WorldWideScience

Sample records for cactophilic drosophila mojavensis

  1. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection.

    Science.gov (United States)

    Havens, J A; Etges, W J

    2013-03-01

    Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within-population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair-mated adults from no-choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population-specific plasticity in CHCs. Different groups of CHCs mediated female choice-based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.

  2. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Science.gov (United States)

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti. PMID:8765684

  3. Significance of saguaro cactus alkaloids in ecology ofDrosophila mettleri, a soil-breeding, cactophilic drosophilid.

    Science.gov (United States)

    Meyer, J M; Fogleman, J C

    1987-11-01

    Drosophila mettleri is a soil-breeding, cactophilic drosophilid which lives in the Sonoran Desert. Several chemical constituents of cacti in this region have been identified as having major roles in insect-host plant relationships involvingDrosophila. For example, isoquinoline alkaloids, which are present in senita cactus, have been shown to be toxic to seven of the nine species tested. The two tolerant species areD. pachea, the normal resident, andD. mettleri. Necroses of senita cacti are often used as feeding substrates byD. mettleri adults, but this species has never been reared from senita rots. Soil, which have been soaked by juice from saguaro and cardón rots, are the typical breeding substrates of this species. The tissues of both of these cacti also contain alkaloids, chemically related to those in senita, but at much lower concentrations. Alkaloid concentration in saguaro-soaked soil was found to be 1.4-27 times the average concentration in fresh tissue. Alkaloids were extracted from saguaro tissue and used in tests of larva-to-adult viability, developmental rate, and adult longevity. Elevated concentrations of saguaro alkaloids had no significant effect on the longevity ofD. mettleri, but significantly reduced the longevity ofD. nigrospiracula andD. mojavensis, two nonsoil breeding cactophilic species. Viability and developmental rates of all three species were affected, but the effect onD. nigrospiracula was comparatively greater. It is argued that the adaptations that allowD. mettleri to utilize the saguaro soil niche also convey tolerance to alkaloids present in senita tissue. The ability to utilize senita necroses as feeding substrates represents an ecological advantage to D. mettleri, in that the density of potential feeding sites is increased as compared to species which are more specific in their host-plant relationships. PMID:24301541

  4. Delineation of Cis-Acting Sequences Required for Expression of Drosophila Mojavensis Adh-1

    Science.gov (United States)

    Bayer, C. A.; Curtiss, S. W.; Weaver, J. A.; Sullivan, D. T.

    1992-01-01

    The control of expression of the Adh-1 gene of Drosophila mojavensis has been analyzed by transforming ADH null Drosophila melanogaster hosts with P element constructs which contain D. mojavensis Adh-1 having deletions of different extent in the 5' and 3' ends. Adh-1 expression in the D. melanogaster hosts is qualitatively similar to expression in D. mojavensis, although expression is quantitatively lower in transformants. Deletions of the 5' end indicate that information required for normal temporal and tissue expression in larvae is contained within 70 bp of the transcription start site. However, deletion constructs to -70 are deficient in ovarian nurse cell expression, whereas the additional upstream sequences present in constructs containing deletions to -257 do support expression in the ovary. Comparison of the nucleotide sequence in the -257 to -70 region of Adh-1 of four species: D. mojavensis and Drosophila arizona, which express Adh-1 in the ovary, and Drosophila mulleri and Drosophila navojoa, which do not, has led to the identification of regions of sequence similarity that correlate with ovary expression. One of these bears a striking similarity to a conserved sequence located upstream of the three heat shock genes that have constitutive ovarian expression and may be an ovarian control element. We have identified an aberrant aspect of Adh-1 expression. In transformants which carry an Adh-1 gene without a functional upstream Adh-2 gene Adh-1 expression continues into the adult stage instead of ceasing at the onset of metamorphosis. In transformants with a functional Adh-2 gene, Adh-1 expression ceases in the third larval instar stage and aberrant expression in the adult stage does not occur. PMID:1317314

  5. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Directory of Open Access Journals (Sweden)

    Jackson Larry L

    2011-06-01

    Full Text Available Abstract Background We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs in the seven species of the Drosophila buzzatii cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the D. buzzatii species cluster in order to assess the concordance of CHC differentiation with species divergence. Results Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C29 to C39, including methyl-branched alkanes, n-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of D. serido suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs onto an independently derived period (per gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only per + inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of D. serido significantly increased the amount of phylogenetic signal as

  6. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus.

    Science.gov (United States)

    Pfeiler, Edward; Reed, Laura K; Markow, Therese A

    2005-03-15

    High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele. PMID:15726639

  7. Surfactin production by strains of Bacillus mojavensis

    Science.gov (United States)

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  8. Early events in speciation: polymorphism for hybrid male sterility in Drosophila.

    Science.gov (United States)

    Reed, Laura K; Markow, Therese A

    2004-06-15

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors present at different frequencies in different populations of D. mojavensis. In addition, we show that hybrid male sterility is a complex phenotype; some hybrid males with motile sperm still cannot sire offspring. Because male sterility factors in hybrids between these species are not yet fixed within D. mojavensis, this system provides an invaluable opportunity to characterize the genetics of reproductive isolation at an early stage.

  9. He said, she said: mRNA sequencing identifies specificity in metabolic response to Bacillus mojavensis lipopeptides in Fusarium verticillioides

    Science.gov (United States)

    Fusarium verticillioides is a mycotoxigenic fungus capable of both pathogenic and asymptomatic endophytic lifestyles in maize; such intimate association renders efficient chemical control cost-prohibitive. Bacillus mojavensis RRC101 is a maize endophyte demonstrating both in vitro antagonism of F. v...

  10. Ultrastructural examination of the insemination reaction in Drosophila.

    Science.gov (United States)

    Alonso-Pimentel, H; Tolbert, L P; Heed, W B

    1994-03-01

    The insemination reaction is a swelling of the female vagina caused by the male ejaculate. This postmating phenomenon is common among species in the genus Drosophila. It could act as a plug securing male paternity. It is not clear, however, what benefits it provides to the female. The structure formed in the female vagina is expelled in some species and disappears gradually in others suggesting different phenomena. Based on ultrastructural examination of the vaginal contents of five Drosophila species (D. mettleri, D. nigrospiracula, D. melanogaster, D. mojavensis, and D. hexastigma), we propose three terms to describe these vaginal structures: the sperm sac, the mating plug, and the true insemination reaction. Each term describes a distinct structure associated with a specific female postmating behavior. This study questions the concept of the insemination reaction as a single phenomenon and discusses its possible functions from an evolutionary perspective. PMID:8137397

  11. Gene : CBRC-MEUG-01-2424 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 1 [Drosophila mojavensis] gb|EDW12250.1| GI17581 [Drosophila mojavensis] 5e-85 41% MXXXXLSIYLSIYLSIYLSIYLSIYLSIC...LSIYLSVYLSIYLSIYLSIYLSVYLSVYLSIYLSIYLSLYPSIYLSVYPSIYLSVYLSVYLSIYLSVYLSIYLSVYLSIYLSICLSICLSIYLSICLSIYLSIC...LSIYLSIYLSIYLSIHLSIYLSIYLSIYLSIYLSICLSIYLSIYLSIYLSSYLSIYLSIYLSICLSICLSVYLSIYPSIYL...SVYLSVCLSIYLSIYLSIYVSIYPSIYLSVYLSVYLSIYLSVYLSVYPSVYLSVYPSIYLSICLSICLSIYLSYLSIHLSIYLSIYLSIYHLSIIYLSSIYLSICLSIC...LSIYLSIYPSIYLSVYLSVCLSIYLSIYLSIYLCIYLSIYLSICLSICLSIYLSLCLSICLSICLSIYLSIYLSIYLSIYLSLCLSICLSICLSISLSIYLSLYLSV

  12. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusrium verticillioides

    Science.gov (United States)

    Here we report the whole genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides, and grows within maize tissue, suggesting potential as an endophytic biocontrol agent....

  13. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides

    OpenAIRE

    Gold, S. E.; Blacutt, A. A.; Meinersmann, R. J.; Bacon, C W

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent.

  14. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  15. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided.

  16. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided. PMID:27030978

  17. Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities.

    Science.gov (United States)

    Hamza, Ahlem; Fdhila, Kais; Zouiten, Dora; Masmoudi, Ahmed Sleheddine

    2016-04-01

    This study examined the effects of two probiotics (Virgibacillus proomii and Bacillus mojavensis) on the digestive enzyme activity, survival and growth of Dicentrarchus labrax at various ontogenetic stages in three separate experiments. These probiotics were incorporated as single or mixed into fish feed for a period of 60 days. The growth parameters, proximate composition of whole body, digestive enzymes and gut microbiology were monitored at regular. The increments in length and weight and the survival were significantly higher (P 0.05) in body ash and protein content and in the specific activity of phosphatase alkaline and amylase in the digestive tract of all the fishes. V. proomii and B. mojavensis persisted in the fish intestine and in the feed in high numbers during the feeding period (group 1: 5.8 × 10(4) CFU/ml, group 2: 9.6 × 10(4) CFU/ml, and group 3: 9.8 × 10(4) CFU/ml day 60). The two probiotics V. proomii and B. mojavensis were adequate for improved growth performance and survival and for healthy gut microenvironment of the host. PMID:26520833

  18. The evolutionary dynamics of the Helena retrotransposon revealed by sequenced Drosophila genomes

    Directory of Open Access Journals (Sweden)

    Carareto Claudia MA

    2009-07-01

    Full Text Available Abstract Background Several studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon Helena, of which only degenerate sequences have been shown to be present in some species (Drosophila melanogaster, whereas putatively active sequences are present in others (D. simulans. Combining experimental and population analyses with the sequence analysis of the 12 Drosophila genomes, we have investigated the evolution of Helena, and propose a possible scenario for the evolution of this element. Results We show that six species of Drosophila have the Helena transposable element at different stages of its evolution. The copy number is highly variable among these species, but most of them are truncated at the 5' ends and also harbor several internal deletions and insertions suggesting that they are inactive in all species, except in D. mojavensis in which quantitative RT-PCR experiments have identified a putative active copy. Conclusion Our data suggest that Helena was present in the common ancestor of the Drosophila genus, which has been vertically transmitted to the derived lineages, but that it has been lost in some of them. The wide variation in copy number and sequence degeneration in the different species suggest that the evolutionary dynamics of Helena depends on the genomic environment of the host species.

  19. Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila.

    Directory of Open Access Journals (Sweden)

    Ramiro Morales-Hojas

    Full Text Available Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic. Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.

  20. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus.

    Science.gov (United States)

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-02-26

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.

  1. Production and characterization of surfactin-type lipopeptides as bioemulsifiers produced by a Pinctada martensii-derived Bacillus mojavensis B0621A.

    Science.gov (United States)

    Ma, Zongwang; Hu, Jiangchun

    2015-12-01

    Bacillus mojavensis B0621A was isolated from the mantle of a pearl oyster Pinctada martensii collected from South China Sea. Semi-purified surfactins (225 mg L(-1)) were obtained by acid precipitation and vacuum flash chromatography. The component of the semi-purified surfactins was preliminarily analyzed by liquid chromatography mass spectrometer system, and the results showed that all these surfactins could be a group of homologues. Eight surfactin homologues were isolated and afforded by reversed phase high-performance liquid chromatography. Furthermore, their structure was characterized by mass spectrometry analysis combined with nuclear magnetic resonance spectroscopy techniques. These surfactins shared seven amino acids as peptide backbone and a saturated β-hydroxy fatty acid chain residue (from C13 to C15), differed each other from peptide sequence in the position of Leu7 or Val7. All these surfactins had significant activity and stability of emulsification under various pH (from 7.0 to 12.0), temperature range (from 20 to 115 °C) and sodium chloride concentration (from 2.5 to 20.0 %, w/v). Taken all together, these results indicated that B. mojavensis B0621A have potential to be an alternative source as a biological-derived emulsifying agent. PMID:26373943

  2. Drosophila myogenesis.

    Science.gov (United States)

    Bothe, Ingo; Baylies, Mary K

    2016-09-12

    The skeletal muscle system is the largest organ in motile animals, constituting between 35 and 55% of the human body mass, and up to 75% of the body mass in flying organisms like Drosophila. The flight muscles alone in flying insects comprise up to 65% of total body mass. Not only is the musculature the largest organ system, it is also exquisitely complex, with single muscles existing in different shapes and sizes. These different morphologies allow for such different functions as the high-frequency beating of a wing in a hummingbird, the dilation of the pupil in a human eye, or the maintenance of posture in a giraffe's neck. PMID:27623256

  3. Assessment of pectinase production by Bacillus mojavensis I4 using an economical substrate and its potential application in oil sesame extraction.

    Science.gov (United States)

    Ghazala, Imen; Sayari, Nadhem; Romdhane, Molka Ben; Ellouz-Chaabouni, Semia; Haddar, Anissa

    2015-12-01

    Carrot (Daucus carota) peels, local agricultural waste product, is rich in lignocellulolytic material, including pectin which can act as an inducer of pectinase production. Pectinolytic enzymes production by Bacillus mojavensis I4 was studied in liquid state fermentation using carrot peel as a substrate. Medium composition and culture conditions for the pectinase production by I4 were optimized using two statistical methods: Taguchi design was applied to find the key ingredients and conditions for the best yield of enzyme production and The Box-Behnken design was used to optimize the value of the four significant variables: carrot peels powder, NH4Cl, inoculum size and incubation time. The optimal conditions for higher production of pectinase were carrot peels powder 6.5 %, NH4Cl 0.3 %, inoculum level 3 % and cultivation time 32 h. Under these conditions, the pectinase experimental yield (64.8 U/ml) closely matched the yield predicted by the statistical model (63.55 U/ml) with R (2) = 0.963. The best pectinase activity was observed at the temperature of 60 °C and at pH 8.0. The enzyme retained more than 90 % of its activity after 24 h at pH ranging from 6.0 to 10.0. The enzyme preserved more than 85 % of its initial activity after 60 min of pre-incubation at 30-40 °C and more than 67 % at 50 °C. The extracellular juice of I4 was applied in the process of sesame seeds oil extraction. An improvement of 3 % on the oil yield was obtained. The findings demonstrated that the B. mojavensis I4 has a promising potential for future use in a wide range of industrial and biotechnological applications.

  4. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.

    Directory of Open Access Journals (Sweden)

    Steven G Kuntz

    2014-04-01

    Full Text Available Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer

  5. Drosophila egg chamber elongation

    OpenAIRE

    Gates, Julie

    2012-01-01

    As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interac...

  6. Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses

    Indian Academy of Sciences (India)

    Volker Loeschcke; Jesper G Sørensen; Torsten N Kristensen

    2004-12-01

    We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable – if not critical – to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems of Drosophila species, representing both cosmopolitan species such as D. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilic D. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.

  7. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  8. BMAA neurotoxicity in Drosophila.

    Science.gov (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  9. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard, Brianna K.; Cheramie, Martin N.; Eime, Anne M.; Golden, Kathryn L.; Hawkins, Allyson P.; Hill, Jessica E.; Kampmeier, Jessica A.; Kern, Cody D.; Magnuson, Emily E.; Miller, Ashley R.; Morrow, Cody M.; Peairs, Julia C.; Pickett, Gentry L.; Popelka, Sarah A.; Scott, Alexis J.; Teepe, Emily J.; TerMeer, Katie A.; Watchinski, Carmen A.; Watson, Lucas A.; Weber, Rachel E.; Woodard, Kate A.; Barnard, Daron C.; Appiah, Isaac; Giddens, Michelle M.; McNeil, Gerard P.; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C.; Buhler, Jeremy; Mardis, Elaine R.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  10. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    Science.gov (United States)

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-05-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  11. Drosophila by the dozen

    Energy Technology Data Exchange (ETDEWEB)

    Celniker, Susan E.; Hoskins, Roger A.

    2007-07-13

    This year's conference on Drosophila research illustratedwell the current focus of Drosophila genomics on the comprehensiveidentification of functional elements in the genome sequence, includingmRNA transcripts arising from multiple alternative start sites and splicesites, a multiplicity of noncoding transcripts and small RNAs,identification of binding sites for transcription factors, sequenceconservation in related species and sequence variation within species.Resources and technologies for genetics and functional genomics aresteadily being improved, including the building of collections oftransposon insertion mutants and hairpin constructs for RNA interference(RNAi). The conference also highlighted progress in the use of genomicinformation by many laboratories to study diverse aspects of biology andmodels of human disease. Here we will review a few highlights of especialinterest to readers of Genome Biology.

  12. Olfactory learning in Drosophila

    OpenAIRE

    Nehrkorn, Johannes

    2016-01-01

    Animals are able to form associative memories and benefit from past experience. In classical conditioning an animal is trained to associate an initially neutral stimulus by pairing it with a stimulus that triggers an innate response. The neutral stimulus is commonly referred to as conditioned stimulus (CS) and the reinforcing stimulus as unconditioned stimulus (US). The underlying neuronal mechanisms and structures are an intensely investigated topic. The fruit fly Drosophila melanogaster...

  13. Selective Autophagy in Drosophila

    Directory of Open Access Journals (Sweden)

    Ioannis P. Nezis

    2012-01-01

    Full Text Available Autophagy is an evolutionarily conserved process of cellular self-eating and is a major pathway for degradation of cytoplasmic material by the lysosomal machinery. Autophagy functions as a cellular response in nutrient starvation, but it is also associated with the removal of protein aggregates and damaged organelles and therefore plays an important role in the quality control of proteins and organelles. Although it was initially believed that autophagy occurs randomly in the cell, during the last years, there is growing evidence that sequestration and degradation of cytoplasmic material by autophagy can be selective. Given the important role of autophagy and selective autophagy in several disease-related processes such as neurodegeneration, infections, and tumorigenesis, it is important to understand the molecular mechanisms of selective autophagy, especially at the organismal level. Drosophila is an excellent genetically modifiable model organism exhibiting high conservation in the autophagic machinery. However, the regulation and mechanisms of selective autophagy in Drosophila have been largely unexplored. In this paper, I will present an overview of the current knowledge about selective autophagy in Drosophila.

  14. Initial neurogenesis in Drosophila.

    Science.gov (United States)

    Hartenstein, Volker; Wodarz, Andreas

    2013-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review. PMID:24014455

  15. Sterol requirements in Drosophila melanogaster

    OpenAIRE

    Almeida de Carvalho, Maria Joao

    2009-01-01

    Sterol is an abundant component of eukaryotic cell membranes and is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila is an excellent model system in which to study functional requirements for membrane sterol because, although it does not synthesize sterol, it nevertheless requires sterols to complete development. Moreover, Drosophila normally incorporates sterols into cell membranes. Thus, dietary sterol depletion can be used to ...

  16. Optogenetics in Drosophila Neuroscience.

    Science.gov (United States)

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory.

  17. Iron Absorption in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Fanis Missirlis

    2013-05-01

    Full Text Available The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import, the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export and the role of ferritin in the process of iron acquisition (iron storage. We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  18. Iron Absorption in Drosophila melanogaster

    Science.gov (United States)

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  19. Drosophila neuroblasts retain the daughter centrosome

    OpenAIRE

    Januschke, Jens; Llamazares, Salud; Reina, Jose; Gonzalez, Cayetano

    2011-01-01

    During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by cloning the Drosophila homologue of human Centrobin. Here we show that upon asymmetric mitosis, the...

  20. Signal Propagation in Drosophila Central Neurons

    OpenAIRE

    Gouwens, Nathan W.; Wilson, Rachel I.

    2009-01-01

    Drosophila is an important model organism for investigating neural development, neural morphology, neurophysiology, and neural correlates of behaviors. However, almost nothing is known about how electrical signals propagate in Drosophila neurons. Here we address these issues in antennal lobe projection neurons (PNs), one of the most well-studied classes of Drosophila neurons. We use morphological and electrophysiological data to deduce the passive membrane properties of these neurons and to b...

  1. Integrative Model of Drosophila Flight

    OpenAIRE

    Dickson, William B.; Andrew D Straw; Dickinson, Michael H

    2008-01-01

    This paper presents a framework for simulating the flight dynamics and control strategies of the fruit fly Drosophila melanogaster. The framework consists of five main components: an articulated rigid-body simulation, a model of the aerodynamic forces and moments, a sensory systems model, a control model, and an environment model. In the rigid-body simulation the fly is represented by a system of three rigid bodies connected by a pair of actuated ball joints. At each instant of th...

  2. Chromatin assembly using Drosophila systems.

    Science.gov (United States)

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  3. Visual attention in Drosophila melanogaster

    OpenAIRE

    Sareen, Preeti

    2012-01-01

    There is such vast amount of visual information in our surroundings at any time that filtering out the important information for further processing is a basic requirement for any visual system. This is accomplished by deploying attention to focus on one source of sensory inputs to the exclusion of others (Luck and Mangun 2009). Attention has been studied extensively in humans and non human primates (NHPs). In Drosophila, visual attention was first demonstrated in 1980 (Wolf and Heisenberg 198...

  4. Insulin receptor in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  5. Insulin receptor in Drosophila melanogaster

    International Nuclear Information System (INIS)

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  6. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  7. Using Drosophila for Studies of Intermediate Filaments.

    Science.gov (United States)

    Bohnekamp, Jens; Cryderman, Diane E; Thiemann, Dylan A; Magin, Thomas M; Wallrath, Lori L

    2016-01-01

    Drosophila melanogaster is a useful organism for determining protein function and modeling human disease. Drosophila offers a rapid generation time and an abundance of genomic resources and genetic tools. Conservation in protein structure, signaling pathways, and developmental processes make studies performed in Drosophila relevant to other species, including humans. Drosophila models have been generated for neurodegenerative diseases, muscular dystrophy, cancer, and many other disorders. Recently, intermediate filament protein diseases have been modeled in Drosophila. These models have revealed novel mechanisms of pathology, illuminated potential new routes of therapy, and make whole organism compound screens feasible. The goal of this chapter is to outline steps to study intermediate filament function and model intermediate filament-associated diseases in Drosophila. The steps are general and can be applied to study the function of almost any protein. The protocols outlined here are for both the novice and experienced Drosophila researcher, allowing the rich developmental and cell biology that Drosophila offers to be applied to studies of intermediate filaments.

  8. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.)

  9. Taste processing in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A. Apostolopoulou

    2015-10-01

    Full Text Available The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances.

  10. Complete mitochondrial genome of Drosophila albomicans.

    Science.gov (United States)

    Kang, Xiongbin; Luo, Xiao; Zhang, Zhi; Zhang, Zhen; Yang, Junqing; Bi, Guiqi

    2016-09-01

    Drosophila albomicans has been widely used as an important animal model for chromosome evolution. In this study, the mitochondrial genome sequence of this species is determined and described for the first time. The mitochondrial genome (15 849 bp) encompasses two rRNA, 22 tRNA, and 13 protein-coding genes. Genome content and structure are similar to those reported from other Drosophila mitochondrial genomes. Phylogeny analysis indicates that D. albomicans have a closer genetic relationship with Drosophil aincompta and Drosophil alittoralis. This mitochondrial genome is potentially important for studying molecular evolution and conservation genetics in Drosophila genus. PMID:26358579

  11. A Drosophila metallophosphoesterase mediates deglycosylation of rhodopsin

    OpenAIRE

    Cao, Jinguo; Li, Yi; Xia, Wenjing; Reddig, Keith; Hu, Wen; XIE, Wei; Li, Hong-Sheng; Han, Junhai

    2011-01-01

    The glycosylation status of Rhodopsin controls its trafficking and stability, and is hence critical for photoreceptor function. Here, a Drosophila metallophosphoesterase is identified that affects Rhodopsin glycosylation by regulating the activity of an enzyme involved in glycan processing.

  12. Modeling tumor invasion and metastasis in Drosophila

    Directory of Open Access Journals (Sweden)

    Wayne O. Miles

    2011-11-01

    Full Text Available Conservation of major signaling pathways between humans and flies has made Drosophila a useful model organism for cancer research. Our understanding of the mechanisms regulating cell growth, differentiation and development has been considerably advanced by studies in Drosophila. Several recent high profile studies have examined the processes constraining the metastatic growth of tumor cells in fruit fly models. Cell invasion can be studied in the context of an in vivo setting in flies, enabling the genetic requirements of the microenvironment of tumor cells undergoing metastasis to be analyzed. This Perspective discusses the strengths and limitations of Drosophila models of cancer invasion and the unique tools that have enabled these studies. It also highlights several recent reports that together make a strong case for Drosophila as a system with the potential for both testing novel concepts in tumor progression and cell invasion, and for uncovering players in metastasis.

  13. Lipid metabolism in Drosophila: development and disease

    Institute of Scientific and Technical Information of China (English)

    Zhonghua Liu; Xun Huang

    2013-01-01

    Proteins,nucleic acids,and lipids are three major components of the cell.Despite a few basic metabolic pathways,we know very little about lipids,compared with the explosion of knowledge about proteins and nucleic acids.How many different forms of lipids are there? What are the in vivo functions of individual lipid? How does lipid metabolism contribute to normal development and human health? Many of these questions remain unanswered.For over a century,the fruit fly Drosophila melanogaster has been used as a model organism to study basic biological questions.In recent years,increasing evidences proved that Drosophila models are highly valuable for lipid metabolism and energy homeostasis researches.Some recent progresses of lipid metabolic regulation during Drosophila development and in Drosophila models of human diseases will be discussed in this review.

  14. Behavioral modification in choice process of Drosophila

    Institute of Scientific and Technical Information of China (English)

    WANG; Shunpeng; (王顺鹏); TANG; Shiming; (唐世明); LI; Yan; (李; 岩); GUO; Aike; (郭爱克)

    2003-01-01

    In visual operant conditioning of Drosophila at the flight simulator, only motor output of flies--yaw torque--is recorded, which is involved in the conditioning process. The current study used a newly-designed data analysis method to study the torque distribution of Drosophila. Modification of torque distribution represents the effects of operant conditioning on flies' behavioral mode. Earlier works[10] showed that, when facing contradictory visual cues, flies could make choices based upon the relative weightiness of different cues, and it was demonstrated that mushroom bodies might play an important role in such choice behavior. The new "torque-position map" method was used to explore the CS-US associative learning and choice behavior in Drosophila from the aspect of its behavioral mode. Finally, this work also discussed various possible neural bases involved in visual associative learning, choice processing and modification processing of the behavioral mode in the visual operant conditioning of Drosophila.

  15. Genetic Determinants of Phosphate Response in Drosophila

    OpenAIRE

    Clemens Bergwitz; Wee, Mark J.; Sumi Sinha; Joanne Huang; Charles DeRobertis; Mensah, Lawrence B.; Jonathan Cohen; Adam Friedman; Meghana Kulkarni; Yanhui Hu; Arunachalam Vinayagam; Michael Schnall-Levin; Bonnie Berger; Perkins, Lizabeth A.; Mohr, Stephanie E.

    2012-01-01

    Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. ...

  16. The Drosophila cyst stem cell lineage

    OpenAIRE

    Zoller, Richard; Schulz, Cordula

    2012-01-01

    In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has ...

  17. RNA Binding Specificity of Drosophila Muscleblind†

    OpenAIRE

    Goers, Emily S.; Voelker, Rodger B.; Gates, Devika P.; Berglund, J. Andrew

    2008-01-01

    Members of the muscleblind family of RNA binding proteins found in Drosophila and mammals are key players in both the human disease myotonic dystrophy and the regulation of alternative splicing. Recently, the mammalian muscleblind-like protein, MBNL1, has been shown to have interesting RNA binding properties with both endogenous and disease-related RNA targets. Here we report the characterization of RNA binding properties of the Drosophila muscleblind protein Mbl. Mutagenesis of double-strand...

  18. The Digestive Tract of Drosophila melanogaster

    OpenAIRE

    Bassler, Bl; Lichten, M; Schupbach, G.; Lemaitre, Bruno; Miguel-Aliaga, Irene

    2013-01-01

    The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting ...

  19. A Drosophila Model for Screening Antiobesity Agents

    Science.gov (United States)

    Men, Tran Thanh; Thanh, Duong Ngoc Van; Yamaguchi, Masamitsu; Suzuki, Takayoshi; Hattori, Gen; Arii, Masayuki; Huy, Nguyen Tien; Kamei, Kaeko

    2016-01-01

    Although triacylglycerol, the major component for lipid storage, is essential for normal physiology, its excessive accumulation causes obesity in adipose tissue and is associated with organ dysfunction in nonadipose tissue. Here, we focused on the Drosophila model to develop therapeutics for preventing obesity. The brummer (bmm) gene in Drosophila melanogaster is known to be homologous with human adipocyte triglyceride lipase, which is related to the regulation of lipid storage. We established a Drosophila model for monitoring bmm expression by introducing the green fluorescent protein (GFP) gene as a downstream reporter of the bmm promoter. The third-instar larvae of Drosophila showed the GFP signal in all tissues observed and specifically in the salivary gland nucleus. To confirm the relationship between bmm expression and obesity, the effect of oral administration of glucose diets on bmm promoter activity was analyzed. The Drosophila flies given high-glucose diets showed higher lipid contents, indicating the obesity phenotype; this was suggested by a weaker intensity of the GFP signal as well as reduced bmm mRNA expression. These results demonstrated that the transgenic Drosophila model established in this study is useful for screening antiobesity agents. We also report the effects of oral administration of histone deacetylase inhibitors and some vegetables on the bmm promoter activity. PMID:27247940

  20. A Drosophila Model for Screening Antiobesity Agents

    Directory of Open Access Journals (Sweden)

    Tran Thanh Men

    2016-01-01

    Full Text Available Although triacylglycerol, the major component for lipid storage, is essential for normal physiology, its excessive accumulation causes obesity in adipose tissue and is associated with organ dysfunction in nonadipose tissue. Here, we focused on the Drosophila model to develop therapeutics for preventing obesity. The brummer (bmm gene in Drosophila melanogaster is known to be homologous with human adipocyte triglyceride lipase, which is related to the regulation of lipid storage. We established a Drosophila model for monitoring bmm expression by introducing the green fluorescent protein (GFP gene as a downstream reporter of the bmm promoter. The third-instar larvae of Drosophila showed the GFP signal in all tissues observed and specifically in the salivary gland nucleus. To confirm the relationship between bmm expression and obesity, the effect of oral administration of glucose diets on bmm promoter activity was analyzed. The Drosophila flies given high-glucose diets showed higher lipid contents, indicating the obesity phenotype; this was suggested by a weaker intensity of the GFP signal as well as reduced bmm mRNA expression. These results demonstrated that the transgenic Drosophila model established in this study is useful for screening antiobesity agents. We also report the effects of oral administration of histone deacetylase inhibitors and some vegetables on the bmm promoter activity.

  1. Spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: drosophilidae), trapped with combinations of wines and vinegars

    Science.gov (United States)

    Field trapping experiments evaluated wine and vinegar baits for spotted wing drosophila flies, Drosophila suzukii (Matsumura), and assessed variance in biat attractiveness with wit type, vinegar type, and bait age. A mixture of apple cider vinegar and a Merlot wine attracted more flies than a mixtur...

  2. FlyBase: the Drosophila database. The Flybase Consortium.

    OpenAIRE

    1996-01-01

    FlyBase is a database of genetic and molecular data concerning Drosophila. FlyBase is maintained as a relational database (in Sybase). The scope of FlyBase includes: genes, alleles (and phenotypes), aberrations, pointers to sequence data, clones, stock lists, Drosophila workers and bibliographic references. FlyBase is also available on CD-ROM for Macintosh systems (Encyclopaedia of Drosophila).

  3. Development of dendrite polarity in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Hill Sarah E

    2012-10-01

    Full Text Available Abstract Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity.

  4. Effects of disease control and growth promotion of Polygonum viviparum endophytic bacteria Bacillus mojavensis on potato%珠芽蓼内生菌 ZA1对马铃薯的防病促生研究

    Institute of Scientific and Technical Information of China (English)

    畅涛; 杨成德; 薛莉; 杨小利; 冯中红; 郝蓉蓉; 张振粉; 陈秀蓉

    2015-01-01

    This research was to study the effects of disease prevention,growth promotion and defense enzymes induction of Bacillus mojavensis ZA1 on potato,and provide a theoretical basis for microbial fungicide and fer-tilizer use.The abilities of IAA secretion,nitrogen fixation,phosphate solubilization and inhibition enzyme production of ZA1 have been researched qualitatively by general methods.The effects of controlling disease and growth promotion of ZA1 on potatoes were studied under the condition of indoors and fields.The concentration of IAA secreted by ZA1 in the King medium with and without tryptophan were 12.17 and 9.75 mg/L.ZA1 possessed the capacity of nitrogen fixation and extracellular proteases,chitinase and glucanase production,butwithout the ability of phosphate solubilization.The control efficiency of ZA1 was 85.9% by spraying 10 times diluting fermentation broth on potato tubes in storage-period against potato gangrene,and was 26.56% by seed dressing fermentation broth with diluting for 20 times on potato tubes under field condition against potato late blight.In field condition,the production ratios of commodity potato were increased by 36.29% and 33.88%per hectare,respectively.Pot experiments with the seed dressing potatoes showed that the content of roots, stems and chlorophyll were higher than the control group.After treatment by ZA1 20 times fermentation broth on potato tubes,the length of the root and wet and dry weight were increased by 8 cm,0.75 g and 5.07 g,re-spectively.In the same time,the plant height,stem diameter,stem wet and dry weight and the content of chlorophyll were increased by 2.74 cm,0.27 cm,0.52 g,5.73 g and 0.54 mg/g,respectively.The root-shoot ratios of wet and dry weight were increased by 0.214 and 0.094,respectively.When spraying diluting fermen-tation broth of ZA1 on potato leaves,the results indicated that the activity of catalase (CAT),polyphenol oxi-dase (PPO),phenylalanine ammonialyase (PAL),SOD and POD of potatoes were

  5. Apoptosis in Drosophila: which role for mitochondria?

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human. PMID:26679112

  6. Live cell imaging in Drosophila melanogaster.

    Science.gov (United States)

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila. PMID:20360379

  7. Drosophila bitter taste(s

    Directory of Open Access Journals (Sweden)

    Alice eFrench

    2015-11-01

    Full Text Available Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called bitter. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if the activation of bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induce aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to inhibitory pheromones such as 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different categories of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction

  8. Automated measurement of Drosophila wings

    Directory of Open Access Journals (Sweden)

    Mezey Jason

    2003-12-01

    Full Text Available Abstract Background Many studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure. Results We have developed an automated image analysis system (WINGMACHINE that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex. Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments. Conclusion WINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.

  9. Characterization of novel microsatellites from Drosophila transversa.

    Science.gov (United States)

    Räisänen, L; Roininen, E; Liimatainen, J O

    2009-03-01

    We investigated a partial genomic library of Drosophila transversa for microsatellites and developed 12 markers for genetic analyses. This is the first time that microsatellite primers from the quinaria species group have been described. Four loci were cross-amplified in D. phalerata. Nine out of the 12 microsatellite markers developed are likely to be on the X chromosome. PMID:21564716

  10. Drosophila lifespan enhancement by exogenous bacteria

    OpenAIRE

    Brummel, Ted; Ching, Alisa; Seroude, Laurent; Simon, Anne F.; Benzer, Seymour

    2004-01-01

    We researched the lifespan of Drosophila under axenic conditions compared with customary procedure. The experiments revealed that the presence of bacteria during the first week of adult life can enhance lifespan, despite unchanged food intake. Later in life, the presence of bacteria can reduce lifespan. Certain long-lived mutants react in different ways, indicating an interplay between bacteria and longevity-enhancing genes.

  11. Polarity and intracellular compartmentalization of Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Henner Astra L

    2007-04-01

    Full Text Available Abstract Background Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced. In mammalian neurons, each primary compartment has distinctive molecular and morphological features, as well as smaller domains, such as the axon initial segment, that have more specialized functions. How neuronal subcellular compartments are established and maintained is not well understood. Genetic studies in Drosophila have provided insight into other areas of neurobiology, but it is not known whether flies are a good system in which to study neuronal polarity as a comprehensive analysis of Drosophila neuronal subcellular organization has not been performed. Results Here we use new and previously characterized markers to examine Drosophila neuronal compartments. We find that: axons and dendrites can accumulate different microtubule-binding proteins; protein synthesis machinery is concentrated in the cell body; pre- and post-synaptic sites localize to distinct regions of the neuron; and specializations similar to the initial segment are present. In addition, we track EB1-GFP dynamics and determine microtubules in axons and dendrites have opposite polarity. Conclusion We conclude that Drosophila will be a powerful system to study the establishment and maintenance of neuronal compartments.

  12. Radiation effects on the drosophila melanogaster genoma

    International Nuclear Information System (INIS)

    When DNA of living beings has been damaged, the cells show different responses depending on their physiological state. Repair mechanisms can be classified into two groups: constitutive which are always present in the cells and inductible, which must be stimulated to show themselves. It is suggested that a repair mechanism exists in the drosophila ovules which act upon the damage present in mature spermatozoids. Our aim is to verify whether or not a radiation dosis applied to the female drosophila will modify the frequency of individuals which have lost the paternal sex chromosomes. YW/YW virgin females and XEZ males and fbb-/bS Y y+ y were mated for two days in order to collect radiation treated spermatozoids. The results were consistent as to the parameters being evaluated and lead one to suppose that the radiation applied to the female drosophila produced some changes in the ovule metabolism which reduced the frequency of individuals with lost chromosomes. It is believed that ionizing radiation interferes with the repair mechanisms that are existent and constitutive, retarding and hindering the restoration of chromosome fragments and this brings about death of the zygote or death of the eggs which lessens the frequencies of individuals carriers of chromosomic aberrations. Ionizing radiations applied to the female drosophila modifies the frequency of loss of patternal chromosomes and comes about when the radiation dose to the female is 700 rad. (Author)

  13. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  14. Organization of descending neurons in Drosophila melanogaster.

    Science.gov (United States)

    Hsu, Cynthia T; Bhandawat, Vikas

    2016-01-01

    Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved. PMID:26837716

  15. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  16. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  17. Mutants dissecting development and behaviour in drosophila

    International Nuclear Information System (INIS)

    We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50

  18. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  19. Remembering components of food in Drosophila

    Directory of Open Access Journals (Sweden)

    Gaurav eDas

    2016-02-01

    Full Text Available Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons that innervate distinct functional zones on the mushroom bodies. This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. Dopaminergic neurons are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.

  20. [The comeback of mitochondria in Drosophila apoptosis].

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Mignotte, Bernard; Guénal, Isabelle

    2016-05-01

    The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans. PMID:27225920

  1. Motor Control of Drosophila Courtship Song

    Directory of Open Access Journals (Sweden)

    Troy R. Shirangi

    2013-11-01

    Full Text Available Many animals utilize acoustic signals—or songs—to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1 that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a “modular” anatomical substrate for the evolution of diverse songs.

  2. Exquisite Light Sensitivity of Drosophila melanogaster Cryptochrome

    Science.gov (United States)

    Vinayak, Pooja; Coupar, Jamie; Hughes, S. Emile; Fozdar, Preeya; Kilby, Jack; Garren, Emma; Yoshii, Taishi; Hirsh, Jay

    2013-01-01

    Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles. PMID:23874218

  3. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.

    Directory of Open Access Journals (Sweden)

    Pooja Vinayak

    Full Text Available Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.

  4. Imaging Calcium in Drosophila at Egg Activation.

    Science.gov (United States)

    Derrick, Christopher J; York-Andersen, Anna H; Weil, Timothy T

    2016-01-01

    Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca(2+)) often termed a 'Ca(2+) wave'. While the speed and number of oscillations of the Ca(2+) wave varies between species, the change in intracellular Ca(2+) is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton. In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca(2+)-dependent events. Here we present a protocol for imaging the Ca(2+) wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca(2+) wave and the downstream changes associated with it. PMID:27584955

  5. Recombineering Homologous Recombination Constructs in Drosophila

    OpenAIRE

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A.; Williams, Nathan David; Hiesinger, P. Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineeri...

  6. Three-dimensional imaging of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Leeanne McGurk

    Full Text Available BACKGROUND: The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT. The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy. METHODOLOGY: We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. CONCLUSION: We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

  7. Structure and Development of Glia in Drosophila

    OpenAIRE

    Hartenstein, Volker

    2011-01-01

    Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. Based on topology and cell shape, glial cells of the central ...

  8. The development of the Drosophila larval brain.

    Science.gov (United States)

    Hartenstein, Volker; Spindler, Shana; Pereanu, Wayne; Fung, Siaumin

    2008-01-01

    In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments. PMID:18683635

  9. A Drosophila melanogaster model of classic galactosemia

    OpenAIRE

    Kushner, Rebekah F.; Ryan, Emily L.; Sefton, Jennifer M. I.; Rebecca D Sanders; Lucioni, Patricia Jumbo; Kenneth H Moberg; Fridovich-Keil, Judith L.

    2010-01-01

    Classic galactosemia is a potentially lethal disorder that results from profound impairment of galactose-1-phosphate uridylyltransferase (GALT). Despite decades of research, the underlying pathophysiology of classic galactosemia remains unclear, in part owing to the lack of an appropriate animal model. Here, we report the establishment of a Drosophila melanogaster model of classic galactosemia; this is the first whole-animal genetic model to mimic aspects of the patient phenotype. Analogous t...

  10. Quantification of Food Intake in Drosophila

    OpenAIRE

    Richard Wong; Matthew D W Piper; Bregje Wertheim; Linda Partridge

    2009-01-01

    Measurement of food intake in the fruit fly Drosophila melanogaster is often necessary for studies of behaviour, nutrition and drug administration. There is no reliable and agreed method for measuring food intake of flies in undisturbed, steady state, and normal culture conditions. We report such a method, based on measurement of feeding frequency by proboscis-extension, validated by short-term measurements of food dye intake. We used the method to demonstrate that (a) female flies feed more ...

  11. Tools for neuroanatomy and neurogenetics in Drosophila

    OpenAIRE

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B

    2008-01-01

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of gene...

  12. Functional neuroanatomy of Drosophila olfactory memory formation

    OpenAIRE

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  13. Detection of Cell Death in Drosophila Tissues

    Science.gov (United States)

    Vasudevan, Deepika; Ryoo, Hyung Don

    2016-01-01

    Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants and assays used by various laboratories to study cell death in the context of development and in response to external insults. PMID:27108437

  14. Visualizing the spindle checkpoint in Drosophila spermatocytes

    OpenAIRE

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint ma...

  15. A Taste of the Drosophila Gustatory Receptors

    OpenAIRE

    Montell, Craig

    2009-01-01

    Insects such as the fruit fly, Drosophila melanogaster, rely on contact chemosensation to detect nutrient-rich foods, to avoid consuming toxic chemicals, and to select mates and hospitable zones to deposit eggs. Flies sense tastants and non-volatile pheromones through gustatory bristles and pegs distributed on multiple body parts including the proboscis, wing margins, legs and ovipositor. The sensilla house gustatory receptor neurons, which express members of the family of 68 gustatory recept...

  16. Visualizing the spindle checkpoint in Drosophila spermatocytes

    Science.gov (United States)

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint machinery are expressed in these cells and behave as their homologue proteins do in systems with an active spindle checkpoint. To establish whether the spindle checkpoint is active in Drosophila spermatocytes we have followed meiosis progression by time-lapse microscopy under conditions where the checkpoint is likely to be activated. We have found that the presence of a relatively high number of misaligned chromosomes or a severe disruption of the meiotic spindle results in a significant delay in the time of entry into anaphase. These observations provide the first direct evidence substantiating the activity of a meiotic spindle checkpoint in male Drosophila. PMID:11256627

  17. Global patterns of sequence evolution in Drosophila

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2007-11-01

    Full Text Available Abstract Background Sequencing of the genomes of several Drosophila allows for the first precise analyses of how global sequence patterns change among multiple, closely related animal species. A basic question is whether there are characteristic features that differentiate chromosomes within a species or between different species. Results We explored the euchromatin of the chromosomes of seven Drosophila species to establish their global patterns of DNA sequence diversity. Between species, differences in the types and amounts of simple sequence repeats were found. Within each species, the autosomes have almost identical oligonucleotide profiles. However, X chromosomes and autosomes have, in all species, a qualitatively different composition. The X chromosomes are less complex than the autosomes, containing both a higher amount of simple DNA sequences and, in several cases, chromosome-specific repetitive sequences. Moreover, we show that the right arm of the X chromosome of Drosophila pseudoobscura, which evolved from an autosome 10 – 18 millions of years ago, has a composition which is identical to that of the original, left arm of the X chromosome. Conclusion The consistent differences among species, differences among X chromosomes and autosomes and the convergent evolution of X and neo-X chromosomes demonstrate that strong forces are acting on drosophilid genomes to generate peculiar chromosomal landscapes. We discuss the relationships of the patterns observed with differential recombination and mutation rates and with the process of dosage compensation.

  18. ‘Peer pressure’ in larval Drosophila?

    Directory of Open Access Journals (Sweden)

    Thomas Niewalda

    2014-06-01

    Full Text Available Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i by the level of innate olfactory preference in the surrounding group nor (ii by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii by the level of innate olfactory preference of the surrounding group nor (iv by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila.

  19. Pervasive natural selection in the Drosophila genome?

    Directory of Open Access Journals (Sweden)

    Guy Sella

    2009-06-01

    Full Text Available Over the past four decades, the predominant view of molecular evolution saw little connection between natural selection and genome evolution, assuming that the functionally constrained fraction of the genome is relatively small and that adaptation is sufficiently infrequent to play little role in shaping patterns of variation within and even between species. Recent evidence from Drosophila, reviewed here, suggests that this view may be invalid. Analyses of genetic variation within and between species reveal that much of the Drosophila genome is under purifying selection, and thus of functional importance, and that a large fraction of coding and noncoding differences between species are adaptive. The findings further indicate that, in Drosophila, adaptations may be both common and strong enough that the fate of neutral mutations depends on their chance linkage to adaptive mutations as much as on the vagaries of genetic drift. The emerging evidence has implications for a wide variety of fields, from conservation genetics to bioinformatics, and presents challenges to modelers and experimentalists alike.

  20. dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis

    Science.gov (United States)

    Aerts, Stein; Casares, Fernando; Janody, Florence

    2016-01-01

    Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. PMID:27442438

  1. Ionizing radiation causes the stress response in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Potentiality of the stress-reaction arising in Drosophila melanogaster under gamma-irradiation of the source with 137Cs (irradiation dose is 10 Gy , radiation dose rate amounts 180 c Gy/min) is studied. It is shown that radiation induces the stress-reaction in Drosophila resulting in alterations in energetic metabolism (biogenic amines metabolic system) and in reproductive function

  2. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  3. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  4. Rhodopsin 7–The unusual Rhodopsin in Drosophila

    Science.gov (United States)

    2016-01-01

    Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins. PMID:27651995

  5. Isolation of protease-free alcohol dehydrogenase (ADH) from Drosophila simulans and several homozygous and heterozygous Drosophila melanogaster variants

    NARCIS (Netherlands)

    Smilda, T; Lamme, DA; Collu, G; Jekel, PA; Reinders, P; Beintema, JJ

    1998-01-01

    The enzyme alcohol dehydrogenase (ADH) from several naturally occurring ADH variants of Drosophila melanogaster and Drosophila simulans Lc,as isolated. Affinity chromatography with the ligand Cibacron Blue and elution with NAD(+) showed similar behavior for D. melanogaster ADH-FF, ADH-71k, and D. si

  6. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael;

    2003-01-01

    embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  7. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  8. First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae in Montenegro

    Directory of Open Access Journals (Sweden)

    Snježana Hrnčić

    2015-01-01

    Full Text Available The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly species was unexpectedly detected in Tephri traps baited with the three-component female-biased attractant BioLure that is regularly used for monitoring the Mediterranean fruit fly Ceratitis capitata Wiedem. (Diptera: Tephritidae in Montenegro. Brief visual inspection identified the new species as the spotted wing drosophila D. suzukii. The pest was first recorded in several localities on the Montenegrin seacoast around Boka Kotor Bay. After the finding, all Drosophila specimens were collected from traps for further laboratory observation. A quick follow-up monitoring of other Tephri traps was carried out within the next few days on the rest of the seacoast (localities from Tivat to Ulcinj. Additionally, Tephri traps were set up around Lake Skadar and in the city of Podgorica, as well as on fresh fruit markets in Podgorica. The results of this preliminary study showed that D. suzukii was present in all surveyed locations and adults were captured until late December. Both sexes were found in traps with BioLure. Our data show that D. suzukii is present in southern parts of Montenegro and there is a serious threat of its further spreading, particularly towards northern parts of the country where the main raspberry and blueberry production is placed. The results also show that Tephri traps baited with BioLure can be used for detection and monitoring of spotted wing drosophila.

  9. Ion channels to inactivate neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    James J L Hodge

    2009-08-01

    Full Text Available Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic or calcium (Cav2 cacophony channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based systems available in Drosophila allowing fine temporal and spatial control of (channel transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.

  10. Role of spectraplakin in Drosophila photoreceptor morphogenesis.

    Directory of Open Access Journals (Sweden)

    Uyen Ngoc Mui

    Full Text Available BACKGROUND: Crumbs (Crb, a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes. Since Spectraplakin is able to bind both microtubule and actin cytoskeletons, the role of Spectraplakin was analyzed in the regulations of apical Crb domain in developing Drosophila photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS: The localization pattern of Spectraplakin in developing pupal photoreceptors showed a unique intracellular distribution. Spectraplakin localized at rhabdomere terminal web which is at the basal side of the apical Crb or rhabdomere, and in between the adherens junctions. The spectraplakin mutant photoreceptors showed dramatic mislocalizations of Crb, adherens junctions, and the stable microtubules. This role of Spectraplakin in Crb and adherens junction regulation was further supported by spectraplakin's gain-of-function phenotype. Spectraplakin overexpression in photoreceptors caused a cell polarity defect including dramatic mislocalization of Crb, adherens junctions and the stable microtubules in the developing photoreceptors. Furthermore, a strong genetic interaction between spectraplakin and crb was found using a genetic modifier test. CONCLUSIONS/SIGNIFICANCE: In summary, we found a unique localization of Spectraplakin in photoreceptors, and identified the role of spectraplakin in the regulation of the apical Crb domain and adherens junctions through genetic mutational analysis. Our data suggest that Spectraplakin, an actin-microtubule cross-linker, is essential in the apical and adherens junction controls during the photoreceptors morphogenesis.

  11. Acetylation regulates Jun protein turnover in Drosophila.

    Science.gov (United States)

    Zhang, Daoyong; Suganuma, Tamaki; Workman, Jerry L

    2013-11-01

    C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.

  12. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    Vasu Sheeba

    2008-12-01

    As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools at our disposal over the past four decades has enabled discovery of the genetic and molecular bases of circadian rhythmicity. More recently, detailed investigation leading to the anatomical, neurochemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster circadian pacemaker circuit presents a relatively simple and attractive model for the study of neuronal circuits and their functions.

  13. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  14. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.;

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution s...... structure of DmdNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK(....

  15. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  16. ‘Peer pressure’ in larval Drosophila?

    OpenAIRE

    Thomas Niewalda; Ines Jeske; Birgit Michels; Bertram Gerber

    2014-01-01

    ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group ...

  17. A connectionist model of the Drosophila blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, J. (Columbia Univ., New York, NY (USA). Dept. of Biological Sciences); Mjolsness, E. (Yale Univ., New Haven, CT (USA). Dept. of Computer Science); Sharp, D.H. (Los Alamos National Lab., NM (USA). Theoretical Div.)

    1990-11-01

    The authors present a phenomenological modeling framework for development, and apply it to the network of segmentation genes operating in the blastoderm of Drosophila. Their purpose is to provide a systematic method for discovering and expressing correlations in experimental data on gene expression and other developmental processes. The modeling framework is based on a connectionist or neural net dynamics for biochemical regulators, coupled to grammatical rules which describe certain features of the birth, growth, and death of cells, synapses and other biological entities. They present preliminary numerical results regarding regulatory interactions between the genes Kruppel and knirps that demonstrate the potential utility of the model. 14 refs., 5 figs.

  18. Characterization of maltase clusters in the genus Drosophila.

    Science.gov (United States)

    Gabriško, Marek; Janeček, Stefan

    2011-01-01

    To reveal evolutionary history of maltase gene family in the genus Drosophila, we undertook a bioinformatics study of maltase genes from available genomes of 12 Drosophila species. Molecular evolution of a closely related glycoside hydrolase, the α-amylase, in Drosophila has been extensively studied for a long time. The α-amylases were even used as a model of evolution of multigene families. On the other hand, maltase, i.e., the α-glucosidase, got only scarce attention. In this study, we, therefore, investigated spatial organization of the maltase genes in Drosophila genomes, compared the amino acid sequences of the encoded enzymes and analyzed the intron/exon composition of orthologous genes. We found that the Drosophila maltases are more numerous than previously thought (ten instead of three genes) and are localized in two clusters on two chromosomes (2L and 2R). To elucidate the approximate time line of evolution of the clusters, we estimated the order and dated duplication of all the 10 genes. Both clusters are the result of ancient series of subsequent duplication events, which took place from 352 to 61 million years ago, i.e., well before speciation to extant Drosophila species. Also observed was a remarkable intron/exon composition diversity of particular maltase genes of these clusters, probably a result of independent intron loss after duplication of intron-rich gene ancestor, which emerged well before speciation in a common ancestor of all extant Drosophila species.

  19. Genetic effects of plutonium in Drosophila. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This three year project, initiated in 1987, involved the genetic effects of alpha radiations on Drosophila. This document represents the final technical report. Plutonium residue was used as the alpha source of radon gas. Spontaneous mutation frequency in the Drosophila stock was very low. In the experiments using alpha radiation from radon gas, radiation doses as low as 20R induced significant numbers of mutations, with higher numbers of mutations at higher doses. If X-ray induced mutation frequencies reported in the literature are used for comparison, it can be concluded that alpha radiation from radon gas induces at least 2 to 3 time more mutations in Drosophila.

  20. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  1. The smell of love in Drosophila

    Directory of Open Access Journals (Sweden)

    Anna B. eZiegler

    2013-04-01

    Full Text Available Odors are key sensory signals for social communication and food search in animals including insects. Drosophila melanogaster, is a powerful neurogenetic model commonly used to reveal molecular and cellular mechanisms involved in odorant detection. Males use olfaction together with other sensory modalities to find their mates. Here, we review known olfactory signals, their related olfactory receptors, and the corresponding neuronal architecture impacting courtship. OR67d receptor detects 11-cis-Vaccenyl Acetate (cVA, a male specific pheromone transferred to the female during copulation. Transferred cVA is able to reduce female attractiveness for other males after mating, and is also suspected to decrease male-male courtship. cVA can also serve as an aggregation signal, maybe through another OR. OR47b was shown to be activated by fly odors, and to enhance courtship depending on taste pheromones. IR84a detects phenylacetic acid (PAA and phenylacetaldehyde. These two odors are not pheromones produced by flies, but are present in various fly food sources. PAA enhances male courtship, acting as a food aphrodisiac. Drosophila males have thus developed complementary olfactory strategies to help them to select their mates.

  2. Behavioural reproductive isolation and speciation in Drosophila

    Indian Academy of Sciences (India)

    Punita Nanda; Bashisth Narayan Singh

    2012-06-01

    The origin of premating reproductive isolation continues to help elucidate the process of speciation and is the central event in the evolution of biological species. Therefore, during the process of species formation the diverging populations must acquire some means of reproductive isolation so that the genes from one gene pool are prevented from dispersing freely into a foreign gene pool. In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern and degree of isolation within and between the species have often been used to elucidate the phylogenetic relationships. The present review documents an overview of speciation mediated through behavioural incompatibility in different species groups of Drosophila with particular reference to the models proposed on the basis of one-sided ethological isolation to predict the direction of evolution. This study is crucial for understanding the mechanism of speciation through behavioural incompatibility and also for an understanding of speciation genetics in future prospects.

  3. Drosophila Porin/VDAC affects mitochondrial morphology.

    Directory of Open Access Journals (Sweden)

    Jeehye Park

    Full Text Available Voltage-dependent anion channel (VDAC has been suggested to be a mediator of mitochondrial-dependent cell death induced by Ca(2+ overload, oxidative stress and Bax-Bid activation. To confirm this hypothesis in vivo, we generated and characterized Drosophila VDAC (porin mutants and found that Porin is not required for mitochondrial apoptosis, which is consistent with the previous mouse studies. We also reported a novel physiological role of Porin. Loss of porin resulted in locomotive defects and male sterility. Intriguingly, porin mutants exhibited elongated mitochondria in indirect flight muscle, whereas Porin overexpression produced fragmented mitochondria. Through genetic analysis with the components of mitochondrial fission and fusion, we found that the elongated mitochondria phenotype in porin mutants were suppressed by increased mitochondrial fission, but enhanced by increased mitochondrial fusion. Furthermore, increased mitochondrial fission by Drp1 expression suppressed the flight defects in the porin mutants. Collectively, our study showed that loss of Drosophila Porin results in mitochondrial morphological defects and suggested that the defective mitochondrial function by Porin deficiency affects the mitochondrial remodeling process.

  4. Logical modelling of Drosophila signalling pathways.

    Science.gov (United States)

    Mbodj, Abibatou; Junion, Guillaume; Brun, Christine; Furlong, Eileen E M; Thieffry, Denis

    2013-09-01

    A limited number of signalling pathways are involved in the specification of cell fate during the development of all animals. Several of these pathways were originally identified in Drosophila. To clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling pathways recurrently used in metazoan development. In each case, we considered the associated ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature. Implemented using the logical modelling software GINsim, the resulting models qualitatively recapitulate the main characteristics of each pathway, in wild type as well as in various mutant situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that can be used to assemble comprehensive models of complex developmental processes. Moreover, these models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the nine considered pathways.

  5. Selective anticancer agents suppress aging in Drosophila.

    Science.gov (United States)

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-09-01

    Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  6. Quantification of food intake in Drosophila.

    Directory of Open Access Journals (Sweden)

    Richard Wong

    Full Text Available Measurement of food intake in the fruit fly Drosophila melanogaster is often necessary for studies of behaviour, nutrition and drug administration. There is no reliable and agreed method for measuring food intake of flies in undisturbed, steady state, and normal culture conditions. We report such a method, based on measurement of feeding frequency by proboscis-extension, validated by short-term measurements of food dye intake. We used the method to demonstrate that (a female flies feed more frequently than males, (b flies feed more often when housed in larger groups and (c fly feeding varies at different times of the day. We also show that alterations in food intake are not induced by dietary restriction or by a null mutation of the fly insulin receptor substrate chico. In contrast, mutation of takeout increases food intake by increasing feeding frequency while mutation of ovo(D increases food intake by increasing the volume of food consumed per proboscis-extension. This approach provides a practical and reliable method for quantification of food intake in Drosophila under normal, undisturbed culture conditions.

  7. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  8. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  9. Egg-laying rhythm in Drosophila melanogaster

    Indian Academy of Sciences (India)

    T. Manjunatha; Shantala Hari Dass; Vijay Kumar Sharma

    2008-12-01

    Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.

  10. Drosophila roadblock and Chlamydomonas Lc7

    Science.gov (United States)

    Bowman, Aaron B.; Patel-King, Ramila S.; Benashski, Sharon E.; McCaffery, J. Michael; Goldstein, Lawrence S.B.; King, Stephen M.

    1999-01-01

    Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97–amino acid polypeptide that is 57% identical (70% similar) to the 105–amino acid Chlamydomonas outer arm dynein–associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions. PMID:10402468

  11. The complexity of Drosophila innate immunity

    Directory of Open Access Journals (Sweden)

    A Reumer

    2010-01-01

    Full Text Available Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system.Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g., cuticle, epithelial lining of gut and trachea, and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO response, a cellular response (hemocytes, an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.

  12. The dominant mutation Suppressor of black indicates that de novo pyrimindine biosynthesis is involved in the Drosophila tan pigmentation pathway

    DEFF Research Database (Denmark)

    Piskur, Jure; Kolbak, D.; Søndergaard, Leif;

    1993-01-01

    Pyrimidines, beta-alanine, cuticle, drosophila, pyrimidine analogs, molecular genetics, rudimentary......Pyrimidines, beta-alanine, cuticle, drosophila, pyrimidine analogs, molecular genetics, rudimentary...

  13. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. PMID:27160896

  14. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches.

  15. Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species

    OpenAIRE

    Salzberg, Steven L.; Julie C Dunning Hotopp; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C.

    2005-01-01

    A correction to Serendipitous discovery of Wolbachia genomes in multiple Drosophila species by SL Salzberg, JC Dunning Hotopp, AL Delcher, M Pop, DR Smith, MB Eisen and WC Nelson. Genome Biology 2005, 6:R23

  16. Is premating isolation in Drosophila overestimated due to uncontrolled factors?

    Indian Academy of Sciences (India)

    Pelayo Casares; Rafael Piñeiro; Maria C. Carracedo

    2005-12-01

    Sexual isolation in Drosophila is typically measured by multiple-choice mating tests. While many environmental variables during such tests are controlled by the researcher, there are some factors that are usually uncontrolled. We demonstrate, using Drosophila melanogaster and D. pseudoobscura flies, that the temperature of rearing, preadult density, and level of consanguinity, can all produce differences in mating propensity between genetically equivalent flies. These differences in mating propensity, in turn, can give rise to statistically significant results in multiple-choice mating tests, leading to positive isolation values and the artifactual inference of sexual isolation between populations. This fact agrees with a nonrandom excess of significant positive tests found in a review of the literature of Drosophila intraspecific mating choice. An overestimate of true cases of sexual isolation in Drosophila in the literature can, therefore, not be ruled out.

  17. Molecular evolution of a Drosophila homolog of human BRCA2.

    Science.gov (United States)

    Bennett, Sarah M; Noor, Mohamed A F

    2009-11-01

    The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region ("BRC repeats") with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.

  18. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    OpenAIRE

    Hartenstein Volker; Spindler Shana R

    2011-01-01

    Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that mul...

  19. A development-based compartmentalization of the Drosophila central brain

    OpenAIRE

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells, as well as long neurite fascicles. These fascicles are formed during the larval period when the approximately 100 neuronal lineages that constitute the Drosophila central brain differenti...

  20. Functional gustatory role of chemoreceptors in drosophila wings

    OpenAIRE

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria

    2016-01-01

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca2+ levels. Conversely, genetically modified flies presenting a wing-specific reductio...

  1. Circadian Organization of Behavior and Physiology in Drosophila

    OpenAIRE

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks....

  2. FlyBase: a Drosophila database. Flybase Consortium.

    OpenAIRE

    1998-01-01

    FlyBase (http://flybase.bio.indiana.edu/) is a comprehensive database of genetic and molecular data concerning Drosophila . FlyBase is maintained as a relational database (in Sybase) and is made available as html documents and flat files. The scope of FlyBase includes: genes, alleles (with phenotypes), aberrations, transposons, pointers to sequence data, gene products, maps, clones, stock lists, Drosophila workers and bibliographic references.

  3. Dietary glucose regulates yeast consumption in adult Drosophila males

    OpenAIRE

    Sebastien eLebreton; Peter eWitzgall; Marie eOlsson; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies ...

  4. Candidate Glutamatergic Neurons in the Visual System of Drosophila

    OpenAIRE

    Shamprasad Varija Raghu; Alexander Borst

    2011-01-01

    The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter....

  5. Evolution of Drosophila ribosomal protein gene core promoters

    OpenAIRE

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2008-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, a...

  6. Following the Motion of Polycomb Bodies in Living Drosophila Embryos.

    Science.gov (United States)

    Cheutin, Thierry; Cavalli, Giacomo

    2016-01-01

    During the last two decades, observation of cell nuclei in live microscopy evidences motion of nuclear compartments. Drosophila embryos constitute a good model to study nuclear dynamic during cell differentiation because they can easily be observed in live microscopy. Inside the cell nucleus, Polycomb group proteins accumulate in foci named Pc bodies. Here, we describe a method to visualize and analyze the motion of these nuclear compartments inside cell nuclei of Drosophila embryos. PMID:27659993

  7. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  8. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    Directory of Open Access Journals (Sweden)

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  9. Simulation of gene pyramiding in Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated.But it has not been used in animal breeding,and some theoretical investigation and simulation analysis with respect to its strategies,feasibility and efficiency are needed before it can be implemented in animals.In this study,we used four different pure fines of Drosophila melanogaster,each of which is homozygous at a specific mutant gene with a visible effect on phenotype,to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies.We finally got the ideal individuals,which are homozygous at the four target genes simultaneously.This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.

  10. Innate immunity in Drosophila: Pathogens and pathways

    Institute of Scientific and Technical Information of China (English)

    Shubha Govind

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derived from functional genomic studies using "model" pathogens, intact animals and cell lines. The D. melanogaster host has thus provided the core information that can be used to study responses to natural microbial and metazoan pathogens as they become identified, as well as to test ideas of selection and evolutionary change. These analyses are of general importance to understanding mechanisms of other insect host-pathogen interactions and determinants of variation in host resistance.

  11. A Protein Interaction Map of Drosophila melanogaster

    Science.gov (United States)

    Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y.; Hao, Y. L.; Ooi, C. E.; Godwin, B.; Vitols, E.; Vijayadamodar, G.; Pochart, P.; Machineni, H.; Welsh, M.; Kong, Y.; Zerhusen, B.; Malcolm, R.; Varrone, Z.; Collis, A.; Minto, M.; Burgess, S.; McDaniel, L.; Stimpson, E.; Spriggs, F.; Williams, J.; Neurath, K.; Ioime, N.; Agee, M.; Voss, E.; Furtak, K.; Renzulli, R.; Aanensen, N.; Carrolla, S.; Bickelhaupt, E.; Lazovatsky, Y.; DaSilva, A.; Zhong, J.; Stanyon, C. A.; Finley, R. L.; White, K. P.; Braverman, M.; Jarvie, T.; Gold, S.; Leach, M.; Knight, J.; Shimkets, R. A.; McKenna, M. P.; Chant, J.; Rothberg, J. M.

    2003-12-01

    Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

  12. Optogenetic Control of Gene Expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yick-Bun Chan

    Full Text Available To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

  13. Quantitative neuroanatomy for connectomics in Drosophila.

    Science.gov (United States)

    Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert

    2016-01-01

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. PMID:26990779

  14. Gustatory processing and taste memory in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Keene, Alex C

    2016-06-01

    Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit. PMID:27328844

  15. Antioxidants, metabolic rate and aging in Drosophila

    Science.gov (United States)

    Miquel, J.; Fleming, J.; Economos, A. C.

    1982-01-01

    The metabolic rate-of-living theory of aging was investigated by determining the effect of several life-prolonging antioxidants on the metabolic rate and life span of Drosophila. The respiration rate of groups of continuously agitated flies was determined in a Gilson respirometer. Vitamin E, 2,4-dinitrophenol, nordihydroguaiaretic acid, and thiazolidine carboxylic acid were employed as antioxidants. Results show that all of these antioxidants reduced the oxygen consumption rate and increased the mean life span, and a significant negative linear correlation was found between the mean life span and the metabolic rate. It is concluded that these findings indicate that some antioxidants may inhibit respiration rate in addition to their protective effect against free radical-induced cellular damage.

  16. Structure and Development of Glia in Drosophila

    Science.gov (United States)

    Hartenstein, Volker

    2014-01-01

    Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. Based on topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A–C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called “wrapping glia” that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from

  17. Isolation and characterization of acetylcholinesterase from Drosophila.

    Science.gov (United States)

    Gnagey, A L; Forte, M; Rosenberry, T L

    1987-09-25

    The purification and characterization of acetylcholinesterase from heads of the fruit fly Drosophila are described. Sequential extraction procedures indicated that approximately 40% of the activity was soluble and 60% membrane-bound and that virtually none (less than 4%) corresponded to collagen-tailed forms. The membrane-bound enzyme was extracted with Triton X-100 and purified over 4000-fold by affinity chromatography on acridinium resin. Hydrodynamic analysis by both sucrose gradient centrifugation and chromatography on Sepharose CL-4B revealed an Mr of 165,000 similar to that observed for dimeric (G2) forms of the enzyme in mammalian tissues. In contrast, the purified enzyme gave predominant bands of about 100 kDa prior to disulfied reduction and 55 kDa after reduction on polyacrylamide gel electrophoresis in sodium dodecyl sulfate, values that are significantly lower than those reported for purified G2 enzymes from other species. However, the presence of a faint band at 70 kDa which could be labeled by [3H]diisopropyl fluorophosphate prior to denaturation suggested that the 55-kDa band as well as a 16-kDa species arose from proteolysis. This was confirmed by reductive radiomethylation and amine analysis of the 70-, 55-, and 16-kDa bands. All three contained ethanolamine and glucosamine residues that are characteristic of a C-terminal glycolipid anchor in other G2 acetylcholinesterases. The catalytic properties of the enzyme were examined by titration with a fluorogenic reagent which revealed a turnover number for acetylthiocholine that was 6-fold lower than eel and 3-fold lower than human erythrocyte acetylcholinesterase. Furthermore, the Drosophila enzyme hydrolyzed butyrylthiocholine much more efficiently than these eel or human enzymes, an indication that the fly head enzyme has a substrate specificity intermediate between mammalian acetylcholinesterases and butyrylcholinesterases.

  18. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    Science.gov (United States)

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  19. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  20. Drosophila ARSs contain the yeast ARS consensus sequence and a replication enhancer.

    OpenAIRE

    Mills, J S; Kingsman, A J; Kingsman, S M

    1986-01-01

    A number of restriction fragments that function as autonomously replicating sequences (ARSs) in yeast have been isolated from Drosophila melanogaster DNA. The behaviour in yeast of plasmids containing Drosophila ARS elements was studied and compared to that exhibited by the archetypal yeast ARS-1 plasmid. ARS functions were localised by subcloning and BAL-31 deletion analysis. These studies demonstrated the structural and functional complexity of Drosophila ARSs. Each Drosophila ARS element h...

  1. FlyBase: a Drosophila database. The FlyBase consortium.

    OpenAIRE

    Gelbart, W. M.; Crosby, M.; Matthews, B; Rindone, W P; Chillemi, J; Russo Twombly, S; Emmert, D.; Ashburner, M; Drysdale, R A; Whitfield, E; Millburn, G H; Grey, A; Kaufman, T; Matthews, K.; Gilbert, D

    1997-01-01

    FlyBase is a database of genetic and molecular data concerning Drosophila. FlyBase is maintained as a relational database (in Sybase) and is made available as html documents and flat files. The scope of FlyBase includes: genes, alleles (and phenotypes), aberrations, transposons, pointers to sequence data, clones, stock lists, Drosophila workers and bibliographic references. The Encyclopedia of Drosophila is a joint effort between FlyBase and the Berkeley Drosophila Genome Project which integr...

  2. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  3. Drosophila wing modularity revisited through a quantitative genetic approach.

    Science.gov (United States)

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing. PMID:27272402

  4. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  5. big bang gene modulates gut immune tolerance in Drosophila

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y.; Boulianne, Gabrielle L.; Hoffmann, Jules A.; Matt, Nicolas; Reichhart, Jean-Marc

    2013-01-01

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  6. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  7. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    Science.gov (United States)

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  8. Research progress on Drosophila visual cognition in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Visual cognition,as one of the fundamental aspects of cognitive neuroscience,is generally associated with high-order brain functions in animals and human.Drosophila,as a model organism,shares certain features of visual cognition in common with mammals at the genetic,molecular,cellular,and even higher behavioral levels.From learning and memory to decision making,Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected.Armed with powerful tools of genetic manipulation in Drosophila,an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective.The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila.Here,we consider a series of the higher cognitive behaviors beyond learning and memory,such as visual pattern recognition,feature and context generalization,different feature memory traces,salience-based decision,attention-like behavior,and cross-modal leaning and memory.We discuss the possible general gain-gating mechanism implementing by dopamine-mushroom body circuit in fly’s visual cognition.We hope that our brief review on this aspect will inspire further study on visual cognition in flies,or even beyond.

  9. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m3, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  10. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    Science.gov (United States)

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848

  11. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    Directory of Open Access Journals (Sweden)

    David E Bellamy

    Full Text Available Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1 model derivation; 2 influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice; and, 3 variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD, Drosophila suzukii Matsumura (Diptera: Drosophilidae, with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (meanHPIvaried  = 301.9±8.39; rank 1 of 7 have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (meanHPIvaried  = 232.4±3.21; rank 7 of 7 having the least potential.

  12. Patterns of mutation and selection at synonymous sites in Drosophila

    DEFF Research Database (Denmark)

    Singh, Nadia D; Bauer DuMont, Vanessa L; Hubisz, Melissa J;

    2007-01-01

    That natural selection affects molecular evolution at synonymous sites in protein-coding sequences is well established and is thought to predominantly reflect selection for translational efficiency/accuracy mediated through codon bias. However, a recently developed maximum likelihood framework...... be subject to a variety of selective pressures beyond weak selection for increased frequencies of the codons currently defined as "preferred" in D. melanogaster. To further explore patterns of synonymous site evolution in Drosophila in a lineage-specific manner, we expanded the application of the maximum......, when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the Notch gene in Drosophila melanogaster was evolving under selection in favor of those codons defined as unpreferred in this species. This finding opened the possibility that synonymous sites may...

  13. On the origin of new genes in Drosophila

    DEFF Research Database (Denmark)

    Zhou, Qi; Zhang, Guojie; Zhang, Yue;

    2008-01-01

    Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new...... genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2...... and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species....

  14. Intestinal stem cell response to injury: lessons from Drosophila.

    Science.gov (United States)

    Jiang, Huaqi; Tian, Aiguo; Jiang, Jin

    2016-09-01

    Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury. PMID:27137186

  15. Insights on TRP Channels from In Vivo Studies in Drosophila

    Science.gov (United States)

    Minke, Baruch; Parnas, Moshe

    2007-01-01

    Transient receptor potential (TRP) channels mediate responses in a large variety of signaling mechanisms. Most studies on mammalian TRP channels rely on heterologous expression, but their relevance to in vivo tissues is not entirely clear. In contrast, Drosophila TRP and TRP-like (TRPL) channels allow direct analyses of in vivo function. In Drosophila photoreceptors, activation of TRP and TRPL is mediated via the phosphoinositide cascade, with both Ca2+ and diacylglycerol (DAG) essential for generating the light response. In tissue culture cells, TRPL channels are constitutively active, and lipid second messengers greatly facilitate this activity. Inhibition of phospholipase C (PLC) completely blocks lipid activation of TRPL, suggesting that lipid activation is mediated via PLC. In vivo studies in mutant Drosophila also reveal an acute requirement for lipid-producing enzyme, which may regulate PLC activity. Thus, PLC and its downstream second messengers, Ca2+ and DAG, constitute critical mediators of TRP/TRPL gating in vivo. PMID:16460287

  16. Identification of common excitatory motoneurons in Drosophila melanogaster larvae.

    Science.gov (United States)

    Takizawa, Eiji; Komatsu, Akira; Tsujimura, Hidenobu

    2007-05-01

    In insects, four types of motoneurons have long been known, including fast motoneurons, slow motoneurons, common inhibitory motoneurons, and DUM neurons. They innervate the same muscle and control its contraction together. Recent studies in Drosophila have suggested the existence of another type of motoneuron, the common excitatory motoneuron. Here, we found that shakB-GAL4 produced by labels this type of motoneuron in Drosophila larvae. We found that Drosophila larvae have two common excitatory motoneurons in each abdominal segment, RP2 for dorsal muscles and MNSNb/d-Is for ventral muscles. They innervate most of the internal longitudinal or oblique muscles on the dorsal or ventral body wall with type-Is terminals and use glutamate as a transmitter. Electrophysiological recording indicated that stimulation of the RP2 axon evoked excitatory junctional potential in a dorsal muscle. PMID:17867850

  17. Chemical genetics and drug screening in Drosophila cancer models

    Institute of Scientific and Technical Information of China (English)

    Mara Gladstone; Tin Tin Su

    2011-01-01

    Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety.It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later.In this regard,it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays.Drosophila melanogaster has emerged as a potential whole animal model for drug screening.Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer.A recent review provides a comprehensive summary of drug screening in Drosophila,but with an emphasis on neurodegenerative disorders.Here,we review Drosophila screens in the literature aimed at cancer therapeutics.

  18. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  19. Caffeine Taste Signaling in Drosophila Larvae.

    Science.gov (United States)

    Apostolopoulou, Anthi A; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C Giovanni; Lüdke, Alja; Thum, Andreas S

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  20. Structure of full-length Drosophila cryptochrome

    Energy Technology Data Exchange (ETDEWEB)

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R. (Cornell); (Rockefeller)

    2011-12-15

    The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function. Here, we report a 2.3-{angstrom} resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.

  1. Tools for neuroanatomy and neurogenetics in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B.; Celniker, Susan E.; Rubin, Gerald M.

    2008-08-11

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.

  2. Thermal stress depletes energy reserves in Drosophila.

    Science.gov (United States)

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P

    2016-01-01

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness. PMID:27641694

  3. Host plant adaptation in Drosophila mettleri populations.

    Science.gov (United States)

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  4. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  5. Transgenerational memory effect of ageing in Drosophila.

    Science.gov (United States)

    Burns, James G; Mery, Frederic

    2010-04-01

    Children born to older parents tend to have lower intelligence and are at higher risk for disorders such as schizophrenia and autism. Such observations of ageing damage being passed on from parents to offspring are not often considered within the evolutionary theory of ageing. Here, we show the 25% memory impairment in Drosophila melanogaster offspring solely dependent on the age of the parents and also passed on to the F2 generation. Furthermore, this parental age effect was not attributed to a generalized reduction in condition of the offspring but was specific to short-term memory. We also provide evidence implicating oxidative stress as a causal factor by showing that lines selected for resistance to oxidative stress did not display a memory impairment in offspring of old parents. The identification of the parental age-related memory impairment in a model system should stimulate integration between mechanistic studies of age-related mortality risk and functional studies of parental age effects on the fitness of future generations. PMID:20149023

  6. Effects of Spaceflight on Drosophila Neural Development

    Science.gov (United States)

    Keshishian, Haig S.

    1997-01-01

    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  7. Mechanosensory interactions drive collective behaviour in Drosophila.

    Science.gov (United States)

    Ramdya, Pavan; Lichocki, Pawel; Cruchet, Steeve; Frisch, Lukas; Tse, Winnie; Floreano, Dario; Benton, Richard

    2015-03-12

    Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups. PMID:25533959

  8. Functional neuroanatomy of Drosophila olfactory memory formation.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  9. A Model of Drosophila Larva Chemotaxis.

    Directory of Open Access Journals (Sweden)

    Alex Davies

    2015-11-01

    Full Text Available Detailed observations of larval Drosophila chemotaxis have characterised the relationship between the odour gradient and the runs, head casts and turns made by the animal. We use a computational model to test whether hypothesised sensorimotor control mechanisms are sufficient to account for larval behaviour. The model combines three mechanisms based on simple transformations of the recent history of odour intensity at the head location. The first is an increased probability of terminating runs in response to gradually decreasing concentration, the second an increased probability of terminating head casts in response to rapidly increasing concentration, and the third a biasing of run directions up concentration gradients through modulation of small head casts. We show that this model can be tuned to produce behavioural statistics comparable to those reported for the larva, and that this tuning results in similar chemotaxis performance to the larva. We demonstrate that each mechanism can enable odour approach but the combination of mechanisms is most effective, and investigate how these low-level control mechanisms relate to behavioural measures such as the preference indices used to investigate larval learning behaviour in group assays.

  10. Tracking individual nanodiamonds in Drosophila melanogaster embryos

    CERN Document Server

    Simpson, David A; Kowarsky, Mark; Zeeshan, Nida F; Barson, Michael S J; Hall, Liam; Yan, Yan; Kaufmann, Stefan; Johnson, Brett C; Ohshima, Takeshi; Caruso, Frank; Scholten, Robert; Saint, Robert B; Murray, Michael J; Hollenberg, Lloyd C L

    2013-01-01

    Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 \\mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 $\\pm$ 3) x 10$^{-3}$ \\mu m$^2$/s, (mean $\\pm$ SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 $\\pm$ 0.10 \\mu m/s (mean $\\pm$ SD) \\mu m/s and an average applied force of 0.07 $\\pm$ 0.05 pN (mean $\\pm$ SD). Nanodiamonds in the periplasm between the nuclei and yolk were also...

  11. Thermal stress depletes energy reserves in Drosophila

    Science.gov (United States)

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P.

    2016-01-01

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting “memory effect” on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness. PMID:27641694

  12. How food controls aggression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rod S Lim

    Full Text Available How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. For instance, it is unclear whether food increases aggression directly, or as a secondary consequence of increased social interactions caused by attraction to food. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner by which food influences aggression. We show that food promotes aggression in flies, and that it does so independently of any effect on frequency of contact between males, increase in locomotor activity or general enhancement of social interactions. Importantly, the level of aggression depends on the absolute amount of food, rather than on its surface area or concentration. When food resources exceed a certain level, aggression is diminished, suggestive of reduced competition. Finally, we show that detection of sugar via Gr5a+ gustatory receptor neurons (GRNs is necessary for food-promoted aggression. These data demonstrate that food exerts a specific effect to promote aggression in male flies, and that this effect is mediated, at least in part, by sweet-sensing GRNs.

  13. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Abraham Rosas-Arellano

    2016-02-01

    Full Text Available Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH and Ferritin 2 Light Chain Homolog (Fer2LCH are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated.

  14. Reinforcement of gametic isolation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel R Matute

    2010-03-01

    Full Text Available Reinforcement, a process by which natural selection increases reproductive isolation between populations, has been suggested to be an important force in the formation of new species. However, all existing cases of reinforcement involve an increase in mate discrimination between species. Here, I report the first case of reinforcement of postmating prezygotic isolation (i.e., barriers that act after mating but before fertilization in animals. On the slopes of the African island of São Tomé, Drosophila yakuba and its endemic sister species D. santomea hybridize within a well-demarcated hybrid zone. I find that D. yakuba females from within this zone, but not from outside it, show an increase in gametic isolation from males of D. santomea, an apparent result of natural selection acting to reduce maladaptive hybridization between species. To determine whether such a barrier could evolve under laboratory conditions, I exposed D. yakuba lines derived from allopatric populations to experimental sympatry with D. santomea, and found that both behavioral and gametic isolation become stronger after only four generations. Reinforcement thus appears to be the best explanation for the heightened gametic isolation seen in sympatry. This appears to be the first example in animals in which natural selection has promoted the evolution of stronger interspecific genetic barriers that act after mating but before fertilization. This suggests that many other genetic barriers between species have been increased by natural selection but have been overlooked because they are difficult to study.

  15. Collective synchronization of divisions in Drosophila development

    Science.gov (United States)

    Vergassola, Massimo

    Mitoses in the early development of most metazoans are rapid and synchronized across the entire embryo. While diffusion is too slow, in vitro experiments have shown that waves of the cell-cycle regulator Cdk1 can transfer information rapidly across hundreds of microns. However, the signaling dynamics and the physical properties of chemical waves during embryonic development remain unclear. We develop FRET biosensors for the activity of Cdk1 and the checkpoint kinase Chk1 in Drosophila embryos and exploit them to measure waves in vivo. We demonstrate that Cdk1 chemical waves control mitotic waves and that their speed is regulated by the activity of Cdk1 during the S-phase (and not mitosis). We quantify the progressive slowdown of the waves with developmental cycles and identify its underlying control mechanism by the DNA replication checkpoint through the Chk1/Wee1 pathway. The global dynamics of the mitotic signaling network illustrates a novel control principle: the S-phase activity of Cdk1 regulates the speed of the mitotic wave, while the Cdk1 positive feedback ensures an invariantly rapid onset of mitosis. Mathematical modeling captures the speed of the waves and predicts a fundamental distinction between the S-phase Cdk1 trigger waves and the mitotic phase waves, which is illustrated by embryonic ablation experiments. In collaboration with Victoria Deneke1, Anna Melbinger2, and Stefano Di Talia1 1 Department of Cell Biology, Duke University Medical Center 2 Department of Physics, University of California San Diego.

  16. Insulin signaling mediates sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tsung-Han Kuo

    Full Text Available Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC, many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential.

  17. Drosophila as a genetically tractable model for social insect behaviour

    Directory of Open Access Journals (Sweden)

    Alison L Camiletti

    2016-04-01

    Full Text Available The relatively simple communication, breeding and egg-making systems that govern reproduction in female Drosophila retain homology to eusocial species in which these same systems are modified to the social condition. Despite having no parental care, division of labour or subfertile caste, Drosophila may nonetheless offer a living test of certain sociobiological hypotheses framed around gene function. In this review, we make this case, and do so around the recent discovery that the non-social fly, Drosophila melanogaster, can respond to the ovary-suppressing queen pheromone of the honey bee Apis meliffera. Here, we first explain the sociobiological imperative to reconcile kin theory with molecular biology, and qualify a potential role for Drosophila. Then, we offer three applications for the fly-pheromone assay. First, the availability and accessibility of massive mutant libraries makes immediately feasible any number of open or targeted gene screens against the ovary-inhibiting response. The sheer tractability of Drosophila may therefore help to accelerate the search for genes in pheromone-responsive pathways that regulate female reproduction, including potentially any that are preserved with modification to regulate worker sterility in response to queen pheromones in eusocial taxa. Secondly, Drosophila’s powerful Gal4/UAS expression system can complement the pheromone assay by driving target gene expression into living tissue, which could be well applied to the functional testing of genes presumed to drive ovary activation or de-activation in the honey bee or other eusocial taxa. Finally, coupling Gal4 with UAS-RNAi lines can facilitate loss-of-function experiments against perception and response to the ovary inhibiting pheromone, and do so for large numbers of candidates in systematic fashion. Drosophila's utility as an adjunct to the field of insect sociobiology is not ideal, but retains surprising potential.

  18. The making of a fusion branch in the Drosophila trachea.

    Science.gov (United States)

    Gervais, Louis; Lebreton, Gaelle; Casanova, Jordi

    2012-02-15

    Connection of epithelial tubes to generate a common network is a key step in the formation of tubular organs such as the tracheal respiratory and the vascular systems. However, it is not clear how these connecting tubes arise. Here we address this issue by studying the dorsal fusion branches in the Drosophila trachea, taking into account the morphology and contribution of each cell type on the basis of their individual labeling. Our results explain how a fusion branch forms and also illustrate the different nature of the two seamless tubes in the Drosophila trachea, generated by fusion and terminal cells respectively. PMID:22178247

  19. Getting started : an overview on raising and handling Drosophila.

    Science.gov (United States)

    Stocker, Hugo; Gallant, Peter

    2008-01-01

    Drosophila melanogaster has long been a prime model organism for developmental biologists. During their work, they have established a large collection of techniques and reagents. This in turn has made fruit flies an attractive system for many other biomedical researchers who have otherwise no background in fly biology. This review intends to help Drosophila neophytes in setting up a fly lab. It briefly introduces the biological properties of fruit flies, describes the minimal equipment required for working with flies, and offers some basic advice for maintaining fly lines and setting up and analyzing experiments. PMID:18641939

  20. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster.

    Science.gov (United States)

    Brookheart, Rita T; Duncan, Jennifer G

    2016-09-01

    The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming. PMID:27450801

  1. Genetic regulation of programmed cell death in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Programmed cell death plays an important role in maintaining homeostasis during animal development, and has been conserved in animals as different as nematodes and humans. Recent studies of Drosophila have provided valuable information toward our understanding of genetic regulation of death. Different signals trigger the novel death regulators rpr, hid, and grim, that utilize the evolutionarily conserved iap and ark genes to modulate caspase function. Subsequent removal of dying cells also appears to be accomplished by conserved mechanisms. The similarity between Drosophila and human in cell death signaling pathways illustrate the promise of fruit flies as a model system to elucidate the mechanisms underlying regulation of programmed cell death.

  2. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  3. Genetic Analysis of the Hairy Locus in DROSOPHILA MELANOGASTER

    OpenAIRE

    Ingham, P W; Pinchin, S M; Howard, K.R.; Ish-Horowicz, D.

    1985-01-01

    Mutations of the hairy locus in Drosophila may affect both adult chaeta differentiation and embryonic segmentation. In an effort to understand this phenotypic complexity, we have analyzed 30 mutant alleles of the locus. We find that the alleles fall into four groups according to their complementation properties, suggesting a structurally complex locus in which two distinct functions share a common coding region.

  4. Interaction between the Drosophila heterochromatin proteins SUUR and HP1

    NARCIS (Netherlands)

    A.V. Pindyurin (Alexey); L.V. Boldyreva (Lidiya); V.V. Shloma (Victor); T.D. Kolesnikova (Tatiana); G.V. Pokholkova (Galina); E.N. Andreyeva (Evgeniya); E. Kozhevnikova (Elena); I.G. Ivanoschuk (Igor); E.A. Zarutskaya (Ekaterina); S.A. Demakov (Sergey); A.A. Gorchakov (Andrey); E.S. Belyaeva (Elena); I.F. Zhimulev (Igor)

    2008-01-01

    textabstractSUUR (Suppressor of Under-Replication) protein is responsible for late replication and, as a consequence, for DNA underreplication of intercalary and pericentric heterochromatin in Drosophila melanogaster polytene chromosomes. However, the mechanism by which SUUR slows down the replicati

  5. Plexins function in epithelial repair in both Drosophila and zebrafish

    Science.gov (United States)

    Yoo, Sa Kan; Pascoe, Heath G.; Pereira, Telmo; Kondo, Shu; Jacinto, Antonio; Zhang, Xuewu; Hariharan, Iswar K.

    2016-01-01

    In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. PMID:27452696

  6. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    Directory of Open Access Journals (Sweden)

    Hartenstein Volker

    2011-04-01

    Full Text Available Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.

  7. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    Science.gov (United States)

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  8. Fly foie gras: modeling fatty liver in Drosophila.

    Science.gov (United States)

    Arquier, Nathalie; Léopold, Pierre

    2007-02-01

    Lipids provide an essential source of metabolites and energy in normal development as well as during periods of food deprivation. A recent study in Drosophila (Gutierrez et al., 2007) reveals a novel role in regulating lipid metabolism for specialized cells called oenocytes that present striking functional similarities to mammalian hepatocytes.

  9. Dynamics of genetic rescue in inbred Drosophila melanogaster populations

    NARCIS (Netherlands)

    Bijlsma, R.; Westerhof, M. D. D.; Roekx, L. P.; Pen, I.

    2010-01-01

    Genetic rescue has been proposed as a management strategy to improve the fitness of genetically eroded populations by alleviating inbreeding depression. We studied the dynamics of genetic rescue in inbred populations of Drosophila. Using balancer chromosomes, we show that the force of heterosis that

  10. Body saccades of Drosophila consist of stereotyped banked turns

    NARCIS (Netherlands)

    Muijres, F.T.; Elzinga, M.J.; Iwasaki, N.A.; Dickinson, M.H.

    2015-01-01

    The flight pattern of many fly species consists of straight flight segments interspersed with rapid turns called body saccades, a strategy that is thought to minimize motion blur. We analyzed the body saccades of fruit flies (Drosophila hydei), using high-speed 3D videography to track body and wing

  11. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin;

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244...

  12. Neurogenetics of female reproductive behaviors in Drosophila melanogaster

    NARCIS (Netherlands)

    Laturney, Meghan; Billeter, Jean-Christophe; Friedmann, T; Dunlap, JC; Goodwin, SF

    2014-01-01

    We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular an

  13. Analysis of resistance and tolerance to virus infection in Drosophila

    NARCIS (Netherlands)

    Merkling, S.H.; Rij, R.P. van

    2015-01-01

    Host defense to virus infection involves both resistance mechanisms that reduce viral burden and tolerance mechanisms that limit detrimental effects of infection. The fruit fly, Drosophila melanogaster, has emerged as a model for identifying and characterizing the genetic basis of resistance and tol

  14. Heat shock protection against cold stress of Drosophila melanogaster.

    OpenAIRE

    Burton, V; Mitchell, H K; Young, P.; Petersen, N S

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  15. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2016-02-01

    Full Text Available We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo, a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  16. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    Science.gov (United States)

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-02-18

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  17. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors

    OpenAIRE

    Jiang, Huaqi; Edgar, Bruce A.

    2009-01-01

    In holometabolous insects, the adult appendages and internal organs form anew from larval progenitor cells during metamorphosis. As described here, the adult Drosophila midgut, including intestinal stem cells (ISCs), develops from adult midgut progenitor cells (AMPs) that proliferate during larval development in two phases. Dividing AMPs first disperse, but later proliferate within distinct islands, forming large cell clusters that eventually fuse during metamorphosis ...

  18. The olfactory circuit of the fruit fly Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.

  19. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    Science.gov (United States)

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  20. Actin puts the squeeze on Drosophila glue secretion.

    Science.gov (United States)

    Merrifield, Christien J

    2016-02-01

    An actin filament coat promotes cargo expulsion from large exocytosing vesicles, but the mechanisms of coat formation and force generation have been poorly characterized. Elegant imaging studies of the Drosophila melanogaster salivary gland now reveal how actin and myosin are recruited, and show that myosin II forms a contractile 'cage' that facilitates exocytosis.

  1. Drosophila phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    NARCIS (Netherlands)

    Bosveld, Floris; Rana, Anil; Lemstra - Wierenga, Willemina; Kampinga, Harm; Sibon, Ody

    2008-01-01

    Background: Coenzyme A (CoA) is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detai

  2. Characterization and manipulation of fruit susceptibility to Drosophila suzukii

    Science.gov (United States)

    Drosophila suzukii (Matsumura) is an economic pest of small fruits and cherries that attacks intact ripening fruits. Host susceptibility is influenced by characteristics such as flesh firmness, penetration force of the skin, total soluble solids (TSS, also known as °Brix) and pH. Improved knowledge ...

  3. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  4. Integrating computational biology and forward genetics in Drosophila.

    Directory of Open Access Journals (Sweden)

    Stein Aerts

    2009-01-01

    Full Text Available Genetic screens are powerful methods for the discovery of gene-phenotype associations. However, a systems biology approach to genetics must leverage the massive amount of "omics" data to enhance the power and speed of functional gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and RNAi collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for functional prioritization in Drosophila, called Endeavour-HighFly, and the Atonal network, are publicly available resources. A systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly enhances the process of gene function and gene-gene association discovery.

  5. The metabolic profile of long-lived Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Pedersen, Simon Metz; Nielsen, Niels Christian;

    2012-01-01

    We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes and a...

  6. Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Rebekah L Rogers

    Full Text Available Tandem duplications are an essential source of genetic novelty, and their variation in natural populations is expected to influence adaptive walks. Here, we describe evolutionary impacts of recently-derived, segregating tandem duplications in Drosophila yakuba and Drosophila simulans. We observe an excess of duplicated genes involved in defense against pathogens, insecticide resistance, chorion development, cuticular peptides, and lipases or endopeptidases associated with the accessory glands across both species. The observed agreement is greater than expectations on chance alone, suggesting large amounts of convergence across functional categories. We document evidence of widespread selection on the D. simulans X, suggesting adaptation through duplication is common on the X. Despite the evidence for positive selection, duplicates display an excess of low frequency variants consistent with largely detrimental impacts, limiting the variation that can effectively facilitate adaptation. Standing variation for tandem duplications spans less than 25% of the genome in D. yakuba and D. simulans, indicating that evolution will be strictly limited by mutation, even in organisms with large population sizes. Effective whole gene duplication rates are low at 1.17 × 10-9 per gene per generation in D. yakuba and 6.03 × 10-10 per gene per generation in D. simulans, suggesting long wait times for new mutations on the order of thousands of years for the establishment of sweeps. Hence, in cases where adaptation depends on individual tandem duplications, evolution will be severely limited by mutation. We observe low levels of parallel recruitment of the same duplicated gene in different species, suggesting that the span of standing variation will define evolutionary outcomes in spite of convergence across gene ontologies consistent with rapidly evolving phenotypes.

  7. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%.

  8. Image tracking study on courtship behavior of Drosophila.

    Directory of Open Access Journals (Sweden)

    Hung-Yin Tsai

    Full Text Available BACKGROUND: In recent years, there have been extensive studies aimed at decoding the DNA. Identifying the genetic cause of specific changes in a simple organism like Drosophila may help scientists recognize how multiple gene interactions may make some people more susceptible to heart disease or cancer. Investigators have devised experiments to observe changes in the gene networks in mutant Drosophila that responds differently to light, or have lower or higher locomotor activity. However, these studies focused on the behavior of the individual fly or on pair-wise interactions in the study of aggression or courtship. The behavior of these activities has been captured on film and inspected by a well-trained researcher after repeatedly watching the recorded film. Some studies also focused on ways to reduce the inspection time and increase the accuracy of the behavior experiment. METHODOLOGY: In this study, the behavior of drosophila during courtship was analyzed automatically by machine vision. We investigated the position and behavior discrimination during courtship using the captured images. Identification of the characteristics of drosophila, including sex, size, heading direction, and wing angles, can be computed using image analysis techniques that employ the Gaussian mixture model. The behavior of multiple drosophilae can also be analyzed simultaneously using the motion-prediction model and the variation constraint of heading direction. CONCLUSIONS: The overlapped fruit flies can be identified based on the relationship between body centers. Moreover, the behaviors and profiles can be correctly recognized by image processing based on the constraints of the wing angle and the size of the body. Therefore, the behavior of the male fruit flies can be discriminated when two or three fruit flies form a close cluster. In this study, the courtship behavior, including wing songs and attempts, can currently be distinguished with accuracies of 95.8% and

  9. Regulation of Sleep by Neuropeptide Y-Like System in Drosophila melanogaster

    OpenAIRE

    Chunxia He; Yunyan Yang; Mingming Zhang; Price, Jeffrey L.; Zhangwu Zhao

    2013-01-01

    Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY), a homolog of Drosophila neuropeptide F (NPF), is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1) on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sl...

  10. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    OpenAIRE

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involv...

  11. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics

    OpenAIRE

    Ejsmont, Radoslaw K.; Hassan, Bassem A.

    2014-01-01

    For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedica...

  12. Dissecting muscle and neuronal disorders in a Drosophila model of muscular dystrophy.

    OpenAIRE

    Shcherbata, H.; Yatsenko, A.; Patterson, L; Sood, V.; Nudel, U; Yaffe, D; Baker, D.; Ruohola-Baker, H

    2007-01-01

    Perturbation in the Dystroglycan (Dg)–Dystrophin (Dys) complex results in muscular dystrophies and brain abnormalities in human. Here we report that Drosophila is an excellent genetically tractable model to study muscular dystrophies and neuronal abnormalities caused by defects in this complex. Using a fluorescence polarization assay, we show a high conservation in Dg–Dys interaction between human and Drosophila. Genetic and RNAi-induced perturbations of Dg and Dys in Drosophila cause cell po...

  13. Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton

    OpenAIRE

    Hudson, Andrew M.; Cooley, Lynn

    2010-01-01

    Drosophila melanogaster Kelch (KEL) is the founding member of a diverse protein family defined by a repeated sequence motif known as the KEL repeat (KREP). Several KREP proteins, including Drosophila KEL, bind filamentous actin (F-actin) and contribute to its organization. Recently, a subset of KREP proteins has been shown to function as substrate adaptor proteins for cullin-RING (really interesting new gene) ubiquitin E3 ligases. In this study, we demonstrate that association of Drosophila K...

  14. Genotoxic activity in vivo of the naturally occurring glucoside, cycasin, in the Drosophila wing spot test.

    Science.gov (United States)

    Kawai, K; Furukawa, H; Hirono, I

    1995-03-01

    Cycasin, methylazoxymethanol-beta-glucoside, is a naturally occurring carcinogenic compound. The genotoxicity of cycasin was assayed in the Drosophila wing spot test. Cycasin induced small single and large single spots on feeding at 10 mumol/g medium. The presence of these spots indicates that cycasin is genotoxic in Drosophila melanogaster. Microorganisms which showed beta-glucosidase activity for cleaving cycasin to toxic aglycon were isolated from gut flora of the Drosophila larvae. Consequently, the Drosophila wing spot test would be useful for mutagenicity screening of other naturally occurring glucosides.

  15. Molecular Cloning of a Novel Bovine Homologue of the Drosophila Tumor Suppressor Gene, Lats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pervious studies demonstrate that lats, also known as warts, is a tumor suppressor gene in Drosophila[1,2]. Mutations of lats lead to an increase in cell number and organ size in Drosophila, indicating lats may be involved in organ size control. Furthermore, the high conservation of sequence and tumor suppression function of lats between Drosophila and human suggests that it may be also involved in organ size control of higher animals[3]. So here we isolated the bovine homologue of Drosophila lats. Sequence analysis indicates the bovine LATS1 to be very similar to other lats proteins.

  16. Silver nanoparticle toxicity in Drosophila: size does matter

    Directory of Open Access Journals (Sweden)

    Deborah J Gorth

    2011-02-01

    Full Text Available Deborah J Gorth1, David M Rand2, Thomas J Webster11School of Engineering, 2Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USABackground: Consumer nanotechnology is a growing industry. Silver nanoparticles are the most common nanomaterial added to commercially available products, so understanding the influence that size has on toxicity is integral to the safe use of these new products. This study examined the influence of silver particle size on Drosophila egg development by comparing the toxicity of both nanoscale and conventional-sized silver particles.Methods: The toxicity assays were conducted by exposing Drosophila eggs to particle concentrations ranging from 10 ppm to 100 ppm of silver. Size, chemistry, and agglomeration of the silver particles were evaluated using transmission electron microscopy, X-ray photoelectron spectroscopy, and dynamic light scattering.Results: This analysis confirmed individual silver particle sizes in the ranges of 20–30 nm, 100 nm, and 500–1200 nm, with similar chemistry. Dynamic light scattering and transmission electron microscope data also indicated agglomeration in water, with the transmission electron microscopic images showing individual particles in the correct size range, but the dynamic light scattering z-average sizes of the silver nanoparticles were 782 ± 379 nm for the 20–30 nm silver nanoparticles, 693 ± 114 nm for the 100 nm silver nanoparticles, and 508 ± 32 nm for the 500–1200 nm silver particles. Most importantly, here we show significantly more Drosophila egg toxicity when exposed to larger, nonnanometer silver particles. Upon exposure to silver nanoparticles sized 20–30 nm, Drosophila eggs did not exhibit a statistically significant (P < 0.05 decrease in their likelihood to pupate, but eggs exposed to larger silver particles (500–1200 nm were 91% ± 18% less likely to pupate. Exposure to silver nanoparticles reduced the percentage of pupae able

  17. Optimizing the culture conditions and determining the stability of antibiotic secretion by Polygonum viviparum of the endophytic bacteria Bacillus mojavensis%珠芽蓼内生细菌 ZA1的抑菌物质产生条件的优化及其稳定性测定

    Institute of Scientific and Technical Information of China (English)

    杨成德; 畅涛; 薛莉; 冯中红; 姚玉玲; 李婷; 陈秀蓉

    2015-01-01

    One strain of Bacillus mojavensis (ZA1 )is known to have a strong antibacterial effect against the pathogen of potato gangrene (Phomafoveata ).In this study,P .foveata was isolated as a fungal pathogen and the method of petri dish confrontation was used to determine culture conditions for optimizing and stabilizing production of the antibiotic secreted by ZA1.The results showed that the optimum culture medium for ZA1 consisted of 200 g potato,10 g peptone,20 g sucrose and 1000 mL distilled water.The optimum fermentation temperature of ZA1 was 17.8℃.The optimum pH value of ZA1’s culture medium was 6.9.The optimum 150 mL triangle bottle volume of ZA1 was 20 mL.The optimum culture mode of ZA1 was shaking cultivation in the dark for 96 hours.Results showed that the EC50 =0.1228 μL/mL against P .foveata after optimization was 37 times higher than the EC50 =4.5888 μL/mL against P .foveata before optimization.Crude extracting of bac-teriostatic from ZA1 showed that the characteristics of high temperature resistance and relative activity could reach 76.62% after it was treated at 90℃ for 2 hours.Relative activity was stable and could not be destroyed under UV irradiation for 30 minutes.The bacteriostatic extract of ZA1 had good acid and alkali resistance. When it was treated by pH=3 and pH=11,the relative activity was 92.87% and 85.11% respectively.It was not sensitive to protease and heavy metal ions such as Ag+ ,Cu2 + ,Zn2 + and Fe3 + .Relative activity remained at 86.93% after Ag+ treatment.%从珠芽蓼中分离的内生细菌 ZA1对马铃薯坏疽病菌具有良好的抑菌效果,鉴定为莫海威芽孢杆菌。本文通过平板对峙法对 ZA1分泌物抑制马铃薯坏疽病菌的培养条件进行了优化,并对 ZA1抑菌粗提物的稳定性进行了测定。结果表明,ZA1的最佳培养基为 B 培养液,最佳发酵温度为17.8℃,培养基的最佳 pH 是6.9,150 mL 三角瓶的最佳装液量为20 mL,最佳培养

  18. Sleep, aging, and lifespan in Drosophila

    Directory of Open Access Journals (Sweden)

    Tononi Giulio

    2010-04-01

    Full Text Available Abstract Background Epidemiological studies in humans suggest that a decrease in daily sleep duration is associated with reduced lifespan, but this issue remains controversial. Other studies in humans also show that both sleep quantity and sleep quality decrease with age. Drosophila melanogaster is a useful model to study aging and sleep, and inheriting mutations affecting the potassium current Shaker results in flies that sleep less and have a shorter lifespan. However, whether the link between short sleep and reduced longevity exists also in wild-type flies is unknown. Similarly, it is unknown whether such a link depends on sleep amount per se, rather than on other factors such as waking activity. Also, sleep quality has been shown to decrease in old flies, but it remains unclear whether aging-related sleep fragmentation is a generalized phenomenon. Results We compared 3 short sleeping mutant lines (Hk1, HkY and Hk2 carrying a mutation in Hyperkinetic, which codes for the beta subunit of the Shaker channel, to wild-type siblings throughout their entire lifespan (all flies kept at 20°C. Hk1 and HkY mutants were short sleeping relative to wild-type controls from day 3 after eclosure, and Hk2 flies became short sleepers about two weeks later. All 3 Hk mutant lines had reduced lifespan relative to wild-type flies. Total sleep time showed a trend to increase in all lines with age, but the effect was most pronounced in Hk1 and HkY flies. In both mutant and wild-type lines sleep quality did not decay with age, but the strong preference for sleep at night declined starting in "middle age". Using Cox regression analysis we found that in Hk1 and HkY mutants and their control lines there was a negative relationship between total sleep amount during the first 2 and 4 weeks of age and hazard (individual risk of death, while no association was found in Hk2 flies and their wild-type controls. Hk1 and HkY mutants and their control lines also showed an

  19. Drosophila melanogaster as a Model Organism of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Werner Paulus

    2009-02-01

    Full Text Available Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.

  20. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila

    Indian Academy of Sciences (India)

    Yuuichi Seki; Teiichi Tanimura

    2014-09-01

    A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf01) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.

  1. Cas9-Mediated Genome Engineering in Drosophila melanogaster.

    Science.gov (United States)

    Housden, Benjamin E; Perrimon, Norbert

    2016-01-01

    The recent development of the CRISPR-Cas9 system for genome engineering has revolutionized our ability to modify the endogenous DNA sequence of many organisms, including Drosophila This system allows alteration of DNA sequences in situ with single base-pair precision and is now being used for a wide variety of applications. To use the CRISPR system effectively, various design parameters must be considered, including single guide RNA target site selection and identification of successful editing events. Here, we review recent advances in CRISPR methodology in Drosophila and introduce protocols for some of the more difficult aspects of CRISPR implementation: designing and generating CRISPR reagents and detecting indel mutations by high-resolution melt analysis. PMID:27587786

  2. Phenotypic inheritance induced by hairpin RNA in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Huaguang Li; Yi Lu

    2009-01-01

    Phenotypic inheritance induced by RNA has been docu-mented in mouse and Caenorhabditis elegans. Here we report a similar inheritance in Drosophila. Mutant phe-notypes of eye defects and antenna duplication gener-ated from the crossing of one RNA interference (RNAi)transgenic line harboring one hairpin RNA transgene with a GAL4 driver line were inherited independently of the GAL4 driver. Hairpin RNA injection exper-iments demonstrated that the hairpin RNA could induce heritable mutant-like phenotypes on the eye and antenna. The penetrance of mutant phenotypes was reduced when the mutants were crossed to agol and piwi mutants. Our data suggest that hairpin RNA can induce phenotypic inheritance in Drosophila.

  3. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    Science.gov (United States)

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues. PMID:20012830

  4. A quantitative method to analyze Drosophila pupal eye patterning.

    Directory of Open Access Journals (Sweden)

    Ruth I Johnson

    Full Text Available BACKGROUND: The Drosophila pupal eye has become a popular paradigm for understanding morphogenesis and tissue patterning. Correct rearrangement of cells between ommatidia is required to organize the ommatidial array across the eye field. This requires cell movement, cell death, changes to cell-cell adhesion, signaling and fate specification. METHODOLOGY: We describe a method to quantitatively assess mis-patterning of the Drosophila pupal eye and objectively calculate a 'mis-patterning score' characteristic of a specific genotype. This entails step-by-step scoring of specific traits observed in pupal eyes dissected 40-42 hours after puparium formation and subsequent statistical analysis of this data. SIGNIFICANCE: This method provides an unbiased quantitative score of mis-patterning severity that can be used to compare the impact of different genetic mutations on tissue patterning.

  5. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    Science.gov (United States)

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues.

  6. Transcriptional profiling of apoptosis-deficient Drosophila mutants

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-12-01

    Full Text Available Apoptosis is a fundamental way to remove damaged or unwanted cells during both developmental and post-developmental stages. Apoptosis deficiency leads to various diseases including cancer. To know the physiological changes in apoptosis-deficient mutants, we conducted non-biased transcriptomic analysis of Drosophila darkcd4 mutants. As recently reported, combined with metabolome and genetic analysis, we identified systemic immune response, energy wasting, as well as alteration in S-adenosyl-methionine metabolism in response to necrotic cells [1]. Here, we describe in detail how we obtained validated microarray dataset deposited in Gene Expression Omnibus (GSE47853. Our data provide a resource for searching transcriptional alterations in Drosophila apoptosis-deficient mutants.

  7. Learning the specific quality of taste reinforcement in larval Drosophila.

    Science.gov (United States)

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-27

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain.

  8. Circadian Organization of Behavior and Physiology in Drosophila

    Science.gov (United States)

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this “simple” model organism. PMID:20148690

  9. Immune stimulation reduces sleep and memory ability in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Eamonn B. Mallon

    2014-06-01

    Full Text Available Psychoneuroimmunology studies the increasing number of connections between neurobiology, immunology and behaviour. We demonstrate the effects of the immune response on two fundamental behaviours: sleep and memory ability in Drosophila melanogaster. We used the Geneswitch system to upregulate peptidoglycan receptor protein (PGRP expression, thereby stimulating the immune system in the absence of infection. Geneswitch was activated by feeding the steroid RU486, to the flies. We used an aversive classical conditioning paradigm to quantify memory and measures of activity to infer sleep. Immune stimulated flies exhibited reduced levels of sleep, which could not be explained by a generalised increase in waking activity. Immune stimulated flies also showed a reduction in memory abilities. These results lend support to Drosophila as a model for immune–neural interactions and provide a possible role for sleep in the interplay between the immune response and memory.

  10. Mal/SRF is dispensable for cell proliferation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Barry J Thompson

    Full Text Available The Mal/SRF transcription factor is regulated by the level of G-actin in cells and has important roles in cell migration and other actin-dependent processes in Drosophila. A recent report suggests that Mal/SRF and an upstream regulator, Pico, are required for cell proliferation and tissue growth in Drosophila. I find otherwise. Mutation of Mal or SRF does not affect cell proliferation in the fly wing. Furthermore, I cannot reproduce the reported effects of Pico RNAi or Pico overexpression on body size. Nevertheless, I can confirm that overexpression of Pico or Mal causes tissue overgrowth specifically in the fly wing--where SRF is most highly expressed. My results indicate that Mal/SRF can promote tissue growth when abnormally active, but is not normally required for tissue growth during development.

  11. Drosophila Cancer Models Identify Functional Differences between Ret Fusions.

    Science.gov (United States)

    Levinson, Sarah; Cagan, Ross L

    2016-09-13

    We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient's treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion. PMID:27626672

  12. Substrate vibrations during courtship in three Drosophila species.

    Directory of Open Access Journals (Sweden)

    Valerio Mazzoni

    Full Text Available While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication.

  13. CRISPR/Cas9 and genome editing in Drosophila.

    Science.gov (United States)

    Bassett, Andrew R; Liu, Ji-Long

    2014-01-20

    Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism.

  14. Separate TRP channels mediate amplification and transduction in drosophila

    Science.gov (United States)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  15. Effect of a magnetic field on Drosophila under supercooled conditions.

    Directory of Open Access Journals (Sweden)

    Munekazu Naito

    Full Text Available Under subzero degree conditions, free water contained in biological cells tends to freeze and then most living things die due to low temperatures. We examined the effect of a variable magnetic field on Drosophila under supercooled conditions (a state in which freezing is not caused even below the freezing point. Under such supercooled conditions with the magnetic field at 0°C for 72 hours, -4°C for 24 hours and -8°C for 1 hour, the Drosophila all survived, while all conversely died under the supercooled conditions without the magnetic field. This result indicates a possibility that the magnetic field can reduce cell damage caused due to low temperatures in living things.

  16. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila

    Directory of Open Access Journals (Sweden)

    Ryuichi Yamada

    2015-02-01

    Full Text Available Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

  17. Awakening to the behavioral analysis of sleep in Drosophila.

    Science.gov (United States)

    Shaw, Paul

    2003-02-01

    Perhaps the most observable of the many circadian oscillations that have been described in both vertebrate and invertebrate animals is the daily alterations in periods of rest and activity. Recent studies in the fruit fly Drosophila melanogaster suggest that these periods of inactivity are not simply rest but share many of the fundamental components that define mammalian sleep. Thus, quiescent episodes are characterized by reduced awareness of the environment and are homeostatically regulated. Although this field is in its infancy, recent studies have focused on the interaction between circadian and homeostatic processes. These results indicate that components of the circadian clock may play a substantial role in mechanisms underlying sleep homeostasis at the molecular level. In this article, the author reviews recent advances obtained using Drosophila as a model system to elucidate fundamental components of sleep regulation. PMID:12568240

  18. Learning the specific quality of taste reinforcement in larval Drosophila.

    Science.gov (United States)

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-01

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain. PMID:25622533

  19. The multiple functions of the PGRP family in Drosophila immunity

    Directory of Open Access Journals (Sweden)

    A Goto

    2006-11-01

    Full Text Available The innate immune system discriminates between infectious non-self and self using germ-line-encoded pattern recognition receptors (PRRs that are highly conserved from insects to mammals. Peptidoglycan recognition protein (PGRP is one of the hallmark pattern recognition receptors responsible for detecting unique bacteria-derived peptidoglycans. The PGRP family comprises several members (13 in Drosophila, 7 in Anopheles, and 4 in mammals and are differentially expressed on immune-responsive organs. Some PGRPs have amidase or bactericidal activities and function as immune modulators, whereas others have lost their enzymatic activity, but still have crucial roles in the activation of innate immune signaling. Evidence from recent Drosophila studies suggests that PGRPs have a role in a variety of immune reactions, such as in the activation of the prophenoloxidase cascade, the production of antimicrobial peptides through the activation of the Toll and Imd pathways, intracellular bacteria recognition, and phagocytosis.

  20. The Parthenogenetic Capacities and Genetic Structures of Sympatric Populations of DROSOPHILA MERCATORUM and DROSOPHILA HYDEI.

    Science.gov (United States)

    Templeton, A R

    1979-08-01

    Drosophila mercatorum is a sexual species that can reproduce parthenogenetically in the laboratory. A previous study showed that a natural population of D. mercatorum inhabiting the Kamuela garbage dump on the Island of Hawaii could produce both viable parthenogenetic adults and self-sustaining parthenogenetic lines. The present study deals with a second screen for parthenogenesis and an isozyme survey performed on natural populations of D. mercatorum and D. hydei caught in patches of Opuntia tuna about 10 kilometers from Kamuela. Both cactus-patch species produced viable parthenogenetic adults, but only D. mercatorum produced parthenogenetic females themselves capable of parthenogenesis. Moreover, D. mercatorum produced several "hot" lines characterized by high parthenogenetic rates, while all lines of D. hydei had a homogenous low rate. The parthenogenetic capacity of the cactus-patch D. mercatorum was lower than that of the garbage-dump D. mercatorum. Moreover, both the cactus-patch D. mercatorum and D. hydei had lower levels of polymorphism (26% and 22%, respectively) then the garbagedump D. mercatorum (44%), and both cactus-patch populations had heterozygote deficiencies with respect to Hardy-Weinberg equilibrium, unlike the garbage-dump population. Consequently, these data do not support the idea that decreased levels of heterozygosity in a sexual population increase the chance that sexual females will produce totally homozygous, parthenogenetic progeny. PMID:17248952

  1. Higher dopamine level enhances male-male courtship in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ On May 21 2008, Journal of Neuroscience published an online paper from the Institute of Neuroscience, the CAS Shanghai Institutes for Biological Sciences, entitled "Increased dopamine level enhances male-male courtship in Drosophila." This work was done by Mr. LIU Tong, a doctoral candidate, and colleagues under the supervision of Dr. GUO Aike, and in collaboration with Dr. Jean-Francois Ferveur from France.

  2. Further studies of the engrailed phenotype in Drosophila.

    OpenAIRE

    Lawrence, P. A.; Struhl, G

    1982-01-01

    Although most mutations at the engrailed locus of Drosophila cause embryonic death when homozygous, they are viable in clones of cells. We describe the phenotype of such clones in the eye-antenna, proboscis, humerus, wing, legs, and terminalia. When in anterior compartments the clones are normal, but in most posterior compartments they are abnormal and fail to respect the anteroposterior compartment boundary. We find that the yield of engrailed-lethal clones in posterior compartments is often...

  3. Organically Grown Food Provides Health Benefits to Drosophila melanogaster

    OpenAIRE

    Chhabra, Ria; Kolli, Santharam; Bauer, Johannes H.

    2013-01-01

    The “organic food” market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas...

  4. Genetic approaches to study aging in Drosophila melanogaster

    OpenAIRE

    Poirier, Luc; Seroude, Laurent

    2005-01-01

    The process of aging can be described as a progressive decline in an organism's function that invariably results in death. This decline results from the activities of intrinsic genetic factors within an organism. The relative contributions of the biological and environmental components to senescence are hard to measure, however different strategies have been devised in Drosophila melanogaster to isolate and identify genetic influences on aging. These strategies include selective breeding, qua...

  5. Targeting cyclin-dependent kinases in Drosophila with peptide aptamers

    OpenAIRE

    Kolonin, Mikhail G.; Finley, Russell L.

    1998-01-01

    Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, ...

  6. Organically Grown Food Provides Health Benefits to Drosophila melanogaster

    OpenAIRE

    Ria Chhabra; Santharam Kolli; Bauer, Johannes H.

    2013-01-01

    The "organic food" market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas...

  7. Layered reward signalling through octopamine and dopamine in Drosophila

    OpenAIRE

    Burke, Christopher J.; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J.; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-01-01

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neur...

  8. Drosophila comet assay: insights, uses, and future perspectives

    OpenAIRE

    Gaivão, Isabel; Sierra, L. María

    2014-01-01

    The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has...

  9. Migration of Drosophila intestinal stem cells across organ boundaries

    OpenAIRE

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this p...

  10. Intestinal stem cell function in Drosophila and Mice

    OpenAIRE

    Jiang, Huaqi; Edgar, Bruce A.

    2012-01-01

    Epithelial cells of the digestive tracts of most animals are short-lived, and are constantly replenished by the progeny of long-lived, resident intestinal stem cells. Proper regulation of intestinal stem cell maintenance, proliferation and differentiation is critical for maintaining gut homeostasis. Here we review recent genetic studies of stem cell-mediated homeostatic growth in the Drosophila midgut and the mouse small intestine, highlighting similarities and differences in the mechanisms t...

  11. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER

    OpenAIRE

    Rama S Singh; Hickey, Donal A; David, Jean

    1982-01-01

    We have studied allozyme variation at 26 gene loci in nine populations of Drosophila melanogaster originating on five different continents. The distant populations show significant genetic differentiation. However, only half of the loci studied have contributed to this differentiation; the other half show identical patterns in all populations. The genetic differentiation in North American, European and African populations is correlated with the major climatic differences between north and sou...

  12. Notch signaling in Drosophila long-term memory formation

    OpenAIRE

    Ge, Xuecai; Hannan, Frances; Xie, Zuolei; Feng, Chunhua; Tully, Tim; Zhou, Haimeng; Xie, Zuoping; Zhong, Yi

    2004-01-01

    Notch (N) is a cell surface receptor that mediates an evolutionarily ancient signaling pathway to control an extraordinarily broad spectrum of cell fates and developmental processes. To gain insights into the functions of N signaling in the adult brain, we examined the involvement of N in Drosophila olfactory learning and memory. Long-term memory (LTM) was disrupted by blocking N signaling in conditional mutants or by acutely induced expression of a dominant-negative N transgene. In contrast,...

  13. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  14. Extremes of Lineage Plasticity in the Drosophila Brain

    OpenAIRE

    Lin, Suewei; Marin, Elizabeth C.; Yang, Ching-Po; Kao, Chih-Fei; Apenteng, Bettye A.; Huang, Yaling; O’Connor, Michael B.; Truman, James W.; Lee, Tzumin

    2013-01-01

    An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development [1]. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depen...

  15. Drosophila Conditioned Courtship: Two Ways of Testing Memory

    OpenAIRE

    Kamyshev, Nikolai G; Iliadi, Konstantin G.; Bragina, Julia V.

    1999-01-01

    In Drosophila, courtship reduction in male flies that have previous experience of courting a mated female is a result of the counterconditioning of an attractive unconditioned stimulus (US)—the aphrodisiac—which becomes an aversive conditioned stimulus (CS) after being paired with an aversive US—the antiaphrodisiac. In a retention test with a virgin female lacking the antiaphrodisiac, males retain a lower level of courtship for 3 hr after training. However, a measure of courtship suppression,...

  16. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  17. Minocycline Effect on Life and Health Span of Drosophila Melanogaster

    OpenAIRE

    Oxenkrug, Gregory; Navrotskaya, Valeriya; Vorobyova, Lyudmila; Summergrad, Paul

    2012-01-01

    Up-regulation of kynurenine (KYN) pathway of tryptophan (TRP) was suggested as one of the mechanisms of aging and aging-associated disorders. Genetic and pharmacological impairment of TRP – KYN metabolism resulted in prolongation of life span in Drosophila models. Minocycline, an antibiotic with anti-inflammatory, antioxidant and neuroprotective properties independent of its antibacterial activity, inhibited KYN formation from TRP. Since minocycline is the only FDA approved for human use medi...

  18. Maintaining the Brain: Insight into Human Neurodegeneration From Drosophila Mutants

    OpenAIRE

    Lessing, Derek; Bonini, Nancy M.

    2009-01-01

    The fruit fly Drosophila melanogaster has brought significant advances to research in neurodegenerative disease, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult-onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mouse or human that are also associated with neurod...

  19. Transcriptional control of stem cell maintenance in the Drosophila intestine

    OpenAIRE

    Bardin, Allison J.; Perdigoto, Carolina N.; Southall, Tony D.; Brand, Andrea H; Schweisguth, François

    2010-01-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhan...

  20. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems

    OpenAIRE

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E; Tearney, Guillermo J.

    2010-01-01

    SUMMARY The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence ...

  1. Sexual experience affects ethanol intake in Drosophila through Neuropeptide F

    OpenAIRE

    Shohat-Ophir, G.; Kaun, K.R.; Azanchi, R.; Mohammed, H.; Heberlein, U.

    2012-01-01

    The brain's reward systems evolved to reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we use Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased Neuropeptide F (NPF) levels, whereas sexual deprivation reduced NPF. Activation or inhibition of the NPF system in turn enhanced or reduced ethanol...

  2. Drosophila melanogaster as a Model Organism of Brain Diseases

    OpenAIRE

    Werner Paulus; Astrid Jeibmann

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases...

  3. Morphometric analysis of Huntington's disease neurodegeneration in Drosophila

    OpenAIRE

    Song, W.; Smith Dell; Syed, A.; Lukacsovich, T; Barbaro, BA; Purcell, J.; Bornemann, DJ; J. Burke; Marsh, JL

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The HD gene encodes the huntingtin protein (HTT) that contains polyglutamine tracts of variable length. Expansions of the CAG repeat near the amino terminus to encode 40 or more glutamines (polyQ) lead to disease. At least eight other expanded polyQ diseases have been described [1]. HD can be faithfully modeled in Drosophila with the key features of the disease such as late onset, slowly progressing degeneration, f...

  4. Three-dimensional network of Drosophila brain hemisphere

    OpenAIRE

    Mizutani, Ryuta; Saiga, Rino; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The first step to understanding brain function is to determine the brain's network structure. We report a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation tomographic microscopy. A skeletonized wire model of the left half of the brain network was built by tracing the three-dimensional distribution of X-ray absorption coefficients. The obtained models of neuronal processes were classified into groups on the basis of their three-d...

  5. Growing Pains: Development of the Larval Nocifensive Response in Drosophila

    OpenAIRE

    Sulkowski, Mikolaj J.; Kurosawa, Mathieu S.; OX, DANIEL N.

    2011-01-01

    The ability to perceive and avoid harmful substances or stimuli is key to an organism’s survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advant...

  6. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  7. Odour avoidance learning in the larva of Drosophila melanogaster

    Indian Academy of Sciences (India)

    Sukant Khurana; Mohammed Bin AbuBaker; Obaid Siddiqi

    2009-10-01

    Drosophila larvae can be trained to avoid odours associated with electric shock. We describe here, an improved method of aversive conditioning and a procedure for decomposing learning retention curve that enables us to do a quantitative analysis of memory phases, short term (STM), middle term (MTM) and long term (LTM) as a function of training cycles. The same method of analysis when applied to learning mutants dunce, amnesiac, rutabaga and radish reveals memory deficits characteristic of the mutant strains.

  8. Drosophila melanogaster as a model for basal body research

    OpenAIRE

    Jana, Swadhin Chandra; Bettencourt-Dias, Mónica; Durand, Bénédicte; Timothy L. Megraw

    2016-01-01

    The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various...

  9. P Transposable Elements in Drosophila and other Eukaryotic Organisms.

    Science.gov (United States)

    Majumdar, Sharmistha; Rio, Donald C

    2015-04-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins. PMID:26104714

  10. Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine Cells

    OpenAIRE

    Jeong-Ho Park; Jae Young Kwon

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can p...

  11. Smelling, tasting, learning: Drosophila as a study case.

    Science.gov (United States)

    Gerber, B; Stocker, R F; Tanimura, T; Thum, A S

    2009-01-01

    Understanding brain function is to account for how the sensory system is integrated with the organism's needs to organize behaviour. We review what is known about these processes with regard to chemosensation and chemosensory learning in Drosophila. We stress that taste and olfaction are organized rather differently. Given that, e.g., sugars are nutrients and should be eaten (irrespective of the kind of sugar) and that toxic substances should be avoided (regardless of the kind of death they eventually cause), tastants are classified into relatively few behavioural matters of concern. In contrast, what needs to be done in response to odours is less evolutionarily determined. Thus, discrimination ability is warranted between different kinds of olfactory input, as any difference between odours may potentially be or become important. Therefore, the olfactory system has a higher dimensionality than gustation, and allows for more sensory-motor flexibility to attach acquired behavioural 'meaning' to odours. We argue that, by and large, larval and adult Drosophila are similar in these kinds of architecture, and that additionally there are a number of similarities to vertebrates, in particular regarding the cellular architecture of the olfactory pathway, the functional slant of the taste and smell systems towards classification versus discrimination, respectively, and the higher plasticity of the olfactory sensory-motor system. From our point of view, the greatest gap in understanding smell and taste systems to date is not on the sensory side, where indeed impressive advances have been achieved; also, a satisfying account of associative odour-taste memory trace formation seems within reach. Rather, we lack an understanding as to how sensory and motor formats of processing are centrally integrated, and how adaptive motor patterns actually are selected. Such an understanding, we believe, will allow the analysis to be extended to the motivating factors of behaviour, eventually

  12. Smelling, tasting, learning : Drosophila as a study case

    OpenAIRE

    Gerber, Bertram; Stocker, Reinhard F.; Tanimura, T.; Thum, Andreas

    2009-01-01

    Understanding brain function is to account for how the sensory system is integrated with the organism's needs to organize behaviour. We review what is known about these processes with regard to chemosensation and chemosensory learning in Drosophila. We stress that taste and olfaction are organized rather differently. Given that, e.g., sugars are nutrients and should be eaten (irrespective of the kind of sugar) and that toxic substances should be avoided (regardless of the kind of death they e...

  13. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    OpenAIRE

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translat...

  14. Recent advances in using Drosophila to model neurodegenerative diseases

    OpenAIRE

    Lu, Bingwei

    2009-01-01

    Neurodegenerative diseases are progressive disorders of the nervous system that affect the function and maintenance of specific neuronal populations. Most disease cases are sporadic with no known cause. The identification of genes associated with familial cases of these diseases has enabled the development of animal models to study disease mechanisms. The model organism Drosophila has been successfully used to study pathogenic mechanisms of a wide range of neurodegenerative diseases. Recent g...

  15. Metabolic effects of CO2 anaesthesia in Drosophila melanogaster

    OpenAIRE

    Colinet, H.; Renault, D.

    2012-01-01

    Immobilization of insects is necessary for various experimental purposes, and CO2 exposure remains the most popular anaesthetic method in entomological research. A number of negative side effects of CO2 anaesthesia have been reported, but CO2 probably brings about metabolic modifications that are poorly known. In this work, we used GC/MS-based metabolic fingerprinting to assess the effect of CO2 anaesthesia in Drosophila melanogaster adults. We analysed metabolic variation of flies submitted ...

  16. Drosophila lowfat, a novel modulator of Fat signaling

    OpenAIRE

    Mao, Yaopan; Kucuk, Binnaz; Irvine, Kenneth D.

    2009-01-01

    The Fat-Hippo-Warts signaling network regulates both transcription and planar cell polarity. Despite its crucial importance to the normal control of growth and planar polarity, we have only a limited understanding of the mechanisms that regulate Fat. We report here the identification of a conserved cytoplasmic protein, Lowfat (Lft), as a modulator of Fat signaling. Drosophila Lft, and its human homologs LIX1 and LIX1-like, bind to the cytoplasmic domains of the Fat lig...

  17. spenito is required for sex determination in Drosophila melanogaster

    OpenAIRE

    Yan, Dong; Perrimon, Norbert

    2015-01-01

    Sex determination is a fundamental biological problem faced by all metazoans. To understand the sex determination pathway, it is important to identify all the genes involved in this process. In this study, we have identified a novel gene, spenito (nito), which is required for sex determination in Drosophila melanogaster. Loss of nito function in the soma transforms female tissues to male, and loss of nito function in female germ-line stem cells changes their sexual identity and prevents them ...

  18. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse

    OpenAIRE

    Khodor, Yevgenia L.; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-01-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. It has been shown that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, the authors analyzed a recently generated, high-throughput sequencing data set of mouse liver nascent RNA. Cotranscriptional splicing is approximately twofold l...

  19. Antimutagenic Profile of Antioxidant Vitamins in Drosophila Mulation Test

    Institute of Scientific and Technical Information of China (English)

    P.K.KHAN; S.P.SINHA

    2008-01-01

    Objective To assess the antimutagenicity of antioxidant vitamins(vitamins A,C,and E)as expressed by their efficacy to of X-chromosome linked recessive lethal mutations(XRLMs)in Drosophila.Larvae were exposed to dietary concentration of aflatoxins and/or the human therapeutic doses of any ofthe three antioxidant vitamins. Absence of normal eyedmales among M2 progeny gave an indication of mutation induction. Results Aflatoxin supplimentation significantly increased the incidence of XRLMs in Drosophila.Mutation frequency was also raised a little above the control level in case of vitamin treatment.However,notable mitigation in mutation frequency was registered when aflatoxin-treated larvae were concomitantly fed with any of the three antioxidant vitamins.Conclusion Aflatoxin exposure can enhance the frequency of gene mutation in Drosophila which is significantly lowered by each of the three antioxidant vitamins.The degree of amelioration produced by them is almost identical.This mitigation is based on the scavenging/trapping by antioxidant vitamins of DNA-reactive products (metabolites and radicals)emanating from aflatoxin metabofism.

  20. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Viktor Kis

    Full Text Available Lipid droplets (LDs are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp, as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  1. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  2. Distinct Biochemical Activities of Eyes absent During Drosophila Eye Development.

    Science.gov (United States)

    Jin, Meng; Mardon, Graeme

    2016-01-01

    Eyes absent (Eya) is a highly conserved transcriptional coactivator and protein phosphatase that plays vital roles in multiple developmental processes from Drosophila to humans. Eya proteins contain a PST (Proline-Serine-Threonine)-rich transactivation domain, a threonine phosphatase motif (TPM), and a tyrosine protein phosphatase domain. Using a genomic rescue system, we find that the PST domain is essential for Eya activity and Dac expression, and the TPM is required for full Eya function. We also find that the threonine phosphatase activity plays only a minor role during Drosophila eye development and the primary function of the PST and TPM domains is transactivation that can be largely substituted by the heterologous activation domain VP16. Along with our previous results that the tyrosine phosphatase activity of Eya is dispensable for normal Eya function in eye formation, we demonstrate that a primary function of Eya during Drosophila eye development is as a transcriptional coactivator. Moreover, the PST/TPM and the threonine phosphatase activity are not required for in vitro interaction between retinal determination factors. Finally, this work is the first report of an Eya-Ey physical interaction. These findings are particularly important because they highlight the need for an in vivo approach that accurately dissects protein function. PMID:26980695

  3. A development-based compartmentalization of the Drosophila central brain

    Science.gov (United States)

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells, as well as long neurite fascicles. These fascicles are formed during the larval period when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. In this paper we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to directly compare compartments of the larval and adult brain. Most adult compartments can be recognized already in the early larval brain where they form a “protomap” of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms. PMID:20533357

  4. Development-based compartmentalization of the Drosophila central brain.

    Science.gov (United States)

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-08-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells as well as long neurite fascicles. These fascicles are formed during the larval period, when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. Here we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to compare compartments of the larval and adult brain directly. Most adult compartments can be recognized already in the early larval brain, where they form a "protomap" of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early-acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms. PMID:20533357

  5. Modeling the complex pathology of Alzheimer's disease in Drosophila.

    Science.gov (United States)

    Fernandez-Funez, Pedro; de Mena, Lorena; Rincon-Limas, Diego E

    2015-12-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncover the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42. PMID:26024860

  6. Mechanisms and functions of Nrf2 signaling in Drosophila.

    Science.gov (United States)

    Pitoniak, Andrew; Bohmann, Dirk

    2015-11-01

    The Nrf2 transcription factor belongs to the Cap'n'collar family, named after the founding member of this group, the product of the Drosophila Cap'n'collar gene. The encoded protein, Cap'n'collar, abbreviated Cnc, offers a convenient and accessible model to study the structure, function, and biology of Nrf2 transcription factors at the organismic, tissular, cellular, and molecular levels, using the powerful genetic, genomic, and biochemical tools available in Drosophila. In this review we provide an account of the original identification of Cnc as a regulator of embryonic development. We then describe the discovery of Nrf2-like functions of Cnc and its role in acute stress signaling and aging. The establishment of Drosophila as a model organism in which the mechanisms and functions of Nrf2 signaling can be studied has led to several discoveries: the regulation of stem cell activity by an Nrf2-mediated redox mechanism, the interaction of Nrf2 with p62 and Myc in the control of tissue growth and the unfolded protein response, and more. Several of these more recent lines of investigation are highlighted. Model organisms such as the fly and the worm remain powerful experimental platforms that can help to unravel the many remaining puzzles regarding the role of Nrf2 and its relatives in controlling the physiology and maintaining the health of multicellular organisms. PMID:26117322

  7. A drosophila full-length cDNA resource

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph; Brokstein, Peter; Yu, Charles; Champe, Mark; George, Reed; Guarin, Hannibal; Kronmiller, Brent; Pacleb, Joanne; Park, Soo; Rubin, Gerald M.; Celniker, Susan E.

    2003-05-09

    Background: A collection of sequenced full-length cDNAs is an important resource both for functional genomics studies and for the determination of the intron-exon structure of genes. Providing this resource to the Drosophila melanogaster research community has been a long-term goal of the Berkeley Drosophila Genome Project. We have previously described the Drosophila Gene Collection (DGC), a set of putative full-length cDNAs that was produced by generating and analyzing over 250,000 expressed sequence tags (ESTs) derived from a variety of tissues and developmental stages. Results: We have generated high-quality full-insert sequence for 8,921 clones in the DGC. We compared the sequence of these clones to the annotated Release 3 genomic sequence, and identified more than 5,300 cDNAs that contain a complete and accurate protein-coding sequence. This corresponds to at least one splice form for 40 percent of the predicted D. melanogaster genes. We also identified potential new cases of RNA editing. Conclusions: We show that comparison of cDNA sequences to a high-quality annotated genomic sequence is an effective approach to identifying and eliminating defective clones from a cDNA collection and ensure its utility for experimentation. Clones were eliminated either because they carry single nucleotide discrepancies, which most probably result from reverse transcriptase errors, or because they are truncated and contain only part of the protein-coding sequence.

  8. Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons.

    Science.gov (United States)

    Cao, Li-Hui; Jing, Bi-Yang; Yang, Dong; Zeng, Xiankun; Shen, Ying; Tu, Yuhai; Luo, Dong-Gen

    2016-02-16

    In Drosophila, olfactory sensory neurons (OSNs) rely primarily on two types of chemoreceptors, odorant receptors (Ors) and ionotropic receptors (Irs), to convert odor stimuli into neural activity. The cellular signaling of these receptors in their native OSNs remains unclear because of the difficulty of obtaining intracellular recordings from Drosophila OSNs. Here, we developed an antennal preparation that enabled the first recordings (to our knowledge) from targeted Drosophila OSNs through a patch-clamp technique. We found that brief odor pulses triggered graded inward receptor currents with distinct response kinetics and current-voltage relationships between Or- and Ir-driven responses. When stimulated with long-step odors, the receptor current of Ir-expressing OSNs did not adapt. In contrast, Or-expressing OSNs showed a strong Ca(2+)-dependent adaptation. The adaptation-induced changes in odor sensitivity obeyed the Weber-Fechner relation; however, surprisingly, the incremental sensitivity was reduced at low odor backgrounds but increased at high odor backgrounds. Our model for odor adaptation revealed two opposing effects of adaptation, desensitization and prevention of saturation, in dynamically adjusting odor sensitivity and extending the sensory operating range.

  9. Analysis of resistance and tolerance to virus infection in Drosophila.

    Science.gov (United States)

    Merkling, Sarah H; van Rij, Ronald P

    2015-07-01

    Host defense to virus infection involves both resistance mechanisms that reduce viral burden and tolerance mechanisms that limit detrimental effects of infection. The fruit fly, Drosophila melanogaster, has emerged as a model for identifying and characterizing the genetic basis of resistance and tolerance. This protocol describes how to analyze host responses to virus infection in Drosophila, and it covers the preparation of virus stocks, experimental inoculation of flies and assessment of host survival and virus production, which are indicative of resistance or tolerance. It also provides guidance on how to account for recently identified confounding factors, including natural genetic variation in the pastrel locus and contamination of fly stocks with persistent viruses and the symbiotic bacterium Wolbachia. Our protocol aims to be accessible to newcomers to the field and, although optimized for virus research using Drosophila, some of the techniques could be adapted to other host organisms and/or other microbial pathogens. Preparation of fly stocks requires ∼1 month, virus stock preparation requires 17-20 d, virus injection and survival assays require 10-15 d and virus titration requires 14 d.

  10. Tropics accelerate the evolution of hybrid male sterility in Drosophila.

    Science.gov (United States)

    Yukilevich, Roman

    2013-06-01

    Understanding the evolutionary mechanisms that facilitate speciation and explain global patterns of species diversity has remained a challenge for decades. The most general pattern of species biodiversity is the latitudinal gradient, whereby species richness increases toward the tropics. Although such a global pattern probably has a multitude of causes, recent attention has focused on the hypothesis that speciation and the evolution of reproductive isolation occur faster in the tropics. Here, I tested this prediction using a dataset on premating and postzygotic isolation between recently diverged Drosophila species. Results showed that while the evolution of premating isolation was not greater between tropical Drosophila relative to nontropical species, postzygotic isolation evolved faster in the tropics. In particular, hybrid male sterility was much greater among tropical Drosophila compared to nontropical species pairs of similar genetic age. Several testable explanations for the novel pattern are discussed, including greater role for sterility-inducing bacterial endosymbionts in the tropics and more intense sperm-sperm competition or sperm-egg sexual conflict in the tropics. The results imply that processes of speciation in the tropics may evolve at different rates or may even be somewhat different from those at higher latitudes.

  11. The ecdysteroidome of Drosophila: influence of diet and development.

    Science.gov (United States)

    Lavrynenko, Oksana; Rodenfels, Jonathan; Carvalho, Maria; Dye, Natalie A; Lafont, Rene; Eaton, Suzanne; Shevchenko, Andrej

    2015-11-01

    Ecdysteroids are the hormones regulating development, physiology and fertility in arthropods, which synthesize them exclusively from dietary sterols. But how dietary sterol diversity influences the ecdysteroid profile, how animals ensure the production of desired hormones and whether there are functional differences between different ecdysteroids produced in vivo remains unknown. This is because currently there is no analytical technology for unbiased, comprehensive and quantitative assessment of the full complement of endogenous ecdysteroids. We developed a new LC-MS/MS method to screen the entire chemical space of ecdysteroid-related structures and to quantify known and newly discovered hormones and their catabolites. We quantified the ecdysteroidome in Drosophila melanogaster and investigated how the ecdysteroid profile varies with diet and development. We show that Drosophila can produce four different classes of ecdysteroids, which are obligatorily derived from four types of dietary sterol precursors. Drosophila makes makisterone A from plant sterols and epi-makisterone A from ergosterol, the major yeast sterol. However, they prefer to selectively utilize scarce ergosterol precursors to make a novel hormone 24,28-dehydromakisterone A and trace cholesterol to synthesize 20-hydroxyecdysone. Interestingly, epi-makisterone A supports only larval development, whereas all other ecdysteroids allow full adult development. We suggest that evolutionary pressure against producing epi-C-24 ecdysteroids might explain selective utilization of ergosterol precursors and the puzzling preference for cholesterol.

  12. Transgenic Drosophila model to study apolipoprotein E4-induced neurodegeneration.

    Science.gov (United States)

    Haddadi, Mohammad; Nongthomba, Upendra; Jahromi, Samaneh Reiszadeh; Ramesh, S R

    2016-03-15

    The ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity.

  13. Drosophila and experimental neurology in the post-genomic era.

    Science.gov (United States)

    Shulman, Joshua M

    2015-12-01

    For decades, the fruit fly, Drosophila melanogaster, has been among the premiere genetic model systems for probing fundamental neurobiology, including elucidation of mechanisms responsible for human neurologic disorders. Flies continue to offer virtually unparalleled versatility and speed for genetic manipulation, strong genomic conservation, and a nervous system that recapitulates a range of cellular and network properties relevant to human disease. I focus here on four critical challenges emerging from recent advances in our understanding of the genomic basis of human neurologic disorders where innovative experimental strategies are urgently needed: (1) pinpointing causal genes from associated genomic loci; (2) confirming the functional impact of allelic variants; (3) elucidating nervous system roles for novel or poorly studied genes; and (4) probing network interactions within implicated regulatory pathways. Drosophila genetic approaches are ideally suited to address each of these potential translational roadblocks, and will therefore contribute to mechanistic insights and potential breakthrough therapies for complex genetic disorders in the coming years. Strategic collaboration between neurologists, human geneticists, and the Drosophila research community holds great promise to accelerate progress in the post-genomic era.

  14. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y2wsup(a)/y2wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  15. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution

    Science.gov (United States)

    Faria, Vitor G.; Magalhães, Sara; Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian

    2016-01-01

    Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit. PMID:27684942

  16. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    Science.gov (United States)

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion. PMID:27108761

  17. Hawaiian Drosophila genomes: size variation and evolutionary expansions.

    Science.gov (United States)

    Craddock, Elysse M; Gall, Joseph G; Jonas, Mark

    2016-02-01

    This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation.

  18. Interactions among Drosophila larvae before and during collision.

    Science.gov (United States)

    Otto, Nils; Risse, Benjamin; Berh, Dimitri; Bittern, Jonas; Jiang, Xiaoyi; Klämbt, Christian

    2016-01-01

    In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM(2c)), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae.

  19. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Science.gov (United States)

    Park, Jeong-Ho; Kwon, Jae Young

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs) in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF), locustatachykinin (LTK), and diuretic hormone 31 (DH31). RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis. PMID:22194978

  20. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Park

    Full Text Available The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF, locustatachykinin (LTK, and diuretic hormone 31 (DH31. RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  1. Status of research on Drosophila ananassae at global level

    Indian Academy of Sciences (India)

    B. N. Singh; J. P. Yadav

    2015-12-01

    Drosophila, a dipteran insect, has been found to be the best biological model for different kinds of studies. D. melanogaster was first described by Meigen in 1830, is most extensively studied species of the genus Drosophila and a number of investigations employing this species have been documented in areas such as genetics, behaviour, evolution, development, molecular biology, ecology, population biology, etc. Besides D. melanogaster, a number of other species of the genus Drosophila have also been used for different kinds of investigations. Among these, D. ananassae, a cosmopolitan and domestic species endowed with several unusual genetic features, is noteworthy. Described for the first time from Indonesia (Doleschall 1858), this species is commonly distributed in India. Extensive research work on D. ananassae has been done by numerous researchers pertaining to cytology, genetics, mutagenesis, gene mapping, crossing-over in both sexes, population and evolutionary genetics, behaviour genetics, ecological genetics, sexual isolation, fluctuating asymmetry, trade-offs etc. Genome of D. ananassae has also been sequenced. The status of research on D. ananassae at global level is briefly described in this review. Bibliography on this species from different countries worldwide reveals that maximum contribution is from India.

  2. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    Science.gov (United States)

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion.

  3. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles.

    Directory of Open Access Journals (Sweden)

    Claude Everaerts

    Full Text Available Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs, or at a longer distance (cis-vaccenyl acetate, cVA, affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i to identify 59 cuticular compounds, including 17 new CHs; (ii to precisely quantify the amount of each compound that could be detected by another fly, and (iii to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila.

  4. Reproductive character displacement of epicuticular compounds and their contribution to mate choice in Drosophila subquinaria and Drosophila recens.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Sztepanacz, Jacqueline L; Bewick, Emily R; Rundle, Howard D

    2014-04-01

    Interactions between species can alter selection on sexual displays used in mate choice within species. Here we study the epicuticular pheromones of two Drosophila species that overlap partially in geographic range and are incompletely reproductively isolated. Drosophila subquinaria shows a pattern of reproductive character displacement against Drosophila recens, and partial behavioral isolation between conspecific sympatric versus allopatric populations, whereas D. recens shows no such variation in mate choice. First, using manipulative perfuming experiments, we show that females use pheromones as signals for mate discrimination both between species and among populations of D. subquinaria. Second, we show that patterns of variation in epicuticular compounds, both across populations and between species, are consistent with those previously shown for mating probabilities: pheromone compositions differ between populations of D. subquinaria that are allopatric versus sympatric with D. recens, but are similar across populations of D. recens regardless of overlap with D. subquinaria. We also identify differences in pheromone composition among allopatric regions of D. subquinaria. In sum, our results suggest that epicuticular compounds are key signals used by females during mate recognition, and that these traits have diverged among D. subquinaria populations in response to reinforcing selection generated by the presence of D. recens.

  5. Field Evaluation of an Oviposition Deterrent for Management of Spotted-Wing Drosophila, Drosophila suzukii, and Potential Nontarget Effects.

    Science.gov (United States)

    Wallingford, Anna K; Connelly, Heather L; Dore Brind'Amour, Gabrielle; Boucher, Matthew T; Mafra-Neto, Agenor; Loeb, Greg M

    2016-08-01

    Spotted-wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a polyphagous, invasive pest of small fruits. Current management relies heavily on chemical insecticides, and an effective oviposition deterrent could contribute to alternative management approaches that reduce the need for these chemical insecticides. A novel deployment method for repelling Drosophila suzukii, thereby reducing D. suzukii oviposition in fall-bearing red raspberry, was evaluated in the field. Infestations occurring within 4 d after deployment were significantly lower in 2-m-long plots (Rubus idaeus 'Caroline') treated with the repellent (20% 1-octen-3-ol in specialized pheromone and lure application technology [SPLAT]) compared to control plots (blank SPLAT). Repellent-treated plots had roughly 28.8 and 49.5% fewer offspring reared per gram of fruit than control plots in two experiments, respectively. Nontarget effects were also evaluated in 2-m plot experiments as well as 5- by 5-m plot experiments. There were no differences in the number of parasitic hymenoptera trapped on yellow sticky cards hung in repellent compared to control plots. While there were no differences in the number of visits to raspberry flowers observed by honey bees in repellent versus control plots, the number of visits by bumble bees was greater in repellent plots compared to control plots. Challenges regarding evaporation rates and potential uses for repellents in an integrated pest management program for the control of D. suzukii are discussed. PMID:27247303

  6. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank;

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides, and...

  7. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease

    OpenAIRE

    Gratz, Scott J.; Cummings, Alexander M.; Nguyen, Jennifer N.; Hamm, Danielle C.; Donohue, Laura K.; Harrison, Melissa M.; Wildonger, Jill; O’Connor-Giles, Kate M.

    2013-01-01

    We have adapted a bacterial CRISPR RNA/Cas9 system to precisely engineer the Drosophila genome and report that Cas9-mediated genomic modifications are efficiently transmitted through the germline. This RNA-guided Cas9 system can be rapidly programmed to generate targeted alleles for probing gene function in Drosophila.

  8. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases

    NARCIS (Netherlands)

    Smilda, T; Kamminga, AH; Reinders, P; Baron, W; Vlieg, JETV; Beintema, JJ

    2001-01-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D, simulans is more active on secondary than on primary alcohols, although ethanol is i

  9. Non-crop plants used as hosts by Drosophila suzukii in Europe

    NARCIS (Netherlands)

    Kenis, Marc; Tonina, Lorenzo; Eschen, René; Sluis, van der Bart; Sancassani, Manuel; Mori, Nicola; Haye, Tim; Helsen, Herman

    2016-01-01

    The invasive spotted wing drosophila Drosophila suzukii, a fruit fly of Asian origin, is a major pest of a wide variety of berry and stone fruits in Europe. One of the characteristics of this fly is its wide host range. A better knowledge of its host range outside cultivated areas is essential to

  10. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    insect allatostatins. This resulted in alignment with a DNA sequence coding for some Drosophila allatostatins (drostatins). Using PCR with oligonucleotide primers directed against the presumed exons of this Drosophila allatostatin gene and subsequent 3'- and 5'-RACE, we were able to clone its c...

  11. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    Science.gov (United States)

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  12. The Drosophila gene brainiac encodes a glycosyltransferase putatively involved in glycosphingolipid synthesis

    DEFF Research Database (Denmark)

    Schwientek, Tilo; Keck, Birgit; Levery, Steven B;

    2002-01-01

    The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function...

  13. The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila

    DEFF Research Database (Denmark)

    Hentze, Julie Lilith; Carlsson, Mikael A.; Kondo, Shu;

    2015-01-01

    and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both...

  14. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    Science.gov (United States)

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involved in Drosophila hematopoiesis, we have conducted a P-element-based genetic screen to isolate mutations that affect embryonic crystal cell development. Using a marker of terminally differentiated crystal cells, we screened 1040 P-element-lethal lines located on the second and third chromosomes and identified 44 individual lines that affect crystal cell development. Identifying novel genes and pathways involved in Drosophila hematopoiesis is likely to provide further insights into mammalian hematopoietic development and disorders. PMID:15454546

  15. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

    Science.gov (United States)

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2016-01-01

    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood. PMID:27500374

  16. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Directory of Open Access Journals (Sweden)

    Laura K Reed

    Full Text Available BACKGROUND: The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. METHODOLOGY/PRINCIPAL FINDINGS: Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL mapping analyses directly on F(1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS in the F(1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. CONCLUSIONS/SIGNIFICANCE: The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  17. Genetic modifiers of MeCP2 function in Drosophila.

    Directory of Open Access Journals (Sweden)

    Holly N Cukier

    Full Text Available The levels of methyl-CpG-binding protein 2 (MeCP2 are critical for normal post-natal development and function of the nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett syndrome (RTT as well as other related conditions characterized by autism, learning disabilities, or mental retardation. Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins and behavioral (i.e., motor dysfunction abnormalities. We used a candidate gene approach to identify genes that are able to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax, the kinase tricornered, the UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other factors that might be more amenable to manipulation than MeCP2 itself.

  18. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    Directory of Open Access Journals (Sweden)

    Òscar Martorell

    Full Text Available Whereas the series of genetic events leading to colorectal cancer (CRC have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  19. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ana eDepetris-Chauvin

    2015-04-01

    Full Text Available Insects encounter a vast repertoire of chemicals in their natural environment, which can signal positive stimuli like the presence of a food source, a potential mate, or a suitable oviposition site as well as negative stimuli such as competitors, predators, or toxic substances reflecting danger. The presence of specialized chemoreceptors like taste and olfactory receptors allow animals to detect chemicals at short and long distances and accordingly, trigger proper behaviors towards these stimuli. Since the first description of olfactory and taste receptors in Drosophila fifteen years ago, our knowledge on the identity, properties, and function of specific chemoreceptors has increased exponentially. In the last years, multidisciplinary approaches combining genetic tools with electrophysiological techniques, behavioral recording, evolutionary analysis, and chemical ecology studies are shedding light on our understanding on the ecological relevance of specific chemoreceptors for the survival of Drosophila in their natural environment. In this review we discuss the current knowledge on chemoreceptors of both the olfactory and taste systems of the fruitfly. We focus on the relevance of particular receptors for the detection of ecologically relevant cues such as pheromones, food sources, and toxic compounds, and we comment on the behavioral changes that the detection of these chemicals induce in the fly. In particular, we give an updated outlook of the chemical communication displayed during one of the most important behaviors for fly survival, the courtship behavior. Finally, the ecological relevance of specific chemicals can vary depending on the niche occupied by the individual. In that regard, in this review we also highlight the contrast between adult and larval systems and we propose that these differences could reflect distinctive requirements depending on the change of ecological niche occupied by Drosophila along its life cycle.

  20. Intracellular shuttling of a Drosophila APC tumour suppressor homolog

    Directory of Open Access Journals (Sweden)

    Mieszczanek Julius

    2004-09-01

    Full Text Available Abstract Background The Adenomatous polyposis coli (APC tumour suppressor is found in multiple discrete subcellular locations, which may reflect sites of distinct functions. In Drosophila epithelial cells, the predominant APC relative (E-APC is concentrated at the apicolateral adherens junctions. Genetic analysis indicates that this junctional association is critical for the function of E-APC in Wnt signalling and in cellular adhesion. Here, we ask whether the junctional association of E-APC is stable, or whether E-APC shuttles between the plasma membrane and the cytoplasm. Results We generated a Drosophila strain that expresses E-APC (dAPC2 tagged with green fluorescent protein (GFP-E-APC and we analysed its junctional association with fluorescence recovery after photobleaching (FRAP experiments in live embryos. This revealed that the junctional association of GFP-E-APC in epithelial cells is highly dynamic, and is far less stable than that of the structural components of the adherens junctions, E-cadherin, α-catenin and Armadillo. The shuttling of GFP-E-APC to and from the plasma membrane is unaltered in mutants of Drosophila glycogen synthase kinase 3 (GSK3, which mimic constitutive Wingless signalling. However, the stability of E-APC is greatly reduced in these mutants, explaining their apparent delocalisation from the plasma membrane as previously observed. Finally, we show that GFP-E-APC forms dynamic patches at the apical plasma membrane of late embryonic epidermal cells that form denticles, and that it shuttles up and down the axons of the optic lobe. Conclusions We conclude that E-APC is a highly mobile protein that shuttles constitutively between distinct subcellular locations.

  1. Circadian transcription contributes to core period determination in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sebastian Kadener

    2008-05-01

    Full Text Available The Clock-Cycle (CLK-CYC heterodimer constitutes a key circadian transcription complex in Drosophila. CYC has a DNA-binding domain but lacks an activation domain. Previous experiments also indicate that most of the transcriptional activity of CLK-CYC derives from the glutamine-rich region of its partner CLK. To address the role of transcription in core circadian timekeeping, we have analyzed the effects of a CYC-viral protein 16 (VP16 fusion protein in the Drosophila system. The addition of this potent and well-studied viral transcriptional activator (VP16 to CYC imparts to the CLK-CYC-VP16 complex strongly enhanced transcriptional activity relative to that of CLK-CYC. This increase is manifested in flies expressing CYC-VP16 as well as in S2 cells. These flies also have increased levels of CLK-CYC direct target gene mRNAs as well as a short period, implicating circadian transcription in period determination. A more detailed examination of reporter gene expression in CYC-VP16-expressing flies suggests that the short period is due at least in part to a more rapid transcriptional phase. Importantly, the behavioral effects require a period (per promoter and are therefore unlikely to be merely a consequence of generally higher PER levels. This indicates that the CLK-CYC-VP16 behavioral effects are a consequence of increased per transcription. All of this also suggests that the timing of transcriptional activation and not the activation itself is the key event responsible for the behavioral effects observed in CYC-VP16-expressing flies. The results taken together indicate that circadian transcription contributes to core circadian function in Drosophila.

  2. The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Anna Lisa Gündner

    Full Text Available Phosphoinositide-3-kinase enhancer (PIKE proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH domain, a GTPase-activating (GAP domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to

  3. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  4. Transcriptional Activation of the Zygotic Genome in Drosophila.

    Science.gov (United States)

    Harrison, Melissa M; Eisen, Michael B

    2015-01-01

    During the first stages of metazoan development, the genomes of the highly specified sperm and egg must unite and be reprogrammed to allow for the generation of a new organism. This process is controlled by maternally deposited products. Initially, the zygotic genome is largely transcriptionally quiescent, and it is not until hours later that the zygotic genome takes control of development. The transcriptional activation of the zygotic genome is tightly coordinated with the degradation of the maternal products. Here, we review the current understanding of the processes that mediate the reprogramming of the early embryonic genome and facilitate transcriptional activation during the early stages of Drosophila development.

  5. Global genetic change tracks global climate warming in Drosophila subobscura.

    Science.gov (United States)

    Balanyá, Joan; Oller, Josep M; Huey, Raymond B; Gilchrist, George W; Serra, Luis

    2006-09-22

    Comparisons of recent with historical samples of chromosome inversion frequencies provide opportunities to determine whether genetic change is tracking climate change in natural populations. We determined the magnitude and direction of shifts over time (24 years between samples on average) in chromosome inversion frequencies and in ambient temperature for populations of the fly Drosophila subobscura on three continents. In 22 of 26 populations, climates warmed over the intervals, and genotypes characteristic of low latitudes (warm climates) increased in frequency in 21 of those 22 populations. Thus, genetic change in this fly is tracking climate warming and is doing so globally.

  6. Feeding regulates sex pheromone attraction and courtship in Drosophila females

    OpenAIRE

    Sébastien Lebreton; Federica Trona; Felipe Borrero-Echeverry; Florian Bilz; Veit Grabe; Becher, Paul G.; Carlsson, Mikael A.; Nässel, Dick R.; Bill S Hansson; Silke Sachse; Peter Witzgall

    2015-01-01

    In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of se...

  7. Performance of the Cas9 Nickase System in Drosophila melanogaster

    OpenAIRE

    Ren, Xingjie; Yang, Zhihao; Mao, Decai; Chang, Zai; Qiao, Huan-Huan; Wang, Xia; Sun, Jin; Hu, Qun; Cui, Yan; Liu, Lu-Ping; Ji, Jun-Yuan; Xu, Jiang; Ni, Jian-Quan

    2014-01-01

    Recent studies of the Cas9/sgRNA system in Drosophila melanogaster genome editing have opened new opportunities to generate site-specific mutant collections in a high-throughput manner. However, off-target effects of the system are still a major concern when analyzing mutant phenotypes. Mutations converting Cas9 to a DNA nickase have great potential for reducing off-target effects in vitro. Here, we demonstrated that injection of two plasmids encoding neighboring offset sgRNAs into transgenic...

  8. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter;

    be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0......Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...

  9. Prolonged stress induces adaptation of drosophila population to ionizing radiation

    International Nuclear Information System (INIS)

    We studied natural populations of Drosophila melanogaster from radio-contaminated area (Vetka district of Gomel region with 24 Ci/km2 of 137Cs and 0.5 Cu/km2 of 90Sr) and from Berezynski Natural Reserve as a control area (region of Chernobyl catastrophe). Population samples were caught in 2000-2001 years. Natural insect populations from radio-contaminated areas are more resistant to additional irradiation than control populations. Keeping of natural populations under laboratory or vivarium conditions is a strong stress (limited space, overpopulation, other than in nature temperature and light conditions), which increases mutation process and induces unspecific adaptation. (authors)

  10. Modelling of intercellular synchronization in the Drosophila circadian clock

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Chen Ai-Min; Zhang Jia-Jun; Yuan Zhan-Jiang; Zhou Tian-Shou

    2009-01-01

    In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling.

  11. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    substances. Do these same changes in patterns of expression have the ability to mitigate ageing and prolong lifespan? It appears that parts of this response indeed are also associated with extended longevity, whereas some elements are not, due to their high cost or long-term deleterious consequences. Here we...... briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...

  12. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.

    Directory of Open Access Journals (Sweden)

    Taishi Yoshii

    2009-04-01

    Full Text Available Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 muT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cry(b and cry(OUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system

  13. Exploring interactions between pathogens and the Drosophila gut.

    Science.gov (United States)

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2016-11-01

    Gastrointestinal infection can provoke substantial disturbance at both a local as well as at a systemic level and may evolve into a chronic disease state. Our growing knowledge of gut-pathogen interactions has been based to a large extent on the use of genetically tractable model hosts such as the fruit fly Drosophila melanogaster. In this review we will summarise the growing literature and critically address the advantages and disadvantages of using this model to extrapolate results from studying pathogen virulence and intestinal responses to humans. PMID:26876781

  14. Three-dimensional structure of axonal mitochondria reflects the age of drosophila

    Institute of Scientific and Technical Information of China (English)

    Honglian Zhu; Xiaojiang Sun

    2013-01-01

    This study aimed to reconstruct a three-dimensional map of axonal mitochondria using Fiji and Neurolucida software, and to observe directly the morphology and distribution of mitochondria in axons of motor neurons in dorsal longitudinal flight muscles of drosophila aged 5 days and 20 days, using electron microscopy. Results indicated that there was no difference in the total area and volume of mitochondria between 5-day-old drosophila and 20-day-old drosophila in all sections, but the ratio of mitochondrial total areas to axon total areas, as well as mitochondrial density of 20-day-old drosophila, was lower than that of 5-day-old drosophila. The number of mitochondria, whose volume was less than 1 000 000 μm3, and between 1 000 000 μm3 and 10 000 000 μm3, was higher in 20-day-old drosophila than that in 5-day-old drosophila. The number of mitochondria with a volume between 1 000 000 μm3 and 100 000 000 μm3 was apparently higher than those with a volume less than 1 000 000 μm3 or larger than 100 000 000 μm3. In addition, the number of mitochondria with a volume more than 100 000 000 μm3 was small; however, the volume was nearly 70% of the total volume in both 5-day-old and 20-day-old drosophila. In contrast, the number of mitochondria with a volume between 1 000 000 μm3 and 10 000 000 μm3 was large, but the volume was less than 30% of the total volume. These experimental findings suggest that changes in mitochondrial morphology and number in motor neurons from the dorsal longitudinal muscle of drosophila are present during different ages.

  15. The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression

    OpenAIRE

    Du, Eun Jo; Ahn, Tae Jung; Choi, Min Sung; Kwon, Ilmin; Kim, Hyung-Wook; Kwon, Jae Young; Kang, KyeongJin

    2015-01-01

    Citronellal, a well-known plant-derived mosquito repellent, was previously reported to repel Drosophila melanogaster via olfactory pathways involving but not directly activating Transient Receptor Potential Ankyrin 1 (TRPA1). Here, we show that citronellal is a direct agonist for Drosophila and human TRPA1s (dTRPA1 and hTRPA1) as well as Anopheles gambiae TRPA1 (agTRPA1). Citronellal-induced activity is isoform-dependent for Drosophila and Anopheles gambiae TRPA1s. The recently identified dTR...

  16. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics

    Directory of Open Access Journals (Sweden)

    Radoslaw K. Ejsmont

    2014-05-01

    Full Text Available For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research.

  17. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics.

    Science.gov (United States)

    Ejsmont, Radoslaw K; Hassan, Bassem A

    2014-01-01

    For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research. PMID:24827974

  18. DNA Methyltransferase Gene dDnmt2 and Longevity of Drosophila

    Institute of Scientific and Technical Information of China (English)

    Meng-JauLin; Lin-YaTang; M.NarsaReddy; C.K.JamesShen

    2005-01-01

    The DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span. The study links the Drosophila DNA methylation program with the small heatshock proteins and longevity/aging and has interesting implication on the eukaryotic DNA methyl-ation programs in general.

  19. Monoclonal antibodies to drosophila cytochrome P-450's

    International Nuclear Information System (INIS)

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins

  20. Monoclonal antibodies to drosophila cytochrome P-450's

    Energy Technology Data Exchange (ETDEWEB)

    Sundseth, S.S.; Kennel, S.J.; Waters, L.C.

    1987-05-01

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins.

  1. A novel assay reveals hygrotactic behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Feiteng Ji

    Full Text Available Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body α/β surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.

  2. Regulation of twin of eyeless during Drosophila development.

    Science.gov (United States)

    Skottheim Honn, John; Johansson, Linn; Rasmuson Lestander, Åsa

    2016-03-01

    The Pax-6 protein is vital for eye development in all seeing animals, from sea urchins to humans. Either of the Pax6 genes in Drosophila (twin of eyeless and eyeless) can induce a gene cascade leading to formation of entire eyes when expressed ectopically. The twin of eyeless (toy) gene in Drosophila is expressed in the anterior region of the early fly embryo. At later stages it is expressed in the brain, ventral nerve cord and (eventually) the visual primordium that gives rise to the eye-antennal imaginal discs of the larvae. These discs subsequently form the major part of the adult head, including compound eyes. We have searched for genes that are required for normal toy expression in the early embryo to elucidate initiating events of eye organogenesis. Candidate genes identified by mutation analyses were subjected to further knock-out and miss-expression tests to investigate their interactions with toy. Our results indicate that the head-specific gap gene empty spiracles can act as a repressor of Toy, while ocelliless (oc) and spalt major (salm) appear to act as positive regulators of toy gene expression. PMID:26976323

  3. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  4. Organically grown food provides health benefits to Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ria Chhabra

    Full Text Available The "organic food" market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas, potatoes, raisins, soy beans. Flies were then subjected to a variety of tests designed to assess overall fly health. Flies raised on diets made from organically grown produce had greater fertility and longevity. On certain food sources, greater activity and greater stress resistance was additionally observed, suggesting that organic food bestows positive effects on fly health. Our data show that Drosophila can be used as a convenient model system to experimentally test potential health effects of dietary components. Using this system, we provide evidence that organically raised food may provide animals with tangible benefits to overall health.

  5. The hemolymph proteome of fed and starved Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Björn Handke

    Full Text Available The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  6. Glucose modulates Drosophila longevity and immunity independent of the microbiota

    Science.gov (United States)

    Galenza, Anthony; Hutchinson, Jaclyn; Campbell, Shelagh D.; Hazes, Bart; Foley, Edan

    2016-01-01

    ABSTRACT The acquisition of nutrients is essential for maintenance of metabolic processes in all organisms. Nutritional imbalance contributes to myriad metabolic disorders that include malnutrition, diabetes and even cancer. Recently, the importance of macronutrient ratio of food has emerged as a critical factor to determine health outcomes. Here we show that individual modifications to a completely defined diet markedly impact multiple aspects of organism wellbeing in Drosophila melanogaster. Through a longitudinal survey of several diets we demonstrate that increased levels of dietary glucose significantly improve longevity and immunity in adult Drosophila. Our metagenomic studies show that relative macronutrient levels not only influence the host, but also have a profound impact on microbiota composition. However, we found that elevated dietary glucose extended the lifespan of adult flies even when raised in a germ-free environment. Furthermore, when challenged with a chronic enteric infection, flies fed a diet with added glucose had increased survival times even in the absence of an intact microbiota. Thus, in contrast to known links between the microbiota and animal health, our findings uncover a novel microbiota-independent response to diet that impacts host wellbeing. As dietary responses are highly conserved in animals, we believe our results offer a general understanding of the association between glucose metabolism and animal health. PMID:26794610

  7. Appetitive and aversive visual learning in freely moving Drosophila

    Directory of Open Access Journals (Sweden)

    Christopher Schnaitmann

    2010-03-01

    Full Text Available To compare appetitive and aversive visual memories of the fruit fly Drosophila melanogaster, we developed a new paradigm for classical conditioning. Adult flies are trained en masse to differentially associate one of two visual conditioned stimuli (blue and green light as conditioned stimuli or CS with an appetitive or aversive chemical substance (unconditioned stimulus or US. In a test phase, flies are given a choice between the paired and the unpaired visual stimuli. Associative memory is measured based on altered visual preference in the test. If a group of flies has, for example, received a sugar reward with green light, they show a significantly higher preference for the green stimulus during the test than another group of flies having received the same reward with blue light. We demonstrate critical parameters for the formation of visual appetitive memory, such as training repetition, order of reinforcement, starvation, and individual conditioning. Furthermore, we show that formic acid can act as an aversive chemical reinforcer, yielding weak, yet significant, aversive memory. These results provide a basis for future investigations into the cellular and molecular mechanisms underlying visual memory and perception in Drosophila.

  8. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  9. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  10. Neural representations of airflow in Drosophila mushroom body.

    Directory of Open Access Journals (Sweden)

    Akira Mamiya

    Full Text Available The Drosophila mushroom body (MB is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3(rd antennal segment, suggesting that Johnston's organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.

  11. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  12. Locus Adh of Drosophila melanogaster under selection for delayed senescence

    Energy Technology Data Exchange (ETDEWEB)

    Khaustova, N.D. [Odessa State Univ. (Ukraine)

    1995-05-01

    Dynamics of the Adh activity and frequencies of alleles Adh{sup F} and Adh{sup S} were analyzed under selection for delayed senescence. The experiments were performed on Drosophila melanogaster. Lines Adh{sup S}cn and Adh{sup F}vg and experimental populations cn` and vg`, selected for an increased duration of reproductive period (late oviposition) were used. Analysis of fertility, longevity, viability and resistance to starvation showed that selection for late oviposition resulted in delayed senescence of flies of the experimental populations. Genetic structure of population vg` changed considerably with regard to the Adh locus. This was confirmed by parameters of activity, thermostability, and electrophoretic mobility of the enzyme isolated from flies after 30 generations of selection. Analysis of frequencies of the Adh alleles showed that in both selected populations, which initially had different genetic composition, accumulated allele Adh{sup S}, which encodes the isozyme that is less active but more resistant to inactivation. Genetic mechanism of delayed senescence in Drosophila is assumed to involve selection at vitally important enzyme loci, including Adh. 18 refs., 2 tabs., 4 figs.

  13. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.

    Science.gov (United States)

    Peña, Jennifer M; Carrillo, Mayra A; Hallem, Elissa A

    2015-03-01

    Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection.

  14. Drosophila provides rapid modeling of renal development, function, and disease.

    Science.gov (United States)

    Dow, Julian A T; Romero, Michael F

    2010-12-01

    The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.

  15. Sex ratios in natural populations of Drosophila pseudoobscura from Mexico

    Directory of Open Access Journals (Sweden)

    Salceda Victor M.

    2012-01-01

    Full Text Available Most species show an equal proportion of individuals of both sexes. In diploid species sex ratio is determined by a genic balance between sex chromosomes. In Drosophila sex is determined by the ratio of X- chromosomes versus autosomes and in some species of the genus it is related to the presence of an inversion in the sex chromosome. The present work analyses the sex ratio in 27 natural populations of Drosophila pseudoobscura that inhabit Mexico. Female flies captured in nature were counted and their sex ratio calculated and been called generation P, then cultured individualy, allowed to leave adult offspring which was quantified in order to get its sex ratio and designated generation F1. sex ratio was calculated using the expression: number of males times 100 divided by the number of females proposed by Darwin (1871. The sex ratio of each population was taken using the average of all the individual counts from each sample. The values found varied among different generations and populations, so for generation P their values varieded 37.4 to 190.4 and in generation F1 from 31.3 up to 96.4 males for each 100 females. According to their geographical distribution four North to South transects were arranged and in them means varied from 60.8 to 81.7 males for each 100 females. All this means that in Mexican population are more females than males, exceptionally more males than females.

  16. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    Directory of Open Access Journals (Sweden)

    David J Mellert

    Full Text Available Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  17. Neurofibromin Loss of Function Drives Excessive Grooming in Drosophila

    Directory of Open Access Journals (Sweden)

    Lanikea B. King

    2016-04-01

    Full Text Available Neurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1 exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models. In order to understand how loss of Nf1 affects motor behavior in flies, we combined traditional activity monitoring with video analysis of grooming behavior. In nf1 mutants, spontaneous grooming was increased up to 7x. This increase in activity was distinct from previously described dopamine-dependent hyperactivity, as dopamine transporter mutants exhibited slightly decreased grooming. Finally, we found that relative grooming frequencies can be compared in standard activity monitors that measure infrared beam breaks, enabling the use of activity monitors as an automated method to screen for grooming phenotypes. Overall, these data suggest that loss of nf1 produces excessive activity that is manifested as increased grooming, providing a platform to dissect the molecular genetics of neurofibromin signaling across neuronal circuits.

  18. Strategies for exploring TGF-β signaling in Drosophila.

    Science.gov (United States)

    Peterson, Aidan J; O'Connor, Michael B

    2014-06-15

    The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.

  19. Feeding regulates sex pheromone attraction and courtship in Drosophila females.

    Science.gov (United States)

    Lebreton, Sébastien; Trona, Federica; Borrero-Echeverry, Felipe; Bilz, Florian; Grabe, Veit; Becher, Paul G; Carlsson, Mikael A; Nässel, Dick R; Hansson, Bill S; Sachse, Silke; Witzgall, Peter

    2015-01-01

    In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females. PMID:26255707

  20. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Prud`homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A. [Centre de Genetique Moleculaire, Gif-sur-Yvette (France)

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.

  1. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster.

    Science.gov (United States)

    Prud'homme, N; Gans, M; Masson, M; Terzian, C; Bucheton, A

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovoD1 female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovoD1 reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. PMID:7713426

  2. Candidate glutamatergic neurons in the visual system of Drosophila.

    Directory of Open Access Journals (Sweden)

    Shamprasad Varija Raghu

    Full Text Available The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L, transmedullary (Tm, transmedullary Y (TmY, Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am, bushy T (T, translobula plate (Tlp, lobula intrinsic (Lcn, Lt, Li, lobula plate tangential (LPTCs and lobula plate intrinsic (LPi cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.

  3. Exploratory activity and habituation of Drosophila in confined domains

    Science.gov (United States)

    Soibam, B.; Chen, L.; Roman, G. W.; Gunaratne, G. H.

    2014-09-01

    Animals use locomotion to find food, shelter, and escape routes as well as to locate predators, competitors, and mates. Thus, locomotion is related to many behavioral traits, and can be used to characterize these more complex facets of behavior. Exploratory behaviors are random and need to be assessed through stochastic analysis. By comparing ensembles of trajectories from Drosophila and a model animal, we identify a pair of principles that govern the stochastic motion of a specific species. The first depends on local cues and quantify directional persistence, i.e., the propensity of an animal to maintain direction; the second, its attraction to walls, is relevant for exploration in confined arenas. Statistical properties of exploratory activity in several types of arenas can be computed from these principles. A pair of spiral arenas are designed to demonstrate that centrophobicity, or fear of the center of an arena, is not a fundamental feature of exploration. xxxx We provide evidence to show that the decay in an animal's activity following its introduction into a novel arena is correlated to its familiarity with the arena. We define two measures, coverage and habituation, to quantify familiarity. It is found that the relationship between activity and coverage is independent of the arena size. Finally, we use an analysis of exploration of mutant species to infer that in Drosophila, habituation relies on visual cues.

  4. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available BACKGROUND: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. METHODOLOGY/PRINCIPAL FINDINGS: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. CONCLUSIONS/SIGNIFICANCE: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  5. Edge detection depends on achromatic channel in Drosophila melanogaster.

    Science.gov (United States)

    Zhou, Yanqiong; Ji, Xiaoxiao; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2012-10-01

    Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated. In the present study, using a color light-emitting-diode-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal luminance, at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE(17) and sev(LY3);rh5(2);rh6(1) demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of rhodopsin 4 (Rh4), Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE(17) mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila. PMID:22735352

  6. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  7. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  8. Altered lipid metabolism in a Drosophila model of Friedreich's ataxia.

    Science.gov (United States)

    Navarro, Juan A; Ohmann, Elisabeth; Sanchez, Diego; Botella, José A; Liebisch, Gerhard; Moltó, María D; Ganfornina, María D; Schmitz, Gerd; Schneuwly, Stephan

    2010-07-15

    Friedreich's ataxia (FRDA) is the most common form of autosomal recessive ataxia caused by a deficit in the mitochondrial protein frataxin. Although demyelination is a common symptom in FRDA patients, no multicellular model has yet been developed to study the involvement of glial cells in FRDA. Using the recently established RNAi lines for targeted suppression of frataxin in Drosophila, we were able to study the effects of general versus glial-specific frataxin downregulation. In particular, we wanted to study the interplay between lowered frataxin content, lipid accumulation and peroxidation and the consequences of these effects on the sensitivity to oxidative stress and fly fitness. Interestingly, ubiquitous frataxin reduction leads to an increase in fatty acids catalyzing an enhancement of lipid peroxidation levels, elevating the intracellular toxic potential. Specific loss of frataxin in glial cells triggers a similar phenotype which can be visualized by accumulating lipid droplets in glial cells. This phenotype is associated with a reduced lifespan, an increased sensitivity to oxidative insult, neurodegenerative effects and a serious impairment of locomotor activity. These symptoms fit very well with our observation of an increase in intracellular toxicity by lipid peroxides. Interestingly, co-expression of a Drosophila apolipoprotein D ortholog (glial lazarillo) has a strong protective effect in our frataxin models, mainly by controlling the level of lipid peroxidation. Our results clearly support a strong involvement of glial cells and lipid peroxidation in the generation of FRDA-like symptoms.

  9. Spatial Patterns of Recurved Sensory Organs in Drosophila

    Science.gov (United States)

    Gunaratne, Gemunu

    2008-03-01

    The fruit fly Drosophila is one of the most intensely studied models of development. A subset of -nominally- identical cells on the anterior wing of Drosophila begins to differentiate at puparium formation, each developing a sensory organ. In wild type flies, every fifth cell becomes such a sensory organ. Recent studies on mutant flies have shown that the transcription factor Senseless and the micro RNA miR-9a play significant roles in the choice of bristle density and the regularity of their arrangement. We propose that this cell differentiation is due to a Turing-type bifurcation whereby periodic concentration gradients emerge spontaneously from a uniform background. A paradigmatic model with intra-cellular networks and lateral activation and inhibition between neighboring cells (for example, through the Notch signaling pathway) is shown to generate the observed arrangements of sensory organs. The theory makes several experimentally verifiable predictions. For example, we propose methods to create mutant flies with systematically increasing numbers of ectopic bristles. In our theory, post-transcriptional regulatory action of the micro RNA occurs through the choice of stable solutions of the network.

  10. Using Drosophila models of Huntington's disease as a translatable tool.

    Science.gov (United States)

    Lewis, Elizabeth A; Smith, Gaynor A

    2016-05-30

    The Huntingtin (Htt) protein is essential for a wealth of intracellular signaling cascades and when mutated, causes multifactorial dysregulation of basic cellular processes. Understanding the contribution to each of these intracellular pathways is essential for the elucidation of mechanisms that drive pathophysiology. Using appropriate models of Huntington's disease (HD) is key to finding the molecular mechanisms that contribute to neurodegeneration. While mouse models and cell lines expressing mutant Htt have been instrumental to HD research, there has been a significant contribution to our understating of the disease from studies utilizing Drosophila melanogaster. Flies have an Htt protein, so the endogenous pathways with which it interacts are likely conserved. Transgenic flies engineered to overexpress the human mutant HTT gene display protein aggregation, neurodegeneration, behavioral deficits and a reduced lifespan. The short life span of flies, low cost of maintaining stocks and genetic tools available for in vivo manipulation make them ideal for the discovery of new genes that are involved in HD pathology. It is possible to do rapid genome wide screens for enhancers or suppressors of the mutant Htt-mediated phenotype, expressed in specific tissues or neuronal subtypes. However, there likely remain many yet unknown genes that modify disease progression, which could be found through additional screening approaches using the fly. Importantly, there have been instances where genes discovered in Drosophila have been translated to HD mouse models. PMID:26241927

  11. Control of dendritic morphogenesis by Trio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Madhuri Shivalkar

    Full Text Available Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.

  12. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  13. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  14. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    Directory of Open Access Journals (Sweden)

    Peter Smibert

    2012-03-01

    Full Text Available We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR shortening in the testis and lengthening in the central nervous system (CNS; the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.

  15. A potential role for Drosophila mucins in development and physiology.

    Directory of Open Access Journals (Sweden)

    Zulfeqhar A Syed

    Full Text Available Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS. We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300-23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis.

  16. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    Science.gov (United States)

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  17. U bodies respond to nutrient stress in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Mickey; Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk

    2011-12-10

    The neurodegenerative disease spinal muscular atrophy (SMA) is caused by mutation of the survival motor neuron 1 (SMN1) gene. Cytoplasmic SMN protein-containing granules, known as U snRNP bodies (U bodies), are thought to be responsible for the assembly and storage of small nuclear ribonucleoproteins (snRNPs) which are essential for pre-mRNA splicing. U bodies exhibit close association with cytoplasmic processing bodies (P bodies), which are involved in mRNA decay and translational repression. The close association of the U body and P body in Drosophila resemble that of the stress granule and P body in yeast and mammalian cells. However, it is unknown whether the U body is responsive to any stress. Using Drosophila oogenesis as a model, here we show that U bodies increase in size following nutritional deprivation. Despite nutritional stress, U bodies maintain their close association with P bodies. Our results show that U bodies are responsive to nutrition changes, presumably through the U body-P body pathway.

  18. Systems neuroscience in Drosophila: Conceptual and technical advantages.

    Science.gov (United States)

    Kazama, H

    2015-06-18

    The fruit fly Drosophila melanogaster is ideally suited for investigating the neural circuit basis of behavior. Due to the simplicity and genetic tractability of the fly brain, neurons and circuits are identifiable across animals. Additionally, a large set of transgenic lines has been developed with the aim of specifically labeling small subsets of neurons and manipulating them in sophisticated ways. Electrophysiology and imaging can be applied in behaving individuals to examine the computations performed by each neuron, and even the entire population of relevant neurons in a particular region, because of the small size of the brain. Moreover, a rich repertoire of behaviors that can be studied is expanding to include those requiring cognitive abilities. Thus, the fly brain is an attractive system in which to explore both computations and mechanisms underlying behavior at levels spanning from genes through neurons to circuits. This review summarizes the advantages Drosophila offers in achieving this objective. A recent neurophysiology study on olfactory behavior is also introduced to demonstrate the effectiveness of these advantages.

  19. Drosophila Stathmins Bind Tubulin Heterodimers with High and Variable Stoichiometries*

    Science.gov (United States)

    Lachkar, Sylvie; Lebois, Marion; Steinmetz, Michel O.; Guichet, Antoine; Lal, Neha; Curmi, Patrick A.; Sobel, André; Ozon, Sylvie

    2010-01-01

    In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties. PMID:20145240

  20. Drosophila stathmins bind tubulin heterodimers with high and variable stoichiometries.

    Science.gov (United States)

    Lachkar, Sylvie; Lebois, Marion; Steinmetz, Michel O; Guichet, Antoine; Lal, Neha; Curmi, Patrick A; Sobel, André; Ozon, Sylvie

    2010-04-01

    In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties. PMID:20145240

  1. Carbon nanopipette electrodes for dopamine detection in Drosophila.

    Science.gov (United States)

    Rees, Hillary R; Anderson, Sean E; Privman, Eve; Bau, Haim H; Venton, B Jill

    2015-04-01

    Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.

  2. A Miniaturized Video System for Monitoring Drosophila Behavior

    Science.gov (United States)

    Bhattacharya, Sharmila; Inan, Omer; Kovacs, Gregory; Etemadi, Mozziyar; Sanchez, Max; Marcu, Oana

    2011-01-01

    Long-term spaceflight may induce a variety of harmful effects in astronauts, resulting in altered motor and cognitive behavior. The stresses experienced by humans in space - most significantly weightlessness (microgravity) and cosmic radiation - are difficult to accurately simulate on Earth. In fact, prolonged and concomitant exposure to microgravity and cosmic radiation can only be studied in space. Behavioral studies in space have focused on model organisms, including Drosophila melanogaster. Drosophila is often used due to its short life span and generational cycle, small size, and ease of maintenance. Additionally, the well-characterized genetics of Drosophila behavior on Earth can be applied to the analysis of results from spaceflights, provided that the behavior in space is accurately recorded. In 2001, the BioExplorer project introduced a low-cost option for researchers: the small satellite. While this approach enabled multiple inexpensive launches of biological experiments, it also imposed stringent restrictions on the monitoring systems in terms of size, mass, data bandwidth, and power consumption. Suggested parameters for size are on the order of 100 mm3 and 1 kg mass for the entire payload. For Drosophila behavioral studies, these engineering requirements are not met by commercially available systems. One system that does meet many requirements for behavioral studies in space is the actimeter. Actimeters use infrared light gates to track the number of times a fly crosses a boundary within a small container (3x3x40 mm). Unfortunately, the apparatus needed to monitor several flies at once would be larger than the capacity of the small satellite. A system is presented, which expands on the actimeter approach to achieve a highly compact, low-power, ultra-low bandwidth solution for simultaneous monitoring of the behavior of multiple flies in space. This also provides a simple, inexpensive alternative to the current systems for monitoring Drosophila

  3. A comparative analysis of the amounts and dynamics of transposable elements in natural populations of Drosophila melanogaster and Drosophila simulans

    International Nuclear Information System (INIS)

    Genes are important in defining genetic variability, but they do not constitute the largest component of genomes, which in most organisms contain large amounts of various repeated sequences including transposable elements (TEs), which have been shown to account for most of the genome size. TEs contribute to genetic diversity by their mutational potential as a result of their ability to insert into genes or gene regulator regions, to promote chromosomal rearrangements, and to interfere with gene networks. Also, TEs may be activated by environmental stresses (such as temperature or radiation) that interfere with epigenetic regulation systems, and makes them powerful mutation agents in nature. To understand the relationship between genotype and phenotype, we need to analyze the portions of the genome corresponding to TEs in great detail, and to decipher their relationships with the genes. For this purpose, we carried out comparative analyses of various natural populations of the closely-related species Drosophila melanogaster and Drosophila simulans, which differ with regard to their TE amounts as well as their ecology and population size. - Highlights: ► Transposable elements (TE) are source of genetic novelty and affect genome regulation. ► Environment can affect regulation of TE and thus have an impact on genome. ► Natural populations are natural laboratories to measure the impact of environment.

  4. Genome-wide transcription analysis of clinal genetic variation in Drosophila

    NARCIS (Netherlands)

    Chen, Ying; Lee, Siu F.; Blanc, Eric; Reuter, Caroline; Wertheim, Bregje; Martinez-Diaz, Pedro; Hoffmann, Ary A.; Partridge, Linda

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation betwee

  5. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster

    NARCIS (Netherlands)

    Krupp, Joshua J; Kent, Clement; Billeter, Jean-Christophe; Azanchi, Reza; So, Anthony K-C; Schonfeld, Julia A; Smith, Benjamin P; Lucas, Christophe; Levine, Joel D

    2008-01-01

    BACKGROUND: The social life of animals depends on communication between individuals. Recent studies in Drosophila melanogaster demonstrate that various behaviors are influenced by social interactions. For example, courtship is a social interaction mediated by pheromonal signaling that occurs more fr

  6. Male non-coding RNA genes identified by comparative genomic analysis of the Drosophila genomes

    Institute of Scientific and Technical Information of China (English)

    LONG ManYuan; ZHU ZuoYan

    2007-01-01

    @@ This issue published a research article by Yang et al.[1] of Peking University "Significant divergence of sex-related non-coding RNA expression patterns among closely related species in Drosophila".

  7. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  8. Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides

    DEFF Research Database (Denmark)

    Collin, Caitlin; Hauser, Frank; Krogh-Meyer, Peter;

    2011-01-01

    One year ago, we discovered a new family of insect RYamide neuropeptides, which has the C-terminal consensus sequence FFXXXRYamide, and which is widely occurring in most insects, including the fruitfly Drosophila melanogaster and the red flour beetle Tribolium castaneum (F. Hauser et al., J....... Proteome Res. 9 (2010) 5296-5310). Here, we identify a Drosophila G-protein-coupled receptor (GPCR) coded for by gene CG5811 and its Tribolium GPCR ortholog as insect RYamide receptors. The Drosophila RYamide receptor is equally well activated (EC(50), 1×10(-9)M) by the two Drosophila RYamide neuropeptides......), which might be due to the fact that the last peptide does not completely follow the RYamide consensus sequence rule. There are other neuropeptides in insects that have similar C-terminal sequences (RWamide or RFamide), such as the FMRFamides, sulfakinins, myosuppressins, neuropeptides F, and the various...

  9. Classification of Parkinson’s Disease Genotypes in Drosophila Using Spatiotemporal Profiling of Vision

    OpenAIRE

    Ryan J.H. West; Elliott, Christopher J. H.; Wade, Alex R.

    2015-01-01

    Electrophysiological studies indicate altered contrast processing in some Parkinson’s Disease (PD) patients. We recently demonstrated that vision is altered in Drosophila PD models and hypothesised that different types of genetic and idiopathic PD may affect dopaminergic visual signalling pathways differently. Here we asked whether visual responses in Drosophila could be used to identify PD mutations. To mimic a clinical setting a range of flies was used. Young flies from four control lines w...

  10. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    OpenAIRE

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.; Gorski, Sharon M.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide t...

  11. How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila

    OpenAIRE

    Faville, R.; Kottler, B.; Goodhill, G. J.; Shaw, P. J.; Van Swinderen, B

    2015-01-01

    The fruitfly, Drosophila melanogaster, has become a critical model system for investigating sleep functions. Most studies use duration of inactivity to measure sleep. However, a defining criterion for sleep is decreased behavioral responsiveness to stimuli. Here we introduce the Drosophila ARousal Tracking system (DART), an integrated platform for efficiently tracking and probing arousal levels in animals. This video-based platform delivers positional and locomotion data, behavioral responsiv...

  12. NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster

    OpenAIRE

    Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal

    2011-01-01

    Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and...

  13. Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts

    OpenAIRE

    Cardona, A; Saalfeld, S; Arganda, I; Pereanu, W; Schindelin, J; Hartenstein, V.

    2010-01-01

    The Drosophila brain is formed by an invariant set of lineages, each of which is derived from a unique neural stem cell (neuroblast) and forms a genetic and structural unit of the brain. The task of reconstructing brain circuitry at the level of individual neurons can be made significantly easier by assigning neurons to their respective lineages. In this paper we address the automatization of neuron and lineage identification. We focused on the Drosophila brain lineages at the larval stage wh...

  14. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm

    OpenAIRE

    Grigorian, Melina; Mandal, Lolitika; Hakimi, Manuel; Ortiz, Irma; Hartenstein, Volker

    2011-01-01

    Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos, is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of th...

  15. The Drosophila neural lineages: a model system to study brain development and circuitry

    OpenAIRE

    Spindler, Shana R; Hartenstein, Volker

    2010-01-01

    In Drosophila, neurons of the central nervous system are grouped into units called lineages. Each lineage contains cells derived from a single neuroblast. Due to its clonal nature, the Drosophila brain is a valuable model system to study neuron development and circuit formation. To better understand the mechanisms underlying brain development, genetic manipulation tools can be utilized within lineages to visualize, knock down, or over-express proteins. Here, we will introduce the formation an...

  16. The BMP signaling pathway at the Drosophila neuromuscular junction and its links to neurodegenerative diseases

    OpenAIRE

    Bayat, Vafa; Jaiswal, Manish; Bellen, Hugo J

    2010-01-01

    The Drosophila neuromuscular junction (NMJ) has recently provided new insights into the roles of various proteins in neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy (SMA), Multiple Sclerosis (MS) Hereditary Spastic Paraplegia (HSP), and Huntington’s Disease (HD). Several developmental signaling pathways including WNT, MAPK and BMP/TGF-β signaling play important roles in the formation and growth of the Drosophila NMJ. Studies of the fly homolog...

  17. Captured Segment Exchange: A Strategy for Custom Engineering Large Genomic Regions in Drosophila melanogaster

    OpenAIRE

    Bateman, Jack R.; Palopoli, Michael F.; Dale, Sarah T.; Stauffer, Jennifer E.; Shah, Anita L.; Johnson, Justine E.; Walsh, Conor W.; Flaten, Hanna; Parsons, Christine M.

    2013-01-01

    Site-specific recombinases (SSRs) are valuable tools for manipulating genomes. In Drosophila, thousands of transgenic insertions carrying SSR recognition sites have been distributed throughout the genome by several large-scale projects. Here we describe a method with the potential to use these insertions to make custom alterations to the Drosophila genome in vivo. Specifically, by employing recombineering techniques and a dual recombinase-mediated cassette exchange strategy based on the phiC3...

  18. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster

    OpenAIRE

    Charlu, Sandhya; Wisotsky, Zev; Medina, Adriana; Dahanukar, Anupama

    2013-01-01

    Drosophila melanogaster can taste various compounds and separate them into few basic categories such as sweet, bitter and salt taste. Here we investigate mechanisms underlying acid detection in Drosophila and report that the fly displays strong taste aversion to common carboxylic acids. We find that acid tastants act by the activation of a subset of bitter neurons and inhibition of sweet neurons. Bitter neurons begin to respond at pH 5 and show an increase in spike frequency as the extracellu...

  19. Sexual dimorphism for water balance mechanisms in montane populations of Drosophila kikkawai

    OpenAIRE

    Parkash, Ravi; Sharma, Vineeta; Kalra, Bhawna

    2010-01-01

    Conservation of water is critical to the ecological success of Drosophila species living in the drier montane localities of the Western Himalayas. We observed clinal variation in desiccation resistance for both sexes of Drosophila kikkawai from an altitudinal transect (512–2226 m above sea level). Since more than 90 per cent of body water is lost through cuticular transpiration, the target of selection may be cuticular lipids or cuticular melanization. We tested whether melanic females and no...

  20. Mechanisms and consequence of bacteria detection by the Drosophila gut epithelium

    OpenAIRE

    Royet, Julien; Charroux, Bernard

    2013-01-01

    Since insect mostly developed on decaying matter and contaminated fruits, they are constantly ingesting bacteria. The insect model, Drosophila, is therefore well adapted to study the interactions that take place between the gut epithelia and either resident or infectious bacteria. In order to provide an ad hoc immune response, gut epithelial cells must detect the presence of bacteria. In a recent report, Bosco-Drayon et al. identify the main receptors by which Drosophila sense gut associated ...

  1. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae)

    OpenAIRE

    Renkema, Justin M.; Derek Wright; Rose Buitenhuis; Hallett, Rebecca H.

    2016-01-01

    Spotted wing drosophila, Drosophila suzukii, is a globally invasive pest of soft-skinned fruit. Females oviposit into ripening fruit and larvae cause direct destruction of tissues. As many plant essential oils are permitted food additives, they may provide a safe means of protecting fruit from D. suzukii infestation in both conventional and organic production systems. Twelve oils and potassium metabisulfite (KMS) were screened in the laboratory as repellents for D. suzukii flies. Most essenti...

  2. Detection of Volatile Indicators of Illicit Substances by the Olfactory Receptors of Drosophila melanogaster

    OpenAIRE

    Marshall, Brenton; Coral G Warr; de Bruyne, Marien

    2010-01-01

    Insects can detect a large range of odors with a numerically simple olfactory system that delivers high sensitivity and accurate discrimination. Therefore, insect olfactory receptors hold great promise as biosensors for detection of volatile organic chemicals in a range of applications. The array of olfactory receptor neurons of Drosophila melanogaster is rapidly becoming the best-characterized natural nose. We have investigated the suitability of Drosophila receptors as detectors for volatil...

  3. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose.

    Science.gov (United States)

    Delfin, A; Paredes, L C; Zambrano, F; Guzmán-Rincón, J; Ureña-Nuñez, F

    2001-12-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster. PMID:11761104

  4. Sexual activity increases resistance against Pseudomonas entomophila in male Drosophila melanogaster

    OpenAIRE

    Gupta, Vanika; Ali, Zeeshan S; Prasad, Nagaraj G.

    2013-01-01

    Background Maintenance and deployment cost of immunity is high, therefore, it is expected to trade-off with other high cost traits like sexual activity. Previous studies with Drosophila melanogaster show that male’s ability to clear bacteria decreases with increase in sexual activity. We subjected this idea to test using two pathogens (Pseudomonas entomophila and Staphylococcus succinus) and three different populations of Drosophila melanogaster. Results We found that sexual activity enhanced...

  5. Dopamine Signalling in Mushroom Bodies Regulates Temperature-Preference Behaviour in Drosophila

    OpenAIRE

    Sunhoe Bang; Seogang Hyun; Sung-Tae Hong; Jongkyun Kang; Kyunghwa Jeong; Joong-Jean Park; Joonho Choe; Jongkyeong Chung

    2011-01-01

    The ability to respond to environmental temperature variation is essential for survival in animals. Flies show robust temperature-preference behaviour (TPB) to find optimal temperatures. Recently, we have shown that Drosophila mushroom body (MB) functions as a center controlling TPB. However, neuromodulators that control the TPB in MB remain unknown. To identify the functions of dopamine in TPB, we have conducted various genetic studies in Drosophila. Inhibition of dopamine biosynthesis by ge...

  6. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    OpenAIRE

    Nicolás Lavagnino; François Serra; Leonardo Arbiza; Hernán Dopazo; Esteban Hasson

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent bur...

  7. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System

    OpenAIRE

    Andrew R. Bassett; Charlotte Tibbit; Chris P. Ponting; Ji-Long Liu

    2013-01-01

    Here, we present a simple and highly efficient method for generating and detecting mutations ofany gene in Drosophila melanogaster through theuse of the CRISPR/Cas9 system (clustered regularlyinterspaced palindromic repeats/CRISPR-associated). We show that injection of RNA into the Drosophila embryo can induce highly efficient mutagenesis of desired target genes in up to 88% of injected flies. These mutations can be transmitted through the germline to make stable lines. Our system provides at...

  8. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    OpenAIRE

    Rideout, Elizabeth J; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expre...

  9. Identification of Drosophila Mutants Altering Defense of and Endurance to Listeria monocytogenes Infection

    OpenAIRE

    Ayres, Janelle S.; Freitag, Nancy; Schneider, David S.

    2008-01-01

    We extended the use of Drosophila beyond being a model for signaling pathways required for pattern recognition immune signaling and show that the fly can be used to identify genes required for pathogenesis and host–pathogen interactions. We performed a forward genetic screen to identify Drosophila mutations altering sensitivity to the intracellular pathogen Listeria monocytogenes. We recovered 18 mutants with increased susceptibility to infection, none of which were previously shown to functi...

  10. Efficient CRISPR/Cas9 Plasmids for Rapid and Versatile Genome Editing in Drosophila

    OpenAIRE

    Gokcezade, Joseph; Sienski, Grzegorz; Duchek, Peter

    2014-01-01

    The CRISPR-associated RNA-guided nuclease Cas9 has emerged as a powerful tool for genome engineering in a variety of organisms. To achieve efficient gene targeting rates in Drosophila, current approaches require either injection of in vitro transcribed RNAs or injection into transgenic Cas9-expressing embryos. We report a simple and versatile alternative method for CRISPR-mediated genome editing in Drosophila using bicistronic Cas9/sgRNA expression vectors. Gene targeting with this single-pla...

  11. An assay for transient gene expression in transfected Drosophila cells, using [3H]guanine incorporation.

    OpenAIRE

    Burke, J F; Sinclair, J H; Sang, J. H.; Ish-Horowicz, D.

    1984-01-01

    We have developed an assay for transient gene expression using a dominant-selectable marker previously employed to transform Drosophila cultured cells. Drosophila hydei cells transfected with a functional Escherichia coli xanthine guanine phosphoribosyl transferase gene (gpt), under the control of the long terminal repeats (LTRs) of the copia transposable element, rapidly incorporate guanine into acid-precipitable counts. Autoradiographic analysis in situ shows that approximately 20% of cells...

  12. Characterization of a Lamellocyte Transcriptional Enhancer Located within the misshapen Gene of Drosophila melanogaster

    OpenAIRE

    Tsuyoshi Tokusumi; Richard Paul Sorrentino; Mark Russell; Roberto Ferrarese; Shubha Govind; Schulz, Robert A.

    2009-01-01

    Drosophila has emerged as an excellent model system in which to study cellular and genetic aspects of hematopoiesis. Under normal developmental conditions and in wild-type genetic backgrounds, Drosophila possesses two types of blood cells, crystal cells and plasmatocytes. Upon infestation by a parasitic wasp or in certain altered genetic backgrounds, a third hemocyte class called the lamellocyte becomes apparent. Herein we describe the characterization of a novel transcriptional regulatory mo...

  13. clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin

    OpenAIRE

    Cox, Rachel T.; Spradling, Allan C.

    2009-01-01

    Parkinson’s disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson’s disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related...

  14. A Genetic Strategy to Measure Circulating Drosophila Insulin Reveals Genes Regulating Insulin Production and Secretion

    OpenAIRE

    Sangbin Park; Alfa, Ronald W.; Topper, Sydni M.; Grace E S Kim; Lutz Kockel; Kim, Seung K.

    2014-01-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb exp...

  15. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    OpenAIRE

    Xiankun Zeng; Lili Han; Shree Ram Singh; Hanhan Liu; Ralph A. Neumüller; Dong Yan; Yanhui Hu; Ying Liu; Wei Liu; Xinhua Lin; Steven X. Hou

    2015-01-01

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further deve...

  16. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    OpenAIRE

    Zeng, Xiankun; Han, Lili; Singh, Shree Ram; Liu, Hanhan; Neumüller, Ralph A.; Yan, Dong; Hu, Yanhui; Liu, Ying; Liu, Wei; Lin, Xinhua; Steven X Hou

    2015-01-01

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. Through integrating these genes into publicly available interaction databases, we further...

  17. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling

    OpenAIRE

    Groen, Christopher M.; Spracklen, Andrew J.; Fagan, Tiffany N.; Tootle, Tina L.

    2012-01-01

    Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. He...

  18. Learning ability and longevity: a symmetrical evolutionary trade-off in Drosophila

    OpenAIRE

    Burger, Joep M. S.; Kolss, Munjong; Pont, Juliette; Tadeusz J Kawecki

    2008-01-01

    Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melan...

  19. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    OpenAIRE

    Yixin H Ye; Chenoweth, Stephen F.; McGraw, Elizabeth A.

    2009-01-01

    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide...

  20. Drosophila Ste-20 Family Protein Kinase, Hippo, Modulates Fat Cell Proliferation

    OpenAIRE

    Hongling Huang; Wenqing Wu; Lei Zhang; Xin-Yuan Liu

    2013-01-01

    BACKGROUND: Evolutionarily conserved Hippo (Hpo) pathway plays a pivotal role in the control of organ size. Although the Hpo pathway regulates proliferation of a variety of epidermal cells, its function in non-ectoderm-derived cells is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Through methods including fat quantification assays, starvation assays, in vivo labeling assays, we show that overexpression of Hpo in Drosophila melanogaster fat body restricts Drosophila body growth and reduces...

  1. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, L.; Willingham, A.; Zhang, D.; Yang, L.; Zou, Y.; Eads, B. D.; Carlson, J. W.; Landolin, J. M.; Kapranov, P.; Dumais, J.; Samsonova, A.; Choi, J. -H.; Roberts, J.; Davis, C. A.; Tang, H.; van Baren, M. J.; Ghosh, S.; Dobin, A.; Bell, K.; Lin, W.; Langton, L.; Duff, M. O.; Tenney, A. E.; Zaleski, C.; Brent, M. R.; Hoskins, R. A.; Kaufman, T. C.; Andrews, J.; Graveley, B. R.; Perrimon, N.; Celniker, S. E.; Gingeras, T. R.; Cherbas, P.

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal discderived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. Wereport the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what

  2. Identifying sexual differentiation genes that affect Drosophila life span

    Directory of Open Access Journals (Sweden)

    Tower John

    2009-12-01

    Full Text Available Abstract Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF during development was lethal to males, and produced a limited

  3. Thermal evolution of gene expression profiles in Drosophila subobscura

    Directory of Open Access Journals (Sweden)

    Beltran Sergi

    2007-03-01

    Full Text Available Abstract Background Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays. Results A total of 306 (6.6% cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C, also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh. On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments. Conclusion Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to

  4. Hydroxyurea-mediated neuroblast ablation establishes birthdates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain

    OpenAIRE

    Lovick, Jennifer K.; Hartenstein, Volker

    2015-01-01

    The Drosophila brain is comprised of neurons formed by approximately 100 lineages, each of which is derived from a stereotyped, asymmetrically dividing neuroblast. Lineages serve as structural and developmental units of Drosophila brain anatomy and reconstruction of lineage projection patterns represents a suitable map of Drosophila brain circuitry at the level of neuron populations (“macro-circuitry”). Two phases of neuroblast proliferation, the first in the embryo and the second during the ...

  5. Studien der Genexpressionsänderung während der Entwicklung von Drosophila melanogaster mittels DNA-Microarrays

    OpenAIRE

    Beckmann, Boris

    2003-01-01

    Die Fruchtfliege Drosophila melanogaster ist einer der am besten untersuchten Modellorganismen in der Entwicklungsbiologie. Die Kenntnis des Genoms und die Zahl der annotierten protein-kodierenden Gene von Drosophila sind jedoch Schwankungen unterworfen, da sie meist auf Computerberechnungen bereits bekannter Gene und nur teilweise auf experimentellen Nachweisen beruhen. Um das Transkriptom von Drosophila im Verlauf der Entwicklung zu untersuchen und neue potentielle Gene zu identifizieren wu...

  6. Comparative evaluation of the genomes of three common Drosophila-associated bacteria.

    Science.gov (United States)

    Petkau, Kristina; Fast, David; Duggal, Aashna; Foley, Edan

    2016-09-15

    Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships.

  7. Comparative evaluation of the genomes of three common Drosophila-associated bacteria.

    Science.gov (United States)

    Petkau, Kristina; Fast, David; Duggal, Aashna; Foley, Edan

    2016-01-01

    Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships. PMID:27493201

  8. Drosophila melanogaster as a Model for Lead Neurotoxicology and Toxicogenomics Research

    Directory of Open Access Journals (Sweden)

    Douglas Mark Ruden

    2012-05-01

    Full Text Available Drosophila melanogaster is an excellent model animal for studying the neurotoxicology of lead. It has been known since ancient Roman times that long-term exposure to low levels of lead results in behavioral abnormalities, such as what is now known as attention deficit hyperactivity disorder (ADHD. Because lead alters mechanisms that underlie developmental neuronal plasticity, chronic exposure of children, even at blood lead levels below the current CDC community action level (10 µg/dl, can result in reduced cognitive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes in activity level, altered sensory function, delayed onset of sexual maturity in girls, and changes in immune function. In order to better understand how lead affects neuronal plasticity, we will describe recent findings from a Drosophila behavioral genetics laboratory, a Drosophila neurophysiology laboratory, and a Drosophila quantitative genetics laboratory who have joined forces to study the effects of lead on the Drosophila nervous system. Studying the effects of lead on Drosophila nervous system development will give us a better understanding of the mechanisms of Pb neurotoxicity in the developing human nervous system.

  9. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster.

    Science.gov (United States)

    Heissler, Sarah M; Chinthalapudi, Krishna; Sellers, James R

    2015-04-01

    Nonmuscle myosin-2 is the primary enzyme complex powering contractility of the F-actin cytoskeleton in the model organism Drosophila. Despite myosin's essential function in fly development and homeostasis, its kinetic features remain elusive. The purpose of this in vitro study is a detailed steady-state and presteady-state kinetic characterization of the Drosophila nonmuscle myosin-2 motor domain. Kinetic features are a slow steady-state ATPase activity, high affinities for F-actin and ADP, and a low duty ratio. Comparative analysis of the overall enzymatic signatures across the nonmuscle myosin-2 complement from model organisms indicates that the Drosophila protein resembles nonmuscle myosin-2s from metazoa rather than protozoa, though modulatory aspects of myosin motor function are distinct. Drosophila nonmuscle myosin-2 is uniquely insensitive toward blebbistatin, a commonly used myosin-2 inhibitor. An in silico modeling approach together with kinetic studies indicate that the nonconsensus amino acid Met466 in the Drosophila nonmuscle myosin-2 active-site loop switch-2 acts as blebbistatin desensitizer. Introduction of the M466I mutation sensitized the protein for blebbistatin, resulting in a half-maximal inhibitory concentration of 36.3 ± 4.1 µM. Together, these data show that Drosophila nonmuscle myosin-2 is a bona fide molecular motor and establish an important link between switch-2 and blebbistatin sensitivity.

  10. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21...... in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some...

  11. Estimating spontaneous mutation rates at enzyme loci in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Spontaneous mutations were accumulated for 1,620,826 allele-generations on chromosomes that originated from six stem second chromosomes of Drosophila melanogaster. Only null-electromorph mutations were detected. Band-electromorph mutations were not found. The average rate of null-electromorph mutations was 2.71 x 10-5 per locus per generation. The 95% confidence interval (μn) was 1.97 x 10-5 n -5 per locus per generation. The upper 95% confidence limit of the band-electromorph mutation rate (μB) was 2.28 x 10-6 per locus per generation. It appeared that null mutations were induced by movable genetic elements and that the mutation rates were different from chromosome to chromosome. (author)

  12. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  13. The syncytial Drosophila embryo as a mechanically excitable medium

    CERN Document Server

    Idema, Timon; Manning, M Lisa; Nelson, Philip C; Liu, Andrea J

    2013-01-01

    Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through this medium. We study the wavefronts via both image analysis of confocal microscopy videos and theoretical models. We find that the mitotic wavefront can be resolved into two distinct wavefronts in each cycle, corresponding to metaphase and anaphase, respectively. The two wavefronts have the same speed and are separated by a time interval that is independent of cycle, supporting the idea that they are two different markers for the same process. To understand the wavefronts theoretically we analyze wavefront propagation in excitable media. We study two classes of models, one with biochemical signaling and one with mechanical signaling. We find that the depende...

  14. The Role of PPK26 in Drosophila Larval Mechanical Nociception

    Directory of Open Access Journals (Sweden)

    Yanmeng Guo

    2014-11-01

    Full Text Available In Drosophila larvae, the class IV dendritic arborization (da neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546 plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1 function in the same pathway, whereas piezo functions in a parallel pathway. Consistent with these functional results, we found that PPK and PPK26 are interdependent on each other for their cell surface localization. Our work indicates that PPK26 and PPK might form heteromeric DEG/ENaC channels that are essential for mechanotransduction in class IV da neurons.

  15. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    Jae Young Kwon; Anupama Dahanukar; Linnea A Weiss; John R Carlson

    2014-09-01

    We provide a map of the projections of taste neurons in the CNS of Drosophila. Using a collection of 67 GAL4 drivers representing the entire repertoire of Gr taste receptors, we systematically map the projections of neurons expressing these drivers in the thoracico-abdominal ganglion and the suboesophageal ganglion (SOG). We define 9 categories of projections in the thoracico-abdominal ganglia and 10 categories in the SOG. The projection patterns are modular, and can be interpreted as combinations of discrete pattern elements. The elements can be interpreted in terms of the taste organ from which the projections originate, the structures from which they originate, and the quality of taste information that they represent. The extensive diversity in projection patterns provides an anatomical basis for functional diversity in responses elicited by different taste stimuli.

  16. Parallel Transformation of Tactile Signals in Central Circuits of Drosophila.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-02-25

    To distinguish between complex somatosensory stimuli, central circuits must combine signals from multiple peripheral mechanoreceptor types, as well as mechanoreceptors at different sites in the body. Here, we investigate the first stages of somatosensory integration in Drosophila using in vivo recordings from genetically labeled central neurons in combination with mechanical and optogenetic stimulation of specific mechanoreceptor types. We identify three classes of central neurons that process touch: one compares touch signals on different parts of the same limb, one compares touch signals on right and left limbs, and the third compares touch and proprioceptive signals. Each class encodes distinct features of somatosensory stimuli. The axon of an individual touch receptor neuron can diverge to synapse onto all three classes, meaning that these computations occur in parallel, not hierarchically. Representing a stimulus as a set of parallel comparisons is a fast and efficient way to deliver somatosensory signals to motor circuits. PMID:26919434

  17. Sexual isolation and mating propensity among allopatric Drosophila mettleri populations.

    Science.gov (United States)

    Castrezana, Sergio J; Markow, Therese Ann

    2008-07-01

    Drosophila mettleri is found in deserts of North America breeding in soil soaked by the juices of necrotic cacti. Saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) are the usual host cacti in Mexico and Arizona, while prickly pear (Opuntia spp.) is used by an isolated population on Santa Catalina Island off the southern California Coast. Populations of D. mettleri show significant local genetic differentiation, especially when geographical isolation is coupled with host shifts. We tested for evidence of sexual isolation among allopatric populations of D. mettleri using a variety of choice and no-choice tests. Populations exhibited significant differences in mating propensity, which translated into significant deviations from random mating. While in some cases these deviations were consistent with sexual isolation, in others, negative assortative mating was observed. No relationship between degree of genetic differentiation and the appearance of sexual isolation was detected. PMID:18561017

  18. Susi, a negative regulator of Drosophila PI3-kinase.

    Science.gov (United States)

    Wittwer, Franz; Jaquenoud, Malika; Brogiolo, Walter; Zarske, Marcel; Wüstemann, Philipp; Fernandez, Rafael; Stocker, Hugo; Wymann, Matthias P; Hafen, Ernst

    2005-06-01

    The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.

  19. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Science.gov (United States)

    Baker, Nicholas E

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  20. Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster.

    Science.gov (United States)

    Miyazawa, M; Nakamura, Y; Ishikawa, Y

    2000-08-01

    In the course of screening for novel naturally occurring insecticides from Chinese crude drugs, an MeOH extract of Alpinia oxyphylla was found to possess insecticidal activity against larvae of Drosophila melanogaster Meigen. From the extract, an insecticidal compound was isolated by bioassay-guided fractionation and identified as nootkatone (1) by GC, GC-MS, and (1)H and (13)C NMR spectroscopy. In bioassays for insecticidal activity, 1 showed an LC(50) value of 11.5 micromol/mL of diet against larvae of D. melanogaster and an LD(50) value of 96 microg/adult against adults. Epinootkatol (1A), however, showed slight insecticidal activity in both assays, indicating that the carbonyl group at the 2-position in 1 was the important function for enhanced activity of 1. PMID:10956162

  1. The mechanism of pattern formation in the developing drosophila retina

    Institute of Scientific and Technical Information of China (English)

    SUN QiCheng

    2007-01-01

    The biological patterning of the drosophila retina in vivo has striking resemblance to liquid bubbles, in which the surface mechanics due to N-cadherin within a sub-group of retina cells can be mimicked by surface tension. In this work, the aggregating patterns were reasonably simplified into 2D clusters consisting of 2-6 identical bubbles confined within a shrinking boundary. By using a hybrid fluid dynamics model proposed for liquid foams, the aggregating process of 2-6 retina cells was studied. Assuming the minimal perimeter for patterning cells to be the condition of stability patterns, the stable converged patterns we simulated in this work are the same as the experimental observations. More importantly, a new pattern of 6 cells was obtained which was found physically more stable than the other two reported by Hayashi and Carthew[1]. Aggregating perimeters of cells, i.e. the surface energy, showed a good linear fit with the cell numbers.

  2. The mechanism of pattern formation in the developing drosophila retina

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biological patterning of the drosophila retina in vivo has striking resemblance to liquid bubbles, in which the surface mechanics due to N-cadherin within a sub-group of retina cells can be mimicked by surface tension. In this work, the aggregating patterns were reasonably simplified into 2D clusters consisting of 2—6 identical bubbles confined within a shrinking boundary. By using a hybrid fluid dy-namics model proposed for liquid foams, the aggregating process of 2―6 retina cells was studied. Assuming the minimal perimeter for patterning cells to be the condition of stability patterns, the stable converged patterns we simulated in this work are the same as the experimental observations. More importantly, a new pattern of 6 cells was obtained which was found physically more stable than the other two reported by Hayashi and Carthew[1]. Aggregating perimeters of cells, i.e. the surface energy, showed a good linear fit with the cell numbers.

  3. Ku70 alleviates neurodegeneration in Drosophila models of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Takuya Tamura

    Full Text Available DNA damage accumulates in genome DNA during the long life of neurons, thus DNA damage repair is indispensable to keep normal functions of neurons. We previously reported that Ku70, a critical molecule for DNA double strand break (DSB repair, is involved in the pathology of Huntington's disease (HD. Mutant huntingtin (Htt impaired Ku70 function via direct interaction, and Ku70 supplementation recovered phenotypes of a mouse HD model. In this study, we generate multiple Drosophila HD models that express mutant huntingtin (Htt in eye or motor neuron by different drivers and show various phenotypes. In such fly models, Ku70 co-expression recovers lifespan, locomotive activity and eye degeneration. In contrast, Ku70 reduction by heterozygous null mutation or siRNA-mediated knock down accelerates lifespan shortening and locomotion disability. These results collectively support that Ku70 is a critical mediator of the HD pathology and a candidate therapeutic target in HD.

  4. Hydrocarbon Patterns and Mating Behaviour in Populations of Drosophila yakuba

    Directory of Open Access Journals (Sweden)

    Béatrice Denis

    2015-10-01

    Full Text Available Drosophila yakuba is widespread in Africa. Here we compare the cuticular hydrocarbon (CHC profiles and mating behavior of mainland (Kounden, Cameroon and island (Mayotte, Sao-Tome, Bioko populations. The strains each had different CHC profiles: Bioko and Kounden were the most similar, while Mayotte and Sao-Tome contained significant amounts of 7-heptacosene. The CHC profile of the Sao-Tome population differed the most, with half the 7-tricosene of the other populations and more 7-heptacosene and 7-nonacosene. We also studied the characteristics of the mating behavior of the four strains: copulation duration was similar but latency times were higher in Mayotte and Sao-Tome populations. We found partial reproductive isolation between populations, especially in male-choice experiments with Sao-Tome females.

  5. Myc-dependent genome instability and lifespan in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christina Greer

    Full Text Available The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs. In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  6. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter;

    Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...... be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.51 to 0.......77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity. These findings...

  7. Notch is required for long-term memory in Drosophila.

    Science.gov (United States)

    Presente, Asaf; Boyles, Randy S; Serway, Christine N; de Belle, J Steven; Andres, Andrew J

    2004-02-10

    A role for Notch in the elaboration of existing neural processes is emerging that is distinct from the increasingly well understood function of this gene in binary cell-fate decisions. Several research groups, by using a variety of organisms, have shown that Notch is important in the development of neural ultrastructure. Simultaneously, Presenilin (Psn) was identified both as a key mediator of Notch signaling and as a site of genetic lesions that cause early-onset Alzheimer's disease. Here we demonstrate that Notch loss of function produces memory deficits in Drosophila melanogaster. The effects are specific to long-term memory, which is thought to depend on ultrastructural remodeling. We propose that Notch plays an important role in the neural plasticity underlying consolidated memory.

  8. Transcriptional Timers Regulating Mitosis in Early Drosophila Embryos.

    Science.gov (United States)

    Momen-Roknabadi, Amir; Di Talia, Stefano; Wieschaus, Eric

    2016-09-13

    The development of an embryo requires precise spatiotemporal regulation of cellular processes. During Drosophila gastrulation, a precise temporal pattern of cell division is encoded through transcriptional regulation of cdc25(string) in 25 distinct mitotic domains. Using a genetic screen, we demonstrate that the same transcription factors that regulate the spatial pattern of cdc25(string) transcription encode its temporal activation. We identify buttonhead and empty spiracles as the major activators of cdc25(string) expression in mitotic domain 2. The effect of these activators is balanced through repression by hairy, sloppy paired 1, and huckebein. Within the mitotic domain, temporal precision of mitosis is robust and unaffected by changing dosage of rate-limiting transcriptional factors. However, precision can be disrupted by altering the levels of the two activators or two repressors. We propose that the additive and balanced action of activators and repressors is a general strategy for precise temporal regulation of cellular transitions during development. PMID:27626650

  9. Live imaging in Drosophila: The optical and genetic toolkits.

    Science.gov (United States)

    Rebollo, Elena; Karkali, Katerina; Mangione, Federica; Martín-Blanco, Enrique

    2014-06-15

    Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level. PMID:24814031

  10. A GAL4-Driver Line Resource for Drosophila Neurobiology

    Directory of Open Access Journals (Sweden)

    Arnim Jenett

    2012-10-01

    Full Text Available We established a collection of 7,000 transgenic lines of Drosophila melanogaster. Expression of GAL4 in each line is controlled by a different, defined fragment of genomic DNA that serves as a transcriptional enhancer. We used confocal microscopy of dissected nervous systems to determine the expression patterns driven by each fragment in the adult brain and ventral nerve cord. We present image data on 6,650 lines. Using both manual and machine-assisted annotation, we describe the expression patterns in the most useful lines. We illustrate the utility of these data for identifying novel neuronal cell types, revealing brain asymmetry, and describing the nature and extent of neuronal shape stereotypy. The GAL4 lines allow expression of exogenous genes in distinct, small subsets of the adult nervous system. The set of DNA fragments, each driving a documented expression pattern, will facilitate the generation of additional constructs for manipulating neuronal function.

  11. Dopamine drives Drosophila sechellia adaptation to its toxic host.

    Science.gov (United States)

    Lavista-Llanos, Sofía; Svatoš, Aleš; Kai, Marco; Riemensperger, Thomas; Birman, Serge; Stensmyr, Marcus C; Hansson, Bill S

    2014-01-01

    Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development.

  12. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kazuki eSakata

    2015-06-01

    Full Text Available Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of D. melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP rhythm of Drosophila melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals.

  13. TRII: A Probabilistic Scoring of Drosophila melanogaster Translation Initiation Sites

    Directory of Open Access Journals (Sweden)

    Rice Michael D

    2010-01-01

    Full Text Available Relative individual information is a measurement that scores the quality of DNA- and RNA-binding sites for biological machines. The development of analytical approaches to increase the power of this scoring method will improve its utility in evaluating the functions of motifs. In this study, the scoring method was applied to potential translation initiation sites in Drosophila to compute Translation Relative Individual Information (TRII scores. The weight matrix at the core of the scoring method was optimized based on high-confidence translation initiation sites identified by using a progressive partitioning approach. Comparing the distributions of TRII scores for sites of interest with those for high-confidence translation initiation sites and random sequences provides a new methodology for assessing the quality of translation initiation sites. The optimized weight matrices can also be used to describe the consensus at translation initiation sites, providing a quantitative measure of preferred and avoided nucleotides at each position.

  14. The Interplay between Myc and CTP Synthase in Drosophila.

    Science.gov (United States)

    Aughey, Gabriel N; Grice, Stuart J; Liu, Ji-Long

    2016-02-01

    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. PMID:26889675

  15. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster.

    Science.gov (United States)

    Schnorrenberg, Sebastian; Grotjohann, Tim; Vorbrüggen, Gerd; Herzig, Alf; Hell, Stefan W; Jakobs, Stefan

    2016-01-01

    Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of. PMID:27355614

  16. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  17. Optical Tweezing Nuclei in the Cellular Blastoderm of Drosophila Embryos

    Science.gov (United States)

    Schoetz, Eva-Maria; Chaikin, Paul M.; Wieschaus, Eric F.

    2004-03-01

    Optical tweezers are used to manipulate nuclei in the syncytial blastoderm of Drosophila embryos. Our aim is to move a nucleus in a living embryo and study the reactions of its nearest neighbors to this displacement. Effects on the surrounding nuclei may allow us to test models in which actin-microtubule networks connect individual nuclei and keep them in place. In our experiments we use video analysis to follow individual nuclei using GFP-labeled histone protein. In a first approach, we were able to move nuclei in embryonic homogenates suspended in oil. Although the squashing destroys the cell, mitotic nuclear divisions continue, implying that the cytoskeleton, which connects the nuclei to the cortex, is still functioning. We will present studies of nuclear interactions in these squashes and in intact syncytial blastoderms.

  18. Activation of Drosophila hemocyte motility by the ecdysone hormone

    Directory of Open Access Journals (Sweden)

    Christopher J. Sampson

    2013-11-01

    Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton.

  19. Three-dimensional network of Drosophila brain hemisphere

    CERN Document Server

    Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    The first step to understanding brain function is to determine the brain's network structure. We report a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation tomographic microscopy. A skeletonized wire model of the left half of the brain network was built by tracing the three-dimensional distribution of X-ray absorption coefficients. The obtained models of neuronal processes were classified into groups on the basis of their three-dimensional structures. These classified groups correspond to neuronal tracts that send long-range projections or repeated structures of the optic lobe. The skeletonized model is also composed of neuronal processes that could not be classified into the groups. The distribution of these unclassified structures correlates with the distribution of contacts between neuronal processes. This suggests that neurons that cannot be classified into typical structures should play important roles in brain functions. The quantitative de...

  20. Metabolic Disruption in Drosophila Bang-Sensitive Seizure Mutants

    Science.gov (United States)

    Fergestad, Tim; Bostwick, Bret; Ganetzky, Barry

    2006-01-01

    We examined a number of Drosophila mutants with increased susceptibility to seizures following mechanical or electrical stimulation to better understand the underlying factors that predispose neurons to aberrant activity. Several mutations in this class have been molecularly identified and suggest metabolic disruption as a possible source for increased seizure susceptibility. We mapped the bang-sensitive seizure mutation knockdown (kdn) to cytological position 5F3 and identified citrate synthase as the affected gene. These results further support a role for mitochondrial metabolism in controlling neuronal activity and seizure susceptibility. Biochemical analysis in bang-sensitive mutants revealed reductions in ATP levels consistent with disruption of mitochondrial energy production in these mutants. Electrophysiological analysis of mutants affecting mitochondrial proteins revealed an increased likelihood for a specific pattern of seizure activity. Our data implicate cellular metabolism in regulating seizure susceptibility and suggest that differential sensitivity of neuronal subtypes to metabolic changes underlies distinct types of seizure activity. PMID:16648587

  1. Transcriptional control of stem cell maintenance in the Drosophila intestine.

    Science.gov (United States)

    Bardin, Allison J; Perdigoto, Carolina N; Southall, Tony D; Brand, Andrea H; Schweisguth, François

    2010-03-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation. PMID:20147375

  2. Genome-wide analysis of Polycomb targets in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  3. Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster.

    Science.gov (United States)

    Poudel, Seeta; Kim, Yunjung; Kim, Yun Tai; Lee, Youngseok

    2015-11-01

    Studies of taste modality using the animal model Drosophila melanogaster have elucidated a number of uncharacterized mechanisms of sensory responses. Gustatory receptors expressed in taste organs are not only responsible for the acceptance and rejection of different foods, but are also involved in the process of selecting an oviposition site. This contact-chemosensation is essential for animals to discriminate between nutritious and contaminated foods. In this study, we characterized the function of gustatory receptors that play a dual role in feeding and oviposition using the plant metabolite umbelliferone. The combined electrophysiological and behavioral evidence demonstrated that two broadly tuned gustatory receptors, GR33a and GR66a, and one narrowly tuned gustatory receptor, GR93a, are all required to generate a functional umbelliferone receptor. PMID:26524963

  4. Dissecting mitosis by RNAi in Drosophila tissue culture cells

    Directory of Open Access Journals (Sweden)

    Maiato Helder

    2003-01-01

    Full Text Available Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique.

  5. Centrosome splitting during nuclear elongation in the Drosophila embryo.

    Science.gov (United States)

    Callaini, G; Anselmi, F

    1988-10-01

    In the early Drosophila embryo, nuclear elongation occurs during cellularization of the syncytial blastoderm. This process is closely related to the presence of microtubular bundles forming a basket-like structure surrounding the nuclei. In immunofluorescence observations with antibodies against alpha-tubulin, the microtubules appear to radiate from two bright foci widely separated from each other. We used electron microscopy to show that these foci are true centrosomes constituted by daughter and parent centrioles orthogonally disposed and surrounded by pericentriolar electrondense material. The centrosomes may be observed in the apical region of the blastoderm cells from the beginning of cellularization until the reestablishment of the first postblastodermic mitosis, when they organize the spindle poles. Until this time the dimensions of the procentrioles remain unchanged. The significance of these results is discussed in relation to the known behavior of centrioles in the cell cycle.

  6. Essential role of Drosophila Hdacl in homeotic gene silencing

    Institute of Scientific and Technical Information of China (English)

    Yuh-LongChang; Yu-HueiPeng; I-ChingPan; Der-ShanSun; BalasKing; Der-HwaHuang

    2005-01-01

    Deacetylation of the N-terminal tails of core histones plays a crucial role in gene silencing. Rpd3 and Hdal represent two major types of genes encoding trichostatin A-sensitive histone deacetylases. Although they have been widely found, their cellular and developmental roles remain to be elucidated in metazoa. We show that Drosophila Hdacl, an Rpd3-type gene, interacts cooperatively with Polycomb group repressors in silencing the homeotic genes that are essential for axial patterning of body segments. The biochem-ical copurification and cytological colocalization of HDAC1 and Polycomb group repressors strongly suggest that HDAC1 is a component of the silencing complex for chromatin modification on specific regulatory regions of homeotic genes.

  7. [The Effect of Transcription on Enhancer Activity in Drosophila melanogaster].

    Science.gov (United States)

    Erokhin, M M; Davydova, A I; Lomaev, D V; Georgiev, P G; Chetverina, D A

    2016-01-01

    In higher eukaryotes, the level of gene transcription is under the control of DNA regulatory elements, such as promoter, from which transcription is initiated with the participation of RNA polymerase II and general transcription factors, as well as the enhancer, which increase the rate of transcription with the involvement of activator proteins and cofactors. It was demonstrated that enhancers are often located in the transcribed regions of the genome. We showed earlier that transcription negatively affected the activity of enhancers in Drosophila in model transgenic systems. In this study, we tested the effect of the distance between the leading promoter, enhancer, and target promoter on the inhibitory effect of transcriptions of different strengths. It was demonstrated that the negative effect of transcription remained, but weakened with increased distance between the leading promoter and enhancer and with decreased distance between the enhancer and target promoter. Thus, transcription can modulate the activity of enhancers by controlling its maximum level.

  8. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  9. Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila.

    Directory of Open Access Journals (Sweden)

    Claire M Lye

    Full Text Available How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE as a model. We found previously that cells elongate in the anteroposterior (AP axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical

  10. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    Science.gov (United States)

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  11. Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    Full Text Available Transglutaminase (TG plays important and diverse roles in mammals, such as blood coagulation and formation of the skin barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis. Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar larval stage. RNA interference (RNAi of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology. Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality, but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage. Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies. We identified four proteins--two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin-as TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization.

  12. Morphological diversity and development of glia in Drosophila.

    Science.gov (United States)

    Hartenstein, Volker

    2011-09-01

    Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function, and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. On the basis of topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A-C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called "wrapping glia" that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from

  13. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  14. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  15. Functional and Genetic Analysis of Spectraplakins in Drosophila.

    Science.gov (United States)

    Hahn, Ines; Ronshaugen, Matthew; Sánchez-Soriano, Natalia; Prokop, Andreas

    2016-01-01

    The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect

  16. Functional and Genetic Analysis of Spectraplakins in Drosophila.

    Science.gov (United States)

    Hahn, Ines; Ronshaugen, Matthew; Sánchez-Soriano, Natalia; Prokop, Andreas

    2016-01-01

    The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect

  17. The NSL complex regulates housekeeping genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kin Chung Lam

    Full Text Available MOF is the major histone H4 lysine 16-specific (H4K16 acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2 throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5% of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE. Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.

  18. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  19. Anastral spindle assembly and γ-tubulin in Drosophila oocytes

    Directory of Open Access Journals (Sweden)

    Hallen Mark A

    2011-01-01

    Full Text Available Abstract Background Anastral spindles assemble by a mechanism that involves microtubule nucleation and growth from chromatin. It is still uncertain whether γ-tubulin, a microtubule nucleator essential for mitotic spindle assembly and maintenance, plays a role. Not only is the requirement for γ-tubulin to form anastral Drosophila oocyte meiosis I spindles controversial, but its presence in oocyte meiosis I spindles has not been demonstrated and is uncertain. Results We show, for the first time, using a bright GFP fusion protein and live imaging, that the Drosophila maternally-expressed γTub37C is present at low levels in oocyte meiosis I spindles. Despite this, we find that formation of bipolar meiosis I spindles does not require functional γTub37C, extending previous findings by others. Fluorescence photobleaching assays show rapid recovery of γTub37C in the meiosis I spindle, similar to the cytoplasm, indicating weak binding by γTub37C to spindles, and fits of a new, potentially more accurate model for fluorescence recovery yield kinetic parameters consistent with transient, diffusional binding. Conclusions The FRAP results, together with its mutant effects late in meiosis I, indicate that γTub37C may perform a role subsequent to metaphase I, rather than nucleating microtubules for meiosis I spindle formation. Weak binding to the meiosis I spindle could stabilize pre-existing microtubules or position γ-tubulin for function during meiosis II spindle assembly, which follows rapidly upon oocyte activation and completion of the meiosis I division.

  20. Dynamic interpretation of hedgehog signaling in the Drosophila wing disc.

    Directory of Open Access Journals (Sweden)

    Marcos Nahmad

    2009-09-01

    Full Text Available Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh forms an extracellular gradient that organizes patterning along the anterior-posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial "overshoot" of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc. In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression.