WorldWideScience

Sample records for cactophilic drosophila mojavensis

  1. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection.

    Science.gov (United States)

    Havens, J A; Etges, W J

    2013-03-01

    Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within-population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair-mated adults from no-choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population-specific plasticity in CHCs. Different groups of CHCs mediated female choice-based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems. PMID:23286346

  2. Genomics of ecological adaptation in cactophilic Drosophila.

    Science.gov (United States)

    Guillén, Yolanda; Rius, Núria; Delprat, Alejandra; Williford, Anna; Muyas, Francesc; Puig, Marta; Casillas, Sònia; Ràmia, Miquel; Egea, Raquel; Negre, Barbara; Mir, Gisela; Camps, Jordi; Moncunill, Valentí; Ruiz-Ruano, Francisco J; Cabrero, Josefa; de Lima, Leonardo G; Dias, Guilherme B; Ruiz, Jeronimo C; Kapusta, Aurélie; Garcia-Mas, Jordi; Gut, Marta; Gut, Ivo G; Torrents, David; Camacho, Juan P; Kuhn, Gustavo C S; Feschotte, Cédric; Clark, Andrew G; Betrán, Esther; Barbadilla, Antonio; Ruiz, Alfredo

    2015-01-01

    Cactophilic Drosophila species provide a valuable model to study gene-environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D. buzzatii and compared its gene content with that of D. mojavensis and two other noncactophilic Drosophila species in the same subgenus. The newly sequenced D. buzzatii genome (161.5 Mb) comprises 826 scaffolds (>3 kb) and contains 13,657 annotated protein-coding genes. Using RNA sequencing data of five life-stages we found expression of 15,026 genes, 80% protein-coding genes, and 20% noncoding RNA genes. In total, we detected 1,294 genes putatively under positive selection. Interestingly, among genes under positive selection in the D. mojavensis lineage, there is an excess of genes involved in metabolism of heterocyclic compounds that are abundant in Stenocereus cacti and toxic to nonresident Drosophila species. We found 117 orphan genes in the shared D. buzzatii-D. mojavensis lineage. In addition, gene duplication analysis identified lineage-specific expanded families with functional annotations associated with proteolysis, zinc ion binding, chitin binding, sensory perception, ethanol tolerance, immunity, physiology, and reproduction. In summary, we identified genetic signatures of adaptation in the shared D. buzzatii-D. mojavensis lineage, and in the two separate D. buzzatii and D. mojavensis lineages. Many of the novel lineage-specific genomic features are promising candidates for explaining the adaptation of these species to their distinct ecological niches. PMID:25552534

  3. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants.

    Science.gov (United States)

    Etges, William J; de Oliveira, Cassia C

    2014-06-01

    Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14-18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed. PMID:25360246

  4. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Science.gov (United States)

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti. PMID:8765684

  5. Ecological genomics of host shifts in Drosophila mojavensis.

    Science.gov (United States)

    Matzkin, Luciano M

    2014-01-01

    Advances in next-generation sequencing technologies have liberated our dependency on model laboratory species for answering genomic and transcriptomic level questions. These new techniques have dramatically expanded our breadth of study organisms and have allowed the analysis of species from diverse ecological environments. One such species is the cactophilic Drosophila mojavensis that inhabits the deserts of western North America. These insects feed and develop in the necrotic cacti, feeding largely on the microflora of the necrotic plant tissues. Drosophila mojavensis is composed of four geographically and ecologically separated populations. Each population (Baja California peninsula, mainland Sonoran Desert, Mojave Desert and Santa Catalina Island) utilizes the necrotic tissues of distinct cactus species. The differences in the nutritional and chemical composition of the necroses include a set of toxic compounds to which resident population must adapt. These ecological differences have facilitated many of the life history, behavior, physiological and genetic differences between the cactus host populations. Genomic resources have allowed investigators to examine the genomic and transcriptional level changes associated with the local adaptation of the four D. mojavensis populations, thereby providing further understanding of the genetic mechanism of adaptation and its role in the divergence of ecologically distinct populations. PMID:24277303

  6. Characterization of volatiles of necrotic Stenocereus thurberi and Opuntia littoralis and toxicity and olfactory preference of Drosophila melanogster, D. mojavensis wrigleyi, and D. mojavensis sonorensis to necrotic cactus volatiles.

    Science.gov (United States)

    Wright, Cynthia R; Setzer, William N

    2014-08-01

    Drosophila mojavensis wrigleyi and D. mojavensis sonorensis are geographically separated races of cactophilic fruit flies. D. mojavensis sonorensis inhabits the Sonoran Desert and utilizes necrotic rots of Stenocereus thurberi Engelm. as a food source and to oviposit while D. mojavensis wrigleyi inhabits Santa Catalina Island, California and utilizes the necrotic rots of Opuntia littoralis (Engelm.) Cockerell. The objectives of this study were to determine the volatile compositions of the necrotic cacti and to determine if the volatile components show either selective toxicity or attraction toward the fruit flies. The volatile chemical compositions of field-rot specimens of both necrotic cacti were obtained by dynamic headspace (purge-and-trap) and hydrodistillation techniques and analyzed by gas chromatography - mass spectrometry. The volatile fraction of necrotic S. thurberi early rot was dominated by carboxylic acids (84.8%) and the late rot by p-cresol (32.6% in the dynamic headspace sample and 55.9% in the hydrodistilled sample). O. littoralis volatiles were dominated by carboxylic acids (86% in the dynamic headspace sample and 89.1% in the hydrodistilled sample). Fifteen compounds that were identified in the necrotic rot volatiles were used to test insecticidal activity and olfactory preference on the cactophilic Drosophila species, as well as D. melanogaster. Differences in toxicity and olfactory preference were observed between the different taxa. Both races of D. mojavensis exhibited toxicity to benzaldehyde and 2-nonanone, while butanoic acid and palmitic acid were tolerated at high concentrations. D. m. wrigleyi demonstrated a greater olfactory preference for anisole, butanoic acid, 2-heptanone, and palmitic acid than did D. m. sonorensis, while D. m. sonorensis demonstrated a greater preference for hexadecane, octanoic acid, and oleic acid than did D. m. wrigleyi. PMID:25233605

  7. Significance of saguaro cactus alkaloids in ecology ofDrosophila mettleri, a soil-breeding, cactophilic drosophilid.

    Science.gov (United States)

    Meyer, J M; Fogleman, J C

    1987-11-01

    Drosophila mettleri is a soil-breeding, cactophilic drosophilid which lives in the Sonoran Desert. Several chemical constituents of cacti in this region have been identified as having major roles in insect-host plant relationships involvingDrosophila. For example, isoquinoline alkaloids, which are present in senita cactus, have been shown to be toxic to seven of the nine species tested. The two tolerant species areD. pachea, the normal resident, andD. mettleri. Necroses of senita cacti are often used as feeding substrates byD. mettleri adults, but this species has never been reared from senita rots. Soil, which have been soaked by juice from saguaro and cardón rots, are the typical breeding substrates of this species. The tissues of both of these cacti also contain alkaloids, chemically related to those in senita, but at much lower concentrations. Alkaloid concentration in saguaro-soaked soil was found to be 1.4-27 times the average concentration in fresh tissue. Alkaloids were extracted from saguaro tissue and used in tests of larva-to-adult viability, developmental rate, and adult longevity. Elevated concentrations of saguaro alkaloids had no significant effect on the longevity ofD. mettleri, but significantly reduced the longevity ofD. nigrospiracula andD. mojavensis, two nonsoil breeding cactophilic species. Viability and developmental rates of all three species were affected, but the effect onD. nigrospiracula was comparatively greater. It is argued that the adaptations that allowD. mettleri to utilize the saguaro soil niche also convey tolerance to alkaloids present in senita tissue. The ability to utilize senita necroses as feeding substrates represents an ecological advantage to D. mettleri, in that the density of potential feeding sites is increased as compared to species which are more specific in their host-plant relationships. PMID:24301541

  8. Comparative genomics: chromosome and gene evolution in two cactophilic Drosophila species, D. buzzatii and D. mojavensis

    OpenAIRE

    Guillén Montalbán, Yolanda

    2014-01-01

    Las bases genéticas de la adaptación ecológica han sido investigadas durante muchos años mediante la exploración de regiones particulares del genoma tales como las reordenaciones cromosómicas, los polimorfismos morfológicos o las aloenzimas. El poder cada vez más apreciado de la genómica comparativa y el creciente número de genomas secuenciados ofrecen la oportunidad de comprender como se relacionan la evolución molecular, la adaptación y la variación fenotípica. Los cambios adaptativos han s...

  9. Comparative genomics: chromosome and gene evolution in two cactophilic Drosophila species, D. buzzatii and D. mojavensis

    OpenAIRE

    Guillén Montalbán, Yolanda

    2015-01-01

    Las bases genéticas de la adaptación ecológica han sido investigadas durante muchos años mediante la exploración de regiones particulares del genoma tales como las reordenaciones cromosómicas, los polimorfismos morfológicos o las aloenzimas. El poder cada vez más apreciado de la genómica comparativa y el creciente número de genomas secuenciados ofrecen la oportunidad de comprender como se relacionan la evolución molecular, la adaptación y la variación fenotípica. Los cambios adaptativos han s...

  10. Divergence in olfactory host plant preference in D. mojavensis in response to cactus host use.

    Science.gov (United States)

    Date, Priya; Dweck, Hany K M; Stensmyr, Marcus C; Shann, Jodi; Hansson, Bill S; Rollmann, Stephanie M

    2013-01-01

    Divergence in host adaptive traits has been well studied from an ecological and evolutionary perspective, but identification of the proximate mechanisms underlying such divergence is less well understood. Behavioral preferences for host plants are often mediated by olfaction and shifts in preference may be accompanied by changes in the olfactory system. In this study, we examine the evolution of host plant preferences in cactophilic Drosophila mojavensis that feeds and breeds on different cacti throughout its range. We show divergence in electrophysiological responses and olfactory behavior among populations with host plant shifts. Specifically, significant divergence was observed in the Mojave Desert population that specializes on barrel cactus. Differences were observed in electrophysiological responses of the olfactory organs and in behavioral responses to barrel cactus volatiles. Together our results suggest that the peripheral nervous system has changed in response to different ecological environments and that these changes likely contribute to divergence among D. mojavensis populations. PMID:23936137

  11. Contrasting Plasticity in Ovariole Number Induced by A Dietary Effect of the Host Plants between Cactophilic Drosophila Species.

    Science.gov (United States)

    Peluso, Daniela; Soto, Eduardo M; Kreiman, Lucas; Hasson, Esteban; Mensch, Julián

    2016-01-01

    Under the preference-performance hypothesis, natural selection will favor females that choose oviposition sites that optimize the fitness of their offspring. Such a preference-performance relationship may entail important consequences mainly on fitness-related traits. We used the well-characterized cactus-Drosophila system to investigate the reproductive capacity in the pair of sibling species D. buzzatii and D. koepferae reared in two alternative host plants. According to our hypothesis, ovariole number (as a proxy of reproductive capacity) depends on host plant selection. Our results indicate that the capacity of D. buzzatii showed to be mild, only increasing the number of ovarioles by as much as 10% when reared in its preferred host. In contrast, D. koepferae exhibited a similar reproductive capacity across host cacti, even though it showed a preference for its primary host cactus. Our study also revealed that D. buzzatii has a larger genetic variation for phenotypic plasticity than its sibling, although ovariole number did not show clear-cut differences between species. We will discuss the weak preference-performance pattern observed in these cactophilic species in the light of nutritional and toxicological differences found between the natural host plants. PMID:27213456

  12. Phylogeography of the Cactophilic Drosophila and Other Arthropods Associated with Cactus Necroses in the Sonoran Desert

    Directory of Open Access Journals (Sweden)

    Therese A. Markow

    2011-05-01

    Full Text Available Studies on the population genetics, phylogenetic relationships, systematics and evolution of arthropods that inhabit necrotic tissue of cacti in the Sonoran Desert of North America are reviewed. These studies have focused upon several species of insects (orders Diptera and Coleoptera and arachnids (order Pseudoscorpiones. For most taxa studied, little genetic structure and high dispersal ability are found in populations inhabiting the mainland and Baja California peninsula regions of the Sonoran Desert, consistent with the availability of the rotting cactus microhabitat which is patchily distributed and ephemeral. There is evidence, however, that the Gulf of California, which bisects the Sonoran Desert, has played a role in limiting gene flow and promoting speciation in several taxa, including histerid beetles, whereas other taxa, especially Drosophila nigrospiracula and D. mettleri, apparently are able to freely cross the Gulf, probably by taking advantage of the Midriff Islands in the northern Gulf as dispersal “stepping stones”. Genetic evidence has also been found for historical population expansions dating to the Pleistocene and late Pliocene in several taxa. Overall, these studies have provided important insights into how arthropods with different life history traits, but generally restricted to a necrotic cactus microhabitat, have evolved in an environmentally harsh and tectonically active region. In addition, they suggest some taxa for further, and more detailed, hypothesis driven studies of speciation.

  13. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Directory of Open Access Journals (Sweden)

    Jackson Larry L

    2011-06-01

    Full Text Available Abstract Background We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs in the seven species of the Drosophila buzzatii cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the D. buzzatii species cluster in order to assess the concordance of CHC differentiation with species divergence. Results Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C29 to C39, including methyl-branched alkanes, n-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of D. serido suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs onto an independently derived period (per gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only per + inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of D. serido significantly increased the amount of phylogenetic signal as

  14. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus.

    Science.gov (United States)

    Pfeiler, Edward; Reed, Laura K; Markow, Therese A

    2005-03-15

    High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele. PMID:15726639

  15. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Directory of Open Access Journals (Sweden)

    Guillén Yolanda

    2012-02-01

    Full Text Available Abstract Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  16. Electrotransformation of Bacillus mojavensis with fluorescent protein markers

    Science.gov (United States)

    Gram-positive endophytic bacteria are difficult to transform. To study endophytic interactions between Bacillus mojavensis and maize, a method was developed to transform this species by electroporation with three fluorescent protein expressing integrative plasmids: pSG1154, pSG1192, and pSG1193. The...

  17. First Record of Drosophila buzzatii (Patterson & Wheeler) (Diptera: Drosophilidae) Emerging from a Non-Cactus Host.

    Science.gov (United States)

    Fanara, J J; Soto, I M; Lipko, P; Hasson, E

    2016-06-01

    Drosophila buzzatii (Patterson & Wheeler), a typical cactophilic species of the repleta group, is registered for the first time emerging from Melon (Cucumis melo) in western Argentina. The analysis of inversion polymorphism and genetic diversity of mitochondrial cytochrome oxidase subunit I gene (mtCOI) provided additional evidence that corroborated the presence of a high proportion of D. buzzatii among the flies emerged from melon. This finding set the scenario for a broader range of possible hosts and host-related distribution and dispersion for this widespread species. PMID:26960546

  18. In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis.

    Science.gov (United States)

    Bacon, Charles W; Hinton, Dorothy M

    2011-06-01

    Maize (Zea mays L.) is susceptible to infection by Fusarium verticillioides through autoinfection and alloinfection, resulting in diseases and contamination of maize kernels with the fumonisin mycotoxins. Attempts at controlling this fungus are currently being done with biocontrol agents such as bacteria, and this includes bacterial endophytes, such as Bacillus mojavensis . In addition to producing fumonisins, which are phytotoxic and mycotoxic, F. verticillioides also produces fusaric acid, which acts both as a phytotoxin and as an antibiotic. The question now is Can B. mojavensis reduce lesion development in maize during the alloinfection process, simulated by internode injection of the fungus? Mutant strains of B. mojavensis that tolerate fusaric acid were used in a growth room study to determine the development of stalk lesions, indicative of maize seedling blight, by co-inoculations with a wild-type strain of F. verticillioides and with non-fusaric acid producing mutants of F. verticillioides. Lesions were measured on 14-day-old maize stalks consisting of treatment groups inoculated with and without mutants and wild-type strains of bacteria and fungi. The results indicate that the fusaric-acid-tolerant B. mojavensis mutant reduced stalk lesions, suggesting an in planta role for this substance as an antibiotic. Further, lesion development occurred in maize infected with F. verticillioides mutants that do not produce fusaric acid, indicating a role for other phytotoxins, such as the fumonisins. Thus, additional pathological components should be examined before strains of B. mojavensis can be identified as being effective as a biocontrol agent, particularly for the control of seedling disease of maize. PMID:21635192

  19. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    OpenAIRE

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic...

  20. He said, she said: mRNA sequencing identifies specificity in metabolic response to Bacillus mojavensis lipopeptides in Fusarium verticillioides

    Science.gov (United States)

    Fusarium verticillioides is a mycotoxigenic fungus capable of both pathogenic and asymptomatic endophytic lifestyles in maize; such intimate association renders efficient chemical control cost-prohibitive. Bacillus mojavensis RRC101 is a maize endophyte demonstrating both in vitro antagonism of F. v...

  1. Gene : CBRC-MEUG-01-2424 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 1 [Drosophila mojavensis] gb|EDW12250.1| GI17581 [Drosophila mojavensis] 5e-85 41% MXXXXLSIYLSIYLSIYLSIYLSIYLSIC...LSIYLSVYLSIYLSIYLSIYLSVYLSVYLSIYLSIYLSLYPSIYLSVYPSIYLSVYLSVYLSIYLSVYLSIYLSVYLSIYLSICLSICLSIYLSICLSIYLSIC...LSIYLSIYLSIYLSIHLSIYLSIYLSIYLSIYLSICLSIYLSIYLSIYLSSYLSIYLSIYLSICLSICLSVYLSIYPSIYL...SVYLSVCLSIYLSIYLSIYVSIYPSIYLSVYLSVYLSIYLSVYLSVYPSVYLSVYPSIYLSICLSICLSIYLSYLSIHLSIYLSIYLSIYHLSIIYLSSIYLSICLSIC...LSIYLSIYPSIYLSVYLSVCLSIYLSIYLSIYLCIYLSIYLSICLSICLSIYLSLCLSICLSICLSIYLSIYLSIYLSIYLSLCLSICLSICLSISLSIYLSLYLSV

  2. Effective biodemulsifier components secreted by Bacillus mojavensis XH-1 and analysis of the demulsification process.

    Science.gov (United States)

    Hou, Ning; Li, Dapeng; Ma, Fang; Zhang, Jie; Xu, Yang; Wang, Jinna; Li, Chunyan

    2014-07-01

    The purpose of the present study was to investigate the effective components of the demulsifying bacterial strain Bacillus mojavensis XH-1 and its demulsification process. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the shotgun LC-MS/MS method were used to separate and identify proteins with efficient demulsification activity. The zeta potential changes of the emulsion before and after addition of the biodemulsifier were tested, and the relationships between oil-in-water interfacial tension, the demulsification efficiency and the biodemulsifier structure were examined. The study results indicate that the effective biodemulsifier components were extracellular proteins attached to the cells or secreted into the culture solution that presented as a 50-80 kDa band observed by SDS-PAGE. Six of the proteins were unknown or unnamed, and the demulsifying functions of another 14 proteins had not been previously reported. The main demulsification mechanisms were determined to be solubilization and replacement. When the concentration of the biodemulsifier was low, the replacement mechanism dominated, and the demulsification ratio increased with the biodemulsifier concentration. Solubilization dominated when a high concentration of biodemulsifier was provided, and the demulsification ratio decreased as the biodemulsifier concentration increased. PMID:24275987

  3. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusrium verticillioides

    Science.gov (United States)

    Here we report the whole genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides, and grows within maize tissue, suggesting potential as an endophytic biocontrol agent....

  4. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides.

    Science.gov (United States)

    Gold, S E; Blacutt, A A; Meinersmann, R J; Bacon, C W

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent. PMID:25359909

  5. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides

    OpenAIRE

    Gold, S. E.; Blacutt, A. A.; Meinersmann, R. J.; Bacon, C W

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent.

  6. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  7. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided. PMID:27030978

  8. The evolutionary dynamics of the Helena retrotransposon revealed by sequenced Drosophila genomes

    Directory of Open Access Journals (Sweden)

    Carareto Claudia MA

    2009-07-01

    Full Text Available Abstract Background Several studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon Helena, of which only degenerate sequences have been shown to be present in some species (Drosophila melanogaster, whereas putatively active sequences are present in others (D. simulans. Combining experimental and population analyses with the sequence analysis of the 12 Drosophila genomes, we have investigated the evolution of Helena, and propose a possible scenario for the evolution of this element. Results We show that six species of Drosophila have the Helena transposable element at different stages of its evolution. The copy number is highly variable among these species, but most of them are truncated at the 5' ends and also harbor several internal deletions and insertions suggesting that they are inactive in all species, except in D. mojavensis in which quantitative RT-PCR experiments have identified a putative active copy. Conclusion Our data suggest that Helena was present in the common ancestor of the Drosophila genus, which has been vertically transmitted to the derived lineages, but that it has been lost in some of them. The wide variation in copy number and sequence degeneration in the different species suggest that the evolutionary dynamics of Helena depends on the genomic environment of the host species.

  9. Evolution of male genitalia: environmental and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids

    Directory of Open Access Journals (Sweden)

    Hasson Esteban

    2007-05-01

    Full Text Available Abstract Background The rapid evolution of genital morphology is a fascinating feature that accompanies many speciation events. However, the underlying patterns and explanatory processes remain to be settled. In this work we investigate the patterns of intraspecific variation and interspecific divergence in male genitalic morphology (size and shape in the cactophilic sibling species Drosophila buzzatii and D. koepferae. Genital morphology in interspecific hybrids was examined and compared to the corresponding parental lines. Results Despite of being siblings, D. buzzatii and D. koepferae showed contrasting patterns of genital morphological variation. Though genitalic size and shape variation have a significant genetic component in both species, shape varied across host cacti only in D. buzzatii. Such plastic expression of genital shape is the first evidence of the effect of rearing substrate on genitalic morphology in Drosophila. Hybrid genital morphology was not intermediate between parental species and the morphological resemblance to parental strains was cross-dependent. Conclusion Our results suggest the evolution of different developmental networks after interspecific divergence and the existence of a complex genetic architecture, involving genetic factors with major effects affecting genital morphology.

  10. Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila.

    Directory of Open Access Journals (Sweden)

    Ramiro Morales-Hojas

    Full Text Available Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic. Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.

  11. Differences in tolerance to host cactus alkaloids in Drosophila koepferae and D. buzzatii.

    Science.gov (United States)

    Soto, Ignacio M; Carreira, Valeria P; Corio, Cristian; Padró, Julián; Soto, Eduardo M; Hasson, Esteban

    2014-01-01

    The evolution of cactophily in the genus Drosophila was a major ecological transition involving over a hundred species in the Americas that acquired the capacity to cope with a variety of toxic metabolites evolved as feeding deterrents in Cactaceae. D. buzzatii and D. koepferae are sibling cactophilic species in the D. repleta group. The former is mainly associated with the relatively toxic-free habitat offered by prickly pears (Opuntia sulphurea) and the latter has evolved the ability to use columnar cacti of the genera Trichocereus and Cereus that contain an array of alkaloid secondary compounds. We assessed the effects of cactus alkaloids on fitness-related traits and evaluated the ability of D. buzzatii and D. koepferae to exploit an artificial novel toxic host. Larvae of both species were raised in laboratory culture media to which we added increasing doses of an alkaloid fraction extracted from the columnar cactus T. terschekii. In addition, we evaluated performance on an artificial novel host by rearing larvae in a seminatural medium that combined the nutritional quality of O. sulphurea plus amounts of alkaloids found in fresh T. terschekii. Performance scores in each rearing treatment were calculated using an index that took into account viability, developmental time, and adult body size. Only D. buzzatii suffered the effects of increasing doses of alkaloids and the artificial host impaired viability in D. koepferae, but did not affect performance in D. buzzatii. These results provide the first direct evidence that alkaloids are key determinants of host plant use in these species. However, the results regarding the artificial novel host suggest that the effects of alkaloids on performance are not straightforward as D. koepferae was heavily affected. We discuss these results in the light of patterns of host plan evolution in the Drosophila repleta group. PMID:24520377

  12. Production and characterization of surfactin-type lipopeptides as bioemulsifiers produced by a Pinctada martensii-derived Bacillus mojavensis B0621A.

    Science.gov (United States)

    Ma, Zongwang; Hu, Jiangchun

    2015-12-01

    Bacillus mojavensis B0621A was isolated from the mantle of a pearl oyster Pinctada martensii collected from South China Sea. Semi-purified surfactins (225 mg L(-1)) were obtained by acid precipitation and vacuum flash chromatography. The component of the semi-purified surfactins was preliminarily analyzed by liquid chromatography mass spectrometer system, and the results showed that all these surfactins could be a group of homologues. Eight surfactin homologues were isolated and afforded by reversed phase high-performance liquid chromatography. Furthermore, their structure was characterized by mass spectrometry analysis combined with nuclear magnetic resonance spectroscopy techniques. These surfactins shared seven amino acids as peptide backbone and a saturated β-hydroxy fatty acid chain residue (from C13 to C15), differed each other from peptide sequence in the position of Leu7 or Val7. All these surfactins had significant activity and stability of emulsification under various pH (from 7.0 to 12.0), temperature range (from 20 to 115 °C) and sodium chloride concentration (from 2.5 to 20.0 %, w/v). Taken all together, these results indicated that B. mojavensis B0621A have potential to be an alternative source as a biological-derived emulsifying agent. PMID:26373943

  13. Assessment of pectinase production by Bacillus mojavensis I4 using an economical substrate and its potential application in oil sesame extraction.

    Science.gov (United States)

    Ghazala, Imen; Sayari, Nadhem; Romdhane, Molka Ben; Ellouz-Chaabouni, Semia; Haddar, Anissa

    2015-12-01

    Carrot (Daucus carota) peels, local agricultural waste product, is rich in lignocellulolytic material, including pectin which can act as an inducer of pectinase production. Pectinolytic enzymes production by Bacillus mojavensis I4 was studied in liquid state fermentation using carrot peel as a substrate. Medium composition and culture conditions for the pectinase production by I4 were optimized using two statistical methods: Taguchi design was applied to find the key ingredients and conditions for the best yield of enzyme production and The Box-Behnken design was used to optimize the value of the four significant variables: carrot peels powder, NH4Cl, inoculum size and incubation time. The optimal conditions for higher production of pectinase were carrot peels powder 6.5 %, NH4Cl 0.3 %, inoculum level 3 % and cultivation time 32 h. Under these conditions, the pectinase experimental yield (64.8 U/ml) closely matched the yield predicted by the statistical model (63.55 U/ml) with R (2) = 0.963. The best pectinase activity was observed at the temperature of 60 °C and at pH 8.0. The enzyme retained more than 90 % of its activity after 24 h at pH ranging from 6.0 to 10.0. The enzyme preserved more than 85 % of its initial activity after 60 min of pre-incubation at 30-40 °C and more than 67 % at 50 °C. The extracellular juice of I4 was applied in the process of sesame seeds oil extraction. An improvement of 3 % on the oil yield was obtained. The findings demonstrated that the B. mojavensis I4 has a promising potential for future use in a wide range of industrial and biotechnological applications. PMID:26604345

  14. Adult Neurogenesis in Drosophila

    OpenAIRE

    Ismael Fernández-Hernández; Christa Rhiner; Eduardo Moreno

    2013-01-01

    Adult neurogenesis has been linked to several cognitive functions and neurological disorders. Description of adult neurogenesis in a model organism like Drosophila could facilitate the genetic study of normal and abnormal neurogenesis in the adult brain. So far, formation of new neurons has not been detected in adult fly brains and hence has been thought to be absent in Drosophila. Here, we used an improved lineage-labeling method to show that, surprisingly, adult neurogenesis occurs in the m...

  15. Drosophila egg chamber elongation

    OpenAIRE

    Gates, Julie

    2012-01-01

    As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interac...

  16. Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses

    Indian Academy of Sciences (India)

    Volker Loeschcke; Jesper G Sørensen; Torsten N Kristensen

    2004-12-01

    We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable – if not critical – to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems of Drosophila species, representing both cosmopolitan species such as D. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilic D. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.

  17. Drosophila Rhomboid-1

    Czech Academy of Sciences Publication Activity Database

    Stříšovský, Kvido

    Amsterdam : Academic Press, 2013 - (Salvesen, G.), s. 3563-3567 ISBN 978-0-12-382219-2 R&D Projects: GA ČR GAP305/11/1886; GA MŠk(CZ) LK11206 Institutional support: RVO:61388963 Keywords : rhomboid * intramembrane protease * Drosophila Subject RIV: CE - Biochemistry

  18. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  19. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-05-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  20. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard, Brianna K.; Cheramie, Martin N.; Eime, Anne M.; Golden, Kathryn L.; Hawkins, Allyson P.; Hill, Jessica E.; Kampmeier, Jessica A.; Kern, Cody D.; Magnuson, Emily E.; Miller, Ashley R.; Morrow, Cody M.; Peairs, Julia C.; Pickett, Gentry L.; Popelka, Sarah A.; Scott, Alexis J.; Teepe, Emily J.; TerMeer, Katie A.; Watchinski, Carmen A.; Watson, Lucas A.; Weber, Rachel E.; Woodard, Kate A.; Barnard, Daron C.; Appiah, Isaac; Giddens, Michelle M.; McNeil, Gerard P.; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C.; Buhler, Jeremy; Mardis, Elaine R.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  1. Drosophila by the dozen

    Energy Technology Data Exchange (ETDEWEB)

    Celniker, Susan E.; Hoskins, Roger A.

    2007-07-13

    This year's conference on Drosophila research illustratedwell the current focus of Drosophila genomics on the comprehensiveidentification of functional elements in the genome sequence, includingmRNA transcripts arising from multiple alternative start sites and splicesites, a multiplicity of noncoding transcripts and small RNAs,identification of binding sites for transcription factors, sequenceconservation in related species and sequence variation within species.Resources and technologies for genetics and functional genomics aresteadily being improved, including the building of collections oftransposon insertion mutants and hairpin constructs for RNA interference(RNAi). The conference also highlighted progress in the use of genomicinformation by many laboratories to study diverse aspects of biology andmodels of human disease. Here we will review a few highlights of especialinterest to readers of Genome Biology.

  2. Olfactory learning in Drosophila

    OpenAIRE

    Nehrkorn, Johannes

    2016-01-01

    Animals are able to form associative memories and benefit from past experience. In classical conditioning an animal is trained to associate an initially neutral stimulus by pairing it with a stimulus that triggers an innate response. The neutral stimulus is commonly referred to as conditioned stimulus (CS) and the reinforcing stimulus as unconditioned stimulus (US). The underlying neuronal mechanisms and structures are an intensely investigated topic. The fruit fly Drosophila melanogaster...

  3. Selective Autophagy in Drosophila

    Directory of Open Access Journals (Sweden)

    Ioannis P. Nezis

    2012-01-01

    Full Text Available Autophagy is an evolutionarily conserved process of cellular self-eating and is a major pathway for degradation of cytoplasmic material by the lysosomal machinery. Autophagy functions as a cellular response in nutrient starvation, but it is also associated with the removal of protein aggregates and damaged organelles and therefore plays an important role in the quality control of proteins and organelles. Although it was initially believed that autophagy occurs randomly in the cell, during the last years, there is growing evidence that sequestration and degradation of cytoplasmic material by autophagy can be selective. Given the important role of autophagy and selective autophagy in several disease-related processes such as neurodegeneration, infections, and tumorigenesis, it is important to understand the molecular mechanisms of selective autophagy, especially at the organismal level. Drosophila is an excellent genetically modifiable model organism exhibiting high conservation in the autophagic machinery. However, the regulation and mechanisms of selective autophagy in Drosophila have been largely unexplored. In this paper, I will present an overview of the current knowledge about selective autophagy in Drosophila.

  4. SUMOylation in Drosophila Development

    Directory of Open Access Journals (Sweden)

    Albert J. Courey

    2012-07-01

    Full Text Available Small ubiquitin-related modifier (SUMO, an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.

  5. Initial neurogenesis in Drosophila.

    Science.gov (United States)

    Hartenstein, Volker; Wodarz, Andreas

    2013-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review. PMID:24014455

  6. Genome of Drosophila suzukii, the Spotted Wing Drosophila

    OpenAIRE

    Chiu, Joanna C.; Jiang, Xuanting; Zhao, Li; Hamm, Christopher A.; Cridland, Julie M; Saelao, Perot; Hamby, Kelly A.; Lee, Ernest K.; Kwok, Rosanna S.; Zhang, Guojie; Frank G. Zalom; Walton, Vaughn M.; Begun, David J

    2013-01-01

    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relativ...

  7. Review: Thermal preference in Drosophila

    OpenAIRE

    Dillon, Michael E.; Wang, George; Garrity, Paul A.; Huey, Raymond B.

    2009-01-01

    Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild.

  8. Optogenetics in Drosophila Neuroscience.

    Science.gov (United States)

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory. PMID:26965122

  9. Genome of Drosophila suzukii, the spotted wing drosophila.

    Science.gov (United States)

    Chiu, Joanna C; Jiang, Xuanting; Zhao, Li; Hamm, Christopher A; Cridland, Julie M; Saelao, Perot; Hamby, Kelly A; Lee, Ernest K; Kwok, Rosanna S; Zhang, Guojie; Zalom, Frank G; Walton, Vaughn M; Begun, David J

    2013-12-01

    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access. PMID:24142924

  10. Iron Absorption in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Fanis Missirlis

    2013-05-01

    Full Text Available The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import, the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export and the role of ferritin in the process of iron acquisition (iron storage. We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  11. Drosophila neuroblasts retain the daughter centrosome

    OpenAIRE

    Januschke, Jens; Llamazares, Salud; Reina, Jose; Gonzalez, Cayetano

    2011-01-01

    During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by cloning the Drosophila homologue of human Centrobin. Here we show that upon asymmetric mitosis, the...

  12. Role of extracellular adenosine in Drosophila

    OpenAIRE

    FENCKOVÁ, Michaela

    2011-01-01

    This thesis describes several aspects of the role for extracellular adenosine in Drosophila. Reverse genetic, molecular and microscopic methods together with the most forefront Drosophila research techniques have been applied to elucidate the role of adenosine signaling in the regulation of development, physiology and metabolism of Drosophila larvae. The thesis helps to establish the model for extracellular adenosine as a stress-signal for the release of energy stores. It also describes the e...

  13. Signal Propagation in Drosophila Central Neurons

    OpenAIRE

    Gouwens, Nathan W.; Wilson, Rachel I.

    2009-01-01

    Drosophila is an important model organism for investigating neural development, neural morphology, neurophysiology, and neural correlates of behaviors. However, almost nothing is known about how electrical signals propagate in Drosophila neurons. Here we address these issues in antennal lobe projection neurons (PNs), one of the most well-studied classes of Drosophila neurons. We use morphological and electrophysiological data to deduce the passive membrane properties of these neurons and to b...

  14. Integrative Model of Drosophila Flight

    OpenAIRE

    Dickson, William B.; Andrew D Straw; Dickinson, Michael H

    2008-01-01

    This paper presents a framework for simulating the flight dynamics and control strategies of the fruit fly Drosophila melanogaster. The framework consists of five main components: an articulated rigid-body simulation, a model of the aerodynamic forces and moments, a sensory systems model, a control model, and an environment model. In the rigid-body simulation the fly is represented by a system of three rigid bodies connected by a pair of actuated ball joints. At each instant of th...

  15. Leigh Syndrome in Drosophila melanogaster

    OpenAIRE

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LS Surf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS ba...

  16. Sexual Behavior of Drosophila suzukii

    OpenAIRE

    Santosh Revadi; Sébastien Lebreton; Peter Witzgall; Gianfranco Anfora; Teun Dekker; Becher, Paul G.

    2015-01-01

    A high reproductive potential is one reason for the rapid spread of Drosophila suzukii in Europe and in the United States. In order to identify mechanisms that mediate mating and reproduction in D. suzukii we studied the fly’s reproductive behavior, diurnal mating activity and sexual maturation. Furthermore, we studied the change of female cuticular hydrocarbons (CHCs) with age and conducted a preliminary investigation on the role of female-derived chemical signals in male mating behavior. Se...

  17. Visual attention in Drosophila melanogaster

    OpenAIRE

    Sareen, Preeti

    2012-01-01

    There is such vast amount of visual information in our surroundings at any time that filtering out the important information for further processing is a basic requirement for any visual system. This is accomplished by deploying attention to focus on one source of sensory inputs to the exclusion of others (Luck and Mangun 2009). Attention has been studied extensively in humans and non human primates (NHPs). In Drosophila, visual attention was first demonstrated in 1980 (Wolf and Heisenberg 198...

  18. The Drosophila melanogaster Cajal body

    OpenAIRE

    Liu, Ji-Long; Murphy, Christine; Buszczak, Michael; Clatterbuck, Sarah; Goodman, Robyn; Gall, Joseph G.

    2006-01-01

    Cajal bodies (CBs) are nuclear organelles that are usually identified by the marker protein p80-coilin. Because no orthologue of coilin is known in Drosophila melanogaster, we identified D. melanogaster CBs using probes for other components that are relatively diagnostic for CBs in vertebrate cells. U85 small CB–specific RNA, U2 small nuclear RNA, the survival of motor neurons protein, and fibrillarin occur together in a nuclear body that is closely associated with the nucleolus. Based on its...

  19. Leigh Syndrome in Drosophila melanogaster

    Science.gov (United States)

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LSSurf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R+ cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. PMID:25164807

  20. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  1. Insulin receptor in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  2. Insulin receptor in Drosophila melanogaster

    International Nuclear Information System (INIS)

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  3. Biology and physiology of Drosophila suzukii

    Science.gov (United States)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  4. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.)

  5. Drosophila and Beer: An Experimental Laboratory Exercise

    Science.gov (United States)

    Kurvink, Karen

    2004-01-01

    Drosophila melanogaster is a popular organism for studying genetics and development. Maintaining Drosophila on medium prepared with varying concentrations of beer and evaluating the effects on reproduction, life cycle stages and other factors is one of the exercises that is versatile and applicable to many student levels.

  6. Taste processing in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A. Apostolopoulou

    2015-10-01

    Full Text Available The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances.

  7. In Focus: Spotted wing drosophila, Drosophila suzukii, across perspectives.

    Science.gov (United States)

    Lee, Jana C; Bruck, Denny J; Dreves, Amy J; Ioriatti, Claudio; Vogt, Heidrun; Baufeld, Peter

    2011-11-01

    In August 2008, the first detection of the spotted wing drosophila, Drosophila suzukii, to the North America mainland in California caused great concern, as the fly was found infesting a variety of commercial fruits. Subsequent detections followed in Oregon, Washington, Florida and British Columbia in 2009; in Utah, North Carolina, South Carolina, Michigan, and Louisiana in 2010; and in Virginia, Montana, Wisconsin, Pennsylvania, New Jersey, Maryland and Mexico in 2011. In Europe, it has been detected in Italy and Spain in 2009 and in France in 2010. Economic costs to the grower from D. suzukii include the increased cost of production (increased labor and materials for chemical inputs, monitoring and other management tools) and crop loss. An effective response to the invasion of D. suzukii requires proper taxonomic identification at the initial phase, understanding basic biology and phenology, developing management tools, transferring information and technology quickly to user groups, and evaluating the impact of the research and extension program on an economic, social, and environmental level. As D. suzukii continues to expand its range, steps must be initiated in each new region to educate and inform the public as well as formulate management tactics suitable for the crops and growing conditions in each. PMID:21990168

  8. The Spotted Wing Drosophila Drosophila suzukii (Matsumura, 1931) – Monitoring And First Records In Poland

    OpenAIRE

    Łabanowska Barbara H.; Piotrowski Wojciech

    2015-01-01

    The spotted wing drosophila (Drosophila suzukii) (SWD) monitoring was carried out between 2012-2014 in eight locations. In order to determine the presence of Drosophila suzukii, several types of traps and baits were used. In 2014, Polish (prototype of Drosinal) and Spanish (Cera Trap) traps and baits were used in our study. In each year, traps were placed on the plantations of blueberry, strawberry, raspberry and at a wholesale market at the beginning of July, and monitored once or twice a we...

  9. Complete mitochondrial genome of Drosophila albomicans.

    Science.gov (United States)

    Kang, Xiongbin; Luo, Xiao; Zhang, Zhi; Zhang, Zhen; Yang, Junqing; Bi, Guiqi

    2016-09-01

    Drosophila albomicans has been widely used as an important animal model for chromosome evolution. In this study, the mitochondrial genome sequence of this species is determined and described for the first time. The mitochondrial genome (15 849 bp) encompasses two rRNA, 22 tRNA, and 13 protein-coding genes. Genome content and structure are similar to those reported from other Drosophila mitochondrial genomes. Phylogeny analysis indicates that D. albomicans have a closer genetic relationship with Drosophil aincompta and Drosophil alittoralis. This mitochondrial genome is potentially important for studying molecular evolution and conservation genetics in Drosophila genus. PMID:26358579

  10. A Drosophila metallophosphoesterase mediates deglycosylation of rhodopsin

    OpenAIRE

    Cao, Jinguo; Li, Yi; Xia, Wenjing; Reddig, Keith; Hu, Wen; XIE, Wei; Li, Hong-Sheng; Han, Junhai

    2011-01-01

    The glycosylation status of Rhodopsin controls its trafficking and stability, and is hence critical for photoreceptor function. Here, a Drosophila metallophosphoesterase is identified that affects Rhodopsin glycosylation by regulating the activity of an enzyme involved in glycan processing.

  11. Tuberous sclerosis complex: A Drosophila connection

    OpenAIRE

    Kumar, Arun; Girimaji, SC

    2001-01-01

    Recent findings based on experiments with Drosophila melanogaster significantly advance our understanding of a human disease known as tuberous sclerosis complex (TSC). The present note begins with background information and goes on to explain what these findings are.

  12. Behavioral modification in choice process of Drosophila

    Institute of Scientific and Technical Information of China (English)

    WANG; Shunpeng; (王顺鹏); TANG; Shiming; (唐世明); LI; Yan; (李; 岩); GUO; Aike; (郭爱克)

    2003-01-01

    In visual operant conditioning of Drosophila at the flight simulator, only motor output of flies--yaw torque--is recorded, which is involved in the conditioning process. The current study used a newly-designed data analysis method to study the torque distribution of Drosophila. Modification of torque distribution represents the effects of operant conditioning on flies' behavioral mode. Earlier works[10] showed that, when facing contradictory visual cues, flies could make choices based upon the relative weightiness of different cues, and it was demonstrated that mushroom bodies might play an important role in such choice behavior. The new "torque-position map" method was used to explore the CS-US associative learning and choice behavior in Drosophila from the aspect of its behavioral mode. Finally, this work also discussed various possible neural bases involved in visual associative learning, choice processing and modification processing of the behavioral mode in the visual operant conditioning of Drosophila.

  13. Genetic Determinants of Phosphate Response in Drosophila

    OpenAIRE

    Clemens Bergwitz; Wee, Mark J.; Sumi Sinha; Joanne Huang; Charles DeRobertis; Mensah, Lawrence B.; Jonathan Cohen; Adam Friedman; Meghana Kulkarni; Yanhui Hu; Arunachalam Vinayagam; Michael Schnall-Levin; Bonnie Berger; Perkins, Lizabeth A.; Mohr, Stephanie E.

    2012-01-01

    Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. ...

  14. RNA Binding Specificity of Drosophila Muscleblind†

    OpenAIRE

    Goers, Emily S.; Voelker, Rodger B.; Gates, Devika P.; Berglund, J. Andrew

    2008-01-01

    Members of the muscleblind family of RNA binding proteins found in Drosophila and mammals are key players in both the human disease myotonic dystrophy and the regulation of alternative splicing. Recently, the mammalian muscleblind-like protein, MBNL1, has been shown to have interesting RNA binding properties with both endogenous and disease-related RNA targets. Here we report the characterization of RNA binding properties of the Drosophila muscleblind protein Mbl. Mutagenesis of double-strand...

  15. The Digestive Tract of Drosophila melanogaster

    OpenAIRE

    Bassler, Bl; Lichten, M; Schupbach, G.; Lemaitre, Bruno; Miguel-Aliaga, Irene

    2013-01-01

    The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting ...

  16. The Drosophila cyst stem cell lineage

    OpenAIRE

    Zoller, Richard; Schulz, Cordula

    2012-01-01

    In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has ...

  17. Genetic Determinants of Phosphate Response in Drosophila

    OpenAIRE

    Bergwitz, Clemens; Wee, Mark J.; Sinha, Sumi; Huang, Joanne Hyunjung; DeRobertis, Charles; Mensah, Lawrence; Cohen, Jonathan Brewer; Friedman, Adam Amiel Laufer; Kulkarni, Meghana; Hu, Yanhui; Vinayagam, Arunachalam; Schnall-Levin, Michael; Berger, Bonnie; Perkins, Lizabeth A; Mohr, Stephanie

    2013-01-01

    Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. ...

  18. On the Morphology of the Drosophila Heart

    OpenAIRE

    Barbara Rotstein; Achim Paululat

    2016-01-01

    The circulatory system of Drosophila melanogaster represents an easily amenable genetic model whose analysis at different levels, i.e., from single molecules up to functional anatomy, has provided new insights into general aspects of cardiogenesis, heart physiology and cardiac aging, to name a few examples. In recent years, the Drosophila heart has also attracted the attention of researchers in the field of biomedicine. This development is mainly due to the fact that several genes causing hum...

  19. Saccadic Body Turns in walking Drosophila

    Directory of Open Access Journals (Sweden)

    Bart R.H. Geurten

    2014-10-01

    Full Text Available Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these ‘body saccades’ are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies separate rotational from translational movements by quickly turning their bodies by 15 degrees within a tenth of a second. Although walking flies moved their heads by up to 20 degrees about their bodies, their heads moved with the bodies during saccadic turns. This saccadic strategy contrasts with the head saccades reported for e.g. blowflies and honeybees, presumably reflecting optical constraints: modelling revealed that head saccades as described for these latter insects would hardly affect the retinal input in Drosophila because of the lower acuity of its compound eye. The absence of head saccades in Drosophila was associated with the absence of haltere oscillations, which seem to guide head movements in other flies. In addition to adding new twists to Drosophila walking behavior, our analysis shows that Drosophila does not turn its head relative to its body when turning during walking.

  20. A Drosophila Model for Screening Antiobesity Agents

    Directory of Open Access Journals (Sweden)

    Tran Thanh Men

    2016-01-01

    Full Text Available Although triacylglycerol, the major component for lipid storage, is essential for normal physiology, its excessive accumulation causes obesity in adipose tissue and is associated with organ dysfunction in nonadipose tissue. Here, we focused on the Drosophila model to develop therapeutics for preventing obesity. The brummer (bmm gene in Drosophila melanogaster is known to be homologous with human adipocyte triglyceride lipase, which is related to the regulation of lipid storage. We established a Drosophila model for monitoring bmm expression by introducing the green fluorescent protein (GFP gene as a downstream reporter of the bmm promoter. The third-instar larvae of Drosophila showed the GFP signal in all tissues observed and specifically in the salivary gland nucleus. To confirm the relationship between bmm expression and obesity, the effect of oral administration of glucose diets on bmm promoter activity was analyzed. The Drosophila flies given high-glucose diets showed higher lipid contents, indicating the obesity phenotype; this was suggested by a weaker intensity of the GFP signal as well as reduced bmm mRNA expression. These results demonstrated that the transgenic Drosophila model established in this study is useful for screening antiobesity agents. We also report the effects of oral administration of histone deacetylase inhibitors and some vegetables on the bmm promoter activity.

  1. A Drosophila Model for Screening Antiobesity Agents

    Science.gov (United States)

    Men, Tran Thanh; Thanh, Duong Ngoc Van; Yamaguchi, Masamitsu; Suzuki, Takayoshi; Hattori, Gen; Arii, Masayuki; Huy, Nguyen Tien; Kamei, Kaeko

    2016-01-01

    Although triacylglycerol, the major component for lipid storage, is essential for normal physiology, its excessive accumulation causes obesity in adipose tissue and is associated with organ dysfunction in nonadipose tissue. Here, we focused on the Drosophila model to develop therapeutics for preventing obesity. The brummer (bmm) gene in Drosophila melanogaster is known to be homologous with human adipocyte triglyceride lipase, which is related to the regulation of lipid storage. We established a Drosophila model for monitoring bmm expression by introducing the green fluorescent protein (GFP) gene as a downstream reporter of the bmm promoter. The third-instar larvae of Drosophila showed the GFP signal in all tissues observed and specifically in the salivary gland nucleus. To confirm the relationship between bmm expression and obesity, the effect of oral administration of glucose diets on bmm promoter activity was analyzed. The Drosophila flies given high-glucose diets showed higher lipid contents, indicating the obesity phenotype; this was suggested by a weaker intensity of the GFP signal as well as reduced bmm mRNA expression. These results demonstrated that the transgenic Drosophila model established in this study is useful for screening antiobesity agents. We also report the effects of oral administration of histone deacetylase inhibitors and some vegetables on the bmm promoter activity. PMID:27247940

  2. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Blueberries

    Science.gov (United States)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  3. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Strawberries

    Science.gov (United States)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  4. The susceptibility of small fruits and cherries to Spotted Wing Drosophila, Drosophila suzukii

    Science.gov (United States)

    BACKGROUND: The Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is native to Asia and has been detected in the North American mainland and Europe in 2008-10. SWD is a serious economic pest because it lays eggs within ripening fruit before harvest which can lead to crop loss. The aim ...

  5. Behavioral and antennal responses of spotted wing drosophila, drosophila suzukii, to volatiles from fruit extracts

    Science.gov (United States)

    Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii, has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based vola...

  6. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Caneberries

    Science.gov (United States)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  7. Spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: drosophilidae), trapped with combinations of wines and vinegars

    Science.gov (United States)

    Field trapping experiments evaluated wine and vinegar baits for spotted wing drosophila flies, Drosophila suzukii (Matsumura), and assessed variance in biat attractiveness with wit type, vinegar type, and bait age. A mixture of apple cider vinegar and a Merlot wine attracted more flies than a mixtur...

  8. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    OpenAIRE

    James Angus Chandler; James, Pamela M.; Guillaume Jospin; Lang, Jenna M.

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adu...

  9. FlyBase: the Drosophila database. The Flybase Consortium.

    OpenAIRE

    1996-01-01

    FlyBase is a database of genetic and molecular data concerning Drosophila. FlyBase is maintained as a relational database (in Sybase). The scope of FlyBase includes: genes, alleles (and phenotypes), aberrations, pointers to sequence data, clones, stock lists, Drosophila workers and bibliographic references. FlyBase is also available on CD-ROM for Macintosh systems (Encyclopaedia of Drosophila).

  10. Development of dendrite polarity in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Hill Sarah E

    2012-10-01

    Full Text Available Abstract Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity.

  11. Apoptosis in Drosophila: which role for mitochondria?

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human. PMID:26679112

  12. Live cell imaging in Drosophila melanogaster.

    Science.gov (United States)

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila. PMID:20360379

  13. Sexual Behavior of Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Santosh Revadi

    2015-03-01

    Full Text Available A high reproductive potential is one reason for the rapid spread of Drosophila suzukii in Europe and in the United States. In order to identify mechanisms that mediate mating and reproduction in D. suzukii we studied the fly’s reproductive behavior, diurnal mating activity and sexual maturation. Furthermore, we studied the change of female cuticular hydrocarbons (CHCs with age and conducted a preliminary investigation on the role of female-derived chemical signals in male mating behavior. Sexual behavior in D. suzukii is characterized by distinct elements of male courtship leading to female acceptance for mating. Time of day and age modulate D. suzukii mating activity. As with other drosophilids, female sexual maturity is paralleled by a quantitative increase in CHCs. Neither female CHCs nor other olfactory signals were required to induce male courtship, however, presence of those signals significantly increased male sexual behavior. With this pilot study we hope to stimulate research on the reproductive biology of D. suzukii, which is relevant for the development of pest management tools.

  14. Sexual Behavior of Drosophila suzukii.

    Science.gov (United States)

    Revadi, Santosh; Lebreton, Sébastien; Witzgall, Peter; Anfora, Gianfranco; Dekker, Teun; Becher, Paul G

    2015-01-01

    A high reproductive potential is one reason for the rapid spread of Drosophila suzukii in Europe and in the United States. In order to identify mechanisms that mediate mating and reproduction in D. suzukii we studied the fly's reproductive behavior, diurnal mating activity and sexual maturation. Furthermore, we studied the change of female cuticular hydrocarbons (CHCs) with age and conducted a preliminary investigation on the role of female-derived chemical signals in male mating behavior. Sexual behavior in D. suzukii is characterized by distinct elements of male courtship leading to female acceptance for mating. Time of day and age modulate D. suzukii mating activity. As with other drosophilids, female sexual maturity is paralleled by a quantitative increase in CHCs. Neither female CHCs nor other olfactory signals were required to induce male courtship, however, presence of those signals significantly increased male sexual behavior. With this pilot study we hope to stimulate research on the reproductive biology of D. suzukii, which is relevant for the development of pest management tools. PMID:26463074

  15. Volatile pheromone signalling in Drosophila.

    Science.gov (United States)

    Smith, Dean P

    2012-03-01

    Once captured by the antenna, 11-cis vaccenyl acetate (cVA) binds to an extracellular binding protein called LUSH that undergoes a conformational shift upon cVA binding. The stable LUSH-cVA complex is the activating ligand for pheromone receptors present on the dendrites of the aT1 neurones, comprising the only neurones that detect cVA pheromone. This mechanism explains the single molecule sensitivity of insect pheromone detection systems. The receptor that recognizes activated LUSH consists of a complex of several proteins, including Or67d, a member of the tuning odourant receptor family, Orco, a co-receptor ion channel, and SNMP, a CD36 homologue that may be an inhibitory subunit. In addition, genetic screens and reconstitution experiments reveal additional factors that are important for pheromone detection. Identification and functional dissection of these factors in Drosophila melanogaster Meigen should permit the identification of homologous factors in pathogenic insects and agricultural pests, which, in turn, may be viable candidates for novel classes of compounds to control populations of target insect species without impacting beneficial species. PMID:24347807

  16. Contribution of Drosophila TRPA1 to Metabolism

    OpenAIRE

    Lee, Jung-Eun; Kim, Yunjung; Kim, Kyoung Heon; Lee, Do Yup; Lee, Youngseok

    2016-01-01

    Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neur...

  17. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries

    OpenAIRE

    Hamby, Kelly A.; Hernández, Alejandro; Boundy-Mills, Kyria; Frank G. Zalom

    2012-01-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fr...

  18. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities

    OpenAIRE

    Asplen, Mark K.; Anfora, Gianfranco; Biondi, Antonio; Choi, Deuk-Soo; Chu, Dong; Daane, Kent M.; Gibert, Patricia; Gutierrez, Andrew P.; Kim A. Hoelmer; Hutchison, William D.; Isaacs, Rufus; Jiang, Zhi-Lin; Karpati, Zsolt; KIMURA, Masahito T.; Pascual, Marta

    2015-01-01

    The Asian vinegar fly Drosophila suzukii (spotted wing Drosophila [SWD]) has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000s. While research efforts have rapidly progressed in Asia, North America, and Europe over the past 5 years, important new insights may be gained in comparing and contrasting findings across the regions affected by SWD. In this review, we explore common themes in the invasion biology of SWD by examining...

  19. First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae) in Montenegro

    OpenAIRE

    Snježana Hrnčić; Sanja Radonjić

    2015-01-01

    The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy) and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly sp...

  20. Drosophila bitter taste(s

    Directory of Open Access Journals (Sweden)

    Alice eFrench

    2015-11-01

    Full Text Available Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called bitter. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if the activation of bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induce aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to inhibitory pheromones such as 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different categories of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction

  1. Automated measurement of Drosophila wings

    Directory of Open Access Journals (Sweden)

    Mezey Jason

    2003-12-01

    Full Text Available Abstract Background Many studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure. Results We have developed an automated image analysis system (WINGMACHINE that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex. Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments. Conclusion WINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.

  2. Characterization of novel microsatellites from Drosophila transversa.

    Science.gov (United States)

    Räisänen, L; Roininen, E; Liimatainen, J O

    2009-03-01

    We investigated a partial genomic library of Drosophila transversa for microsatellites and developed 12 markers for genetic analyses. This is the first time that microsatellite primers from the quinaria species group have been described. Four loci were cross-amplified in D. phalerata. Nine out of the 12 microsatellite markers developed are likely to be on the X chromosome. PMID:21564716

  3. Second-Order Conditioning in "Drosophila"

    Science.gov (United States)

    Tabone, Christopher J.; de Belle, J. Steven

    2011-01-01

    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  4. Radiation effects on the drosophila melanogaster genoma

    International Nuclear Information System (INIS)

    When DNA of living beings has been damaged, the cells show different responses depending on their physiological state. Repair mechanisms can be classified into two groups: constitutive which are always present in the cells and inductible, which must be stimulated to show themselves. It is suggested that a repair mechanism exists in the drosophila ovules which act upon the damage present in mature spermatozoids. Our aim is to verify whether or not a radiation dosis applied to the female drosophila will modify the frequency of individuals which have lost the paternal sex chromosomes. YW/YW virgin females and XEZ males and fbb-/bS Y y+ y were mated for two days in order to collect radiation treated spermatozoids. The results were consistent as to the parameters being evaluated and lead one to suppose that the radiation applied to the female drosophila produced some changes in the ovule metabolism which reduced the frequency of individuals with lost chromosomes. It is believed that ionizing radiation interferes with the repair mechanisms that are existent and constitutive, retarding and hindering the restoration of chromosome fragments and this brings about death of the zygote or death of the eggs which lessens the frequencies of individuals carriers of chromosomic aberrations. Ionizing radiations applied to the female drosophila modifies the frequency of loss of patternal chromosomes and comes about when the radiation dose to the female is 700 rad. (Author)

  5. Polarity and intracellular compartmentalization of Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Henner Astra L

    2007-04-01

    Full Text Available Abstract Background Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced. In mammalian neurons, each primary compartment has distinctive molecular and morphological features, as well as smaller domains, such as the axon initial segment, that have more specialized functions. How neuronal subcellular compartments are established and maintained is not well understood. Genetic studies in Drosophila have provided insight into other areas of neurobiology, but it is not known whether flies are a good system in which to study neuronal polarity as a comprehensive analysis of Drosophila neuronal subcellular organization has not been performed. Results Here we use new and previously characterized markers to examine Drosophila neuronal compartments. We find that: axons and dendrites can accumulate different microtubule-binding proteins; protein synthesis machinery is concentrated in the cell body; pre- and post-synaptic sites localize to distinct regions of the neuron; and specializations similar to the initial segment are present. In addition, we track EB1-GFP dynamics and determine microtubules in axons and dendrites have opposite polarity. Conclusion We conclude that Drosophila will be a powerful system to study the establishment and maintenance of neuronal compartments.

  6. A Drosophila Model of Epidermolysis Bullosa Simplex.

    Science.gov (United States)

    Bohnekamp, Jens; Cryderman, Diane E; Paululat, Achim; Baccam, Gabriel C; Wallrath, Lori L; Magin, Thomas M

    2015-08-01

    The blistering skin disorder epidermolysis bullosa simplex (EBS) results from dominant mutations in keratin 5 (K5) or keratin 14 (K14) genes, encoding the intermediate filament (IF) network of basal epidermal keratinocytes. The mechanisms governing keratin network formation and collapse due to EBS mutations remain incompletely understood. Drosophila lacks cytoplasmic IFs, providing a 'null' environment to examine the formation of keratin networks and determine mechanisms by which mutant keratins cause pathology. Here, we report that ubiquitous co-expression of transgenes encoding wild-type human K14 and K5 resulted in the formation of extensive keratin networks in Drosophila epithelial and non-epithelial tissues, causing no overt phenotype. Similar to mammalian cells, treatment of transgenic fly tissues with phosphatase inhibitors caused keratin network collapse, validating Drosophila as a genetic model system to investigate keratin dynamics. Co-expression of K5 and a K14(R125C) mutant that causes the most severe form of EBS resulted in widespread formation of EBS-like cytoplasmic keratin aggregates in epithelial and non-epithelial fly tissues. Expression of K14(R125C)/K5 caused semi-lethality; adult survivors developed wing blisters and were flightless due to a lack of intercellular adhesion during wing heart development. This Drosophila model of EBS is valuable for the identification of pathways altered by mutant keratins and for the development of EBS therapies. PMID:25830653

  7. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  8. Drosophila lifespan enhancement by exogenous bacteria

    OpenAIRE

    Brummel, Ted; Ching, Alisa; Seroude, Laurent; Simon, Anne F.; Benzer, Seymour

    2004-01-01

    We researched the lifespan of Drosophila under axenic conditions compared with customary procedure. The experiments revealed that the presence of bacteria during the first week of adult life can enhance lifespan, despite unchanged food intake. Later in life, the presence of bacteria can reduce lifespan. Certain long-lived mutants react in different ways, indicating an interplay between bacteria and longevity-enhancing genes.

  9. Organization of descending neurons in Drosophila melanogaster.

    Science.gov (United States)

    Hsu, Cynthia T; Bhandawat, Vikas

    2016-01-01

    Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved. PMID:26837716

  10. [Recombination in Drosophila in space flight].

    Science.gov (United States)

    Filatova, L P; Vaulina, E N; Lapteva, N Sh; Grozdova, T Ia

    1988-04-01

    An experiment with Drosophila melanogaster males was performed aboard the Artificial Satellite "Kosmos-1667". Mutagenic effects of a 7-day space flight on intergene recombination in chromosome 2 were studied. The space flight factors decreased the frequency of recombination. A model experiment on a laboratory centrifuge demonstrated insignificant increase in recombination frequency caused by acceleration. PMID:3135244

  11. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  12. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  13. The first complete Mag family retrotransposons discovered in Drosophila.

    Science.gov (United States)

    Glukhov, I A; Kotnova, A P; Stefanov, Y E; Ilyin, Y V

    2016-01-01

    A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3' and 5' long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila. PMID:27025475

  14. Maternal control of the Drosophila dorsal–ventral body axis

    OpenAIRE

    Stein, David S.; Stevens, Leslie M.

    2014-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growt...

  15. Mutants dissecting development and behaviour in drosophila

    International Nuclear Information System (INIS)

    We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50

  16. Control of spotted wing drosophila (Drosophila suzukii [Matsumura], Diptera, Drosophilidae) with the emphasis on environmentally acceptable methods

    OpenAIRE

    Bohinc, Tanja; Stanislav TRDAN

    2015-01-01

    Spotted wing drosophila (Drosophila suzukii) is an economically important insect pest, which causes damage on cultivated and wild-growing fruit plants. The pest, which is placed in A2 EPPO list, occurred in Slovenia since 2010 and it is spreading progressively. Since its first record in Spain and Italy (2008), it is now present in the majority of Mediterranean countries. In the review paper the most important control methods against the spotted wing drosophila are presented. In some parts of ...

  17. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  18. [The comeback of mitochondria in Drosophila apoptosis].

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Mignotte, Bernard; Guénal, Isabelle

    2016-05-01

    The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans. PMID:27225920

  19. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.

    Directory of Open Access Journals (Sweden)

    Pooja Vinayak

    Full Text Available Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.

  20. Evidence for transgenerational metabolic programming in Drosophila

    Directory of Open Access Journals (Sweden)

    Jessica L. Buescher

    2013-09-01

    Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon.

  1. Remembering components of food in Drosophila

    Directory of Open Access Journals (Sweden)

    Gaurav eDas

    2016-02-01

    Full Text Available Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons that innervate distinct functional zones on the mushroom bodies. This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. Dopaminergic neurons are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.

  2. Remembering Components of Food in Drosophila.

    Science.gov (United States)

    Das, Gaurav; Lin, Suewei; Waddell, Scott

    2016-01-01

    Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons (DANs) that innervate distinct functional zones on the mushroom bodies (MBs). This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. DANs are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here, we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila. PMID:26924969

  3. Imaging Calcium in Drosophila at Egg Activation.

    Science.gov (United States)

    Derrick, Christopher J; York-Andersen, Anna H; Weil, Timothy T

    2016-01-01

    Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca(2+)) often termed a 'Ca(2+) wave'. While the speed and number of oscillations of the Ca(2+) wave varies between species, the change in intracellular Ca(2+) is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton. In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca(2+)-dependent events. Here we present a protocol for imaging the Ca(2+) wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca(2+) wave and the downstream changes associated with it. PMID:27584955

  4. Structure and Development of Glia in Drosophila

    OpenAIRE

    Hartenstein, Volker

    2011-01-01

    Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. Based on topology and cell shape, glial cells of the central ...

  5. The development of the Drosophila larval brain.

    Science.gov (United States)

    Hartenstein, Volker; Spindler, Shana; Pereanu, Wayne; Fung, Siaumin

    2008-01-01

    In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments. PMID:18683635

  6. Remembering Components of Food in Drosophila

    OpenAIRE

    Das, Gaurav; Lin, Suewei; Waddell, Scott

    2016-01-01

    Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons (DANs) that innervate distinct functional zones on the mushroom bodies (MBs). This architecture suggests that the overall dopaminergic neuron population could provide a pote...

  7. Accelerated food source location in aging Drosophila

    OpenAIRE

    Egenriether, Sada M; Chow, Eileen S.; Krauth, Nathalie; Giebultowicz, Jadwiga M.

    2015-01-01

    Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning...

  8. Identification of Synaptic Targets of Drosophila Pumilio

    OpenAIRE

    Chen, Gengxin; Li, Wanhe; Zhang, Qing-Shuo; Regulski, Michael; Sinha, Nishi; Barditch, Jody; Tully, Tim; Krainer, Adrian R.; Zhang, Michael Q.; Dubnau, Josh

    2008-01-01

    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via t...

  9. Reduced Variation in Drosophila Simulans Mitochondrial DNA

    OpenAIRE

    Ballard, JWO.; Hatzidakis, J.; Karr, T L; Kreitman, M

    1996-01-01

    We investigated the evolutionary dynamics of infection of a Drosophila simulans population by a maternally inherited insect bacterial parasite, Wolbachia, by analyzing nucleotide variability in three regions of the mitochondrial genome in four infected and 35 uninfected lines. Mitochondrial variability is significantly reduced compared to a noncoding region of a nuclear-encoded gene in both uninfected and pooled samples of flies, indicating a sweep of genetic variation. The selective sweep of...

  10. A Drosophila Model to Image Phagosome Maturation

    Directory of Open Access Journals (Sweden)

    Douglas A. Brooks

    2013-03-01

    Full Text Available Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3e mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo.

  11. Visualizing the spindle checkpoint in Drosophila spermatocytes

    OpenAIRE

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint ma...

  12. A Drosophila melanogaster model of classic galactosemia

    OpenAIRE

    Kushner, Rebekah F.; Ryan, Emily L.; Sefton, Jennifer M. I.; Rebecca D Sanders; Lucioni, Patricia Jumbo; Kenneth H Moberg; Fridovich-Keil, Judith L.

    2010-01-01

    Classic galactosemia is a potentially lethal disorder that results from profound impairment of galactose-1-phosphate uridylyltransferase (GALT). Despite decades of research, the underlying pathophysiology of classic galactosemia remains unclear, in part owing to the lack of an appropriate animal model. Here, we report the establishment of a Drosophila melanogaster model of classic galactosemia; this is the first whole-animal genetic model to mimic aspects of the patient phenotype. Analogous t...

  13. Recombineering Homologous Recombination Constructs in Drosophila

    OpenAIRE

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A.; Williams, Nathan David; Hiesinger, P. Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineeri...

  14. Tools for neuroanatomy and neurogenetics in Drosophila

    OpenAIRE

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B

    2008-01-01

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of gene...

  15. Functional neuroanatomy of Drosophila olfactory memory formation

    OpenAIRE

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  16. Towards a Molecular Understanding of Drosophila Hearing

    OpenAIRE

    Caldwell, Jason C.; Eberl, Daniel F.

    2002-01-01

    The Drosophila auditory system is presented as a powerful new genetic model system for understanding the molecular aspects of development and physiology of hearing organs. The fly’s ear resides in the antenna, with Johnston’s organ serving as the mechanoreceptor. New approaches using electrophysiology and laser vibrometry have provided useful tools to apply to the study of mutations that disrupt hearing. The fundamental developmental processes that generate the peripheral nervous system are f...

  17. Genetics and genomics of Drosophila mating behavior

    OpenAIRE

    Mackay, Trudy F. C.; Heinsohn, Stefanie L.; Lyman, Richard F.; Amanda J Moehring; Morgan, Theodore J; Rollmann, Stephanie M

    2005-01-01

    The first steps of animal speciation are thought to be the development of sexual isolating mechanisms. In contrast to recent progress in understanding the genetic basis of postzygotic isolating mechanisms, little is known about the genetic architecture of sexual isolation. Here, we have subjected Drosophila melanogaster to 29 generations of replicated divergent artificial selection for mating speed. The phenotypic response to selection was highly asymmetrical in the direction of reduced matin...

  18. A Drosophila model of Epidermolysis Bullosa Simplex

    OpenAIRE

    Bohnekamp, Jens; Cryderman, Diane E; Paululat, Achim; Baccam, Gabriel C.; Wallrath, Lori L.; Magin, Thomas M.

    2015-01-01

    The blistering skin disorder Epidermolysis bullosa simplex (EBS) results from dominant mutations in K5 or K14 genes, encoding the intermediate filament network of basal epidermal keratinocytes. The mechanisms governing keratin network formation and collapse due to EBS mutations remain incompletely understood. Drosophila lacks cytoplasmic intermediate filaments, providing a ‚null’ environment to examine the formation of keratin networks and determine mechanisms by which mutant keratins cause p...

  19. Quantification of Food Intake in Drosophila

    OpenAIRE

    Richard Wong; Matthew D W Piper; Bregje Wertheim; Linda Partridge

    2009-01-01

    Measurement of food intake in the fruit fly Drosophila melanogaster is often necessary for studies of behaviour, nutrition and drug administration. There is no reliable and agreed method for measuring food intake of flies in undisturbed, steady state, and normal culture conditions. We report such a method, based on measurement of feeding frequency by proboscis-extension, validated by short-term measurements of food dye intake. We used the method to demonstrate that (a) female flies feed more ...

  20. The Drosophila EKC/KEOPS complex

    OpenAIRE

    Rojas-Benítez, Diego; Ibar, Consuelo; Glavic, Álvaro

    2013-01-01

    The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell c...

  1. Three-dimensional imaging of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Leeanne McGurk

    Full Text Available BACKGROUND: The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT. The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy. METHODOLOGY: We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. CONCLUSION: We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

  2. Effects of disease control and growth promotion of Polygonum viviparum endophytic bacteria Bacillus mojavensis on potato%珠芽蓼内生菌 ZA1对马铃薯的防病促生研究

    Institute of Scientific and Technical Information of China (English)

    畅涛; 杨成德; 薛莉; 杨小利; 冯中红; 郝蓉蓉; 张振粉; 陈秀蓉

    2015-01-01

    This research was to study the effects of disease prevention,growth promotion and defense enzymes induction of Bacillus mojavensis ZA1 on potato,and provide a theoretical basis for microbial fungicide and fer-tilizer use.The abilities of IAA secretion,nitrogen fixation,phosphate solubilization and inhibition enzyme production of ZA1 have been researched qualitatively by general methods.The effects of controlling disease and growth promotion of ZA1 on potatoes were studied under the condition of indoors and fields.The concentration of IAA secreted by ZA1 in the King medium with and without tryptophan were 12.17 and 9.75 mg/L.ZA1 possessed the capacity of nitrogen fixation and extracellular proteases,chitinase and glucanase production,butwithout the ability of phosphate solubilization.The control efficiency of ZA1 was 85.9% by spraying 10 times diluting fermentation broth on potato tubes in storage-period against potato gangrene,and was 26.56% by seed dressing fermentation broth with diluting for 20 times on potato tubes under field condition against potato late blight.In field condition,the production ratios of commodity potato were increased by 36.29% and 33.88%per hectare,respectively.Pot experiments with the seed dressing potatoes showed that the content of roots, stems and chlorophyll were higher than the control group.After treatment by ZA1 20 times fermentation broth on potato tubes,the length of the root and wet and dry weight were increased by 8 cm,0.75 g and 5.07 g,re-spectively.In the same time,the plant height,stem diameter,stem wet and dry weight and the content of chlorophyll were increased by 2.74 cm,0.27 cm,0.52 g,5.73 g and 0.54 mg/g,respectively.The root-shoot ratios of wet and dry weight were increased by 0.214 and 0.094,respectively.When spraying diluting fermen-tation broth of ZA1 on potato leaves,the results indicated that the activity of catalase (CAT),polyphenol oxi-dase (PPO),phenylalanine ammonialyase (PAL),SOD and POD of potatoes were

  3. ‘Peer pressure’ in larval Drosophila?

    Directory of Open Access Journals (Sweden)

    Thomas Niewalda

    2014-06-01

    Full Text Available Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i by the level of innate olfactory preference in the surrounding group nor (ii by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii by the level of innate olfactory preference of the surrounding group nor (iv by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila.

  4. Global patterns of sequence evolution in Drosophila

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2007-11-01

    Full Text Available Abstract Background Sequencing of the genomes of several Drosophila allows for the first precise analyses of how global sequence patterns change among multiple, closely related animal species. A basic question is whether there are characteristic features that differentiate chromosomes within a species or between different species. Results We explored the euchromatin of the chromosomes of seven Drosophila species to establish their global patterns of DNA sequence diversity. Between species, differences in the types and amounts of simple sequence repeats were found. Within each species, the autosomes have almost identical oligonucleotide profiles. However, X chromosomes and autosomes have, in all species, a qualitatively different composition. The X chromosomes are less complex than the autosomes, containing both a higher amount of simple DNA sequences and, in several cases, chromosome-specific repetitive sequences. Moreover, we show that the right arm of the X chromosome of Drosophila pseudoobscura, which evolved from an autosome 10 – 18 millions of years ago, has a composition which is identical to that of the original, left arm of the X chromosome. Conclusion The consistent differences among species, differences among X chromosomes and autosomes and the convergent evolution of X and neo-X chromosomes demonstrate that strong forces are acting on drosophilid genomes to generate peculiar chromosomal landscapes. We discuss the relationships of the patterns observed with differential recombination and mutation rates and with the process of dosage compensation.

  5. Visualizing the spindle checkpoint in Drosophila spermatocytes

    Science.gov (United States)

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint machinery are expressed in these cells and behave as their homologue proteins do in systems with an active spindle checkpoint. To establish whether the spindle checkpoint is active in Drosophila spermatocytes we have followed meiosis progression by time-lapse microscopy under conditions where the checkpoint is likely to be activated. We have found that the presence of a relatively high number of misaligned chromosomes or a severe disruption of the meiotic spindle results in a significant delay in the time of entry into anaphase. These observations provide the first direct evidence substantiating the activity of a meiotic spindle checkpoint in male Drosophila. PMID:11256627

  6. dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis

    Science.gov (United States)

    Aerts, Stein; Casares, Fernando; Janody, Florence

    2016-01-01

    Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. PMID:27442438

  7. Spotted wing drosophila: a new invasive pest of Mississippi berries

    Science.gov (United States)

    Spotted Wing Drosophila (SWD) Drosophila suzukii, a native fly of Southeast Asia, is a widely reported and highly invasive pest of fruit crops in North America and Mediterranean Europe. Between 2010 and 2011, SWD was confirmed in most States in eastern North America. During this same period, SWD was...

  8. Ionizing radiation causes the stress response in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Potentiality of the stress-reaction arising in Drosophila melanogaster under gamma-irradiation of the source with 137Cs (irradiation dose is 10 Gy , radiation dose rate amounts 180 c Gy/min) is studied. It is shown that radiation induces the stress-reaction in Drosophila resulting in alterations in energetic metabolism (biogenic amines metabolic system) and in reproductive function

  9. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  10. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin; Shapiro, Joshua; Xu, Jinhua; Shi, Run Zhang; Lu, Xuemei; Clark, Terry; Johnson, Deborah; Kim, Yeong C; Wing, Claudia; Tseng, Charles; Sun, Min; Lin, Wei; Wang, Jun; Yang, Huanming; Wang, Jian; Du, Wei; Wu, Chung-I; Zhang, Xiuqing; Wang, San Ming

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts, and...... Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  11. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  12. The influence of temperature and photoperiod on the reproductive diapause and cold tolerance of spotted-wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Knowledge regarding the reproductive status of spotted-wing drosophila, Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) is of critical importance in predicting potential infestations of this invasive pest, as eggs are laid in ripe or ripening fruit of several commercially important small frui...

  13. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  14. The Spotted Wing Drosophila Drosophila suzukii (Matsumura, 1931 – Monitoring And First Records In Poland

    Directory of Open Access Journals (Sweden)

    Łabanowska Barbara H.

    2015-12-01

    Full Text Available The spotted wing drosophila (Drosophila suzukii (SWD monitoring was carried out between 2012-2014 in eight locations. In order to determine the presence of Drosophila suzukii, several types of traps and baits were used. In 2014, Polish (prototype of Drosinal and Spanish (Cera Trap traps and baits were used in our study. In each year, traps were placed on the plantations of blueberry, strawberry, raspberry and at a wholesale market at the beginning of July, and monitored once or twice a week until mid-December. During 2012 and 2013 there were no flies of the spotted wing drosophila in traps. First flies of this species were captured in 2014 in two locations: Września (3rd week of October and Brzezna (1st week of December – western and southern Poland respectively, in both types of the traps. However, Polish traps were more effective in trapping D. suzukii. In addition, the Polish product has small holes and therefore captures less no target and beneficial insects than Spanish traps. Despite detection of SWD in Poland, damaged fruits were not found.

  15. First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae in Montenegro

    Directory of Open Access Journals (Sweden)

    Snježana Hrnčić

    2015-01-01

    Full Text Available The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly species was unexpectedly detected in Tephri traps baited with the three-component female-biased attractant BioLure that is regularly used for monitoring the Mediterranean fruit fly Ceratitis capitata Wiedem. (Diptera: Tephritidae in Montenegro. Brief visual inspection identified the new species as the spotted wing drosophila D. suzukii. The pest was first recorded in several localities on the Montenegrin seacoast around Boka Kotor Bay. After the finding, all Drosophila specimens were collected from traps for further laboratory observation. A quick follow-up monitoring of other Tephri traps was carried out within the next few days on the rest of the seacoast (localities from Tivat to Ulcinj. Additionally, Tephri traps were set up around Lake Skadar and in the city of Podgorica, as well as on fresh fruit markets in Podgorica. The results of this preliminary study showed that D. suzukii was present in all surveyed locations and adults were captured until late December. Both sexes were found in traps with BioLure. Our data show that D. suzukii is present in southern parts of Montenegro and there is a serious threat of its further spreading, particularly towards northern parts of the country where the main raspberry and blueberry production is placed. The results also show that Tephri traps baited with BioLure can be used for detection and monitoring of spotted wing drosophila.

  16. Ion channels to inactivate neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    James J L Hodge

    2009-08-01

    Full Text Available Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic or calcium (Cav2 cacophony channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based systems available in Drosophila allowing fine temporal and spatial control of (channel transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.

  17. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  18. The Drosophila EKC/KEOPS complex

    Science.gov (United States)

    Rojas-Benítez, Diego; Ibar, Consuelo; Glavic, Álvaro

    2013-01-01

    The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t6A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t6A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth. PMID:23823807

  19. Pheromones mediating copulation and attraction in Drosophila.

    Science.gov (United States)

    Dweck, Hany K M; Ebrahim, Shimaa A M; Thoma, Michael; Mohamed, Ahmed A M; Keesey, Ian W; Trona, Federica; Lavista-Llanos, Sofia; Svatoš, Aleš; Sachse, Silke; Knaden, Markus; Hansson, Bill S

    2015-05-26

    Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fru(M))-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved. PMID:25964351

  20. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  1. ‘Peer pressure’ in larval Drosophila?

    OpenAIRE

    Thomas Niewalda; Ines Jeske; Birgit Michels; Bertram Gerber

    2014-01-01

    ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group ...

  2. Studying tauopathies in Drosophila: A fruitful model.

    Science.gov (United States)

    Sun, Mingkuan; Chen, Liam

    2015-12-01

    Tauopathies are a group of neurodegenerative disorders that include hereditary frontotemporal dementias (FTDs) such as FTD with parkinsonism linked to chromosome 17 (FTDP-17), as well as sporadic variants of FTDs like progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease. These diverse diseases all have in common the presence of abnormally phosphorylated tau aggregates. In this review, we will summarize key features of transgenic Drosophila models of tauopathies and a number of insights into disease mechanisms as well as therapeutic implications gained from the fruit fly models. PMID:25862286

  3. Drosophila suzukii Monitoring in verschiedenen Habitaten 2014

    OpenAIRE

    Daniel, Claudia; Matray, Silvia

    2015-01-01

    Die Kirschessigfliege (Drosophila suzukii) wurde 2008 aus Südostasien nach Europa eingeschleppt und verursacht seitdem z.T. massive Ertragsausfälle. Mit ihrem sägeartigen Eiablagestachel ist sie in der Lage, Eier direkt in reifende Weichobstarten, wie z.B. Beeren, Kirschen, Zwetschgen und Trauben abzulegen. Auch viele wilde Pflanzen, wie z.B. Holunder und Schneeball dienen als Wirtspflanzen. Die Larven entwickeln sich in den Früchten und ernähren sich vom Fruchtfleisch. Die befallenen Früchte...

  4. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    Vasu Sheeba

    2008-12-01

    As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools at our disposal over the past four decades has enabled discovery of the genetic and molecular bases of circadian rhythmicity. More recently, detailed investigation leading to the anatomical, neurochemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster circadian pacemaker circuit presents a relatively simple and attractive model for the study of neuronal circuits and their functions.

  5. Enigma of radiation effects in Drosophila

    International Nuclear Information System (INIS)

    Linear relations between induced mutation and x-ray dose and related inconsistencies are discussed. Some of the inconsistencies are concerned with the frequency of induced sex-linked lethal mutations in ring chromosomes and the frequency of whole-body mutations after irradiation. The hypothesis of totipotency or the developmental competence of a single first-cleavage product after loss of the other by its involvement in chromatid rearrangements suggests that interchanges predominantly involve the chromatids within each of the two nuclei and not between the two nuclei. It is concluded that the hypothesis of totipotency of the cleavage products in Drosophila explains many puzzling results from radiation experiments

  6. A connectionist model of the Drosophila blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, J. (Columbia Univ., New York, NY (USA). Dept. of Biological Sciences); Mjolsness, E. (Yale Univ., New Haven, CT (USA). Dept. of Computer Science); Sharp, D.H. (Los Alamos National Lab., NM (USA). Theoretical Div.)

    1990-11-01

    The authors present a phenomenological modeling framework for development, and apply it to the network of segmentation genes operating in the blastoderm of Drosophila. Their purpose is to provide a systematic method for discovering and expressing correlations in experimental data on gene expression and other developmental processes. The modeling framework is based on a connectionist or neural net dynamics for biochemical regulators, coupled to grammatical rules which describe certain features of the birth, growth, and death of cells, synapses and other biological entities. They present preliminary numerical results regarding regulatory interactions between the genes Kruppel and knirps that demonstrate the potential utility of the model. 14 refs., 5 figs.

  7. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  8. Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in Drosophila melanogaster and Drosophila virilis

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D.; Cordonnier, Taylor; Wong, Jeannette; Itano, Michelle S.; Slawson Tempel, Elizabeth E.; Kellmann, Elmer; Desruisseau, David Michael; Cain, Carolyn; Carrasquillo, Robert; Chusak, Tien M.; Falkowska, Katazyna; Grim, Kelli D.; Guan, Rui; Honeybourne, Jacquelyn; Khan, Sana; Lo, Louis; McGaha, Rebecca; Plunkett, Jevon; Richner, Justin M.; Richt, Ryan; Sabin, Leah; Shah, Anita; Sharma, Anushree; Singhal, Sonal; Song, Fine; Swope, Christopher; Wilen, Craig B.; Buhler, Jeremy; Mardis, Elaine R.; Elgin, Sarah C. R.

    2010-01-01

    The distal arm of the fourth (“dot”) chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010–1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight “wanderer” genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010–1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment. PMID:20479145

  9. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    Science.gov (United States)

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences. PMID:25921489

  10. Genetic effects of plutonium in Drosophila. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This three year project, initiated in 1987, involved the genetic effects of alpha radiations on Drosophila. This document represents the final technical report. Plutonium residue was used as the alpha source of radon gas. Spontaneous mutation frequency in the Drosophila stock was very low. In the experiments using alpha radiation from radon gas, radiation doses as low as 20R induced significant numbers of mutations, with higher numbers of mutations at higher doses. If X-ray induced mutation frequencies reported in the literature are used for comparison, it can be concluded that alpha radiation from radon gas induces at least 2 to 3 time more mutations in Drosophila.

  11. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  12. The smell of love in Drosophila

    Directory of Open Access Journals (Sweden)

    Anna B. eZiegler

    2013-04-01

    Full Text Available Odors are key sensory signals for social communication and food search in animals including insects. Drosophila melanogaster, is a powerful neurogenetic model commonly used to reveal molecular and cellular mechanisms involved in odorant detection. Males use olfaction together with other sensory modalities to find their mates. Here, we review known olfactory signals, their related olfactory receptors, and the corresponding neuronal architecture impacting courtship. OR67d receptor detects 11-cis-Vaccenyl Acetate (cVA, a male specific pheromone transferred to the female during copulation. Transferred cVA is able to reduce female attractiveness for other males after mating, and is also suspected to decrease male-male courtship. cVA can also serve as an aggregation signal, maybe through another OR. OR47b was shown to be activated by fly odors, and to enhance courtship depending on taste pheromones. IR84a detects phenylacetic acid (PAA and phenylacetaldehyde. These two odors are not pheromones produced by flies, but are present in various fly food sources. PAA enhances male courtship, acting as a food aphrodisiac. Drosophila males have thus developed complementary olfactory strategies to help them to select their mates.

  13. Genetic analysis of glutamatergic function in Drosophila

    International Nuclear Information System (INIS)

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity [3H]-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature

  14. Quantification of food intake in Drosophila.

    Directory of Open Access Journals (Sweden)

    Richard Wong

    Full Text Available Measurement of food intake in the fruit fly Drosophila melanogaster is often necessary for studies of behaviour, nutrition and drug administration. There is no reliable and agreed method for measuring food intake of flies in undisturbed, steady state, and normal culture conditions. We report such a method, based on measurement of feeding frequency by proboscis-extension, validated by short-term measurements of food dye intake. We used the method to demonstrate that (a female flies feed more frequently than males, (b flies feed more often when housed in larger groups and (c fly feeding varies at different times of the day. We also show that alterations in food intake are not induced by dietary restriction or by a null mutation of the fly insulin receptor substrate chico. In contrast, mutation of takeout increases food intake by increasing feeding frequency while mutation of ovo(D increases food intake by increasing the volume of food consumed per proboscis-extension. This approach provides a practical and reliable method for quantification of food intake in Drosophila under normal, undisturbed culture conditions.

  15. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  16. Drosophila Porin/VDAC affects mitochondrial morphology.

    Directory of Open Access Journals (Sweden)

    Jeehye Park

    Full Text Available Voltage-dependent anion channel (VDAC has been suggested to be a mediator of mitochondrial-dependent cell death induced by Ca(2+ overload, oxidative stress and Bax-Bid activation. To confirm this hypothesis in vivo, we generated and characterized Drosophila VDAC (porin mutants and found that Porin is not required for mitochondrial apoptosis, which is consistent with the previous mouse studies. We also reported a novel physiological role of Porin. Loss of porin resulted in locomotive defects and male sterility. Intriguingly, porin mutants exhibited elongated mitochondria in indirect flight muscle, whereas Porin overexpression produced fragmented mitochondria. Through genetic analysis with the components of mitochondrial fission and fusion, we found that the elongated mitochondria phenotype in porin mutants were suppressed by increased mitochondrial fission, but enhanced by increased mitochondrial fusion. Furthermore, increased mitochondrial fission by Drp1 expression suppressed the flight defects in the porin mutants. Collectively, our study showed that loss of Drosophila Porin results in mitochondrial morphological defects and suggested that the defective mitochondrial function by Porin deficiency affects the mitochondrial remodeling process.

  17. Selective anticancer agents suppress aging in Drosophila.

    Science.gov (United States)

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-09-01

    Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  18. Microarray analysis of immune challenged Drosophila hemocytes.

    Science.gov (United States)

    Johansson, Karin C; Metzendorf, Christoph; Söderhäll, Kenneth

    2005-04-15

    Insect hemocytes play multiple roles in immunity and carry out cellular responses like phagocytosis, encapsulation and melanization as well as producing humoral effector proteins in the first line of defense after injury and invasion of microorganisms. In this work, we used the Drosophila melanogaster hemocyte-like cell line mbn-2 and Affymetrix Drosophila GeneChips to investigate the transcriptome of a single type of immune competent tissue exposed to Gram-negative cell wall components (crude LPS) or high dose infection with live Escherichia coli. We found that gene expression profiles of both treatments overlap but show important differences in expression levels of several genes involved in immunity. In addition, cell morphology during infection was monitored and revealed distinct alterations in cell shape and adhesion. Presence of large numbers of bacteria also increased the number of cells taking on crystal cell fate. Taken together, our results indicate that hemocytes sense and respond differently to purified bacterial surface molecules and infection with live and actively growing bacteria both at the level of gene expression and in cell behavior. PMID:15777795

  19. Behavioural reproductive isolation and speciation in Drosophila

    Indian Academy of Sciences (India)

    Punita Nanda; Bashisth Narayan Singh

    2012-06-01

    The origin of premating reproductive isolation continues to help elucidate the process of speciation and is the central event in the evolution of biological species. Therefore, during the process of species formation the diverging populations must acquire some means of reproductive isolation so that the genes from one gene pool are prevented from dispersing freely into a foreign gene pool. In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern and degree of isolation within and between the species have often been used to elucidate the phylogenetic relationships. The present review documents an overview of speciation mediated through behavioural incompatibility in different species groups of Drosophila with particular reference to the models proposed on the basis of one-sided ethological isolation to predict the direction of evolution. This study is crucial for understanding the mechanism of speciation through behavioural incompatibility and also for an understanding of speciation genetics in future prospects.

  20. Egg-laying rhythm in Drosophila melanogaster

    Indian Academy of Sciences (India)

    T. Manjunatha; Shantala Hari Dass; Vijay Kumar Sharma

    2008-12-01

    Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.

  1. The complexity of Drosophila innate immunity

    Directory of Open Access Journals (Sweden)

    A Reumer

    2010-01-01

    Full Text Available Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system.Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g., cuticle, epithelial lining of gut and trachea, and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO response, a cellular response (hemocytes, an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.

  2. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries.

    Science.gov (United States)

    Hamby, Kelly A; Hernández, Alejandro; Boundy-Mills, Kyria; Zalom, Frank G

    2012-07-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  3. Conservation of Olfactory Avoidance in Drosophila Species and Identification of Repellents for Drosophila suzukii

    OpenAIRE

    Christine Krause Pham; Anandasankar Ray

    2015-01-01

    Flying insects use olfaction to navigate towards fruits in complex odor environments with remarkable accuracy. Some fruits change odor profiles substantially during ripening and related species can prefer different stages. In Drosophila species attractive odorants have been studied extensively, but little is understood about the role of avoidance pathways. In order to examine the role of the avoidance cue CO2 emitted from fruit on behavior of two species with different ripening stage preferen...

  4. The dominant mutation Suppressor of black indicates that de novo pyrimindine biosynthesis is involved in the Drosophila tan pigmentation pathway

    DEFF Research Database (Denmark)

    Piskur, Jure; Kolbak, D.; Søndergaard, Leif;

    1993-01-01

    Pyrimidines, beta-alanine, cuticle, drosophila, pyrimidine analogs, molecular genetics, rudimentary......Pyrimidines, beta-alanine, cuticle, drosophila, pyrimidine analogs, molecular genetics, rudimentary...

  5. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. PMID:27160896

  6. Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species

    OpenAIRE

    Salzberg, Steven L.; Julie C Dunning Hotopp; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C.

    2005-01-01

    A correction to Serendipitous discovery of Wolbachia genomes in multiple Drosophila species by SL Salzberg, JC Dunning Hotopp, AL Delcher, M Pop, DR Smith, MB Eisen and WC Nelson. Genome Biology 2005, 6:R23

  7. Behavioral modification in choice process ofDrosophila.

    Science.gov (United States)

    Wang, Shunpeng; Tang, Shiming; Li, Yan; Guo, Aike

    2003-08-01

    In visual operant conditioning ofDrosophila at the flight simulator, only motor output of flies-yaw torque-is recorded, which is involved in the conditioning process. The current study used a newly-designed data analysis method to study the torque distribution ofDrosophila. Modification of torque distribution represents the effects of operant conditioning on flies' behavioral mode. Earlier works([10]) showed that, when facing contradictory visual cues, flies could make choices based upon the relative weightiness of different cues, and it was demonstrated that mushroom bodies might play an important role in such choice behavior. The new "torque-position map" method was used to explore the CS-US associative learning and choice behavior inDrosophila from the aspect of its behavioral mode. Finally, this work also discussed various possible neural bases involved in visual associative learning, choice processing and modification processing of the behavioral mode in the visual operant conditioning ofDrosophila. PMID:21072612

  8. Is premating isolation in Drosophila overestimated due to uncontrolled factors?

    Indian Academy of Sciences (India)

    Pelayo Casares; Rafael Piñeiro; Maria C. Carracedo

    2005-12-01

    Sexual isolation in Drosophila is typically measured by multiple-choice mating tests. While many environmental variables during such tests are controlled by the researcher, there are some factors that are usually uncontrolled. We demonstrate, using Drosophila melanogaster and D. pseudoobscura flies, that the temperature of rearing, preadult density, and level of consanguinity, can all produce differences in mating propensity between genetically equivalent flies. These differences in mating propensity, in turn, can give rise to statistically significant results in multiple-choice mating tests, leading to positive isolation values and the artifactual inference of sexual isolation between populations. This fact agrees with a nonrandom excess of significant positive tests found in a review of the literature of Drosophila intraspecific mating choice. An overestimate of true cases of sexual isolation in Drosophila in the literature can, therefore, not be ruled out.

  9. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii.

    Science.gov (United States)

    Dekker, Teun; Revadi, Santosh; Mansourian, Suzan; Ramasamy, Sukanya; Lebreton, Sebastien; Becher, Paul G; Angeli, Sergio; Rota-Stabelli, Omar; Anfora, Gianfranco

    2015-04-01

    The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather 'simple' numerical shifts in underlying neural circuits. PMID:25716789

  10. Conservation of Olfactory Avoidance in Drosophila Species and Identification of Repellents for Drosophila suzukii.

    Science.gov (United States)

    Krause Pham, Christine; Ray, Anandasankar

    2015-01-01

    Flying insects use olfaction to navigate towards fruits in complex odor environments with remarkable accuracy. Some fruits change odor profiles substantially during ripening and related species can prefer different stages. In Drosophila species attractive odorants have been studied extensively, but little is understood about the role of avoidance pathways. In order to examine the role of the avoidance cue CO2 emitted from fruit on behavior of two species with different ripening stage preferences, we investigated the CO2-detection pathway in Drosophila melanogaster and Drosophila suzukii, a harmful pest of fruits. Avoidance to CO2 is not conserved in D. suzukii suggesting a behavioral adaptation that could facilitate attraction to younger fruit with higher CO2 emission levels. We investigated known innate avoidance pathways from five species at different evolutionary distances: D. melanogaster, D. yakuba, D. suzukii, D. pseudoobscura and D. virilis. Surprisingly, only DEET shows strong repellency across all species, whereas CO2, citronellal and ethyl 3-hydroxybutyrate show only limited conservation. These findings guide us to test recently discovered safe DEET substitutes, and we identify one that protects fruits from D. suzukii thus providing a new behavioral strategy for controlling agricultural pests. PMID:26098542

  11. Functional gustatory role of chemoreceptors in drosophila wings

    OpenAIRE

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria

    2016-01-01

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca2+ levels. Conversely, genetically modified flies presenting a wing-specific reductio...

  12. Candidate Glutamatergic Neurons in the Visual System of Drosophila

    OpenAIRE

    Shamprasad Varija Raghu; Alexander Borst

    2011-01-01

    The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter....

  13. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    OpenAIRE

    Hartenstein Volker; Spindler Shana R

    2011-01-01

    Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that mul...

  14. A development-based compartmentalization of the Drosophila central brain

    OpenAIRE

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells, as well as long neurite fascicles. These fascicles are formed during the larval period when the approximately 100 neuronal lineages that constitute the Drosophila central brain differenti...

  15. Evolution of Drosophila ribosomal protein gene core promoters

    OpenAIRE

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2008-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, a...

  16. Methods to assess Drosophila heart development, function and aging

    OpenAIRE

    Ocorr, Karen; Vogler, Georg; Bodmer, Rolf

    2014-01-01

    In recent years the Drosophila heart has become an established model of many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to ...

  17. Circadian Organization of Behavior and Physiology in Drosophila

    OpenAIRE

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks....

  18. Cloning of Drosophila choline acetyltransferase cDNA.

    OpenAIRE

    Itoh, N; Slemmon, J.R.; Hawke, D.H.; Williamson, R.; Morita, E.; Itakura, K; Roberts, E; Shively, J. E.; Crawford, G D; Salvaterra, P M

    1986-01-01

    Choline acetyltransferase (EC 2.3.1.6) is the biosynthetic enzyme for the neurotransmitter acetylcholine. To isolate choline acetyltransferase cDNA clones, a cDNA library was constructed from poly(A)+ RNA of Drosophila melanogaster heads, these being one of the richest known sources of the enzyme. By screening the cDNA library with a mixture of three different monoclonal antibodies to Drosophila choline acetyltransferase, we isolated 14 positive clones. Only 1 of these clones was identified t...

  19. Dosage Compensation of the Period Gene in Drosophila Melanogaster

    OpenAIRE

    Cooper, M K; Hamblen-Coyle, M. J.; Liu, X; Rutila, J E; Hall, J.C.

    1994-01-01

    The period (per) gene is located on the X chromosome of Drosophila melanogaster. Its expression influences biological clocks in this fruit fly, including the one that subserves circadian rhythms of locomotor activity. Like most X-linked genes in Drosophila, per is under the regulatory control of gene dosage compensation. In this study, we assessed the activity of altered or augmented per(+) DNA fragments in transformants. Relative expression levels in male and female adults were inferred from...

  20. FlyBase: a Drosophila database. Flybase Consortium.

    OpenAIRE

    1998-01-01

    FlyBase (http://flybase.bio.indiana.edu/) is a comprehensive database of genetic and molecular data concerning Drosophila . FlyBase is maintained as a relational database (in Sybase) and is made available as html documents and flat files. The scope of FlyBase includes: genes, alleles (with phenotypes), aberrations, transposons, pointers to sequence data, gene products, maps, clones, stock lists, Drosophila workers and bibliographic references.

  1. Dietary glucose regulates yeast consumption in adult Drosophila males

    OpenAIRE

    Sebastien eLebreton; Peter eWitzgall; Marie eOlsson; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies ...

  2. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  3. The bacterial communities of Drosophila suzukii collected from undamaged cherries.

    Science.gov (United States)

    Chandler, James Angus; James, Pamela M; Jospin, Guillaume; Lang, Jenna M

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila. PMID:25101226

  4. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    Directory of Open Access Journals (Sweden)

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  5. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  6. Gustatory processing and taste memory in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Keene, Alex C

    2016-06-01

    Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit. PMID:27328844

  7. Optogenetic Control of Gene Expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yick-Bun Chan

    Full Text Available To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

  8. Quantitative neuroanatomy for connectomics in Drosophila.

    Science.gov (United States)

    Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert

    2016-01-01

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. PMID:26990779

  9. Heritability of Directional Asymmetry in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    David Houle

    2009-01-01

    Full Text Available Directional asymmetry (DA, the consistent difference between a pair of morphological structures in which the same side is always larger than the other, presents an evolutionary mystery. Although many paired traits show DA, genetic variation for DA has not been unambiguously demonstrated. Artificial selection is a powerful technique for uncovering selectable genetic variation; we review and critique the limited number of previous studies that have been performed to select on DA and present the results of a novel artificial selection experiment on the DA of posterior crossvein location in Drosophila wings. Fifteen generations of selection in two genetically distinct lines were performed and none of the lines showed a significant response to selection. Our results therefore support and reconfirm previous findings; despite apparent natural variation and evolution of DA in nature, DA remains a paradoxical trait that does not respond to artificial selection.

  10. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui;

    2007-01-01

    Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large and....... melanogaster and its close relatives were adaptive. (iv) This signature of adaptive evolution is observable only in regions of normal recombination. Hence, the low level of polymorphism observed in regions of reduced recombination may not be driven primarily by positive selection. Finally, we discuss the...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species is...

  11. Simulation of gene pyramiding in Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated.But it has not been used in animal breeding,and some theoretical investigation and simulation analysis with respect to its strategies,feasibility and efficiency are needed before it can be implemented in animals.In this study,we used four different pure fines of Drosophila melanogaster,each of which is homozygous at a specific mutant gene with a visible effect on phenotype,to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies.We finally got the ideal individuals,which are homozygous at the four target genes simultaneously.This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.

  12. A Protein Interaction Map of Drosophila melanogaster

    Science.gov (United States)

    Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y.; Hao, Y. L.; Ooi, C. E.; Godwin, B.; Vitols, E.; Vijayadamodar, G.; Pochart, P.; Machineni, H.; Welsh, M.; Kong, Y.; Zerhusen, B.; Malcolm, R.; Varrone, Z.; Collis, A.; Minto, M.; Burgess, S.; McDaniel, L.; Stimpson, E.; Spriggs, F.; Williams, J.; Neurath, K.; Ioime, N.; Agee, M.; Voss, E.; Furtak, K.; Renzulli, R.; Aanensen, N.; Carrolla, S.; Bickelhaupt, E.; Lazovatsky, Y.; DaSilva, A.; Zhong, J.; Stanyon, C. A.; Finley, R. L.; White, K. P.; Braverman, M.; Jarvie, T.; Gold, S.; Leach, M.; Knight, J.; Shimkets, R. A.; McKenna, M. P.; Chant, J.; Rothberg, J. M.

    2003-12-01

    Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

  13. Neural Mechanisms for Drosophila Contrast Vision.

    Science.gov (United States)

    Bahl, Armin; Serbe, Etienne; Meier, Matthias; Ammer, Georg; Borst, Alexander

    2015-12-16

    Spatial contrast, the difference in adjacent luminance values, provides information about objects, textures, and motion and supports diverse visual behaviors. Contrast computation is therefore an essential element of visual processing. The underlying mechanisms, however, are poorly understood. In human psychophysics, contrast illusions are means to explore such computations, but humans offer limited experimental access. Via behavioral experiments in Drosophila, we find that flies are also susceptible to contrast illusions. Using genetic silencing techniques, electrophysiology, and modeling, we systematically dissect the mechanisms and neuronal correlates underlying the behavior. Our results indicate that spatial contrast computation involves lateral inhibition within the same pathway that computes motion of luminance increments (ON pathway). Yet motion-blind flies, in which we silenced downstream motion-sensitive neurons needed for optomotor behavior, have fully intact contrast responses. In conclusion, spatial contrast and motion cues are first computed by overlapping neuronal circuits which subsequently feed into parallel visual processing streams. PMID:26673659

  14. Innate immunity in Drosophila: Pathogens and pathways

    Institute of Scientific and Technical Information of China (English)

    Shubha Govind

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derived from functional genomic studies using "model" pathogens, intact animals and cell lines. The D. melanogaster host has thus provided the core information that can be used to study responses to natural microbial and metazoan pathogens as they become identified, as well as to test ideas of selection and evolutionary change. These analyses are of general importance to understanding mechanisms of other insect host-pathogen interactions and determinants of variation in host resistance.

  15. Structure and Development of Glia in Drosophila

    Science.gov (United States)

    Hartenstein, Volker

    2014-01-01

    Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. Based on topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A–C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called “wrapping glia” that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from

  16. Identification of Synaptic Targets of Drosophila Pumilio

    Science.gov (United States)

    Regulski, Michael; Sinha, Nishi; Barditch, Jody; Tully, Tim; Krainer, Adrian R.; Zhang, Michael Q.; Dubnau, Josh

    2008-01-01

    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3′UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3′UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage. PMID:18463699

  17. Genetic effects on heavy ions in drosophila

    Science.gov (United States)

    Kale, P. G.

    1986-01-01

    Drosophila sex-linked recessive lethal mutation test was used to study the dose response relation and relative biological effectiveness of heavy ions. The experiments were performed using the heavy ion beams at BEVALAC of Lawrence Berkeley Laboratory. These experiments were undertaken according to the proposed milestones and included Ne-20, A-40 and Fe-65 ions with respective energies of 600 MeV, 840 MeV and 850 MeV. At these energies several doses of these radiations ranging from 20 to 1280 R were used. Space radiation exposure to astronauts is supposed to be quite low and therefore very low dose experiments i.e., 20 R, were also performed for the three ions. The mutation response was measured in all germ cell types i.e., spermatozoa, spermatids, spermatocytes and spermatogonia of treated Drosophila males. A linear dose frequency relation was observed for most of the range except at high doses where the saturation effect was observed. Also, a very significant difference was observed among the sensitivity of the four germ cell stages where spermatozoa and spermatids were more sensitive. At the higher doses of this range, most of the spermatogonia and spermatocytes were killed. Although comparative and identical experiments with X-rays or neutrons have not been performed, the compassion of our data with the ones available in literature suggest that the heavy ions have a high rbe and that they are several times more effective than low LET X-rays. The rbe compared to neutrons however appears to be only slightly higher.

  18. Vitrification-based cryopreservation of Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Schreuders, P.D.; Mazur, P. [Oak Ridge National Lab., TN (United States)

    1994-12-31

    Currently, over 30,000 strains of Drosophila melanogaster are maintained by geneticists through regular transfer of breeding stocks. A more cost effective solution is to cryopreserve their embryos. Cooling and warming rates >10,000{degrees}C/min. are required to prevent chilling injury. To avoid the lethal intracellular ice normally produced at such high cooling rates, it is necessary to use {ge}50% (w/w) concentrations of glass-inducing solutes to vitrify the embryos. Differential scanning calorimetry (DSC) is used to develop and evaluate ethylene glycol and polyvinyl pyrrolidone based vitrification solutions. The resulting solution consists of 8.5M ethylene glycol + 10% polyvinylpyrrolidone in D-20 Drosophila culture medium. A two stage method is used for the introduction and concentration of these solutes within the embryo. The method reduces the exposure time to the solution and, consequently, reduces toxicity. Both DSC and freezing experiments suggest that, while twelve-hour embryos will vitrify using cooling rates >200{degrees}C/min., they will devitrify and be killed with even moderately rapid warming rates of {approximately}1,900{degrees}C/min. Very rapid warming ({approximately}100,000{degrees}C/min.) results in variable numbers of successfully cryopreserved embryos. This sensitivity to warming rite is typical of devitrification. The variability in survival is reduced using embryos of a precisely determined embryonic stage. The vitrification of the older, fifteen-hour, embryos yields an optimized hatching rate of 68%, with 35 - 40% of the resulting larvae developing to normal adults. This Success rite in embryos of this age may reflect a reduced sensitivity to limited devitrification or a more even distribution of the ethylene glycol within the embryo.

  19. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    Science.gov (United States)

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  20. Multi-state Comparison of Attractants for Monitoring Drosophila suzukii (Diptera: Drosophilidae) in Blueberries and Caneberries

    Science.gov (United States)

    Drosophila suzukii, also referred to as the spotted wing drosophila, has recently and dramatically expanded its global range with significant consequences for its primary host crops: blueberries, blackberries, raspberries, cherries, and strawberries. D. suzukii populations can increase quickly, and ...

  1. Alightment of Spotted Wing Drosophila (Diptera: Drosophilidae) on Odorless Disks Varying in Color

    OpenAIRE

    Kirkpatrick, D. M.; McGhee, P. S.; Hermann, S. L.; Gut, L. J.; Miller, J. R.

    2015-01-01

    Methods for trapping spotted wing drosophila, Drosophila suzukii (Matsmura) (Diptera: Drosophilidae), have not yet been optimized for detecting this devastating pest of soft-skinned fruits. Here, we report outcomes of choice and no-choice laboratory bioassays quantifying the rates of spotted wing drosophila alightment on 5-cm-diameter sticky disks of various colors, but no fruit odors. Red, purple, and black disks captured the most spotted wing drosophila when presented against a white backgr...

  2. FlyBase: a Drosophila database. The FlyBase consortium.

    OpenAIRE

    Gelbart, W. M.; Crosby, M.; Matthews, B; Rindone, W P; Chillemi, J; Russo Twombly, S; Emmert, D.; Ashburner, M; Drysdale, R A; Whitfield, E; Millburn, G H; Grey, A; Kaufman, T; Matthews, K.; Gilbert, D

    1997-01-01

    FlyBase is a database of genetic and molecular data concerning Drosophila. FlyBase is maintained as a relational database (in Sybase) and is made available as html documents and flat files. The scope of FlyBase includes: genes, alleles (and phenotypes), aberrations, transposons, pointers to sequence data, clones, stock lists, Drosophila workers and bibliographic references. The Encyclopedia of Drosophila is a joint effort between FlyBase and the Berkeley Drosophila Genome Project which integr...

  3. Drosophila ARSs contain the yeast ARS consensus sequence and a replication enhancer.

    OpenAIRE

    Mills, J S; Kingsman, A J; Kingsman, S M

    1986-01-01

    A number of restriction fragments that function as autonomously replicating sequences (ARSs) in yeast have been isolated from Drosophila melanogaster DNA. The behaviour in yeast of plasmids containing Drosophila ARS elements was studied and compared to that exhibited by the archetypal yeast ARS-1 plasmid. ARS functions were localised by subcloning and BAL-31 deletion analysis. These studies demonstrated the structural and functional complexity of Drosophila ARSs. Each Drosophila ARS element h...

  4. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  5. NOVEL ASPECTS OF SPOTTED WING DROSOPHILA BIOLOGY AND IMPROVED METHODS OF REARING

    Science.gov (United States)

    Drosophila suzukii (Mats.) or the spotted wing Drosophila (SWD), is a global pest of soft fruits that can now be reared on a standard Drosophila diet containing the fly's own natural food: soft-skinned berries. The techniques tested here can thwart bacterial and fungal disease that can destroy more ...

  6. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  7. Research progress on Drosophila visual cognition in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Visual cognition,as one of the fundamental aspects of cognitive neuroscience,is generally associated with high-order brain functions in animals and human.Drosophila,as a model organism,shares certain features of visual cognition in common with mammals at the genetic,molecular,cellular,and even higher behavioral levels.From learning and memory to decision making,Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected.Armed with powerful tools of genetic manipulation in Drosophila,an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective.The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila.Here,we consider a series of the higher cognitive behaviors beyond learning and memory,such as visual pattern recognition,feature and context generalization,different feature memory traces,salience-based decision,attention-like behavior,and cross-modal leaning and memory.We discuss the possible general gain-gating mechanism implementing by dopamine-mushroom body circuit in fly’s visual cognition.We hope that our brief review on this aspect will inspire further study on visual cognition in flies,or even beyond.

  8. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  9. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    Science.gov (United States)

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  10. Drosophila wing modularity revisited through a quantitative genetic approach.

    Science.gov (United States)

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing. PMID:27272402

  11. Identification of Drosophila MicroRNA Targets

    Directory of Open Access Journals (Sweden)

    Stark Alexander

    2003-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA molecules that regulate gene expression by binding to target messenger RNAs and by controlling protein production or causing RNA cleavage. To date, functions have been assigned to only a few of the hundreds of identified miRNAs, in part because of the difficulty in identifying their targets. The short length of miRNAs and the fact that their complementarity to target sequences is imperfect mean that target identification in animal genomes is not possible by standard sequence comparison methods. Here we screen conserved 3' UTR sequences from the Drosophila melanogaster genome for potential miRNA targets. The screening procedure combines a sequence search with an evaluation of the predicted miRNA-target heteroduplex structures and energies. We show that this approach successfully identifies the five previously validated let-7, lin-4, and bantam targets from a large database and predict new targets for Drosophila miRNAs. Our target predictions reveal striking clusters of functionally related targets among the top predictions for specific miRNAs. These include Notch target genes for miR-7, proapoptotic genes for the miR-2 family, and enzymes from a metabolic pathway for miR-277. We experimentally verified three predicted targets each for miR-7 and the miR-2 family, doubling the number of validated targets for animal miRNAs. Statistical analysis indicates that the best single predicted target sites are at the border of significance; thus, target predictions should be considered as tentative until experimentally validated. We identify features shared by all validated targets that can be used to evaluate target predictions for animal miRNAs. Our initial evaluation and experimental validation of target predictions suggest functions for two miRNAs. For others, the screen suggests plausible functions, such as a role for miR-277 as a metabolic switch controlling amino acid catabolism. Cross-genome comparison proved essential

  12. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m3, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  13. Three new species of Drosophila tripunctata group (Diptera: Drosophilidae in the eastern Andes of Ecuador

    Directory of Open Access Journals (Sweden)

    Emily Ramos Guillín

    2015-12-01

    Full Text Available Three new species of the Drosophila tripunctata group are described and illustrated. These new species were captured using plastic bottles containing pieces of fermented banana with yeast. The collections were from Napo Province, Ecuador at 2 200 m and 3 362 m above sea level. The new species are: Drosophila napoensis sp. nov., Drosophila cuyuja sp. nov. and Drosophila quijos sp. nov. The first two species belong to subgroup I and the latter species belong to subgroup III of the Drosophila tripunctata group.

  14. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    Directory of Open Access Journals (Sweden)

    David E Bellamy

    Full Text Available Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1 model derivation; 2 influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice; and, 3 variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD, Drosophila suzukii Matsumura (Diptera: Drosophilidae, with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (meanHPIvaried  = 301.9±8.39; rank 1 of 7 have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (meanHPIvaried  = 232.4±3.21; rank 7 of 7 having the least potential.

  15. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    Science.gov (United States)

    Bellamy, David E; Sisterson, Mark S; Walse, Spencer S

    2013-01-01

    Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI) was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1) model derivation; 2) influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice); and, 3) variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries) in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (mean)HPIvaried  = 301.9±8.39; rank 1 of 7) have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (mean)HPIvaried  = 232.4±3.21; rank 7 of 7) having the least potential. PMID:23593439

  16. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    Science.gov (United States)

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848

  17. Patterns of mutation and selection at synonymous sites in Drosophila

    DEFF Research Database (Denmark)

    Singh, Nadia D; Bauer DuMont, Vanessa L; Hubisz, Melissa J;

    2007-01-01

    That natural selection affects molecular evolution at synonymous sites in protein-coding sequences is well established and is thought to predominantly reflect selection for translational efficiency/accuracy mediated through codon bias. However, a recently developed maximum likelihood framework......, when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the Notch gene in Drosophila melanogaster was evolving under selection in favor of those codons defined as unpreferred in this species. This finding opened the possibility that synonymous sites may be...... subject to a variety of selective pressures beyond weak selection for increased frequencies of the codons currently defined as "preferred" in D. melanogaster. To further explore patterns of synonymous site evolution in Drosophila in a lineage-specific manner, we expanded the application of the maximum...

  18. Insights on TRP Channels from In Vivo Studies in Drosophila

    Science.gov (United States)

    Minke, Baruch; Parnas, Moshe

    2007-01-01

    Transient receptor potential (TRP) channels mediate responses in a large variety of signaling mechanisms. Most studies on mammalian TRP channels rely on heterologous expression, but their relevance to in vivo tissues is not entirely clear. In contrast, Drosophila TRP and TRP-like (TRPL) channels allow direct analyses of in vivo function. In Drosophila photoreceptors, activation of TRP and TRPL is mediated via the phosphoinositide cascade, with both Ca2+ and diacylglycerol (DAG) essential for generating the light response. In tissue culture cells, TRPL channels are constitutively active, and lipid second messengers greatly facilitate this activity. Inhibition of phospholipase C (PLC) completely blocks lipid activation of TRPL, suggesting that lipid activation is mediated via PLC. In vivo studies in mutant Drosophila also reveal an acute requirement for lipid-producing enzyme, which may regulate PLC activity. Thus, PLC and its downstream second messengers, Ca2+ and DAG, constitute critical mediators of TRP/TRPL gating in vivo. PMID:16460287

  19. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  20. On the origin of new genes in Drosophila

    DEFF Research Database (Denmark)

    Zhou, Qi; Zhang, Guojie; Zhang, Yue;

    2008-01-01

    Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new...... genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2...... and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species....

  1. Intestinal stem cell response to injury: lessons from Drosophila.

    Science.gov (United States)

    Jiang, Huaqi; Tian, Aiguo; Jiang, Jin

    2016-09-01

    Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury. PMID:27137186

  2. Identification of common excitatory motoneurons in Drosophila melanogaster larvae.

    Science.gov (United States)

    Takizawa, Eiji; Komatsu, Akira; Tsujimura, Hidenobu

    2007-05-01

    In insects, four types of motoneurons have long been known, including fast motoneurons, slow motoneurons, common inhibitory motoneurons, and DUM neurons. They innervate the same muscle and control its contraction together. Recent studies in Drosophila have suggested the existence of another type of motoneuron, the common excitatory motoneuron. Here, we found that shakB-GAL4 produced by labels this type of motoneuron in Drosophila larvae. We found that Drosophila larvae have two common excitatory motoneurons in each abdominal segment, RP2 for dorsal muscles and MNSNb/d-Is for ventral muscles. They innervate most of the internal longitudinal or oblique muscles on the dorsal or ventral body wall with type-Is terminals and use glutamate as a transmitter. Electrophysiological recording indicated that stimulation of the RP2 axon evoked excitatory junctional potential in a dorsal muscle. PMID:17867850

  3. Chemical genetics and drug screening in Drosophila cancer models

    Institute of Scientific and Technical Information of China (English)

    Mara Gladstone; Tin Tin Su

    2011-01-01

    Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety.It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later.In this regard,it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays.Drosophila melanogaster has emerged as a potential whole animal model for drug screening.Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer.A recent review provides a comprehensive summary of drug screening in Drosophila,but with an emphasis on neurodegenerative disorders.Here,we review Drosophila screens in the literature aimed at cancer therapeutics.

  4. Structure of full-length Drosophila cryptochrome

    Energy Technology Data Exchange (ETDEWEB)

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R. (Cornell); (Rockefeller)

    2011-12-15

    The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function. Here, we report a 2.3-{angstrom} resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.

  5. Healthy aging – insights from Drosophila

    Directory of Open Access Journals (Sweden)

    GabrielleLBoulianne

    2012-04-01

    Full Text Available Human life expectancy has nearly doubled in the past century due, in part, to social and economic development, and a wide range of new medical technologies and treatments. As the number of elderly increase it becomes of vital importance to understand what factors contribute to healthy aging. Human longevity is a complex process that is affected by both environmental and genetic factors and interactions between them. Unfortunately, it is currently difficult to identify the role of genetic components in human longevity. In contrast, model organisms such as C. elegans, Drosophila and rodents have facilitated the search for specific genes that affect lifespan. Experimental evidence obtained from studies in model organisms suggests that mutations in a single gene may increase longevity and delay the onset of age-related symptoms including motor impairments, sexual and reproductive and immune dysfunction, cardiovascular disease and cognitive decline. Furthermore, the high degree of conservation between diverse species in the genes and pathways that regulate longevity suggests that work in model organisms can both expand our theoretical knowledge of aging and perhaps provide new therapeutic targets for the treatment of age-related disorders.

  6. Insulin signaling mediates sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tsung-Han Kuo

    Full Text Available Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC, many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential.

  7. Mechanosensory interactions drive collective behaviour in Drosophila.

    Science.gov (United States)

    Ramdya, Pavan; Lichocki, Pawel; Cruchet, Steeve; Frisch, Lukas; Tse, Winnie; Floreano, Dario; Benton, Richard

    2015-03-12

    Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups. PMID:25533959

  8. Caffeine Taste Signaling in Drosophila Larvae.

    Science.gov (United States)

    Apostolopoulou, Anthi A; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C Giovanni; Lüdke, Alja; Thum, Andreas S

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  9. Tools for neuroanatomy and neurogenetics in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B.; Celniker, Susan E.; Rubin, Gerald M.

    2008-08-11

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.

  10. Functional neuroanatomy of Drosophila olfactory memory formation.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  11. Host plant adaptation in Drosophila mettleri populations.

    Science.gov (United States)

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  12. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  13. Farnesol-Detecting Olfactory Neurons in Drosophila

    Science.gov (United States)

    Ronderos, David S.; Lin, Chun-Chieh; Potter, Christopher J.

    2014-01-01

    We set out to deorphanize a subset of putative Drosophila odorant receptors expressed in trichoid sensilla using a transgenic in vivo misexpression approach. We identified farnesol as a potent and specific activator for the orphan odorant receptor Or83c. Farnesol is an intermediate in juvenile hormone biosynthesis, but is also produced by ripe citrus fruit peels. Here, we show that farnesol stimulates robust activation of Or83c-expressing olfactory neurons, even at high dilutions. The CD36 homolog Snmp1 is required for normal farnesol response kinetics. The neurons expressing Or83c are found in a subset of poorly characterized intermediate sensilla. We show that these neurons mediate attraction behavior to low concentrations of farnesol and that Or83c receptor mutants are defective for this behavior. Or83c neurons innervate the DC3 glomerulus in the antennal lobe and projection neurons relaying information from this glomerulus to higher brain centers target a region of the lateral horn previously implicated in pheromone perception. Our findings identify a sensitive, narrowly tuned receptor that mediates attraction behavior to farnesol and demonstrates an effective approach to deorphanizing odorant receptors expressed in neurons located in intermediate and trichoid sensilla that may not function in the classical “empty basiconic neuron” system. PMID:24623773

  14. Accelerated food source location in aging Drosophila.

    Science.gov (United States)

    Egenriether, Sada M; Chow, Eileen S; Krauth, Nathalie; Giebultowicz, Jadwiga M

    2015-10-01

    Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food-finding latency (FFL) was shortened in young wild-type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age-dependent differences in metabolic status and may be mediated by reduced insulin signaling. PMID:26102220

  15. Tracking individual nanodiamonds in Drosophila melanogaster embryos

    CERN Document Server

    Simpson, David A; Kowarsky, Mark; Zeeshan, Nida F; Barson, Michael S J; Hall, Liam; Yan, Yan; Kaufmann, Stefan; Johnson, Brett C; Ohshima, Takeshi; Caruso, Frank; Scholten, Robert; Saint, Robert B; Murray, Michael J; Hollenberg, Lloyd C L

    2013-01-01

    Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 \\mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 $\\pm$ 3) x 10$^{-3}$ \\mu m$^2$/s, (mean $\\pm$ SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 $\\pm$ 0.10 \\mu m/s (mean $\\pm$ SD) \\mu m/s and an average applied force of 0.07 $\\pm$ 0.05 pN (mean $\\pm$ SD). Nanodiamonds in the periplasm between the nuclei and yolk were also...

  16. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  17. Transgenerational memory effect of ageing in Drosophila.

    Science.gov (United States)

    Burns, James G; Mery, Frederic

    2010-04-01

    Children born to older parents tend to have lower intelligence and are at higher risk for disorders such as schizophrenia and autism. Such observations of ageing damage being passed on from parents to offspring are not often considered within the evolutionary theory of ageing. Here, we show the 25% memory impairment in Drosophila melanogaster offspring solely dependent on the age of the parents and also passed on to the F2 generation. Furthermore, this parental age effect was not attributed to a generalized reduction in condition of the offspring but was specific to short-term memory. We also provide evidence implicating oxidative stress as a causal factor by showing that lines selected for resistance to oxidative stress did not display a memory impairment in offspring of old parents. The identification of the parental age-related memory impairment in a model system should stimulate integration between mechanistic studies of age-related mortality risk and functional studies of parental age effects on the fitness of future generations. PMID:20149023

  18. Drosophila as a genetically tractable model for social insect behaviour

    Directory of Open Access Journals (Sweden)

    Alison L Camiletti

    2016-04-01

    Full Text Available The relatively simple communication, breeding and egg-making systems that govern reproduction in female Drosophila retain homology to eusocial species in which these same systems are modified to the social condition. Despite having no parental care, division of labour or subfertile caste, Drosophila may nonetheless offer a living test of certain sociobiological hypotheses framed around gene function. In this review, we make this case, and do so around the recent discovery that the non-social fly, Drosophila melanogaster, can respond to the ovary-suppressing queen pheromone of the honey bee Apis meliffera. Here, we first explain the sociobiological imperative to reconcile kin theory with molecular biology, and qualify a potential role for Drosophila. Then, we offer three applications for the fly-pheromone assay. First, the availability and accessibility of massive mutant libraries makes immediately feasible any number of open or targeted gene screens against the ovary-inhibiting response. The sheer tractability of Drosophila may therefore help to accelerate the search for genes in pheromone-responsive pathways that regulate female reproduction, including potentially any that are preserved with modification to regulate worker sterility in response to queen pheromones in eusocial taxa. Secondly, Drosophila’s powerful Gal4/UAS expression system can complement the pheromone assay by driving target gene expression into living tissue, which could be well applied to the functional testing of genes presumed to drive ovary activation or de-activation in the honey bee or other eusocial taxa. Finally, coupling Gal4 with UAS-RNAi lines can facilitate loss-of-function experiments against perception and response to the ovary inhibiting pheromone, and do so for large numbers of candidates in systematic fashion. Drosophila's utility as an adjunct to the field of insect sociobiology is not ideal, but retains surprising potential.

  19. The making of a fusion branch in the Drosophila trachea.

    Science.gov (United States)

    Gervais, Louis; Lebreton, Gaelle; Casanova, Jordi

    2012-02-15

    Connection of epithelial tubes to generate a common network is a key step in the formation of tubular organs such as the tracheal respiratory and the vascular systems. However, it is not clear how these connecting tubes arise. Here we address this issue by studying the dorsal fusion branches in the Drosophila trachea, taking into account the morphology and contribution of each cell type on the basis of their individual labeling. Our results explain how a fusion branch forms and also illustrate the different nature of the two seamless tubes in the Drosophila trachea, generated by fusion and terminal cells respectively. PMID:22178247

  20. Genetic regulation of programmed cell death in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Programmed cell death plays an important role in maintaining homeostasis during animal development, and has been conserved in animals as different as nematodes and humans. Recent studies of Drosophila have provided valuable information toward our understanding of genetic regulation of death. Different signals trigger the novel death regulators rpr, hid, and grim, that utilize the evolutionarily conserved iap and ark genes to modulate caspase function. Subsequent removal of dying cells also appears to be accomplished by conserved mechanisms. The similarity between Drosophila and human in cell death signaling pathways illustrate the promise of fruit flies as a model system to elucidate the mechanisms underlying regulation of programmed cell death.

  1. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster.

    Science.gov (United States)

    Brookheart, Rita T; Duncan, Jennifer G

    2016-09-01

    The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming. PMID:27450801

  2. Polypeptide components of Drosophila small nuclear ribonucleoprotein particles.

    OpenAIRE

    Paterson, T; Beggs, J D; Finnegan, D J; Lührmann, R

    1991-01-01

    In eukaryotes splicing of pre-mRNAs is mediated by the spliceosome, a dynamic complex of small nuclear ribonucleoprotein particles (snRNPs) that associate transiently during spliceosome assembly and the splicing reaction. We have purified snRNPs from nuclear extracts of Drosophila cells by affinity chromatography with an antibody specific for the trimethylguanosine (m3G) cap structure of snRNAs U1-U5. The polypeptide components of Drosophila snRNPs have been characterized and shown to consist...

  3. Polypeptide components of Drosophila small nuclear ribonucleoprotein particles

    OpenAIRE

    Paterson, T; Beggs, J D; Finnegan, D J; Luhrmann, R; Finnegan, David

    1991-01-01

    In eukaryotes splicing of pre-mRNAs is mediated by the spliceosome, a dynamic complex of small nuclear ribonucleoprotein particles (snRNPs) that associate transiently during spliceosome assembly and the splicing reaction. We have purified snRNPs from nuclear extracts of Drosophila cells by affinity chromatography with an antibody specific for the trimethylguanosine (m3G) cap structure of snRNAs U1-U5. The polypeptide components of Drosophila snRNPs have been characterized and shown to consist...

  4. Getting started : an overview on raising and handling Drosophila.

    Science.gov (United States)

    Stocker, Hugo; Gallant, Peter

    2008-01-01

    Drosophila melanogaster has long been a prime model organism for developmental biologists. During their work, they have established a large collection of techniques and reagents. This in turn has made fruit flies an attractive system for many other biomedical researchers who have otherwise no background in fly biology. This review intends to help Drosophila neophytes in setting up a fly lab. It briefly introduces the biological properties of fruit flies, describes the minimal equipment required for working with flies, and offers some basic advice for maintaining fly lines and setting up and analyzing experiments. PMID:18641939

  5. Dicty_cDB: Contig-U05804-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ner... 48 0.69 1 ( CP000488 ) Candidatus Ruthia magnifica str. Cm (Calyptogena ... 48 0...320_33( FN392320 |pid:none) Pichia pastoris GS115 chromosome ... 77 8e-13 AL162651_19( AL162651 |pid:none) Arabidopsis thaliana...la mojavensis strain MJBC1... 71 6e-11 (Q9Y7Q2) RecName: Full=Glutathi... EU079426_1( EU079426 |pid:none) Drosophila mojavensis strain MJBC1... 71 7e-11 EU079444_1( EU079444 |pid:none) Drosophila nav.... 69 3e-10 EU079421_1( EU079421 |pid:none) Drosophila mojavensis strain MJ68 ... 69 3e-10 AF061253_1( AF0612

  6. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael;

    2003-01-01

    diverse myotropic actions and are also initiating sex pheromone biosynthesis and embryonic diapause. Gene silencing, using the RNA-mediated interference technique, showed that CG8784 gene silencing caused lethality in embryos, whereas CG8795 gene silencing resulted in strongly reduced viability for both...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors to...

  7. The role of Drosophila Merlin in spermatogenesis

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2008-01-01

    Full Text Available Abstract Background Drosophila Merlin, the homolog of the human Neurofibromatosis 2 (NF2 gene, is important for the regulation of cell proliferation and receptor endocytosis. Male flies carrying a Mer3 allele, a missense mutation (Met177→Ile in the Merlin gene, are viable but sterile; however, the cause of sterility is unknown. Results Testis examination reveals that hemizygous Mer3 mutant males have small seminal vesicles that contain only a few immotile sperm. By cytological and electron microscopy analyses of the Mer3, Mer4 (Gln170→stop, and control testes at various stages of spermatogenesis, we show that Merlin mutations affect meiotic cytokinesis of spermatocytes, cyst polarization and nuclear shaping during spermatid elongation, and spermatid individualization. We also demonstrate that the lethality and sterility phenotype of the Mer4 mutant is rescued by the introduction of a wild-type Merlin gene. Immunostaining demonstrates that the Merlin protein is redistributed to the area associated with the microtubules of the central spindle in telophase and its staining is less in the region of the contractile ring during meiotic cytokinesis. At the onion stage, Merlin is concentrated in the Nebenkern of spermatids, and this mitochondrial localization is maintained throughout sperm formation. Also, Merlin exhibits punctate staining in the acrosomal region of mature sperm. Conclusion Merlin mutations affect spermatogenesis at multiple stages. The Merlin protein is dynamically redistributed during meiosis of spermatocytes and is concentrated in the Nebenkern of spermatids. Our results demonstrated for the first time the mitochondrial localization of Merlin and suggest that Merlin may play a role in mitochondria formation and function during spermatogenesis.

  8. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  9. Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Rebekah L Rogers

    Full Text Available Tandem duplications are an essential source of genetic novelty, and their variation in natural populations is expected to influence adaptive walks. Here, we describe evolutionary impacts of recently-derived, segregating tandem duplications in Drosophila yakuba and Drosophila simulans. We observe an excess of duplicated genes involved in defense against pathogens, insecticide resistance, chorion development, cuticular peptides, and lipases or endopeptidases associated with the accessory glands across both species. The observed agreement is greater than expectations on chance alone, suggesting large amounts of convergence across functional categories. We document evidence of widespread selection on the D. simulans X, suggesting adaptation through duplication is common on the X. Despite the evidence for positive selection, duplicates display an excess of low frequency variants consistent with largely detrimental impacts, limiting the variation that can effectively facilitate adaptation. Standing variation for tandem duplications spans less than 25% of the genome in D. yakuba and D. simulans, indicating that evolution will be strictly limited by mutation, even in organisms with large population sizes. Effective whole gene duplication rates are low at 1.17 × 10-9 per gene per generation in D. yakuba and 6.03 × 10-10 per gene per generation in D. simulans, suggesting long wait times for new mutations on the order of thousands of years for the establishment of sweeps. Hence, in cases where adaptation depends on individual tandem duplications, evolution will be severely limited by mutation. We observe low levels of parallel recruitment of the same duplicated gene in different species, suggesting that the span of standing variation will define evolutionary outcomes in spite of convergence across gene ontologies consistent with rapidly evolving phenotypes.

  10. The metabolic profile of long-lived Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Pedersen, Simon Metz; Nielsen, Niels Christian; Malmendal, Anders; Loeschcke, Volker

    2012-01-01

    We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes and...

  11. Genetic Analysis of the Hairy Locus in DROSOPHILA MELANOGASTER

    OpenAIRE

    Ingham, P W; Pinchin, S M; Howard, K.R.; Ish-Horowicz, D.

    1985-01-01

    Mutations of the hairy locus in Drosophila may affect both adult chaeta differentiation and embryonic segmentation. In an effort to understand this phenotypic complexity, we have analyzed 30 mutant alleles of the locus. We find that the alleles fall into four groups according to their complementation properties, suggesting a structurally complex locus in which two distinct functions share a common coding region.

  12. Plexins function in epithelial repair in both Drosophila and zebrafish

    Science.gov (United States)

    Yoo, Sa Kan; Pascoe, Heath G.; Pereira, Telmo; Kondo, Shu; Jacinto, Antonio; Zhang, Xuewu; Hariharan, Iswar K.

    2016-01-01

    In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. PMID:27452696

  13. The olfactory circuit of the fruit fly Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.

  14. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    Directory of Open Access Journals (Sweden)

    Hartenstein Volker

    2011-04-01

    Full Text Available Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.

  15. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    Science.gov (United States)

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  16. Heat shock protection against cold stress of Drosophila melanogaster.

    OpenAIRE

    Burton, V; Mitchell, H K; Young, P.; Petersen, N S

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  17. Characterization and manipulation of fruit susceptibility to Drosophila suzukii

    Science.gov (United States)

    Drosophila suzukii (Matsumura) is an economic pest of small fruits and cherries that attacks intact ripening fruits. Host susceptibility is influenced by characteristics such as flesh firmness, penetration force of the skin, total soluble solids (TSS, also known as °Brix) and pH. Improved knowledge ...

  18. Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii

    OpenAIRE

    Siozios, Stefanos; Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

    2013-01-01

    Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named “wSuzi” that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii.

  19. Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii.

    Science.gov (United States)

    Siozios, Stefanos; Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

    2013-01-01

    Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named "wSuzi" that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii. PMID:23472225

  20. Monitoring Drosophila suzukii Matsumura in Oregon, USA sweet cherry orchards.

    Science.gov (United States)

    Drosophila suzukii rapidly became a significant cherry pest in the western United States after it was observed damaging cherries in 2009 in California. It has caused significant damage to ripening cherries in all major USA cherry production districts leading to increased management costs and reduced...

  1. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors

    OpenAIRE

    Jiang, Huaqi; Edgar, Bruce A.

    2009-01-01

    In holometabolous insects, the adult appendages and internal organs form anew from larval progenitor cells during metamorphosis. As described here, the adult Drosophila midgut, including intestinal stem cells (ISCs), develops from adult midgut progenitor cells (AMPs) that proliferate during larval development in two phases. Dividing AMPs first disperse, but later proliferate within distinct islands, forming large cell clusters that eventually fuse during metamorphosis ...

  2. Drosophila phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    NARCIS (Netherlands)

    Bosveld, Floris; Rana, Anil; Lemstra - Wierenga, Willemina; Kampinga, Harm; Sibon, Ody

    2008-01-01

    Background: Coenzyme A (CoA) is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detai

  3. Neurogenetic approaches to habituation and dishabituation in Drosophila

    OpenAIRE

    Engel, Jeff E.; Wu, Chun-Fang

    2008-01-01

    We review work in the major model systems for habituation in Drosophila melanogaster, encompassing several sensory modalities and behavioral contexts: visual (giant fiber escape response, landing response); chemical (proboscis extension reflex, olfactory jump response, locomotory startle response, odor-induced leg response, experience-dependent courtship modification); electric (shock avoidance); and mechanical (leg resistance reflex, cleaning reflex). Each model system shows several of Thomp...

  4. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    Science.gov (United States)

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  5. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2016-02-01

    Full Text Available We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo, a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  6. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  7. LTR retrotransposons and the evolution of dosage compensation in Drosophila

    Directory of Open Access Journals (Sweden)

    McDonald John F

    2008-06-01

    Full Text Available Abstract Background Dosage compensation in Drosophila is the epigenetic process by which the expression of genes located on the single X-chromosome of males is elevated to equal the expression of X-linked genes in females where there are two copies of the X-chromosome. While epigenetic mechanisms are hypothesized to have evolved originally to silence transposable elements, a connection between transposable elements and the evolution of dosage compensation has yet to be demonstrated. Results We show that transcription of the Drosophila melanogaster copia LTR (long terminal repeat retrotransposon is significantly down regulated when in the hemizygous state. DNA digestion and chromatin immunoprecipitation (ChIP analyses demonstrate that this down regulation is associated with changes in chromatin structure mediated by the histone acetyltransferase, MOF. MOF has previously been shown to play a central role in the Drosophila dosage compensation complex by binding to the hemizygous X-chromosome in males. Conclusion Our results are consistent with the hypothesis that MOF originally functioned to silence retrotransposons and, over evolutionary time, was co-opted to play an essential role in dosage compensation in Drosophila.

  8. Study of Ectonucleotidases and Adenosine Deaminases in Drosophila

    OpenAIRE

    PREUER, Kristina

    2013-01-01

    Extracellular adenosine triphosphate and extracellular adenosine are important regulatory molecules in the human immune system. The concentrations of these molecules are in turn regulated by ectonucleotidases and adenosine deaminases. In this thesis I attempt to test the gene silencing efficiency of RNA interference for three different genes coding for such enzymes in the model organism Drosophila melanogaster.

  9. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. PMID:26470175

  10. Trapping spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) with combinations of vinegar and wine, and acetic acid and ethanol

    Science.gov (United States)

    Recommendations for monitoring spotted wing drosophila (SWD) Drosophila suzukii, (Matsumura) are to use either vinegar or wine as a bait for traps. Traps baited with vinegar and traps baited with wine, in field tests in northern Oregon, captured large numbers of male and female SWD flies. Numbers of...

  11. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Rasheva Vanya

    2010-07-01

    Full Text Available Abstract Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;fLJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;fLJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104

  12. Control of spotted wing drosophila (Drosophila suzukii [Matsumura], Diptera, Drosophilidae with the emphasis on environmentally acceptable methods

    Directory of Open Access Journals (Sweden)

    Tanja BOHINC

    2015-12-01

    Full Text Available Spotted wing drosophila (Drosophila suzukii is an economically important insect pest, which causes damage on cultivated and wild-growing fruit plants. The pest, which is placed in A2 EPPO list, occurred in Slovenia since 2010 and it is spreading progressively. Since its first record in Spain and Italy (2008, it is now present in the majority of Mediterranean countries. In the review paper the most important control methods against the spotted wing drosophila are presented. In some parts of the world the pest is efficiently controlled with synthetic insecticides, however their use is questionable owing to waiting period, since the insect occurs on fruits in the time of ripening and before harvesting. Thus, more and more researches are focused in the studies of alternative (environmentally sound control methods of this pest. So far, biological control of spotted wing drosophila is more effective in Asia than in Europe. In the upcoming years it is therefore important to investigate the distribution and efficiency of indigenous biological control agents in the Old continent. Among them we suggest to investigate how effective are the predatory bug Orius majusculus and entomopathogenic nematodes against this pest. For everyday practice, we recommend the use of traps filled with attractants for the massive trapping of adults, plant hygiene in plantations, covering the plants with dense net etc.

  13. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    International Nuclear Information System (INIS)

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed

  14. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells

    OpenAIRE

    Maiato, Helder; Hergert, Polla J.; Moutinho-Pereira, Sara; Dong, Yimin; VandenBeldt, Kristin J.; Rieder, Conly L.; McEwen, Bruce F.

    2006-01-01

    Drosophila melanogaster is a widely used model organism for the molecular dissection of mitosis in animals. However, despite the popularity of this system, no studies have been published on the ultrastructure of Drosophila kinetochores and kinetochore fibers (K-fibers) in somatic cells. To amend this situation, we used correlative light (LM) and electron microscopy (EM) to study kinetochores in cultured Drosophila S2 cells during metaphase, and after colchicine treatment to depolymerize all m...

  15. Regulation of Sleep by Neuropeptide Y-Like System in Drosophila melanogaster

    OpenAIRE

    Chunxia He; Yunyan Yang; Mingming Zhang; Price, Jeffrey L.; Zhangwu Zhao

    2013-01-01

    Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY), a homolog of Drosophila neuropeptide F (NPF), is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1) on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sl...

  16. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    OpenAIRE

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involv...

  17. Dissecting muscle and neuronal disorders in a Drosophila model of muscular dystrophy.

    OpenAIRE

    Shcherbata, H.; Yatsenko, A.; Patterson, L; Sood, V.; Nudel, U; Yaffe, D; Baker, D.; Ruohola-Baker, H

    2007-01-01

    Perturbation in the Dystroglycan (Dg)–Dystrophin (Dys) complex results in muscular dystrophies and brain abnormalities in human. Here we report that Drosophila is an excellent genetically tractable model to study muscular dystrophies and neuronal abnormalities caused by defects in this complex. Using a fluorescence polarization assay, we show a high conservation in Dg–Dys interaction between human and Drosophila. Genetic and RNAi-induced perturbations of Dg and Dys in Drosophila cause cell po...

  18. Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis.

    OpenAIRE

    R'Kha, S; Capy, P; David, J.R.

    1991-01-01

    Drosophila sechellia, endemic to the Seychelles, breeds in a single resource, Morinda citrifolia, whereas its close sympatric relative, Drosophila simulans, is a cosmopolitan generalist breeding in a great variety of resources. The effects of morinda on various fitness traits of these two species, their F1 hybrids, and reciprocal backcrosses were analyzed. Morinda fruit is highly toxic to Drosophila species, except D. sechellia. The toxicity is expressed in adults, embryos, and larvae. In emb...

  19. Two Faces of Drosophila suzukii Invasion: Effects on Invaders and Communities

    OpenAIRE

    Stemberger, Tanya LoreLei Maria

    2015-01-01

    The spotted wing drosophila (SWD, Drosophila suzukii) has quickly spread since its introduction in 2008 to North America and Europe. Most Drosophila oviposit in rotting fruit, but SWD puncture the skin of fresh fruit to lay eggs inside, leading to premature fruit rot. I used SWD to study how new selective pressures shape invasive populations, and how invaders impact communities in their invaded ranges. I hypothesized that flies that were unable survive the winter conditions in Agassiz, BC wou...

  20. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics

    OpenAIRE

    Ejsmont, Radoslaw K.; Hassan, Bassem A.

    2014-01-01

    For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedica...

  1. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment...... with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as...

  2. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone

    OpenAIRE

    Malik, Harmit S.; Vermaak, Danielle; Henikoff, Steven

    2002-01-01

    All eukaryotes contain centromere-specific histone H3 variants (CenH3s), which replace H3 in centromeric chromatin. We have previously documented the adaptive evolution of the Drosophila CenH3 (Cid) in comparisons of Drosophila melanogaster and Drosophila simulans, a divergence of ≈2.5 million years. We have proposed that rapidly changing centromeric DNA may be driving CenH3's altered DNA-binding specificity. Here, we compare Cid sequences from a phylogenetically broader group of Drosophila s...

  3. Molecular Cloning of a Novel Bovine Homologue of the Drosophila Tumor Suppressor Gene, Lats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pervious studies demonstrate that lats, also known as warts, is a tumor suppressor gene in Drosophila[1,2]. Mutations of lats lead to an increase in cell number and organ size in Drosophila, indicating lats may be involved in organ size control. Furthermore, the high conservation of sequence and tumor suppression function of lats between Drosophila and human suggests that it may be also involved in organ size control of higher animals[3]. So here we isolated the bovine homologue of Drosophila lats. Sequence analysis indicates the bovine LATS1 to be very similar to other lats proteins.

  4. Sleep, aging, and lifespan in Drosophila

    Directory of Open Access Journals (Sweden)

    Tononi Giulio

    2010-04-01

    Full Text Available Abstract Background Epidemiological studies in humans suggest that a decrease in daily sleep duration is associated with reduced lifespan, but this issue remains controversial. Other studies in humans also show that both sleep quantity and sleep quality decrease with age. Drosophila melanogaster is a useful model to study aging and sleep, and inheriting mutations affecting the potassium current Shaker results in flies that sleep less and have a shorter lifespan. However, whether the link between short sleep and reduced longevity exists also in wild-type flies is unknown. Similarly, it is unknown whether such a link depends on sleep amount per se, rather than on other factors such as waking activity. Also, sleep quality has been shown to decrease in old flies, but it remains unclear whether aging-related sleep fragmentation is a generalized phenomenon. Results We compared 3 short sleeping mutant lines (Hk1, HkY and Hk2 carrying a mutation in Hyperkinetic, which codes for the beta subunit of the Shaker channel, to wild-type siblings throughout their entire lifespan (all flies kept at 20°C. Hk1 and HkY mutants were short sleeping relative to wild-type controls from day 3 after eclosure, and Hk2 flies became short sleepers about two weeks later. All 3 Hk mutant lines had reduced lifespan relative to wild-type flies. Total sleep time showed a trend to increase in all lines with age, but the effect was most pronounced in Hk1 and HkY flies. In both mutant and wild-type lines sleep quality did not decay with age, but the strong preference for sleep at night declined starting in "middle age". Using Cox regression analysis we found that in Hk1 and HkY mutants and their control lines there was a negative relationship between total sleep amount during the first 2 and 4 weeks of age and hazard (individual risk of death, while no association was found in Hk2 flies and their wild-type controls. Hk1 and HkY mutants and their control lines also showed an

  5. Cas9-Mediated Genome Engineering in Drosophila melanogaster.

    Science.gov (United States)

    Housden, Benjamin E; Perrimon, Norbert

    2016-01-01

    The recent development of the CRISPR-Cas9 system for genome engineering has revolutionized our ability to modify the endogenous DNA sequence of many organisms, including Drosophila This system allows alteration of DNA sequences in situ with single base-pair precision and is now being used for a wide variety of applications. To use the CRISPR system effectively, various design parameters must be considered, including single guide RNA target site selection and identification of successful editing events. Here, we review recent advances in CRISPR methodology in Drosophila and introduce protocols for some of the more difficult aspects of CRISPR implementation: designing and generating CRISPR reagents and detecting indel mutations by high-resolution melt analysis. PMID:27587786

  6. Circadian Organization of Behavior and Physiology in Drosophila

    Science.gov (United States)

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this “simple” model organism. PMID:20148690

  7. Drosophila melanogaster as a Model Organism of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Werner Paulus

    2009-02-01

    Full Text Available Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.

  8. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    Science.gov (United States)

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues. PMID:20012830

  9. A Drosophila model of high sugar diet-induced cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jianbo Na

    Full Text Available Diets high in carbohydrates have long been linked to progressive heart dysfunction, yet the mechanisms by which chronic high sugar leads to heart failure remain poorly understood. Here we combine diet, genetics, and physiology to establish an adult Drosophila melanogaster model of chronic high sugar-induced heart disease. We demonstrate deterioration of heart function accompanied by fibrosis-like collagen accumulation, insulin signaling defects, and fat accumulation. The result was a shorter life span that was more severe in the presence of reduced insulin and P38 signaling. We provide evidence of a role for hexosamine flux, a metabolic pathway accessed by glucose. Increased hexosamine flux led to heart function defects and structural damage; conversely, cardiac-specific reduction of pathway activity prevented sugar-induced heart dysfunction. Our data establish Drosophila as a useful system for exploring specific aspects of diet-induced heart dysfunction and emphasize enzymes within the hexosamine biosynthetic pathway as candidate therapeutic targets.

  10. Substrate vibrations during courtship in three Drosophila species.

    Science.gov (United States)

    Mazzoni, Valerio; Anfora, Gianfranco; Virant-Doberlet, Meta

    2013-01-01

    While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication. PMID:24260459

  11. Drosophila neuroligin 4 regulates sleep through modulating GABA transmission.

    Science.gov (United States)

    Li, Yi; Zhou, Zikai; Zhang, Xinwang; Tong, Huawei; Li, Peipei; Zhang, Zi Chao; Jia, Zhengping; Xie, Wei; Han, Junhai

    2013-09-25

    Sleep is an essential and evolutionarily conserved behavior that is closely related to synaptic function. However, whether neuroligins (Nlgs), which are cell adhesion molecules involved in synapse formation and synaptic transmission, are involved in sleep is not clear. Here, we show that Drosophila Nlg4 (DNlg4) is highly expressed in large ventral lateral clock neurons (l-LNvs) and that l-LNv-derived DNlg4 is essential for sleep regulation. GABA transmission is impaired in mutant l-LNv, and sleep defects in dnlg4 mutant flies can be rescued by genetic manipulation of GABA transmission. Furthermore, dnlg4 mutant flies exhibit a severe reduction in GABAA receptor RDL clustering, and DNlg4 associates with RDLs in vivo. These results demonstrate that DNlg4 regulates sleep through modulating GABA transmission in l-LNvs, which provides the first known link between a synaptic adhesion molecule and sleep in Drosophila. PMID:24068821

  12. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila

    Directory of Open Access Journals (Sweden)

    Ryuichi Yamada

    2015-02-01

    Full Text Available Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

  13. Awakening to the behavioral analysis of sleep in Drosophila.

    Science.gov (United States)

    Shaw, Paul

    2003-02-01

    Perhaps the most observable of the many circadian oscillations that have been described in both vertebrate and invertebrate animals is the daily alterations in periods of rest and activity. Recent studies in the fruit fly Drosophila melanogaster suggest that these periods of inactivity are not simply rest but share many of the fundamental components that define mammalian sleep. Thus, quiescent episodes are characterized by reduced awareness of the environment and are homeostatically regulated. Although this field is in its infancy, recent studies have focused on the interaction between circadian and homeostatic processes. These results indicate that components of the circadian clock may play a substantial role in mechanisms underlying sleep homeostasis at the molecular level. In this article, the author reviews recent advances obtained using Drosophila as a model system to elucidate fundamental components of sleep regulation. PMID:12568240

  14. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila

    Indian Academy of Sciences (India)

    Yuuichi Seki; Teiichi Tanimura

    2014-09-01

    A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf01) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.

  15. Substrate vibrations during courtship in three Drosophila species.

    Directory of Open Access Journals (Sweden)

    Valerio Mazzoni

    Full Text Available While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication.

  16. A quantitative method to analyze Drosophila pupal eye patterning.

    Directory of Open Access Journals (Sweden)

    Ruth I Johnson

    Full Text Available BACKGROUND: The Drosophila pupal eye has become a popular paradigm for understanding morphogenesis and tissue patterning. Correct rearrangement of cells between ommatidia is required to organize the ommatidial array across the eye field. This requires cell movement, cell death, changes to cell-cell adhesion, signaling and fate specification. METHODOLOGY: We describe a method to quantitatively assess mis-patterning of the Drosophila pupal eye and objectively calculate a 'mis-patterning score' characteristic of a specific genotype. This entails step-by-step scoring of specific traits observed in pupal eyes dissected 40-42 hours after puparium formation and subsequent statistical analysis of this data. SIGNIFICANCE: This method provides an unbiased quantitative score of mis-patterning severity that can be used to compare the impact of different genetic mutations on tissue patterning.

  17. Genetic components affecting embryonic developmental time of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nascimento Jurema Cruz do

    2002-01-01

    Full Text Available The developmental time of the embryonic stage of Drosophila melanogaster was 21.66% faster and 14.75% slower than controls in populations selected for fast and slow developmental speed, respectively. The genetic model with two main loci with dominant and additive effect added to maternal effect and their relevant interactions can explain 96% of the phenotypic variability in the embryonic developmental time according to 14 crossing progenies involving fast and slow flies.

  18. Geographic polymorphism of P element in populations of Drosophila sturtevanti

    Directory of Open Access Journals (Sweden)

    Luciane M. de Almeida

    2003-01-01

    Full Text Available The aim of this report was to detect full-sized P element sequences in eight strains of Drosophila sturtevanti populations from distant geographic regions and to assess the structural geographic variation among P element sequences. PCR analysis confirmed the presence of a putative complete P element in all strains. Southern blot analysis indicated bands shared by all strains, and bands restricted to geographically related strains. Parsimony analysis corroborated the hybridization pattern that reflected the geographic relationships.

  19. Automated protein-DNA interaction screening of Drosophila regulatory elements

    OpenAIRE

    Hens, Korneel; Feuz, Jean-Daniel; Isakova, Alina; Iagovitina, Antonina; Massouras, Andreas; Bryois, Julien; Callaerts, Patrick; Celniker, Susan E.; Deplancke, Bart

    2011-01-01

    Drosophila melanogaster has one of the best characterized metazoan genomes in terms of functionally annotated regulatory elements. To explore how these elements contribute to gene regulation in the context of gene regulatory networks, we need convenient tools to identify the proteins that bind to them. Here, we present the development and validation of a highly automated protein-DNA interaction detection method, enabling the high-throughput yeast one-hybrid-based screening of DNA elements ver...

  20. Experimental evolution of olfactory memory in Drosophila melanogaster

    OpenAIRE

    Mery, Frederic; Pont, Juliette; Preat, Thomas; Kawecki, Tadeusz J.

    2007-01-01

    In order to address the nature of genetic variation in learning performance, we investigated the response to classical olfactory conditioning in "high-learning" Drosophila melanogaster lines previously subject to selection for the ability to learn an association between the flavor of an oviposition medium and bitter taste. In a T-maze choice test, the seven high-learning lines were better at avoiding an odor previously associated with aversive mechanical shock than were five unselected "low-l...

  1. Genetic approaches to study aging in Drosophila melanogaster

    OpenAIRE

    Poirier, Luc; Seroude, Laurent

    2005-01-01

    The process of aging can be described as a progressive decline in an organism's function that invariably results in death. This decline results from the activities of intrinsic genetic factors within an organism. The relative contributions of the biological and environmental components to senescence are hard to measure, however different strategies have been devised in Drosophila melanogaster to isolate and identify genetic influences on aging. These strategies include selective breeding, qua...

  2. Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster.

    OpenAIRE

    Gronemeyer, H; Pongs, O

    1980-01-01

    Ecdysterone has been crosslinked in situ to polytene chromosomes of salivary glands of Drosophila melanogaster by photoactivation. The crosslinked hormone has been localized on the chromosomes by indirect immunofluorescence microscopy. At different developmental stages the hormone was detected at different chromosomal loci. These chromosomal sites correspond to ecdysterone-inducible puff sites. Thus, the hormone binds directly to chromosomal loci, whose transcription depends on the presence o...

  3. Modeling the genetic basis for human sleep disorders in Drosophila

    OpenAIRE

    Freeman, Amanda A.H.; Syed, Sheyum; Sanyal, Subhabrata

    2013-01-01

    Sleep research in Drosophila is not only here to stay, but is making impressive strides towards helping us understand the biological basis for and the purpose of sleep—perhaps one of the most complex and enigmatic of behaviors. Thanks to over a decade of sleep-related studies in flies, more molecular methods are being applied than ever before towards understanding the genetic basis of sleep disorders. The advent of high-throughput technologies that can rapidly interrogate whole genomes, epige...

  4. Targeting cyclin-dependent kinases in Drosophila with peptide aptamers

    OpenAIRE

    Kolonin, Mikhail G.; Finley, Russell L.

    1998-01-01

    Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, ...

  5. A cost of long-term memory in Drosophila

    OpenAIRE

    Mery, Frederic; Kawecki, Tadeusz J

    2005-01-01

    Two distinct forms of consolidated associative memory are known in Drosophila: long-term memory and so-called anesthesia-resistant memory. Long-term memory is more stable, but unlike anesthesia-resistant memory, its formation requires protein synthesis. We show that flies induced to form long-term memory become more susceptible to extreme stress (such as desiccation). In contrast, induction of anesthesia-resistant memory had no detectable effect on desiccation resistance. This finding may hel...

  6. Organically Grown Food Provides Health Benefits to Drosophila melanogaster

    OpenAIRE

    Ria Chhabra; Santharam Kolli; Bauer, Johannes H.

    2013-01-01

    The "organic food" market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas...

  7. Distinct Biochemical Activities of Eyes absent During Drosophila Eye Development

    OpenAIRE

    Meng Jin; Graeme Mardon

    2016-01-01

    Eyes absent (Eya) is a highly conserved transcriptional coactivator and protein phosphatase that plays vital roles in multiple developmental processes from Drosophila to humans. Eya proteins contain a PST (Proline-Serine-Threonine)-rich transactivation domain, a threonine phosphatase motif (TPM), and a tyrosine protein phosphatase domain. Using a genomic rescue system, we find that the PST domain is essential for Eya activity and Dac expression, and the TPM is required for full Eya function. ...

  8. Layered reward signalling through octopamine and dopamine in Drosophila

    OpenAIRE

    Burke, Christopher J.; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J.; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-01-01

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neur...

  9. Growing Pains: Development of the Larval Nocifensive Response in Drosophila

    OpenAIRE

    Sulkowski, Mikolaj J.; Kurosawa, Mathieu S.; OX, DANIEL N.

    2011-01-01

    The ability to perceive and avoid harmful substances or stimuli is key to an organism’s survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advant...

  10. Drosophila comet assay: insights, uses, and future perspectives

    OpenAIRE

    Gaivão, Isabel; Sierra, L. María

    2014-01-01

    The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has...

  11. Migration of Drosophila intestinal stem cells across organ boundaries

    OpenAIRE

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this p...

  12. The Identification of Congeners and Aliens by Drosophila Larvae

    OpenAIRE

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Medina-Muñoz, María Cristina; Alvarez, Eduardo; Godoy-Herrera, Raúl

    2015-01-01

    We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species....

  13. The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability.

    OpenAIRE

    Schweers, Brett A; Walters, Karina J; Stern, Michael

    2002-01-01

    Maintenance of proper neuronal excitability is vital to nervous system function and normal behavior. A subset of Drosophila mutants that exhibit altered behavior also exhibit defective motor neuron excitability, which can be monitored with electrophysiological methods. One such mutant is the P-element insertion mutant bemused (bem). The bem mutant exhibits female sterility, sluggishness, and increased motor neuron excitability. The bem P element is located in the large intron of the previousl...

  14. Minocycline Effect on Life and Health Span of Drosophila Melanogaster

    OpenAIRE

    Oxenkrug, Gregory; Navrotskaya, Valeriya; Vorobyova, Lyudmila; Summergrad, Paul

    2012-01-01

    Up-regulation of kynurenine (KYN) pathway of tryptophan (TRP) was suggested as one of the mechanisms of aging and aging-associated disorders. Genetic and pharmacological impairment of TRP – KYN metabolism resulted in prolongation of life span in Drosophila models. Minocycline, an antibiotic with anti-inflammatory, antioxidant and neuroprotective properties independent of its antibacterial activity, inhibited KYN formation from TRP. Since minocycline is the only FDA approved for human use medi...

  15. Candidate Transcriptomic Sources of Inbreeding Depression in Drosophila melanogaster

    OpenAIRE

    Garcia, Carlos; Avila, Victoria; Quesada, Humberto; Caballero, Armando

    2013-01-01

    The genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress induced by increased homozygosity due to inbreeding. Attempting to differentiate causes from responses, we made a c-DNA microarray analysis of inbreeding depression in Drosophila melanogaster. The rational...

  16. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  17. Image Enhancement for Tracking the Translucent Larvae of Drosophila melanogaster

    OpenAIRE

    Khurana, Sukant; Li, Wen-Ke; Atkinson, Nigel S.

    2010-01-01

    Drosophila melanogaster larvae are model systems for studies of development, synaptic transmission, sensory physiology, locomotion, drug discovery, and learning and memory. A detailed behavioral understanding of larvae can advance all these fields of neuroscience. Automated tracking can expand fine-grained behavioral analysis, yet its full potential remains to be implemented for the larvae. All published methods are unable to track the larvae near high contrast objects, including the petri-di...

  18. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems

    OpenAIRE

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E; Tearney, Guillermo J.

    2010-01-01

    SUMMARY The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence ...

  19. Drosophila melanogaster as a Model Organism of Brain Diseases

    OpenAIRE

    Werner Paulus; Astrid Jeibmann

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases...

  20. Morphometric analysis of Huntington's disease neurodegeneration in Drosophila

    OpenAIRE

    Song, W.; Smith Dell; Syed, A.; Lukacsovich, T; Barbaro, BA; Purcell, J.; Bornemann, DJ; J. Burke; Marsh, JL

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The HD gene encodes the huntingtin protein (HTT) that contains polyglutamine tracts of variable length. Expansions of the CAG repeat near the amino terminus to encode 40 or more glutamines (polyQ) lead to disease. At least eight other expanded polyQ diseases have been described [1]. HD can be faithfully modeled in Drosophila with the key features of the disease such as late onset, slowly progressing degeneration, f...

  1. Sexual experience affects ethanol intake in Drosophila through Neuropeptide F

    OpenAIRE

    Shohat-Ophir, G.; Kaun, K.R.; Azanchi, R.; Mohammed, H.; Heberlein, U.

    2012-01-01

    The brain's reward systems evolved to reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we use Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased Neuropeptide F (NPF) levels, whereas sexual deprivation reduced NPF. Activation or inhibition of the NPF system in turn enhanced or reduced ethanol...

  2. Higher dopamine level enhances male-male courtship in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ On May 21 2008, Journal of Neuroscience published an online paper from the Institute of Neuroscience, the CAS Shanghai Institutes for Biological Sciences, entitled "Increased dopamine level enhances male-male courtship in Drosophila." This work was done by Mr. LIU Tong, a doctoral candidate, and colleagues under the supervision of Dr. GUO Aike, and in collaboration with Dr. Jean-Francois Ferveur from France.

  3. Different baits and bait amendments to attract Drosophila suzukii

    OpenAIRE

    Cahenzli, Fabian; Daniel, Claudia

    2016-01-01

    Drosophila suzukii is a major pest of soft fruits. Baited traps are widely used for monitoring and mass trapping: different commercial baits, different recipes for home-made baits as well as several literature references on attractive compounds are available. In a series of 15 laboratory experiments we compared the attractiveness of different baits for D. suzukii: the commercially available Dros’attract (Biobest Belgium NV) and the Gasser-bait (Biologische Becherfalle für die Kirschessigf...

  4. Drosophila suzukii: The Genetic Footprint of a Recent, Worldwide Invasion

    OpenAIRE

    Adrion, Jeffrey R.; Kousathanas, Athanasios; Pascual, Marta; Burrack, Hannah J.; Haddad, Nick M.; Bergland, Alan O.; Machado, Heather; Sackton, Timothy B.; Schlenke, Todd A.; Watada, Masayoshi; Wegmann, Daniel; Singh, Nadia D.

    2014-01-01

    Native to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here, we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States. We sequenced six X-linked gene fragments from 246 individuals collected from a total of 12 populati...

  5. Substrate Vibrations during Courtship in Three Drosophila species

    OpenAIRE

    Mazzoni, Valerio; Anfora, Gianfranco; Virant-Doberlet, Meta

    2013-01-01

    While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of ...

  6. Preliminary Screening of Potential Control Products against Drosophila suzukii

    OpenAIRE

    Andrew G. S. Cuthbertson; Collins, Debbie A.; Lisa F. Blackburn; Neil Audsley; Bell, Howard A.

    2014-01-01

    The first recording of Drosophila suzukii in the UK occurred in the south of England during August 2012. Since then sticky traps have continued to record the presence of individuals. Several products (both chemical and biological) were investigated for their efficacy against different life-stages of the pest. Both direct and indirect exposure to control products was assessed. Spinosad, chlorantraniliprole and the experimental product, TA2674, showed excellent potential as control agents when ...

  7. Efficacy of Commercially Available Invertebrate Predators against Drosophila suzukii

    OpenAIRE

    Andrew G. S. Cuthbertson; Lisa F. Blackburn; Neil Audsley

    2014-01-01

    Drosophila suzukii has been recorded in the UK since the end of 2012. To date, reports of serious damage have been rare. Previous research has demonstrated that there are chemicals available within the UK that are efficient in dealing with D. suzukii. However, few effective chemicals for use by the organic sector have been identified; equally the addition of “new” insecticides into previously stable ecosystems can have negative impacts upon natural enemies and so disrupt control strategies th...

  8. Further studies of the engrailed phenotype in Drosophila.

    OpenAIRE

    Lawrence, P. A.; Struhl, G

    1982-01-01

    Although most mutations at the engrailed locus of Drosophila cause embryonic death when homozygous, they are viable in clones of cells. We describe the phenotype of such clones in the eye-antenna, proboscis, humerus, wing, legs, and terminalia. When in anterior compartments the clones are normal, but in most posterior compartments they are abnormal and fail to respect the anteroposterior compartment boundary. We find that the yield of engrailed-lethal clones in posterior compartments is often...

  9. Organically Grown Food Provides Health Benefits to Drosophila melanogaster

    OpenAIRE

    Chhabra, Ria; Kolli, Santharam; Bauer, Johannes H.

    2013-01-01

    The “organic food” market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas...

  10. Drosophila G9a Is a Nonessential Gene

    OpenAIRE

    Seum, Carole; Bontron, Séverine; Reo, Emanuela; Delattre, Marion; Spierer, Pierre

    2007-01-01

    Mammalian G9a is a euchromatic histone H3 lysine 9 (H3K9) methyltransferase essential for development. Here, we characterize the Drosophila homolog of G9a, dG9a. We generated a dG9a deletion allele by homologous recombination. Analysis of this allele revealed that, in contrast to recent findings, dG9a is not required for fly viability.

  11. GSK-3/Shaggy regulates olfactory habituation in Drosophila

    OpenAIRE

    Wolf, Fred W; Eddison, Mark; Lee, Seonok; Cho, William; Heberlein, Ulrike

    2007-01-01

    Habituation is a universal form of nonassociative learning that results in the devaluation of sensory inputs that have little information content. Although habituation is found throughout nature and has been studied in many organisms, the underlying molecular mechanisms remain poorly understood. We performed a forward genetic screen in Drosophila to search for mutations that modified habituation of an olfactory-mediated locomotor startle response, and we isolated a mutation in the glycogen sy...

  12. Modeling Novelty Habituation During Exploratory Activity in Drosophila

    OpenAIRE

    Soibam, Benjamin; Shah, Shishir; Gunaratne, Gemunu H.; Roman, Gregg W.

    2013-01-01

    Habituation is a common form of non-associative learning in which the organism gradually decreases its response to repeated stimuli. The decrease in exploratory activity of many animal species during exposure to a novel open field arena is a widely studied habituation paradigm. However, a theoretical framework to quantify how the novelty of the arena is learned during habituation is currently missing. Drosophila melanogaster display a high mean absolute activity and a high probability for dir...

  13. Glial cell development and function in the Drosophila visual system

    OpenAIRE

    CHOTARD, CAROLE; Salecker, Iris

    2007-01-01

    In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron–neuron and neuron–glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefo...

  14. Distinct molecular underpinnings of Drosophila olfactory trace conditioning

    OpenAIRE

    Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi

    2011-01-01

    Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase...

  15. Extremes of Lineage Plasticity in the Drosophila Brain

    OpenAIRE

    Lin, Suewei; Marin, Elizabeth C.; Yang, Ching-Po; Kao, Chih-Fei; Apenteng, Bettye A.; Huang, Yaling; O’Connor, Michael B.; Truman, James W.; Lee, Tzumin

    2013-01-01

    An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development [1]. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depen...

  16. Transcript length mediates developmental timing of gene expression across Drosophila

    OpenAIRE

    Artieri, Carlo G.; Fraser, Hunter B.

    2013-01-01

    The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we used Drosophila developmental timecourse expression data to test whether intron delay affects gene expression genome-wide, and to determine its consequences for the evolution of gene structure. We find that long zygotically expressed,...

  17. Transcriptional control of stem cell maintenance in the Drosophila intestine

    OpenAIRE

    Bardin, Allison J.; Perdigoto, Carolina N.; Southall, Tony D.; Brand, Andrea H; Schweisguth, François

    2010-01-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhan...

  18. Two muscle-specific LIM proteins in Drosophila

    OpenAIRE

    1996-01-01

    The LIM domain defines a zinc-binding motif found in a growing number of eukaryotic proteins that regulate cell growth and differentiation during development. Members of the cysteine-rich protein (CRP) family of LIM proteins have been implicated in muscle differentiation in vertebrates. Here we report the identification and characterization of cDNA clones encoding two members of the CRP family in Drosophila, referred to as muscle LIM proteins (Mlp). Mlp60A encodes a protein with a single LIM ...

  19. Sensory integration regulating male courtship behavior in Drosophila

    OpenAIRE

    D Krstic; Boll, W; M. Noll

    2009-01-01

    The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing...

  20. Multimodal Chemosensory Integration through the Maxillary Palp in Drosophila

    OpenAIRE

    Shiraiwa, Takashi

    2008-01-01

    Drosophila melanogaster has an olfactory organ called the maxillary palp. It is smaller and numerically simpler than the antenna, and its specific role in behavior has long been unclear. Because of its proximity to the mouthparts, I explored the possibility of a role in taste behavior. Maxillary palp was tuned to mediate odor-induced taste enhancement: a sucrose solution was more appealing when simultaneously presented with the odorant 4-methylphenol. The same result was observed with other o...

  1. Gap junctional communication compartments in the Drosophila wing disk.

    OpenAIRE

    Weir, M P; Lo, C.W.

    1982-01-01

    We have examined the gap junctional communication properties of cells in the wing imaginal disk of Drosophila, using intracellular injection of the fluorescent dye tracer Lucifer Yellow. The cell-to-cell passage of Lucifer Yellow is restricted at a boundary line that divides the wing disk into halves. We refer to each half as a "communication compartment" because there is a high level of gap junctional exchange within a compartment and much lower exchange between compartments. Comparison of t...

  2. Drosophila melanogaster as a model for basal body research

    OpenAIRE

    Jana, Swadhin Chandra; Bettencourt-Dias, Mónica; Durand, Bénédicte; Timothy L. Megraw

    2016-01-01

    The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various...

  3. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar Gummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance”, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  4. A role for adenosine deaminase in Drosophila larval development

    Czech Academy of Sciences Publication Activity Database

    Doležal, T.; Doleželová, Eva; Žurovec, Michal; Bryant, P. J.

    2005-01-01

    Roč. 3, č. 7 (2005), s. 1213-1224. ISSN 1544-9173 R&D Projects: GA ČR(CZ) GA204/04/1205; GA AV ČR(CZ) IAA5007107 Grant ostatní: United States National Science Foundation(US) 440860-21565 Institutional research plan: CEZ:AV0Z50070508 Keywords : Drosophila Subject RIV: ED - Physiology Impact factor: 14.672, year: 2005

  5. Drosophila lowfat, a novel modulator of Fat signaling

    OpenAIRE

    Mao, Yaopan; Kucuk, Binnaz; Irvine, Kenneth D.

    2009-01-01

    The Fat-Hippo-Warts signaling network regulates both transcription and planar cell polarity. Despite its crucial importance to the normal control of growth and planar polarity, we have only a limited understanding of the mechanisms that regulate Fat. We report here the identification of a conserved cytoplasmic protein, Lowfat (Lft), as a modulator of Fat signaling. Drosophila Lft, and its human homologs LIX1 and LIX1-like, bind to the cytoplasmic domains of the Fat lig...

  6. P Transposable Elements in Drosophila and other Eukaryotic Organisms.

    Science.gov (United States)

    Majumdar, Sharmistha; Rio, Donald C

    2015-04-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins. PMID:26104714

  7. Recent advances in using Drosophila to model neurodegenerative diseases

    OpenAIRE

    Lu, Bingwei

    2009-01-01

    Neurodegenerative diseases are progressive disorders of the nervous system that affect the function and maintenance of specific neuronal populations. Most disease cases are sporadic with no known cause. The identification of genes associated with familial cases of these diseases has enabled the development of animal models to study disease mechanisms. The model organism Drosophila has been successfully used to study pathogenic mechanisms of a wide range of neurodegenerative diseases. Recent g...

  8. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    OpenAIRE

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translat...

  9. Intestinal stem cell function in Drosophila and Mice

    OpenAIRE

    Jiang, Huaqi; Edgar, Bruce A.

    2012-01-01

    Epithelial cells of the digestive tracts of most animals are short-lived, and are constantly replenished by the progeny of long-lived, resident intestinal stem cells. Proper regulation of intestinal stem cell maintenance, proliferation and differentiation is critical for maintaining gut homeostasis. Here we review recent genetic studies of stem cell-mediated homeostatic growth in the Drosophila midgut and the mouse small intestine, highlighting similarities and differences in the mechanisms t...

  10. Thorax Injury Lowers Resistance to Infection in Drosophila melanogaster

    OpenAIRE

    Chambers, Moria C.; Jacobson, Eliana; Khalil, Sarah; Lazzaro, Brian P.

    2014-01-01

    The route of infection can profoundly affect both the progression and outcome of disease. We investigated differences in Drosophila melanogaster defense against infection after bacterial inoculation into two sites—the abdomen and the thorax. Thorax inoculation results in increased bacterial proliferation and causes high mortality within the first few days of infection. In contrast, abdomen inoculation results in minimal mortality and lower bacterial loads than thorax inoculation. Inoculation ...

  11. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER

    OpenAIRE

    Rama S Singh; Hickey, Donal A; David, Jean

    1982-01-01

    We have studied allozyme variation at 26 gene loci in nine populations of Drosophila melanogaster originating on five different continents. The distant populations show significant genetic differentiation. However, only half of the loci studied have contributed to this differentiation; the other half show identical patterns in all populations. The genetic differentiation in North American, European and African populations is correlated with the major climatic differences between north and sou...

  12. Imaging mass spectrometry of cuticular lipids of Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Kaftan, Filip; Vrkoslav, Vladimír; Cvačka, Josef; Svatoš, A.

    Prague: Charles University in Prague, Faculty of Science, 2011 - (Nesměrák, K.), s. 37-38 ISBN 978-80-7444-010-6. [International Students Conference "Modern Analytical Chemistry" /7./. Prague (CZ), 29.09.2011-30.09.2011] R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : cuticular lipids * Drosophila melanogaster * lithium 2,5-dihydroxybenzoate matrix * MALDI imaging Subject RIV: CC - Organic Chemistry

  13. Notch signaling in Drosophila long-term memory formation

    OpenAIRE

    Ge, Xuecai; Hannan, Frances; Xie, Zuolei; Feng, Chunhua; Tully, Tim; Zhou, Haimeng; Xie, Zuoping; Zhong, Yi

    2004-01-01

    Notch (N) is a cell surface receptor that mediates an evolutionarily ancient signaling pathway to control an extraordinarily broad spectrum of cell fates and developmental processes. To gain insights into the functions of N signaling in the adult brain, we examined the involvement of N in Drosophila olfactory learning and memory. Long-term memory (LTM) was disrupted by blocking N signaling in conditional mutants or by acutely induced expression of a dominant-negative N transgene. In contrast,...

  14. Multiple gustatory receptors required for the caffeine response in Drosophila

    OpenAIRE

    Lee, Youngseok; Moon, Seok Jun; Montell, Craig

    2009-01-01

    The ability of insects to detect and avoid ingesting naturally occurring repellents and insecticides is essential for their survival. Nevertheless, the gustatory receptors enabling them to sense toxic botanical compounds are largely unknown. The only insect gustatory receptor shown to be required for avoiding noxious compounds is the Drosophila caffeine receptor, Gr66a. However, this receptor is not sufficient for the caffeine response, suggesting that Gr66a may be a subunit of a larger recep...

  15. Maintaining the Brain: Insight into Human Neurodegeneration From Drosophila Mutants

    OpenAIRE

    Lessing, Derek; Bonini, Nancy M.

    2009-01-01

    The fruit fly Drosophila melanogaster has brought significant advances to research in neurodegenerative disease, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult-onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mouse or human that are also associated with neurod...

  16. Metabolic effects of CO2 anaesthesia in Drosophila melanogaster

    OpenAIRE

    Colinet, H.; Renault, D.

    2012-01-01

    Immobilization of insects is necessary for various experimental purposes, and CO2 exposure remains the most popular anaesthetic method in entomological research. A number of negative side effects of CO2 anaesthesia have been reported, but CO2 probably brings about metabolic modifications that are poorly known. In this work, we used GC/MS-based metabolic fingerprinting to assess the effect of CO2 anaesthesia in Drosophila melanogaster adults. We analysed metabolic variation of flies submitted ...

  17. Quantitative Genetic Analysis of Sleep in Drosophila melanogaster

    OpenAIRE

    Harbison, Susan T; Sehgal, Amita

    2008-01-01

    Although intensively studied, the biological purpose of sleep is not known. To identify candidate genes affecting sleep, we assayed 136 isogenic P-element insertion lines of Drosophila melanogaster. Since sleep has been negatively correlated with energy reserves across taxa, we measured energy stores (whole-body protein, glycogen, and triglycerides) in these lines as well. Twenty-one insertions with known effects on physiology, development, and behavior affect 24-hr sleep time. Thirty-two can...

  18. Odour avoidance learning in the larva of Drosophila melanogaster

    Indian Academy of Sciences (India)

    Sukant Khurana; Mohammed Bin AbuBaker; Obaid Siddiqi

    2009-10-01

    Drosophila larvae can be trained to avoid odours associated with electric shock. We describe here, an improved method of aversive conditioning and a procedure for decomposing learning retention curve that enables us to do a quantitative analysis of memory phases, short term (STM), middle term (MTM) and long term (LTM) as a function of training cycles. The same method of analysis when applied to learning mutants dunce, amnesiac, rutabaga and radish reveals memory deficits characteristic of the mutant strains.

  19. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse

    OpenAIRE

    Khodor, Yevgenia L.; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-01-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. It has been shown that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, the authors analyzed a recently generated, high-throughput sequencing data set of mouse liver nascent RNA. Cotranscriptional splicing is approximately twofold l...

  20. Centrocortin Cooperates with Centrosomin to Organize Drosophila Embryonic Cleavage Furrows

    OpenAIRE

    Kao, Ling-Rong; Timothy L Megraw

    2009-01-01

    In the Drosophila early embryo the centrosome coordinates assembly of cleavage furrows [1–3]. Currently, the molecular pathway that links the centrosome and the cortical microfilaments is unknown. In centrosomin (cnn) mutants, where the centriole forms but the centrosome pericentriolar material (PCM) fails to assemble [4, 5], actin microfilaments are not organized into furrows at the syncytial cortex [6]. While CNN is required for centrosome assembly and function [4, 6, 7], little is known of...

  1. Drosophila Conditioned Courtship: Two Ways of Testing Memory

    OpenAIRE

    Kamyshev, Nikolai G; Iliadi, Konstantin G.; Bragina, Julia V.

    1999-01-01

    In Drosophila, courtship reduction in male flies that have previous experience of courting a mated female is a result of the counterconditioning of an attractive unconditioned stimulus (US)—the aphrodisiac—which becomes an aversive conditioned stimulus (CS) after being paired with an aversive US—the antiaphrodisiac. In a retention test with a virgin female lacking the antiaphrodisiac, males retain a lower level of courtship for 3 hr after training. However, a measure of courtship suppression,...

  2. spenito is required for sex determination in Drosophila melanogaster

    OpenAIRE

    Yan, Dong; Perrimon, Norbert

    2015-01-01

    Sex determination is a fundamental biological problem faced by all metazoans. To understand the sex determination pathway, it is important to identify all the genes involved in this process. In this study, we have identified a novel gene, spenito (nito), which is required for sex determination in Drosophila melanogaster. Loss of nito function in the soma transforms female tissues to male, and loss of nito function in female germ-line stem cells changes their sexual identity and prevents them ...

  3. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Viktor Kis

    Full Text Available Lipid droplets (LDs are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp, as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  4. Distinct Biochemical Activities of Eyes absent During Drosophila Eye Development.

    Science.gov (United States)

    Jin, Meng; Mardon, Graeme

    2016-01-01

    Eyes absent (Eya) is a highly conserved transcriptional coactivator and protein phosphatase that plays vital roles in multiple developmental processes from Drosophila to humans. Eya proteins contain a PST (Proline-Serine-Threonine)-rich transactivation domain, a threonine phosphatase motif (TPM), and a tyrosine protein phosphatase domain. Using a genomic rescue system, we find that the PST domain is essential for Eya activity and Dac expression, and the TPM is required for full Eya function. We also find that the threonine phosphatase activity plays only a minor role during Drosophila eye development and the primary function of the PST and TPM domains is transactivation that can be largely substituted by the heterologous activation domain VP16. Along with our previous results that the tyrosine phosphatase activity of Eya is dispensable for normal Eya function in eye formation, we demonstrate that a primary function of Eya during Drosophila eye development is as a transcriptional coactivator. Moreover, the PST/TPM and the threonine phosphatase activity are not required for in vitro interaction between retinal determination factors. Finally, this work is the first report of an Eya-Ey physical interaction. These findings are particularly important because they highlight the need for an in vivo approach that accurately dissects protein function. PMID:26980695

  5. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Park

    Full Text Available The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF, locustatachykinin (LTK, and diuretic hormone 31 (DH31. RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  6. A development-based compartmentalization of the Drosophila central brain

    Science.gov (United States)

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells, as well as long neurite fascicles. These fascicles are formed during the larval period when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. In this paper we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to directly compare compartments of the larval and adult brain. Most adult compartments can be recognized already in the early larval brain where they form a “protomap” of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms. PMID:20533357

  7. Development-based compartmentalization of the Drosophila central brain.

    Science.gov (United States)

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-08-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells as well as long neurite fascicles. These fascicles are formed during the larval period, when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. Here we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to compare compartments of the larval and adult brain directly. Most adult compartments can be recognized already in the early larval brain, where they form a "protomap" of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early-acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms. PMID:20533357

  8. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  9. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles.

    Directory of Open Access Journals (Sweden)

    Claude Everaerts

    Full Text Available Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs, or at a longer distance (cis-vaccenyl acetate, cVA, affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i to identify 59 cuticular compounds, including 17 new CHs; (ii to precisely quantify the amount of each compound that could be detected by another fly, and (iii to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila.

  10. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y2wsup(a)/y2wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  11. Pupariation site preference within and between Drosophila sibling species.

    Science.gov (United States)

    Erezyilmaz, Deniz F; Stern, David L

    2013-09-01

    Holometabolous insects pass through a sedentary pupal stage and often choose a location for pupation that is different from the site of larval feeding. We have characterized a difference in pupariation site choice within and between sibling species of Drosophila. We found that, in nature, Drosophila sechellia pupariate within their host fruit, Morinda citrifolia, and that they perform this behavior in laboratory assays. In contrast, in the laboratory, geographically diverse strains of Drosophila simulans vary in their pupariation site preference; D. simulans lines from the ancestral range in southeast Africa pupariate on fruit, or a fruit substitute, whereas populations from Europe or the New World select sites off of fruit. We explored the genetic basis for the evolved preference in puariation site preference by performing quantitative trait locus mapping within and between species. We found that the interspecific difference is controlled largely by loci on chromosomes X and II. In contrast, variation between two strains of D. simulans appears to be highly polygenic, with the majority of phenotypic effects due to loci on chromosome III. These data address the genetic basis of how new traits arise as species diverge and populations disperse. PMID:24033178

  12. Antimutagenic Profile of Antioxidant Vitamins in Drosophila Mulation Test

    Institute of Scientific and Technical Information of China (English)

    P.K.KHAN; S.P.SINHA

    2008-01-01

    Objective To assess the antimutagenicity of antioxidant vitamins(vitamins A,C,and E)as expressed by their efficacy to of X-chromosome linked recessive lethal mutations(XRLMs)in Drosophila.Larvae were exposed to dietary concentration of aflatoxins and/or the human therapeutic doses of any ofthe three antioxidant vitamins. Absence of normal eyedmales among M2 progeny gave an indication of mutation induction. Results Aflatoxin supplimentation significantly increased the incidence of XRLMs in Drosophila.Mutation frequency was also raised a little above the control level in case of vitamin treatment.However,notable mitigation in mutation frequency was registered when aflatoxin-treated larvae were concomitantly fed with any of the three antioxidant vitamins.Conclusion Aflatoxin exposure can enhance the frequency of gene mutation in Drosophila which is significantly lowered by each of the three antioxidant vitamins.The degree of amelioration produced by them is almost identical.This mitigation is based on the scavenging/trapping by antioxidant vitamins of DNA-reactive products (metabolites and radicals)emanating from aflatoxin metabofism.

  13. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    Science.gov (United States)

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion. PMID:27108761

  14. The Hydra FGFR, Kringelchen, partially replaces the Drosophila Heartless FGFR.

    Science.gov (United States)

    Rudolf, Anja; Hübinger, Christine; Hüsken, Katrin; Vogt, Angelika; Rebscher, Nicole; Onel, Susanne-Filiz; Renkawitz-Pohl, Renate; Hassel, Monika

    2013-05-01

    Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl (LG19) mutant. The Hydra FGFR was able to substitute for Heartless in the htl (AB42) null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system. PMID:23111653

  15. Status of research on Drosophila ananassae at global level

    Indian Academy of Sciences (India)

    B. N. Singh; J. P. Yadav

    2015-12-01

    Drosophila, a dipteran insect, has been found to be the best biological model for different kinds of studies. D. melanogaster was first described by Meigen in 1830, is most extensively studied species of the genus Drosophila and a number of investigations employing this species have been documented in areas such as genetics, behaviour, evolution, development, molecular biology, ecology, population biology, etc. Besides D. melanogaster, a number of other species of the genus Drosophila have also been used for different kinds of investigations. Among these, D. ananassae, a cosmopolitan and domestic species endowed with several unusual genetic features, is noteworthy. Described for the first time from Indonesia (Doleschall 1858), this species is commonly distributed in India. Extensive research work on D. ananassae has been done by numerous researchers pertaining to cytology, genetics, mutagenesis, gene mapping, crossing-over in both sexes, population and evolutionary genetics, behaviour genetics, ecological genetics, sexual isolation, fluctuating asymmetry, trade-offs etc. Genome of D. ananassae has also been sequenced. The status of research on D. ananassae at global level is briefly described in this review. Bibliography on this species from different countries worldwide reveals that maximum contribution is from India.

  16. Host plant-driven sensory specialization in Drosophila erecta.

    Science.gov (United States)

    Linz, Jeanine; Baschwitz, Amelie; Strutz, Antonia; Dweck, Hany K M; Sachse, Silke; Hansson, Bill S; Stensmyr, Marcus C

    2013-06-01

    Finding appropriate feeding and breeding sites is crucial for all insects. To fulfil this vital task, many insects rely on their sense of smell. Alterations in the habitat--or in lifestyle--should accordingly also be reflected in the olfactory system. Solid functional evidence for direct adaptations in the olfactory system is however scarce. We have, therefore, examined the sense of smell of Drosophila erecta, a close relative of Drosophila melanogaster and specialist on screw pine fruits (Pandanus spp.). In comparison with three sympatric sibling species, D. erecta shows specific alterations in its olfactory system towards detection and processing of a characteristic Pandanus volatile (3-methyl-2-butenyl acetate, 3M2BA). We show that D. erecta is more sensitive towards this substance, and that the increased sensitivity derives from a numerical increase of one olfactory sensory neuron (OSN) class. We also show that axons from these OSNs form a complex of enlarged glomeruli in the antennal lobe, the first olfactory brain centre, of D. erecta. Finally, we show that 3M2BA induces oviposition in D. erecta, but not in D. melanogaster. The presumed adaptations observed here follow to a remarkable degree those found in Drosophila sechellia, a specialist upon noni fruit, and suggest a general principle for how specialization affects the sense of smell. PMID:23595274

  17. Analysis of resistance and tolerance to virus infection in Drosophila.

    Science.gov (United States)

    Merkling, Sarah H; van Rij, Ronald P

    2015-07-01

    Host defense to virus infection involves both resistance mechanisms that reduce viral burden and tolerance mechanisms that limit detrimental effects of infection. The fruit fly, Drosophila melanogaster, has emerged as a model for identifying and characterizing the genetic basis of resistance and tolerance. This protocol describes how to analyze host responses to virus infection in Drosophila, and it covers the preparation of virus stocks, experimental inoculation of flies and assessment of host survival and virus production, which are indicative of resistance or tolerance. It also provides guidance on how to account for recently identified confounding factors, including natural genetic variation in the pastrel locus and contamination of fly stocks with persistent viruses and the symbiotic bacterium Wolbachia. Our protocol aims to be accessible to newcomers to the field and, although optimized for virus research using Drosophila, some of the techniques could be adapted to other host organisms and/or other microbial pathogens. Preparation of fly stocks requires ∼1 month, virus stock preparation requires 17-20 d, virus injection and survival assays require 10-15 d and virus titration requires 14 d. PMID:26110714

  18. Microcephalin coordinates mitosis in the syncytial Drosophila embryo.

    Science.gov (United States)

    Brunk, Kathrin; Vernay, Bertrand; Griffith, Elen; Reynolds, Natalie L; Strutt, David; Ingham, Philip W; Jackson, Andrew P

    2007-10-15

    Microcephalin (MCPH1) is mutated in primary microcephaly, an autosomal recessive human disorder of reduced brain size. It encodes a protein with three BRCT domains that has established roles in DNA damage signalling and the cell cycle, regulating chromosome condensation. Significant adaptive evolutionary changes in primate MCPH1 sequence suggest that changes in this gene could have contributed to the evolution of the human brain. To understand the developmental role of microcephalin we have studied its function in Drosophila. We report here that Drosophila MCPH1 is cyclically localised during the cell cycle, co-localising with DNA during interphase, but not with mitotic chromosomes. mcph1 mutant flies have a maternal effect lethal phenotype, due to mitotic arrest occurring in early syncytial cell cycles. Mitotic entry is slowed from the very first mitosis in such embryos, with prolonged prophase and metaphase stages; and frequent premature separation as well as detachment of centrosomes. As a consequence, centrosome and nuclear cycles become uncoordinated, resulting in arrested embryonic development. Phenotypic similarities with abnormal spindle (asp) and centrosomin (cnn) mutants (whose human orthologues are also mutated in primary microcephaly), suggest that further studies in the Drosophila embryo may establish a common developmental and cellular pathway underlying the human primary microcephaly phenotype. PMID:17895363

  19. DMPD: Infectious non-self recognition in invertebrates: lessons from Drosophila andother insect models. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476918 Infectious non-self recognition in invertebrates: lessons from Drosophila andother insect...fectious non-self recognition in invertebrates: lessons from Drosophila andother insect models. PubmedID 154...76918 Title Infectious non-self recognition in invertebrates: lessons from Drosophila andother insect

  20. Field Evaluation of an Oviposition Deterrent for Management of Spotted-Wing Drosophila, Drosophila suzukii, and Potential Nontarget Effects.

    Science.gov (United States)

    Wallingford, Anna K; Connelly, Heather L; Dore Brind'Amour, Gabrielle; Boucher, Matthew T; Mafra-Neto, Agenor; Loeb, Greg M

    2016-08-01

    Spotted-wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a polyphagous, invasive pest of small fruits. Current management relies heavily on chemical insecticides, and an effective oviposition deterrent could contribute to alternative management approaches that reduce the need for these chemical insecticides. A novel deployment method for repelling Drosophila suzukii, thereby reducing D. suzukii oviposition in fall-bearing red raspberry, was evaluated in the field. Infestations occurring within 4 d after deployment were significantly lower in 2-m-long plots (Rubus idaeus 'Caroline') treated with the repellent (20% 1-octen-3-ol in specialized pheromone and lure application technology [SPLAT]) compared to control plots (blank SPLAT). Repellent-treated plots had roughly 28.8 and 49.5% fewer offspring reared per gram of fruit than control plots in two experiments, respectively. Nontarget effects were also evaluated in 2-m plot experiments as well as 5- by 5-m plot experiments. There were no differences in the number of parasitic hymenoptera trapped on yellow sticky cards hung in repellent compared to control plots. While there were no differences in the number of visits to raspberry flowers observed by honey bees in repellent versus control plots, the number of visits by bumble bees was greater in repellent plots compared to control plots. Challenges regarding evaporation rates and potential uses for repellents in an integrated pest management program for the control of D. suzukii are discussed. PMID:27247303

  1. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank;

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides, and...

  2. Visual Pattern Memory Requires "Foraging" Function in the Central Complex of "Drosophila"

    Science.gov (United States)

    Wang, Zhipeng; Pan, Yufeng; Li, Weizhe; Jiang, Huoqing; Chatzimanolis, Lazaros; Chang, Jianhong; Gong, Zhefeng; Liu, Li

    2008-01-01

    The role of the "foraging" ("for)" gene, which encodes a cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG), in food-search behavior in "Drosophila" has been intensively studied. However, its functions in other complex behaviors have not been well-characterized. Here, we show experimentally in "Drosophila" that the "for"…

  3. Non-crop plants used as hosts by Drosophila suzukii in Europe

    NARCIS (Netherlands)

    Kenis, Marc; Tonina, Lorenzo; Eschen, René; Sluis, van der Bart; Sancassani, Manuel; Mori, Nicola; Haye, Tim; Helsen, Herman

    2016-01-01

    The invasive spotted wing drosophila Drosophila suzukii, a fruit fly of Asian origin, is a major pest of a wide variety of berry and stone fruits in Europe. One of the characteristics of this fly is its wide host range. A better knowledge of its host range outside cultivated areas is essential to

  4. Modelling Drosophila suzukii populations in response to the environment and management strategies

    Science.gov (United States)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  5. Alightment of Spotted Wing Drosophila (Diptera: Drosophilidae) on Odorless Disks Varying in Color.

    Science.gov (United States)

    Kirkpatrick, D M; McGhee, P S; Hermann, S L; Gut, L J; Miller, J R

    2016-02-01

    Methods for trapping spotted wing drosophila, Drosophila suzukii (Matsmura) (Diptera: Drosophilidae), have not yet been optimized for detecting this devastating pest of soft-skinned fruits. Here, we report outcomes of choice and no-choice laboratory bioassays quantifying the rates of spotted wing drosophila alightment on 5-cm-diameter sticky disks of various colors, but no fruit odors. Red, purple, and black disks captured the most spotted wing drosophila when presented against a white background. Male and female spotted wing drosophila responded identically in these tests. Significantly more D. suzukii were captured on the red and yellow disks than those presenting the corresponding grayscale for that color, proving that D. suzukii perceives colors and not just the level of target brightness. Fluorescent red is the best candidate for trap color, while clear and white are the least desirable. However, when the background was switched to black, all nonfluorescent colors were equally acceptable to spotted wing drosophila, suggesting that background must be specified when reporting spotted wing drosophila color preference. Additional spotted wing drosophila research is justified on the effects of target color against natural backgrounds. PMID:26475826

  6. Developing a new bait for spotted wing Drosophila in organic cherry production

    Science.gov (United States)

    Studies conducted at the USDA Laboratory in Wapato, WA and at Oregon State University were initiated in 2011 to improve the efficacy of an organically-certified formulation of the insecticide spinosad (Entrust®) for control of the spotted wing drosophila, Drosophila suzukii. Our initial approach was...

  7. Spotted Wing Drosophila Host Suitability Index for Several California Fresh Fruits

    Science.gov (United States)

    Spotted wing drosophila (SWD), Drosophila suzukii, was first identified in central California in 2009 and now populates regions of key fruit production, as well as coastal regions surrounding Pacific port terminals. The discriminatory nature of D. suzukii oviposition needs to be established on undam...

  8. Spotted Wing Drosophila, Sparganothis phenology and a new look at the BugFloods

    Science.gov (United States)

    Drosophila suzukii, commonly known as spotted wing drosophila (SWD), does not readily oviposit in cranberries. Following multiple replicated trials using ripe, under-ripe, and over-ripe organic Wisconsin cranberries, SWD females would not (or could not) insert eggs into under-ripe or ripe cranberrie...

  9. Impact of floral feeding on adult Drosophila suzukii survival and nutrient status

    Science.gov (United States)

    Drosophila suzukii, spotted wing drosophila, is a serious pest of small fruits and cherries in many regions of the world. While host usage has been well studied at the ovipositional and larval feeding stages, little is known about the feeding ecology of adults. This study addressed the impact of fee...

  10. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease

    OpenAIRE

    Gratz, Scott J.; Cummings, Alexander M.; Nguyen, Jennifer N.; Hamm, Danielle C.; Donohue, Laura K.; Harrison, Melissa M.; Wildonger, Jill; O’Connor-Giles, Kate M.

    2013-01-01

    We have adapted a bacterial CRISPR RNA/Cas9 system to precisely engineer the Drosophila genome and report that Cas9-mediated genomic modifications are efficiently transmitted through the germline. This RNA-guided Cas9 system can be rapidly programmed to generate targeted alleles for probing gene function in Drosophila.

  11. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    Science.gov (United States)

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involved in Drosophila hematopoiesis, we have conducted a P-element-based genetic screen to isolate mutations that affect embryonic crystal cell development. Using a marker of terminally differentiated crystal cells, we screened 1040 P-element-lethal lines located on the second and third chromosomes and identified 44 individual lines that affect crystal cell development. Identifying novel genes and pathways involved in Drosophila hematopoiesis is likely to provide further insights into mammalian hematopoietic development and disorders. PMID:15454546

  12. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

    Science.gov (United States)

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2016-01-01

    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood. PMID:27500374

  13. Molecular diagnostics of Drosophila suzukii (Diptera: Drosophilidae) Using PCR-RFLP.

    Science.gov (United States)

    Kim, Sh S; Tripodi, A D; Johnson, D T; Szalanski, A L

    2014-06-01

    The invasive spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), has become a serious pest in the United States. Identification of immature and poorly preserved specimens can be difficult. A molecular diagnostic method for distinguishing D. suzukii from other Drosophila spp. associated with fruit in the United States was developed. A 709-bp region of the mitochondrial DNA cytochrome oxidase I gene was amplified from D. suzukii collections in the United States and compared with sequences of other Drosophila taxa from GenBank. Based on DNA sequence polymorphisms, a polymerase chain reaction-restriction fragment length polymorphism analysis using the restriction enzyme Msp-I was found to differentiate D. suzukii from other Drosophila spp. in the United States. This technique can identify field-collected specimens from various sources and specimens regardless of life stage. This molecular diagnostic method will be useful for monitoring the spread of this economically important invasive insect. PMID:25026695

  14. A HRM Real-Time PCR Assay for Rapid and Specific Identification of the Emerging Pest Spotted-Wing Drosophila (Drosophila suzukii)

    OpenAIRE

    Dhami, Manpreet K.; Kumarasinghe, Lalith

    2014-01-01

    Spotted wing drosophila (Drosophila suzukii) is an emerging pest that began spreading in 2008 and its distribution now includes 13 countries across two continents. Countries where it is established have reported significant economic losses of fresh produce, such as cherries due to this species of fly. At larval stages, it is impossible to identify due to its striking similarities with other cosmopolitan and harmless drosophilids. Molecular methods allow identification but the current techniqu...

  15. Studies on a photoreactivating enzyme from Drosophila melanogaster cultured cells

    International Nuclear Information System (INIS)

    A photoreactivating enzyme was purified from Schneider's Line No. 2 Drosophila melanogaster cultured cells. DEAE cellulose chromatography with high potassium phosphate buffer conditions was used to separate nucleic acids from the protein component of the crude cell extract. The protein pass-through fraction from DEAE cellulose was chromatographed on phosphocellulose followed by hydroxylapatite, using linear potassium phosphate gradients to elute the enzyme. Gel filtration chromatography on Sephacryl S-200 resulted in a 4500-fold purification of the enzyme with a final recovery of 4%. The enzyme has an apparent gel filtration molecular weight of 32,900 (+/- 1350 daltons) and an isoelectric pH of 4.9. Optimum ionic strength for activity is 0.17 at pH 6.5 in potassium phosphate buffer. The action spectrum for photoreactivation in Drosophila has an optimum at 365 nm with a response to wavelengths in the range of 313 to 465 nm. Drosophila photoreactivating enzyme contains an essential RNA that is necessary for activity in vitro. The ability of the enzyme to photoreactivate dimers in vitro is abolished by treatment of the enzyme with ribonucleases, or by disruption of the enzyme-RNA complex by electrophoresis or adsorption to DEAE cellulose. The essential RNA is heterogeneous in size but contains a 10-12 base region that may interact with the active site of the enzyme, and thus is protected from degradation by contaminating RNase activities during purification. The RNA is thought to stabilize the photoreactivating enzyme by maintaining the enzyme in the proper configuration for binding to dimer-containing DNA. It is not known whether this RNA is essential for in vivo photoreactivation

  16. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  17. Genetic modifiers of MeCP2 function in Drosophila.

    Directory of Open Access Journals (Sweden)

    Holly N Cukier

    Full Text Available The levels of methyl-CpG-binding protein 2 (MeCP2 are critical for normal post-natal development and function of the nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett syndrome (RTT as well as other related conditions characterized by autism, learning disabilities, or mental retardation. Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins and behavioral (i.e., motor dysfunction abnormalities. We used a candidate gene approach to identify genes that are able to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax, the kinase tricornered, the UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other factors that might be more amenable to manipulation than MeCP2 itself.

  18. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ana eDepetris-Chauvin

    2015-04-01

    Full Text Available Insects encounter a vast repertoire of chemicals in their natural environment, which can signal positive stimuli like the presence of a food source, a potential mate, or a suitable oviposition site as well as negative stimuli such as competitors, predators, or toxic substances reflecting danger. The presence of specialized chemoreceptors like taste and olfactory receptors allow animals to detect chemicals at short and long distances and accordingly, trigger proper behaviors towards these stimuli. Since the first description of olfactory and taste receptors in Drosophila fifteen years ago, our knowledge on the identity, properties, and function of specific chemoreceptors has increased exponentially. In the last years, multidisciplinary approaches combining genetic tools with electrophysiological techniques, behavioral recording, evolutionary analysis, and chemical ecology studies are shedding light on our understanding on the ecological relevance of specific chemoreceptors for the survival of Drosophila in their natural environment. In this review we discuss the current knowledge on chemoreceptors of both the olfactory and taste systems of the fruitfly. We focus on the relevance of particular receptors for the detection of ecologically relevant cues such as pheromones, food sources, and toxic compounds, and we comment on the behavioral changes that the detection of these chemicals induce in the fly. In particular, we give an updated outlook of the chemical communication displayed during one of the most important behaviors for fly survival, the courtship behavior. Finally, the ecological relevance of specific chemicals can vary depending on the niche occupied by the individual. In that regard, in this review we also highlight the contrast between adult and larval systems and we propose that these differences could reflect distinctive requirements depending on the change of ecological niche occupied by Drosophila along its life cycle.

  19. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    Directory of Open Access Journals (Sweden)

    Òscar Martorell

    Full Text Available Whereas the series of genetic events leading to colorectal cancer (CRC have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  20. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  1. Circadian transcription contributes to core period determination in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sebastian Kadener

    2008-05-01

    Full Text Available The Clock-Cycle (CLK-CYC heterodimer constitutes a key circadian transcription complex in Drosophila. CYC has a DNA-binding domain but lacks an activation domain. Previous experiments also indicate that most of the transcriptional activity of CLK-CYC derives from the glutamine-rich region of its partner CLK. To address the role of transcription in core circadian timekeeping, we have analyzed the effects of a CYC-viral protein 16 (VP16 fusion protein in the Drosophila system. The addition of this potent and well-studied viral transcriptional activator (VP16 to CYC imparts to the CLK-CYC-VP16 complex strongly enhanced transcriptional activity relative to that of CLK-CYC. This increase is manifested in flies expressing CYC-VP16 as well as in S2 cells. These flies also have increased levels of CLK-CYC direct target gene mRNAs as well as a short period, implicating circadian transcription in period determination. A more detailed examination of reporter gene expression in CYC-VP16-expressing flies suggests that the short period is due at least in part to a more rapid transcriptional phase. Importantly, the behavioral effects require a period (per promoter and are therefore unlikely to be merely a consequence of generally higher PER levels. This indicates that the CLK-CYC-VP16 behavioral effects are a consequence of increased per transcription. All of this also suggests that the timing of transcriptional activation and not the activation itself is the key event responsible for the behavioral effects observed in CYC-VP16-expressing flies. The results taken together indicate that circadian transcription contributes to core circadian function in Drosophila.

  2. Cardiac responses to hypoxia and reoxygenation in Drosophila.

    Science.gov (United States)

    Zarndt, Rachel; Piloto, Sarah; Powell, Frank L; Haddad, Gabriel G; Bodmer, Rolf; Ocorr, Karen

    2015-12-01

    An adequate supply of oxygen is important for the survival of all tissues, but it is especially critical for tissues with high-energy demands, such as the heart. Insufficient tissue oxygenation occurs under a variety of conditions, including high altitude, embryonic and fetal development, inflammation, and thrombotic diseases, often affecting multiple organ systems. Responses and adaptations of the heart to hypoxia are of particular relevance in human cardiovascular and pulmonary diseases, in which the effects of hypoxic exposure can range in severity from transient to long-lasting. This study uses the genetic model system Drosophila to investigate cardiac responses to acute (30 min), sustained (18 h), and chronic (3 wk) hypoxia with reoxygenation. Whereas hearts from wild-type flies recovered quickly after acute hypoxia, exposure to sustained or chronic hypoxia significantly compromised heart function upon reoxygenation. Hearts from flies with mutations in sima, the Drosophila homolog of the hypoxia-inducible factor alpha subunit (HIF-α), exhibited exaggerated reductions in cardiac output in response to hypoxia. Heart function in hypoxia-selected flies, selected over many generations for survival in a low-oxygen environment, revealed reduced cardiac output in terms of decreased heart rate and fractional shortening compared with their normoxia controls. Hypoxia-selected flies also had smaller hearts, myofibrillar disorganization, and increased extracellular collagen deposition, consistent with the observed reductions in contractility. This study indicates that longer-duration hypoxic insults exert deleterious effects on heart function that are mediated, in part, by sima and advances Drosophila models for the genetic analysis of cardiac-specific responses to hypoxia and reoxygenation. PMID:26377557

  3. Genetic Cross-Talk During Head Development in Drosophila

    Directory of Open Access Journals (Sweden)

    Amin Amr

    2004-01-01

    Full Text Available The dorsal head vertex of Drosophila is specified mainly by the orthodenticle (otd gene. The expression and the function of otd are regulated by the concerted action of many genes including hedgehog (hh and notch (N. These genes are components of a meshwork of signaling transduction pathways that interact to form the dorsal head capsule of the fruit fly. Loss-of-function Hh mutants lack ocelli; however, loss-of-function N mutants lack a different domain of the dorsal head vertex. This report provides new evidence that the Hh and N pathways are two epistatic signaling cascades that act genetically upstream of the dorsal head capsule specification gene.

  4. Longevity GWAS Using the Drosophila Genetic Reference Panel

    OpenAIRE

    Ivanov, D. K.; Escott-Price, V.; Ziehm, M.; Magwire, M. M.; Mackay, T F; Partridge, L.; Thornton, J. M.

    2015-01-01

    We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-wide association analysis for virgin female lifespan, using ~2M common single nucleotide polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a broad-sense heritability of 0.413. There was little power to detect signals at a genome-wide level in single-SNP and gene-based analyses. Polygenic score analysis revealed that a small proportion of the variation in lifes...

  5. Performance of the Cas9 Nickase System in Drosophila melanogaster

    OpenAIRE

    Ren, Xingjie; Yang, Zhihao; Mao, Decai; Chang, Zai; Qiao, Huan-Huan; Wang, Xia; Sun, Jin; Hu, Qun; Cui, Yan; Liu, Lu-Ping; Ji, Jun-Yuan; Xu, Jiang; Ni, Jian-Quan

    2014-01-01

    Recent studies of the Cas9/sgRNA system in Drosophila melanogaster genome editing have opened new opportunities to generate site-specific mutant collections in a high-throughput manner. However, off-target effects of the system are still a major concern when analyzing mutant phenotypes. Mutations converting Cas9 to a DNA nickase have great potential for reducing off-target effects in vitro. Here, we demonstrated that injection of two plasmids encoding neighboring offset sgRNAs into transgenic...

  6. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter;

    be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0......Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...

  7. Modelling of intercellular synchronization in the Drosophila circadian clock

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Chen Ai-Min; Zhang Jia-Jun; Yuan Zhan-Jiang; Zhou Tian-Shou

    2009-01-01

    In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling.

  8. Drosophila suzukii: ein neuer Schädling im Weichobstanbau

    OpenAIRE

    Daniel, Claudia

    2012-01-01

    Die Kirschessigfliege Drosophila suzukii wurde 2008 nach Europa eingeschleppt. Im Mittelmeerraum wurden 2011 starke Schäden vermeldet. In diesem Jahr ist mit Schäden auch nördlich der Alpen zu rechnen. Die Fliegen befallen alles Weichobst (Beeren, Kirschen, Trauben), sowie viele wilde Pflanzen. In diesem Jahr sollten alle sensiblen Kulturen mit Apfelessig-Fallen überwacht werden. Zur Befallsvorbeugung werden der Einsatz von engmaschigen Netzen (0.8 mm), sowie eine frühzeitige, vollständige Er...

  9. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    OpenAIRE

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2007-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) f...

  10. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    substances. Do these same changes in patterns of expression have the ability to mitigate ageing and prolong lifespan? It appears that parts of this response indeed are also associated with extended longevity, whereas some elements are not, due to their high cost or long-term deleterious consequences. Here we...... briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...

  11. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter;

    be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.......51 to 0.77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity...

  12. Prolonged stress induces adaptation of drosophila population to ionizing radiation

    International Nuclear Information System (INIS)

    We studied natural populations of Drosophila melanogaster from radio-contaminated area (Vetka district of Gomel region with 24 Ci/km2 of 137Cs and 0.5 Cu/km2 of 90Sr) and from Berezynski Natural Reserve as a control area (region of Chernobyl catastrophe). Population samples were caught in 2000-2001 years. Natural insect populations from radio-contaminated areas are more resistant to additional irradiation than control populations. Keeping of natural populations under laboratory or vivarium conditions is a strong stress (limited space, overpopulation, other than in nature temperature and light conditions), which increases mutation process and induces unspecific adaptation. (authors)

  13. The use of centrifugation to study early Drosophila embryogenesis

    Science.gov (United States)

    Abbott, M. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    By the end of 10th nuclear cycle, the somatic nuclei of the Drosophila embryo have migrated to the periphery of the egg. Centrifugation of embryos did not result in the displacement of these nuclei, since cytoskeletal elements anchor them to the cortex. But, mild centrifugal forces displace the centrally located, nascent yolk nuclei. If this increased sensitivity to hypergravity occurs before the beginning of nuclear differentiation during cycle 8, when the nascent yolk and somatic nuclei physically separate, then it would mark the earliest functional difference between these two lineages.

  14. Dispersão ativa em Drosophila melanogaster (Diptera; Drosophilidae

    Directory of Open Access Journals (Sweden)

    Salvador de Carvalho

    1988-07-01

    Full Text Available Em uma floresta remanescente do "mato grosso goiano" (Goiânia, GO, Brasil, moscas marcadas e mutantes "white" de Drosophila melanogaster foram soltos na intersecção de dois eixos ortogonais. Foram colocadas armadilhas a intervalos de 20 m nesses eixos. Coletas periódicas, a cada meia hora, das 08:30 às 17:00 hs foram realizadas, para estudar a dispersão das moscas no meio natural e para inferir a significância do componente genético nessa dispersão. Os dados obtidos sugerem as seguintes conclusões: foi detectada dispersão ativa; essa dispersão ativa depende do genótipo (foi maior no tipo selvagem que no mutante "white"; os padrões de dispersão mudaram de acordo com o tempo; uma mobilidade presumível de 120 m/h foi detectada; uma estimativa aproximada da densidade populacional sugere valores de cerca de 25.000 moscas/3.600m² para o grupo melanogaster e de cerca de 50.000 moscas/3.600m² para as Drosophila em geral; a freqüência da captura mudou durante o período.In a remaining wood of the "mato grosso goiano" (Goiânia, Go, Brazil, Drosophila melanogaster marked flies as well as "white" mutants were released at the inter-section of two orthogonal axis. Traps were disposed at intervals of 20m over these axis. Every half hour, from 08:30 to 17:00, periodics collects were performed to study the dispersion of the flies in natural environement as well as to infer about the significance of the genetic component in this dispersion. The obtained data suggest the following conclusions: acitve dispersion was detected; this active dispersion is genotype dependent (it was bigger in the wild type than the " white" mutante; the dispersion patterns changed according to time; a presumiblemobility potential of 120m/hour was detected; an approximate estimate of the population density suggest values of about 25,000 flies/3,600m² for the melanogaster group and about 50,000 flies 3,600m² for Drosophila in general; the frequence of capture

  15. Exploring interactions between pathogens and the Drosophila gut.

    Science.gov (United States)

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2016-11-01

    Gastrointestinal infection can provoke substantial disturbance at both a local as well as at a systemic level and may evolve into a chronic disease state. Our growing knowledge of gut-pathogen interactions has been based to a large extent on the use of genetically tractable model hosts such as the fruit fly Drosophila melanogaster. In this review we will summarise the growing literature and critically address the advantages and disadvantages of using this model to extrapolate results from studying pathogen virulence and intestinal responses to humans. PMID:26876781

  16. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    TakayukiKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  17. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Directory of Open Access Journals (Sweden)

    Laura K Reed

    Full Text Available BACKGROUND: The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. METHODOLOGY/PRINCIPAL FINDINGS: Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL mapping analyses directly on F(1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS in the F(1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. CONCLUSIONS/SIGNIFICANCE: The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  18. Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids.

    Science.gov (United States)

    Futerman, P H; Layen, S J; Kotzen, M L; Franzen, C; Kraaijeveld, A R; Godfray, H C J

    2006-04-01

    A microsporidian infection was discovered in laboratory cultures of Drosophila species. Ultrastructural examination suggested it belonged to the poorly characterized species Tubulinosema kingi, and morphological and sequence data are presented. We explored how T. kingi affected the fitness of Drosophila melanogaster and D. subobscura, as well as the fitness of 2 of their parasitoids, Asobara tabida and Pachycrepoideus vindemiae. In Drosophila, infections caused changes in most of the traits we looked at that were associated with fitness, in particular causing a 34-55% reduction in early-life fecundity. Parasitoid fitness was affected more severely by infection than that of their hosts, with pupal mortality in particular increasing by 75-89%. We investigated the most important routes of transmission for T. kingi in a laboratory setting. Letting Drosophila larvae feed on medium contaminated with spores from infected dead flies resulted in 100% infection. Low levels of transmission (<10%) were found between larvae, and vertically between mothers and their offspring. Parasitoids developing in infected hosts all became infected, but infected adults were neither able to transmit the pathogen to their offspring nor to their offspring's Drosophila host, either directly, or via contamination of the ovipositor or other body parts. A field survey of Drosophila and their parasitoids in southern England revealed no natural infections. We discuss the potential importance of Microsporidia in parasitoid-host interactions, and for those working with Drosophila in the laboratory. PMID:16318674

  19. Three-dimensional structure of axonal mitochondria reflects the age of drosophila

    Institute of Scientific and Technical Information of China (English)

    Honglian Zhu; Xiaojiang Sun

    2013-01-01

    This study aimed to reconstruct a three-dimensional map of axonal mitochondria using Fiji and Neurolucida software, and to observe directly the morphology and distribution of mitochondria in axons of motor neurons in dorsal longitudinal flight muscles of drosophila aged 5 days and 20 days, using electron microscopy. Results indicated that there was no difference in the total area and volume of mitochondria between 5-day-old drosophila and 20-day-old drosophila in all sections, but the ratio of mitochondrial total areas to axon total areas, as well as mitochondrial density of 20-day-old drosophila, was lower than that of 5-day-old drosophila. The number of mitochondria, whose volume was less than 1 000 000 μm3, and between 1 000 000 μm3 and 10 000 000 μm3, was higher in 20-day-old drosophila than that in 5-day-old drosophila. The number of mitochondria with a volume between 1 000 000 μm3 and 100 000 000 μm3 was apparently higher than those with a volume less than 1 000 000 μm3 or larger than 100 000 000 μm3. In addition, the number of mitochondria with a volume more than 100 000 000 μm3 was small; however, the volume was nearly 70% of the total volume in both 5-day-old and 20-day-old drosophila. In contrast, the number of mitochondria with a volume between 1 000 000 μm3 and 10 000 000 μm3 was large, but the volume was less than 30% of the total volume. These experimental findings suggest that changes in mitochondrial morphology and number in motor neurons from the dorsal longitudinal muscle of drosophila are present during different ages.

  20. The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression

    OpenAIRE

    Du, Eun Jo; Ahn, Tae Jung; Choi, Min Sung; Kwon, Ilmin; Kim, Hyung-Wook; Kwon, Jae Young; Kang, KyeongJin

    2015-01-01

    Citronellal, a well-known plant-derived mosquito repellent, was previously reported to repel Drosophila melanogaster via olfactory pathways involving but not directly activating Transient Receptor Potential Ankyrin 1 (TRPA1). Here, we show that citronellal is a direct agonist for Drosophila and human TRPA1s (dTRPA1 and hTRPA1) as well as Anopheles gambiae TRPA1 (agTRPA1). Citronellal-induced activity is isoform-dependent for Drosophila and Anopheles gambiae TRPA1s. The recently identified dTR...

  1. DNA Methyltransferase Gene dDnmt2 and Longevity of Drosophila

    Institute of Scientific and Technical Information of China (English)

    Meng-JauLin; Lin-YaTang; M.NarsaReddy; C.K.JamesShen

    2005-01-01

    The DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span. The study links the Drosophila DNA methylation program with the small heatshock proteins and longevity/aging and has interesting implication on the eukaryotic DNA methyl-ation programs in general.

  2. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics

    Directory of Open Access Journals (Sweden)

    Radoslaw K. Ejsmont

    2014-05-01

    Full Text Available For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research.

  3. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics.

    Science.gov (United States)

    Ejsmont, Radoslaw K; Hassan, Bassem A

    2014-01-01

    For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research. PMID:24827974

  4. Optimizing the culture conditions and determining the stability of antibiotic secretion by Polygonum viviparum of the endophytic bacteria Bacillus mojavensis%珠芽蓼内生细菌 ZA1的抑菌物质产生条件的优化及其稳定性测定

    Institute of Scientific and Technical Information of China (English)

    杨成德; 畅涛; 薛莉; 冯中红; 姚玉玲; 李婷; 陈秀蓉

    2015-01-01

    One strain of Bacillus mojavensis (ZA1 )is known to have a strong antibacterial effect against the pathogen of potato gangrene (Phomafoveata ).In this study,P .foveata was isolated as a fungal pathogen and the method of petri dish confrontation was used to determine culture conditions for optimizing and stabilizing production of the antibiotic secreted by ZA1.The results showed that the optimum culture medium for ZA1 consisted of 200 g potato,10 g peptone,20 g sucrose and 1000 mL distilled water.The optimum fermentation temperature of ZA1 was 17.8℃.The optimum pH value of ZA1’s culture medium was 6.9.The optimum 150 mL triangle bottle volume of ZA1 was 20 mL.The optimum culture mode of ZA1 was shaking cultivation in the dark for 96 hours.Results showed that the EC50 =0.1228 μL/mL against P .foveata after optimization was 37 times higher than the EC50 =4.5888 μL/mL against P .foveata before optimization.Crude extracting of bac-teriostatic from ZA1 showed that the characteristics of high temperature resistance and relative activity could reach 76.62% after it was treated at 90℃ for 2 hours.Relative activity was stable and could not be destroyed under UV irradiation for 30 minutes.The bacteriostatic extract of ZA1 had good acid and alkali resistance. When it was treated by pH=3 and pH=11,the relative activity was 92.87% and 85.11% respectively.It was not sensitive to protease and heavy metal ions such as Ag+ ,Cu2 + ,Zn2 + and Fe3 + .Relative activity remained at 86.93% after Ag+ treatment.%从珠芽蓼中分离的内生细菌 ZA1对马铃薯坏疽病菌具有良好的抑菌效果,鉴定为莫海威芽孢杆菌。本文通过平板对峙法对 ZA1分泌物抑制马铃薯坏疽病菌的培养条件进行了优化,并对 ZA1抑菌粗提物的稳定性进行了测定。结果表明,ZA1的最佳培养基为 B 培养液,最佳发酵温度为17.8℃,培养基的最佳 pH 是6.9,150 mL 三角瓶的最佳装液量为20 mL,最佳培养

  5. Regulation of twin of eyeless during Drosophila development.

    Science.gov (United States)

    Skottheim Honn, John; Johansson, Linn; Rasmuson Lestander, Åsa

    2016-03-01

    The Pax-6 protein is vital for eye development in all seeing animals, from sea urchins to humans. Either of the Pax6 genes in Drosophila (twin of eyeless and eyeless) can induce a gene cascade leading to formation of entire eyes when expressed ectopically. The twin of eyeless (toy) gene in Drosophila is expressed in the anterior region of the early fly embryo. At later stages it is expressed in the brain, ventral nerve cord and (eventually) the visual primordium that gives rise to the eye-antennal imaginal discs of the larvae. These discs subsequently form the major part of the adult head, including compound eyes. We have searched for genes that are required for normal toy expression in the early embryo to elucidate initiating events of eye organogenesis. Candidate genes identified by mutation analyses were subjected to further knock-out and miss-expression tests to investigate their interactions with toy. Our results indicate that the head-specific gap gene empty spiracles can act as a repressor of Toy, while ocelliless (oc) and spalt major (salm) appear to act as positive regulators of toy gene expression. PMID:26976323

  6. Organically grown food provides health benefits to Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ria Chhabra

    Full Text Available The "organic food" market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas, potatoes, raisins, soy beans. Flies were then subjected to a variety of tests designed to assess overall fly health. Flies raised on diets made from organically grown produce had greater fertility and longevity. On certain food sources, greater activity and greater stress resistance was additionally observed, suggesting that organic food bestows positive effects on fly health. Our data show that Drosophila can be used as a convenient model system to experimentally test potential health effects of dietary components. Using this system, we provide evidence that organically raised food may provide animals with tangible benefits to overall health.

  7. Evolution of mating isolation between populations of Drosophila ananassae.

    Science.gov (United States)

    Schug, Malcolm D; Baines, John F; Killon-Atwood, Amanda; Mohanty, Sujata; Das, Aparup; Grath, Sonja; Smith, Shelly G; Zargham, Shiva; McEvey, Shane F; Stephan, Wolfgang

    2008-06-01

    Prezygotic mating isolation has been a major interest of evolutionary biologists during the past several decades because it is likely to represent one of the first stages in the transition from populations to species. Mate discrimination is one of the most commonly measured forms of prezygotic isolation and appears to be relatively common among closely related species. In some cases, it has been used as a measure to distinguish populations from subspecies, races, and sister species, yet the influences of various evolutionary mechanisms that may generate mate discrimination are largely unknown. In this study, we measured the level and pattern of mate discrimination among 18 populations of a cosmopolitan drosophilid species, Drosophila ananassae, from throughout its geographical range and its sister species, Drosophila pallidosa, which has a restricted geographical distribution in the South Pacific Islands. In addition, we measured genetic differentiation between all 18 populations using mitochondrial DNA polymorphism data. Mate discrimination varies considerably throughout the species range, being higher among populations outside the ancestral Indonesian range, and highest in the South Pacific. Our results suggest that colonization and genetic differentiation may have an influence on the evolutionary origin of mate discrimination. Our phylogeographical approach clarifies the ancestral relationships of several populations from the South Pacific that show particularly strong mate discrimination and suggests that they may be in the early stages of speciation. Furthermore, both the genetic and behavioral results cast doubt on the status of D. pallidosa as a good species. PMID:18466237

  8. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    Directory of Open Access Journals (Sweden)

    David J Mellert

    Full Text Available Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  9. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  10. Using Drosophila models of Huntington's disease as a translatable tool.

    Science.gov (United States)

    Lewis, Elizabeth A; Smith, Gaynor A

    2016-05-30

    The Huntingtin (Htt) protein is essential for a wealth of intracellular signaling cascades and when mutated, causes multifactorial dysregulation of basic cellular processes. Understanding the contribution to each of these intracellular pathways is essential for the elucidation of mechanisms that drive pathophysiology. Using appropriate models of Huntington's disease (HD) is key to finding the molecular mechanisms that contribute to neurodegeneration. While mouse models and cell lines expressing mutant Htt have been instrumental to HD research, there has been a significant contribution to our understating of the disease from studies utilizing Drosophila melanogaster. Flies have an Htt protein, so the endogenous pathways with which it interacts are likely conserved. Transgenic flies engineered to overexpress the human mutant HTT gene display protein aggregation, neurodegeneration, behavioral deficits and a reduced lifespan. The short life span of flies, low cost of maintaining stocks and genetic tools available for in vivo manipulation make them ideal for the discovery of new genes that are involved in HD pathology. It is possible to do rapid genome wide screens for enhancers or suppressors of the mutant Htt-mediated phenotype, expressed in specific tissues or neuronal subtypes. However, there likely remain many yet unknown genes that modify disease progression, which could be found through additional screening approaches using the fly. Importantly, there have been instances where genes discovered in Drosophila have been translated to HD mouse models. PMID:26241927

  11. Neurofibromin Loss of Function Drives Excessive Grooming in Drosophila

    Directory of Open Access Journals (Sweden)

    Lanikea B. King

    2016-04-01

    Full Text Available Neurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1 exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models. In order to understand how loss of Nf1 affects motor behavior in flies, we combined traditional activity monitoring with video analysis of grooming behavior. In nf1 mutants, spontaneous grooming was increased up to 7x. This increase in activity was distinct from previously described dopamine-dependent hyperactivity, as dopamine transporter mutants exhibited slightly decreased grooming. Finally, we found that relative grooming frequencies can be compared in standard activity monitors that measure infrared beam breaks, enabling the use of activity monitors as an automated method to screen for grooming phenotypes. Overall, these data suggest that loss of nf1 produces excessive activity that is manifested as increased grooming, providing a platform to dissect the molecular genetics of neurofibromin signaling across neuronal circuits.

  12. Susceptibility of cranberries to Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Steffan, Shawn A; Lee, Jana C; Singleton, Merritt E; Vilaire, Auriel; Walsh, Doug B; Lavine, Laura S; Patten, Kim

    2013-12-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae), commonly referred to as the spotted wing drosophila, is an exotic species that has proven a troublesome pest of fruit production in the United States. The fly targets small fruit and thus represents a concern for the U.S. cranberry industry. Two studies were conducted to assess whether cranberries may serve as hosts for D. suzukii. In the first study, the suitability of ripe, unripe, and over-ripe cranberries were assayed by examining adult oviposition and larval development in no-choice trials. In the second study, wounded and unwounded fruit were examined as potential hosts in choice and no-choice trials. Our first study showed that ripe, unripe, and over-ripe cranberries were unsuitable hosts (few eggs were laid, with no surviving puparia). In the wounded and unwounded berry study, no larvae survived to adulthood among unwounded berries. Within wounded fruit, D. suzukii readily fed and developed into adults. Together, these results suggest that unwounded cranberries--whether ripe, unripe, or over-ripe--are unsuitable as hosts for D. suzukii. Wounded rotting cranberries, however, can serve as hosts. Across the landscape, cranberry marshes with rotting fruit may contribute to D. suzukii source-sink dynamics. PMID:24498743

  13. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  14. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  15. Monoclonal antibodies to drosophila cytochrome P-450's

    International Nuclear Information System (INIS)

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins

  16. Monoclonal antibodies to drosophila cytochrome P-450's

    Energy Technology Data Exchange (ETDEWEB)

    Sundseth, S.S.; Kennel, S.J.; Waters, L.C.

    1987-05-01

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins.

  17. Accelerated homologous recombination and subsequent genome modification in Drosophila.

    Science.gov (United States)

    Baena-Lopez, Luis Alberto; Alexandre, Cyrille; Mitchell, Alice; Pasakarnis, Laurynas; Vincent, Jean-Paul

    2013-12-01

    Gene targeting by 'ends-out' homologous recombination enables the deletion of genomic sequences and concurrent introduction of exogenous DNA with base-pair precision without sequence constraint. In Drosophila, this powerful technique has remained laborious and hence seldom implemented. We describe a targeting vector and protocols that achieve this at high frequency and with very few false positives in Drosophila, either with a two-generation crossing scheme or by direct injection in embryos. The frequency of injection-mediated gene targeting can be further increased with CRISPR-induced double-strand breaks within the region to be deleted, thus making homologous recombination almost as easy as conventional transgenesis. Our targeting vector replaces genomic sequences with a multifunctional fragment comprising an easy-to-select genetic marker, a fluorescent reporter, as well as an attP site, which acts as a landing platform for reintegration vectors. These vectors allow the insertion of a variety of transcription reporters or cDNAs to express tagged or mutant isoforms at endogenous levels. In addition, they pave the way for difficult experiments such as tissue-specific allele switching and functional analysis in post-mitotic or polyploid cells. Therefore, our method retains the advantages of homologous recombination while capitalising on the mutagenic power of CRISPR. PMID:24154526

  18. Edge detection depends on achromatic channel in Drosophila melanogaster.

    Science.gov (United States)

    Zhou, Yanqiong; Ji, Xiaoxiao; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2012-10-01

    Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated. In the present study, using a color light-emitting-diode-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal luminance, at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE(17) and sev(LY3);rh5(2);rh6(1) demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of rhodopsin 4 (Rh4), Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE(17) mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila. PMID:22735352

  19. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  20. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  1. Spatial Patterns of Recurved Sensory Organs in Drosophila

    Science.gov (United States)

    Gunaratne, Gemunu

    2008-03-01

    The fruit fly Drosophila is one of the most intensely studied models of development. A subset of -nominally- identical cells on the anterior wing of Drosophila begins to differentiate at puparium formation, each developing a sensory organ. In wild type flies, every fifth cell becomes such a sensory organ. Recent studies on mutant flies have shown that the transcription factor Senseless and the micro RNA miR-9a play significant roles in the choice of bristle density and the regularity of their arrangement. We propose that this cell differentiation is due to a Turing-type bifurcation whereby periodic concentration gradients emerge spontaneously from a uniform background. A paradigmatic model with intra-cellular networks and lateral activation and inhibition between neighboring cells (for example, through the Notch signaling pathway) is shown to generate the observed arrangements of sensory organs. The theory makes several experimentally verifiable predictions. For example, we propose methods to create mutant flies with systematically increasing numbers of ectopic bristles. In our theory, post-transcriptional regulatory action of the micro RNA occurs through the choice of stable solutions of the network.

  2. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Prud`homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A. [Centre de Genetique Moleculaire, Gif-sur-Yvette (France)

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.

  3. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster.

    Science.gov (United States)

    Prud'homme, N; Gans, M; Masson, M; Terzian, C; Bucheton, A

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovoD1 female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovoD1 reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. PMID:7713426

  4. Candidate glutamatergic neurons in the visual system of Drosophila.

    Directory of Open Access Journals (Sweden)

    Shamprasad Varija Raghu

    Full Text Available The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L, transmedullary (Tm, transmedullary Y (TmY, Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am, bushy T (T, translobula plate (Tlp, lobula intrinsic (Lcn, Lt, Li, lobula plate tangential (LPTCs and lobula plate intrinsic (LPi cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.

  5. Neurofibromin Loss of Function Drives Excessive Grooming in Drosophila.

    Science.gov (United States)

    King, Lanikea B; Koch, Marta; Murphy, Keith R; Velazquez, Yoheilly; Ja, William W; Tomchik, Seth M

    2016-01-01

    Neurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1) exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models. In order to understand how loss of Nf1 affects motor behavior in flies, we combined traditional activity monitoring with video analysis of grooming behavior. In nf1 mutants, spontaneous grooming was increased up to 7x. This increase in activity was distinct from previously described dopamine-dependent hyperactivity, as dopamine transporter mutants exhibited slightly decreased grooming. Finally, we found that relative grooming frequencies can be compared in standard activity monitors that measure infrared beam breaks, enabling the use of activity monitors as an automated method to screen for grooming phenotypes. Overall, these data suggest that loss of nf1 produces excessive activity that is manifested as increased grooming, providing a platform to dissect the molecular genetics of neurofibromin signaling across neuronal circuits. PMID:26896440

  6. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  7. A potential role for Drosophila mucins in development and physiology.

    Directory of Open Access Journals (Sweden)

    Zulfeqhar A Syed

    Full Text Available Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS. We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300-23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis.

  8. Transcriptional signature of an adult brain tumor in Drosophila

    Directory of Open Access Journals (Sweden)

    Loop Thomas

    2004-04-01

    Full Text Available Abstract Background Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat. Results Two independent genome-wide gene expression studies using two different oligonucleotide microarray platforms were used to compare the transcriptome of adult wildtype flies with mutants displaying the adult bratk06028 mutant brain tumor. Cross-validation and stringent statistical criteria identified a core transcriptional signature of bratk06028 neoplastic tissue. We find significant expression level changes for 321 annotated genes associated with the adult neoplastic bratk06028 tissue indicating elevated and aberrant metabolic and cell cycle activity, upregulation of the basal transcriptional machinery, as well as elevated and aberrant activity of ribosome synthesis and translation control. One fifth of these genes show homology to known mammalian genes involved in cancer formation. Conclusion Our results identify for the first time the genome-wide transcriptional alterations associated with an adult brain tumor in Drosophila and reveal insights into the possible mechanisms of tumor formation caused by homozygous mutation of the translational repressor brat.

  9. Genetic control of epithelial tube fusion during Drosophila tracheal development.

    Science.gov (United States)

    Samakovlis, C; Manning, G; Steneberg, P; Hacohen, N; Cantera, R; Krasnow, M A

    1996-11-01

    During development of tubular networks such as the mammalian vascular system, the kidney and the Drosophila tracheal system, epithelial tubes must fuse to each other to form a continuous network. Little is known of the cellular mechanisms or molecular control of epithelial tube fusion. We describe the cellular dynamics of a tracheal fusion event in Drosophila and identify a gene regulatory hierarchy that controls this extraordinary process. A tracheal cell located at the developing fusion point expresses a sequence of specific markers as it grows out and contacts a similar cell from another tube; the two cells adhere and form an intercellular junction, and they become doughnut-shaped cells with the lumen passing through them. The early fusion marker Fusion-1 is identified as the escargot gene. It lies near the top of the regulatory hierarchy, activating the expression of later fusion markers and repressing genes that promote branching. Ectopic expression of escargot activates the fusion process and suppresses branching throughout the tracheal system, leading to ectopic tracheal connections that resemble certain arteriovenous malformations in humans. This establishes a simple genetic system to study fusion of epithelial tubes. PMID:8951068

  10. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  11. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    Science.gov (United States)

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  12. Exploratory activity and habituation of Drosophila in confined domains

    Science.gov (United States)

    Soibam, B.; Chen, L.; Roman, G. W.; Gunaratne, G. H.

    2014-09-01

    Animals use locomotion to find food, shelter, and escape routes as well as to locate predators, competitors, and mates. Thus, locomotion is related to many behavioral traits, and can be used to characterize these more complex facets of behavior. Exploratory behaviors are random and need to be assessed through stochastic analysis. By comparing ensembles of trajectories from Drosophila and a model animal, we identify a pair of principles that govern the stochastic motion of a specific species. The first depends on local cues and quantify directional persistence, i.e., the propensity of an animal to maintain direction; the second, its attraction to walls, is relevant for exploration in confined arenas. Statistical properties of exploratory activity in several types of arenas can be computed from these principles. A pair of spiral arenas are designed to demonstrate that centrophobicity, or fear of the center of an arena, is not a fundamental feature of exploration. xxxx We provide evidence to show that the decay in an animal's activity following its introduction into a novel arena is correlated to its familiarity with the arena. We define two measures, coverage and habituation, to quantify familiarity. It is found that the relationship between activity and coverage is independent of the arena size. Finally, we use an analysis of exploration of mutant species to infer that in Drosophila, habituation relies on visual cues.

  13. Thermal plasticity in Drosophila melanogaster: A comparison of geographic populations

    Directory of Open Access Journals (Sweden)

    David Jean R

    2006-08-01

    Full Text Available Abstract Background Populations of Drosophila melanogaster show differences in many morphometrical traits according to their geographic origin. Despite the widespread occurrence of these differences in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of such variation are not fully understood. Thermal selection is considered to be the most likely cause explaining these differences. Results In our work, we investigated several life history traits (body size, duration of development, preadult survival, longevity and productivity in two tropical and two temperate natural populations of D. melanogaster recently collected, and in a temperate population maintained for twelve years at the constant temperature of 18°C in the laboratory. In order to characterise the plasticity of these life history traits, the populations were grown at 12, 18, 28 and 31.2°C. Productivity was the fitness trait that showed clearly adaptive differences between latitudinal populations: tropical flies did better in the heat but worse in the cold environments with respect to temperate flies. Differences for the plasticity of other life history traits investigated between tropical and temperate populations were also found. The differences were particularly evident at stressful temperatures (12 and 31.2°C. Conclusion Our results evidence a better cold tolerance in temperate populations that seems to have been evolved during the colonisation of temperate countries by D. melanogaster Afrotropical ancestors, and support the hypothesis of an adaptive response of plasticity to the experienced environment.

  14. Drosophila Stathmins Bind Tubulin Heterodimers with High and Variable Stoichiometries*

    Science.gov (United States)

    Lachkar, Sylvie; Lebois, Marion; Steinmetz, Michel O.; Guichet, Antoine; Lal, Neha; Curmi, Patrick A.; Sobel, André; Ozon, Sylvie

    2010-01-01

    In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties. PMID:20145240

  15. Drosophila stathmins bind tubulin heterodimers with high and variable stoichiometries.

    Science.gov (United States)

    Lachkar, Sylvie; Lebois, Marion; Steinmetz, Michel O; Guichet, Antoine; Lal, Neha; Curmi, Patrick A; Sobel, André; Ozon, Sylvie

    2010-04-01

    In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties. PMID:20145240

  16. Control of dendritic morphogenesis by Trio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Madhuri Shivalkar

    Full Text Available Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.

  17. Identification of Drosophila Gene Products Required for Phagocytosis of Candidaalbicans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Phagocytosis is a highly conserved aspect of innate immunity. We used Drosophila melanogaster S2 cells as a model system to study the phagocytosis of Candida albicans, the major fungal pathogen of humans, by screening an RNAi library representing 7,216 fly genes conserved among metazoans. After rescreening the initial genes identified and eliminating certain classes of housekeeping genes, we identified 184 genes required for efficient phagocytosis of C. albicans. Diverse biological processes are represented, with actin cytoskeleton regulation, vesicle transport, signaling, and transcriptional regulation being prominent. Secondary screens using Escherichia coli and latex beads revealed several genes specific for C. albicans phagocytosis. Characterization of one of those gene products, Macroglobulin complement related (Mcr, shows that it is secreted, that it binds specifically to the surface of C. albicans, and that it promotes its subsequent phagocytosis. Mcr is closely related to the four Drosophila thioester proteins (Teps, and we show that TepII is required for efficient phagocytosis of E. coli (but not C. albicans or Staphylococcus aureus and that TepIII is required for the efficient phagocytosis of S. aureus (but not C. albicans or E. coli. Thus, this family of fly proteins distinguishes different pathogens for subsequent phagocytosis.

  18. Neural representations of airflow in Drosophila mushroom body.

    Directory of Open Access Journals (Sweden)

    Akira Mamiya

    Full Text Available The Drosophila mushroom body (MB is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3(rd antennal segment, suggesting that Johnston's organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.

  19. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    Directory of Open Access Journals (Sweden)

    Peter Smibert

    2012-03-01

    Full Text Available We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR shortening in the testis and lengthening in the central nervous system (CNS; the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.

  20. U bodies respond to nutrient stress in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Mickey; Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk

    2011-12-10

    The neurodegenerative disease spinal muscular atrophy (SMA) is caused by mutation of the survival motor neuron 1 (SMN1) gene. Cytoplasmic SMN protein-containing granules, known as U snRNP bodies (U bodies), are thought to be responsible for the assembly and storage of small nuclear ribonucleoproteins (snRNPs) which are essential for pre-mRNA splicing. U bodies exhibit close association with cytoplasmic processing bodies (P bodies), which are involved in mRNA decay and translational repression. The close association of the U body and P body in Drosophila resemble that of the stress granule and P body in yeast and mammalian cells. However, it is unknown whether the U body is responsive to any stress. Using Drosophila oogenesis as a model, here we show that U bodies increase in size following nutritional deprivation. Despite nutritional stress, U bodies maintain their close association with P bodies. Our results show that U bodies are responsive to nutrition changes, presumably through the U body-P body pathway.

  1. The hemolymph proteome of fed and starved Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Björn Handke

    Full Text Available The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  2. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available BACKGROUND: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. METHODOLOGY/PRINCIPAL FINDINGS: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. CONCLUSIONS/SIGNIFICANCE: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  3. A novel assay reveals hygrotactic behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Feiteng Ji

    Full Text Available Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body α/β surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.

  4. Hairy Transcriptional Repression Targets and Cofactor Recruitment in Drosophila

    Directory of Open Access Journals (Sweden)

    Bianchi-Frias Daniella

    2004-01-01

    Full Text Available Members of the widely conserved Hairy/Enhancer of split family of basic Helix-Loop-Helix repressors are essential for proper Drosophila and vertebrate development and are misregulated in many cancers. While a major step forward in understanding the molecular mechanism(s surrounding Hairy-mediated repression was made with the identification of Groucho, Drosophila C-terminal binding protein (dCtBP, and Drosophila silent information regulator 2 (dSir2 as Hairy transcriptional cofactors, the identity of Hairy target genes and the rules governing cofactor recruitment are relatively unknown. We have used the chromatin profiling method DamID to perform a global and systematic search for direct transcriptional targets for Drosophila Hairy and the genomic recruitment sites for three of its cofactors: Groucho, dCtBP, and dSir2. Each of the proteins was tethered to Escherichia coli DNA adenine methyltransferase, permitting methylation proximal to in vivo binding sites in both Drosophila Kc cells and early embryos. This approach identified 40 novel genomic targets for Hairy in Kc cells, as well as 155 loci recruiting Groucho, 107 loci recruiting dSir2, and wide genomic binding of dCtBP to 496 loci. We also adapted DamID profiling such that we could use tightly gated collections of embryos (2-6 h and found 20 Hairy targets related to early embryogenesis. As expected of direct targets, all of the putative Hairy target genes tested show Hairy-dependent expression and have conserved consensus C-box-containing sequences that are directly bound by Hairy in vitro. The distribution of Hairy targets in both the Kc cell and embryo DamID experiments corresponds to Hairy binding sites in vivo on polytene chromosomes. Similarly, the distributions of loci recruiting each of Hairy's cofactors are detected as cofactor binding sites in vivo on polytene chromosomes. We have identified 59 putative transcriptional targets of Hairy. In addition to finding putative targets for

  5. A Miniaturized Video System for Monitoring Drosophila Behavior

    Science.gov (United States)

    Bhattacharya, Sharmila; Inan, Omer; Kovacs, Gregory; Etemadi, Mozziyar; Sanchez, Max; Marcu, Oana

    2011-01-01

    Long-term spaceflight may induce a variety of harmful effects in astronauts, resulting in altered motor and cognitive behavior. The stresses experienced by humans in space - most significantly weightlessness (microgravity) and cosmic radiation - are difficult to accurately simulate on Earth. In fact, prolonged and concomitant exposure to microgravity and cosmic radiation can only be studied in space. Behavioral studies in space have focused on model organisms, including Drosophila melanogaster. Drosophila is often used due to its short life span and generational cycle, small size, and ease of maintenance. Additionally, the well-characterized genetics of Drosophila behavior on Earth can be applied to the analysis of results from spaceflights, provided that the behavior in space is accurately recorded. In 2001, the BioExplorer project introduced a low-cost option for researchers: the small satellite. While this approach enabled multiple inexpensive launches of biological experiments, it also imposed stringent restrictions on the monitoring systems in terms of size, mass, data bandwidth, and power consumption. Suggested parameters for size are on the order of 100 mm3 and 1 kg mass for the entire payload. For Drosophila behavioral studies, these engineering requirements are not met by commercially available systems. One system that does meet many requirements for behavioral studies in space is the actimeter. Actimeters use infrared light gates to track the number of times a fly crosses a boundary within a small container (3x3x40 mm). Unfortunately, the apparatus needed to monitor several flies at once would be larger than the capacity of the small satellite. A system is presented, which expands on the actimeter approach to achieve a highly compact, low-power, ultra-low bandwidth solution for simultaneous monitoring of the behavior of multiple flies in space. This also provides a simple, inexpensive alternative to the current systems for monitoring Drosophila

  6. A comparative analysis of the amounts and dynamics of transposable elements in natural populations of Drosophila melanogaster and Drosophila simulans

    International Nuclear Information System (INIS)

    Genes are important in defining genetic variability, but they do not constitute the largest component of genomes, which in most organisms contain large amounts of various repeated sequences including transposable elements (TEs), which have been shown to account for most of the genome size. TEs contribute to genetic diversity by their mutational potential as a result of their ability to insert into genes or gene regulator regions, to promote chromosomal rearrangements, and to interfere with gene networks. Also, TEs may be activated by environmental stresses (such as temperature or radiation) that interfere with epigenetic regulation systems, and makes them powerful mutation agents in nature. To understand the relationship between genotype and phenotype, we need to analyze the portions of the genome corresponding to TEs in great detail, and to decipher their relationships with the genes. For this purpose, we carried out comparative analyses of various natural populations of the closely-related species Drosophila melanogaster and Drosophila simulans, which differ with regard to their TE amounts as well as their ecology and population size. - Highlights: ► Transposable elements (TE) are source of genetic novelty and affect genome regulation. ► Environment can affect regulation of TE and thus have an impact on genome. ► Natural populations are natural laboratories to measure the impact of environment.

  7. Drosophila suzukii contains a peptide homologous to the Drosophila melanogaster sex-peptide and functional in both species.

    Science.gov (United States)

    Schmidt, T; Choffat, Y; Schneider, M; Hunziker, P; Fuyama, Y; Kubli, E

    1993-07-01

    A peptide homologous to the Drosophila melanogaster sex-peptide (SP) was isolated from Drosophila suzukii accessory glands and its amino acid sequence determined. The D. suzukii peptide contains 41 amino acids and has a calculated molecular weight of 5100 Da. Comparison of the sequences reveals strong homologies in the N-terminal and C-terminal parts of the peptides. In the D. suzukii sex-peptide, however, five additional amino acids are inserted after amino acid 7. Based on the sequence of the peptide, a cDNA coding for the D. suzukii peptide was isolated by PCR. Sequence analysis of the cDNA confirmed the SP amino acid sequence determined by peptide sequencing. Furthermore, based on the cDNA sequence, we isolated the D. suzukii sex-peptide gene by inverse PCR. The D. suzukii sex-peptide gene contains an intron and codes for a 60 amino acid precursor. The D. melanogaster and the D. suzuki sex-peptides elicit rejection behaviour in the presence of males and an increased egg laying in virgin females of both species. PMID:8353518

  8. Genome-wide mapping of Painting of fourth on Drosophila melanogaster salivary gland polytene chromosomes

    Science.gov (United States)

    Johansson, Anna-Mia; Larsson, Jan

    2014-01-01

    The protein Painting of fourth (POF) in Drosophila melanogaster specifically targets and stimulates expression output from the heterochromatic 4th chromosome, thereby representing an autosome specific protein [[1], [2

  9. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila

    Directory of Open Access Journals (Sweden)

    Dennis Pauls

    2014-06-01

    Full Text Available More than a decade has passed since the release of the Drosophila melanogaster genome and the first predictions of fruit fly regulatory peptides (neuropeptides and peptide hormones. Since then, mass spectrometry-based methods have fuelled the chemical characterisation of regulatory peptides, from 7 Drosophila peptides in the pre-genomic area to more than 60 today. We review the development of fruit fly peptidomics, and present a comprehensive list of the regulatory peptides that have been chemically characterised until today. We also summarise the knowledge on peptide processing in Drosophila, which has strongly profited from a combination of MS-based techniques and the genetic tools available for the fruit fly. This combination has a very high potential to study the functional biology of peptide signalling on all levels, especially with the ongoing developments in quantitative MS in Drosophila.

  10. Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells

    OpenAIRE

    Bangi, Erdem; Pitsouli, Chrysoula; Rahme, Laurence G.; Cagan, Ross; Apidianakis, Yiorgos

    2012-01-01

    Drosophila hindgut cells exposed to bacterial infection activate the innate immune response. Concomitant expression of the Ras1V12 oncogene leads to extracellular matrix degradation, basal cell invasion and dissemination in the body cavity.

  11. Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster

    CERN Document Server

    Vitanov, N K; Vitanov, Nikolay K.; Yankulova, Elka D.

    2006-01-01

    Time series of heartbeat activity of humans can exhibit long-range correlations. In this paper we show that such kind of correlations can exist for the heartbeat activity of much simpler species like Drosophila melanogaster. By means of the method of multifractal detrended fluctuation analysis (MFDFA) we calculate fractal spectra $f(\\alpha)$ and $h(q)$ and investigate the correlation properties of heartbeat activity of Drosophila with genetic hearth defects for three consequent generations of species. We observe that opposite to the case of humans the time series of the heartbeat activity of healtly Drosophila do not have scaling properties. Time series from flies with genetic defects can be long-range correllated and can have multifractal properties. The fractal heartbeat dynamics of Drosophila is transferred from generation to generation.

  12. Genome-wide transcription analysis of clinal genetic variation in Drosophila

    NARCIS (Netherlands)

    Chen, Ying; Lee, Siu F.; Blanc, Eric; Reuter, Caroline; Wertheim, Bregje; Martinez-Diaz, Pedro; Hoffmann, Ary A.; Partridge, Linda

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation betwee

  13. Male non-coding RNA genes identified by comparative genomic analysis of the Drosophila genomes

    Institute of Scientific and Technical Information of China (English)

    LONG ManYuan; ZHU ZuoYan

    2007-01-01

    @@ This issue published a research article by Yang et al.[1] of Peking University "Significant divergence of sex-related non-coding RNA expression patterns among closely related species in Drosophila".

  14. Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity

    DEFF Research Database (Denmark)

    Walker, Jane; Kwon, So Yeon; Badenhorst, Paul; East, Phil; McNeill, Helen; Svejstrup, Jesper Q

    2011-01-01

    The Elongator complex has been implicated in several cellular processes, including gene expression and tRNA modification. We investigated the biological importance of the Elp3 gene in Drosophila melanogaster. Deletion of Elp3 results in larval lethality at the pupal stage. During early development...... data demonstrate that Drosophila Elp3 is essential for viability, normal development, and hematopoiesis and suggest a functional overlap with the chromatin remodeler Domino....

  15. How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila

    OpenAIRE

    Faville, R.; Kottler, B.; Goodhill, G. J.; Shaw, P. J.; Van Swinderen, B

    2015-01-01

    The fruitfly, Drosophila melanogaster, has become a critical model system for investigating sleep functions. Most studies use duration of inactivity to measure sleep. However, a defining criterion for sleep is decreased behavioral responsiveness to stimuli. Here we introduce the Drosophila ARousal Tracking system (DART), an integrated platform for efficiently tracking and probing arousal levels in animals. This video-based platform delivers positional and locomotion data, behavioral responsiv...

  16. Co-Regulated Transcriptional Networks Contribute to Natural Genetic Contribute Variation in Drosophila Sleep

    OpenAIRE

    Harbison, Susan T; Carbone, Mary Anna; Ayroles, Julien F.; Stone, Eric A.; Lyman, Richard F; Mackay, Trudy F C

    2009-01-01

    Sleep disorders are common in humans, and sleep loss increases the risk of obesity and diabetes1. Studies in Drosophila 2, 3 have revealed molecular pathways4–7 and neural tissues8–10 regulating sleep; however, genes that maintain genetic variation for sleep in natural populations are unknown. Here, we characterized sleep in 40 wild-derived Drosophila lines and observed abundant genetic variation in sleep architecture. We associated sleep with genome-wide variation in gene expression11 to ide...

  17. NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster

    OpenAIRE

    Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal

    2011-01-01

    Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and...

  18. Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts

    OpenAIRE

    Cardona, A; Saalfeld, S; Arganda, I; Pereanu, W; Schindelin, J; Hartenstein, V.

    2010-01-01

    The Drosophila brain is formed by an invariant set of lineages, each of which is derived from a unique neural stem cell (neuroblast) and forms a genetic and structural unit of the brain. The task of reconstructing brain circuitry at the level of individual neurons can be made significantly easier by assigning neurons to their respective lineages. In this paper we address the automatization of neuron and lineage identification. We focused on the Drosophila brain lineages at the larval stage wh...

  19. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm

    OpenAIRE

    Grigorian, Melina; Mandal, Lolitika; Hakimi, Manuel; Ortiz, Irma; Hartenstein, Volker

    2011-01-01

    Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos, is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of th...

  20. The Drosophila neural lineages: a model system to study brain development and circuitry

    OpenAIRE

    Spindler, Shana R; Hartenstein, Volker

    2010-01-01

    In Drosophila, neurons of the central nervous system are grouped into units called lineages. Each lineage contains cells derived from a single neuroblast. Due to its clonal nature, the Drosophila brain is a valuable model system to study neuron development and circuit formation. To better understand the mechanisms underlying brain development, genetic manipulation tools can be utilized within lineages to visualize, knock down, or over-express proteins. Here, we will introduce the formation an...