration of lead  than  sediments in the lower station during the hot season.

  12. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS.

    Science.gov (United States)

    Mataveli, Lidiane Raquel Verola; Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  13. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    Directory of Open Access Journals (Sweden)

    Lidiane Raquel Verola Mataveli

    2016-01-01

    Full Text Available This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS. Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD, limit of quantification (LOQ, linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled, consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  14. Effects of lead and cadmium exposure from electronic waste on child physical growth.

    Science.gov (United States)

    Yang, Hui; Huo, Xia; Yekeen, Taofeek Akangbe; Zheng, Qiujian; Zheng, Minghao; Xu, Xijin

    2013-07-01

    Many studies indicate that lead (Pb) and cadmium (Cd) exposure may alter bone development through both direct and indirect mechanisms, increasing the risk of osteoporosis later in life. The aim of this study was to investigate the association between Pb and Cd exposure, physical growth, and bone and calcium metabolism in children of an electronic waste (e-waste) processing area. We recruited 246 children (3-8 years) in a kindergarten located in Guiyu, China. Blood lead levels (BLLs) and blood cadmium levels (BCLs) of recruited children were measured as biomarkers for exposure. Serum calcium, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were used as biomarkers for bone and calcium metabolism. Physical indexes such as height, weight, and head and chest circumference were also measured. The mean values of BLLs and BCLs obtained were 7.30 μg/dL and 0.69 μg/L, respectively. The average of BCLs increased with age. In multiple linear regression analysis, BLLs were negatively correlated with both height and weight, and positively correlated with bone resorption biomarkers. Neither bone nor calcium metabolic biomarkers showed significant correlation with cadmium. Childhood lead exposure affected both physical development and increased bone resorption of children in Guiyu. Primitive e-waste recycling may threaten the health of children with elevated BLL which may eventually cause adult osteoporosis.

  15. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    International Nuclear Information System (INIS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-01-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  16. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    Science.gov (United States)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  17. Calibration equations for energy-dispersive XRF determination of copper, iron and lead in copper ore slurries

    International Nuclear Information System (INIS)

    Lakosz, M.

    1976-01-01

    Calibration equations for the X-ray fluorescence analysis determination of copper, iron and lead in copper ore slurries have been derived and tested. The measurement of Ksub(α) lines of copper and iron and Lsub(α) line of lead excited by rays from 238 Pu source have been used. Si/Li detector coupled to multichannel analyzer and minicomputer have been applied in measurements. The matrix and density effect have been eliminated by additional measurement of back-scattered primary radiation. (author)

  18. Cadmium, lead, and mercury exposure assessment among croatian consumers of free-living game.

    Science.gov (United States)

    Lazarus, Maja; Prevendar Crnić, Andreja; Bilandžić, Nina; Kusak, Josip; Reljić, Slaven

    2014-09-29

    Free-living game can be an important source of dietary cadmium and lead; the question is whether exposure to these two elements is such that it might cause adverse health effects in the consumers. The aim of this study was to estimate dietary exposure to cadmium, lead, and mercury from free-living big game (fallow deer, roe deer, red deer, wild boar, and brown bear), and to mercury from small game (pheasant and hare), hunted in Croatia from 1990 to 2012. The exposure assessment was based on available literature data and our own measurements of metal levels in the tissues of the game, by taking into account different consumption frequencies (four times a year, once a month and once a week). Exposure was expressed as percentage of (provisional) tolerable weekly intake [(P)TWI] values set by the European Food Safety Authority (EFSA). Consumption of game meat (0.002-0.5 % PTWI) and liver (0.005-6 % PTWI) assumed for the general population (four times a year) does not pose a health risk to consumers from the general population, nor does monthly (0.02-6 % PTWI) and weekly (0.1-24 % PTWI) consumption of game meat. However, because of the high percentage of free-living game liver and kidney samples exceeding the legislative limits for cadmium (2-99 %) and lead (1-82 %), people should keep the consumption of certain game species' offal as low as possible. Children and pregnant and lactating women should avoid eating game offal altogether. Free-living game liver could be an important source of cadmium if consumed on a monthly basis (3-74 % TWI), and if consumed weekly (11-297 % TWI), it could even give rise to toxicological concern.

  19. Tolerance to and Accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Rayssa Pereira Vicentin

    2018-03-01

    Full Text Available ABSTRACT Preliminary results of in vitro experiments with multicontaminated soils and solid media indicated that nodulating diazotrophic bacteria of the genus Cupriavidus are promising for the remediation of contaminated environments due to their symbiosis with legumes and metal tolerance. Thus, strains of Cupriavidus spp. (LMG 19424T, UFLA 01-659, UFLA 01-663, and UFLA 02-71 were tested for their ability to tolerate and bioaccumulate cadmium (Cd, copper (Cu, and zinc (Zn in Luria-Bertani broth. Changes in the growth pattern of Cupriavidus strains in the presence or absence of heavy metals were analyzed by scanning electron microscopy and metal allocation by transmission electron microscopy, to clarify the mechanisms of bioremediation. Highest tolerance was detected for strain UFLA 01-659 (minimum inhibitory concentration of 5, 4.95, and 14.66 mmol L−1 of Cd, Cu, and Zn, respectively. Among the removal rates of the metals tested (9.0, 4.6, and 3.2 mg L−1 of Cd, Cu, and Zn, respectively, the bacterial activity was clearly highest for Cd. The efficiency of strain UFLA 01-659 in removing the heavy metals is associated with its high biomass production and/or higher contents of heavy metals adsorbed and absorbed in the biomass. In response to the presence of heavy metals in the liquid culture medium, the bacteria produced exopolysaccharides and small and aggregated cells. However, these responses varied according to the strains and heavy metals. Regarding allocation, all heavy metals were adsorbed on the cell wall and membrane, whereas complexation was observed intracellularly and only for Cu and Zn. These results indicate the possibility of using C. necator UFLA 01-659 for remediation in areas with very high Cd, Cu, and Zn contents.

  20. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  1. Binary Component Sorption of Cadmium, and Copper Ions onto Yangtze River Sediments with Different Particle Sizes

    Directory of Open Access Journals (Sweden)

    Jianxin Fan

    2017-11-01

    Full Text Available Sorption is a crucial process that influences immobilization and migration of heavy metals in an aqueous environment. Sediments represent one of the ultimate sinks for heavy metals discharged into water body. Moreover, the particle size of sediments plays an extremely important role in the immobilization of heavy metals. In this study, the sorption and desorption of cadmium (Cd and copper (Cu onto sediments with different particle sizes were investigated to predict the rate and capacity of sorption, to understand their environmental behaviors in an aqueous environment. Batch sorption and kinetic experiments were conducted to obtain the retained amount and rate of Cd and Cu in a binary system. Experimental data were simulated using sorption models to ascertain the sorption capacity and the kinetic rate. Results of European Communities Bureau of Reference (BCR sequential extraction showed the highest concentration of Cd (0.344 mg kg−1, and its distribution varied with sediment particle size and site. Furthermore, most of Cu (approximately 57% to 84% existed as a residual fraction. The sorption of Cu onto six sediments followed a pseudo-first order reaction, whereas that of Cd followed a pseudo-second order reaction. Additionally, the competitive Langmuir model fitted the batch sorption experimental data extremely well. The highest sorption capacities of Cd and Cu reach 0.641 mmol kg−1 and 62.3 mmol kg−1, respectively, on the smallest submerged sediment particles. The amounts of Cu and Cd desorbed (mmol kg−1 increased linearly with the initial concentration increasing. Thus, sediment texture is an important factor that influences the sorption of heavy metal onto sediments.

  2. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils.

    Science.gov (United States)

    Chamannejadian, Ali; Sayyad, Gholamabbas; Moezzi, Abdolamir; Jahangiri, Alireza

    2013-04-08

    The excessive amounts of cadmium and lead in food chain can cause health problems for humans and ecosystem. Rice is an important food in human diet. Therefore this study was conducted in order to investigate cadmium and Lead concentrations in seed rice (Oryza saliva) of paddy fields in southwest of Iran. A total of 70 rice seed samples were collected from paddy fields in five regions of Khuzestan province, Southwest Iran, during harvesting time. In the samples cadmium and Lead concentrations were measured. To assess the daily intake of Cadmium and Lead by rice, daily consumption of rice was calculated. The results showed that average concentrations of Cadmium and Lead in rice seeds were 273.6 and 121.8 μg/kg, respectively. Less than 72% of rice seed samples had Cadmium concentrations above 200 μg/kg (i.e. Guide value for cadmium); and less than 3% had Lead concentrations above 150 μg/kg (i.e. Guide value for Lead). The estimated daily intakes of cadmium by the local population was calculated to 0.59 μg/day kg bw, which corresponds to 59% of the tolerable daily intakes (i.e. 1 μg/day kg bw). Eleven out of 70 samples (15.71%) exceed the tolerable daily intakes. The dietary intakes for Lead in the local population ranged from 0.22 to 0.47 μg/day kg bw. Tolerable daily intakes for Lead is 3.6 μg/day kg bw. As a whole, long term consumption of the local rice may bear high risk of heavy metal exposure to the consumer in the study region.

  3. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard

    2003-01-01

    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  4. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection.

    Science.gov (United States)

    Schlichting, Daniela; Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project "Safety of game meat obtained through hunting" (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition.

  5. Toxicity of cadmium and lead on tropical midge larvae, Chironomus kiiensis Tokunaga and Chironomus javanus Kieffer (Diptera: Chironomidae)

    Science.gov (United States)

    Ebau, Warrin; Rawi, Che Salmah Md; Din, Zubir; Al-Shami, Salman Abdo

    2012-01-01

    Objective To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer. Methods Different larval instars (first-fourth) were exposed using a static non-replacement testing procedures to various concentrations of cadmium and lead. Results In general, younger larvae (first and second instars) of both species were more sensitive to both metals than older larvae (third and forth instars). The toxic effects of the metals on C. kiiensis and C. javanus were influenced by the age of the larvae (first to fourth instars), types of metals (cadmium or lead) and duration of larval exposure (24, 48, 72 and 96 h) to the metals. Conclusions Cadmium was more toxic to the chironomids than lead and C. javanus was significantly more sensitive to both metals than C. kiiensis (P<0.05). PMID:23569984

  6. Effects of blood lead and cadmium levels on the functioning of children with behaviour disorders in the family environment.

    Science.gov (United States)

    Szkup-Jabłońska, Małgorzata; Karakiewicz, Beata; Grochans, Elżbieta; Jurczak, Anna; Nowak-Starz, Grażyna; Rotter, Iwona; Prokopowicz, Adam

    2012-01-01

    The developing brain of a child is extremely prone to damage resulting from exposure to harmful environmental factors, e.g. heavy metals. Intoxication of children's organisms with lead and cadmium affects their intellectual development. Even a relatively small amount of this metal in children's blood can lead to developmental dysfunctions. The aim of this study was to analyse the correlation between blood lead and cadmium levels in children with behaviour disorders and their functioning in the home. This survey-based study was conducted among 78 families with children diagnosed as having behaviour disorders. It was performed using the ADHD-Rating Scale-IV. To determine lead and cadmium levels the laboratory procedure was based on Stoppler and Brandt's method. The mean blood lead level was 19.71 µg/l and the mean blood cadmium level was 0.215 µg/l. Higher blood lead levels in children correlates positively with incidences of hyperactive and impulsive behaviour in the home, as assessed by parents (p=0.048). Statistically significant effects of cadmium on children's behaviour were not noticed. The effect of lead on the developing organism of a child has such behavioural consequences as attention disorders, hyperactivity and impulsive behaviour which, in turn, may interfere with children's functioning in the home. A negative effect of cadmium on the functioning of children with behaviour disorders in the home was not proved.

  7. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Chigbo, F.E.; Smith, R.W.; Shore, F.L.

    1982-01-01

    The water hyacinth Eichornia crassipes was studied as a pollution monitor for the simultaneous accumulation of arsenic, cadmium, lead and mecury. After cultivation of the plants for 2 days in tanks containing 10 ppm of each of the metals in aqueous solution, the plants were harvested and rinsed with tap water. The leaves and stems were separated and analysed for each of the metals. The ratio of the concentration of arsenic and mercury in the leaves to the concentrations in the stems was found to be 2:1. Cadmium and lead showed a concentration ratio in leaves to stems of about 1:1. The leaf concentration of arsenic was the lowest of the metals of 0.3428 mg g/sup -1/ of dried plant material whilst the leaf concentration of cadmium was highest at 0.5740 mg g/sup -1/ of dried plant material. Control plants were grown in unpolluted water. Plants grown in Bay St. Louis, Mississippi sewage lagoon were also analysed. The mercury concentrations of the leaves of plants grown in the sewage lagoon were significantly different from the control sample which had a concentration of 0.0700 mg g/sup -1/ of dried plant material.

  8. Cadmium, lead and mercury levels in feeding yeast produced in Czechoslovakia.

    Science.gov (United States)

    Cibulka, J; Turecki, T; Miholová, D; Mader, P; Száková, J; Brabec, M

    1992-04-01

    Ninety-six samples of the feeding yeast known as VITEX were analyzed for Cd, Pb and Hg content during 1987-1989. Cadmium content ranged from 0.30 to 5.12 mg/kg(-1), lead content from 0.21 to 3.01 mg/kg(-1) and mercury content from 0.008 to 0.187 mg/kg(-1). Our findings meet the current government standards (max. allowed Pb = 5.00, Cd = 0.50 and Hg = 0.100 mg/kg(-1)) only for lead, and with five exceptions, for mercury. With two exceptions, all cadmium levels found in the samples exceeded the limit. One raw material - the wood chips - was shown to be the main source of cadmium in the technological process. Relatively high Hg contents were measured in the wood chips (up to 0.155 mg/kg(-1)); the highest Hg level (1.105 mg/kg(-1)) however was found in a sample of KOH.

  9. Reduction and aggregation of silver, copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    Kapoor, S.; Gopinathan, C.

    1998-01-01

    Radiolytic reduction of silver, copper and cadmium ions and the subsequent formation of their clusters was studied in aqueous gelatin or carboxy methyl cellulose (CMC) solutions. Presence of gelatin or CMC in the solution affects the early processes. The rate of reduction by hydrated electron reduces due to complexation. However, when the ratio of silver ions to monomeric chains decreases over a certain limit the process of reduction inhibits completely. The effect of ionic strength or pH and the reducing radical on the rate of formation of colloidal Cu and Cd is also discussed

  10. QUANTIFICATION OF LEAD AND CADMIUM IN POULTRY AND BIRD GAME MEAT BY SQUARE WAVE ANODIC STRIPPING VOLTAMMETRY

    OpenAIRE

    2011-01-01

    Abstract A Square Wave Anodic Stripping Voltammetric method for the analysis of lead and cadmium in chicken muscle and liver was developed and validated, and the results of a monitoring study relative to chicken and pigeon meat are reported. The voltammetric method allows the analysis of lead and cadmium at the same time in samples after acid digestion. The use of perchloric acid for digestion and of acetate buffer in the supporting electrolyte have been found suitable to reduce ma...

  11. Determination of Lead and Cadmium in cow’s Milk and Elimination by Using Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Haniyeh Moallem Bandani

    2016-10-01

    Full Text Available Background and Objectives: Heavy metals such as cadmium and lead are the most important toxins spreading through various ways like water, soil, and air in nature and easily enter human food chain. It is essential to determine the cumulative and harmful effects of these metals in nutrients, especially in cow milk because it is a unique source of food for all ages and it contains both essential and nonessential trace elements. Materials and Methods: A total of 100 milk samples were directly collected from healthy cows in Zabol located on east of Iran. The samples were tested to determine lead and cadmium residues. The rates of the heavy metals were determined using a Rayleigh atomic absorption spectrum equipped with hollow cathode lamps (HCL at 283.3 nm for lead (Pb and at 228.8 nm for cadmium (Cd. By using the photo-catalytic titanium dioxide nanoparticles, these toxic metals were removed. Results: The mean ± SD of the concentration of lead and cadmium in raw milk were 9.175± 2.5 and 4.557 ± 1.081 ppb, respectively. Also, the P-values of Kalmogorov– Smiranov test for lead and cadmium were respectively 0.057 ppb (P>0.05 and 0.435 ppb (P>0.05. TiO2 nanoparticles were used to eliminate and remove lead and cadmium in milk samples. The results showed that there was a significant difference between lead and cadmium contents before and after adding TiO2 nanoparticles (P<0.05. Conclusions: According to results of this study, there was a very low amount of toxic metals. So, it seems that it is not necessary to use TiO2 in milk samples but these days it used frequently as an additive to some samples like milk to remove these pollutants. Keywords: lead, cadmium, milk, atomic absorption spectroscopy, TiO2 nanoparticles

  12. Exposure to lead and cadmium released from ceramics and glassware intended to come into contact with food.

    Science.gov (United States)

    Rebeniak, Małgorzata; Wojciechowska-Mazurek, Maria; Mania, Monika; Szynal, Tomasz; Strzelecka, Agnieszka; Starska, Krystyna

    2014-01-01

    The dietary intake of harmful elements, particularly lead and cadmium constitutes a health threat and essential measures should be undertaken to reduce consumer exposure. The latest risk assessments by the European Food Safety Authority (EFSA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA) have indicated that the Provisional Tolerable Weekly Intake (PTWI) for lead and cadmium do not ensure health safety and their review had to be undertaken. Migration from ceramics and glassware intended for food contact is an important source of lead and cadmium intake. To study the release of lead and cadmium from ceramics and glassware (including decorated products) intended for food contact that are available on the Polish market and to assess the resulting health risk to the consumer. Ceramics and glassware (mainly decorated) were sampled from the Polish market during 2010- 2012 throughout the country by staff of the Sanitary-Epidemiological Stations in accordance with monitoring procedures and guidelines designed by the National Institute of Public Health-National Institute of Hygiene. Migration of lead and cadmium was measured by incubating the samples with 4% acetic acid for 24 hours at a temperature of 22±2ºC in the dark. Flame Atomic Absorption Spectrometry (FAAS) was used to measure these elements in food simulant according to a validated and accredited method (PN-EN ISO/IEC 17025). 1273 samples of ceramics and glass wares were analysed in 2010-2012. Lead and cadmium release were usually found to be below analytical detection limits. Permissible migration limits (as prescribed by the legislation) of these metals were rarely exceeded and were reported mainly in articles imported from outside the EU. Two imported and decorated ceramic flat plates released lead at 0.9 and 11.9 mg/dm2 (limit 0.8 mg/dm2) and 5 imported deep plates gave migration values of 4.7 mg/L, 4.9 mg/L, 5.6 mg/L, 6.1 mg/L, 8.6 mg/L (limit 4.0 mg/L). Lead migrations from ceramic ware rims

  13. Human exposure to pollutants - part: 1 blood lead and cadmium in a sample of population of Karachi

    International Nuclear Information System (INIS)

    Yousufzai, A.H.K.; Khalid, Q.; Sultana, L.

    1994-01-01

    A study was carried out to see the blood lead and cadmium levels in fifty employees working at PCSIR Laboratories Complex, Karachi. These employees belonged to various socio-economic groups and had their residences in different areas of Karachi. Sixty two percent staff had blood lead level between 100-200 micro g/L. The highest blood lead level(>400 micro g/L) was found in volunteers working as garage staff. No significant difference was found between the blood lead levels of volunteers belonging to different socio-economic and age groups, only 8% of the staff had blood lead levels below 100 micro g/L. Lead in the dust collected from the residences of the volunteers was also estimated for lead and correlated with blood lead levels. Blood cadmium levels were also estimated. These were found to be higher in smokers and tobacco chewers. A definite correlation was observed between blood cadmium levels and smoking habits. (author)

  14. Determination of mercury, lead and cadmium in water by the CRA-atomic absorption spectrophotometry with solvent extraction

    International Nuclear Information System (INIS)

    Shim, Y.B.; Won, M.S.; Kim, C.J.

    1980-01-01

    The method of CRA-atomic absorption spectrophotometer with solvent extraction for the determination of mercury, lead and cadmium in water was studied. The optimum extracting conditions for CRA-atomic absorption spectrophotometry were the following: the complexes of mercury, lead and cadmium with dithizone were separated from the aqueous solution and concentrated into the 10 ml chloroform solution. Back extraction was performed; the concentrated mercury, lead and cadmium was extracted from the chloroform solution into the 10 ml 6-normal aqueous hydrochloric acid solution. In this case, recovery ratios were the following: mercury was 94.7%, lead 97.7% and cadmium 103.6%. The optimum operating conditions for the determination of mercury, lead and cadmium by the CRA-atomic absorption spectrophotometry also were investigated to test the dry step, ash step and atomization step for each metal. The experimental results of standard addition method were the following: the determination limit of each metal within 6% relative deviation was that lead was 0.04 ppb, and cadmium 0.01 ppb. Especially, mercury has been known impossible to determine by CRA-atomic absorption spectrophotometry until now. But in this study, mercury can be determined with CRA-atomic absorption spectrophotometer. Its determination limit was 4 ppb within 8% relative deviation. (author)

  15. Biomonitoring of lead and cadmium in women from industrial regions of eastern Germany; Biomonitoring von Blei und Cadmium bei Frauen aus industriellen Regionen Sachsen-Anhalts

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, I.; Wichmann, H.E. [Univ. Muenchen (Germany). Lehrstuhl fuer Epidemiologie; GSF - Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Epidemiologie; Becker, K.; Lippold, U.; Meyer, E. [Umweltbundesamt, Berlin (Germany); Heinrich, J. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Epidemiologie

    2003-07-01

    The aim of this analysis was to detemine the body burden of lead and cadmium in women aged 50 to 59 years from a mining and smelter area (Hettstedt) and two control areas (Bitterfeld, Zerbst) in eastern Germany. In the years 1992-93 1405 women aged 50 to 59 participated in a cross-sectional survey (response rate: 41.6%). 1188 women provided blood and urine samples and in 411 of these samples blood lead levels and cadmium levels in urine (standardised by creatinine) were determined. The geometric mean of blood lead levels among the 50 to 59 year-old woman was 41.5 {mu}g/l with a 95% confidence interval (C.I.) of 39.6-43.6. The geometric mean of cadmium in urine was 0.417 {mu}g/g Cr (95% C.I. 0.390-0.447). Thus the body burden of lead and cadmium differed only slightly, if at all, from the body burden of the general population. The measured body burden did not pose a risk to the evaluated population. Compared to women from the control regions Bitterfeld and Zerbst, women from Hettstedt did not have elevated blood lead levels. Blood lead levels, which reflect mostly the current exposure to lead, were positively influenced by individual behaviours such as smoking and by the distance of the residential area of Hettstedt from the former smelters. Besides this, elevated lead concentrations in tap water and the release of lead from bone after menopause resulted in increased blood lead levels. Compared to women from the control regions women from Hettstedt had significantly increased cadmium excretion in urine. Cadmium levels in urine reflect mainly the cumulative, lifetime exposure to cadmium. (orig.) [German] Die vorliegende Untersuchung hatte zum Ziel, die innere Belastung von Frauen mit Blei und Cadmium in den Regionen Hettstedt (Huettenstandort), Bitterfeld und Zerbst zu untersuchen. 1992/93 nahmen 1405 50- bis 59-jaehrige Frauen an einer Querschnittsuntersuchung teil (Teilnahmerate: 41,6%). In 411 Blut- bzw. Urin-Proben wurden die Bleikonzentration im Blut und die

  16. Contamination by cadmium and lead of some fruits and vegetables exposed to polluted air

    International Nuclear Information System (INIS)

    Nohra, R.

    2004-01-01

    Author.Global air pollution and particularly in the urban cities derives from vehicle transportation (cars, buses, trucks) and electric generators. In Lebanon, many people use fuel diesel and leaded gasoline in the engines of their vehicles. Indeed, the fuel used in our country, contains thirteen times more pollutants than that used legally in the developed countries (Magazine de l'environnement, 2002). This contributes to the pollution of the air that we breathe as well as the fruits and vegetables exposed to air. 762 samples of four kinds of different fruits (peaches, apples, strawberries and grapes) and two kinds of vegetables (parsleys and cucumbers) were taken twice and during different periods from eight different places in laps of time of seven days. The samples were analyzed in the laboratories of IRAL at Fanar and Tal-Amara, using the Spectroscopy Atomic Absorption method. The analysis included two groups of samples: the first one comprises 192 samples of fruits and vegetables without peeling and the second one comprises 570 samples of fruit and vegetables with peeling. The average values of the non washed samples were between 0.13 ±0.012 and 0.6 ppm ± 0.02 for lead and 0.06 ± 0.015 and 0.18 ppm ± 0.02 for cadmium. Those of the non washed peelings were between 0.08 ± 0.015 and 0.38 ppm ±0.025 for lead and 0.03 ±0.006 and 0.11 ppm ± for cadmium. On the other hand, those of the non-washed peeled samples were between 0.05 ± 0.01 and 0.27 ppm ± 0.016 for lead and 0.03 ± 0.016 and lead and 0.03 ± 0.06 and 0.07 ppm ± 0.015 for cadmium. Once these samples were washed , the average values were marked between 0.03 ± 0.006 and 0.15 ppm ± 0.02 for the lead and 0.02 ± 0.006 and 0.06 ppm ± 0.015 for the cadmium. Then, after drying them, concentrations revealed to be comprised between 0.02 ± 0.005 and 0.1 ppm ± 0.02 for the lead and 0.01 and 0.04 ppm ± 0.006 for the cadmium and that of the washing water was concentrated between 0.09 ± 0.016 and 0

  17. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  18. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Fernanda Maciel [Brazilian Health Surveillance Agency, University of Brasilia, 70910-900 Brasilia, DF (Brazil); Caldas, Eloisa Dutra, E-mail: eloisa@unb.br [Laboratory of Toxicology, Department of Pharmacy, University of Brasilia, 70910-900 Brasilia, DF (Brazil)

    2016-11-15

    Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals in breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515 µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149 µg/L) collected in regions with high arsenic concentrations in water (>10 µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2 µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks. - Highlights: • Review of 75 studies that analyzed arsenic, lead, mercury and/or cadmium levels. • Higher levels of arsenic found in India; of mercury found in Brazil. • Lead was the most

  19. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants

    International Nuclear Information System (INIS)

    Rebelo, Fernanda Maciel; Caldas, Eloisa Dutra

    2016-01-01

    Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals in breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515 µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149 µg/L) collected in regions with high arsenic concentrations in water (>10 µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2 µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks. - Highlights: • Review of 75 studies that analyzed arsenic, lead, mercury and/or cadmium levels. • Higher levels of arsenic found in India; of mercury found in Brazil. • Lead was the most

  20. The sublethal effects of copper and lead on the haematology and ...

    African Journals Online (AJOL)

    Toxicity bioassays were conducted on groovy mullet, Liza dumerili, using copper and lead, in order to assess how these metals affected their blood haematology and acid-base balance. Short-term (96 hours) exposure to lead caused significantly more haematological response [PCO2] than copper, when compared to the ...

  1. Fact sheet: National primary drinking water regulations for lead and copper

    International Nuclear Information System (INIS)

    1991-05-01

    The Fact Sheet contains a summary of what the regulations will do, establish, and provide; regulatory impact in regards to benefits and costs; treatment technique requirements; tap water monitoring for lead and copper; water quality monitoring (other than lead and copper); monitoring schedules, regulatory schedules for large, medium-sized, and small systems

  2. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: A public health concern

    Energy Technology Data Exchange (ETDEWEB)

    Maduabuchi, J.-M.U. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Nzegwu, C.N. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Adigba, E.O. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Aloke, R.U. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Ezomike, C.N. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Okocha, C.E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Obi, E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Orisakwe, O.E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria)]. E-mail: eorish@aol.com

    2006-08-01

    The lead and cadmium levels of canned and non-canned foods purchased in Nigeria were studied. Fifty samples of these beverages were digested in nitric acid and were analyzed using the Atomic Absorption Spectrophotometer (AAS). The cadmium levels ranged from 0.003-0.081 mg/L for the canned and 0.006-0.071 mg/L for non-canned beverages. About 85.71% of the canned beverages had cadmium levels that exceeded the maximum contaminant level (MCL) of 0.005 mg/L set by US EPA while 82.7% non-canned beverages had cadmium levels exceeding the MCL. The mean and median levels of cadmium exceeded the MCL in both the canned and non-canned beverages. Whereas only 79.3% of the non-canned beverages showed lead levels that exceeded the US EPA's MCL of 0.015 mg/L, 100% of the canned beverages had lead levels that were greater than the MCL. The range of the lead in the canned beverages was 0.002-0.0073 and 0.001-0.092 mg/L for the non-canned beverages. The mean and median values of lead exceeded the MCL in both the canned and non-canned beverages. The calculated amount of lead and cadmium in three beverages were 0.204 mg (204 {mu}g) and 0.177 mg (177 {mu}g), respectively. These represent the estimated intake of a consumer who takes three of the products selected randomly in a week; assuming an average volume of one liter (1 L) for each product. Taken together 86% and 84% of the 50 beverages (canned and non-canned) studied in March, 2005 in Nigeria failed to meet the US EPA criteria for acceptable lead and cadmium levels in consumer products.

  4. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: A public health concern

    International Nuclear Information System (INIS)

    Maduabuchi, J.-M.U.; Nzegwu, C.N.; Adigba, E.O.; Aloke, R.U.; Ezomike, C.N.; Okocha, C.E.; Obi, E.; Orisakwe, O.E.

    2006-01-01

    The lead and cadmium levels of canned and non-canned foods purchased in Nigeria were studied. Fifty samples of these beverages were digested in nitric acid and were analyzed using the Atomic Absorption Spectrophotometer (AAS). The cadmium levels ranged from 0.003-0.081 mg/L for the canned and 0.006-0.071 mg/L for non-canned beverages. About 85.71% of the canned beverages had cadmium levels that exceeded the maximum contaminant level (MCL) of 0.005 mg/L set by US EPA while 82.7% non-canned beverages had cadmium levels exceeding the MCL. The mean and median levels of cadmium exceeded the MCL in both the canned and non-canned beverages. Whereas only 79.3% of the non-canned beverages showed lead levels that exceeded the US EPA's MCL of 0.015 mg/L, 100% of the canned beverages had lead levels that were greater than the MCL. The range of the lead in the canned beverages was 0.002-0.0073 and 0.001-0.092 mg/L for the non-canned beverages. The mean and median values of lead exceeded the MCL in both the canned and non-canned beverages. The calculated amount of lead and cadmium in three beverages were 0.204 mg (204 μg) and 0.177 mg (177 μg), respectively. These represent the estimated intake of a consumer who takes three of the products selected randomly in a week; assuming an average volume of one liter (1 L) for each product. Taken together 86% and 84% of the 50 beverages (canned and non-canned) studied in March, 2005 in Nigeria failed to meet the US EPA criteria for acceptable lead and cadmium levels in consumer products

  5. Cadmium and lead in tissues of Mallards (Anas platyrhynchos) and Wood Ducks (Aix sponsa) using the Illinois River (USA)

    International Nuclear Information System (INIS)

    Levengood, J.M.

    2003-01-01

    Tissue lead and cadmium concentrations were examined in two common, widely distributed species of duck, utilizing a major river system. - Cadmium and lead concentrations were determined in the tissues of Mallards and Wood Ducks collected from two waterfowl management areas along the Illinois River, USA, during the autumn and late winter of 1997-1998. Lead concentrations in livers of Mallards were lower than previously reported, and, along with those in a small sample of Wood Duck livers, were within background levels (<2.0 μg/g wet weight). Mean concentrations of cadmium in the kidneys of Wood Ducks utilizing the Illinois River were four times greater than in after-hatch-year Mallards, and 14 times greater than in hatch-year Mallards. Concentrations of cadmium in the kidneys of Wood Ducks were comparable with those of specimens dosed with cadmium or inhabiting contaminated areas in previous studies. Wood Ducks utilizing wetlands associated with the Illinois River, and presumably other portions of the lower Great Lakes region, may be chronically exposed to cadmium

  6. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population.

    Science.gov (United States)

    Park, Sunmin; Lee, Byung-Kook

    2013-12-01

    Blood lead and cadmium levels are more than twofold to fivefold higher in the Korean population compared to that of the USA. This may be related to the foods consumed. We examined which food categories are related to blood lead and cadmium levels in the Korean adult population using the 2008-2010 Korean National Health and Nutrition Examination Survey (n = 5504). High and moderate consumption of bread and crackers, potatoes, meat and meat products, milk and dairy products, and pizza and hamburger resulted in significantly lower odds ratios for blood lead levels than their low consumption. However, consumption of salted fish, white fish, green vegetables, white and yellow vegetables, coffee, and alcohol resulted in significantly higher odds ratios of blood lead and cadmium. In conclusion, the typical Asian diet based on rice, fish, vegetables, regular coffee, and alcoholic drinks may be associated with higher blood cadmium and lead levels. This study suggests that lead and cadmium contents should be monitored and controlled in agricultural products to reduce health risks from heavy metals.

  7. Natural Attenuation of Arsenic, Cadmium, Lead, and Zinc Using Hydrograph Separation

    Science.gov (United States)

    Burrows, J. E.; Peters, S. C.

    2009-12-01

    Strategies for remediating contaminated sites range from complete removal of the contaminated soil to in-situ monitored natural attenuation. The decision to let a property naturally attenuate is partially based on the estimated time it will take to return to ambient conditions. The Lehigh Gap Wildlife Refuge at Palmerton, PA was historically contaminated with arsenic, cadmium, lead, and zinc from a zinc smelting operation that ceased emissions twenty-nine years ago. This property provides an opportunity to assess whether the length of time required for the natural attenuation of metals in soil has been achieved using a watershed mass balance approach, focusing particularly on perturbations observed in the concentration-discharge relationships of contaminants compared to the conservative tracers sodium and chloride, and silicon as an indicator of rock-water interactions. Water samples were collected from 3 springs in the Wildlife Refuge for approximately 4 days following the onset of storm events and analyzed for cation and anion concentrations. Preliminary results show that while the concentrations of arsenic and lead were below detection limits, the fluxes of zinc and cadmium increase corresponding with the peak in the hydrograph relative to the fluxes of the tracers, indicating the solutes are being released from adsorption sites located in an unsaturated zone that is temporarily inundated during storm events. In comparison, the flux of the tracers remains constant, indicative of a steady-state leakage of the solutes from their respective reservoirs in the soil. Along with flux, the concentrations of zinc and cadmium also increase following the rise in discharge after storm events, further suggesting that these contaminants are being mobilized out of the soil profile.

  8. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    International Nuclear Information System (INIS)

    Santos, Inês C.; Mesquita, Raquel B.R.; Rangel, António O.S.S.

    2015-01-01

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L"−"1 for cadmium, 2.39 μg L"−"1 for zinc, and 0.11 μg L"−"1 for copper and a sampling rate of 12, 13, and 15 h"−"1 for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L"−"1 level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  9. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Anacleto, Patrícia; van den Heuvel, Freek H M; Oliveira, C

    2017-01-01

    The presence of contaminants in aquatic ecosystems can cause serious problems to the environment and marine organisms. This study aims to evaluate the phycoremediation capacity of macroalgae Laminaria digitata for pesticides (diflubenzuron and lindane) and toxic elements (cadmium and copper) in s...

  10. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  11. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics

    Science.gov (United States)

    Niu, Z. X.; Sun, L. N.

    2017-06-01

    Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.

  12. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  13. Flow injection determination of lead and cadmium in hair samples from workers exposed to welding fumes

    International Nuclear Information System (INIS)

    Cespon-Romero, R.M.; Yebra-Biurrun, M.C.

    2007-01-01

    A flow injection procedure involving continuous acid leaching for lead and cadmium determination in hair samples of persons in permanent contact with a polluted workplace environment by flame atomic absorption spectrometry is proposed. Variables such as sonication time, nature and concentration of the acid solution used as leaching solution, leaching temperature, flow-rate of the continuous manifold, leaching solution volume and hair particle size were simultaneously studied by applying a Plackett-Burman design approach. Results showed that nitric acid concentration (leaching solution), leaching temperature and sonication time were statistically significant variables (confidence interval of 95%). These last two variables were finally optimised by using a central composite design. The proposed procedure allowed the determination of cadmium and lead with limits of detection 0.1 and 1.0 μg g -1 , respectively. The accuracy of the developed procedure was evaluated by the analysis of a certified reference material (CRM 397, human hair, from the BCR). The proposed method was applied with satisfactory results to the determination of Cd and Pb in human hair samples of workers exposed to welding fumes

  14. Lead, cadmium, and mercury contents of fungi in the Helsinki area and in unpolluted control areas

    Energy Technology Data Exchange (ETDEWEB)

    Kuusi, T.; Liukkonen-Lilja, H.; Piepponen, S.; Laaksovirta, K.; Lodenius, M.

    1981-10-01

    More than 40 species of wild-growing fungi in Finland have been investigated with regard to their contents of lead, cadmium and mercury. A total of 326 samples was studied, 242 being from the urban area of Helsinki and 84 from unpolluted rural areas. The lead content ranged from < 0.5 to 78 mg/kg of dry matter. In the control areas the mean contents for the different species ranged from < 0.5 to 13 mg/kg, and in the urban area from 0.5 to 16.8 mg/kg. The cadmium content ranged from < 0.2 to 101 mg/kg of dry matter. In the control areas the mean contents for the different species ranged from < 0.2 to 16.8 mg/kg, and in the urban area from < 0.2 to 17.3 mg/kg. The mercury content ranged from < 0.01 to 95 mg/kg of dry matter. In the rural areas the mean contents for the diferent species ranged from 0.03 to 4.2 mg/kg, and in the urban area from 0.02 to 14.1 mg/kg. In conclusion, consumption of those fungi that grow in unpolluted rural areas carries no risk, particularly when they belong to mycorrhizal species. In urban areas the risk is somewhat greater. The Agaricus species show the highest contents of the metals studied and their use as food requires caution.

  15. Electrochemical Microsensors for the Detection of Cadmium(II and Lead(II Ions in Plants

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-05-01

    Full Text Available Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab, a commercially available miniaturized potentiostat (PalmSens and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II and lead(II ions. The lowest detection limits (hundreds of pM for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM and the homemade instrument (hundreds of nM. Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract with artificially added cadmium(II and lead(II. Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.

  16. Lead and Cadmium: Priorities for action from UNEP’s perspective for addressing risks posed by these two heavy metals

    Directory of Open Access Journals (Sweden)

    Piper D.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP has been focusing on actions with regard to lead and cadmium since 2001 when the work of the Partnership for Clean Fuels and Vehicles (PCFV was initiated. The development and finalization of the reviews of scientific information on lead and cadmium facilitated discussions among Governments in relation to the need for global action with regard to these heavy metals. UNEP continues to address priority areas for focusing to reduce risks posed by lead and cadmium. The Global Alliance to Eliminate Lead Paint (GAELP is a clear example for addressing those risks; however more work is expected to be done in relation to these key issues.

  17. Health Assessment of Heavy Metal Pollution (Cadmium, Lead, Arsenic in Citrus Marketed in Tehran, Iran, 2015

    Directory of Open Access Journals (Sweden)

    Razieh Saleh

    2017-03-01

    Full Text Available Background & Aims of the Study: Today, the environment pollution with heavy metals has increased. It is important to study various types of pollutions specially those regarding fruits. The effect of pollutions on food safety for human consumption is a global concern.  This study was conducted for health assessment of heavy metals pollution (cadmium, lead, and arsenic in citrus marketed in Tehran, Iran in 2015. Materials & Methods: After collecting and preparing 2 samples from each citrus species (tangerine, grapefruit, sweet lime, sour orange, orange with acid digestion method, the citrus pulp and peel were surveyed. Inductively coupled plasma optical emission spectrometry (ICP-OES was used to determine the concentrations of heavy metals with three replications. Moreover, SPSS version 19 was employed to perform statistical analysis. Results: The results showed that the concentration average of Cadmium, Lead and Arsenic in citrus samples of the pulp parts were 19.73, 42.95 and 2.30 mg/kg and in peel parts were 20.09, 42.71 and 2.12 mg/kg, respectively. The average concentrations of heavy metals were higher than WHO maximum permissible limits. Conclusions: Based on these results, consumption of citrus species has no adverse effect on the consumers’ health (except Sweet lime, Orange, Tangerine and Grapefruit in lead is risky for adults and Sweet lime and Orange that Health Index in Lead and Arsenic and Sour Orange, Tangerine and Grapefruit that Health Index in Lead is more than 1 and is risky for children. Thus, individuals living in Tehran should be cautious about using these citrus fruits and researchers should try to obtain national standards in the field of entering these metals to food in environmental conditions that are in Iran.

  18. House dust as possible route of environmental exposure to cadmium and lead in the adult general population

    International Nuclear Information System (INIS)

    Hogervorst, Janneke; Plusquin, Michelle; Vangronsveld, Jaco; Nawrot, Tim; Cuypers, Ann; Van Hecke, Etienne; Roels, Harry A.; Carleer, Robert; Staessen, Jan A.

    2007-01-01

    Contaminated soil particles and food are established routes of exposure. We investigated the relations between biomarkers of exposure to cadmium and lead, and the metal loading rates in house dust in the adult residents of an area with a soil cadmium concentration of >=3mg/kg (n=268) and a reference area (n=205). We determined the metal concentrations in house dust allowed to settle for 3 months in Petri dishes placed in the participants' bedrooms. The continuously distributed vegetable index was the first principal component derived from the metal concentrations in six different vegetables. The biomarkers of exposure (blood cadmium 9.2 vs. 6.2nmol/L; 24-h urinary cadmium 10.5 vs. 7.0nmol; blood lead 0.31 vs. 0.24μmol/L), the loading rates of cadmium and lead in house dust (0.29 vs. 0.12 and 7.52 vs. 3.62ng/cm 2 /92 days), and the vegetable indexes (0.31 vs. -0.44 and 0.13 vs. -0.29 standardized units) were significantly higher in the contaminated area. A two-fold increase in the metal loading rate in house dust was associated with increases (P<0.001) in blood cadmium (+2.3%), 24-h urinary cadmium (+3.0%), and blood lead (+2.0%), independent of the vegetable index and other covariates. The estimated effect sizes on the biomarkers of internal exposure were three times greater for house dust than vegetables. In conclusion, in the adult population, house dust is potentially an important route of exposure to heavy metals in areas with contaminated soils, and should be incorporated in the assessment of health risks

  19. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    Science.gov (United States)

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-04

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution.

  20. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper.

    Science.gov (United States)

    Moncaleano-Niño, Angela M; Luna-Acosta, Andrea; Gómez-Cubillos, Maria Camila; Villamil, Luisa; Ahrens, Michael J

    2018-04-30

    In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp

  1. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    Science.gov (United States)

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Studies of cadmium, mercury and lead in man. The value of X-ray fluorescence measurements in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, J

    1996-10-01

    Two XRF methods have been used for in vivo studies of mercury, cadmium and lead. Persons with a history of long-term occupational mercury exposure had elevated mercury concentrations in their kidneys (up to 65 {mu}g/g). The minimum detectable concentration varied between 12 and 45 {mu}g/g. Battery plant workers had elevated cadmium concentrations in their kidneys (up to 350 {mu}g/g) and liver (up to 80 {mu}g/g), with mean values about 3-5 times higher than the general population. The mean ratio between concentrations of cadmium in kidney and liver was 7. Levels in kidney and liver indicated that a simple integration of cadmium in work-place air is not sufficient to describe the body burden. Fingerbone lead in smelters was 6-8 times higher than in members of the general population. The half-time of bone lead in active workers was estimated to about 5 years during the accumulation phase. A model for description of a person`s lead exposure in terms of lead in fingerbone, lead in blood and time of exposure has been developed and can be used, e.g. for retrospective blood lead estimates if the period of exposure and the current fingerbone lead is known. This will be of value for the evaluation of toxic effects of long-term lead exposure when data on previous lead levels are lacking. In total, in vivo measurements of mercury, cadmium and lead give unique information, which has shown to be an important tool for understanding of metal kinetics and toxicity. If the precision and accuracy of the method can be further improved, the technique will also have a given place in the clinical practice. 168 refs, 9 figs, 3 tabs

  3. Capacity of waters in the Magela Creek system, Northern Territory, to complex copper and cadmium

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.

    1984-08-01

    Two methods were used to determine the concentrations of copper-binding ligand (complexing capacity) and conditional formation constants for waters collected from the Magela Creek system, Northern Territory. These data are particularly important in estimating the concentrations of toxic forms of copper that may result from particular effluent discharge strategies from the Ranger uranium operation

  4. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    Energy Technology Data Exchange (ETDEWEB)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Fabricius-Lagging, Elisabeth [Department of Nephrology, Sahlgrenska University Hospital and Boras Hospital (Sweden); Lundh, Thomas [Department of Occupational and Environmental Medicine, Lund University Hospital and Lund University (Sweden); Moelne, Johan [Department of Clinical Pathology, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Wallin, Maria [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Olausson, Michael [Department of Transplantation and Liver Surgery, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Modigh, Cecilia; Sallsten, Gerd [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden)

    2010-01-15

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 {mu}g/g (wet weight) for cadmium, 0.21 {mu}g/g for mercury, and 0.08 {mu}g/g for lead. Kidney Cd increased by 3.9 {mu}g/g for a 10 year increase in age, and by 3.7 {mu}g/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 {mu}g/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  5. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    International Nuclear Information System (INIS)

    Barregard, Lars; Fabricius-Lagging, Elisabeth; Lundh, Thomas; Moelne, Johan; Wallin, Maria; Olausson, Michael; Modigh, Cecilia; Sallsten, Gerd

    2010-01-01

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 μg/g (wet weight) for cadmium, 0.21 μg/g for mercury, and 0.08 μg/g for lead. Kidney Cd increased by 3.9 μg/g for a 10 year increase in age, and by 3.7 μg/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 μg/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  6. Study on complexed lead and cadmium ions removal from aqueous solutions by means of ion exchange method

    International Nuclear Information System (INIS)

    Dudzinska, M.

    1992-01-01

    The possibility of simultaneous removal of heavy metal ions and organic chelates from waste water has been studied. The experimental work has been preceded by extensive theoretical considerations and calculations of physico-chemical parameters of the process for model and real waste water systems. The negative influence of the presence of sulfate anions on cadmium and lead complexes removal in ion exchange process has been experimentally proved. In the systems free of sulfate anions or when their concentrations were low, the purification process conducted on Amberlite IRA-68 was very effective for cadmium and lead complexes removal. 112 refs, 78 figs, 15 tabs

  7. Determination of serum cadmium and lead in patients of ischemic hear disease associated with or without hypertension and diabetes mellitus

    International Nuclear Information System (INIS)

    Nagra, S.A.; Zikrya, B.; Maqbool, T.

    1999-01-01

    Human health and trace minerals are closely associated with each other. The vital role of trace elements has become clear in the recent years. The relation of trace elements in serum varies with the state of human health, ecology and under different pathological conditions. Determination of cadmium, and lead in the blood serum of normal, hypertensive patients, Ischemic heart patients, diabetic patients, hypertensive patients having diabetes, ischemic heart patients with diabetes, and hypertensive patients having ischemic heart disease, was carried out by using atomic absorption spectroscopic techniques. The results indicated that the concentration of cadmium and lead was elevated as compared with the normal and discussed in this paper. (author)

  8. Application of extraction-chromatographic concentration to atomic absorption determination of lead and cadmium in drinking and sea water

    International Nuclear Information System (INIS)

    Bol'shova, T.A.; Agapkina, G.I.; Ershova, N.I.; Narankho, K.E.

    1988-01-01

    To increase the detection limits for lead and cadmium atomic-absorption determination in natural waters methods of extraction-chromatographic concentration of these metals using tri-n-octylamine (TOA) on polytetrafluoroethylene (PTFE) is developed. Chromatograpy was carried out from 1.5-2.0 M HBr solutions. For cadmium and lead elution acetic acid was used. It is shown that extraction-chromatographic concentration permits to decrease limits of metal atomic-absorption detection by 10 3 with the 500 ml volume sample analysis

  9. Development of quantitative analysis for cadmium, lead and chromium in aluminum alloys by using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yamashita, Satoshi; Kurusu, Kazuhiko; Kudou, Aiko

    2009-01-01

    A highly reliable quantitative analysis for cadmium, lead and chromium in aluminum alloys was developed. Standard samples were made by doping cadmium, lead and chromium into several aluminum alloys, and the composition of standard samples were determined by inductively coupled plasma optical emission spectrometry and gravimetric method. The calibration curves for these standard samples by using WD-XRF and ED-XRF exhibited linear correlation. Slope of calibration curves for Al-Cu alloy and Al-Zn-Mg alloy were smaller than other alloy's one, because of the effect by coexistent elements. Then, all calibration curves agreed with each other by performing correction with α-coefficient method. (author)

  10. Selective determination of cyanide complexes of copper, zinc and cadmium in electrolytes by spectrophotometric titration

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Korchagina, O.A.; Samorukova, O.L.

    1986-01-01

    Selective, sensitive and rapid method for determining Cd, Zn, Cu and their mixtures in cyanide electrolytes of galvanic bathes has been developed. Analysis is performed by means of indicator spectrophotometric titration with barium and strontium salts of cadmium cyanide complexes in organic-aqueous solvents

  11. Long-Term Survey of Cadmium and Lead Contamination in Japanese Black Bears Captured in Iwate Prefecture, Japan.

    Science.gov (United States)

    Sato, Itaru; Yamauchi, Kiyoshi; Tsuda, Shuji

    2016-12-01

    Cadmium and lead were measured in liver and kidney samples of 242 Japanese black bears (Ursus thibetanus japonicus) captured from 1999 to 2014 from two local populations in Japan. The median concentration of cadmium was 0.54 (mean: 0.80) mg/kg-w.w. in liver and 7.7 (mean: 11.8) mg/kg-w.w. in kidney. The median concentration of lead was 0.24 (mean: 0.40) and 0.21 (mean: 0.32) mg/kg-w.w. in liver and kidney, respectively. Bears in the Kita-ou local population had higher concentrations of cadmium and lead than those in the Kitakami Highlands local population. No chronological change was observed in cadmium levels in tissues, but the percentage of bears whose lead levels exceeded 0.5 mg/kg-w.w. has been decreasing in recent years. Countermeasures against lead poisoning in wildlife, which were instituted in 2002, may have contributed to the decrease in lead contamination of the Japanese black bear.

  12. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  13. Cadmium and lead in cocoa powder and chocolate products in the US Market.

    Science.gov (United States)

    Abt, Eileen; Fong Sam, Jennifer; Gray, Patrick; Robin, Lauren Posnick

    2018-06-01

    Cocoa powder and chocolate products are known to sometimes contain cadmium (Cd) and lead (Pb) from environmental origins. A convenience sample of cocoa powder, dark chocolate, milk chocolate, and cocoa nib products was purchased at retail in the US and analysed using inductively coupled plasma mass spectrometry to assess Cd and Pb concentrations. Cd and Pb were evaluated in relation to the percent cocoa solids and to the reported origin of the cocoa powder and chocolate products. Cd ranged from 0.004 to 3.15 mg/kg and Pb ranged from cocoa, with correlations varying by product type and geographic origin. Geographic variation was observed for Cd, with higher Cd concentrations found in products reported as originating from Latin America than from Africa. The influence of percent cocoa solids and cocoa origin on Cd levels are relevant to international standards for Cd in chocolate products.

  14. Modelling atmospheric dispersion of mercury, lead and cadmium at european scale

    International Nuclear Information System (INIS)

    Roustan, Yelva

    2005-01-01

    Lead, mercury and cadmium are identified as the most worrying heavy metals within the framework of the long range air pollution. Understanding and modeling their transport and fate allow for making effective decisions in order to reduce their impact on people and their environment. The first two parts of this thesis relate to the modeling of these trace pollutants for the impact study at the European scale. While mercury is mainly present under gaseous form and likely to chemically react, the other heavy metals are primarily carried by the fine particles and considered as inert. The third part of this thesis presents a methodological development based on an adjoint approach. It has been used to perform a sensitivity analysis of the model and to carry out inverse modeling to improve boundary conditions which are crucial with a restricted area model. (author) [fr

  15. CADMIUM AND LEAD STATUS IN CORN HYBRIDS GROWN ON ACID SOIL OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    V. Kovačević

    2002-06-01

    Full Text Available Twenty corn (Zea mays L. hybrids were grown under field conditions in the west part of Brodsko-posavska county in Eastern Croatia during 2000 and 2001 growing seasons. The field trial was conducted in four replicates. The ear-leaf at beginning of silking stage (the second decade of July was taken for chemical analysis from each plot. Mean soil sample was taken by auger to 30 cm of depth. The total amounts of Cd and Pb in corn leaves were measured by ICP-AES technique after their microwave digestion using concentrated HNO3+H2O2. Mobile fraction of these elements in soil was extracted by ammonium acetate-EDTA solution. The experimental field is acid hydromorphic soil (locality Malino with moderate levels of mobile fractions of calcium, magnesium and aluminum. Also, mobile fraction of cadmium and lead are tolerable for growing of health food. Weather conditions during the study differed from the long-term mean. Low rainfall quantities during 5-months period and the higher air-temperatures characterized the 2000 growing season. Excess of rainfall in June and September, their shortage in July and August, as well as high temperatures in August, are main characteristics of weather during the corn growing seasons in 2001. Mean concentrations of cadmium and lead in corn leaves in our investigations were 0.14 ppm Cd and 0.420 ppm Pb. These amounts are low and not dangerous for plants, because critical concentrations of Cd and Pb in plants ranged from 5 to 10 ppm Cd and 10-20 ppm Pb. Considerable differences of cadmium and lead status in the ear-leaf were found among tested corn hybrids. For example, genetically induced differences from 0.07 to 0.21 ppm Cd were found, while these values for Pb were from 0.241 to 0.569 ppm Pb. Especially low Cd concentrations were found in six corn hybrids (OsSK373, E9917/99, Bc278, OsSK2-191, OsSK382 and Clarica: mean 0.092 ppm Cd, while in three hybrids it was considerably higher, but acceptable from the aspect of plant

  16. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Zhilin Wu

    2016-12-01

    Full Text Available The present study investigated the beneficial role of selenium (Se in protecting oilseed rape (Brassica napus L. plants from cadmium (Cd+2 and lead (Pb+2 toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10 and 15 mg kg-1 alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se enhanced superoxide free radicals (O2-, hydrogen peroxide (H2O2 and lipid peroxidation, as indicated by malondialdehyde (MDA accumulation, but decreased superoxide dismutase (SOD and glutathione peroxidase (GPx activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.

  17. Cadmium and lead occurrence in soil and grape from Murfatlar Vineyard

    Directory of Open Access Journals (Sweden)

    Matei Nicoleta

    2015-06-01

    Full Text Available The study investigates the pollution with heavy metals of grapes and soil. The grapes nourish from the respective soil, with all existing substances: either nutrients or toxic materials. This link, between grapes and soil, made mandatory to focus on observing the level of toxic materials in both samples grapes and land. The aim of this research is to analyze the level of Cd and Pb in Vitis vinifera L. grape fruits and soil, by flame atomic absorption spectrometry (FAAS method. The grapes and the soil used in this work were sampled from the Murfatlar City, a nonindustrial area, placed far from the car traffic pollution. Cd and Pb were quantified, after the chemical mineralization of the samples using nitric acid. It can be noticed that the values of cadmium and lead concentrations in grapes were lower than the recommendable maximum limit.

  18. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.

    Science.gov (United States)

    Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa

    2007-01-01

    Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.

  19. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.

  20. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kossowska, Barbara, E-mail: barbara@immchem.am.wroc.pl [Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wroclaw (Poland); Dudka, Ilona, E-mail: ilona.dudka@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Bugla-Ploskonska, Gabriela, E-mail: gabriela.bugla-ploskonska@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Szymanska-Chabowska, Anna, E-mail: aszyman@mp.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Doroszkiewicz, Wlodzimierz, E-mail: wlodzimierz.doroszkiewicz@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Gancarz, Roman, E-mail: roman.gancarz@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Andrzejak, Ryszard, E-mail: ryszard@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Antonowicz-Juchniewicz, Jolanta, E-mail: jola@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland)

    2010-10-15

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  1. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    International Nuclear Information System (INIS)

    Kossowska, Barbara; Dudka, Ilona; Bugla-Ploskonska, Gabriela; Szymanska-Chabowska, Anna; Doroszkiewicz, Wlodzimierz; Gancarz, Roman; Andrzejak, Ryszard; Antonowicz-Juchniewicz, Jolanta

    2010-01-01

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  2. Determination of tin, chromium, cadmium and lead in canned fruits from the Czech market

    Directory of Open Access Journals (Sweden)

    Pavel Diviš

    2017-01-01

    Full Text Available The global production of metal cans is more than 300 billion cans. Benefits of metal packaging consist mainly from the great strenght, excellent barrier properties and good thermal conductivity. The main problem of used metal packaging are the corrosion processes. The corrosion of metal container causes dissolution of tin which is used as a protective layer of the steel shell of the can and other metallic elements used in the manufacture of cans. In this work 31 samples of canned fruit was analysed and the concentration of tin, chromium, cadmium and lead was determined in fruit and in syrup using ICP-OES and ICP-MS techniques. The results showed no difference between the concentration of analysed elements in fruit and in syrup. In none of the analyzed samples the permitted maximum concentration of tin 200 mg.kg-1 was exceeded. Maximum concentration of tin was measured in canned grepfruit (59.8 ±1.9 mg.kg-1. The age of cans had no significant effect on the concentration of tin in canned fruit. The concentration of tin in fruit packaged in cans with protective layer of lacquer was significantly lower than the concentration of tin in fruit packaged in cans without protective layer of lacquer. Concentration of chromium, cadmium and lead in the analysed samples was very low at the natural levels of occurrence of these metals in fruit and it was impossible to determine unequivocally that the measured concentrations of these metals in canned fruit originate from the corrosion of can. The corrosion of the tinplate was studied using scanning electron microscopy with an energy dispersive spectrometer. By analyzing the SEM pictures and EDS spectra, critical areas of tin plate corrosion were observed. Based on the measured results it can be concluded that the consumption of fresh canned fruit is not a major problem for the inhabitants of the Czech Republic in terms of intake of potentially hazardous metals.

  3. Blood Concentrations of Cadmium and Lead in Multiple Sclerosis Patients from Iran.

    Science.gov (United States)

    Aliomrani, Mehdi; Sahraian, Mohammad Ali; Shirkhanloo, Hamid; Sharifzadeh, Mohammad; Khoshayand, Mohammad Reza; Ghahremani, Mohammad Hossein

    2016-01-01

    Since industrial revolution heavy metals such as lead (Pb) and cadmium (Cd) have been extensively dispersed in environment which, unknown biological effects and prolong biological half-life make them as a major hazard to human health. In addition, the sharp increase in Multiple sclerosis incidence rateshas been recorded in Iran. The propose of this study was to measuring blood lead and cadmium concentration and their correlation with smoking habit in a group of 69 RRMS patients and 74 age/gender-matched healthy individuals resident in Tehran as most polluted city in Iran. All subjects were interviewed regarding age, medical history, possible chemical exposure, acute or chronic diseases, smoking and dietary habits. Blood Pb and Cd levels were measured by double beam GBC plus 932 atomic absorption spectrometer. Our result indicated a significant difference in Cd level (p = 0.006) in which, MS patients had higher blood concentration (1.82 ± 0.13 μg/L) in comparison with healthy individuals (1.47 ± 0.11 μg/L). A comparable blood Cd level to similar recent study (1.78 µg/L vs.1.82 µg/L) was observed. With respect to Pb there was no significant difference between cases and controls, however the geometric means of blood Pb concentration were considerably higher in males than in females in MS patients (57.1 ± 33.7 μg/L vs . 36.7 ± 21.9 μg/L. P = 0.02). Taking into consideration tobacco smoking, an elevated contents of each metal were observed in smoker subjects (p<0.0001). A significant correlation between cigarette smoking and risk of multiple sclerosis was shown before. Thus, high level of Cd in smokers might affect the susceptibility to multiple sclerosis and could increase the risk of disease development.

  4. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence.

    Science.gov (United States)

    Paraszkiewicz, Katarzyna; Frycie, Aleksandra; Słaba, Mirosława; Długoński, Jerzy

    2007-10-01

    The influence of cadmium, zinc and lead on fungal emulsifier synthesis and on the growth of filamentous fungus Curvularia lunata has been studied. Tolerance to heavy metals established for C. lunata was additionally compared with the sensitivity exhibited by strains of Curvularia tuberculata and Paecilomyces marquandii-fungi which do not secrete compounds of emulsifying activity. Although C. lunata, as the only one out of all studied fungi, exhibited the lowest tolerance to heavy metals when grown on a solid medium (in conditions preventing emulsifier synthesis), it manifested the highest tolerance in liquid culture - in conditions allowing exopolymer production. Cadmium, zinc and lead presented in liquid medium up to a concentration of 15 mM had no negative effect on C. lunata growth and stimulated emulsifier synthesis. In the presence of 15 mM of heavy metals, both the emulsifier and 24-h-old growing mycelium exhibited maximum sorption capacities, which were determined as 18.2 +/- 2.67, 156.1 +/- 10.32 mg g(-1) for Cd2+, 22.2 +/- 3.40, 95.2 +/- 14.21 mg g(-1) for Zn2+ and 51.1 +/- 1.85, 230.0 +/- 28.47 mg g(-1) for Pb2+ respectively. The results obtained by us in this work indicate that the emulsifier acts as a protective compound increasing the ability of C. lunata to survive in heavy metal polluted environment. Enhancement of exopolymer synthesis in the presence of Cd2+, Zn2+ and Pb2+ may also suggest, at least to some extent, a metal-specific nature of emulsifier production in C. lunata. Due to accumulation capability and tolerance to heavy metals, C. lunata mycelium surrounded by the emulsifier could be applied for toxic metal removal.

  5. The effects of changes in cadmium and lead air pollution on cancer incidence in children

    International Nuclear Information System (INIS)

    Absalon, Damian; Slesak, Barbara

    2010-01-01

    This article presents the results of research on the effects of air pollution on cancer incidence in children in the region of Silesia (Poland), which has undergone one of the most profound anthropogenic transformations in Europe. The main objective of the research was to specify the impact of changes in cadmium and lead pollution in the years 1990-2005 on the incidence of cancers reported in children. Lead concentration ranged from 0 to 1490 . 10 -9 G m -2 /year, and cadmium concentration ranged from 0 to 33.7 . 10 -9 G m -2 /year. There was no strong significant correlation (max 0.3) between air pollution and incidence rate (IR) in the general population of children in any particular year. Alongside the cartographic presentation of dependences, correlation coefficients between the variables in question were calculated. This made it possible to determine the relationship between the pollution levels and incidence rates in the area. There was a significant reduction in the level of pollution during the investigated period. The study of the relationship between the number of cancers reported and the condition of the natural environment revealed increased sensitivity to toxins in boys (correlation coefficient 0.3). In addition, the spatial distribution of the number of cases reported in boys suggests a correlation with the spatial distribution of the coefficients for the entire group of children included in the study. The yearly average IR of childhood cancer in specific districts ranged from 0 to 61.48/100,000 children under 18 years of age during the 1995-2004 period.

  6. The effects of changes in cadmium and lead air pollution on cancer incidence in children.

    Science.gov (United States)

    Absalon, Damian; Slesak, Barbara

    2010-09-15

    This article presents the results of research on the effects of air pollution on cancer incidence in children in the region of Silesia (Poland), which has undergone one of the most profound anthropogenic transformations in Europe. The main objective of the research was to specify the impact of changes in cadmium and lead pollution in the years 1990-2005 on the incidence of cancers reported in children. Lead concentration ranged from 0 to 1490 x 10(-9) G m(-2)/year, and cadmium concentration ranged from 0 to 33.7 x 10(-9) G m(-2)/year. There was no strong significant correlation (max 0.3) between air pollution and incidence rate (IR) in the general population of children in any particular year. Alongside the cartographic presentation of dependences, correlation coefficients between the variables in question were calculated. This made it possible to determine the relationship between the pollution levels and incidence rates in the area. There was a significant reduction in the level of pollution during the investigated period. The study of the relationship between the number of cancers reported and the condition of the natural environment revealed increased sensitivity to toxins in boys (correlation coefficient 0.3). In addition, the spatial distribution of the number of cases reported in boys suggests a correlation with the spatial distribution of the coefficients for the entire group of children included in the study. The yearly average IR of childhood cancer in specific districts ranged from 0 to 61.48/100,000 children under 18 years of age during the 1995-2004 period. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Science.gov (United States)

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  8. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2015-04-01

    Full Text Available The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL, 4.4 (2.4 μg/L, 10.9 (9.2 μg/L, and 43.7 (17.7 μg/L, respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01. After controlling for maternal education level and socio-economic status (through ownership of a family car, the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01. Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations.

  9. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium in dried bee pollen produced in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Gasparotto SATTLER

    2016-01-01

    Full Text Available Abstract Like other beehive products, such as honey, royal jelly and propolis, bee pollen has attracted great interest because of the health benefits it can provide when consumed. Bee pollen has high contents of sugars and proteins and a low content of lipids, it is also a rich source of vitamins and other bioactive compounds, which makes it an attractive micronutrient supplement. However, few studies have investigated its composition. Therefore, the aim of this study was to characterize the essential minerals and inorganic contaminants present in bee pollen produced at apiaries in Rio Grande do Sul State, Brazil. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES revealed the presence of 8 essential minerals (calcium, iron, copper, chromium, manganese, molybdenum, phosphorus and zinc in the 5 analyzed samples; 6 of them were in sufficiently high amounts to meet dietary requirements. Of the 5 inorganic contaminants assessed (barium, cadmium, lithium, lead and vanadium, only cadmium was present at levels over the International Honey Commission’s standards. All bee pollen samples showed a high content of the 8 essential minerals. Contamination usually results from the use of pesticides, fertilizers and other chemicals in agriculture; thus, monitoring of its levels must be included in bee pollen analysis.

  10. The learning machine in quantitative chemical analysis : Part I. Anodic Stripping Voltammetry of Cadmium, Lead and Thallium

    NARCIS (Netherlands)

    Bos, M.; Jasink, G.

    1978-01-01

    The linear learning machine method was applied to the determination of cadmium, lead and thallium down to 10-8 M by anodic stripping voltammetry at a hanging mercury drop electrode. With a total of three trained multicategory classifiers, concentrations of Cd, Pb and Tl could be predicted with an

  11. Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays

    International Nuclear Information System (INIS)

    Ooi, Michelle S.M.; Townsend, Kathy A.; Bennett, Michael B.; Richardson, Anthony J.; Fernando, Daniel; Villa, Cesar A.; Gaus, Caroline

    2015-01-01

    Highlights: • Branchial plate and muscle tissue from mobulid rays were analysed for certain metals. • Mean concentrations of cadmium in Mobula japanica were above the EC ML. • Mean inorganic arsenic concentration in Mobula japanica muscle equalled the FSANZ ML. • Mean concentration of lead in Manta alfredi muscle tissue exceeded EC and Codex MLs. • There were significant correlations between the types of tissues for some metals. - Abstract: Mobulid rays are targeted in fisheries for their branchial plates, for use in Chinese medicine. Branchial plate and muscle tissue from Mobula japanica were collected from fish markets in Sri Lanka, and muscle tissue biopsies from Manta alfredi in Australia. These were analysed for arsenic, cadmium, lead and mercury and compared to maximum levels (MLs) set by Food Standards Australia and New Zealand (FSANZ), European Commission (EC) and Codex Alimentarius Commission. The estimated intake for a vulnerable human age group was compared to minimal risk levels set by the Agency for Toxic Substances and Disease Registry. The mean inorganic arsenic concentration in M. japanica muscle was equivalent to the FSANZ ML while cadmium exceeded the EC ML. The mean concentration of lead in M. alfredi muscle tissue exceeded EC and Codex MLs. There were significant positive linear correlations between branchial plate and muscle tissue concentrations for arsenic, cadmium and lead

  12. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ruth Alfaro-Cuevas-Villanueva

    2014-01-01

    Full Text Available The sorption of cadmium (Cd and lead (Pb by calcium alginate beads (CAB from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2 for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F and Dubinin-Radushkevich (D-R models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

  13. Assessment of the Potential of Honeybees (Apis mellifera L.) in Biomonitoring of Air Pollution by Cadmium, Lead and Vanadium

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Kraker, de J.; Grotenhuis, J.T.C.

    2015-01-01

    The aim of our study was to explore whether honeybees (Apis mellifera L.) could be used as a reliable alternative to the standard mechanical devices for monitoring of air quality, in particular with respect to the concentration of the heavy metals cadmium (Cd), lead (Pb) and vanadium (V). We

  14. Cadmium, lead, mercury and arsenic in animal feed and feed materials – trend analysis of monitoring results

    NARCIS (Netherlands)

    Adamse, Paulien; Fels, van der Ine; Jong, de Jacob

    2017-01-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007–13

  15. Heavy Metals (Mercury, Lead and Cadmium Determination in 17 Species of Fish Marketed in Khorramabad City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ali Mortazavi

    2016-01-01

    Full Text Available Heavy metals entrance to fish body tissues and transferring to human body systems after their consuming makes numerous undesirable effects and health problems. The aim of this study was to determine some heavy metals (lead, cadmium and mercury in fresh fishes marketed in Khorramabad City, west of Iran. In this descriptive study, five samples of 17 fish species with high consumption were purchased randomly in 2014. Measurement of mercury, lead and cadmium was performed using atomic absorption spectrometry. All measurements were performed three times for each sample. Lead mean levels in fish samples was in the range 0.736 -1.005 ppm, cadmium range was from 0.196 to 0.015 ppm and mean content of mercury was  0.431 - 0.107 ppm. At present mean concentration of lead, mercury and cadmium in supplied fishes muscle is lower than maximum recommended levels according to WHO, EC and FDA guidelines. Based on the obtained results of this study and the importance of heavy metals in foods and their impacts on human health, continuous monitoring of heavy metals levels in foods is necessary.

  16. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    International Nuclear Information System (INIS)

    Klinck, J.S.; Green, W.W.; Mirza, R.S.; Nadella, S.R.; Chowdhury, M.J.; Wood, C.M.; Pyle, G.G.

    2007-01-01

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca 2+ , principally that elevated dietary Ca 2+ reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut

  18. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, J.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada)], E-mail: klinckjs@mcmaster.ca; Green, W.W.; Mirza, R.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada); Nadella, S.R.; Chowdhury, M.J.; Wood, C.M. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Pyle, G.G. [Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada)

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca{sup 2+}, principally that elevated dietary Ca{sup 2+} reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  19. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  20. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    International Nuclear Information System (INIS)

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel A.C.

    2013-01-01

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species

  1. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  2. Environmentally acquired lead, cadmium, and manganese in the cattle egret, Bubulcus ibis, and the laughing gull, Larus atricilla

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, M; Mahoney, J S; Schroder, G D; Hacker, C S; Pier, S M

    1980-01-01

    Concentrations of lead, cadmium, and manganese in the tissues of cattle egrets and laughing gulls gathered from the Galveston Bay region of Texas were compared to determine if different patterns of accumulation exist. Lead, cadmium, and manganese levels in these species were within the range reported for other bird species. Lead levels in bones were comparable, but gulls had more lead in brain, liver, and kidney tissues than egrets had, which suggested a higher rate of accumulation or exposure. Because of their high abundance and comparable positions in the estuarine and terrestrial food webs, cattle egrets and laughing gulls may serve as convenient biological indicators to monitor potentially toxic substances in these ecosystems. (29 references, 7 tables)

  3. Lead and cadmium in public health in Nigeria: physicians neglect and pitfall in patient management.

    Science.gov (United States)

    Orisakwe, Orish Ebere

    2014-02-01

    Low-level heavy metals exposure may contribute much more toward the causation of chronic disease and impaired functioning than previously thought. Among the suggested preventive and intervention measures for the control of renal diseases are the reduction in the exposure to heavy metals. Although these indicate knowledge and awareness of possible role of some heavy metals in the etiogenesis of some chronic diseases by Nigerian Physicians, heavy metal assay as diagnostic guide in patient management is often omitted in most healthcare settings. This is a synoptic capture of the increased incidence and prevalence of some metabolic disorders where heavy metals may be implicated. A search of the terms heavy metal exposure, source, toxicity, metabolic disorders, poisoning in Nigeria, in bibliographical databases (in English language) such as PubMed, Scopus, Google Scholar, and Africa Journal Online (AJOL) digital library was conducted. Leaded gasoline, refuse dumping, absence of poison information centers, and poor record keeping characterize environmental health in Nigeria. Lead and cadmium are of most significant public health importance in Nigeria. The recognition and inclusion of heavy metals assays in the diagnosis of metabolic disorders may ensure early diagnosis and improve management.

  4. Lead and cadmium in mangrove root crab (Goniopsis cruentata), in natura and at food processing stages.

    Science.gov (United States)

    Costa, Renata G; Bah, Homegnon A F; Bandeira, Matheus J; Oliveira, Sérgio S P; Menezes-Filho, José A

    2017-09-01

    Lead (Pb) and cadmium (Cd) were determined in mangrove root crab (Goniopsis cruentata) tissues (in natura) and in two culinary preparations by graphite furnace atomic absorption spectrometry. Mangrove root crab samples from three sampling sites along the Jaguaripe River, Bahia, Brazil, where lead-glazed ceramics are produced, and from two commercial preparations were collected or purchased in March and April 2016. Cd levels in raw and processed samples were below the methods' limits of detection (0.016 mg kg -1 ), while Pb levels in the raw tissues were determined only in the gills (0.67 mg kg -1 ) and in the hepatopancreas (0.14 mg kg -1 ). However, Pb levels increased from 0.05 to 2.84 mg kg -1 in boiled/sorted muscle and in the traditional stew (with a 57-fold increase), respectively. Pb levels augmented significantly in the processed food due to migration of Pb used in the glazing of cooking ceramic utensils, surpassing the Brazilian and international safety limits.

  5. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium

    Science.gov (United States)

    Petrovský, E.; Kapička, A.; Jordanova, N.; Borůvka, L.

    2001-09-01

    Several proxy methods have been used recently to outline increased levels of pollution. One of them is based on measurements of the concentration of (ferri)magnetic minerals of anthropogenic origin. This method has been used recently in the mapping of both polluted and unpolluted areas. In order to validate this method, a more detailed study of links between magnetic parameters characterising the physical shape of magnetic minerals and concentrations of heavy metals is needed. In this study, we analysed the magnetic characteristics of alluvial soils, formed as a result of several breakdowns of wet deposit sink of ashes from a lead ore smelter. The soils were previously analysed for concentration of lead, zinc and cadmium. Our results show that in this case of a shared source of heavy metals and magnetic minerals, simple measurements of magnetic susceptibility discriminate well between polluted and clean areas. In addition, the concentration pattern agrees with the concentrations of the heavy metals studied in deeper soil layers that were not affected by post-depositional changes due to climate and remediation efforts.

  6. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010-2013): Body burden and risk factors.

    Science.gov (United States)

    Kim, Nam-Soo; Ahn, Jaeouk; Lee, Byung-Kook; Park, Jungsun; Kim, Yangho

    2017-07-01

    Limited information is available on the association of age and sex with blood concentrations of heavy metals in teenagers. In addition, factors such as a shared family environment may have an association. We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES, 2010-2013) to determine whether blood levels of heavy metals differ by risk factors such as age, sex, and shared family environment in a representative sample of teenagers. This study used data obtained in the KNHANES 2010-2013, which had a rolling sampling design that involved a complex, stratified, multistage, probability-cluster survey of a representative sample of the non-institutionalized civilian population in South Korea. Our cross-sectional analysis was restricted to teenagers and their parents who completed the health examination survey, and for whom blood measurements of cadmium, lead, and mercury were available. The final analytical sample consisted of 1585 teenagers, and 376 fathers and 399 mothers who provided measurements of blood heavy metal concentrations. Male teenagers had greater blood levels of lead and mercury, but sex had no association with blood cadmium level. There were age-related increases in blood cadmium, but blood lead decreased with age, and age had little association with blood mercury. The concentrations of cadmium and mercury declined from 2010 to 2013. The blood concentrations of lead, cadmium, and mercury in teenagers were positively associated with the levels in their parents after adjustment for covariates. Our results show that blood heavy metal concentrations differ by risk factors such as age, sex, and shared family environment in teenagers. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inducibility of metallothionein biosynthesis in the whole soft tissue of zebra mussels Dreissena polymorpha exposed to cadmium, copper, and pentachlorophenol.

    Science.gov (United States)

    Ivanković, Dusica; Pavicić, Jasenka; Beatović, Vanja; Klobucar, Roberta Sauerborn; Klobucar, Göran Igor Vinko

    2010-04-01

    Freshwater mussels Dreissena polymorpha (Pallas, 1771) were exposed to the elevated concentrations of Cd (10, 50, 100, and 500 microg/L), Cu (10, 30, 50, and 80 microg/L), and an organochlorinated pesticide, pentachlorophenol (PCP) (1, 10, and 100 microg/L). Induced synthesis of biomarker metallothionein (MT) and changes in concentrations of cytosolic Cd, Cu, and Zn in the whole soft tissue of mussels were monitored after a 7-day laboratory exposure to the contaminants. A clear dose-dependent elevation in the MT concentration was observed after exposure to Cd at doses of 10-100 microg/L, and this increase of MT content was accompanied with a linear increase of cytosolic Cd. Cd concentration of 500 microg/L caused no additional increase of MT and Cd in mussel cytosol, suggesting possible toxic effects due to exceeding cellular inducible/defense capacity. Cu exposure resulted with variable changes in MT concentrations, with no clear linear relationship between MT and Cu concentrations in water, although a progressive dose-dependent accumulation of Cu in the soluble fraction of mussel tissues was recorded. A decrease of cytosolic Zn was evident at higher exposure concentrations of both metals used. PCP in concentrations applied was unable to induce MT synthesis, but the higher concentrations of PCP influenced the cytosolic metal concentrations. In conclusion, the results obtained confirm the specificity of MT induction in D. polymorpha as an biological response on metal stimulation, especially by cadmium, being more closely correlated to MT than copper within the ecologically relevant concentration range. The strong induction potential of cadmium as well as an absence of MT induction following exposure to PCP as an organic chemical contaminant are supporting evidences for usage of zebra mussel MT as a specific biomarker of Cd exposure in biomonitoring programs.

  8. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Soil Pollution with Copper, Lead and Zinc in the Surroundings of Large Copper Ore Tailings Impoundment

    Directory of Open Access Journals (Sweden)

    Musztyfaga Elżbieta

    2014-12-01

    Full Text Available Analysis of the top-soil total content of heavy metals was carried out inthe vicinity of large copper ore tailings pound in the south-western Poland with regard to soil properties, direction and distance from the tailings pound. None of the soils under study ex-ceeded the limits admitted in the official standards for soil quality, but the assessment made in accordance with IUNG-guidelines to soil contamination determination showed that more than half of the monitoring sites have elevated metal content, Cu, in par-ticular. The results confirmed high effectiveness of dust control preventing its eolian spread from the tailings pound.

  10. Accumulation of heavy metals (cadmium, zinc, and copper) from smelter in forest ecosystems and their uptakes by Shiitake mushroom (Lentinus edodes (Berk) Sing. ) and Nameko mushroom (Pholiota glutinosa Kawamura) through polluted bed logs

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, T.; Fujita, K.; Furukawa, H.; Yoshimoto, M.

    1977-12-01

    Mushrooms cultivated on sawdust medium which had been innoculated with heavy metals accumulated the metals increasingly in stems, pileus, gill and spores, in that order. There were strain differences, in accumulation, and highest concentration was found in the first-born fruit body. At 2 ppm, cadmium did not affect yield of the fruiting body. At 20 ppm, however, yield was seriously reduced. Species differences in absorption capacity for heavy metals were noted. Seasonal variations in cadmium and copper accumulation were noted, along with zinc. Cadmium concentration in fruiting bodies increased with increase of cadmium concentration in the growth substrate. 23 figures, 16 tables.

  11. Cadmium and lead availability for rapeseed grown on an artificial ISO soil; Transferts de metaux dans les vegetaux et phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Baryla, A.; Sahut, C. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    Accumulations of heavy metals in soils have become a major concern for food crop production. Of these metals, cadmium and lead are recognized as the most widespread elements, that are non-essential for plant growth. While the toxicity of these metals is often investigated on plants grown in nutrient solution, soil is a complex medium. Metals may be dissolved in the soil solution or chelated to carbonates, to oxides of iron or manganese, or to organic matter. This chemical state of the metal is important because it determines the availability of the metal for the crop. Yet its study is complicated by numerous factors (soil pH, temperature, humidity..) which modify this chemical equilibrium. To standardize the experiments, an artificially reconstituted soil was prepared from clay, sand and peat according to standards ISO 11268-1 (May 1994). Metals (lead and cadmium) were added as nitrate salts. Plants used were rapeseeds. Seeds were sown on 20 cm diameter pots and placed in a controlled growth chamber. At harvest, roots, leaves and stems were separated, dried, and mineralized with concentrated nitric acid. Sequential analysis of the soil was carried out to assess the chemical behavior of the cadmium. The chemical speciation of cadmium is shown. The metal is essentially soluble in the soil and poorly complexed to the organic matter. This indicates that contamination is recent and derives from metal salts; cadmium complexation to organic matter appears only after years of soil evolution. The metal is then essentially available for plants but equilibrium is established between the different forms. Plant growth is shown. Cadmium has a strong effect on biomass production at 50 {mu}g / g in the soil. No toxic effect of lead was observed from 0 to 2000 {mu}g / g in the soil, probably because lead is strongly complexed to the soil and less toxic for plants. Metal concentrations in plants after two months of growth are shown in Figures 4 and 5. Plant cadmium content reached

  12. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    International Nuclear Information System (INIS)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-01-01

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure

  13. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stephani [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Arora, Monica [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States); Fernandez, Cristina [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States); Landero, Julio; Caruso, Joseph [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States); Chen, Aimin, E-mail: aimin.chen@uc.edu [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)

    2013-10-15

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.

  14. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    Science.gov (United States)

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  15. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children.

    Science.gov (United States)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-10-01

    There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5-8, 9-12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07-5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. © 2013 Published by Elsevier Inc.

  16. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    International Nuclear Information System (INIS)

    Peters, Junenette L.; Patricia Fabian, M.; Levy, Jonathan I.

    2014-01-01

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  17. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Junenette L., E-mail: petersj@bu.edu; Patricia Fabian, M., E-mail: pfabian@bu.edu; Levy, Jonathan I., E-mail: jonlevy@bu.edu

    2014-07-15

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  18. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  19. Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China

    Institute of Scientific and Technical Information of China (English)

    XU Zhiqiang; ZHOU Qixing; LIU Weitao

    2009-01-01

    In northeastern China,large area of vegetable land has been simultaneously polluted by cadmium (Cd) and lead (Pb).Joint effects of Cd and Pb on Chinese cabbage (Brassica pekinensis L.) were investigated using the seed germination and sand culture method.Four Chinese cabbage cultivars including Kangbingjinchun (KB),Dongyangchunxia (DY),Qinglvwang (QL) and Qiangshi (QS) from Shenyang in northeastern China were adopted in this study.The results showed that there were positive linear relationships between the inhibitory rate of biomass,root and shoot elongation and the concentrations of Cd and Pb.In particular,root elongation was more sensitive to joint stress of Cd and Pb.The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA),soluble protein (SP) and proline (PRO) changed significantly with increasing exposure concentration of Cd and Pb.The decrement in the activity of antioxidative enzymes,the content of SP and accumulation of MDA were relatively low in KB and QS.PRO played an important role in resisting Cd and Pb stress.

  20. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite

    International Nuclear Information System (INIS)

    Zhang Zizhong; Li Mengyan; Chen Wei; Zhu Shuzhen; Liu Nannan; Zhu Lingyan

    2010-01-01

    The effectiveness and mechanism of nano-hydroxyapatite particles (nHAp) in immobilizing Pb and Cd from aqueous solutions and contaminated sediment were investigated. The maximum sorption amount (Q max ) of Pb and Cd in aqueous solution was 1.17 and 0.57 mmol/g. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) surface and depth analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb, while surface complexation and intraparticle diffusion account for Cd sequestration. Different amounts of nHAp (0-10% nHAp/dry weight) were added to the contaminated sediment. Sequential extraction showed that nHAp could effectively reduce the exchangeable fraction of Pb and Cd in the sediment and significantly reduce the concentration in porewater. The results in this study showed that nHAp can immobilize Pb and Cd in sediment effectively. - Nano-hydroxyapatite shows potential and advantages to immobilize lead and cadmium in aqueous solution and sediment.

  1. Lead, cadmium and zinc in mineral structure of deposits of the gallbladder in men and women

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapuliński

    2012-11-01

    Full Text Available Introduction: The former studies have shown the presence of As and Sb in deposits of the gallbladder. The aim of studies: The aim of the studies was to define the level of accumulation of Pb, Cd, Zn in deposits of the gallbladder as supplementary biological test for exposure assessment in a long run. Materials and methods: Pb, Cd and Zn content was investigated with inductive coupled plasmaatomic emission spectrometry were deposits of the gallbladder in men and women living in the Silesia Region. Results: The change of these elements content was analyzed in connection with behavioral factors ( diet, alcohol, coffee, obesity and tobacco addiction of the gender. Attention was drawn to the probability of interaction of Pb, Cd, Zn with other elements during their accumulation in deposits of the gallbladder. It appeared that deposits of the gall bladder can be used as an additional biological test in individual exposure assessment to Pb, Cd and Zn. It was noted that the level of content of Pb, Zn and Cd in deposits of the gallbladder is impacted by behavioral factors (diet, alcohol, coffee, obesity tobacco addiction. A characteristic impact of the tobacco addiction on the rise in the content of lead, cadmium and zinc was demonstrated as well as significant role of the presence of these elements in the total environmental pollution in relevant living areas.

  2. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  3. Remediation of lead, cadmium and uranium contaminated water and soil by apatite amendment

    International Nuclear Information System (INIS)

    Raicevic, S.; Plecas, I.; Kaludjerovic, T.

    2002-01-01

    During the past years as a consequence of war and some accidents in neighboring countries large areas in Serbia were contaminated by toxic heavy metals, including lead, cadmium and uranium. For example, the concentrations of Pb, Cd, Cu and Cr have been doubled above the allowed maximum value in the Romanian part of the Danube while sediments near the border in Bulgaria have higher concentrations of Pb 3 times, Cu 1400 times and Cd 30 times more than the average long-standing levels. Furthermore, an estimated 10 tons of depleted uranium (DU) was spread mainly throughout the territory of Kosovo. This contamination is a potential source of different chronic diseases including malignant diseases and represents a long-term threat for the population living in the affected areas. For this reason, remediation of contaminated sites represents an urgent need and priority. The standard remediation procedure which includes soil removal, treatment (washing, chelating), conditioning etc. is costly, disruptive and not sustainable. This study was carried out to evaluate apatite from the Lisina deposit as soil amendment for in situ stabilization of toxic heavy metals. Preliminary theoretical and experimentally results presented here point out this natural apatite as an ecological, nontoxic material which can be used for efficient and cost-effective remediation of large areas contaminated with Pb, Cd and U. (author)

  4. Betel quid chewing elevates human exposure to arsenic, cadmium and lead

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rmalli, Shaban W.; Jenkins, Richard O. [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH (United Kingdom); Haris, Parvez I., E-mail: pharis@dmu.ac.uk [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH (United Kingdom)

    2011-06-15

    Several studies have reported increased skin lesions in betel quid (a mixture of Piper betel leaves, areca nut, tobacco/flavoured tobacco, lime) chewers compared to non-chewers, exposed to arsenic (As) contaminated drinking water in Bangladesh and India. The current study has determined As, cadmium (Cd) and lead (Pb) levels of betel quids and its components using inductively coupled plasma mass spectrometry (ICP-MS). The highest concentrations of As were found in slaked lime (4.56 mg kg{sup -1}) followed by Piper betel leaves (0.406 mg kg{sup -1}) and flavoured tobacco (zarda) (0.285 mg kg{sup -1}), with a mean concentrations of As in betel quids of 0.035 mg kg{sup -1} (SD 0.02 mg kg{sup -1}). Mean concentrations of Cd and Pb in ordinary quids were 0.028 (SD 0.07 mg kg{sup -1}) and 0.423 (SD 1.4 mg kg{sup -1}), respectively. We estimated that a daily intake of 6 betel quids could contribute 1.2, 1.9 and 8.5% of the provisional maximum tolerable daily intake (PMDTI) for As, Cd and Pb, respectively. Since betel quid chewing is most prevalent among women, our finding raises concern that women chewers - especially pregnant chewers - may be harming their health and that of their unborn babies through increased exposure to a mixture of toxic elements (As, Cd and Pb).

  5. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar

    Institute of Scientific and Technical Information of China (English)

    Tong Chi; Jiane Zuo; Fenglin Liu

    2017-01-01

    Cadmium (Cd) and lead (Pb) in water and soil could be adsorbed by biochar produced fiom corn straw.Biochar pyrolyzed under 400℃ for 2 h could reach the ideal removal efficiencies (99.24% and 98.62% for Cd and Pb,respectively) from water with the biochar dosage of 20 g· L-1 and imtial concentration of 20 mg·L-1.The pH value of 4-7 was the optimal range for adsorption reaction.The adsorption mechanism was discussed on the basis of a range of characterizations,including X-ray diffraction (XRD),X-my photoelectron spectroscopy (XPS),Fourier transform infrared spectroscopy (FTIR) and Raman analysis;it was concluded as surface complexation with active sorption sites (-OH-COO-) coordination with π electrons (C =C,C =O) and precipitation with morganic anions (OH-,CO32-,SO42-) for both Cd and Pb.The sorption isotherms fit Langmuir model better than Freundlich model,and the saturated sorption capacities for Cd and Pb were 38.91 mg.g-1 and 28.99 mg· g-1,respectively.When mixed with soil,biochar could effectively increase alkalinity and reduce bioavailability of heavy metals.Thus,biochar derived from corn straw would be a green material for both removal of heavy metals and amelioration of soil.

  6. Proficiency testing program for the determination of total arsenic, cadmium, and lead in seawater shrimp.

    Science.gov (United States)

    Kong, Mei-Fung; Chan, Serena; Wong, Yiu-Chung

    2008-01-01

    The proficiency testing (PT) program for 97 worldwide laboratories for determining total arsenic, cadmium, and lead in seawater shrimp under the auspices of the Asia-Pacific Laboratory Accreditation Cooperation (APLAC) is discussed. The program is one of the APLAC PT series whose primary purposes are to establish mutual agreement on the equivalence of the operation of APLAC member laboratories and to take corrective actions if testing deficiencies are identified. Pooled data for Cd and Pb were normally distributed with interlaboratory variations of 21.9 and 34.8%, respectively. The corresponding consensus mean values estimated by robust statistics were in good agreement with those obtained in the homogeneity tests. However, a bimodal distribution was observed from the determination of total As, in which 14 out of 74 participants reported much smaller values (0.482-6.4 mg/kg) as compared with the mean values of 60.9 mg/kg in the homogeneity test. The use of consensus mean is known to have significant deviation from the true value in bi- or multimodal distribution. Therefore, the mode value, a better estimate of central tendency, was chosen to assess participants' performance for total As. Estimates of the overall uncertainty from participants varied in this program, and some were recommended to acquire more comprehensive exposure toward important criteria as stipulated in ISO/IEC 17025.

  7. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods.

    Science.gov (United States)

    Perelló, Gemma; Martí-Cid, Roser; Llobet, Juan M; Domingo, José L

    2008-12-10

    The effects of cooking processes commonly used by the population of Catalonia (Spain) on total arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) concentrations in various foodstuffs were investigated. All food samples were randomly acquired in local markets, big supermarkets, and grocery stores of Reus (Catalonia). Foods included fish (sardine, hake, and tuna), meat (veal steak, loin of pork, breast and thigh of chicken, and steak and rib of lamb), string bean, potato, rice, and olive oil. For each food item, two composite samples were prepared for metal analyses, whose levels in raw and cooked (fried, grilled, roasted, and boiled) samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The highest concentrations of As, Hg, and Pb (raw and cooked samples) were mainly found in fish, with a clear tendency, in general, to increase metal concentrations after cooking. However, in these samples, Cd levels were very close to their detection limit. In turn, the concentrations of metals in raw and cooked meat samples were detected in all samples (As) or only in a very few samples (Cd, Hg, and Pb). A similar finding corresponded to string beans, rice, and olive oil, while in potatoes, Hg could not be detected and Pb only was detected in the raw samples. In summary, the results of the present study show that, in general terms, the cooking process is only of a very limited value as a means of reducing metal concentrations. This hypothetical reduction depends upon cooking conditions (time, temperature, and medium of cooking).

  8. Structural and IR-spectroscopic characterization of cadmium and lead(II) acesulfamates

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Gustavo A.; Piro, Oscar E. [Univ. Nacional de La Plata (Argentina). Dept. de Fisica y Inst. IFLP (CONICET- CCT-La Plata); Parajon-Costa, Beatriz S.; Baran, Enrique J. [Univ. Nacional de La Plata (Argentina). Centro de Quimica Inorganica (CEQUINOR/CONICET- CCT-La Plata)

    2017-07-01

    Cadmium and lead(II) acesulfamate, Cd(C{sub 4}H{sub 4}NO{sub 4}S){sub 2} . 2H{sub 2}O and Pb(C{sub 4}H{sub 4}NO{sub 4}S){sub 2}, were prepared by the reaction of acesulfamic acid and the respective metal carbonates in aqueous solution, and characterized by elemental analysis. Their crystal structures were determined by single crystal X-ray diffraction methods. The Cd(II) compound crystallizes in the monoclinic space group P2{sub 1}/c with Z=4 and the corresponding Pb(II) salt in the triclinic space group P anti 1 with Z=2. In both salts, acesulfamate acts both as a bi-dentate ligand through its nitrogen and carbonyl oxygen atoms and also as a mono-dentate ligand through this same oxygen atom, giving rise to polymeric structures; in the Pb(II) salt the ligand also binds the cation through its sulfoxido oxygen atoms. The FTIR spectra of the compounds were recorded and are briefly discussed. Some comparisons with other related acesulfamate and saccharinate complexes are made.

  9. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  10. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  11. Sorption of cadmium and lead by clays from municipal incinerator ash- water suspensions

    Science.gov (United States)

    Roy, W.R.; Krapac, I.G.; Steele, J.D.

    1993-01-01

    The effect of Cl complexation in extracts of a flue gas-scrubber incinerator fly ash sample on the sorption of Cd and Pb by kaolinite and illite was investigated using batch-sorption methods. In the pH range of 5 to 9, Cl complexation may reduce sorption and thus increase the mobility of these metals. When an ash-water suspension was acidified to pH 6.85, the dissolution of Cl and Ca essentially eliminated Cd sorption because of complexation and cationic competition. Cadmium would be considered as either mobile or very mobile under these conditions. Lead was not soluble in the pH- 6.85 suspension. At pH 12, the approximate pH of water in contact with flue gas-scrubber fly ash, Cd was essentially insoluble and Pb occurred as anionic Pb hydroxide. Anionic Pb was sorbed by the two clays, and the extent of sorption was not influenced by Cl or carbonate complexation. Sorption constants, derived from isotherms, suggested that Pb would be relatively immobile in saturated soil-water systems. The recent concern that highly alkaline, flue gas-scrubber fly ash may release environmentally significant concentrations of mobile Pb when placed in an ash-disposal site with a soil liner should be reevaluated in light of this study.

  12. Betel quid chewing elevates human exposure to arsenic, cadmium and lead.

    Science.gov (United States)

    Al-Rmalli, Shaban W; Jenkins, Richard O; Haris, Parvez I

    2011-06-15

    Several studies have reported increased skin lesions in betel quid (a mixture of Piper betel leaves, areca nut, tobacco/flavoured tobacco, lime) chewers compared to non-chewers, exposed to arsenic (As) contaminated drinking water in Bangladesh and India. The current study has determined As, cadmium (Cd) and lead (Pb) levels of betel quids and its components using inductively coupled plasma mass spectrometry (ICP-MS). The highest concentrations of As were found in slaked lime (4.56 mg kg(-1)) followed by Piper betel leaves (0.406 mg kg(-1)) and flavoured tobacco (zarda) (0.285 mg kg(-1)), with a mean concentrations of As in betel quids of 0.035 mg kg(-1) (SD 0.02 mg kg(-1)). Mean concentrations of Cd and Pb in ordinary quids were 0.028 (SD 0.07 mg kg(-1)) and 0.423 (SD 1.4 mg kg(-1)), respectively. We estimated that a daily intake of 6 betel quids could contribute 1.2, 1.9 and 8.5% of the provisional maximum tolerable daily intake (PMDTI) for As, Cd and Pb, respectively. Since betel quid chewing is most prevalent among women, our finding raises concern that women chewers - especially pregnant chewers - may be harming their health and that of their unborn babies through increased exposure to a mixture of toxic elements (As, Cd and Pb). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Betel quid chewing elevates human exposure to arsenic, cadmium and lead

    International Nuclear Information System (INIS)

    Al-Rmalli, Shaban W.; Jenkins, Richard O.; Haris, Parvez I.

    2011-01-01

    Several studies have reported increased skin lesions in betel quid (a mixture of Piper betel leaves, areca nut, tobacco/flavoured tobacco, lime) chewers compared to non-chewers, exposed to arsenic (As) contaminated drinking water in Bangladesh and India. The current study has determined As, cadmium (Cd) and lead (Pb) levels of betel quids and its components using inductively coupled plasma mass spectrometry (ICP-MS). The highest concentrations of As were found in slaked lime (4.56 mg kg -1 ) followed by Piper betel leaves (0.406 mg kg -1 ) and flavoured tobacco (zarda) (0.285 mg kg -1 ), with a mean concentrations of As in betel quids of 0.035 mg kg -1 (SD 0.02 mg kg -1 ). Mean concentrations of Cd and Pb in ordinary quids were 0.028 (SD 0.07 mg kg -1 ) and 0.423 (SD 1.4 mg kg -1 ), respectively. We estimated that a daily intake of 6 betel quids could contribute 1.2, 1.9 and 8.5% of the provisional maximum tolerable daily intake (PMDTI) for As, Cd and Pb, respectively. Since betel quid chewing is most prevalent among women, our finding raises concern that women chewers - especially pregnant chewers - may be harming their health and that of their unborn babies through increased exposure to a mixture of toxic elements (As, Cd and Pb).

  14. Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan.

    Science.gov (United States)

    Wu, Chin-Ching; Sung, Fung-Chang; Chen, Yi-Chun

    2018-04-05

    There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men's arsenic (As), cadmium (Cd) and lead (Pb) contents in hair samples and their associations with immunological indicators, including white blood cell (WBC), lymphocyte and monocyte counts, and the immunoglobulin (Ig) levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03) ug/g] was lower than means of As [0.86 (SD = 0.16) ug/g] and Pb [0.91 (SD = 0.22) ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman's correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.

  15. Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Ching Wu

    2018-04-01

    Full Text Available There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men’s arsenic (As, cadmium (Cd and lead (Pb contents in hair samples and their associations with immunological indicators, including white blood cell (WBC, lymphocyte and monocyte counts, and the immunoglobulin (Ig levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03 ug/g] was lower than means of As [0.86 (SD = 0.16 ug/g] and Pb [0.91 (SD = 0.22 ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman’s correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.

  16. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture.

    Science.gov (United States)

    Zhi-xin, Niu; Sun, Li-na; Sun, Tie-heng; Li, Yu-shuang; Wang, Hong

    2007-01-01

    Soil contaminated with heavy metals cadmium (Cd) and lead (Pb) is hard to be remediated. Phytoremediation may be a feasible method to remove toxic metals from soil, but there are few suitable plants which can hyperaccumulate metals. In this study, Cd and Pb accumulation by four plants including sunflower (Helianthus annuus L.), mustard (Brassica juncea L.), alfalfa (Medicago sativa L.), ricinus (Ricinus communis L.) in hydroponic cultures was compared. Results showed that these plants could phytoextract heavy metals, the ability of accumulation differed with species, concentrations and categories of heavy metals. Values of BCF (bioconcentration factor) and TF (translocation factor) indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals. Changes on the biomass of plants, pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures. Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals, such as pH and Eh regulations, and so forth.

  17. Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.).

    Science.gov (United States)

    Jiang, Shuli; Shi, Chunhai; Wu, Jianguo

    2012-06-01

    The contents of arsenic, mercury, lead and cadmium in milled rice were determined. Among 216 genotypes, the As, Hg, Pb and Cd contents were ranged from 5.06 to 296.45, 2.46 to 65.85, 4.16 to 744.95 and 5.91 to 553.40 ng/g, respectively. Six genotypes with lower contents of toxic metal elements were selected. The averages of As and Pb contents for indica rice were higher than those of japonica rice, while the averages of Hg and Cd contents were in contrast. Compared with white brown rice, the milled rice from black and red brown rice contained lower contents of four elements. Significant negative correlation was found between As content and alkaline spread value. Significant correlations were observed between As and aspartic acid (Asp) content, Hg and Asp or leucine contents, Pb and cysteine or methionine contents. Cd content was significantly negatively correlated with protein and 14 amino acid contents.

  18. Anodic stripping voltammetry of mercury, zinc, cadmium, and lead in a rice farm ecosystem

    International Nuclear Information System (INIS)

    Del Mundo, F.R.; Vicente-Beckett, V.A.

    1990-01-01

    Analytical procedures based on differential pulse anodic stripping voltammetry were developed and applied to the analysis of some trace metals in a rice farm ecosystem. A gold wire served as working electrode for the analysis of mercury in 0.1M HNO 3 ; a hanging mercury drop electrode was used for the simultaneous analyses of zinc, cadmium, and lead in 0.1M sodium acetate buffer (pH 4.5). Mercury was pre-concentrated for five minutes at + 0.20 V vs SCE. The area of the anodic stripping peaks varied linearly over the concentration range 3x10 -10 -2x10 -8 M Hg(II); the limit of detection was 0.06 ppb or 3x10 -10 M Hg(II). The simultaneous analytical method involved pre-electrolysis at -1.2 V vs SCE for ten minutes. The heights of the individual anodic stripping peaks varied linearly with concentration in a mixture of the ions over the concentration range 0.020-0.10 ppm for each ion; the limits of detection were 0.004 ppm, 0.01 ppm, and 0.01 ppm for Cd, Pb, Zn, respectively. The developed procedures were used to determine the baseline levels of these metals in soil, water, and rice plant samples from a one-hectare traditional rice farm in San Pedro, Laguna. (auth.). 26 refs.; 4 tabs.; 6 figs

  19. Cadmium and lead content in several brands of rice grains (Oryza sativa) in central Iran.

    Science.gov (United States)

    Shakerian, A; Rahimi, E; Ahmadi, M

    2012-11-01

    The aim of this study was to investigate the cadmium (Cd) and lead (Pb) content of several commercially available brands of rice grains (Oryza sativa) in central Iran. A total of 67 samples of the most widely consumed brands of rice grains were purchased from local bazaar markets in Shahrekord, Iran. The first step, grains of raw rice were digested by acid digestion method and then were analyzed by atomic absorption spectrometer. The results showed that Cd concentration in rice grains ranged from 0.0378 to 0.1225 ppm dry weight and its average concentration was 0.062 ± 0.019 ppm and Pb content ranged from 0.0405 to 0.1281 ppm dry weight and its average concentration was 0.068 ± 0.0185 ppm. Cd and Pb concentrations in the sampled rice grains were lower in comparison with their upper limits (0.2 and 0.2 ppm for Cd and Pb, respectively) approved by food sanitary standard. Therefore, it can be concluded that there is no health problems due to the consumption of brands of rice grains, for these two elements. The results indicated that weekly intake of Cd and Pb from rice grains was below the provisional tolerable weekly intakes recommended by WHO/FAO.

  20. assessment of cadmium and lead in soil and tomatoes grown in ...

    African Journals Online (AJOL)

    MAHMUD IMAM

    control site were there is less human activities. The Concentrations ... development of the grey matter of the brain, thereby resulting in poor intelligence quotient. (IQ). 3 . Cadmium ... Most often the levels of heavy metal in soil reflect the level of.

  1. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  2. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  3. Comparative study between probe focussed sonication and conventional stirring in the evaluation of cadmium and copper in plants

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Sara; Fonseca, Luis P. [Technical University of Lisbon, Centro de Engenharia Quimica e Biologica, Instituto Superior Tecnico, Lisbon (Portugal); Capelo, Jose L. [University of Vigo at Ourense Campus, Analytical and Food Chemistry Department, Science Faculty, Ourense (Spain); Armas, Teresa; Vilhena, Fernanda; Goncalves, Maria L.S.; Mota, A.M. [Technical University of Lisbon, Centro de Quimica Estrutural, Instituto Superior Tecnico, Lisbon (Portugal); Pinto, Ana P. [University of Evora, Herdade Experimental da Mitra, ICAAM-Instituto de Ciencias Agrarias e Ambientais Mediterranicas, Evora (Portugal)

    2010-11-15

    Ultrasound (US)-assisted extraction has been widely used for metal ion extraction in plants due to its unique properties of decreased extraction time, minimal contamination, low reagent consumption and low cost. However, very few papers present a sound comparison between probe-focussed sonication and conventional stirring in the evaluation of metal ion extraction in plants. In this study, ultrasonic-assisted digestion has been evaluated and compared to magnetic stirring for total copper and cadmium determination by atomic absorption spectrometry in biological samples (plants, plankton and mussels). The same experimental conditions of sample amount and particle size, extractant solution and extraction time were applied for both ultrasound and magnetic stirring-assisted extraction methods in order to truly compare their effect on metal ion solubilisation. To gain further insight in this issue, dried and fresh plants were tested. The results obtained indicated that osmotic tension in cell walls, produced when dried and powdered samples were immersed in the extractant solution, had an important contribution to metal ion solubilisation, the enhancement due to US for the same purpose being negligible. (orig.)

  4. Effects of cadmium and copper on sialic acid levels in blood and brain tissues of Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Utku Güner

    2014-09-01

    Full Text Available Objective: To investigate the effects of cadmium (Cd and copper (Cu on sialic acid levels of brain and blood tissues of Cyprinus carpio. Methods: Adult carps were exposed to 0.1, 0.5 mg/L Cu, 0.1, 0.5 and 1.0 mg/L Cd and 0.1 mg/ L Cu+0.1 mg/L Cd under static experiment conditions for 1 week. At the end of exposure period, heavy metal accumulations and sialic acid levels in blood and brain tissues of the test animals were analyzed. Results: Cu and Cd accumulated in tissues in a dramatically increasing dose-dependent manner. Sialic acids level of the fish exposed to 0.1, 0.5 and 1.0 mg/L Cu and Cd and control grups for 1 week were 0.834, 1.427, 0.672, 0.934, 2.968, 4.714 mg/mL respectively. The results also showed that Cu has an antagonistic effect on tissue sialic acid level. Conclusions: We propose that Cd and Cu make a complex with sialic acids of membranes in the tissues researched. This complex between metal ions and sialic acid migth account for the cellular toxicity based on Cu and Cd.

  5. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  6. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio holthius

    Energy Technology Data Exchange (ETDEWEB)

    Keteles, K.A.; Fleeger, J.W. [Louisiana State Univ., Dept. of Biological Sciences, Baton Rouge, LA (United States)

    2001-07-01

    Depuration through ecdysis by grass shrimp, Palaemonetes pugio, was examined by exposure to a sublethal mixture of copper, zinc and cadmium for 72 h, followed by placement in uncontaminated water to molt. Percent eliminated with the exuviae varied for each metal; of the total intermolt body burden, 11% Cu, 18% Zn and 26% Cd was associated with the exuviae. Cu concentrations of intermolt exoskeletons were significantly higher than of the exuviae of post-ecdysis shrimp suggesting that Cu contained in the exoskeleton was reabsorbed before molting. Exuvial Cd concentration was not significantly different than the concentration of the intermolt exoskeleton, suggesting that most Cd in the exoskeleton was depurated with the exuviae. Although Zn whole-body burdens were lower after a molt, Zn losses were most likely due to excretion because exuvial concentrations were significantly lower than in the intermolt exoskeleton. Cu, Cd and Zn concentrations in exuvaie shed in metal-enriched water were significantly higher due to adsorption than exuvaie produced in uncontaminated water. (Author)

  7. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  8. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Mitra, Samiran; Kundu, Parimal; Singh, Rajkumar Bhubon

    1998-01-01

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph) 2 (DCA) 2 ], [Ni(tmorph) 2 (TCA) 2 ].2H 2 O, [Cu(DMP) 2 (TCA) 2 ],[ML 2 X 2 ].nH 2 O where M=Zn II or Cd II , L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph) 2 (TCA) 2 ] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. E a * , ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between E a * and ΔS for the decomposition of the complexes. (author)

  9. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008.

    Science.gov (United States)

    Puyen, Zully M; Villagrasa, Eduard; Maldonado, Juan; Diestra, Elia; Esteve, Isabel; Solé, Antoni

    2012-12-01

    Micrococcus luteus DE2008 has the ability to absorb lead and copper. The effect of these metals on biomass and viability of this microorganism were investigated and removal of the metals from culture media was determined. Lead had no effect on the biomass expressed as mg Carbon/cm(3) of M. Iuteus DE2008, but in the case of copper, the minimum metal concentration that affected the biomass was 0.1 mM Cu(II). According to these results this microorganism shows a greater tolerance for lead. The minimum metal concentration that affected viability (expressed as the percentage of live cells) was 0.5 mM for both metals. M. luteus DE2008 exhibited a specific removal capacity of 408 mg/g for copper and 1965 mg/g for lead. This microorganism has a greater ability to absorb Pb(II) than Cu(II). M. luteus DE2008 could be seen as a microorganism capable of restoring environments polluted by lead and copper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Residual Cadmium and Lead Pollution at a Former Soviet Military Airfield in Tartu, Estonia

    International Nuclear Information System (INIS)

    Mander, Ulo; Kull, Ain; Frey, Jane

    2004-01-01

    This paper presents data on the levels and dynamics of cadmium (Cd) and lead (Pb) concentration in the plants, soil, and groundwater of the landing corridor and airfield of a former Soviet military air base in Estonia, immediately at the end of its 40-year service in 1992 and over the following 8 yr. In 1991-92 we found high Cd concentrations in the meadow plants Trifolium pratense and Dactylis glomerata (up to 56 mg kg -1 ). In 1993, the Cd concentration had dropped to 0.12-0.19 mg kg -1 , and stabilized in 1997-2000 at 0.04 mg kg -1 . Cd concentration in plants decreased significantly with increasing distance from the landing strip. Elevated Cd concentration (0.012 mg L -1 ) was found in the fuel of the TU-22M (Backfire) strategic bombers. In 1991 and 1993, leaded fuel influenced the mean Pb concentration in plants (1.8-4.2 mg kg -1 ). Average Pb concentration in both topsoil and the 30-40 cm soil horizon decreased between 1991 and 2000 from 28 to 6.5 and from 13.5 to 4.3 mg kg -1 , respectively. Cd concentration in the topsoil of the landing corridor showed a significant increase between 1991 and 1993 (0.07-0.3 and 0.3-1.2 mg kg -1 , respectively), but stabilized later on the level of 0.04 mg kg -1 . The concentrations of both Pb and Cd in the soil were higher closer to the fuel bunkers. Current assessment of the movement of these metals from the vegetation to the soil and to groundwater is linked to potential leaching to the surrounding environment

  11. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic

    International Nuclear Information System (INIS)

    Wang Gensheng; Fowler, Bruce A.

    2008-01-01

    Human exposure to environmental chemicals is most correctly characterized as exposure to mixtures of these agents. The metals/metalloids, lead (Pb), cadmium (Cd), and arsenic (As), are among the leading toxic agents detected in the environment. Exposure to these elements, particularly at chronic low dose levels, is still a major public health concern. Concurrent exposure to Pb, Cd, or As may produce additive or synergistic interactions or even new effects that are not seen in single component exposures. Evaluating these interactions on a mechanistic basis is essential for risk assessment and management of metal/metalloid mixtures. This paper will review a number of individual studies that addressed interactions of these metals/metalloids in both experimental and human exposure studies with particular emphasis on biomarkers. In general, co-exposure to metal/metalloid mixtures produced more severe effects at both relatively high dose and low dose levels in a biomarker-specific manner. These effects were found to be mediated by dose, duration of exposure and genetic factors. While traditional endpoints, such as morphological changes and biochemical parameters for target organ toxicity, were effective measures for evaluating the toxicity of high dose metal/metalloid mixtures, biomarkers for oxidative stress, altered heme biosynthesis parameters, and stress proteins showed clear responses in evaluating toxicity of low dose metal/metalloid mixtures. Metallothionein, heat shock proteins, and glutathione are involved in regulating interactive effects of metal/metalloid mixtures at low dose levels. These findings suggest that further studies on interactions of these metal/metalloid mixtures utilizing biomarker endpoints are highly warranted

  12. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada

    International Nuclear Information System (INIS)

    Butler Walker, Jody; Houseman, Jan; Seddon, Laura; McMullen, Ed; Tofflemire, Karen; Mills, Carole; Corriveau, Andre; Weber, Jean-Philippe; LeBlanc, Alain; Walker, Mike; Donaldson, Shawn G.; Van Oostdam, Jay

    2006-01-01

    Maternal and umbilical cord blood levels of mercury (Hg), lead (Pb), cadmium (Cd), and the trace elements copper (Cu), zinc (Zn), and selenium (Se) are reported for Inuit, Dene/Metis, Caucasian, and Other nonaboriginal participants from Arctic Canada. This is the first human tissue monitoring program covering the entire Northwest Territories and Nunavut for multiple contaminants and establishes a baseline upon which future comparisons can be made. Results for chlorinated organic pesticides and PCBs for these participants have been reported elsewhere. Between May 1994 and June 1999, 523 women volunteered to participate by giving their written informed consent, resulting in the collection of 386 maternal blood samples, 407 cord samples, and 351 cord:maternal paired samples. Geometric mean (GM) maternal total mercury (THg) concentrations ranged from 0.87μg/L (SD=1.95) in the Caucasian group of participants (n=134) to 3.51μg/L (SD=8.30) in the Inuit group (n=146). The GM of the Inuit group was 2.6-fold higher than that of the Dene/Metis group (1.35μg/L, SD=1.60, n=92) and significantly higher than those of all other groups (P 8 cigarettes/day) was 7.4-fold higher and 12.5-fold higher, respectively, than in nonsmokers. The high percentage of smokers among Inuit (77%) and Dene/Metis (48%) participants highlights the need for ongoing public health action directed at tobacco prevention, reduction, and cessation for women of reproductive age. Pb and THg were detected in more than 95% of all cord blood samples, with GMs of 21 μg/L and 2.7μg/L, respectively, and Cd was detected in 26% of all cord samples, with a GM of 0.08μg/L. Cord:maternal ratios from paired samples ranged from 0.44 to 4.5 for THg, from 0.5 to 10.3 for MeHg, and 0.1 to 9.0 for Pb. On average, levels of THg, MeHg, and Zn were significantly higher in cord blood than in maternal blood (P<0.0001), whereas maternal Cd, Pb, Se, and Cu levels were significantly higher than those in cord blood (P<0

  13. Microdetermination of lead, cadmium, zinc and tin in biological and related materials by atomic absorption spectrometry after mineralisation and extraction

    International Nuclear Information System (INIS)

    Boiteau, H.L.; Metayer, C.

    1978-01-01

    Two technics permitting to determine either lead, cadmium and zinc, or tin in any biological material (blood, urines, organs, alimentary products of animal or vegetable origin) are described. Every operation (mineralisation and extraction) is made in the same tube and technics, conceived in a way to simplify the manipulations and to reduce the more possible the contamination risks are suitable for determination in series. By working on trial samples near 250 mg, the lower determination limits are around 2 ppb for cadmium, 40 ppb for lead and tin and 2 ppm for zinc. The repeatability studies of different technical stages show that mineralisation and extraction only have a weak incidence on the acccuracy of the results [fr

  14. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  15. Do cadmium, lead, and aluminum in drinking water increase the risk of hip fractures? A NOREPOS study.

    Science.gov (United States)

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2014-01-01

    The aim of this study was to investigate relations between cadmium, lead, and aluminum in municipality drinking water and the incidence of hip fractures in the Norwegian population. A trace metals survey in 566 waterworks was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all those supplied from these waterworks, 5,438 men and 13,629 women aged 50-85 years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, region of residence, urbanization, and type of water source as well as other possibly bone-related water quality factors. Effect modification by background variables and interactions between water quality factors were examined (correcting for false discovery rate). Men exposed to a relatively high concentration of cadmium (IRR = 1.10; 95 % CI 1.01, 1.20) had an increased risk of fracture. The association between relatively high lead and hip fracture risk was significant in the oldest age group (66-85 years) for both men (IRR = 1.11; 95 % CI 1.02, 1.21) and women (IRR = 1.10; 95 % CI 1.04, 1.16). Effect modification by degree of urbanization on hip fracture risk in men was also found for all three metals: cadmium, lead, and aluminum. In summary, a relatively high concentration of cadmium, lead, and aluminum measured in drinking water increased the risk of hip fractures, but the associations depended on gender, age, and urbanization degree. This study could help in elucidating the complex effects on bone health by risk factors found in the environment.

  16. Quantification of lead and cadmium in poultry and bird game meat by square-wave anodic-stripping voltammetry.

    Science.gov (United States)

    Trevisani, M; Cecchini, M; Taffetani, L; Vercellotti, L; Rosmini, R

    2011-02-01

    A square-wave anodic-stripping voltammetric method for the analysis of lead and cadmium in chicken muscle and liver was developed and validated, and the results of a monitoring study relative to chicken and pigeon meat are reported. The voltammetric method allows the analysis of lead and cadmium at the same time in samples after acid digestion. The use of perchloric acid for digestion and of acetate buffer in the supporting electrolyte are suitable to reduce matrix interferences and obtain limits of quantification which were below 10 ng g⁻¹ for meat and liver samples. The regression between the analytical signal and the concentration of the target analytes in spiked samples and Certified Reference Materials proved to be linear within the 10-100 ng g⁻¹ range for meat and within the 50-500 ng g⁻¹ range for liver. The analytical method was verified using available Certified Reference Materials BCR-184 (cattle meat) and BCR-185R (cattle liver) as well as with spiked chicken samples. Precision (i.e. repeatability and intermediate precision) and accuracy (percentage recovery and bias) were of the order of 0.3-4.5% for both lead and cadmium The level of lead in muscle was in the range between 6.4 and 59.8 ng g⁻¹ in chickens and between 7.9 and 63.6 ng g⁻¹ in farmed pigeons, whereas it was between 8.0 and 84.4 ng g⁻¹ in chicken liver. The cadmium concentration was 0.4-10.4 ng g⁻¹ in chicken muscle, 10.4-90.6 ng g⁻¹ in chicken liver and 2.2-8.0 ng g⁻¹ in farmed pigeons.

  17. ARSENIC, CADMIUM, CHROMIUM, LEAD, MERCURY, AND SELENIUM LEVELS IN BLOOD OF FOUR SPECIES OF TURTLES FROM THE AMAZON IN BRAZIL

    OpenAIRE

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Po...

  18. Dietary exposure to cadmium, lead and nickel among students from the south-east region of Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Marzec

    2014-11-01

    Full Text Available Dietary intake of cadmium, lead and nickel was determined among students from three universities in Lublin to assess the levels of exposure to these contaminants compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students from the south–east region of Poland. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one – MIBK in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70 % of PTWI/TDI values and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years whereas the exposures to nickel remain on stable levels.

  19. Analyses of alloys for quelatometry, part one, alloys with copper, lead and zinc

    International Nuclear Information System (INIS)

    Clavijo Diaz, Alfonso

    1995-01-01

    A chemical-mathematic model and experimental method based on the acid base balances is developed for the analysis of metallic ions, isolated or in mixtures. The theoretical titling curves, including chelones-forming agents and metallo-chromic indicator were worked on a personal computer. This chelometric method was applied to the quantitative determination of copper, zinc and lead ions in alloys

  20. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.

    Science.gov (United States)

    Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi

    2010-07-01

    This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Blood lead and cadmium levels in preschool children and associated risk factors in São Paulo, Brazil.

    Science.gov (United States)

    Olympio, Kelly Polido Kaneshiro; Silva, Júlia Prestes da Rocha; Silva, Agnes Soares da; Souza, Vanessa Cristina de Oliveira; Buzalaf, Marília Afonso Rabelo; Barbosa, Fernando; Cardoso, Maria Regina Alves

    2018-05-18

    In Brazil, there are scarce data on lead (Pb) and cadmium (Cd) contamination, especially for more vulnerable populations such as preschool children. In this paper, we answer two questions: (1) What are the exposure levels of lead and cadmium in preschool children, in Sao Paulo, Brazil? and (2) What are the risk factors associated with this exposure? This cross-sectional study included 50 day care centers (DCCs), totaling 2463 children aged 1-4 years. Venous blood samples were analyzed by ICP-MS. Questionnaires were administered to the parents. Multiple logistic regression models were used to identify associations between blood lead levels (BLLs) and blood cadmium levels (BCLs) and potential risk factors. The geometric mean for BLLs was 2.16 μg/dL (95% CI: 2.10-2.22 μg/dL), and the 97.5th percentile was 13.9 μg/dL (95% CI: 10.0-17.3 μg/dL). For cadmium exposure, the geometric mean for BCLs was 0.48 μg/L (95% CI: 0.47-0.50 μg/L), and the 95th percentile was 2.57 μg/L (95% CI: 2.26-2.75 μg/L). The DCCs' geographic region was associated with high BLLs and BCLs, indicating hot spots for lead and cadmium exposures. In addition, it was found that the higher the vehicles flow, the higher were the BLLs in children. Red lead in household gates was also an important risk factor for lead exposure. Comparing these results with the findings of the Fourth National Report on Human Exposure to Environmental Chemicals by CDC-2013, it was found that in Brazilian preschool children the BLLs are almost three times higher (97.5th percentile) and the BCLs are almost twelve times higher (95th percentile) than those in U.S. children. This information is essential to formulate public health policies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities.

    Science.gov (United States)

    Muhammad, Akmal; Xu, Jianming; Li, Zhaojun; Wang, Haizhen; Yao, Huaiying

    2005-07-01

    A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.

  4. High levels of migratable lead and cadmium on decorated drinking glassware.

    Science.gov (United States)

    Turner, Andrew

    2018-03-01

    Externally decorated glassware used for the consumption of beverages, purchased new or sourced second-hand, and including tumblers, beer glasses, shot glasses, wine glasses and jars, has been analysed for Pb and Cd by portable x-ray fluorescence (XRF) spectrometry. Out of 197 analyses performed on distinctly different colours and regions of enamelling on 72 products, Pb was detected in 139 cases and among all colours tested, with concentrations ranging from about 40 to 400,000μgg -1 (median=63,000μgg -1 ); Cd was detected in 134 cases and among all colours apart from gold leaf, with concentrations ranging from about 300 to 70,000μgg -1 (median=8460μgg -1 ). The frequent occurrence of these metals is attributed to their use in both the oxidic fluxes and coloured pigments of decorative enamels employed by the glass industry. A standard test involving extraction of the external surface to within 20mm of the rim (lip area) by 4% acetic acid and subsequent analysis by ICP was applied to selected positive samples (n=14). Lead concentrations normalised to internal volume exceeded limit values of 0.5mgL -1 in all but one case, with concentrations over 100mgL -1 returned by three products. Cadmium concentrations exceeded limit values of 4mgL -1 in five cases, with a maximum concentration of about 40mgL -1 . Repeating the experiment on five positive samples using a carbonated drink (Coca Cola Classic) resulted in lower extractable concentrations but non-compliance for Pb in all cases. The presence of high concentrations of total and extractable Pb and Cd in the decorated lip areas of a wide range of products manufactured in both China and Europe is cause for concern from a health and safety perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile.

    Science.gov (United States)

    Queirolo, F; Stegen, S; Restovic, M; Paz, M; Ostapczuk, P; Schwuger, M J; Muñoz, L

    2000-06-08

    Various vegetables (broad beans, corn, potato, alfalfa and onion) were sampled in northern Chile, Antofagasta Region. They are the basis of human nutrition in this region and of great relevance to human health. This region is characterized by volcanic events (eruptions, thermal springs, etc.). Most of the vegetables cultivated in this area enter the local markets for a population of approximately 4000 people, whose ancestors were mainly atacameños and quechuas (local indigenous people). The cadmium and lead in these foods was determined by differential pulse anodic stripping voltammetry (DPASV). Results indicate that the highest concentration of Pb and Cd are in the potato skin, while the edible part of the potatoes contained a lower concentration of these metals. The INAA analyses of As in the vegetables from Socaire and Talabre, two towns located close to active volcanoes (e.g. Lascar), show a very high As content: 1850 microg/kg in corn (Socaire) and 860 microg/kg in potatoes (+ skin) (Talabre). These values exceed the National Standard for arsenic (500 microg/kg) by approximately 400% and 180%, respectively. In general, the data show a concentration of Pb greater than Cd with the potential for some vegetables to accumulate heavy metals, The values, expressed in fresh weight, vary from 0.2 to 40 microg/g for Cd and from 0.6 to 94 microg/g for Pb. These concentration intervals, except that of arsenic, are within the recommended standards in the Food Sanitary Regulation (Decree 977), which, expressed as fresh weight, must be equal to or smaller than 500 microg/kg for Pb. There is no legal standard for Cd.

  6. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Germán, E-mail: santosg@unican.es; Fernández-Olmo, Ignacio

    2016-06-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values – those to be compared with the limit/target values – fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. - Highlights: • EU encourages modelling techniques over measurements for air quality assessment. • A methodology for minor pollutants assessment by statistical modelling is presented.

  7. Arsenic, cadmium, lead and mercury in canned sardines commercially available in eastern Kentucky, USA

    International Nuclear Information System (INIS)

    Shiber, John G.

    2011-01-01

    Research highlights: → Total As, Cd, Pb and Hg in canned sardines within ranges of other studies. → As highest in samples from Norway (1.87 μg/g) and Thailand (1.63 μg/g). → Cd highest in Moroccan (0.07 μg/g), Pb in Canadian (0.27 μg/g); Hg not detected. → Lack of established limits for As and Cd in fish restricts interpretation of results. → Rise of small pelagics in human diet warrants more scrutiny on their metal content. - Abstract: Seventeen samples of canned sardines, originating from six countries and sold in eastern Kentucky, USA, were analyzed in composites of 3-4 fish each for total arsenic (As), cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrophotometry (AAS) and for mercury (Hg) by thermal decomposition amalgamation and AAS. Results in μg/g wet: As 0.49-1.87 (mean: 1.06), Cd < 0.01-0.07 (0.03), Pb < 0.06-0.27 (0.11), Hg ND < 0.09. Values fall generally within readings reported by others, but no internationally agreed upon guidelines have yet been set for As or Cd in canned or fresh fish. The incidence of cancers and cardiovascular diseases associated with As ingestion is extraordinarily high here. With the role of food-borne As in human illness presently under scrutiny and its maximum allowable limits in fish being reviewed, more studies of this nature are recommended, especially considering the potential importance of small pelagic fishes as future seafood of choice.

  8. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes.

    Science.gov (United States)

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2012-01-01

    A flexible, transparent, single-walled carbon nanotube (SWCNT) film electrode was prepared by vacuum filtering methods, followed by photolithographic patterning of a photoresist polymer on the SWCNT surface. The morphology of the SWCNT film electrode surface was characterized using a field-emission scanning electron microscope coupled to an energy-dispersive X-ray spectrophotometer. The electrodes were successfully used as a mercury-free electrochemical sensor for individual and simultaneous detection of cadmium (Cd(2+)) and lead (Pb(2+)) in 0.02 M HCl by square-wave stripping voltammetry. Some important operational parameters, including deposition time, deposition potential, square-wave amplitude, and square wave-frequency were optimized for the detection of Cd(2+) and Pb(2+). The newly developed sensor showed good linear behavior in the examined concentration. For individual Cd(2+) and Pb(2+) ion detection, the linear range was found from 0.033 to 0.228 ppm with detection limits of 0.7 ppb (R(2) = 0.985) for Cd(2+) and 0.8 ppb (R(2) = 0.999) for Pb(2+). For simultaneous detection, the linear range was found from 0.033 to 0.280 ppm with a limit of detection of 2.2 ppb (R(2) = 0.976) and 0.6 ppb (R(2) = 0.996) for Cd(2+) and Pb(2+), respectively. SWCNT film electrodes offered favorable reproducibility of ± 5.4% and 4.3% for Cd(2+) and Pb(2+), respectively. The experiments demonstrated the applicability of carbon nanotubes, specifically in the preparation of SWCNT films. The results suggest that the proposed flexible SWCNT film electrodes can be applied as simple, efficient, cost-effective, and/or disposable electrodes for simultaneous detection of heavy metal ions.

  9. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil.

    Science.gov (United States)

    Ok, Yong Sik; Lee, Sang Soo; Jeon, Weon-Tai; Oh, Sang-Eun; Usman, Adel R A; Moon, Deok Hyun

    2011-01-01

    Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO₃) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0-5% powdered eggshell waste and curing the soil (1,246 mg Pb kg⁻¹ soil and 17 mg Cd kg⁻¹ soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl₂), 1 M CaCl₂, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH₃COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO₃ and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO₃ and eggshell waste, regardless of extractant. Using CaCl₂ extraction, the lowest Cd concentration was achieved upon both CaCO₃ and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH₃COOH or EDTA in soils treated with CaCO₃ and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO₃ for the immobilization of heavy metals in soils.

  10. Total mercury, cadmium and lead levels in main export fish of Sri Lanka.

    Science.gov (United States)

    Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I

    2014-01-01

    Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb.

  11. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    International Nuclear Information System (INIS)

    Santos, Germán; Fernández-Olmo, Ignacio

    2016-01-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values – those to be compared with the limit/target values – fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. - Highlights: • EU encourages modelling techniques over measurements for air quality assessment. • A methodology for minor pollutants assessment by statistical modelling is presented.

  12. Hearing loss in children with e-waste lead and cadmium exposure.

    Science.gov (United States)

    Liu, Yu; Huo, Xia; Xu, Long; Wei, Xiaoqin; Wu, Wengli; Wu, Xianguang; Xu, Xijin

    2018-05-15

    Environmental chemical exposure can cause neurotoxicity and has been recently linked to hearing loss in general population, but data are limited in early life exposure to lead (Pb) and cadmium (Cd) especially for children. We aimed to evaluate the association of their exposure with pediatric hearing ability. Blood Pb and urinary Cd were collected form 234 preschool children in 3-7years of age from an electronic waste (e-waste) recycling area and a reference area matched in Shantou of southern China. Pure-tone air conduction (PTA) was used to test child hearing thresholds at frequencies of 0.25, 0.5, 1, 2, 4 and 8kHz. A PTA≥25dB was defined as hearing loss. A higher median blood Pb level was found in the exposed group (4.94±0.20 vs 3.85±1.81μg/dL, phearing loss (28.8% vs 13.6%, phearing thresholds at average low and high frequency, and single frequency of 0.5, 1 and 2kHz were all increased in the exposed group. Positive correlations of child age and nail biting habit with Pb, and negative correlations of parent education level and child washing hands before dinner with Pb and Cd exposure were observed. Logistic regression analyses showed the adjusted OR of hearing loss for Pb exposure was 1.24 (95% CI: 1.029, 1.486). Our data suggest that early childhood exposure to Pb may be an important risk factor for hearing loss, and the developmental auditory system might be affected in e-waste polluted areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Zinc, lead, and cadmium levels in serum and milk of lactating women in Ibadan, Nigeria.

    Science.gov (United States)

    Edem, Victory Fabian; Akintunde, Kikelomo; Adelaja, Yewande Adeola; Nwozo, Sarah O; Charles-Davies, Mabel

    2017-01-01

    Zinc (Zn) is known to interact with lead (Pb) and cadmium (Cd) reversing their toxicity and reducing their concentrations. However, lactating women are at high risk of developing Zn deficiency, which may result in Pb and Cd intoxication or increased exposure of breast-fed infants to Pb and Cd from breast milk. The aim of this study was to determine Zn, Pb, and Cd concentrations and examine their relationship in serum and breast milk of lactating women in Ibadan, Nigeria. Ninety-two lactating women were recruited into this study. Anthropometric measurements were assessed by standard methods while serum and breast milk concentrations of Zn, Pb, and Cd were assessed by atomic absorption spectrophotometry. Data analyzed statistically by Student's t test, Pearson's correlation coefficient, and a multiple regression model were significant at p < 0.05. Zn deficiency was observed in 12 (17.1%) of lactating women. Breast milk levels of Zn, Pb, and Cd were significantly higher than their levels in serum, whereas the ratios Zn:Pb and Zn:Cd in milk were significantly less than serum ratios. Significant negative correlation was observed between milk Pb and serum Zn:Pb while milk Cd correlated positively with milk Zn. Significant positive correlations were observed between serum Zn and serum Zn:Pb, serum Zn and serum Zn:Cd, as well as serum Zn:Cd and serum Zn:Pb. Serum Cd and serum Zn were significantly negatively related. Significant negative correlations between serum Pb and serum Zn:Pb as well as milk Zn:Pb. Serum Cd and serum Zn:Pb as well as serum Zn:Cd correlated negatively. Milk Cd and Zn/Cd positively related with milk Pb while milk Zn was a negatively related with milk Pb in a multiple regression model ( R 2 = 0.333; p = 0.023). Breast milk may be contaminated by toxic metals. However, Zn supplementation in deficient mothers may protect maternal and infant health.

  14. Simultaneous determination of lead, cadmium and zinc in Metro Manila air particulates by anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Castaneda, Soledad S.

    1999-02-01

    Air particulate samples were collected from two monitoring stations in Metro Manila using a 'Gent' type dichotomous sampler for pollutant source apportionment studies. Samples were collected in two fractions: a fine fraction with aerodynamic diameter, d p p 3 : HCL: HF, 4: 1: 1) for at least 20 minutes with subsequent heating at lower power settings for a total of 20 minutes more, effectively decomposed the sample with complete recovery of the elements. The digests were evaporated to near dryness to eliminate the troublesome effect of HF and HNO 3 and to decrease acidity of the electrolytic solution to pH ≥ 2. At pH 2, the addition of at least 0.01 M KCl was needed to improve sensitivity. The formation of Zn-Cu intermetallic compounds which interfered in the accurate quantitation of zinc was eliminated by addition of gallium as a 'third' element. The amount of gallium needed varied from sample to sample and was affected by the pH of the solution. The DPASV parameters found to be optimum for the analysis of the air particulate samples are as follows: pulse amplitude, 50 mV; scan rate, 10 mV/sec; E dep , - 1.30 V; t dep , 2 min; and RDE rotation rate, 1500 rpm. Detection limits of 0.2 ppb for zinc, 0.6 ppb for lead, and 0.05 ppb for cadmium in the sample matrix were obtained. The standard addition method was found to be reliable for the quantitative determination of the analytes in the sample. All R 2 values obtained were > 0.9900 at 95% confidence level. Validation of the established analytical methodology by analyzing certified reference standards and performing parallel analysis by GF-AAS and flame AAS showed acceptable accuracy of the DPASV measurements. (Author)

  15. Time trends in burdens of cadmium, lead, and mercury in the population of northern Sweden

    International Nuclear Information System (INIS)

    Wennberg, Maria; Lundh, Thomas; Bergdahl, Ingvar A.; Hallmans, Goeran; Jansson, Jan-Hakan; Stegmayr, Birgitta; Custodio, Hipolito M.; Skerfving, Staffan

    2006-01-01

    The time trends of exposure to heavy metals are not adequately known. This is a worldwide problem with regard to the basis for preventive actions and evaluation of their effects. This study addresses time trends for the three toxic elements cadmium (Cd), mercury (Hg), and lead (Pb). Concentrations in erythrocytes (Ery) were determined in a subsample of the population-based MONICA surveys from 1990, 1994, and 1999 in a total of 600 men and women aged 25-74 years. The study took place in the two northernmost counties in Sweden. To assess the effect of changes in the environment, adjustments were made for life-style factors that are determinants of exposure. Annual decreases of 5-6% were seen for Ery-Pb levels (adjusted for age and changes in alcohol intake) and Ery-Hg levels (adjusted for age and changes in fish intake). Ery-Cd levels (adjusted for age) showed a similar significant decrease in smoking men. It is concluded that for Pb and maybe also Hg the actions against pollution during recent decades have caused a rapid decrease of exposure; for Hg the decreased use of dental amalgam may also have had an influence. For Cd, the decline in Ery-Cd was seen only in smokers, indicating that Cd exposure from tobacco has decreased, while other environmental sources of Cd have not changed significantly. To further improve the health status in Sweden, it is important to decrease the pollution of Cd, and actions against smoking in the community are important

  16. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shahram AMIRMORADI

    2012-11-01

    Full Text Available Cadmium (Cd and lead (Pb are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replications. Rhizomes with uniform weight were planted in pots 30�50�35 cm. Plants were irrigated with Cd and Pb chloride after germination of all rhizomes. Results demonstrated that with increasing concentrations of Cd and Pb there was a decrease in fresh and dry weights, main stem height, leaf area per plant, leaf number, number of nodes per main stem and essential oil of peppermint compared to the control. Fresh weights were decreased at 100 ppm of Cd and 1500 ppm of Pb, 18.16% and 24.55%, respectively compared to the control at the first harvest. At the second harvest, these decreases were 15.24% and 32.72%, respectively. At the highest concentrations of Cd and Pb, dry weight of peppermint was dropped 22.92% and 39.01% at the first harvest. For the second harvest, decreased dry weights were 25.88% and 26.77% respectively. It seems that peppermint can tolerate waste water or soil polluted with medium range of Cd and Pb concentrations and the essential oil percentage was not affected by these concentrations.

  17. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shahram AMIRMORADI

    2012-11-01

    Full Text Available Cadmium (Cd and lead (Pb are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replications. Rhizomes with uniform weight were planted in pots 305035 cm. Plants were irrigated with Cd and Pb chloride after germination of all rhizomes. Results demonstrated that with increasing concentrations of Cd and Pb there was a decrease in fresh and dry weights, main stem height, leaf area per plant, leaf number, number of nodes per main stem and essential oil of peppermint compared to the control. Fresh weights were decreased at 100 ppm of Cd and 1500 ppm of Pb, 18.16% and 24.55%, respectively compared to the control at the first harvest. At the second harvest, these decreases were 15.24% and 32.72%, respectively. At the highest concentrations of Cd and Pb, dry weight of peppermint was dropped 22.92% and 39.01% at the first harvest. For the second harvest, decreased dry weights were 25.88% and 26.77% respectively. It seems that peppermint can tolerate waste water or soil polluted with medium range of Cd and Pb concentrations and the essential oil percentage was not affected by these concentrations.

  18. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children

    Science.gov (United States)

    Chen, Zhu; Myers, Robert; Wei, Taiyin; Bind, Eric; Kassim, Prince; Wang, Guoying; Ji, Yuelong; Hong, Xiumei; Caruso, Deanna; Bartell, Tami; Gong, Yiwei; Strickland, Paul; Navas-Acien, Ana; Guallar, Eliseo; Wang, Xiaobin

    2015-01-01

    There is an emerging hypothesis that exposure to cadmium (Cd), mercury (Hg), lead (Pb), and selenium (Se) in utero and early childhood could have long-term health consequences. However, there are sparse data on early life exposures to these elements in US populations, particularly in urban minority samples. This study measured levels of Cd, Hg, Pb, and Se in 50 paired maternal, umbilical cord, and postnatal blood samples from the Boston Birth Cohort (BBC). Maternal exposure to Cd, Hg, Pb, and Se was 100% detectable in red blood cells (RBCs), and there was a high degree of maternal–fetal transfer of Hg, Pb, and Se. In particular, we found that Hg levels in cord RBCs were 1.5 times higher than those found in the mothers. This study also investigated changes in concentrations of Cd, Hg, Pb, and Se during the first few years of life. We found decreased levels of Hg and Se but elevated Pb levels in early childhood. Finally, this study investigated the association between metal burden and preterm birth and low birthweight. We found significantly higher levels of Hg in maternal and cord plasma and RBCs in preterm or low birthweight births, compared with term or normal birthweight births. In conclusion, this study showed that maternal exposure to these elements was widespread in the BBC, and maternal–fetal transfer was a major source of early life exposure to Hg, Pb, and Se. Our results also suggest that RBCs are better than plasma at reflecting the trans-placental transfer of Hg, Pb, and Se from the mother to the fetus. Our study findings remain to be confirmed in larger studies, and the implications for early screening and interventions of preconception and pregnant mothers and newborns warrant further investigation. PMID:24756102

  19. Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran

    Directory of Open Access Journals (Sweden)

    Shekoohiyan Sakine

    2012-12-01

    Full Text Available Abstract Tea is one of the most common drinks in all over the world. Rapid urbanization and industrialization in recent decades has increased heavy metals in tea and other foods. In this research, heavy metal contents such as lead (Pb, cadmium (Cd and arsenic (As were determined in 105 black tea samples cultivated in Guilan and Mazandaran Provinces in north of Iran and their tea infusions. The amount of heavy metals in black tea infusions were analyzed using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP - AES. The mean ± SD level of Pb in 5, 15 and 60 min in infusion tea samples were 0.802 ± 0.633, 0.993 ± 0.667 and 1.367 ± 1.06 mg/kg of tea dry weight, respectively. The mean level of Cd in 5, 15 and 60 min in infusion tea samples were 0.135 ± 0.274, 0.244 ± 0.46 and 0.343 ± 0.473 mg/kg of tea dry weight, respectively. The mean level of As in 5, 15 and 60 min in infusion tea samples were 0.277 ± 0.272, 0.426 ± 0.402 and 0.563 ± 0.454 mg/kg of tea dry weight, respectively. Also, the results showed that the locations and the infusion times influenced upon the amount of these metals (P 

  20. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China.

    Science.gov (United States)

    Williams, Paul N; Lei, Ming; Sun, Guoxin; Huang, Qing; Lu, Ying; Deacon, Claire; Meharg, Andrew A; Zhu, Yong-Guan

    2009-02-01

    Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.

  1. Cadmium and lead levels consumed by patients with oral hospital diets prescriptions.

    Science.gov (United States)

    Manzoli de Sá, Júlia S; Fernandes, Isabela C; Moreira, Daniele C F; Milani, Raquel F; Morgano, Marcelo A; Quintaes, Késia Diego

    2014-01-01

    The levels of cadmium (Cd) and lead (Pb) in foods should be monitored as a function of health risks. To evaluate Cd and Pb levels in oral hospital diets and in an oral food complement (OFC) according to their respective consumption by patients, and to estimate the patient's exposition risk. The levels of Cd and Pb were determined by ICP-OES in samples of regular, blend, soft and renal diets and OFC, collected on 6 weekdays. About 14.3% of the diets and OFC served were analyzed. 163 patients participated, with mean weights and ages of 62.7 kg and 56.5 years, respectively, the majority being men (59.5%). The mean Cd content consumed was greater for men fed the regular and blend diets and similar amongst the sexes for the soft diet. The consumption of Cd (max. 21.02 μg/day) was below the provisional tolerable monthly intake (PTMI). The mean Pb ingested (max. 199.49 μg/day) was similar amongst the sexes. The soft diet showed the highest Pb content in September/2010, whereas the other showed no variation according to season. In September/2010 and January/2011, the soft and regular diets associated with the OFC offered 207.50 and 210.50 μg/day of Pb, respectively. The combination of the diet with the OFC increased the risk of an excessive ingestion of Pb, and the vulnerability of the patients to an excessive exposition to Pb could be greater due to water and medications. It was concluded that whereas the calculated ingestion of Cd conformed to the PTMI, the Pb level and ingestion represented a risk to the health of the patients.

  2. The determination of cadmium, lead and vanadium by high resolution ICP-MS in Antarctic snow samples

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, F. [Joh. Gutenberg Univ., Mainz (Germany). Inst. fuer Anorganische und Analytische Chemie; Trincherini, P. [European Union Joint Research Centre, Ispra, VA (Italy). Inst. of Environment

    2000-02-01

    Double focusing ICP-MS was successfully used in this research for the direct determination of the cadmium, lead and vanadium content of a set of Antarctic samples collected during the 11. Italian Expedition to Antarctica. For cadmium and lead measurements the low resolution mode was chosen since it ensured the highest ion sensitivity and it allowed the highest detection limits to be attained; in the case of vanadium the high resolution mode was used to solve the isobaric interference. As far as vanadium and cadmium are concerned by GFAAS coupled with different preconcentration procedures. The vanadium, cadmium and lead content measured in a riverine water reference material (SRLS-3) was found in agreement with the certified values. [Italian] Si e' utilizzato uno spettrometro ICP-MS a doppia focalizzazione per la determinazione diretta di cadmio, piombo e vanadio in una serie di campioni di neve antartica superficiale raccolta durante l'undicesima spedizione italiana in Antartide. Per le determinazioni di cadmio e piombo si e' scelta la procedura a bassa risoluzione, che ha garantito la piu' elevata sensibilita' ed ha permesso di ottenere limiti di determinazione migliori; nel caso del vanadio si e' utilizzata la procedura ad alta risoluzione che ha permesso di risolvere problemi di interferenza isobarica. Per quanto riguarda cadmio e vanadio, i risultati delle determinazioni mediante ICP-MS sono risultati in buon accordo con quelli ottenuti mediante GFAAS accoppiata a diverse procedure di preconcentrazione. Il contenuto di cadmio, piombo e vanadio misurato con le procedure sviluppate in un campione certificato di acqua di fiume (SRLS-3) e' risultato in accordo con i valori certificati.

  3. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia

    International Nuclear Information System (INIS)

    Petkovšek, Samar Al Sayegh; Pokorny, Boštjan

    2013-01-01

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000–2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. and Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. - Highlights: ► The Pb contents were higher in saprophytic fungi in comparison with mycorrhizal

  4. Determination of lead and cadmium in hen eggs by graphite france electrothermal atomic absorption spectrometry and estimation of the daily intake

    International Nuclear Information System (INIS)

    Siddiqui, I.; Nizami, S.S.

    2012-01-01

    A total of 54 hen eggs were procured from nine poultry farms of Sindh, Pakistan in different batches to determine lead and cadmium toxicity. The quantitative analysis of lead (Pb) and cadmium (Cd) in egg samples were performed on electrothermal atomic absorption spectrometer (ETAAS), with Zeeman effects background correction. Lead concentrations in hen egg samples ranged from 0.027 to 1.056 micro g/g with a mean value of 0.283 micro g/g +- 0.86, whereas cadmium concentrations ranged from 0.001 to 0.012 micro g/g with a mean value of 0.003 micro g/g +-0.002. Lead concentrations exceeded the normal levels of 0.020 but cadmium was found lower than the normal levels of 0.005 micro g/g. (author)

  5. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  6. Partitioning and distribution of dissolved copper, cadmium and organic matter in Mediterranean marine coastal areas: The case of a mucilage event

    Science.gov (United States)

    Scoullos, Michael; Plavšić, Marta; Karavoltsos, Sotiris; Sakellari, Aikaterini

    2006-04-01

    Dissolved copper and cadmium partitioning and their interaction with organic matter were investigated in shallow coastal areas of the Aegean Sea (Eastern Mediterranean). The percentage of DGT-labile copper as for total dissolved copper ranged from 13 to 34% during summer and from 23 to 36% during winter, whereas the corresponding percentage for DGT-labile cadmium was higher in summer (38-68%), in comparison to winter (29-44%). The CCu was found to be 100-260 nM during summer while in winter the range was 42-430 nM. The corresponding CCd reached 27 and 45 nM, respectively. The mean TEP value in summer was high (208 μg/L xanthan equiv.), while in winter it reached 441 μg/L xanthan equiv., which indicates significant phytoplankton activity in winter, a feature occasionally observed in the stratified study areas after the breaking down of the thermocline/pycnocline, followed by consequent nutrient enrichment of the surface layers by nutrients accumulated in the sea bottom. A significant fraction of dissolved organic carbon (DOC) exhibited surface active properties and was determined as surface active substances (SAS) in mg/L eq. of nonionic surfactant Triton-X-100. Carbohydrates were also determined and they represented up to 33% of the DOC.

  7. Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): Implications for dietary cadmium and lead absorption

    International Nuclear Information System (INIS)

    Kwong, Raymond W.M.; Andres, Jose A.; Niyogi, Som

    2010-01-01

    Recent studies suggested the probable involvement of an apical iron (Fe 2+ ) transporter, the divalent metal transporter-1 (DMT1), in the uptake of several divalent metals in fish. The present study examined the gastrointestinal expression of the DMT1 gene, and investigated the kinetics of Fe 2+ uptake and its interactions with cadmium and lead in isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss). The expressions of two DMT1 isoforms (Nramp-β and -γ) were recorded along the entire gastrointestinal tract of fish as well as in the enterocytes. Fe 2+ uptake in isolated enterocytes was saturable and sensitive to the proton gradient and membrane potential, suggesting DMT1-mediated transport. Both cadmium and lead inhibited Fe 2+ uptake in isolated enterocytes in a concentration-dependent manner, and lead appeared to be a stronger inhibitor than cadmium. The kinetic characterization of Fe 2+ uptake revealed that the apparent affinity of uptake was significantly decreased (increased K m ) in the presence of either cadmium or lead, whereas the maximum uptake rate (J max ) remained unchanged-indicating that the interaction between Fe 2+ and cadmium or lead is competitive in nature. Overall, our study suggests that the uptake of dietary cadmium and lead may occur via the iron-transporting pathway in fish.

  8. Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): Implications for dietary cadmium and lead absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK., S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK., S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK., S7N 5E2 (Canada)

    2010-09-01

    Recent studies suggested the probable involvement of an apical iron (Fe{sup 2+}) transporter, the divalent metal transporter-1 (DMT1), in the uptake of several divalent metals in fish. The present study examined the gastrointestinal expression of the DMT1 gene, and investigated the kinetics of Fe{sup 2+} uptake and its interactions with cadmium and lead in isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss). The expressions of two DMT1 isoforms (Nramp-{beta} and -{gamma}) were recorded along the entire gastrointestinal tract of fish as well as in the enterocytes. Fe{sup 2+} uptake in isolated enterocytes was saturable and sensitive to the proton gradient and membrane potential, suggesting DMT1-mediated transport. Both cadmium and lead inhibited Fe{sup 2+} uptake in isolated enterocytes in a concentration-dependent manner, and lead appeared to be a stronger inhibitor than cadmium. The kinetic characterization of Fe{sup 2+} uptake revealed that the apparent affinity of uptake was significantly decreased (increased K{sub m}) in the presence of either cadmium or lead, whereas the maximum uptake rate (J{sub max}) remained unchanged-indicating that the interaction between Fe{sup 2+} and cadmium or lead is competitive in nature. Overall, our study suggests that the uptake of dietary cadmium and lead may occur via the iron-transporting pathway in fish.

  9. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Kamunde, Collins; MacPhail, Ruth

    2011-01-01

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal–metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67–83%; Cu, 68–79% and Zn, 60–76

  10. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); MacPhail, Ruth [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2011-10-15

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal-metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing ({mu}g/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken

  11. Preliminary modelling and mapping of critical loads for cadmium and lead in Europa

    NARCIS (Netherlands)

    Hettelingh JP; Slootweg J; Posch M; Ilyin I; MNV-CCE/WGE-IPC M&M Coordination Center for Effects; EMEP-Meteorological Synthesizing Centre-East

    2004-01-01

    De "Working Group on Effects" (WGE) van de "Convention on Long-range Transboundary Air Pollution" onder de "United Nations Economic Commission or Europe" (UNECE-CLRTAP) heeft tijdens haar 20e bijeenkomst besloten dat de methode om kritische depositiewaarden (critical loads) voor cadmium en lood in

  12. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    International Nuclear Information System (INIS)

    Wu, Erin W.; Schaumberg, Debra A.; Park, Sung Kyun

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  13. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Erin W. [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Schaumberg, Debra A. [Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School and Department of Epidemiology, Harvard School of Public Health, Boston, MA (United States); Center for Translational Medicine, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT (United States); Park, Sung Kyun, E-mail: sungkyun@umich.edu [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2014-08-15

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  14. Isolation, identification and cadmium adsorption of a high cadmium ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 1School of Minerals Processing and Bioengineering, Central South University, Changsha, ... Cadmium is a non-essential ... (1994) reported that cadmium might interact ... uptake of cadmium, lead and mercury (Svecova et al.,.

  15. Investigation of the lead-, mercury- and cadmium concentration found in red deer, deer and chamois in an tyrolian preserve

    International Nuclear Information System (INIS)

    Bischof, E.

    1984-05-01

    The concentrations of heavy metals, lead, mercury and cadmium were tested in liver, kidney and rib samples taken from 43 red deer, 24 deer and 42 chamois between June 1982 and June 1983. Since the free living animals aquire the damaging substances through food, water and air intake, the determined sediments found in the bodies give information on the environmental pollution. The lead content in liver and kidney showed minimal values averraging between 0.001 and 0.014 ppm in all three animal types. Ribs, as well as all bones, due to the effect of time, served as reservoirs for lead with average values of 0.2-0.4ppm. In two chamois livers the maximal values of 3.007 and 1.006 ppm were detected and can be accounted for in a secondary contaminated originating from the lethal projectile. In reference to age and sex, no differences could be seen. A seasonal dependency was determined such that the concentration increased in spring and summer in examined livers and kidneys. The rumen content and grazing habit analysis showed minimal residue amounts as in the indicator organs. This lies in connection with the locality of the hunting grounds compared to the road. The mercury content in liver and kidney was of the maximal value 0.449 ppm. Deer showed the greatest contamination in the kidneys, which were surprisingly high in the fall. After rumen content and grazing analysis, the high value can be accounted for the deer's preference to eat mushrooms in the fall which contained an average 1.029 ppm Hg. Changes in concentrations could not be determined to be sex and age dependet. The cadmium concentration was highest in the kidney cortex in all three animal types. A highly significant dependency should be observed in the cadmium concentration. Deer showed the greatest amounts in each age class, which can be referred back to the grazing habits, to the preferred herbs and mushrooms which have high cadmium contents. Due to the strong influence of the age factor in cadmium storage

  16. Quantitative in vivo elemental analysis using X-ray fluorescence and scattering techniques. Applications to cadmium, lead and bone mineral

    International Nuclear Information System (INIS)

    Nilsson, Ulf.

    1994-05-01

    The X-ray fluorescence technique for in vivo determination of cadmium concentration in the human body has been considerably improved so that the minimum concentration now is 10 μg/g for a skin-organ distance of 50 mm and a measurement time of 30 minutes. The technique has been used for measurements of cadmium in the kidney cortex of 60 non-occupationally exposed persons, showing twice the concentration (26±9 μg/g) in a sub-group of frequent tobacco smokers compared with a group of non-smokers (10±11 μg/g). Concentrations of lead in the skeleton of 112 persons have been measured at three bone sites (finger bone, tibia, heel bone) using in vivo XRF techniques either based on Co-57 or Cd-109 sources. There was a good correlation between lead levels at the three bone sites as well as to cumulative exposure index. However, the association between the amount of chelatable lead and measured bone lead levels was poor. The retention of lead in the skeleton of 14 retired workers, now studied for up to 18 years after retirement, shows a half-time of 16 years. 43 refs

  17. Speciation of cadmium, copper, lead and zinc in the waters of River ...

    African Journals Online (AJOL)

    The water of river Mzimbazi and its attributaries are known to contain heavy metals originating from industry and the water is used for domestic and vegetable irrigation purposes. The present study describes chemical forms of some of the heavy metals found in the water. Water samples from different locations along river ...

  18. Accumulation of cadmium, copper, lead, zinc and iron in the edible ...

    African Journals Online (AJOL)

    TANIMA

    collected from Shankarpur of East Midnapur and Satgelia of Sundarbans. ... in Asia, and also considered as a global biodiversity ... Parganas District of Indian Sundarbans region during the period of ... (Mean ± S.E.) .... culture. Mar. Poltn. Bull. 5: 74-78. Cheung YH, Wong MH (1992). Trace metal contents of the Pacific.

  19. Retention Behaviour of Copper, Zinc, Cadmium and Lead Ions on Synthesized Zirconium Titanate Ion Exchanger

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abdel-Galil, E.A.; Moustafa, M.E.; Mahmoud, M.Y.

    2013-01-01

    Zr(IV) titanate as inorganic ion exchange material has been synthesized and utilized as the adsorbent for the removal of Cu 2+ , Zn 2+ , Cd 2+ and Pb 2+ ions from aqueous waste solutions. The experimental data were analyzed by Langmuir and Freundlich models of adsorption. The results suggest that the adsorption of the studied metals Cu 2+ , Zn 2+ , Cd 2+ and Pb 2+ ions on Zr(IV) titanate was favourable for the Freundlich isotherm more than Langmuir isotherm. The numerical values of 1/n for the studied metal ions were found to be smaller than the one (1/n L ) was found to be R L > 1 which confirmed that the prepared Zr(IV) titanate unfavourable the Langmuir isotherm. Based on the obtained results, practical separation experiments for the above mentioned cations on Zr(IV) titanate (ZrTi) column from aqueous waste solutions were carried out.

  20. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    Science.gov (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (Psoils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    International Nuclear Information System (INIS)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-01-01

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm 3 g −1 and 76.9 m 2 g −1 , respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl 2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments

  2. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: xxye@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: gzhwang@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2015-05-30

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  3. Content of copper, zinc, lead, cadmium and mercury in muscle, liver and kidney of Finnish cattle

    Energy Technology Data Exchange (ETDEWEB)

    Stabel-Taucher, R; Nurmi, E; Karppanen, E

    1975-01-01

    A total of 120 normal slaughter cows were analyzed with respect to Cu, Zn, Pb, Cd and Hg in muscle, liver and kidneys. The cows originated from 6 different slaughter-houses throughout the country. Imported cow livers, were also analyzed for comparison with the Finnish material. The Cu content in the Finnish animals turned out to be relatively low. The imported samples had even lower contents. There seemed to be no correlation between the Cu contents in muscle, liver and kidneys. Statistical tests established that the mean Cu content in livers from Oulu was significantly higher than most of the others at the 5% level. The Zn determinations revealed the highest amounts in the muscle. No correlation between the contents in muscle, liver and kidneys was shown. The animals from Seinaejoki had the highest Zn contents, significantly different from most of the others. The imported livers did not differ much from the domestic ones with regards to the Zn content. The same was true for the Pb content. The correlation coefficients of Pb in muscles, liver and kidneys were low. The animals from Kouvola contained the highest amounts of Pb, and the mean Pb content of these animals' kidneys was significantly different from all the others. The Cd content was highest in the animals from Turku. A good correlation was observed between the Cd contents in liver and kidneys. The Cd content of the imported livers was of the same order as that of the Finnish ones. No correlation was found between the Zn, Pb and Cd contents. The amounts of Hg in Finnish cattle were very low, especially so in animals from the North of Finland. The Hg content of the imported samples was of the same order as the figures recorded from the South of Finland. 24 references, 5 tables.

  4. Cadmium, Copper, Lead, and Zinc Contents of Fish Marketed in NW Mexico

    Directory of Open Access Journals (Sweden)

    Martín G. Frías-Espericueta

    2014-01-01

    Full Text Available To assess if they were within the safety limits for human consumption, the Cd, Cu, Pb, and Zn contents of fish muscles, bought from separate stalls of the fish markets of nine cities of NW Mexico, were determined by atomic absorption spectrophotometry. Considering all fish and markets, the mean contents were Zn: 23.23±5.83, Cu: 1.72±0.63, Cd: 0.27 ± 0.07, and Pb: 0.09 ± 0.04 µg/g (dry weight. Cu, Zn, and Pb did not reach levels of concern for human consumption, but the high Cd values determined in Mazatlán (Mugil cephalus: 0.48±0.15; Diapterus spp.: 0.57±0.33; Lutjanus spp.: 0.72±0.12; small shark: 0.87±0.19 µg/g dry weight indicate that this was the only metal of concern for human health because the daily individual consumption of fish muscle to reach the PTDI would be within 0.27 and 0.41 kg.

  5. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting.

    Science.gov (United States)

    Zhou, Haibin; Meng, Haibo; Zhao, Lixin; Shen, Yujun; Hou, Yueqing; Cheng, Hongsheng; Song, Liqiu

    2018-06-01

    In this study, two different biochars (sawdust charcoal (SDC) and wheat straw charcoal (WSC)) and biological humic acid (BHA) were used with different addition rates in pig manure composting to illustrate the effect on heavy metals passivation. And the composts were applied to rape (Brassica campestris L.) growth to illustrate the stability of the passivation. Results showed the concentration of Cu, Cd, and Pb increased after composting, whereas the passivation rates of Cu, Pb, and Cd reached a maximum of 94.98%, 65.55%, and 68.78%, respectively. When the composts were applied to rape growth, the exchangeable fraction of Cu, Pb, and Cd in the soil further decreased and reduced the accumulation of heavy metals in the rape plant. The rape yield increased by 19.39%-34.35%. The optimal addition ratios of the three passivators were SDC 5%, WSC 7.5% and BHA 2.5% to reduce the health risk of heavy metals in rape products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Breast milk lead and cadmium levels from suburban areas of Ankara

    International Nuclear Information System (INIS)

    Oruen, Emel; Yalcin, S. Songuel; Aykut, Osman; Orhan, Guennur; Morgil, Goeksel Koc; Yurdakoek, Kadriye; Uzun, Ramazan

    2011-01-01

    The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 μg/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 μg/l). Breast milk Cd levels were > 1 μg/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 μg/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 μg/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 μg/l, p = 0.023; vitamin: 0.78, 0.00 μg/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = - 0.257, p = 0.041 and r = - 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study. - Research highlights: → Breast milk Pb levels were higher than the advised safety limits. → The mothers having history

  7. Determination of cadmium, lead and zinc in a candidate reference materials using isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Munoz, Luis; Gras, Nuri; Quejido, Alberto; Fernandez, Marta

    2001-01-01

    The growing demands placed on analytical laboratories to ensure the reliability of their results, due to the introduction of systems of quality and to the increasing use of metrology in chemical measurements has led most laboratories to validate their methodologies and to control them statistically. One of the techniques used most often for these purposes is based on the use of reference materials. The proper use of these materials means that laboratory results may be traced to the International System of Units, analytical methodologies can be validated, instruments calibrated and chemical measurements harmonized. One of the biggest challenges in developing reference materials is that of certifying their properties, a process that has been defined as assigning a concentration value that is as close as possible to the true value together with its uncertainty. Organizations that produce reference materials use several options for their certification process, and among these is the use of a primary method. Among the primary methods recognized by the International Office of Weights and Measures is the Isotope Dilution Mass Spectrometry technique. The Chilean Nuclear Energy Commission, through its Reference Materials Program, has prepared a reference material of clam tissue, which has been chemically defined by different analytical methodologies applied in different national and international laboratories. This work describes the methodology developed with the CIEMAT for determining the elements lead, cadmium and zinc in the clam tissue reference material using the primary technique of Isotope Dilution Mass Spectrometry. The calculation is described for obtaining the spike amounts to be added to the sample and the procedure is explained for carrying out the isotopic exchange. The isotopic relationships 204 Pb/ 205 Pb, 111 Cd/ 114 Cd and 66 Zn/ 67 Zn were determined in an atomic emission spectrometer with a plasma source with the following characteristics: plasma

  8. Connecting gastrointestinal cancer risk to cadmium and lead exposure in the Chaoshan population of Southeast China.

    Science.gov (United States)

    Lin, Xueqiong; Peng, Lin; Xu, Xijin; Chen, Yanrong; Zhang, Yuling; Huo, Xia

    2018-04-17

    Cadmium (Cd) and lead (Pb) pose a serious threat to human health because of its carcinogenicity. China ranks first according to the Global Cancer Report for 2014 in newly diagnosed gastrointestinal cancers and cancer deaths. The aim of the present study was to evaluate the association of Cd and Pb burden with the risk of gastrointestinal cancers in a hospital-based case-control study from southern regions of China, Chaoshan area. A total of 279 hospitalized patients were recruited in this study, of which 167 were gastrointestinal cancer cases (70 esophageal cancer, 51 gastric cancer, and 46 colorectal cancer), and 112 controls were recruited from two hospitals in the Chaoshan area of southeast China. Basic clinical data and information on gender, age, and other demographic characteristics were collected from medical records. Blood Cd and Pb levels were detected by graphite furnace atomizer absorption spectrophotometry (GFAAS). Blood Cd/Pb levels and over-limit ratios between cases and controls were compared by Mann-Whitney U and Kruskal-Wallis H tests. We used logistic regression to estimate odds ratios (ORs) as measures of relative risk and explored the relationships between blood Cd/Pb levels and gastrointestinal cancer risk and clinicopathological characteristics. Median levels of blood Cd and Pb in cases (2.12 and 60.03 μg/L, respectively) were significantly higher than those of controls (1.47 and 53.84 μg/L, respectively). The over-limit ratios for Cd (≥ 5 μg/L) and Pb (≥ 100 μg/L) in the cases were both higher than that of controls. Blood Cd levels had a tendency to accumulate in the human body with gender, age, and tobacco smoking, while blood Pb levels only were associated with tobacco smoking. The logistic regression model illustrated that gastrointestinal cancers were significantly associated with blood Cd levels and blood Pb levels. The concentrations of Cd and Pb in patients with T3 + T4 stage were markedly higher than in patients

  9. Cadmium and lead determination by ICPMS: Method optimization and application in carabao milk samples

    Directory of Open Access Journals (Sweden)

    Riza A. Magbitang

    2012-06-01

    Full Text Available A method utilizing inductively coupled plasma mass spectrometry (ICPMS as the element-selective detector with microwave-assisted nitric acid digestion as the sample pre-treatment technique was developed for the simultaneous determination of cadmium (Cd and lead (Pb in milk samples. The estimated detection limits were 0.09ìg kg-1 and 0.33ìg kg-1 for Cd and Pb, respectively. The method was linear in the concentration range 0.01 to 500ìg kg-1with correlation coefficients of 0.999 for both analytes.The method was validated using certified reference material BCR 150 and the determined values for Cd and Pb were 18.24 ± 0.18 ìg kg-1 and 807.57 ± 7.07ìg kg-1, respectively. Further validation using another certified reference material, NIST 1643e, resulted in determined concentrations of 6.48 ± 0.10 ìg L-1 for Cd and 21.96 ± 0.87 ìg L-1 for Pb. These determined values agree well with the certified values in the reference materials.The method was applied to processed and raw carabao milk samples collected in Nueva Ecija, Philippines.The Cd levels determined in the samples were in the range 0.11 ± 0.07 to 5.17 ± 0.13 ìg kg-1 for the processed milk samples, and 0.11 ± 0.07 to 0.45 ± 0.09 ìg kg-1 for the raw milk samples. The concentrations of Pb were in the range 0.49 ± 0.21 to 5.82 ± 0.17 ìg kg-1 for the processed milk samples, and 0.72 ± 0.18 to 6.79 ± 0.20 ìg kg-1 for the raw milk samples.

  10. Breast milk lead and cadmium levels from suburban areas of Ankara

    Energy Technology Data Exchange (ETDEWEB)

    Oruen, Emel, E-mail: emelorun@hotmail.com [Department of Pediatrics, Fatih University Hospital, Ankara (Turkey); Yalcin, S. Songuel, E-mail: siyalcin@hacettepe.edu.tr [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Aykut, Osman; Orhan, Guennur; Morgil, Goeksel Koc [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey); Yurdakoek, Kadriye [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Uzun, Ramazan [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey)

    2011-06-01

    The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 {mu}g/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 {mu}g/l). Breast milk Cd levels were > 1 {mu}g/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 {mu}g/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 {mu}g/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 {mu}g/l, p = 0.023; vitamin: 0.78, 0.00 {mu}g/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = - 0.257, p = 0.041 and r = - 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study. - Research highlights: {yields} Breast milk Pb levels were higher than the advised safety limits. {yields

  11. Non-occupational lead and cadmium exposure of adult women in Bangkok, Thailand

    International Nuclear Information System (INIS)

    Zhang, Z.-W.; Shimbo, S.; Watanabe, T.; Srianujata, S.; Banjong, O.; Chitchumroonchokchai, C.; Nakatsuka, H.; Matsuda-Inoguchi, N.; Higashikawa, K.; Ikeda, M.

    1999-01-01

    This survey was conducted to examine the extent of the exposure of Bangkok citizens to lead (Pb) and cadmium (Cd), and to evaluate the role of rice as the source of these heavy metals. In practice, 52 non-smoking adult women in an institution in the vicinity of Bangkok, volunteered to offer blood, spot urine, boiled rice and 24-h total food duplicate samples. Samples were wet-ashed, and then analyzed for Pb and Cd by ICP-MS. Geometric means for the levels in blood (Pb-B and Cd-B) and urine (Pb-U and Cd-U as corrected for creatinine concentration), and also for dietary intake (Pb-F and Cd-F) were 32.3 μg/l for Pb-B, 0.41