WorldWideScience

Sample records for ca3 pyramidal neurons

  1. Stress-induced remodeling of hippocampal CA3 pyramidal neurons.

    Science.gov (United States)

    McEwen, Bruce S

    2016-08-15

    The discovery of steroid hormone receptors in brain regions that mediate virtually every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as determining the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neurogenesis leading to neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. The two Brain Research papers noted in this review played an important role in triggering these advances. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26740399

  2. Effect of nitric oxide synthase inhibition on long-term potentiation at associational-commissural and mossy fibre synapses on CA3 pyramidal neurones.

    OpenAIRE

    Nicolarakis, P. J.; Lin, Y Q; Bennett, M. R.

    1994-01-01

    1. The sensitivity of long-term potentiation (LTP) to nitric oxide synthase (NOS) inhibition was determined for two synaptic input systems onto CA3 pyramidal neurones the LTP of which display differential sensitivity to N-methyl-D-aspartate (NMDA) receptor antagonists: the fimbrial input which activates the associational-commissural synapses on the distal apical dendrites and the mossy fibre input which synapses on the proximal apical dendrites of CA3 pyramidal neurones. 2. Following high-fre...

  3. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    International Nuclear Information System (INIS)

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERα agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERβ agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERα was performed using purified RC-19 antibody. The localization of ERα (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERα and MAP kinase

  4. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  5. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.

    Science.gov (United States)

    Molchanova, Svetlana M; Huupponen, Johanna; Lauri, Sari E; Taira, Tomi

    2016-08-01

    Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization. PMID:26926429

  6. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  7. Neuronal migration and its disorders affecting the CA3 region

    Directory of Open Access Journals (Sweden)

    Richard eBelvindrah

    2014-03-01

    Full Text Available In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.

  8. Dopamine D3 receptors inhibit hippocampal gamma oscillations by disturbing CA3 pyramidal cell firing synchrony

    Directory of Open Access Journals (Sweden)

    Clément E. Lemercier

    2016-01-01

    Full Text Available Cortical gamma oscillations are associated with cognitive processes and are altered in several neuropsychiatric conditions such as schizophrenia and Alzheimer’s disease. Since dopamine D3 receptors are possible targets in treatment of these conditions, it is of great importance to understand their role in modulation of gamma oscillations. The effect of D3 receptors on gamma oscillations and the underlying cellular mechanisms were investigated by extracellular local field potential and simultaneous intracellular sharp micro-electrode recordings in the CA3 region of the hippocampus in vitro. D3 receptors decreased the power and broadened the bandwidth of gamma oscillations induced by acetylcholine or kainate. Blockade of the D3 receptors resulted in faster synchronization of the oscillations, suggesting that endogenous dopamine in the hippocampus slows down the dynamics of gamma oscillations by activation of D3 receptors. Investigating the underlying cellular mechanisms for these effects showed that D3 receptor activation decreased the rate of action potentials during gamma oscillations and reduced the precision of the action potential phase coupling to the gamma cycle in CA3 pyramidal cells. The results may offer an explanation how selective activation of D3 receptors may impair cognition and how, in converse, D3 antagonists may exert pro-cognitive and antipsychotic effects.

  9. Dopamine D3 Receptors Inhibit Hippocampal Gamma Oscillations by Disturbing CA3 Pyramidal Cell Firing Synchrony.

    Science.gov (United States)

    Lemercier, Clément E; Schulz, Steffen B; Heidmann, Karin E; Kovács, Richard; Gerevich, Zoltan

    2015-01-01

    Cortical gamma oscillations are associated with cognitive processes and are altered in several neuropsychiatric conditions such as schizophrenia and Alzheimer's disease. Since dopamine D3 receptors are possible targets in treatment of these conditions, it is of great importance to understand their role in modulation of gamma oscillations. The effect of D3 receptors on gamma oscillations and the underlying cellular mechanisms were investigated by extracellular local field potential and simultaneous intracellular sharp micro-electrode recordings in the CA3 region of the hippocampus in vitro. D3 receptors decreased the power and broadened the bandwidth of gamma oscillations induced by acetylcholine or kainate. Blockade of the D3 receptors resulted in faster synchronization of the oscillations, suggesting that endogenous dopamine in the hippocampus slows down the dynamics of gamma oscillations by activation of D3 receptors. Investigating the underlying cellular mechanisms for these effects showed that D3 receptor activation decreased the rate of action potentials (APs) during gamma oscillations and reduced the precision of the AP phase coupling to the gamma cycle in CA3 pyramidal cells. The results may offer an explanation how selective activation of D3 receptors may impair cognition and how, in converse, D3 antagonists may exert pro-cognitive and antipsychotic effects. PMID:26779018

  10. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  11. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study.

    Science.gov (United States)

    Ruiz, Rocío; Pérez-Villegas, Eva María; Bachiller, Sara; Rosa, José Luis; Armengol, José Angel

    2016-01-01

    The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity. PMID:27147983

  12. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC, postnatal maternal deprivation (MD or the combination of the two (NIC+MD to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14 pups, MD increased pyramidal neurons, however, in dentate gyrus (DG, decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.

  13. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Miyuki Yoshiya

    2013-11-01

    We demonstrated rapid effects (~ 1 h of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500 and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.

  14. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats.

    Science.gov (United States)

    Lana, Daniele; Iovino, Ludovica; Nosi, Daniele; Wenk, Gary L; Giovannini, Maria Grazia

    2016-10-01

    We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells. PMID:27466072

  15. Altered calcium metabolism in aging CA1 hippocampal pyramidal neurons

    OpenAIRE

    Oh, M. Matthew; Oliveira, Fernando A.; Waters, Jack; Disterhoft, John F.

    2013-01-01

    Altered neuronal calcium homeostasis is widely hypothesized to underlie cognitive deficits in normal aging subjects, but the mechanisms that underlie this change are unknown, possibly due to a paucity of direct measurements from aging neurons. Using CCD and two-photon calcium imaging techniques on CA1 pyramidal neurons from young and aged rats, we show that calcium influx across the plasma membrane increases with aging, and that this change is countered by increased intracellular calcium buff...

  16. Enhancement of an outwardly rectifying chloride channel in hippocampal pyramidal neurons after cerebral ischemia.

    Science.gov (United States)

    Li, Jianguo; Chang, Quanzhong; Li, Xiaoming; Li, Xiawen; Qiao, Jiantian; Gao, Tianming

    2016-08-01

    Cerebral ischemia induces delayed, selective neuronal death in the CA1 region of the hippocampus. The underlying molecular mechanisms remain unclear, but it is known that apoptosis is involved in this process. Chloride efflux has been implicated in the progression of apoptosis in various cell types. Using both the inside-out and whole-cell configurations of the patch-clamp technique, the present study characterized an outwardly rectifying chloride channel (ORCC) in acutely dissociated pyramid neurons in the hippocampus of adult rats. The channel had a nonlinear current-voltage relationship with a conductance of 42.26±1.2pS in the positive voltage range and 18.23±0.96pS in the negative voltage range, indicating an outward rectification pattern. The channel is Cl(-) selective, and the open probability is voltage-dependent. It can be blocked by the classical Cl(-) channel blockers DIDS, SITS, NPPB and glibenclamide. We examined the different changes in ORCC activity in CA1 and CA3 pyramidal neurons at 6, 24 and 48h after transient forebrain ischemia. In the vulnerable CA1 neurons, ORCC activity was persistently enhanced after ischemic insult, whereas in the invulnerable CA3 neurons, no significant changes occurred. Further analysis of channel kinetics suggested that multiple openings are a major contributor to the increase in channel activity after ischemia. Pharmacological blockade of the ORCC partly attenuated cell death in the hippocampal neurons. We propose that the enhanced activity of ORCC might contribute to selective neuronal damage in the CA1 region after cerebral ischemia, and that ORCC may be a therapeutic target against ischemia-induced cell death. PMID:27181516

  17. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network

    OpenAIRE

    Huchzermeyer, Christine; Berndt, Nikolaus; Holzhütter, Hermann-Georg; Kann, Oliver

    2012-01-01

    The brain is an organ with high metabolic rate. However, little is known about energy utilization during different activity states of neuronal networks. We addressed this issue in area CA3 of hippocampal slice cultures under well-defined recording conditions using a 20% O2 gas mixture. We combined recordings of local field potential and interstitial partial oxygen pressure (pO2) during three different activity states, namely fast network oscillations in the gamma-frequency band (30 to 100 Hz)...

  18. Pyramidal Neurons Switch From Integrators In Vitro to Resonators Under In Vivo-Like Conditions

    OpenAIRE

    Prescott, Steven A.; Ratté, Stéphanie; De Koninck, Yves; Sejnowski, Terrence J.

    2008-01-01

    During wakefulness, pyramidal neurons in the intact brain are bombarded by synaptic input that causes tonic depolarization, increased membrane conductance (i.e., shunting), and noisy fluctuations in membrane potential; by comparison, pyramidal neurons in acute slices typically experience little background input. Such differences in operating conditions can compromise extrapolation of in vitro data to explain neuronal operation in vivo. For instance, pyramidal neurons have been identified as i...

  19. Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat.

    Science.gov (United States)

    Xi, M C; Liu, R H; Engelhardt, J K; Morales, F R; Chase, M H

    1999-01-01

    The present study was undertaken to determine whether age-dependent changes in axonal conduction velocity occur in pyramidal tract neurons. A total of 260 and 254 pyramidal tract neurons were recorded extracellularly in the motor cortex of adult control and aged cats, respectively. These cells were activated antidromically by electrical stimulation of the medullary pyramidal tract. Fast- and slow-conducting neurons were identified according to their axonal conduction velocity in both control and aged cats. While 51% of pyramidal tract neurons recorded in the control cats were fast conducting (conduction velocity greater than 20 m/s), only 26% of pyramidal tract neurons in the aged cats were fast conducting. There was a 43% decrease in the median conduction velocity for the entire population of pyramidal tract neurons in aged cats when compared with that of pyramidal tract neurons in the control cats (P cats. However, the regression slope was significantly reduced in aged cats. This reduction was due to the appearance of a group of pyramidal tract neurons with relatively shorter spike durations but slower axonal conduction velocities in the aged cat. Sample intracellular data confirmed the above results. These observations form the basis for the following conclusions: (i) there is a decrease in median conduction velocity of pyramidal tract neurons in aged cats; (ii) the reduction in the axonal conduction velocity of pyramidal tract neurons in aged cats is due, in part, to fibers that previously belonged to the fast-conducting group and now conduct at slower velocity. PMID:10392844

  20. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  1. Endocannabinoids differentially modulate synaptic plasticity in rat hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Jian-Yi Xu

    Full Text Available BACKGROUND: Hippocampal CA1 pyramidal neurons receive two excitatory glutamatergic synaptic inputs: their most distal dendritic regions in the stratum lacunosum-moleculare (SLM are innervated by the perforant path (PP, originating from layer III of the entorhinal cortex, while their more proximal regions of the apical dendrites in the stratum radiatum (SR are innervated by the Schaffer-collaterals (SC, originating from hippocampal CA3 neurons. Endocannabinoids (eCBs are naturally occurring mediators capable of modulating both GABAergic and glutamatergic synaptic transmission and plasticity via the CB1 receptor. Previous work on eCB modulation of excitatory synapses in the CA1 region largely focuses on the SC pathway. However, little information is available on whether and how eCBs modulate glutamatergic synaptic transmission and plasticity at PP synapses. METHODOLOGY/PRINCIPAL FINDINGS: By employing somatic and dendritic patch-clamp recordings, Ca(2+ uncaging, and immunostaining, we demonstrate that there are significant differences in low-frequency stimulation (LFS- or DHPG-, an agonist of group I metabotropic glutamate receptors (mGluRs, induced long-term depression (LTD of excitatory synaptic transmission between SC and PP synapses in the same pyramidal neurons. These differences are eliminated by pharmacological inhibition with selective CB1 receptor antagonists or genetic deletion of the CB1 receptor, indicating that these differences likely result from differential modulation via a CB1 receptor-dependent mechanism. We also revealed that depolarization-induced suppression of excitation (DSE, a form of short-term synaptic plasticity, and photolysis of caged Ca(2+-induced suppression of Excitatory postsynaptic currents (EPSCs were less at the PP than that at the SC. In addition, application of WIN55212 (WIN induced a more pronounced inhibition of EPSCs at the SC when compared to that at the PP. CONCLUSIONS/SIGNIFICANCE: Our results suggest

  2. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron

    OpenAIRE

    Srikanth eRamaswamy; Henry eMarkram

    2015-01-01

    The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local axonal and dendritic arborization, the TTL5 neuron encompasses various local neocortical neurons and thereby defines the dimensions of neocortical microcircuitry. The TTL5 neuron integrates input across all neocortical layers and is the prin...

  3. Frequency dependence of CA3 spike phase response arising from h-current properties

    Directory of Open Access Journals (Sweden)

    Hyun Jae Jang

    2013-12-01

    Full Text Available The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarisation-activated mixed cation current (Ih, which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their intrinsic membrane properties. We found that both CA3 and CA1 pyramidal neurons show a voltage sag in response to negative current steps but that this voltage sag is significantly smaller in CA3 cells. Moreover, CA3 pyramidal neurons have less prominent resonance properties compared to CA1 pyramidal neurons. This is consistent with differential expression of Ih by the two cell types. Despite their distinct intrinsic membrane properties, both CA3 and CA1 pyramidal neurons displayed bidirectional spike phase control by excitatory conductance inputs during theta oscillations. In particular, excitatory inputs delivered at the descending phase of a dynamic clamp-induced membrane potential oscillation delayed the subsequent spike by nearly 50 mrad. The effect was shown to be mediated by Ih and was counteracted by increasing inhibitory conductance driving the membrane potential oscillation. Using our experimental data to feed a computational model, we showed that differences in Ih between CA3 and CA1 pyramidal neurons could predict frequency-dependent differences in phase response properties between these cell types. We confirmed experimentally such frequency-dependent spike phase control in CA3 neurons. Therefore, a decrease in theta frequency, which is observed in intact animals during novelty, might switch the CA3 spike phase response from unidirectional to bidirectional and thereby promote encoding of the new context.

  4. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.

    Science.gov (United States)

    Acker, Corey D; Hoyos, Erika; Loew, Leslie M

    2016-01-01

    EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5-30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (R neck) plays in spine EPSP amplitudes. Simulations used to estimate R neck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23-420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean R neck estimate of 204 MΩ (range, 52-521 MΩ; N = 34). PMID:27257618

  5. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons.

    Science.gov (United States)

    Schwindt, P C; Crill, W E

    1998-05-01

    In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic responses by electrical stimulation of presynaptic elements near the tip of the iontophoretic electrode with the use of a second extracellular electrode. In 9 of 12 recorded cells, electrically evoked excitatory postsynaptic potentials (EPSPs) above a minimum size triggered all-or-none postsynaptic responses similar to those evoked by dendritic glutamate iontophoresis at the same site. Both the synaptically evoked and the iontophoretically evoked depolarizations were abolished reversibly by blockade of glutamate receptors. In all recorded cells, the combination of iontophoresis and an EPSP, each of which was subthreshold for the dendritic spike when given alone, evoked a dendritic spike similar to that evoked by a sufficiently large iontophoresis. In one cell tested, dendritic spikes could be evoked by the summation of two independent subthreshold EPSPs evoked by stimulation at two different locations. We conclude that the dendritic spikes are not unique to the use of glutamate iontophoresis because similar spikes can be evoked by EPSPs. We discuss the implications of these results for synaptic integration and for the interpretation of recorded synaptic potentials. PMID:9582218

  6. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  7. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography

    OpenAIRE

    Jong-Cheol eRah; Erhan eBas; Jennifer eColonell; Yuriy eMishchenko; Bill eKarsh; Fetter, Richard D.; Myers, Eugene W; Chklovskii, Dmitri B.; Karel eSvoboda; Harris, Timothy D.; Isaac, John T. R.

    2013-01-01

    The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC syn...

  8. Morphology cluster and prediction of growth of human brain pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Chao Yu; Zengxin Han; Wencong Zeng; Shenquan Liu

    2012-01-01

    Predicting neuron growth is valuable to understand the morphology of neurons, thus it is helpful in the research of neuron classification. This study sought to propose a new method of predicting the growth of human neurons using 1 907 sets of data in human brain pyramidal neurons obtained from the website of NeuroMorpho.Org. First, we analyzed neurons in a morphology field and used an expectation-maximization algorithm to specify the neurons into six clusters. Second, naive Bayes classifier was used to verify the accuracy of the expectation-maximization algorithm. Experiment results proved that the cluster groups here were efficient and feasible. Finally, a new method to rank the six expectation-maximization algorithm clustered classes was used in predicting the growth of human pyramidal neurons.

  9. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  10. Back-propagation of physiological action potential output in dendrites of slender-tufted L5A pyramidal neurons

    OpenAIRE

    Grewe, Benjamin F.; Audrey Bonnan; Andreas Frick

    2010-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signalling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related &...

  11. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia

    Directory of Open Access Journals (Sweden)

    Rossner Moritz

    2007-10-01

    Full Text Available Abstract Background The different physiological repertoire of CA3 and CA1 neurons in the hippocampus, as well as their differing behaviour after noxious stimuli are ultimately based upon differences in the expressed genome. We have compared CA3 and CA1 gene expression in the uninjured brain, and after cerebral ischemia using laser microdissection (LMD, RNA amplification, and array hybridization. Results Profiling in CA1 vs. CA3 under normoxic conditions detected more than 1000 differentially expressed genes that belong to different, physiologically relevant gene ontology groups in both cell types. The comparison of each region under normoxic and ischemic conditions revealed more than 5000 ischemia-regulated genes for each individual cell type. Surprisingly, there was a high co-regulation in both regions. In the ischemic state, only about 100 genes were found to be differentially expressed in CA3 and CA1. The majority of these genes were also different in the native state. A minority of interesting genes (e.g. inhibinbetaA displayed divergent expression preference under native and ischemic conditions with partially opposing directions of regulation in both cell types. Conclusion The differences found in two morphologically very similar cell types situated next to each other in the CNS are large providing a rational basis for physiological differences. Unexpectedly, the genomic response to ischemia is highly similar in these two neuron types, leading to a substantial attenuation of functional genomic differences in these two cell types. Also, the majority of changes that exist in the ischemic state are not generated de novo by the ischemic stimulus, but are preexistant from the genomic repertoire in the native situation. This unexpected influence of a strong noxious stimulus on cell-specific gene expression differences can be explained by the activation of a cell-type independent conserved gene-expression program. Our data generate both novel

  12. Pyramidal cells in prefrontal cortex: comparative observations reveal unparalleled specializations in neuronal structure among primate species.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2011-02-01

    Full Text Available The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterised by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC of higher primates endows specific biophysical properties and patterns of connectivity, which differ to those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial and orbital gPFC of cercopethicid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As neuron structure determines it’s computational abilities and memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species specific executive cortical functions in primates.

  13. Chemical interactions with pyramidal neurons in layer 5 of the cerebral cortex: control of pain and anxiety.

    Science.gov (United States)

    Adams, J D

    2009-01-01

    Pyramidal neurons in layer 5 of the cerebral cortex are involved in learning and memory and have complex connections with other neurons through a very large array of dendrites. These dendrites can switch between long term depression and long term potentiation depending on global summation of various inputs. The plasticity of the input into pyramidal neurons makes the neuronal output variable. Many interneurons in the cerebral cortex and distant neurons in other brain regions are involved in providing input to pyramidal neurons. All of these neurons and interneurons have neurotransmitters that act through receptors to provide input to pyramidal neurons. Serotonin is one of the important neurotransmitters involved with pyramidal neurons and has been implicated in psychosis, psychedelic states and what are called sacred dreams. This review will discuss the various chemicals and receptors that are important with pyramidal neurons including opioids, nicotine, scopolamine, psilocybin, LSD, mescaline, ergot alkaloids, salvinorin A, ergine and other compounds that interact with opioid, nicotinic, muscarinic and serotonergic receptors. The natural compounds provide clues to structure activity relationships with the receptors. It has been postulated that each receptor in the body has a natural agonist and antagonist, in addition to the normal neurotransmitters. It is common for natural antagonists and agonists to be peptides. Various possible peptide structures will be proposed for natural antagonists and agonists at each receptor. Natural antagonists and agonists may provide new ways to explore the functions of pyramidal neurons in normal health and pain management. PMID:19799545

  14. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex.

    Science.gov (United States)

    Ma, Lei; Qiao, Qian; Tsai, Jin-Wu; Yang, Guang; Li, Wei; Gan, Wen-Biao

    2016-03-01

    Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience-dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277-286, 2016. PMID:26033635

  15. Suppressive Effects of Resveratrol Treatment on The Intrinsic Evoked Excitability of CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Gholamhossein Meftahi

    2015-10-01

    Full Text Available Objective: Resveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neuronal function, little effort, if any, has been made to investigate the cellular effect of resveratrol treatment on intrinsic neuronal properties. Materials and Methods: This experimental study was performed to examine the acute effects of resveratrol (100 μM on the intrinsic evoked responses of rat Cornu Ammonis (CA1 pyramidal neurons in brain slices, using whole cell patch clamp recording under current clamp conditions. Results: Findings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05 increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol. Conclusion: Results provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity.

  16. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability

    OpenAIRE

    Tsodyks, Misha V.; Markram, Henry

    1997-01-01

    Although signaling between neurons is central to the functioning of the brain, we still do not understand how the code used in signaling depends on the properties of synaptic transmission. Theoretical analysis combined with patch clamp recordings from pairs of neocortical pyramidal neurons revealed that the rate of synaptic depression, which depends on the probability of neurotransmitter release, dictates the extent to which firing rate and temporal coherence of action potentials within a pre...

  17. Neuronal chromatin changes in layer V pyramidal cells of somatomotor cortex after pyramidal tract lesions as demonstrated by [3H]actinomycin D binding

    International Nuclear Information System (INIS)

    Changes in chromatin structure of pyramidal tract neurons after medullary pyramidal tract lesions were examined autoradiographically utilizing [3H]actinomycin D (Act D) binding to nuclei in frozen sections of brain. After a right pyramidal tract lesion, the binding of Act D to nuclei of axotomized pyramidal neurons of somatomotor cortex layer V increased sharply at 1 and 5 days postoperation, compared with pyramidal cells of the left side or hippocampal control cells of the left hemisphere. At 3, 7, 9, and 11 days the axotomized cells showed significantly decreased binding compared with controls. The unoperated pyramidal cells showed a significantly decreased Act D binding at 2 h and 9 days postoperation compared with the ipsilateral hippocampal control cells. The data suggested that intrinsic neurons of the central nervous system had a response pattern of chromatin changes to axotomy that was basically similar to that of peripheral neurons (sensory ganglion cells). However, the response was compressed into the 1st week postoperation with only a brief reaction which might be correlated to axonal regeneration. This reaction was followed by a prolonged depression of Act D nuclear binding which may be associated with cellular atrophy

  18. Heterosynaptic plasticity in pyramidal neurons of the hippocampus

    OpenAIRE

    Haslehurst, P.

    2014-01-01

    Homeostatic synaptic plasticity (HSP) is an adjustment of synaptic strength which compensates for chronically altered activity levels in a neuron’s inputs. It is proposed that HSP allows the neuron to retain its ability to discriminate between different inputs in a changing environment. HSP has been demonstrated at several levels: the network, the individual neuron, and the synapse. Synapse-specific HSP involves a paradox: if intense transmission strengthens a synapse, HSP will act in a compe...

  19. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles

    2014-01-01

    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  20. In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons

    Science.gov (United States)

    Jouhanneau, Jean-Sébastien; Kremkow, Jens; Dorrn, Anja L.; Poulet, James F.A.

    2015-01-01

    Summary Little is known about the properties of monosynaptic connections between identified neurons in vivo. We made multiple (two to four) two-photon targeted whole-cell recordings from neighboring layer 2 mouse somatosensory barrel cortex pyramidal neurons in vivo to investigate excitatory monosynaptic transmission in the hyperpolarized downstate. We report that pyramidal neurons form a sparsely connected (6.7% connectivity) network with an overrepresentation of bidirectional connections. The majority of unitary excitatory postsynaptic potentials were small in amplitude (1 mV. The coefficient of variation (CV = 0.74) could largely be explained by the presence of synaptic failures (22%). Both the CV and failure rates were reduced with increasing amplitude. The mean paired-pulse ratio was 1.15 and positively correlated with the CV. Our approach will help bridge the gap between connectivity and function and allow investigations into the impact of brain state on monosynaptic transmission and integration. PMID:26670044

  1. In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Jouhanneau

    2015-12-01

    Full Text Available Little is known about the properties of monosynaptic connections between identified neurons in vivo. We made multiple (two to four two-photon targeted whole-cell recordings from neighboring layer 2 mouse somatosensory barrel cortex pyramidal neurons in vivo to investigate excitatory monosynaptic transmission in the hyperpolarized downstate. We report that pyramidal neurons form a sparsely connected (6.7% connectivity network with an overrepresentation of bidirectional connections. The majority of unitary excitatory postsynaptic potentials were small in amplitude (1 mV. The coefficient of variation (CV = 0.74 could largely be explained by the presence of synaptic failures (22%. Both the CV and failure rates were reduced with increasing amplitude. The mean paired-pulse ratio was 1.15 and positively correlated with the CV. Our approach will help bridge the gap between connectivity and function and allow investigations into the impact of brain state on monosynaptic transmission and integration.

  2. Jumlah Sel Piramidal CA3 Hipokampus Tikus Putih Jantan pada Berbagai Model Stres Kerja Kronik

    OpenAIRE

    Fitranto Arjadi; Sri Kadarsih Soejono; Lientje Setyawati Maurits; Mulyoto Pangestu

    2014-01-01

    Prolonged and chronic exposure to stress leads to the loss of neurons at the CA3 (cornu ammonis) hippocampus region and spatial memory deficits. The aim of this study was to study the number of CA3 pyramidal cells in albino rats that were exposed to chronic stress of works model consisting of paradoxical sleep deprivation (PSD), immobilization, and foot shock stresses. The method applied was the post-test only method with control group experimental design using completed randomized design (CR...

  3. The mode of synaptic activation of pyramidal neurons in the cat primary somatosensory cortex: an intracellular HRP study.

    Science.gov (United States)

    Yamamoto, T; Samejima, A; Oka, H

    1990-01-01

    A total of 141 pyramidal neurons in the cat primary somatosensory cortex (SI) were recorded intracellularly under Nembutal anesthesia (7 in layer II, 43 in layer III, 8 in layer IV, 58 in layer V and 25 in layer VI). Most neurons were identified by intracellular staining with HRP, though some layer V pyramidal neurons were identified only electrophysiologically with antidromic activation of medullary pyramid (PT) or pontine nuclear (PN) stimulation. Excitatory synaptic potentials (EPSPs) were analyzed with stimulation of the superficial radial nerve (SR), the ventral posterolateral nucleus (VPL) in the thalamus and the thalamic radiation (WM). The pyramidal neurons in layers III and IV received EPSPs at the shortest latency: 9.1 +/- 2.1 ms (Mean +/- S.D.) for SR and 1.6 +/- 0.7 ms for VPL stimulation. Layer II pyramidal neurons also responded at a short latency to VPL stimulation (1.7 +/- 0.5 ms), though their mean latencies for SR-induced EPSPs were relatively longer (10.6 +/- 1.9 ms). The mean latencies were much longer in layers V and VI pyramidal neurons (10.2 +/- 2.4 ms and 2.9 +/- 1.5 ms in layer V pyramidal neurons and 9.9 +/- 2.5 ms and 2.8 +/- 1.6 ms in layer VI pyramidal ones, respectively for SR and VPL stimulation). The comparison of the latencies between VPL and WM stimulation indicates that most layer III-IV pyramidal neurons and some pyramidal cells in layers II, V and VI received monosynaptic inputs from VPL. These findings are consistent with morphological data on the laminar distribution of thalamocortical fibers, i.e., thalamocortical fibers terminate mainly in the deeper part of layers III and IV with some collaterals in layers V, VI and II-I. The time-sequences of the latencies of VPL-EPSPs indicate that corticocortical and/or transcallosal neurons (pyramidal neurons in layers II and III) fire first and are followed by firing of the output neurons projecting to the subcortical structures (pyramidal neurons in layers V and VI). PMID:2358022

  4. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography.

    Science.gov (United States)

    Rah, Jong-Cheol; Bas, Erhan; Colonell, Jennifer; Mishchenko, Yuriy; Karsh, Bill; Fetter, Richard D; Myers, Eugene W; Chklovskii, Dmitri B; Svoboda, Karel; Harris, Timothy D; Isaac, John T R

    2013-01-01

    The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 μm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits. PMID:24273494

  5. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Belrose Jillian C

    2012-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2 is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons. Results In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2. Conclusion These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.

  6. M2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion

    OpenAIRE

    Zheng, Fang; Wess, Jürgen; Alzheimer, Christian

    2012-01-01

    Muscarinic receptors have long been known as crucial players in hippocampus-dependent learning and memory, but our understanding of the cellular underpinnings and the receptor subtypes involved lags well behind. This holds in particular for the hippocampal CA3 region, where the mechanisms of synaptic plasticity depend on the type of afferent input. Williams and Johnston (Williams S, Johnston D. Science 242: 84–87, 1988; Williams S, Johnston D. J Neurophysiol 64: 1089–1097, 1990) demonstrated ...

  7. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    Directory of Open Access Journals (Sweden)

    Claudia Perez-Cruz

    2007-01-01

    Full Text Available The prefrontal cortex (PFC plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.

  8. Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice

    Directory of Open Access Journals (Sweden)

    Francesco Tamagnini

    2015-10-01

    These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP, they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time underlies that the increased incidence of seizure observed in AD patients might rely on different mechanistic pathways during progression of the disease.

  9. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity.

    Directory of Open Access Journals (Sweden)

    Stephan Guggenhuber

    Full Text Available The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant adeno-associated virus (AAV genome with a short stop element flanked by loxP sites, for highly efficient attenuation of transgene expression on the transcriptional level. The presence of Cre-recombinase is strictly necessary for expression of reporter proteins or CB1 receptor in vitro and in vivo. Transgenic CB1 receptor immunoreactivity is targeted to glutamatergic neurons after stereotaxic delivery of AAV to the dorsal hippocampus of the driver mice NEX-cre. Increased CB1 receptor protein levels in hippocampal lysates of AAV-treated Cre-mice is paralleled by enhanced cannabinoid-induced G-protein activation. KA-induced seizure severity and mortality is reduced in CB1 receptor overexpressors compared with AAV-treated control animals. Neuronal damage in the hippocampal CA3 field is specifically absent from AAV-treated Cre-transgenics, but evident throughout cortical areas of both treatment groups. Our data provide further evidence for a role of increased CB1 signaling in pyramidal hippocampal neurons as a safeguard against the adverse effects of excessive excitatory network activity.

  10. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography

    Directory of Open Access Journals (Sweden)

    Jong-Cheol eRah

    2013-11-01

    Full Text Available The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT, a high-resolution optical microscopy method, to examine thalamocortical (TC input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale AT to measure TC synapse distribution on L5 pyramdial neurons in a 1.00 x 0.83 x 0.21 mm^3 volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased towards certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 μm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.

  11. Neurofilament-labeled pyramidal neurons and astrocytes are deficient in DNA methylation marks in Alzheimer's disease.

    Science.gov (United States)

    Phipps, Andrew J; Vickers, James C; Taberlay, Phillippa C; Woodhouse, Adele

    2016-09-01

    There is increasing evidence that epigenetic alterations may play a role in Alzheimer's disease (AD); yet, there is little information regarding epigenetic modifications in specific cell types. We assessed DNA methylation (5-methylcytosine [5mC]) and hydroxymethylation (5-hydroxymethylcytosine [5hmC]) marks specifically in neuronal and glial cell types in the inferior temporal gyrus of human AD cases and age-matched controls. Interestingly, neurofilament (NF)-labeled pyramidal neurons that are vulnerable to AD pathology are deficient in extranuclear 5mC in AD cases compared with controls. We also found that fewer astrocytes exhibited nuclear 5mC and 5hmC marks in AD cases compared with controls. However, there were no alterations in 5mC and 5hmC in disease-resistant calretinin interneurons or microglia in AD, and there was no alteration in the density of 5mC- or 5hmC-labeled nuclei in near-plaque versus plaque-free regions in late-AD cases. 5mC and 5hmC were present in a high proportion of neurofibrillary tangles, suggesting no loss of DNA methylation marks in tangle bearing neurons. We provide evidence that epigenetic dysregulation may be occurring in astrocytes and NF-positive pyramidal neurons in AD. PMID:27459923

  12. Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons.

    Science.gov (United States)

    Cembrowski, Mark S; Bachman, Julia L; Wang, Lihua; Sugino, Ken; Shields, Brenda C; Spruston, Nelson

    2016-01-20

    Tissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population—hippocampal CA1 pyramidal cells (CA1 PCs)—and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits. PMID:26777276

  13. Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex

    OpenAIRE

    Wozny, Christian; Stephen R Williams

    2011-01-01

    Understanding the structure and function of the neocortical microcircuit requires a description of the synaptic connectivity between identified neuronal populations. Here, we investigate the electrophysiological properties of layer 1 (L1) neurons of the rat somatosensory neocortex (postnatal day 24–36) and their synaptic connectivity with supragranular pyramidal neurons. The active and passive properties of visually identified L1 neurons (n = 266) suggested division into 4 groups according to...

  14. The Electrotonic Structure of Pyramidal Neurons Contributing to Prefrontal Cortical Circuits in Macaque Monkeys Is Significantly Altered in Aging

    OpenAIRE

    Kabaso, Doron; Coskren, Patrick J; Henry, Bruce I; Patrick R Hof; Wearne, Susan L.

    2009-01-01

    Whereas neuronal numbers are largely preserved in normal aging, subtle morphological changes occur in dendrites and spines, whose electrotonic consequences remain unexplored. We examined age-related morphological alterations in 2 types of pyramidal neurons contributing to working memory circuits in the macaque prefrontal cortex (PFC): neurons in the superior temporal cortex forming “long” projections to the PFC and “local” projection neurons within the PFC. Global dendritic mass homeostasis, ...

  15. Attentional modulation of firing rate varies with burstiness across putative pyramidal neurons in macaque visual Area V4

    OpenAIRE

    Anderson, Emily B.; Mitchell, Jude F.; Reynolds, John H.

    2011-01-01

    One of the most well established forms of attentional modulation is an increase in firing rate when attention is directed into a neuron’s receptive field. The degree of rate modulation, however, can vary considerably across individual neurons, especially among broad spiking neurons (putative pyramids). We asked whether this heterogeneity might be correlated with a neuronal response property that is used in intracellular recording studies to distinguish among distinct neuronal classes: the bur...

  16. Comparative morphology of three types of projection-identified pyramidal neurons in the superficial layers of cat visual cortex.

    Science.gov (United States)

    Matsubara, J A; Chase, R; Thejomayen, M

    1996-02-26

    The morphology and dendritic organization of corticocortical neurons in the superficial layers of area 18 that project to area 17 were studied by intracellular injection of lucifer yellow in the fixed-slice preparation. This corticocortical population contains primarily standard pyramidal cells, but occasional nonpyramidal, modified, fusiform, star, and inverted pyramidal cells were also seen. All cell types were present throughout layer 2 and in the upper and middle parts of layer 3. Standard pyramidal cells were found exclusively in lower layer 3. The mean somatic area of the area 17 projecting neurons was 251 microns 2. The width of basal dendritic fields was correlated to cell size for standard pyramidal cells but not for the other cell types. Next, the morphology and dendritic organization of the area 17 projecting neurons were compared to the pyramidal cells of the local horizontal patch networks and of the callosal system. The depth profile of the area 17 projecting and callosal pyramidal groups was virtually identical, peaking at 400 microns from the pial surface, whereas the local patch pyramidal group peaked at 281 microns. The local patch, area 17 projecting, and callosal pyramidal cells displayed increasingly larger mean somatic areas and basilar dendritic field width measurements. The number of basal dendritic branch points was greatest for callosal cells, and it was indistinguishable between local patch and area 17 projecting neurons. In the tangential plane, circular dendritic fields were observed on all callosal cells, but they were found on only approximately half of the local patch and area 17 projecting neurons. The remaining local patch and area 17 projecting neurons displayed mediolaterally and anteroposteriorly elongated basal dendritic fields, respectively. PMID:8866848

  17. TARGET-SPECIFIC OUTPUT PATTERNS CAN BE PREDICTED BY THE DISTRIBUTION OF REGULAR-SPIKING AND BURSTING PYRAMIDAL NEURONS IN THE SUBICULUM

    OpenAIRE

    Kim, Yujin; Spruston, Nelson

    2011-01-01

    Pyramidal neurons in the subiculum project to a variety of cortical and subcortical areas in the brain to convey information processed in hippocampus. Previous studies have shown that two groups of subicular pyramidal neurons – regular-spiking and bursting neurons – are distributed in an organized fashion along the proximal-distal axis, with more regular-spiking neurons close to CA1 (proximal) and more bursting neurons close to presubiculum (distal). Anatomically, neurons projecting to some t...

  18. Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons.

    Science.gov (United States)

    Louessard, Morgane; Lacroix, Alexandre; Martineau, Magalie; Mondielli, Gregoire; Montagne, Axel; Lesept, Flavie; Lambolez, Bertrand; Cauli, Bruno; Mothet, Jean-Pierre; Vivien, Denis; Maubert, Eric

    2016-09-01

    Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer's disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain. PMID:26377106

  19. Terminal Field and Firing Selectivity of Cholecystokinin-Expressing Interneurons in the Hippocampal CA3 Area

    OpenAIRE

    Lasztóczi, Bálint; Tukker, John J; Somogyi, Peter; Klausberger, Thomas

    2011-01-01

    Hippocampal oscillations reflect coordinated neuronal activity on many timescales. Distinct types of GABAergic interneuron participate in the coordination of pyramidal cells over different oscillatory cycle phases. In the CA3 area, which generates sharp waves and gamma oscillations, the contribution of identified GABAergic neurons remains to be defined. We have examined the firing of a family of cholecystokinin-expressing interneurons during network oscillations in urethane-anesthetized rats ...

  20. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    Science.gov (United States)

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  1. Effect of tolbutamide, glyburide and glipizide administered supraspinally on CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.

    Science.gov (United States)

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-05-20

    Sulfonylureas are widely used oral drugs for the treatment of type II diabetes mellitus. In the present study, the effects of sulfonylureas administered supraspinally on kainic acid (KA)-induced hippocampal neuronal cell death and hyperglycemia were studied in ICR mice. Mice were pretreated intracerebroventricularly (i.c.v.) with 30μg of tolbutamide, glyburide or glipizide for 10min and then, mice were administered i.c.v. with KA (0.1μg). The neuronal cell death in the CA3 region in the hippocampus was assessed 24h after KA administration and the blood glucose level was measured 30, 60, and 120min after KA administration. We found that i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated the KA-induced neuronal cell death in CA3 region of the hippocampus and hyperglycemia. In addition, KA administered i.c.v. caused an elevation of plasma corticosterone level and a reduction of the plasma insulin level. The i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated KA-induced increase of plasma corticosterone level. Furthermore, i.c.v. pretreatment with tolbutamide, glyburide or glipizide causes an elevation of plasma insulin level. Glipizide, but not tolbutamide or glyburide, pretreated i.c.v. caused a reversal of KA-induced hypoinsulinemic effect. Our results suggest that supraspinally administered tolbutamide, glyburide and glipizide exert a protective effect against KA-induced neuronal cells death in CA3 region of the hippocampus. The neuroprotective effect of tolbutamide, glyburide and glipizide appears to be mediated by lowering the blood glucose level induced by KA. PMID:24713348

  2. Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons.

    Science.gov (United States)

    Ashhad, Sufyan; Narayanan, Rishikesh

    2016-06-01

    An important consequence of gliotransmission, a signaling mechanism that involves glial release of active transmitter molecules, is its manifestation as N-methyl-d-aspartate receptor (NMDAR)-dependent slow inward currents in neurons. However, the intraneuronal spatial dynamics of these events or the role of active dendrites in regulating their amplitude and spatial spread have remained unexplored. Here, we used somatic and/or dendritic recordings from rat hippocampal pyramidal neurons and demonstrate that a majority of NMDAR-dependent spontaneous slow excitatory potentials (SEP) originate at dendritic locations and are significantly attenuated through their propagation across the neuronal arbor. We substantiated the astrocytic origin of SEPs through paired neuron-astrocyte recordings, where we found that specific infusion of inositol trisphosphate (InsP3) into either distal or proximal astrocytes enhanced the amplitude and frequency of neuronal SEPs. Importantly, SEPs recorded after InsP3 infusion into distal astrocytes exhibited significantly slower kinetics compared with those recorded after proximal infusion. Furthermore, using neuron-specific infusion of pharmacological agents and morphologically realistic conductance-based computational models, we demonstrate that dendritically expressed hyperpolarization-activated cyclic-nucleotide-gated (HCN) and transient potassium channels play critical roles in regulating the strength, kinetics, and compartmentalization of neuronal SEPs. Finally, through the application of subtype-specific receptor blockers during paired neuron-astrocyte recordings, we provide evidence that GluN2B- and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Our results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell

  3. Simple Method for Evaluation of Planum Temporale Pyramidal Neurons Shrinkage in Postmortem Tissue of Alzheimer Disease Patients

    Directory of Open Access Journals (Sweden)

    Martina Kutová

    2014-01-01

    Full Text Available We measured the length of the pyramidal neurons in the cortical layer III in four subregions of the planum temporale (transitions into superior temporal gyrus, Heschl’s gyrus, insular cortex, and Sylvian fissure in control group and Alzheimer disease patients. Our hypothesis was that overall length of the pyramidal neurons would be smaller in the Alzheimer disease group compared to controls and also there would be right-left asymmetry in both the control and Alzheimer disease groups. We found pyramidal neuron length asymmetry only in controls—in the transition into the Sylvian fissure—and the rest of the subregions in the control group and Alzheimer disease patients did not show size difference. However, control-Alzheimer disease group pyramidal neuron length comparison revealed (a no length difference in superior temporal gyrus transition area, (b reversal of asymmetry in the insular transition area with left insular transition significantly shorter in the Alzheimer disease group compared to the control group, (c both right and left Heschl’s gyrus transitions significantly shorter in the Alzheimer disease group compared to the control group, and (d right Sylvian fissure transition significantly shorter in the Alzheimer disease group compared to the control group. This neuronal length measurement method could supplement already existing neuropathological criteria for postmortem Alzheimer disease diagnostics.

  4. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    Science.gov (United States)

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  5. Jumlah Sel Piramidal CA3 Hipokampus Tikus Putih Jantan pada Berbagai Model Stres Kerja Kronik

    Directory of Open Access Journals (Sweden)

    Fitranto Arjadi

    2014-12-01

    Full Text Available Prolonged and chronic exposure to stress leads to the loss of neurons at the CA3 (cornu ammonis hippocampus region and spatial memory deficits. The aim of this study was to study the number of CA3 pyramidal cells in albino rats that were exposed to chronic stress of works model consisting of paradoxical sleep deprivation (PSD, immobilization, and foot shock stresses. The method applied was the post-test only method with control group experimental design using completed randomized design (CRD on 24 3–4 month old male Wistar rats. The rats were divided into 4 groups: group I (control, group II (PSD stress, group III (immobilization stress, and group IV (footshock stress. The CA3 pyramidal cell hippocampus was stained with toluidine-blue. The number of CA3 pyramidal cell of hippocampus was counted using Image raster v2.1 software at 400x magnification in 10 duplicates for each sample. The study was conducted in six months (April–September 2012 at the Animal Laboratory, Faculty of Medical and Health Sciences, Jenderal Soedirman University. Analysis for the differences in the number of CA3 pyramidal cells was conducted using analysis of variance (ANOVA with Post-Hoc LSD. The results of the ANOVA showed a p value=0.037, meaning that there was significant difference in at least two groups of treatment. Further statistical test using Post-Hoc LSD showed a significant difference between the control group (12.9±2.47 and the chronic immobillization group (9,00±1,53 (p<0.05. In conclusion, the chronic immobillization stress group has the lowest average number of hippocampus CA3 pyramidal cells compared to other groups.

  6. Effects of lithium chloride on outward potassium currents in acutely isolated hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaofeng; DU Huizhi; YANG Pin

    2006-01-01

    Although lithium possesses neuroprotective functions, the molecular mechanism underlying its actions has not been fully elucidated. In the present paper, the effects of lithium chloride on voltage-dependent potassium currents in the CA1 pyramidal neurons acutely isolated from rat hippocampus were studied using the whole-cell patch-clamp technique. Depolarizing test pulses activated two components of outward potassium currents: a rapidly activating and inactivating component, IA and a delayed component, IK. Results showed that lithium chloride increased the amplitude of IA in a concentration-dependent manner. Half enhancement concentration (EC50) was 22.80±5.45 μmol·L-1. Lithium chloride of 25 μmol·L-1 shifted the steady-state activation curve and inactivation curve of IA to more negative potentials, but mainly affected the activation kinetics. The amplitude and the activation processes of IK were not affected by lithium chloride. The effects of lithium chloride on potassium channel appear to possess neuroprotective properties by Ca2+-lowing effects modulate neuronal excitability by activating IA in rat hippocampal neurons.

  7. Increased size and stability of CA1 and CA3 place fields in HCN1 knockout mice

    OpenAIRE

    Hussaini, Syed A.; Kempadoo, Kimberly A.; Thuault, Sébastien J.; Siegelbaum, Steven A.; Kandel, Eric R.

    2011-01-01

    Hippocampal CA1 and CA3 pyramidal neuron place cells encode the spatial location of an animal through localized firing patterns called “place fields”. To explore the mechanisms that control place cell firing and their relationship to spatial memory, we studied mice with enhanced spatial memory resulting from forebrain-specific knockout of the HCN1 hyperpolarization-activated cation channel. HCN1 is strongly expressed in CA1 neurons and entorhinal cortex grid cells, which provide spatial infor...

  8. Presynaptic size of associational/commissural CA3 synapses is controlled by fibroblast growth factor 22 in adult mice.

    Science.gov (United States)

    Pasaoglu, Taliha; Schikorski, Thomas

    2016-02-01

    Associational/commissural CA3-CA3 synapses define the recurrent CA3 network that generates the input to CA1 pyramidal neurons. We quantified the fine structure of excitatory synapses in the stratum radiatum of the CA3d area in adult wild type (WT) and fibroblast growth factor 22 knock-out (FGF22KO) mice by using serial 3D electron microscopy. WT excitatory CA3 synapses are rather small yet range 10 fold in size. Spine size, however, was small and uniform and did not correlate with the size of the synaptic junction. To reveal mechanisms that regulate presynaptic structure, we investigated the role of FGF22, a target-derived signal specific for the distal part of area CA3 (CA3d). In adult FGF22KO mice, postsynaptic properties of associational CA3 synapses were unaltered. Presynaptically, the number of synaptic vesicles (SVs), the bouton volume, and the number of vesicles in axonal regions (the super pool) were reduced. This concurrent decrease suggests concerted control by FGF22 of presynaptic size. This hypothesis is supported by the finding that WT presynapses in the proximal part of area CA3 (CA3p) that do not receive FGF22 signaling in WT mice were smaller than presynapses in CA3d in WT but of comparable size in CA3d of FGF22KO mice. Docked SV density was decreased in CA1, CA3d, and CA3p in FGF22KO mice. Because CA1 and CA3p are not directly affected by the loss of FGF22, the smaller docked SV density may be an adaptation to activity changes in the CA3 network. Thus, docked SV density potentially is a long-term regulator for the synaptic release probability and/or the strength of short-term depression in vivo. PMID:26222899

  9. Comparison of activity of individual pyramidal tract neurons during balancing, locomotion, and scratching.

    Science.gov (United States)

    Beloozerova, Irina N; Sirota, Mikhail G; Orlovsky, Grigori N; Deliagina, Tatiana G

    2006-04-25

    Neuronal mechanisms of the spinal cord, brainstem, and cerebellum play a key role in the control of complex automatic motor behaviors-postural corrections, stepping, and scratching, whereas the role of the motor cortex is less clear. To assess this role, we recorded fore and hind limb-related pyramidal tract neurons (PTNs) in the cat during postural corrections and during locomotion; hind limb PTNs were also tested during scratching. The activity of nearly all PTNs was modulated in the rhythm of each of these motor patterns. The discharge frequency, averaged over the PTN population, was similar in different motor tasks, whereas the degree of frequency modulation was larger during locomotion. In individual PTNs, a correlation between analogous discharge characteristics (frequency or its modulation) in different tasks was very low, suggesting that input signals to PTNs in these tasks have a substantially different origin. In about a half of PTNs, their activity in different tasks was timed to the analogous (flexor/extensor) parts of the cycle, suggesting that these PTNs perform similar functions in these tasks (e.g., control of the value of muscle activity). In another half of PTNs, their activity was timed to opposite parts of the cycle in different tasks. These PTNs seem to perform different motor functions in different tasks, or their targets are active in different parts of the cycle in these tasks, or their effects are not directly related to the control of motor output (e.g., they modulate transmission of afferent signals). PMID:16445992

  10. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  11. Characterization of voltage-gated Ca(2+ conductances in layer 5 neocortical pyramidal neurons from rats.

    Directory of Open Access Journals (Sweden)

    Mara Almog

    Full Text Available Neuronal voltage-gated Ca(2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca(2+ channels is generating regenerative dendritic Ca(2+ spikes. However, the Ca(2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca(2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba(2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca(2+ channel sub-types - L-, N-, R- and P/Q-type. Finally, the activation of the Ca(2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP protocol. These experiments enable us to suggest the possible contribution of the five Ca(2+ channel sub-types to Ca(2+ current flow during activation under physiological conditions.

  12. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. PMID:24604340

  13. Signal Propagation in Oblique Dendrites of CA1 Pyramidal Cells

    OpenAIRE

    Migliore, Michele; Ferrante, Michele; Ascoli, Giorgio A.

    2005-01-01

    The electrophysiological properties of the oblique branches of CA1 pyramidal neurons are largely unknown and very difficult to investigate experimentally. These relatively thin dendrites make up the majority of the apical tree surface area and constitute the main target of Schaffer collateral axons from CA3. Their electrogenic properties might have an important role in defining the computational functions of CA1 neurons. It is thus important to determine if and to what extent the back- and fo...

  14. Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons.

    Science.gov (United States)

    Zhu, Yinghua; Stornetta, Ruth L; Zhu, J Julius

    2004-06-01

    Chandelier cells form inhibitory axo-axonic synapses on pyramidal neurons with their characteristic candlestick-like axonal terminals. The functional role of chandelier cells is still unclear, although the preferential loss of this cell type at epileptic loci suggests a role in epilepsy. Here we report an examination of whisker- and spontaneous activity-evoked responses in chandelier cells and other fast-spiking nonpyramidal neurons and regular-spiking pyramidal neurons in layer 2/3 of the barrel cortex. Fast-spiking nonpyramidal neurons, including chandelier cells, basket cells, neurogliaform cells, double bouquet cells, net basket cells, bitufted cells, and regular-spiking pyramidal neurons all respond to stimulation of multiple whiskers on the contralateral face. Whisker stimulation, however, evokes small, delayed EPSPs preceded by an earlier IPSP and no action potentials in chandelier cells, different from other nonpyramidal and pyramidal neurons. In addition, chandelier cells display a larger receptive field with lower acuity than other fast-spiking nonpyramidal neurons and pyramidal neurons. Notably, simultaneous dual whole-cell in vivo recordings show that chandelier cells, which rarely fire action potentials spontaneously, fire more robustly than other types of cortical neurons when the overall cortical excitation increases. Thus, chandelier cells may not process fast ascending sensory information but instead may be reserved to prevent excessive excitatory activity in neuronal networks. PMID:15175379

  15. RNA interference of Marlin-1/Jakmip1 results in abnormal morphogenesis and migration of cortical pyramidal neurons.

    Science.gov (United States)

    Vidal, René L; Fuentes, Patricio; Valenzuela, José Ignacio; Alvarado-Diaz, Carlos P; Ramírez, Omar A; Kukuljan, Manuel; Couve, Andrés

    2012-08-01

    The formation of the nervous systems requires processes that coordinate proliferation, differentiation and migration of neuronal cells, which extend axons, generate dendritic branching and establish synaptic connections during development. The structural organization and dynamic remodeling of the cytoskeleton and its association to the secretory pathway are critical determinants of cell morphogenesis and migration. Marlin-1 (Jakmip1) is a microtubule-associated protein predominantly expressed in neurons and lymphoid cells. Marlin-1 participates in polarized secretion in lymphocytes, but its functional association with the neuronal cytoskeleton and its contribution to brain development have not been explored. Combining in vitro and in vivo approaches we show that Marlin-1 contributes to the establishment of neuronal morphology. Marlin-1 associates to the cytoskeleton in neurites, is required for the maintenance of an intact Golgi apparatus and its depletion produces the down-regulation of kinesin-1, a plus-end directed molecular motor with a central function in morphogenesis and migration. RNA interference of Marlin-1 in vivo results in abnormal migration of newborn pyramidal neurons during the formation of the cortex. Our results support the involvement of Marlin-1 in the acquisition of the complex architecture and migration of pyramidal neurons, two fundamental processes for the laminar layering of the cortex. PMID:22828129

  16. Computational modeling reveals dendritic origins of GABA(A-mediated excitation in CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Naomi Lewin

    Full Text Available GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABA(A-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABA(A receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABA(A-mediated excitation is complex. Experimentally it is difficult to determine the ionic mechanisms of depolarizing current since potassium transients are challenging to isolate pharmacologically and much GABA signaling occurs in small, difficult to measure, dendritic compartments. To address this problem and determine plausible ionic mechanisms of GABA(A-mediated excitation, we built a detailed biophysically realistic model of the CA1 pyramidal neuron that includes processes critical for ion homeostasis. Our results suggest that in dendritic compartments, but not in the somatic compartments, chloride buildup is sufficient to cause dramatic depolarization of the GABA(A reversal potential and dominating bicarbonate currents that provide a substantial current source to drive whole-cell depolarization. The model simulations predict that extracellular K(+ transients can augment GABA(A-mediated excitation, but not cause it. Our model also suggests the potential for GABA(A-mediated excitation to promote network synchrony depending on interneuron synapse location - excitatory positive-feedback can occur when interneurons synapse onto distal dendritic compartments, while interneurons projecting to the perisomatic

  17. Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation.

    Science.gov (United States)

    Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F

    2011-07-01

    Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a competitive NMDAR antagonist, blocked the effects of 60 mm ethanol on staining. We previously reported that 60 mm ethanol inhibits the induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition by 60 mm ethanol was also overcome by both the 5α-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid production and LTP were mimicked by a low concentration of NMDA (1 μm), and the ability of NMDA to inhibit LTP and to enhance neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents a form of NMDAR-mediated metaplasticity. PMID:21734282

  18. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  19. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons

    OpenAIRE

    Fernández de Sevilla, D.; Núñez Molina, Ángel; Borde, M.; Malinow, R.; Buño, Washinton

    2008-01-01

    Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAC...

  20. Evidence for neuroprotective effect of sulbutiamine against oxygen-glucose deprivation in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Kwag, Jeehyun; Majid, Aman Shah Abdul; Kang, Kui Dong

    2011-01-01

    Hippocampus is one of the earliest brain regions that gets affected by ischemia, however, no pharmacological therapy exists yet that can fully counteract the ischemic damage. Here we study the effect of sulbutiamine, a synthetic thiamine analogue that can cross the blood-brain barrier easily, on hippocampal neurons under an in vitro model of ischemia, oxygen-glucose deprivation (OGD). We find that exposure to OGD in the presence of sulbutiamine significantly increases neuronal viability and enhances electrophysiological properties such as excitatory synaptic transmissions and intrinsic neuronal membrane input resistance in a concentration-dependent manner. Overall, here we report, for the first time, the neuroprotective evidence of sulbutiamine on hippocampal CA1 pyramidal neurons under OGD, which may have beneficial implications as a possible therapeutic agent/substance against ischemic insult. PMID:22040892

  1. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    Full Text Available BACKGROUND: The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. METHODOLOGY/PRINCIPAL FINDINGS: An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the

  2. The protective role of ascorbic acid on hippocampal CA1 pyramidal neurons in a rat model of maternal lead exposure.

    Science.gov (United States)

    Sepehri, Hamid; Ganji, Farzaneh

    2016-07-01

    Oxidative stress is a major pathogenic mechanism of lead neurotoxicity. The antioxidant ascorbic acid protects hippocampal pyramidal neurons against cell death during congenital lead exposure; however, critical functions like synaptic transmission, integration, and plasticity depend on preservation of dendritic and somal morphology. This study was designed to examine if ascorbic acid also protects neuronal morphology during developmental lead exposure. Timed pregnant rats were divided into four treatment groups: (1) control, (2) 100mg/kg ascorbic acid once a day via gavage, (3) 0.05% lead acetate in drinking water, and (4) 0.05% lead+100mg/kg oral ascorbic acid. Brains of eight male pups (P25) per treatment group were processed for Golgi staining. Changes in hippocampal CA1 pyramidal neurons' somal size were estimated by cross-sectional area and changes in dendritic arborization by Sholl's analysis. One-way ANOVA was used to compare results among treatment groups. Lead-exposed pups exhibited a significant decrease in somal size compared to controls (Pnear cell body (P<0.05) and a decreased total dendritic length in both apical and basal dendritic trees of CA1 neurons (P<0.05). Ascorbic acid significantly but only partially reversed the somal and dendritic damage caused by developmental lead exposure. Oxidative stress thus contributes to lead neurotoxicity but other pathogenic mechanisms are also involved. PMID:26783884

  3. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Jimenez-Mateos, Eva M; Engel, Tobias; Merino-Serrais, Paula; Fernaud-Espinosa, Isabel; Rodriguez-Alvarez, Natalia; Reynolds, James; Reschke, Cristina R; Conroy, Ronan M; McKiernan, Ross C; deFelipe, Javier; Henshall, David C

    2015-07-01

    Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects. PMID:24874920

  4. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets

    OpenAIRE

    Brown, Solange P.; Hestrin, Shaul

    2009-01-01

    Cortical columns generate separate streams of information that are distributed to numerous cortical and subcortical brain regions1. We asked whether local intracortical circuits reflect these different processing streams by testing if the intracortical connectivity among pyramids reflects their long-range axonal targets. We recorded simultaneously from up to four retrogradely labelled pyramids that projected to the superior colliculus, the contralateral striatum or the contralateral cortex to...

  5. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome

    Science.gov (United States)

    Hanson, Jesse E; Blank, Martina; Valenzuela, Ricardo A; Garner, Craig C; Madison, Daniel V

    2007-01-01

    Down's syndrome (DS) is the most common cause of mental retardation, and memory impairments are more severe in DS than in most if not all other causes of mental retardation. The Ts65Dn mouse, a genetic model of DS, exhibits phenotypes of DS, including memory impairments indicative of hippocampal dysfunction. We examined functional synaptic connectivity in area CA3 of the hippocampus of Ts65Dn mice using organotypic slice cultures as a model. We found reductions in multiple measures of synaptic function in both excitatory and inhibitory inputs to pyramidal neurons in CA3 of the Ts65Dn hippocampus. However, associational synaptic connections between pyramidal neurons were more abundant and more likely to be active rather than silent in the Ts65Dn hippocampus. Synaptic potentiation was normal in these associational connections. Decreased overall functional synaptic input onto pyramidal neurons expressed along with the specific hyperconnectivity of associational connections between pyramidal neurons will result in predictable alterations of CA3 network function, which may contribute to the memory impairments seen in DS. PMID:17158177

  6. Layer- and column-specific knockout of NMDA receptors in pyramidal neurons of the mouse barrel cortex.

    Directory of Open Access Journals (Sweden)

    Rachel Aronoff

    2007-11-01

    Full Text Available Viral vectors injected into the mouse brain offer the possibility for localized genetic modifications in a highly controlled manner. Lentivector injection into mouse neocortex transduces cells within a diameter of approximately 200µm, which closely matches the lateral scale of a column in barrel cortex. The depth and volume of the injection determines which cortical layer is transduced. Furthermore, transduced gene expression from the lentivector can be limited to predominantly pyramidal neurons by using a 1.3kb fragment of the αCaMKII promoter. This technique therefore allows genetic manipulation of a specific cell type in defined columns and layers of the neocortex. By expressing Cre recombinase from such a lentivector in gene-targeted mice carrying a floxed gene, highly specific genetic lesions can be induced. Here, we demonstrate the utility of this approach by specifically knocking out NMDA receptors (NMDARs in pyramidal neurons in the somatosensory barrel cortex of gene-targeted mice carrying floxed NMDAR 1 genes. Neurons transduced with lentivector encoding GFP and Cre recombinase exhibit not only reductions in NMDAR 1 mRNA levels, but reduced NMDAR-dependent currents and pairing-induced synaptic potentiation. This technique for knockout of NMDARs in a cell type, column- and layer-specific manner in the mouse somatosensory cortex may help further our understanding of the functional roles of NMDARs in vivo during sensory perception and learning.

  7. Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ Knockout mice

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    2015-04-01

    Full Text Available Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ was first identified as a Disrupted-In-Schizophrenia1 (DISC1 binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons.

  8. Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) knockout mice.

    Science.gov (United States)

    Koyama, Yoshihisa; Hattori, Tsuyoshi; Nishida, Tomoki; Hori, Osamu; Tohyama, Masaya

    2015-01-01

    Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ) was first identified as a Disrupted-In-Schizophrenia1 (DISC1) binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO) mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy (UHVEM) combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs) in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons. PMID:25983680

  9. Enhanced sensitivity to ethanol-induced inhibition of LTP in CA1 pyramidal neurons of socially isolated C57BL/6J mice: role of neurosteroids

    Directory of Open Access Journals (Sweden)

    Giuseppe eTalani

    2011-10-01

    Full Text Available Ethanol (EtOH–induced impairment of long-term potentiation (LTP in the rat hippocampus is prevented by the 5α-reductase inhibitor finasteride, suggesting that this effect of EtOH is dependent on the increased local release of neurosteroids such as 3α,5α-THP that promote GABA–mediated transmission. Given that social isolation (SI in rodents is associated with altered plasma and brain levels of such neurosteroids as well as with an enhanced neurosteroidogenic action of EtOH, we examined whether the inhibitory effect of EtOH on LTP at CA3-CA1 hippocampal excitatory synapses is altered in C57BL/6J mice subjected to SI for 6 weeks in comparison with group-housed (GH animals. Extracellular recording of fEPSPs as well as patch-clamp analysis were performed in hippocampal slices prepared from both SI and GH mice. Consistent with previous observations, recording of fEPSPs revealed that the extent of LTP induced in the CA1 region of SI mice was significantly reduced compared with that in GH animals. EtOH (40 mM inhibited LTP in slices from SI mice but not in those from GH mice, and this effect of EtOH was abolished by co-application of 1 µM finasteride. Current-clamp analysis of CA1 pyramidal neurons revealed a decrease in action potential frequency and an increase in the intensity of injected current required to evoke the first action potential in SI mice compared with GH mice, indicative of a decrease in neuronal excitability associated with SI. Together, our data suggest that SI results in reduced levels of neuronal excitability and synaptic plasticity in the hippocampus. Furthermore, the increased sensitivity to the neurosteroidogenic effect of EtOH associated with SI likely accounts for the greater inhibitory effect of EtOH on LTP in SI mice. The increase in EtOH sensitivity induced by SI may be important for the changes in the effects of EtOH on anxiety and on learning and memory associated with the prolonged stress attributable to social

  10. Muscarinic receptor control of pyramidal neuron membrane potential in the medial prefrontal cortex (mPFC) in rats.

    Science.gov (United States)

    Kurowski, P; Gawlak, M; Szulczyk, P

    2015-09-10

    Damage to the cholinergic input to the prefrontal cortex has been implicated in neuropsychiatric disorders. Cholinergic endings release acetylcholine, which activates nicotinic and/or G-protein-coupled muscarinic receptors. Muscarinic receptors activate transduction systems, which control cellular effectors that regulate the membrane potential in medial prefrontal cortex (mPFC) neurons. The mechanisms responsible for the cholinergic-dependent depolarization of mPFC layer V pyramidal neurons in slices obtained from young rats were elucidated in this study. Glutamatergic and GABAergic transmission as well as tetrodotoxin (TTX)-sensitive Na(+) and voltage-dependent Ca(++) currents were eliminated. Cholinergic receptor stimulation by carbamoylcholine chloride (CCh; 100 μM) evoked depolarization (10.0 ± 1.3 mV), which was blocked by M1/M4 (pirenzepine dihydrochloride, 2 μM) and M1 (VU 0255035, 5 μM) muscarinic receptor antagonists and was not affected by a nicotinic receptor antagonist (mecamylamine hydrochloride, 10 μM). CCh-dependent depolarization was attenuated by extra- (20 μM) or intracellular (50 μM) application of an inhibitor of the βγ-subunit-dependent transduction system (gallein). It was also inhibited by intracellular application of a βγ-subunit-binding peptide (GRK2i, 10μM). mPFC pyramidal neurons express Nav1.9 channels. CCh-dependent depolarization was abolished in the presence of antibodies against Nav1.9 channels in the intracellular solution and augmented by the presence of ProTx-I toxin (100 nM) in the extracellular solution. CCh-induced depolarization was not affected by the following reagents: intracellular transduction system blockers, including U-73122 (10 μM), chelerythrine chloride (5 μM), SQ 22536 (100 μM) and H-89 (2 μM); channel blockers, including Ba(++) ions (200 μM), apamin (100 nM), flufenamic acid (200 μM), 2-APB (200 μM), SKF 96365 (50 μM), and ZD 7288 (50 μM); and a Na(+)/Ca(++) exchanger blocker, benzamil (20

  11. Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice

    Directory of Open Access Journals (Sweden)

    Hassouna Imam

    2011-04-01

    Full Text Available Abstract Background Erythropoietin (EPO and its receptor (EPOR are expressed in the developing brain and their transcription is upregulated in adult neurons and glia upon injury or neurodegeneration. We have shown neuroprotective effects and improved cognition in patients with neuropsychiatric diseases treated with EPO. However, the critical EPO targets in brain are unknown, and separation of direct and indirect effects has remained difficult, given the role of EPO in hematopoiesis and brain oxygen supply. Results Here we demonstrate that mice with transgenic expression of a constitutively active EPOR isoform (cEPOR in pyramidal neurons of cortex and hippocampus exhibit enhancement of spatial learning, cognitive flexibility, social memory, and attentional capacities, accompanied by increased impulsivity. Superior cognitive performance is associated with augmented long-term potentiation of cEPOR expressing neurons in hippocampal slices. Conclusions Active EPOR stimulates neuronal plasticity independent of any hematopoietic effects and in addition to its neuroprotective actions. This property of EPOR signaling should be exploited for defining novel strategies to therapeutically enhance cognitive performance in disease conditions.

  12. Properties of BK-type Ca++-dependent K+ channel currents in medial prefrontal cortex (PFC pyramidal neurons in rats of different ages

    Directory of Open Access Journals (Sweden)

    Bartłomiej Paweł Szulczyk

    2013-10-01

    Full Text Available The medial prefrontal cortex (PFC is involved in cognitive functions, which undergo profound changes during adolescence. This alteration of the PFC function derives from neuron activity, which, in turn, may depend on age-dependent properties and the expression of neuronal ion channels. BK-type channels are involved in controlling both the Ca++ ion concentration in the cell interior and cell excitability. The purpose of this study was to test the properties of BK currents in the medial PFC pyramidal neurons of young (18–22-day-old, adolescent (38–42-day-old and adult (58–62-day-old rats. Whole-cell currents evoked by depolarizing voltage steps were recorded from dispersed medial PFC pyramidal neurons. A selective BK channel blocker – paxilline (10 µM – irreversibly decreased the non-inactivating K+ current in neurons that were isolated from the young and adult rats. This current was not significantly affected by paxilline in the neurons obtained from adolescent rats. The properties of single-channel K+ currents were recorded from the soma of dispersed medial PFC pyramidal neurons in the cell-attached configuration. Of the K+ channel currents that were recorded, ~90% were BK and leak channel currents. The BK-type channel currents were dependent on the Ca++ concentration and the voltage and were inhibited by paxilline. The biophysical properties of the BK channel currents did not differ among the pyramidal neurons isolated from young, adolescent and adult rats. Among all of the recorded K+ channel currents, 38.9%, 12.7% and 21.1% were BK-type channel currents in the neurons isolated from the young, adolescent and adult rats, respectively. Furthermore, application of paxilline effectively prolonged the half-width of the action potential in pyramidal neurons in slices isolated from young and adult rats but not in neurons isolated from adolescent rats. We conclude that the availability of BK channel currents decreases in medial PFC

  13. Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons.

    Science.gov (United States)

    Rumbell, Timothy H; Draguljić, Danel; Yadav, Aniruddha; Hof, Patrick R; Luebke, Jennifer I; Weaver, Christina M

    2016-08-01

    Conductance-based compartment modeling requires tuning of many parameters to fit the neuron model to target electrophysiological data. Automated parameter optimization via evolutionary algorithms (EAs) is a common approach to accomplish this task, using error functions to quantify differences between model and target. We present a three-stage EA optimization protocol for tuning ion channel conductances and kinetics in a generic neuron model with minimal manual intervention. We use the technique of Latin hypercube sampling in a new way, to choose weights for error functions automatically so that each function influences the parameter search to a similar degree. This protocol requires no specialized physiological data collection and is applicable to commonly-collected current clamp data and either single- or multi-objective optimization. We applied the protocol to two representative pyramidal neurons from layer 3 of the prefrontal cortex of rhesus monkeys, in which action potential firing rates are significantly higher in aged compared to young animals. Using an idealized dendritic topology and models with either 4 or 8 ion channels (10 or 23 free parameters respectively), we produced populations of parameter combinations fitting the target datasets in less than 80 hours of optimization each. Passive parameter differences between young and aged models were consistent with our prior results using simpler models and hand tuning. We analyzed parameter values among fits to a single neuron to facilitate refinement of the underlying model, and across fits to multiple neurons to show how our protocol will lead to predictions of parameter differences with aging in these neurons. PMID:27106692

  14. Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: Pre- and postsynaptic components

    OpenAIRE

    Alzheimer, Christian; Sutor, Bernd; Ten Bruggencate, Gerrit

    1993-01-01

    Intracellular recordings were performed on hippocampal CA3 neuronsin vitro to investigate the inhibitory tonus generated by endogenously produced adenosine in this brain region. Bath application of the highly selective adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine at concentrations up to 100 nM induced both spontaneous and stimulus-evoked epileptiform burst discharges. Once induced, the 1,3-dipropyl-8-cyclopentylxanthine-evoked epileptiform activity was apparently irreve...

  15. Sex differences in GABA(B)R-GIRK signaling in layer 5/6 pyramidal neurons of the mouse prelimbic cortex.

    Science.gov (United States)

    Marron Fernandez de Velasco, Ezequiel; Hearing, Matthew; Xia, Zhilian; Victoria, Nicole C; Luján, Rafael; Wickman, Kevin

    2015-08-01

    The medial prefrontal cortex (mPFC) has been implicated in multiple disorders characterized by clear sex differences, including schizophrenia, attention deficit hyperactivity disorder, post-traumatic stress disorder, depression, and drug addiction. These sex differences likely represent underlying differences in connectivity and/or the balance of neuronal excitability within the mPFC. Recently, we demonstrated that signaling via the metabotropic γ-aminobutyric acid receptor (GABABR) and G protein-gated inwardly-rectifying K(+) (GIRK/Kir3) channels modulates the excitability of the key output neurons of the mPFC, the layer 5/6 pyramidal neurons. Here, we report a sex difference in the GABABR-GIRK signaling pathway in these neurons. Specifically, GABABR-dependent GIRK currents recorded in the prelimbic region of the mPFC were larger in adolescent male mice than in female counterparts. Interestingly, this sex difference was not observed in layer 5/6 pyramidal neurons of the adjacent infralimbic cortex, nor was it seen in young adult mice. The sex difference in GABABR-GIRK signaling is not attributable to different expression levels of signaling pathway components, but rather to a phosphorylation-dependent trafficking mechanism. Thus, sex differences related to some diseases associated with altered mPFC function may be explained in part by sex differences in GIRK-dependent signaling in mPFC pyramidal neurons. PMID:25843643

  16. The synaptic connections of pyramidal neurones and interneurones in rat and cat neocortex.

    OpenAIRE

    Bannister, A. P.

    2004-01-01

    The layer 4 neurones of the mammalian primary sensory neocortex comprise diverse functional components for the first stage of cortical sensory processing. Dual intracellular recordings of synaptically connected pairs of neurones with biocytin-filling were used to study intra-laminar layer 4 connections in adult cat and rat slices. Interestingly, all excitatory cells involved in intralaminar layer 4 connections were regular spiking despite burst firing cells comprising 37% of the population re...

  17. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Neuman, Krystina M; Molina-Campos, Elizabeth; Musial, Timothy F; Price, Andrea L; Oh, Kwang-Jin; Wolke, Malerie L; Buss, Eric W; Scheff, Stephen W; Mufson, Elliott J; Nicholson, Daniel A

    2015-11-01

    Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity. PMID:25031178

  18. Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.

    Science.gov (United States)

    Gruene, Tina; Flick, Katelyn; Rendall, Sam; Cho, Jin Hyung; Gray, Jesse; Shansky, Rebecca

    2016-07-22

    The brain is highly plastic and undergoes changes in response to many experiences. Learning especially can induce structural remodeling of dendritic spines, which is thought to relate to memory formation. Classical Pavlovian fear conditioning (FC) traditionally pairs an auditory cue with an aversive footshock, and has been widely used to study neural processes underlying associative learning and memory. Past research has found dendritic spine changes after FC in several structures. But, due to heterogeneity of cells within brain structures and limitations of traditional neuroanatomical techniques, it is unclear if all cells included in analyses were actually active during learning processes, even if known circuits are isolated. In this study, we employed a novel approach to analyze structural plasticity explicitly in neurons activated by exposure to either cued or uncued footshocks. We used male and female Arc-dVenus transgenic mice, which express the Venus fluorophore driven by the activity-related Arc promoter, to identify neurons that were active during either scenario. We then targeted fluorescent microinjections to Arc+ and neighboring Arc- neurons in the basolateral area of the amygdala (BLA) and auditory association cortex (TeA). In both BLA and TeA, Arc+ neurons had reduced thin and mushroom spine densities compared to Arc- neurons. This effect was present in males and females alike and also in both cued and uncued shock groups. Overall, this study adds to our understanding of how neuronal activity affects structural plasticity, and represents a methodological advance in the ways we can directly relate structural changes to experience-related neural activity. PMID:27155146

  19. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons.

    NARCIS (Netherlands)

    Hevner, R.F.; Daza, R.A.; Rubenstein, J.L.; Stunnenberg, H.G.; Olavarria, J.F.; Englund, C.

    2003-01-01

    Cortical projection neurons exhibit diverse morphological, physiological, and molecular phenotypes, but it is unknown how many distinct types exist. Many projection cell phenotypes are associated with laminar fate (radial position), but each layer may also contain multiple types of projection cells.

  20. Changes in synaptic plasticity and expression of glutamate receptor subunits in the CA1 and CA3 areas of the hippocampus after transient global ischemia.

    Science.gov (United States)

    Han, Xin-Jia; Shi, Zhong-Shan; Xia, Luo-Xing; Zhu, Li-Hui; Zeng, Ling; Nie, Jun-Hua; Xu, Zao-Cheng; Ruan, Yi-Wen

    2016-07-01

    Excess glutamate release from the presynaptic membrane has been thought to be the major cause of ischemic neuronal death. Although both CA1 and CA3 pyramidal neurons receive presynaptic glutamate input, transient cerebral ischemia induces CA1 neurons to die while CA3 neurons remain relatively intact. This suggests that changes in the properties of pyramidal cells may be the main cause related to ischemic neuronal death. Our previous studies have shown that the densities of dendritic spines and asymmetric synapses in the CA1 area are increased at 12h and 24h after ischemia. In the present study, we investigated changes in synaptic structures in the CA3 area and compared the expression of glutamate receptors in the CA1 and CA3 hippocampal regions of rats after ischemia. Our results demonstrated that the NR2B/NR2A ratio became larger after ischemia although the expression of both the NR2B subunit (activation of apoptotic pathway) and NR2A subunit (activation of survival pathway) decreased in the CA1 area from 6h to 48h after reperfusion. Furthermore, expression of the GluR2 subunit (calcium impermeable) of the AMPA receptor class significantly decreased while the GluR1 subunit (calcium permeable) remained unchanged at the same examined reperfusion times, which subsequently caused an increase in the GluR1/GluR2 ratio. Despite these notable differences in subunit expression, there were no obvious changes in the density of synapses or expression of NMDAR and AMPAR subunits in the CA3 area after ischemia. These results suggest that delayed CA1 neuronal death may be related to the dramatic fluctuation in the synaptic structure and relative upregulation of NR2B and GluR1 subunits induced by transient global ischemia. PMID:27090818

  1. Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons

    Science.gov (United States)

    Hong, Zhiwen; Tian, Yujing; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Liu, Wentao; Chen, Ling

    2016-01-01

    The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system (CNS). The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA) in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein kinase B (p-Akt) protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation.

  2. Region-specific spike frequency acceleration in Layer 5 pyramidal neurons mediated by Kv1 subunits

    OpenAIRE

    Miller, Mark N; Okaty, Benjamin W.; Nelson, Sacha B.

    2008-01-01

    Separation of the cortical sheet into functionally distinct regions is a hallmark of neocortical organization. Cortical circuit function emerges from afferent and efferent connectivity, local connectivity within the cortical microcircuit, and the intrinsic membrane properties of neurons that comprise the circuit. While localization of functions to particular cortical areas can be partially accounted for by regional differences in both long range and local connectivity, it is unknown whether t...

  3. Somatostatin-like immunoreactivity in non-pyramidal neurons of the human isocortex.

    Science.gov (United States)

    Braak, E; Braak, H; Weindl, A

    1985-01-01

    The distribution of somatostatin-immunoreactive cell bodies and axons throughout the human isocortex and subjacent white matter was examined. Vibratome sections of cortical tissue (30-40 micrometers thick) obtained at surgery were treated to reveal the antigen by the unlabelled antibody enzyme method. Two types of somatostatin-immunoreactive axons were present: short, coiled axons and extended ones that follow a straight course in various directions. Somatostatin immunoreactive nerve cell bodies were encountered in layers II-VI and in the subjacent white matter. The majority of labelled cells were found in the white matter and layer VI, and then in layers II and III. The immunoreactive perikarya were fusiform, triangular or multipolar in shape and did not show preferential orientation of their long axis. Frequently, the fusiform neurons in layer VI and in the white matter were aligned parallel to radiate bundles of myelinated fibres. The immunoreactive neurons gave rise to a few thick dendrites. Often thin axon-like processes could also be recognized, originating either from the cell body or from a thicker dendrite. After destaining of the chromogen and counterstaining with aldehydefuchsin and gallocyanin chromealum, the formerly immunoreactive neurons displayed a light and eccentrically located nucleus. The soma contained only a sparse amount of basophilic substance and was nearly devoid of lipofuscin granules. In electron micrographs, the cisterns of the rough endoplasmic reticulum (RER) were localized near the periphery of the soma. Immunoreactivity occurred along membranes of the RER cistern, outer mitochondrial membrane, and in particles 120-150 micrometers in diameter. Rounded areas (up to a diameter of 1 micrometer) lacked immunoreactivity. Furthermore, there were a few tiny lysosomes. PMID:2867717

  4. Dysregulated expression of Neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    OpenAIRE

    Amit Agarwal; Mingyue Zhang; Irina Trembak-Duff; Tilmann Unterbarnscheidt; Konstantin Radyushkin; Payam Dibaj; Daniel Martins de Souza; Susann Boretius; Magdalena M. Brzózka; Heinz Steffens; Sebastian Berning; Zenghui Teng; Gummert, Maike N.; Martesa Tantra; Peter C. Guest

    2014-01-01

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increa...

  5. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  6. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    Science.gov (United States)

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. PMID:25131210

  7. Developmental profile of localized spontaneous Ca(2+) release events in the dendrites of rat hippocampal pyramidal neurons.

    Science.gov (United States)

    Miyazaki, Kenichi; Manita, Satoshi; Ross, William N

    2012-12-01

    Recent experiments demonstrate that localized spontaneous Ca(2+) release events can be detected in the dendrites of pyramidal cells in the hippocampus and other neurons (J. Neurosci. 29 (2009) 7833-7845). These events have some properties that resemble ryanodine receptor mediated "sparks" in myocytes, and some that resemble IP(3) receptor mediated "puffs" in oocytes. They can be detected in the dendrites of rats of all tested ages between P3 and P80 (with sparser sampling in older rats), suggesting that they serve a general signaling function and are not just important in development. However, in younger rats the amplitudes of the events are larger than the amplitudes in older animals and almost as large as the amplitudes of Ca(2+) signals from backpropagating action potentials (bAPs). The rise time of the event signal is fast at all ages and is comparable to the rise time of the bAP fluorescence signal at the same dendritic location. The decay time is slower in younger animals, primarily because of weaker Ca(2+) extrusion mechanisms at that age. Diffusion away from a brief localized source is the major determinant of decay at all ages. A simple computational model closely simulates these events with extrusion rate the only age dependent variable. PMID:22951184

  8. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake

    OpenAIRE

    Warthen, Daniel M.; Lambeth, Philip S.; Ottolini, Matteo; Shi, Yingtang; Barker, Bryan Scot; Gaykema, Ronald P.; Newmyer, Brandon A.; Joy-Gaba, Jonathan; Ohmura, Yu; Perez-Reyes, Edward; Güler, Ali D.; Patel, Manoj K.; Scott, Michael M

    2016-01-01

    The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behaviora...

  9. Blockade by sigma site ligands of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones.

    OpenAIRE

    Church, J; Fletcher, E. J.

    1995-01-01

    1. The effects of a series of structurally-dissimilar sigma site ligands were examined on high voltage-activated Ca2+ channel activity in two preparations of cultured hippocampal pyramidal neurones. 2. In mouse hippocampal neurones under whole-cell voltage-clamp, voltage-activated Ca2+ channel currents carried by barium ions (IBa) were reduced with the rank order (IC50 values in microM): 1S,2R-(-)-cis-N-methyl-N-[2-(3,4-dichlorophenyl)ethyl]- 2-(1-pyrrolidinyl)cyclohexylamine (7.8) > rimcazol...

  10. Sub-millisecond firing synchrony of closely neighboring pyramidal neurons in hippocampal CA1 of rats during delayed non-matching to sample task

    Directory of Open Access Journals (Sweden)

    Susumu Takahashi

    2009-09-01

    Full Text Available Firing synchrony among neurons is thought to play functional roles in several brain regions. In theoretical analyses, firing synchrony among neurons within sub-millisecond precision is feasible to convey information. However, little is known about the occurrence and the functional significance of the sub-millisecond synchrony among closely neighboring neurons in the brain of behaving animals because of a technical issue: spikes simultaneously generated from closely neighboring neurons are overlapped in the extracellular space and are not easily separated. As described herein, using a unique spike sorting technique based on independent component analysis together with extracellular 12-channel multi-electrodes (dodecatrodes, we separated such overlapping spikes and investigated the firing synchrony among closely neighboring pyramidal neurons in the hippocampal CA1 of rats during a delayed non-matching to sample task. Results showed that closely neighboring pyramidal neurons in the hippocampal CA1 can co-fire with sub-millisecond precision. The synchrony generally co-occurred with the firing rate modulation in relation to both internal (retention and comparison and external (stimulus input and motor output events during the task. However, the synchrony occasionally occurred in relation to stimulus inputs even when rate modulation was clearly absent, suggesting that the synchrony is not simply accompanied with firing rate modulation and that the synchrony and the rate modulation might code similar information independently. We therefore conclude that the sub-millisecond firing synchrony in the hippocampus is an effective carrier for propagating information—as represented by the firing rate modulations—to downstream neurons.

  11. Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons.

    Science.gov (United States)

    Khodr, Christina E; Chen, Lihua; Dave, Sonya; Al-Harthi, Lena; Hu, Xiu-Ti

    2016-10-01

    Human Immunodeficiency Virus type 1 (HIV-1) infection induces neurological and neuropsychological deficits, which are associated with dysregulation of the medial prefrontal cortex (mPFC) and other vulnerable brain regions. We evaluated the impact of HIV infection in the mPFC and the therapeutic potential of targeting over-active voltage-gated L-type Ca(2+) channels (L-channel) and NMDA receptors (NMDAR), as modeled in HIV-1 transgenic (Tg) rats. Whole-cell patch-clamp recording was used to assess the membrane properties and voltage-sensitive Ca(2+) potentials (Ca(2+) influx) in mPFC pyramidal neurons. Neurons from HIV-1 Tg rats displayed reduced rheobase, spike amplitude and inwardly-rectifying K(+) influx, increased numbers of action potentials, and a trend of aberrant firing compared to those from non-Tg control rats. Neuronal hyper-excitation was associated with abnormally-enhanced Ca(2+) influx (independent of NMDAR), which was eliminated by acute L-channel blockade. Combined chronic blockade of over-active L-channels and NMDARs with open-channel blockers abolished HIV effects on spiking, aberrant firing and Ca(2+) potential half-amplitude duration, though not the reduced inward rectification. In contrast, individual chronic blockade of over-active L-channels or NMDARs did not alleviate HIV-induced mPFC hyper-excitability. These studies demonstrate that HIV alters mPFC neuronal activity by dysregulating membrane excitability and Ca(2+) influx through the L-channels. This renders these neurons more susceptible and vulnerable to excitatory stimuli, and could contribute to HIV-associated neuropathogenesis. Combined targeting of over-active L-channels/NMDARs alleviates HIV-induced dysfunction of mPFC pyramidal neurons, emphasizing a potential novel therapeutic strategy that may effectively decrease HIV-induced Ca(2+) dysregulation in the mPFC. PMID:27326669

  12. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons

    OpenAIRE

    Kress, Geraldine J.; Dowling, Margaret; Eisenman, Lawrence N.; Mennerick, Steven

    2010-01-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium c...

  13. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex

    OpenAIRE

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C.

    2011-01-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters we...

  14. Synapsin III Acts Downstream of Semaphorin 3A/CDK5 Signaling to Regulate Radial Migration and Orientation of Pyramidal Neurons In Vivo

    Directory of Open Access Journals (Sweden)

    Laura E. Perlini

    2015-04-01

    Full Text Available Synapsin III (SynIII is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5 phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation.

  15. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)-dependent activation by blocking A1 adenosine receptors.

    OpenAIRE

    Klishin, A; Tsintsadze, T.; Lozovaya, N.; Krishtal, O

    1995-01-01

    When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurri...

  16. Mnemonic Functions for Nonlinear Dendritic Integration in Hippocampal Pyramidal Circuits.

    Science.gov (United States)

    Kaifosh, Patrick; Losonczy, Attila

    2016-05-01

    We present a model for neural circuit mechanisms underlying hippocampal memory. Central to this model are nonlinear interactions between anatomically and functionally segregated inputs onto dendrites of pyramidal cells in hippocampal areas CA3 and CA1. We study the consequences of such interactions using model neurons in which somatic burst-firing and synaptic plasticity are controlled by conjunctive processing of these separately integrated input pathways. We find that nonlinear dendritic input processing enhances the model's capacity to store and retrieve large numbers of similar memories. During memory encoding, CA3 stores heavily decorrelated engrams to prevent interference between similar memories, while CA1 pairs these engrams with information-rich memory representations that will later provide meaningful output signals during memory recall. While maintaining mathematical tractability, this model brings theoretical study of memory operations closer to the hippocampal circuit's anatomical and physiological properties, thus providing a framework for future experimental and theoretical study of hippocampal function. PMID:27146266

  17. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Oscar eHerreras

    2012-10-01

    Full Text Available Long term potentiation (LTP is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes difficult estimating the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. These indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  18. Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett Syndrome model mice

    Directory of Open Access Journals (Sweden)

    David P Stuss

    2015-04-01

    Full Text Available Rett Syndrome (RTT is a progressive neurological disorder primarily caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2. The heterozygous female brain consists of mosaic of neurons containing both wildtype MeCP2 (MeCP2+ and mutant MeCP2 (MeCP2-. 3-dimensional morphological analysis was performed on individually genotyped layer V pyramidal neurons in the primary motor cortex of heterozygous (Mecp2+/- and wild-type (Mecp2+/+ female mice (>6 mo. from the Mecp2tm1.1Jae line. Comparing basal dendrite morphology, soma and nuclear size of MeCP2+ to MeCP2- neurons reveals a significant cell autonomous, genotype specific effect of Mecp2. MeCP2- neurons have 15% less total basal dendritic length, predominantly in the region 70-130 μm from the cell body and on average 3 fewer branch points, specifically loss in the 2nd and 3rd branch orders. Soma and nuclear areas of neurons of mice were analyzed across a range of ages (5-21 mo. and X-chromosome inactivation (XCI ratios (12-56%. On average, MeCP2- somata and nuclei were 15% and 13% smaller than MeCP2+ neurons respectively. In most respects branching morphology of neurons in wild-type brains (MeCP2 WT was not distinguishable from MeCP2+ but somata and nuclei of MeCP2 WT neurons were larger than those of MeCP2+ neurons. These data reveal cell autonomous effects of Mecp2 mutation on dendritic morphology, but also suggest non-cell autonomous effects with respect to cell size. MeCP2+ and MeCP2- neuron sizes were not correlated with age, but were correlated with XCI ratio. Unexpectedly the MeCP2- neurons were smallest in brains where the XCI ratio was highly skewed towards MeCP2+, i.e. wild-type. This raises the possibility of cell non-autonomous effects that act through mechanisms other than globally secreted factors; perhaps competition for synaptic connections influences cell size and morphology in the genotypically mosaic brain of RTT model mice.

  19. Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Janardhan Prasad Bhattarai

    2014-01-01

    Full Text Available Background: In Nepali and Indian system of traditional medicine, Withania somnifera (WS is considered as a rejuvenative medicine to maintain physical and mental health and has also been shown to improve memory consolidation. Objective: In this study, a methanolic extract of WS (mWS was applied on mice hippocampal CA1 neurons to identify the receptors activated by the WS. Materials and Methods: The whole cell patch clamp recordings were performed on CA1 pyramidal neurons from immature mice (7-20 postnatal days. The cells were voltage clamped at -60 mV. Extract of WS root were applied to identify the effect of mWS. Results: The application of mWS (400 ng/μl induced remarkable inward currents (-158.1 ± 28.08 pA, n = 26 on the CA1 pyramidal neurons. These inward currents were not only reproducible but also concentration dependent. mWS-induced inward currents remained persistent in the presence of amino acid receptor blocking cocktail (AARBC containing blockers for the ionotropic glutamate receptors, glycine receptors and voltage-gated Na + channel (Control: -200.3 ± 55.42 pA, AARBC: -151.5 ± 40.58 pA, P > 0.05 suggesting that most of the responses by mWS are postsynaptic events. Interestingly, these inward currents were almost completely blocked by broad GABA A receptor antagonist, bicuculline- 20 μM (BIC (BIC: -1.46 ± 1.4 pA, P < 0.001, but only partially by synaptic GABA A receptor blocker gabazine (1 μM (GBZ: -18.26 ± 4.70 pA, P < 0.01. Conclusion: These results suggest that WS acts on synaptic/extrasynaptic GABA A receptors and may play an important role in the process of memory and neuroprotection via activation of synaptic and extrasynaptic GABA A receptors.

  20. Centered Pyramids

    OpenAIRE

    Brigger, P.; F. Müller; Illgner, K.; Unser, M.

    1999-01-01

    Quadtree-like pyramids have the advantage of resulting in a multiresolution representation where each pyramid node has four unambiguous parents. Such a centered topology guarantees a clearly defined up-projection of labels. This concept has been successfully and extensively used in applications of contour detection, object recognition and segmentation. Unfortunately, the quadtree-like type of pyramid has poor approximation powers because of the employed piecewise-constant image model. This pa...

  1. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons.

    Science.gov (United States)

    Kress, Geraldine J; Dowling, Margaret J; Eisenman, Lawrence N; Mennerick, Steven

    2010-04-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the Na(V)1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channels in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons. PMID:19603521

  2. [The dendritic spines of the pyramidal neurons in layer V of the rat sensorimotor cortex following a 14-day space flight].

    Science.gov (United States)

    Belichenko, P V; Krasnov, I B

    1991-11-01

    There was made a quantitative study of the influence of 14 days space flight ("Kosmos-2044") on dendritic spine (DS) density of the layer V pyramidal neurons of rat sensomotor cortex. There was found an increase of the number of apical DS lying in the layers III-IV in the flight group only. Number of DS on oblique dendrites was increased in the III-IV cortical layers both in the flight and tail-suspended rats. There was also an increase in the number of DS on basal dendrites in all experimental groups. Obtained data are compared with similar 7 days flight results ("Kosmos-1667") and other data of nervous tissue plasticity in weightlessness. PMID:1810500

  3. Dopamine modulates Spike Timing-Dependent Plasticity and action potential properties in CA1 pyramidal neurons of acute rat hippocampal slices

    Directory of Open Access Journals (Sweden)

    Elke eEdelmann

    2011-11-01

    Full Text Available Spike Timing-Dependent Plasticity (STDP is a cellular model of hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15-20, we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent (t-LTP to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10-20 min to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values in sucrose prepared slices. These results lead us to suggest that dopamine dependent regulation of action potential properties correlates with the efficiency to elicit STDP in CA1 pyramidal neurons.

  4. Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidal neurons via α7 nAChR-dependent and -independent mechanisms.

    Science.gov (United States)

    Banerjee, Jyotirmoy; Alkondon, Manickavasagom; Albuquerque, Edson X

    2012-10-15

    Glutamatergic hypofunction and elevated levels of kynurenic acid (KYNA) in the brain are common features of patients with schizophrenia. In vivo studies indicate that in the hippocampus KYNA decreases glutamate levels, presumably via inhibition of α7 nicotinic receptors (nAChRs). Here we tested the hypothesis that basal synaptic glutamate activity in the hippocampus is regulated by tonically active α7 nAChRs and is sensitive to inhibition by KYNA. To this end, spontaneous excitatory postsynaptic currents (EPSCs), sensitive to AMPA receptor antagonist CNQX (10 μM), were recorded from CA1 pyramidal neurons at -70 mV in rat hippocampal slices. The α7 nAChR antagonists α-bungarotoxin (α-BGT, 100 nM) and methyllycaconitine (MLA, 1-50 nM), and the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV, 50 μM) reduced the frequency of EPSCs. MLA and α-BGT had no effect on miniature EPSCs (mEPSCs). The effect of MLA decreased in the presence of APV (50 μM), with 1 nM MLA becoming completely ineffective. KYNA (1-20 μM) suppressed the frequency of EPSCs, without affecting mEPSCs. The effect of KYNA decreased in the presence of MLA (1 nM) or α-BGT (100 nM), with 1 μM KYNA being devoid of any effect. In the presence of both MLA (10 nM) and APV (50 μM) higher KYNA concentrations (5-20 μM) still reduced the frequency of EPSCs. These results suggest that basal synaptic glutamate activity in CA1 pyramidal neurons is maintained in part by tonically active α7 nAChRs and NMDA receptors and is inhibited by micromolar concentrations of KYNA, acting via α7 nAChR-dependent and -independent mechanisms. PMID:22889930

  5. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k

    International Nuclear Information System (INIS)

    Calbindin-D28k (CaBP) immunohistochemistry has been combined with electrophysiological recording and Lucifer Yellow (LY) cell identification in the CA1 region of the rat hippocampal formation. CaBP is shown to be contained within a distinct sub-population of CA1 pyramidal cells which is equivalent to the superficial layer described by Lorente de No (1934). The neurogenesis of these CaBP-positive neurons occurs 1-2 days later than the CaBP-negative neurons in the deep pyramidal cell layer, as shown by 3H-thymidine autoradiography. No correlation could be found between the presence or absence of CaBP and the type of electrophysiological response to current-evoked depolarizing pulses. The latter could be separated into bursting or non-bursting types, and the bursting-type response was nearly always found to be associated with the presence of LY dye coupling. Furthermore, when dye coupling involved three neurons, a characteristic pattern was observed which may represent the coupling of phenotypically identical neurons into distinct functional units within the CA1 pyramidal cell layer. In this particular case the three neurons were all likely to be CaBP-positive

  6. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k

    Energy Technology Data Exchange (ETDEWEB)

    Baimbridge, K.G.; Peet, M.J.; McLennan, H.; Church, J. (Department of Physiology, University of British Columbia, Vancouver (Canada))

    1991-04-01

    Calbindin-D28k (CaBP) immunohistochemistry has been combined with electrophysiological recording and Lucifer Yellow (LY) cell identification in the CA1 region of the rat hippocampal formation. CaBP is shown to be contained within a distinct sub-population of CA1 pyramidal cells which is equivalent to the superficial layer described by Lorente de No (1934). The neurogenesis of these CaBP-positive neurons occurs 1-2 days later than the CaBP-negative neurons in the deep pyramidal cell layer, as shown by 3H-thymidine autoradiography. No correlation could be found between the presence or absence of CaBP and the type of electrophysiological response to current-evoked depolarizing pulses. The latter could be separated into bursting or non-bursting types, and the bursting-type response was nearly always found to be associated with the presence of LY dye coupling. Furthermore, when dye coupling involved three neurons, a characteristic pattern was observed which may represent the coupling of phenotypically identical neurons into distinct functional units within the CA1 pyramidal cell layer. In this particular case the three neurons were all likely to be CaBP-positive.

  7. GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex

    Directory of Open Access Journals (Sweden)

    Luisa De Vivo

    2010-01-01

    Full Text Available GLT-1 eGFP BAC reporter transgenic adult mice were used to detect GLT-1 gene expression in individual cells of CA1, CA3 and SI, and eGFP fluorescence was measured to analyze quantitatively GLT-1 promoter activity in different cells of neocortex and hippocampus. Virtually all GFAP+ astrocytes were eGFP+; we also found that about 80% of neurons in CA3 pyramidal layer, 10-70% of neurons in I-VI layers of SI and rare neurons in all strata of CA1 and in strata oriens and radiatum of CA3 were eGFP+. Analysis of eGFP intensity showed that astrocytes had a higher GLT-1 promoter activity in SI than in CA1 and CA3, and that neurons had the highest levels of GLT-1 promoter activity in CA3 stratum pyramidale and in layer VI of SI. Finally, we observed that the intensity of GLT-1 promoter activity in neurons is 1-20% of that measured in astrocytes. These results showed that in the hippocampus and neocortex GLT-1 promoter activity is observed in astrocytes and neurons, detailed the distribution of GLT-1 expressing neurons, and indicated that GLT-1 promoter activity in both astrocytes and neurons varies in different brain regions.

  8. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    DEFF Research Database (Denmark)

    Kang, J.; Kang, N.; Yu, Y.;

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10...

  9. Memory-enhancing intra-basolateral amygdala clenbuterol infusion reduces post-burst afterhyperpolarizations in hippocampal CA1 pyramidal neurons following inhibitory avoidance learning.

    Science.gov (United States)

    Lovitz, E S; Thompson, L T

    2015-03-01

    Activation of the basolateral amygdala can modulate the strength of fear memories, including those in single-trial inhibitory avoidance (IA) tasks. Memory retention, measured by the latency to re-enter a dark-compartment paired 24h earlier with a footshock, varies with intensity of this aversive stimulus. When higher intensity footshocks were used, hippocampal CA1 pyramidal neurons exhibited reduced afterhyperpolarizations (AHPs) 24h post-trial, an effect blocked by immediate post-trial inactivation of the basolateral complex of the amygdala (BLA). Similar AHP reductions in CA1 have been observed in a number of learning tasks, with time courses appropriate to support memory consolidation. When less intense footshocks were used for IA training of Sprague-Dawley rats, immediate post-trial infusion of the β-adrenergic agonist clenbuterol into BLA was required to enhance hippocampal Arc protein expression 45 min later and to enhance memory retention tested 48 h later. Here, using Long-Evans rats and low-intensity footshocks, we confirmed that bilateral immediate post-trial infusion of 15 ng/0.5 μl of the β-adrenergic agonist clenbuterol into BLA significantly enhances memory for an IA task. Next, clenbuterol was infused into one BLA immediately post-training, with vehicle infused into the contralateral BLA, then hippocampal CA1 neuron AHPs were assessed 24 h later. Only CA1 neurons from hemispheres ipsilateral to post-trial clenbuterol infusion showed learning-dependent AHP reductions. Excitability of CA1 neurons from the same trained rats, but from the vehicle-infused hemispheres, was identical to that from untrained rats receiving unilateral clenbuterol or vehicle infusions. Peak AHPs, medium and slow AHPs, and accommodation were reduced only with the combination of IA training and unilateral BLA β-receptor activation. Similar to previous observations of BLA adrenergic memory-related enhancement of Arc protein expression in hippocampus, increased CA1 neuronal

  10. The response of L5 pyramidal neurons of the PFC to magnetic stimulation from a micro-coil

    OpenAIRE

    Lee, Seung Woo; Fried, Shelley I

    2014-01-01

    Magnetic stimulation of the nervous system, e.g. transcranial magnetic stimulation (TMS), has been used both to unravel basic structure and function of the nervous system as well as to treat neurological diseases, i.e. clinical depression. Despite progress in both areas, ongoing advancements have been limited by a lack of understanding of the mechanism by which magnetic stimulation alters neural activity. Here, we report responses of cortical neurons to magnetic stimulation arising from a sub...

  11. Association of Rgs7/Gβ5 complexes with Girk channels and GABAB receptors in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Fajardo-Serrano, Ana; Wydeven, Nicole; Young, Daniele; Watanabe, Masahiko; Shigemoto, Ryuichi; Martemyanov, Kirill A; Wickman, Kevin; Luján, Rafael

    2013-12-01

    In the hippocampus, signaling through G protein-coupled receptors is modulated by Regulators of G protein signaling (Rgs) proteins, which act to stimulate the rate of GTP hydrolysis, and consequently, G protein inactivation. The R7-Rgs subfamily selectively deactivates the G(i/o)-class of Gα subunits that mediate the action of several GPCRs. Here, we used co-immunoprecipitation, electrophysiology and immunoelectron microscopy techniques to investigate the formation of macromolecular complexes and spatial relationship of Rgs7/Gβ5 complexes and its prototypical signaling partners, the GABAB receptor and Girk channel. Co-expression of recombinant GABAB receptors and Girk channels in combination with co-immunoprecipitation experiments established that the Rgs7/Gβ5 forms complexes with GABAB receptors or Girk channels. Using electrophysiological experiments, we found that GABAB -Girk current deactivation kinetics was markedly faster in cells coexpressing Rgs7/Gβ5. At the electron microscopic level, immunolabeling for Rgs7 and Gβ5 proteins was found primarily in the dendritic layers of the hippocampus and showed similar distribution patterns. Immunoreactivity was mostly localized along the extrasynaptic plasma membrane of dendritic shafts and spines of pyramidal cells and, to a lesser extent, to that of presynaptic terminals. Quantitative analysis of immunogold particles for Rgs7 and Gβ5 revealed an enrichment of the two proteins around excitatory synapses on dendritic spines, virtually identical to that of Girk2 and GABAB1 . These data support the existence of macromolecular complexes composed of GABAB receptor-G protein-Rgs7-Girk channels in which Rgs7 and Gβ5 proteins may preferentialy modulate GABAB receptor signaling through the deactivation of Girk channels on dendritic spines. In contrast, Rgs7 and Girk2 were associated but mainly segregated from GABAB1 in dendritic shafts, where Rgs7/Gβ5 signaling complexes might modulate Girk-dependent signaling via a

  12. Suppression of Ischemia-Induced Hippocampal Pyramidal Neuron Death by Hyaluronan Tetrasaccharide through Inhibition of Toll-Like Receptor 2 Signaling Pathway.

    Science.gov (United States)

    Sunabori, Takehiko; Koike, Masato; Asari, Akira; Oonuki, Yoji; Uchiyama, Yasuo

    2016-08-01

    Toll-like receptors (TLRs) are one of the main contributors that induce inflammation under tissue injury and infection. Because excessive inflammation can aggravate disease states, it is important to control inflammation at a moderate level. Herein, we show that hyaluronan (HA) oligomer, HA tetrasaccharide (HA4), could suppress the expression of proinflammatory cytokine IL-1β when stimulated with both TLR2- and TLR4-specific agonists in primary hippocampal neurons. To understand the effect of HA4 against ischemic insult, we performed hypoxic-ischemic (H/I) brain injury against neonatal mice. HA4 treatment significantly prevented hippocampal pyramidal cell death even 7 days after H/I injury, compared with the control mice. Although TLR2 and TLR4 are known as receptors for HA and also act as a receptor for inducing inflammation, only TLR2-deficient mice showed tolerance against H/I injury. Moreover, HA4 administration suppressed gliosis by inhibiting the activation of NF-κB, the downstream target of TLR2, which led to the suppression of IL-1β expression. Taken together, our data suggest that the neuroprotective effect of HA4 relies on antagonizing the TLR2/NF-κB pathway to reduce inflammation through suppressing the expression of proinflammatory cytokines after neonatal H/I brain injury. PMID:27301359

  13. Prenatal hypoxia-ischemia induces abnormalities in CA3 microstructure, potassium chloride cotransporter 2 expression and inhibitory tone

    Directory of Open Access Journals (Sweden)

    Lauren L Jantzie

    2015-09-01

    Full Text Available Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits including epilepsy, cognitive impairment, and behavioral problems such as anxiety, inattention and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl- reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic-ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia-ischemia, diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased IPSCs during a critical window of development, we document for the first time that prenatal transient systemic hypoxia-ischemia in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury.

  14. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus

    DEFF Research Database (Denmark)

    Hosseini-Sharifabad, Mohammad; Nyengaard, Jens Randel

    2007-01-01

    Tools recently developed in stereology were employed for unbiased estimation of the neuronal number and volume in three major subdivisions of rat hippocampus (dentate granular, CA1 and CA3 pyramidal layers). The optical fractionator is used extensively in quantitative studies of the hippocampus......; however, the classical optical fractionator design may be affected by tissue deformation in the z-axis of the section. In this study, we applied an improved optical fractionator design to estimate total number of neurons on 100 microm thick vibratome sections that had been deformed, in the z...... vertical sections from the hippocampus. The volume of hippocampal neurons was estimated using the rotator principle on 40 microm thick plastic vertical uniform random sections and corrected for tissue shrinkage. Application of the proposed new design should result in more accurate estimates of neuron...

  15. Clustering of population pyramids

    OpenAIRE

    Kejžar, Nataša; Korenjak-Černe, Simona; Batagelj, Vladimir

    2015-01-01

    Population pyramid is a very popular presentation of the age-sex distribution of the human population of a particular region. The shape of the pyramid shows many demographic, social, and political characteristics of the time and the region. In the paper results of hierarchical clustering of the world countries based on population pyramids are presented. Special attention is given to the shapes of the pyramids. The changes of the pyramids' shapes, and also changes of the countries inside main ...

  16. Clustering of population pyramids:

    OpenAIRE

    Batagelj, Vladimir; Kejžar, Nataša; Korenjak-Černe, Simona

    2008-01-01

    Population pyramid is a very popular presentation of the age-sex distribution of the human population of a particular region. The shape of the pyramid shows many demographic, social, and political characteristics of the time and the region. In the paper results of hierarchical clustering of the world countries based on population pyramids are presented. Special attention is given to the shapes of the pyramids. The changes of the pyramids' shapes, and also changes of the countries inside main ...

  17. Growth of dendritic spines and its synapses in pyramidal neurons of visual cortex in mice%小鼠视皮质锥体神经元树突棘和突触的发育

    Institute of Scientific and Technical Information of China (English)

    赵凯冰; 崔占军; 陈文静; 牛艳丽

    2012-01-01

    目的:通过观察小鼠视皮质锥体神经元正常发育过程中树突棘的形态变化,研究树突棘与突触的发生及其可塑性的关系.方法:利用DiI散射方法标记小鼠视皮质锥体神经元树突棘,使用共聚焦显微镜对其进行观察分析;同时利用透射电子显微镜技术,对树突棘的超微结构进行分析.结果:树突棘的形态大小及其密度随发育而变化;成熟树突棘内部存在滑面内质网与棘器;树突棘参与了大部分突触后成分的构成.结论:树突棘的发育过程与突触的形成以及突触可塑性密切相关.%Objective:To explore the relationship among the synaptogenesis, synaptic plasticity and dendritic spines by observing the morphological changes of dendritic spines of pyramidal neurons in the visual cortex of mice during development Methods: The dendritic spines of the pyramidal neurons of mouse visual cortex were labeled with Dil and observed under a confocal microscope. The ultrastructures of dendritic spines were observed by means of transmission electron microscopy. Results:The morphology and density of dendritic spines were changing with mouse growth in response to neuronal activity. The smooth endoplasmic reticulum and spine apparatus were detectable in matured dendritic spines. And, dendritic spines offered most parts of the postsynaptic element. Conclusion :These findings suggest that dendritic spines be close related synaptogenesis and synaptic plasticity.

  18. Pyramid Comet Sampler Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the sampling requirements, we propose an Inverted Pyramid sampling system. Each face of the pyramid includes a cutting blade which is independently...

  19. Numerical integration over pyramids

    OpenAIRE

    Chen, Ch.; Křížek, M.; Liu, L

    2013-01-01

    Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.

  20. Effects of citalopram on expression of B-cell lyraphoma/leukemia-2 and Bcl-associated X protein and neuron apoptosis in hippocmnpus CA1 and CA3 regions of long-term stress rats%西酞普兰对慢性应激大鼠海马CA1和CA3区神经细胞B细胞淋巴瘤/白血病-2及Bcl相关蛋白表达与凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    俞爱月; 苏巧荣; 刘学红; 王岚; 张剑

    2009-01-01

    Objective To explore effects of citalopram on preventing neuron apoptosis in CA1 and CA3 regions of hippocampus in chronic stress rats.Methods Forty male Sprague Dawley rats were randomly divided into five groups with eight each group.Stressed rat models were made by forced swimming daily for 4 weeks,and the stressed group wag treated with intragagtric administration of 0.9% sodium chloride,and three experimental groups with different dosage of citalopram.The fifth group was given no treatment as control.The proteins of bcl-2 and bax were detected with immunohistochemistry.Apoptosis cell number and integral optical density in CA1 and CA3 regions were tested and analyzed with terminal deoxynucleotidyl transferage biotin-dUTP nick end labeling(TUNEL)method and Nikon imaging software-BR(NIS-BR).Results The stationary time Wag longer in the stress group[(279±53)s]than the control group[(182 ±35)s],and the three citalopram treatment group[(200±71)s,(159±59)s,(165±54)s].The number of struggling[(20 ±3)times]was less than control group[(24 ±3)times]and the treatment groups[(37 ±16),(32 ±10),(24 ±4)times],and exhaustive time[(38.3 ±5.1)min]longer than control group[(22.9±1.8)min],shorter than treatment groups[(54.4 ±2.9)min,(69.3±17.6)min,(46.4±4.0)min].AlJ tIle differences were statistically significant(P<0.05 or 0.01).Rats in the stress group showed more apoptotic cells,reduced expression of bcl-2 and increased bax protein expression in CA1 and CA3 regions(P<0.05 or 0.01)in comparison with control group.Compared to the stressed group,rats in treatment groups showed Iess apoptotic cells,reduced expression of bax and increased bcl-2 protein expression in CA1 and CA3 regions(P<0.05).Conclusion Long-term stress might cause neuron apoptosis and expression of bcl-2 and bax in CA1 and CA3 region of hippocampus,and citalopram might have prophylactic effects on this process.%目的 探讨西酞普兰对慢性应激大鼠海马CA1、CA3神经

  1. 小鼠海马CA1区锥体神经元树突棘的发育%Dendritic spine development of mouse hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    刘畅; 范文娟; 程维杰; 左曙光; 邓锦波

    2012-01-01

    Objective To investigate the developmental characteristics of dendritic spines in mouse hippocampal CA1 pyramidal neurons by analysing the spine density and morphological changes. Methods Fifty mice were collected at postnatal days ( P ) 0, 5, 10, 20 and 30, 10 mice for each age. Dil diolistic labeling with gene gun was performed to observe dendritic spines development in mouse hippocampal CA1 pyramidal neurons. High quality labeled neurons were examined and photographed under a confocal microscope, whereas the ultrastructure of spines was observed under a transmission electron microscope. Results Dendritic spines changed their morphology and density with mouse development in response to neuronal activity. The smooth endoplasmic reticulum and spine apparatus in dendritic spines of hippocampal CA1 were observed with electron microscopy analysis, which might be involved in the regulation of plasticity at individual synapses. Conclusion The development of dendritic spines may be closely related to synaptogenesis and the formation of synaptic plasticity.%目的 对小鼠海马CA1区锥体神经元正常发育中树突棘密度及各种形态变化进行分析测定,为深入研究突触发生及突触可塑性提供直接的形态学依据.方法 分别取出生后0、5、10、20及30d 5个年龄段的C57BL/6小鼠各10只,采用基因枪对小鼠海马CA1区锥体神经元树突棘进行亲脂性荧光染料DiI标记,通过激光共焦显微镜对其进行观察分析;同时利用透射电镜技术对树突棘的超微结构进行分析.结果 树突棘的形态、大小及其密度随小鼠发育而变化,成熟树突棘内部存在滑面内质网与棘器,可能参与了突触后膜结合蛋白及其转运体的合成.结论 树突棘的发育过程与突触连接的形成以及突触可塑性密切相关.

  2. Neuropeptide Y expression in mouse hippocampus and its role in neuronal excitotoxicity

    Institute of Scientific and Technical Information of China (English)

    Yong-fei WU; Sheng-bin LI

    2005-01-01

    Aim: To investigate neuropeptide Y (NPY) expression in mouse hippocampus within early stages of kainic acid (KA) treatment and to understand its role in neuronal excitotoxicity. Methods: NPY expression in the hippocampus within early stages of KA intraperitoneal (ip) treatment was detected by immunohistochemistry (IHC) and in situ hybridization (ISH) methods. The role of NPY and Y5, Y2 receptors in excitotoxicity was analyzed by terminal deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) assay. Results: Using IHC assay, in granule cell layer of the dentate gyrus (DG), NPY positive signals appeared 4 h after KA injection, reached the peak at 8 h and leveled off at 16 and 24 h. In CA3, no positive signal was found within the first 4 h after KA injection,but strong signal appeared at 16 and 24 h. No noticeable signal was detected in CA1 at all time points after KA injection. Using the ISH method, positive signals were detected at 4, 8, and 16 h in CA3, CA1, and hilus. In DG, much stronger ISH signals were detected at 4 h, but leveled off at 8 and 16 h. TUNEL analysis showed that intracerebroventricularly (icv) infusion of NPY and Y5, Y2 receptor agonists within 8 h after KA insult with proper dose could remarkably rescue pyramidal neurons in CA3 and CA1 from apoptosis. Conclusion: NPY is an important anti-epileptic agent. The preceding elevated expression of NPY in granule cell layer of DG after KA injection might partially explain its different excitotoxicity-induced apoptotic responses in comparison with the pyramidal neurons from CA3 and CA1 regions. NPY can not only reduce neuronal excitability but also prevent excitotoxicity-induced neuronal apoptosis in a time- and doserelated way by activation of Y5 and Y2 receptors.

  3. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons.

    Science.gov (United States)

    Bittner, Katie C; Grienberger, Christine; Vaidya, Sachin P; Milstein, Aaron D; Macklin, John J; Suh, Junghyup; Tonegawa, Susumu; Magee, Jeffrey C

    2015-08-01

    Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity, we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials were produced by an interaction between properly timed input from entorhinal cortex and hippocampal CA3. These conjunctive signals positively modulated the firing of previously established place fields and rapidly induced new place field formation to produce feature selectivity in CA1 that is a function of both entorhinal cortex and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps. PMID:26167906

  4. The Corporate Pyramid Fable

    OpenAIRE

    Steven A. Bank and Brian R. Cheffins

    2010-01-01

    Although corporate pyramids are currently commonplace world-wide and although there have been "noteworthy pyramiders" in American business history, this controversial form of corporate organization is now a rarity in the United States. The conventional wisdom is that corporate pyramids disappeared in the U.S. when New Deal policymakers began taxing dividends paid to corporate shareholders. This version of events is more fable than truth. The introduction of the intercorporate dividend tax did...

  5. Dopamine D3 receptors inhibit hippocampal gamma oscillations by disturbing CA3 pyramidal cell firing synchrony

    OpenAIRE

    Lemercier, Clément E.; Schulz, Steffen B.; Heidmann, Karin E.; Richard eKovács; Zoltan eGerevich

    2016-01-01

    Cortical gamma oscillations are associated with cognitive processes and are altered in several neuropsychiatric conditions such as schizophrenia and Alzheimer’s disease. Since dopamine D3 receptors are possible targets in treatment of these conditions, it is of great importance to understand their role in modulation of gamma oscillations. The effect of D3 receptors on gamma oscillations and the underlying cellular mechanisms were investigated by extracellular local field potential and simulta...

  6. Dopamine D3 Receptors Inhibit Hippocampal Gamma Oscillations by Disturbing CA3 Pyramidal Cell Firing Synchrony

    OpenAIRE

    Lemercier, Clément E.; Schulz, Steffen B.; Heidmann, Karin E.; Kovács, Richard; Gerevich, Zoltan

    2016-01-01

    Cortical gamma oscillations are associated with cognitive processes and are altered in several neuropsychiatric conditions such as schizophrenia and Alzheimer’s disease. Since dopamine D3 receptors are possible targets in treatment of these conditions, it is of great importance to understand their role in modulation of gamma oscillations. The effect of D3 receptors on gamma oscillations and the underlying cellular mechanisms were investigated by extracellular local field potential and simulta...

  7. Electrical excitability of the apical dendrites of mammalian cortical pyramidal neurons%哺乳动物大脑皮层锥体神经元顶树突电兴奋性问题

    Institute of Scientific and Technical Information of China (English)

    范世藩

    2012-01-01

    对树突电兴奋性的研究始于大脑皮层锥体神经元的顶树突.20世纪50年代张香桐在这方面做出了重要贡献.现在已经清楚,不同神经元的树突,甚至是同一神经元不同树突的电兴奋性是不同的.在大脑皮层锥体神经元顶树突,源自细胞体的单个或频率恒定的重复动作电位都不能上溯到顶树突的末端部分.可是由直流电注入细胞体引起的爆发型、频率不恒定的重复放电中,有些动作电位却可以上溯到顶树突的末端部分.其原因可能有二:(1)顶树突内的钙离子浓度增加,提高了树突的电兴奋性;(2)被激活了的细胞体轴突的侧枝在树突末端部分释放的谷氨酸改变了那里电压控制的离子通道的性质.顶树突的电兴奋性较低,应该是顶树突处理大量输入信号所必须.%The electrical excitability of the dendrites of the cortical neurons was first studied on the apical dendrites of the pyramidal neurons. Professor ZHANG Xiang-Tong (H-T Chang) made important contributions in the fifties of last century on this topic. Through numerous studies later on, it has been established that the electrical excitability of dendrites of different types of neurons, even different dendrites in the same neuron is different. For the apical dendrites of the cortical pyramidal neurons, neither a single nor a train of repetitive action potentials with constant frequency can reach its terminal portion. However, some of the burst repetitive responses with non-constant frequency of the apical dendrite elicited by direct current injected into the soma may reach the terminal portion. This may be due to: (1) the calcium ion concentration in the apical dendrite is increased by the burst activities, which, in turn, increases the electrical excitability of the apical dendrite and /or (2) some retrograde collaterals of axon of the activated soma reach the apical dendrite and release neurotransmitter glutamate, which changes the

  8. Fluoxetine (prozac) and serotonin act on excitatory synaptic transmission to suppress single layer 2/3 pyramidal neuron-triggered cell assemblies in the human prefrontal cortex.

    OpenAIRE

    Komlosi, G.; Molnar, G.; Rozsa, M.; Olah, S.; Barzo, P.; Tamas, G.

    2012-01-01

    Selective serotonin reuptake inhibitors are the most widely prescribed drugs targeting the CNS with acute and chronic effects in cognitive, emotional and behavioral processes. This suggests that microcircuits of the human cerebral cortex are powerfully modulated by selective serotonin reuptake inhibitors, however, direct measurements of serotonergic regulation on human synaptic interactions are missing. Using multiple whole-cell patch-clamp recordings from neurons in acute cortical slices der...

  9. Estimation of the spatial energy deposition in CA1 pyramidal neurons under exposure to 12C and 56Fe ion beams

    Directory of Open Access Journals (Sweden)

    Munkhbaatar Batmunkh

    2015-10-01

    Full Text Available The exposure to heavy charged particles represents a significant risk to the central nervous system. In experiments with rodents, the irradiation with heavy ions induces a prolonged deficit in hippocampus-dependent learning and memory. The exact nature of these violations remains mostly unclear. In this regard, the estimation of radiation effects at the level of single neurons is of our special interest. The present study demonstrates the results of comparative calculations that are performed to clarify the early physical events in single neurons under the exposure to accelerated 12C and 56Fe ions with different parameters. Using the Geant4-based Monte Carlo simulations, the radiation effects are considered in terms of energy and dose deposition. The spatial patterns of energy and dose depositions within a single neural cell are produced. As additional characteristics, the spectra of the specific energy and energy imparted are estimated. Our results show that the cell morphology is an important factor determining the accumulation of radiation dose in neurons under the exposure to heavy ions. The data obtained suggest a possibility of radiation damage to synapses that are considered to play an important role in radiation-induced violations of hippocampus-dependent learning and memory.

  10. Effect of coriaria lactone on adenosine triphosphate-sensitive potassium channels in pyramidal neurons%马桑内酯对锥体神经元三磷酸腺苷敏感钾通道的作用

    Institute of Scientific and Technical Information of China (English)

    邹晓毅; 周华; 周树舜

    2005-01-01

    BACKGROUND: Abnormal neuronal discharge arose from the activation of cell membrane ion channels and transmembrane ion transport. The electric activity of the cells is associated with cell metabolism fundamentally through adenosine triphosphate (ATP)-sensitive potassium(KATP) channels.Currently the involvement of KATP channels in the pathogenesis of epilepsy and the regulation of KATP channels by coriaria lacton (EL) remain unknown.OBJETCIVE: To investigate the changes of cell membrane KATP channels in rat hippocampal neurons in response to CL as an epilepsy-inducing agent, and explore the role of KATP channels in the pathogenesis of epilepsy.DESIGN: Randomized controlled experiment.SETTING: Department of Neurology, West China Hospital Affiliated to Sichuan University, and Teaching and Research Section of Physiology,West China College of Preclinical Medicine and Forensic Medicine of Sichuan University.MATERIALS: This experiment was carried out at Luzhou Medical College between May and December 2000. Hippocampus pyramidal neurons were obtained from neonatal Wistar rats and randomized into normal control group, tetraethylammonium chloride (TEA) group, DNP group, CL group, and electric conductance and dynamics group.METHODS: The hippocampus of newborn Wistar rats was separated under aseptic condition and cultured for 24 hours prior to treatment with 10 μmol/L cytarabine for selective cell culture for 7-10 days. The cells in good growth exhibiting typical morphology of pyramidal neurons were then selected for patch-clamp experiment. The cells in the normal control group were treated with normal saline, which was replaced by 5 mmol/L TEA in TEA group, by 30 μmol/L DNP then 0.5 mol/L ATP in DNP group, and by 1.0 mL/L CL then 1 μmol/L glibenclamide in CL group. In electric conductance and dynamics group, the clamp voltage was firstly adjusted to investigate the channel opening before CL was added to the cells.MAIN OUTCOME MEASURES: ① Activity and curve of neuronal

  11. The Healthy Eating Pyramid

    Institute of Scientific and Technical Information of China (English)

    Jimmy; Lin

    2007-01-01

    Experts from the Harvard School of Public Health created the Healthy Eating Pyramid.The pyramid is about the links between diet and health and offers useable information to help people make better choices about what to eat. Remember:its base is daily exercise and weight control.

  12. P物质抑制培养大鼠海马大锥体细胞GABA-激活电流%Substance P depresses GABA-activated currents in cultured hippocampal pyramidal neurons of rats

    Institute of Scientific and Technical Information of China (English)

    熊顺华; 李之望; 樊友珍; 王明江; 魏劲波

    2001-01-01

    研究主要探讨P物质(SP)对GABA-激活电流的调制。实验在培养的新生大鼠海马大锥体细胞上进行, 应用全细胞膜片箝技术记录GABA激活的内向电流。在被检的大锥体细胞中, 有72%(66/92)的神经元对GABA和SP同时敏感。预加SP后, GABA激活电流明显地被抑制, 此抑制作用是呈剂量依赖性的, 在预加10-8、10-7、10-6、10-5 mol/L SP后, GABA的激活电流分别降低18%、24.8%、25.9%和28%。用SP的拮抗剂spantide能阻断此种抑制作用, 在电极中灌注H7 (PKC抑制剂)能取消此抑制作用。上述结果提示: SP对GABA激活电流的抑制作用是SP作用于SP受体, 通过胞内第二信使, 使GABAA受体通道复合体胞内磷酸化所致。%The purpose of the present study was to explore whether substance P (SP) modulates the response mediated by GABAA receptors. Experiments were carried out on cultured hippocampal pyramidal neurons of rats. GABA-activated inward currents were recorded using the whole-cell-patch-clamp techique. The majority of the neurons examined (66/92, 72%) were sensitive to both GABA and SP. When the neurons were treated with SP prior to application of GABA, the GABA-activated current (IGABA) was inhibited markedly, which was concentration-dependent and could be blocked by spantide, an NK1 receptor antagonist. With 10-8, 10-7, 10-6 and 10-5 mol/L SP, IGABA was inhibited by 18%, 24.8%, 25.9% and 28% respectively. Intracellular application of H7, a potent inhibitor of PKC, abolished inhibition of IGABA by SP, suggesting that the inhibition of IGABA by SP may be a result of intracellular phosphorylation of the GABAA receptor.

  13. Morphology cluster and prediction of growth of human brain pyramidal neurons★

    OpenAIRE

    Yu, Chao; Han, Zengxin; Zeng, Wencong; Liu, Shenquan

    2012-01-01

    Predicting neuron growth is valuable to understand the morphology of neurons, thus it is helpful in the research of neuron classification. This study sought to propose a new method of predicting the growth of human neurons using 1 907 sets of data in human brain pyramidal neurons obtained from the website of NeuroMorpho.Org. First, we analyzed neurons in a morphology field and used an expectation-maximization algorithm to specify the neurons into six clusters. Second, naive Bayes classifier w...

  14. The OER Adoption Pyramid

    OpenAIRE

    Trotter, Henry; Cox, Glenda

    2016-01-01

    This Pyramid was developed in the course of a research paper focusing on why South African academics adopt OER or not. We understood that numerous factors shaped their choices, but it became apparent that some factors were "essential" to OER activity while others were merely "influential". To clarify which factors were required for any type of OER activity, we developed the OER Adoption Pyramid, which consolidates the factors into six hierarchically related categories: acc...

  15. Baclofen and adenosine inhibition of synaptic transmission at CA3-CA1 synapses display differential sensitivity to K+ channel blockade.

    Science.gov (United States)

    Skov, Jane; Andreasen, Mogens; Hablitz, John J; Nedergaard, Steen

    2011-05-01

    The metabotropic GABA(B) and adenosine A(1) receptors mediate presynaptic inhibition through regulation of voltage-dependent Ca(2+) channels, whereas K(+) channel regulation is believed to have no role at the CA3-CA1 synapse. We show here that the inhibitory effect of baclofen (20 μM) and adenosine (300 μM) on field EPSPs are differentially sensitive to Cs(+) (3.5 mM) and Ba(2+) (200 μM), but not 4-aminopyridine (100 μM). Barium had no effect on paired-pulse facilitation (PPF) in itself, but gave significant reduction (14 ± 5%) when applied in the presence of baclofen, but not adenosine, suggesting that the effect is presynaptic and selective on the GABA(B) receptor-mediated response. The effect of Ba(2+) on PPF was not mimicked by tertiapin (30 nM), indicating that the underlying mechanism does not involve GIRK channels. Barium did not affect PPF in slices from young rats (P7-P8), suggesting developmental regulation. The above effects of Ba(2+) on adult tissue were reproduced when measuring evoked whole-cell EPSCs from CA1 pyramidal neurons: PPF was reduced by 22 ± 3% in the presence of baclofen and unaltered in adenosine. In contrast, Ba(2+) caused no significant change in frequency or amplitude of miniature EPSCs. The Ba(2+)-induced reduction of PPF was antagonized by LY341495, suggesting metabotropic glutamate receptor involvement. We propose that these novel effects of Ba(2+) and Cs(+) are exerted through blockade of inwardly rectifying K(+) channels in glial cells, which are functionally interacting with the GABA(B) receptor-dependent glutamate release that generates heterosynaptic depression. PMID:21274618

  16. Ginseng Rb fraction protects glia, neurons and cognitive function in a rat model of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Kangning Xu

    Full Text Available The loss and injury of neurons play an important role in the onset of various neurodegenerative diseases, while both microgliosis and astrocyte loss or dysfunction are significant causes of neuronal degeneration. Previous studies have suggested that an extract enriched panaxadiol saponins from ginseng has more neuroprotective potential than the total saponins of ginseng. The present study investigated whether a fraction of highly purified panaxadiol saponins (termed as Rb fraction was protective for both glia and neurons, especially GABAergic interneurons, against kainic acid (KA-induced excitotoxicity in rats. Rats received Rb fraction at 30 mg/kg (i.p., 40 mg/kg (i.p. or saline followed 40 min later by an intracerebroventricular injection of KA. Acute hippocampal injury was determined at 48 h after KA, and impairment of hippocampus-dependent learning and memory as well as delayed neuronal injury was determined 16 to 21 days later. KA injection produced significant acute hippocampal injuries, including GAD67-positive GABAergic interneuron loss in CA1, paralbumin (PV-positive GABAergic interneuron loss, pyramidal neuron degeneration and astrocyte damage accompanied with reactive microglia in both CA1 and CA3 regions of the hippocampus. There was also a delayed loss of GAD67-positive interneurons in CA1, CA3, hilus and dentate gyrus. Microgliosis also became more severe 21 days later. Accordingly, KA injection resulted in hippocampus-dependent spatial memory impairment. Interestingly, the pretreatment with Rb fraction at 30 or 40 mg/kg significantly protected the pyramidal neurons and GABAergic interneurons against KA-induced acute excitotoxicity and delayed injury. Rb fraction also prevented memory impairments and protected astrocytes from KA-induced acute excitotoxicity. Additionally, microglial activation, especially the delayed microgliosis, was inhibited by Rb fraction. Overall, this study demonstrated that Rb fraction protected both

  17. Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations

    Science.gov (United States)

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2015-01-01

    SUMMARY High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin-(PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV inter-neuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked inter-neuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. PMID:25033186

  18. The origin of cortical neurons

    OpenAIRE

    Parnavelas J.G.

    2002-01-01

    Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the gangli...

  19. 5-羟色胺-7受体激动剂对大鼠内侧前额叶皮层锥体神经元电活动的影响%Effect of 5-HT7 receptor agonist on pyramidal neurons in medial frontal cortex of rats

    Institute of Scientific and Technical Information of China (English)

    范玲玲; 王红伟; 胡志红; 任爱红; 胡咏梅; 杨东伟

    2013-01-01

    Objective:To investigate the activity of medial prefrontal cortex (mPFC) pyramidal neurons in rats and their response to 5-hydroxytryptamine-7 (5-HT7) receptor stimulation.Methods:The change of the spontaneous firing of pyramidal neurons in mPFC was observed by extracellular recording in viva.Results:In this study,we reported that systemic and local administration of 5-HT7 receptor agonist AS19 produced excitation,inhibition and no change in the firing rate of pyramidal neurons in mPFC of rats.The mean response of the pyramidal neurons to AS19 (0.08 μg/100 nl) by systemic and local administration in mPFC was excitatory.The inhibitory effect by systemic administration of AS 19 was reversed by γ-aminobntyricacid A receptor antagonist picrotoxinin (2 mg/kg).Systemic administration of picrotoxinin excited all the neurons examined in rats.After treatment with picrotoxinin,the local administration of AS19 increased the firing rate of the neurons.Conclusion:These results indicate that the activity of mPFC pyramidal neurons is regulated through activation of 5-HT7 receptor by direct or indirect action.%目的:探讨5-羟色胺-7 (5-hydroxytryptamine-7,5-HT7)受体对内侧前额叶皮层(medial prefrontal cortex,mPFC)中锥体神经元电活动的影响.方法:以大鼠为研究对象,采用在体细胞外生物电记录的方法,观察mPFC锥体神经元电活动的变化.结果:静脉给予累积剂量的(40~640 μg/kg)5-HT7受体激动剂AS19后,对大鼠mPFC中锥体神经元的电活动产生兴奋、抑制和不变3种不同的影响.无论是体循环,还是mPFC局部微量注射AS19(0.08 μg/100 nl),锥体神经元的总体反应都是兴奋的,而体循环给予AS19所引起的抑制效应能够被γ-氨基丁酸A型受体拮抗剂picrotoxinin(2 mg/kg)反转.静脉给予picrotoxinin能兴奋所有记录到的锥体神经元;静脉注射picrotoxinin后,再局部给予AS19能够进一步增加所记录到的神经元的放电频率.结论:mPFC锥体神经元

  20. Building the next pyramid

    CERN Document Server

    West, Joseph; Waters, Kevin; Ward, Stephen; Ward, Tia

    2015-01-01

    The results of experimental tests of a novel method for moving large (pyramid construction size) stone blocks by rolling them are presented. The method is implemented by tying 12 identical rods of appropriately chosen radius to the faces of the block forming a rough dodecagon prism. Experiments using a 1,000 kg block show that it can be moved across level open ground with a dynamic coefficient of friction of less than 0.06. This value is a factor of five lower than that obtained for dragging the block, and the best values reported for dragging by others, at 0.3. the results are more dramatic than those obtained on smaller scale experiments on a 29.6 kg block, also reported here. For full scale pyramid blocks, the wooden "rods" woudl need to be posts of order 30 cm in diameter, similar in size to those used as masts on ships in the Nile.

  1. Numerical integration over pyramids

    Czech Academy of Sciences Publication Activity Database

    Chen, Ch.; Křížek, Michal; Liu, L.

    2013-01-01

    Roč. 5, č. 3 (2013), s. 309-320. ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : reference pyramidal element * nonlinear systems of algebraic equations * Bramble-Hilbert lemma Subject RIV: BA - General Mathematics Impact factor: 0.645, year: 2013 http://www.global-sci.org/aamm/readabs.php?vol=5&no=3&doc=309&year=2013&ppage=320

  2. Imaging the Cheops Pyramid

    CERN Document Server

    Bui, H D

    2012-01-01

    In this book Egyptian Archeology  and Mathematics meet. The author is an expert in theories and applications in Solid Mechanics and Inverse Problems, a former professor at Ecole Polytechnique and now works with Electricité de France on maintenance operations on nuclear power plants. In the Autumn of 1986, after the end of the operation on the King’s chamber conducted under the Technological and Scientific Sponsorship of EDF, to locate a cavity, he was called to solve a mathematical inverse problem, to find the unknown tomb of the King and the density structure of the whole pyramid based on measurements of microgravity made inside and outside of the pyramid. This book recounts the various search operations on the pyramid of Cheops made at the request of the Egyptian and French authorities in 1986-1987. After the premature end of the Cheops operation in the Autumn of 1986, following the fiasco of unsuccessful drillings in the area suspected by both architects G. Dormion and J.P. Goidin and microgravity aus...

  3. Regulation of neuronal chloride homeostasis by neuromodulators.

    Science.gov (United States)

    Mahadevan, Vivek; Woodin, Melanie A

    2016-05-15

    KCC2 is the central regulator of neuronal Cl(-) homeostasis, and is critical for enabling strong hyperpolarizing synaptic inhibition in the mature brain. KCC2 hypofunction results in decreased inhibition and increased network hyperexcitability that underlies numerous disease states including epilepsy, neuropathic pain and neuropsychiatric disorders. The current holy grail of KCC2 biology is to identify how we can rescue KCC2 hypofunction in order to restore physiological levels of synaptic inhibition and neuronal network activity. It is becoming increasingly clear that diverse cellular signals regulate KCC2 surface expression and function including neurotransmitters and neuromodulators. In the present review we explore the existing evidence that G-protein-coupled receptor (GPCR) signalling can regulate KCC2 activity in numerous regions of the nervous system including the hypothalamus, hippocampus and spinal cord. We present key evidence from the literature suggesting that GPCR signalling is a conserved mechanism for regulating chloride homeostasis. This evidence includes: (1) the activation of group 1 metabotropic glutamate receptors and metabotropic Zn(2+) receptors strengthens GABAergic inhibition in CA3 pyramidal neurons through a regulation of KCC2; (2) activation of the 5-hydroxytryptamine type 2A serotonin receptors upregulates KCC2 cell surface expression and function, restores endogenous inhibition in motoneurons, and reduces spasticity in rats; and (3) activation of A3A-type adenosine receptors rescues KCC2 dysfunction and reverses allodynia in a model of neuropathic pain. We propose that GPCR-signals are novel endogenous Cl(-) extrusion enhancers that may regulate KCC2 function. PMID:26876607

  4. A Hopfield-like hippocampal CA3 neural network model for studying associative memory in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Wangxiong Zhao; Qingli Qiao; Dan Wang

    2010-01-01

    Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area.

  5. Acute reduction of neuronal RNA binding Elavl2 protein and Gap43 mRNA in mouse hippocampus after kainic acid treatment.

    Science.gov (United States)

    Ohtsuka, Takafumi; Yano, Masato; Okano, Hideyuki

    2015-10-01

    Activity-dependent gene regulation in neurons has been hypothesized to be under transcriptional control and to include dramatic increases in immediate early genes (IEGs) after neuronal activity. In addition, several reports have focused on post-transcriptional regulation, which could be mediated by neuronal post-transcriptional regulators, including RNA binding proteins (RNABPs). One such protein family is the neuronal Elavls (nElavls; Elavl2, Elavl3, and Elavl4), whose members are widely expressed in peripheral and central nervous system. Previous reports showed that Elavl3 and 4 are up-regulated following repeated stimulation such as during cocaine administration, a seizure, or a spatial discrimination task. In this study, we focused on Elavl2, a candidate gene for schizophrenia and studied its role in neuronal activity. First we found that Elavl2 has a cell-type specific expression pattern that is highly expressed in hippocampal CA3 pyramidal neurons and hilar interneurons using Elavl2 specific antibody. Second, unexpectedly, we discovered that the Elavl2 protein level in the hippocampus was acutely down-regulated for 3 h after a kainic acid (KA)-induced seizure in the hippocampal CA3 region. In addition, level of Gap43 mRNA, a target mRNA of Elavl2 is decreased 12 h after KA treatment, thus suggesting the involvement of Elavl2 in activity-dependent RNA regulation. PMID:26325429

  6. Sprouty2 and -4 hypomorphism promotes neuronal survival and astrocytosis in a mouse model of kainic acid induced neuronal damage.

    Science.gov (United States)

    Thongrong, Sitthisak; Hausott, Barbara; Marvaldi, Letizia; Agostinho, Alexandra S; Zangrandi, Luca; Burtscher, Johannes; Fogli, Barbara; Schwarzer, Christoph; Klimaschewski, Lars

    2016-05-01

    Sprouty (Spry) proteins play a key role as negative feedback inhibitors of the Ras/Raf/MAPK/ERK pathway downstream of various receptor tyrosine kinases. Among the four Sprouty isoforms, Spry2 and Spry4 are expressed in the hippocampus. In this study, possible effects of Spry2 and Spry4 hypomorphism on neurodegeneration and seizure thresholds in a mouse model of epileptogenesis was analyzed. The Spry2/4 hypomorphs exhibited stronger ERK activation which was limited to the CA3 pyramidal cell layer and to the hilar region. The seizure threshold of Spry2/4(+/-) mice was significantly reduced at naive state but no difference to wildtype mice was observed 1 month following KA treatment. Histomorphological analysis revealed that dentate granule cell dispersion (GCD) was diminished in Spry2/4(+/-) mice in the subchronic phase after KA injection. Neuronal degeneration was reduced in CA1 and CA3 principal neuron layers as well as in scattered neurons of the contralateral CA1 and hilar regions. Moreover, Spry2/4 reduction resulted in enhanced survival of somatostatin and neuropeptide Y expressing interneurons. GFAP staining intensity and number of reactive astrocytes markedly increased in lesioned areas of Spry2/4(+/-) mice as compared with wildtype mice. Taken together, although the seizure threshold is reduced in naive Spry2/4(+/-) mice, neurodegeneration and GCD is mitigated following KA induced hippocampal lesions, identifying Spry proteins as possible pharmacological targets in brain injuries resulting in neurodegeneration. The present data are consistent with the established functions of the ERK pathway in astrocyte proliferation as well as protection from neuronal cell death and suggest a novel role of Spry proteins in the migration of differentiated neurons. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26540287

  7. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    Science.gov (United States)

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850576

  8. Pyramid Lake Renewable Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson

    2008-03-14

    The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

  9. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  10. Quasi-Convolution Pyramidal Blurring

    Directory of Open Access Journals (Sweden)

    Martin Kraus

    2009-12-01

    Full Text Available Efficient image blurring techniques based on the pyramid algorithm can be implemented on modern graphics hardware; thus, image blurring with arbitrary blur width is possible in real time even for large images. However, pyramidal blurring methods do not achieve the image quality provided by convolution filters; in particular, the shape of the corresponding filter kernel varies locally, which potentially results in objectionable rendering artifacts. In this work, a new analysis filter is designed that significantly reduces this variation for a particular pyramidal blurring technique. Moreover, the pyramidal blur algorithm is generalized to allow for a continuous variation of the blur width. Furthermore, an efficient implementation for programmable graphics hardware is presented. The proposed method is named “quasi-convolution pyramidal blurring” since the resulting effect is very close to image blurring based on a convolution filter for many applications.

  11. 束缚-浸水应激对大鼠内侧前额叶皮质锥体神经元放电活动的影响%The influence of restraint water-immersion stress on firing activities of pyramidal neurons in the medial prefrontal cortex in rats

    Institute of Scientific and Technical Information of China (English)

    祝建平; 耿希文; 李敏; 王敏; 艾洪滨

    2015-01-01

    目的 探究大鼠在束缚-浸水应激不同时间段,其内侧前额叶皮质(MPFC)内锥体神经元的电活动情况.方法 利用多通道在体记录技术,记录大鼠在束缚-浸水应激前和应激4h过程中MPFC锥体神经元的单位放电活动,进一步分析其放电频率、放电间隔及爆发式放电活动等指标,研究束缚-浸水应激对MPFC锥体神经元电活动的影响.结果 共采集到了12只大鼠MPFC内的25个锥体神经元的电活动.锥体神经元的电活动表现出两种相反趋势:(1)A类神经元(72%)其放电活动随应激时间的延长而受到抑制,放电率由应激前的(3.57±0.63) Hz持续降低到应激后第4小时的(0.81±0.11) Hz (P<0.01);同时簇状波的发放率也由应激前的(10.29±3.04)个/min,持续降低到应激后第4小时的(1.02±0.50)个/min (P<0.01),爆发式放电所占比例也显著性减少,变化效应与应激时间成正相关.(2)B类神经元(28%)则表现出短时的兴奋效应,其放电率由应激前的(1.77±0.45) Hz,升高到应激后第2小时的(2.67±0.74) Hz (P<0.05),平均放电间隔也明显缩短;簇状波的发放率由应激前的(2.01 ±0.73)个/min,升高到应激后第1小时的(9.04±2.42)个/min(P<0.05),爆发式放电所占比例也显著性升高,但B类神经元的兴奋持续时间较短.结论 束缚-浸水应激可改变MPFC内锥体神经元的电活动,A类锥体神经元活动受到抑制,B类锥体神经元活动增强.%Objective To explore the effects of restraint water-immersion stress (RWIS) on the firing activities of pyramidal neurons in the medial prefrontal cortex (MPFC) of rats.Methods Multi-channel in vivo recording techniques were used to record firing activities of pyramidal neurons before and during 4-h RWIS in rats.Firing rates,inter-spike intervals and burst firing rates were taken as indices to study the influence of RWIS on neuronal firing activities.Results Twenty-five pyramidal neurons of 12 rats were recorded

  12. Behavioral Functions of the CA3 Subregion of the Hippocampus

    Science.gov (United States)

    Kesner, Raymond P.

    2007-01-01

    From a behavioral perspective, the CA3a,b subregion of the hippocampus plays an important role in the encoding of new spatial information within short-term memory with a duration of seconds and minutes. This can easily be observed in tasks that require rapid encoding, novelty detection, one-trial short-term or working memory, and one-trial cued…

  13. Place Cell Rate Remapping by CA3 Recurrent Collaterals

    Science.gov (United States)

    Solstad, Trygve; Yousif, Hosam N.; Sejnowski, Terrence J.

    2014-01-01

    Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may also be found in

  14. Place cell rate remapping by CA3 recurrent collaterals.

    Directory of Open Access Journals (Sweden)

    Trygve Solstad

    2014-06-01

    Full Text Available Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may

  15. Correspondences between Pre-pyramids, Pyramids and Robinsonian Dissimilarities

    OpenAIRE

    Bertrand, Patrice; Diatta, Jean; Jean, Diatta

    2013-01-01

    We consider cluster structures in a general setting where they do not necessarily contain all singletons of the ground set. Then we provide a direct proof of the bijection between semi-proper robinsonian dissimilarities and indexed pre-pyramids. This result generalizes its analogue proven by Batbedat in the particular case of definite cluster structures. Moreover, the proposed proof shows that the clusters of the indexed pre-pyramid corresponding to a semi-proper robinsonian dissimilarity are...

  16. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    OpenAIRE

    Ballesteros KA; Sikorski A; Orfila JE; Martinez Jr JL

    2012-01-01

    Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The ...

  17. Influence of intraventricular inj ection of 5,7-drhydroxytryptamine in 5-HT1A receptor sensitivity of pyramidal neurons in medial prefrontal cortex%脑室内注射5,7-双羟色胺对内侧前额叶皮层锥体神经元5-HT1 A受体敏感性的影响

    Institute of Scientific and Technical Information of China (English)

    刘彦彤; 高捷; 王爽

    2014-01-01

    Objective To explore the influence of intraventricular injection of 5, 7-drhydroxytryptamine (5, 7-DHT)in 5-HT1A receptor sensitivity of medial prefrontal cortex pyramidal neurons in the rats,and to clarity the effect of 5-HT1A receptor on the eletronic response of pyramidal neurons.Methods 36 male SD rats were randomly divided into sham operation group (n=21)and 5,7-DHT lesion group (n=15).5,7-DHT was injected intraventricularly in the rats in 5,7-DHT lesion group,and the same dose saline was injected in the rats in sham operation group.The rats in two groups were intravenously injected with different doses(0.5-128.0μg·kg-1 )of 8-CH-DPAT.The firing rate of mPFC pyramidal neurons was recorded with extracellular electrophysioological examination.The rats in two groups were intravenously injected with WAY100635,the sensitivites of the rats to 8-OH-DPAT and WAY100635 in 5, 7-DHT lesion group were observed, and compared with sham operation group.Results The different doses (0.5-128.0μg·L-1 )of 8-OH-DDAT had an excitatory-inhibitory effect on the firing rate of mPFC pyamidal neurons in sham operation group;the neurons were excited when the doses of 8-OH-DPAT were 0.5-38.0μg·kg-1 ,and the firing rates were increased(P<0.05);the neurons were inhibited when the dose of 8-OH-DPAT was 128.0μg·kg-1 ,and the firing rate was decreased.The different doses(0.5-218.0μg·L-1 )of 8-OH-DPAT inhibited the elecctronic response of pyramidal neurons of the rats in 5,7-DHT lesion group in a dose-dependent manner (df=5,F=3.44,P=0.003),and the firing rates were reduced. WAY-100635 (50μg·kg-1 )reversed completely the inhibition of 8-OH-DPAT.Conclusion The sensitivity of 5-HT1A receptor of rat mPFC pyramidal neurons can be decreased by intraventricular injection of 5,7-DHT.%目的:探讨脑室内注射5,7-双羟色胺(5,7-DHT)对内侧前额叶皮层(mPFC)锥体神经元5-羟色胺-1A(5-HT1A)受体敏感性的影响,阐明5-HT1A受体对锥体神经元

  18. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...

  19. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  20. Interactive Visualization of Graph Pyramids

    OpenAIRE

    Kerren, Andreas

    2006-01-01

    Hierarchies of plane graphs, called graph pyramids, can be used for collecting, storing and analyzing geographical information based on satellite images or other input data. The visualization of graph pyramids facilitates studies about their structure, such as their vertex distribution or height in relation of a specific input image. Thus, a researcher can debug algorithms and ask for statistical information. Furthermore, it improves the better understanding of geographical data, like land...

  1. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  2. Prominent hippocampal CA3 gene expression profile in neurocognitive aging

    OpenAIRE

    Haberman, Rebecca P.; Colantuoni, Carlo; Stocker, Amy M.; Schmidt, Alexandra C.; Pedersen, Jan T.; Gallagher, Michela

    2009-01-01

    Research in aging laboratory animals has characterized physiological and cellular alterations in medial temporal lobe structures, particularly the hippocampus, that are central to age-related memory deficits. The current study compares molecular alterations across hippocampal subregions in a rat model that closely mirrors individual differences in neurocognitive features of aging humans, including both impaired memory and preserved function. Using mRNA profiling of the CA1, CA3 and dentate gy...

  3. High pressure studies in Ca3Ru2O7

    International Nuclear Information System (INIS)

    The bilayer ruthenate Ca3Ru2O7 undergoes first a magnetic transition (TN=56 K) and then a structural transition (TS= 48 K) on cooling. Most of the Fermi surface is gapped out at low temperature, leading to a very low carrier density and small Fermi surface pockets. Pressure suppresses both TN and TS and, for p>3.5 GPa, induces a third low temperature state, which has been known to be robust up to at least 7.5 GPa. A detailed investigation of the unusual low temperature states of Ca3Ru2O7 across the pressure-temperature-field phase diagram requires reliable access to hydrostatic pressures up to and beyond 10 GPa. We apply lithographic patterning and sputtering processes to anvil pressure cells in order to produce complex but robust lead patterns, which are integrated into the anvil surface. Patterns include multi-turn coils as well as eight-lead configurations for resistivity measurements. Resistivity data in Ca3Ru2O7 is presented, which indicates that the high pressure ordered state is fully suppressed at pc ≅9.5 GPa. Beyond pc, the in-plane resistivity follows a T5/3 power-law down to below 1 K, suggesting ferromagnetic quantum criticality.

  4. 钾通道阻断剂4-氨基吡啶诱导海马CA1锥体神经元钙瞬变%Calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine in acute hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    苏涛; 丛文东; 廖卫平

    2011-01-01

    Objective To investigate the calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine (4-AP) in acute hippocampal slices to explore the relation between potassium channel function and calcium transient, and their mechanism. Methods Fluorescent probe was employed to mark the hippocampai neurons in acute brain slices of rats; confocal microscopy was used to perform calcium imaging to observe the influences of different concentrations of 4-AP and perfusate with/without calcium on calcium transient of CA1 pyramidal neurons. Results The response of [Ca2+]I to lower concentration of 4-AP (<15 mmol/L) was in a dose-dependent manner (r2=0.910, P=0.000); the higher the concentration of 4-AP (20-80 mmol/L), the lower the peak level of calcium transient. The latency and amplitude of calcium transient induced by 4-AP were obviously reduced when the extracellular condition was switched to an absence of calcium, which was significantly different as compared with that with calcium (P<0.05). Conclusion Blockade of potassium channels with 4-AP can increase [Ca2+]I in the hippocampal pyramidal neurons of acute slices. The increase of [Ca2+]1 to 4-AP could be ascribe to calcium release from intracellular stores and calcium influx from extracellular matrix.%目的 研究4-氨基吡啶(4-AP)诱导的急性脑片海马CA1锥体神经元钙瞬变现象,探讨钾通道功能与钙瞬变的关系及可能机制.方法 荧光探针标记正常大鼠急性脑片海马神经元.共聚焦显微镜技术进行钙成像,观察不同浓度4-AP及细胞灌流液条件对神经元钙瞬变的影响.结果 低浓度(<15 mmol/L)4-AP诱导的钙瞬变峰值与剂量呈线性相关(r2=0.910,P=0.000),高浓度(20~80 mmol/L)4-AP诱导的钙瞬变峰值随浓度增高而下降.在无钙灌流液条件下,4-AP诱导的钙瞬变峰值水平下降,达峰时间延长,与含钙灌流液比较差异有统计学意义(P<0.05).结论 4-AP可诱导急性脑片海马CA1锥体神经

  5. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  6. Huperzine A enhances excitatory synaptic transmission in CA1 pyramidal neurons of adult rat hippocampal slices%石杉碱甲增强大鼠海马脑片CA1锥体神经元的兴奋性突触传递

    Institute of Scientific and Technical Information of China (English)

    吴小未; 王邦安; 汪萌芽

    2012-01-01

    AIM: To observe the effects of huperzine A (Hup-A) on excitatory synaptic transmission in CA1 pyramidal neurons of adult rat hippocampal slices and to gain an insight into the cellular electrophysiological mechanisms underlying the potentiation of learning and memory by Hup-A. METHODS: The intracellular recordings from CA1 pyramidal neurons in hippocampal slices related to learning and memory were made to analyze mechanisms of Hup-A actions on cell electrophysiological properties and excitatory postsynaptic potential (EPSP) evoked by stimulating Schaffer collaterals. RESULTS; (1) During bath of Hup-A (1 μmol/L), the changes of cell electrophysiological properties were not significant (P>0. 05). (2) Superfu-sion of Hup-A (0. 3 - 3. 0 μmol/L, 15 min) in- creased amplitude, duration and area under curve of EPSPs, which was concentration-dependent, recoverable, but sensitive to atropine pretreatment (10 μmol/L, n = 4). (3) Hup-A did not result in remarkable changes of depolarizing response induced by exogenous glutamate (n=5). CONCLUSION, By the facilitation of the synaptic transmissions, Hup-A may potentiate the activities of hippocampal CA1 pyramidal neurons, and its actions on EPSP is related to the excitation of muscarinic type of acetylcholin-ergic receptors.%目的:观察石杉碱甲(Hup-A)对海马CA1锥体神经元兴奋性突触传递的影响,以探讨其增强学习记忆功能的神经细胞电生理机制.方法:应用大鼠海马脑片CA1锥体神经元细胞内记录技术,观察Hup-A对大鼠海马CA1锥体神经元膜电性质和刺激Schaffer侧支诱发的兴奋性突触后电位( EPSP)的影响.结果:(1) Hup-A(1 μmol/L)灌流15 min对CA1锥体神经元的膜电性质没有显著性影响.(2) Hup-A (0.3~3.0 μmol/L)浓度依赖性使EPSP幅度升高、时程延长、曲线下面积增大,该作用可被阿托品(10μmol/L)预处理取消.(3)Hup-A对外源性谷氨酸诱导的去极化反应无明显影响.结论:Hup-A可增强CA1

  7. Magnetocapacitance in Ca3CoMnO6

    Science.gov (United States)

    Kaushik, S. D.; Rayaprol, S.; Saha, J.; Mohapatra, N.; Siruguri, V.; Babu, P. D.; Patnaik, S.

    2011-04-01

    Magnetocapacitance (MC) measurements—that is, measuring capacitance as a function of temperature at constant magnetic field—has been carried out on a quasi-1D compound, Ca3CoMnO6. MC reveals the presence of a magnetodielectric effect (MDE), which in turn signals the presence of magnetoelectric coupling below the magnetic ordering temperature, TN ( = 15 K). We also observed the sign reversal of the MDE as the temperature increased from 3 to 20 K. The MDE is positive at 3 K and negative between 3 and 15 K, and it saturates to a near zero value above 15 K. The sign change of the MDE is explained in terms the spin-pair correlation of neighboring spins of Co/Mn at a given applied magnetic field H. A negative MDE signifies antiferromagnetic ordering, and a positive MDE signifies ferromagnetic/paramagnetic ordering. Neutron diffraction study reveals changes in the magnetic structure in the temperature range of 2 to 10 K. The present work brings out the possible correlation between the magnetic structure and the dielectric properties of Ca3CoMnO6.

  8. Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus.

    Science.gov (United States)

    Zhang, Hui; Wang, Hui; Xiao, Xi; Zhang, Tao

    2016-01-01

    Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration. PMID:26530910

  9. Pyramid Lake Task Force : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Pyramid Lake Task Force was created to address Pyramid Lake’s recession and recommend possible solutions that would consider both the needs for preserving the...

  10. Contains and Inside relationships within combinatorial Pyramids

    OpenAIRE

    Brun, Luc; Kropatsch, Walter

    2007-01-01

    Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid framework according to a set of relationships between regions. We also define a new algorithm based on a ...

  11. Fabrication of nanopore on pyramid

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong Soo, E-mail: sscphy2010@gmail.com [Department of Nanoscience and Instrument Center, SunMoon University, Ahsan 336-708 (Korea, Republic of); Park, Myong-Jin; Yamaguchi, Tokutaro [Department of Nanoscience and Instrument Center, SunMoon University, Ahsan 336-708 (Korea, Republic of); Kim, Sung-In; Park, Kyung-Jin [Team for Measurement and Analysis, National Nanofab Center, Daejeon 305-806 (Korea, Republic of); Park, Nam Kyoo [School of Electrical Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-15

    Graphical abstract: - Highlights: • Au nanopores on the apex of the pyramidal structure were fabricated. • The nanopore formations dependent upon the electron currents, the primary electron voltage, and the scan rate were examined. • Nanopore formation using focused ion beam was also investigated. - Abstract: There have been tremendous interests about the fabrication of metallic nanopore due to the ultrafast genome sequencing biosensor capability. In this report, the fabrication of the nanopore on the Au coated SiO{sub 2} pyramid has been examined using various high energy electron beam irradiation and focused ion beam (FIB) milling techniques. The microfabricated Au nano-apertures on pyramid were irradiated with various high energy electron beam and FIB techniques. The formation of the nanopore dependent on the probe current was also examined using electron probe micro-analysis (EPMA). The nanopore on the Au coated SiO{sub 2} pyramid is found to be an Au-Si mixture. The Au nanopore on the crater type hole was also fabricated using FIB Ga ion beam scanning. The shrinking rate was found to be the fastest compared with those fabricated with the other electron beam techniques.

  12. The Base of the Pyramid

    NARCIS (Netherlands)

    Hutte, E.; Vermeulen, P.A.M.

    2014-01-01

    This chapter provides a brief background to the Base of the Pyramid (BoP) phenomenon. It begins with a discussion on what sets the BoP markets apart from more traditional markets and why companies have not identified them as a business opportunity. The chapter then provides an overview of how attent

  13. A magic pyramid of supergravities

    Science.gov (United States)

    Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S.

    2014-04-01

    By formulating = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in , it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of anexotic theory with G/ H duality structure F 4(4)/Sp(3) × Sp(1).

  14. The Chinese Pyramids and the Sun

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    The Chinese Pyramids are huge ancient burial mounds. In the satellite images we can see some complexes where the main buildings are the pyramidal mounds of an emperor and his empress. Here we discuss a possible sunrise/sunset orientation of these two pyramids on the solstices and equinoxes.

  15. Investigation of the Great Pyramid of Giza.

    Science.gov (United States)

    Peace, Nigel; And Others

    1997-01-01

    Describes an activity in which geometry and trigonometry are studied using pyramids. Identical model pyramids are constructed from card stock, along with pyramids of different proportions and cuboids to use as controls. Also includes an investigation of some apparently non-scientific claims. (DDR)

  16. Three Types of Network Complexity Pyramid

    Institute of Scientific and Technical Information of China (English)

    FANG; Jin-qing; LI; Yong; LIU; Qiang

    2012-01-01

    <正>Exploring the complexity and diversity of complex networks have been very challenging issues in network science and engineering. Among them exploring the network complexity pyramids (NCP) are one of important expressions in network complexity. So far as we have proposed the three types of the network complexity pyramid (NCP). The first type of NCP is the network model complexity pyramid with

  17. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats.

    Directory of Open Access Journals (Sweden)

    Tomoko Inagaki

    Full Text Available BACKGROUND: Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2 reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15-18 months after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats. CONCLUSIONS/SIGNIFICANCE: The data demonstrate that 1 acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2 E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after

  18. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia.

    Science.gov (United States)

    Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye

    2016-06-01

    Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = -0.87, P < 0.01), whereas those in the prelimbic cortex correlated negatively with wheel running specifically during the hours of food availability of the FR days (R = -0.84, P < 0.05). These negative correlations support the idea that increases in the glutamic acid decarboxylase (GAD) terminal contact lengths onto L5P contribute toward ABA resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. PMID:25979087

  19. A concussive-like brain injury model in mice (II): selective neuronal loss in the cortex and hippocampus.

    Science.gov (United States)

    Tang, Y P; Noda, Y; Hasegawa, T; Nabeshima, T

    1997-11-01

    A novel concussive-like brain injury (CLBI) model characterized by transient neurobehavioral depression, short duration of brain edema, and long-lasting memory deficits has been reported in our companion paper. This was achieved by dropping a 21-g weight from a height of 25 cm onto the head of a mouse. In the present study, we examined the histopathological changes in this model. Male ddY mice were subjected to either the trauma or sham injury. Gross pathological examination of the brain 1 h posttrauma did not demonstrate subdural, subarachnoid, intraventricular, periventricular, and intraparenchymatous hemorrhage, focal lesions or contusions. Microscopic examination 24 h posttrauma with Nissl staining (cresyl violet), however, revealed a selective bilateral neuronal cell loss in the cerebral cortex and hippocampus but not in the regions of the thalamus, cerebellum, and brain stem. The characteristics of neuronal cell loss in the cortex suggested that this pathology was related in part, to the head impact dynamics, since the cell loss was noted in the central portion of the supraventricular cerebral cortex (p < 0.001), the site of the weight impact, gradually decreasing peripheral to this site, and disappearing in the areas remote from this locus. In contrast, neuronal cell loss seen in the hippocampus did not suggest that this pathology was directly associated with the impact site. Neuronal cell loss was concentrated in the pyramidal cell layer of CA2 (p < 0.01) and CA3 (p < 0.01), and a lesser degree was noted in the subfields of CA3c (p < 0.05) and the hilar region (p < 0.05) but not in the subfields of CA1 and the dentate gyrus layers. The present study characterized the histopathological change seen in the CLBI model, demonstrating the selective neuronal cell loss following weight-drop concussion in mice. PMID:9421457

  20. The dendritic density field of a cortical pyramidal cell

    Directory of Open Access Journals (Sweden)

    Hermann eCuntz

    2012-02-01

    Full Text Available Much is known about the computation in individual neurons in the cortical column. Also, the selective connectivity between many cortical neuron types has been studied in great detail. But due to the complexity of this microcircuitry its functional role within the cortical column remains a mystery. Some of the wiring behavior between neurons can be interpreted directly from their particular dendritic and axonal shapes. Here, I describe the dendritic density field as one key element that remains to be better understood. I sketch an approach to relate dendritic density fields in general to their underlying potential connectivity schemes. As an example, I show how the characteristic shape of a cortical pyramidal cell appears as a direct consequence of connecting inputs arranged in two separate parallel layers.

  1. The mammalian neocortical pyramidal cell: a new theory on prenatal development

    Directory of Open Access Journals (Sweden)

    Miguel eMarín-Padilla

    2014-01-01

    Full Text Available Mammals’ new cerebral cortex (neocortex and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities using essentially analogous anatomical and neural makeups. The human neocortex starts to develop in the 6-week-old embryo with the establishment of a primordial cortical organization that resembles the primitive cortices of amphibian and reptiles that operated his early motor activities. From the 8th to the 15th week of age, the new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divide its components into those above it (neocortex first lamina and those below it (neocortex subplate elements. From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating the animal muscular activities. The new pyramidal neuron’ distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface without losing its original attachment to first lamina or the location of its soma retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs 2 pyramidal cell functional strata to carry out all its motor activities, the mouse three, cat four, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing including thinking as a premotor activity.

  2. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.

    Science.gov (United States)

    Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2012-12-01

    The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network. PMID:22777829

  3. Quantile pyramids for Bayesian nonparametrics

    OpenAIRE

    2009-01-01

    P\\'{o}lya trees fix partitions and use random probabilities in order to construct random probability measures. With quantile pyramids we instead fix probabilities and use random partitions. For nonparametric Bayesian inference we use a prior which supports piecewise linear quantile functions, based on the need to work with a finite set of partitions, yet we show that the limiting version of the prior exists. We also discuss and investigate an alternative model based on the so-called substitut...

  4. LBP and irregular graph pyramids

    OpenAIRE

    Cerman, Martin; González Díaz, Rocío; Kropatsch, Walter

    2015-01-01

    In this paper, a new codification of Local Binary Patterns (LBP) is given using graph pyramids. The LBP code characterizes the topological category (local max, min, slope, saddle) of the gray level landscape around the center region. Given a 2D grayscale image I, our goal is to obtain a simplified image which can be seen as “minimal” representation in terms of topological characterization of I. For this, a method is developed based on merging regions and Minimum Contrast Algorithm.

  5. Pyramidal parent training by peers.

    OpenAIRE

    Neef, N A

    1995-01-01

    This study replicated a pyramidal model of parent training by peers and compared its effects with training by a professional with 26 parents of children with disabilities. A multiple probe design across 3 tiers of parents showed that both types of training produced acquisition, maintenance, and to varying extents, generalization of parents' teaching skills, with concomitant increases in the children's performance in most cases. Improvements were comparable for parents trained by a professiona...

  6. Convergent cortical innervation of striatal projection neurons

    OpenAIRE

    Kress, Geraldine J.; Yamawaki, Naoki; Wokosin, David L.; Wickersham, Ian R.; Gordon M. G Shepherd; Surmeier, D. James

    2013-01-01

    Anatomical studies have led to the assertion that intratelencephalic (IT) and pyramidal tract (PT) cortical neurons innervate different striatal projection neurons. To test this hypothesis, the responses of mouse striatal neurons to optogenetic activation of IT and PT axons were measured. Contrary to expectation, direct and indirect pathway striatal spiny projection neurons (SPNs) responded to both IT and PT activation, arguing that these cortical networks innervate both striatal projection n...

  7. A magic pyramid of supergravities

    CERN Document Server

    Anastasiou, A; Duff, M J; Hughes, L J; Nagy, S

    2013-01-01

    By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also c...

  8. A simulation study on the effects of dendritic morphology on layer V PFC pyramidal cell firing behavior

    Directory of Open Access Journals (Sweden)

    Maria Psarrou

    2014-03-01

    Full Text Available The majority of neuronal cells found in the cerebral cortex are pyramidal neurons. Their function has been associated with higher cognitive and emotional functions. Pyramidal neurons have a characteristic structure, consisting of a triangular shaped soma whereon descend two extended and complex dendritic trees, and a long bifurcated axon. All the morphological components of the pyramidal neurons exhibit significant variability across different brain areas and layers. Pyramidal cells receive numerous synaptic inputs along their structure, integration of which in space and in time generates local dendritic spikes that shape their firing pattern. In addition, synaptic integration is influenced by voltage-gated and ion channels, which are expressed in a large repertoire by pyramidal neurons. Electrophysiological categories of pyramidal cells can be established, based on the action potential frequency, generated from a fixed somatic stimulus: (1 cells that fire repetitive action potentials (Regular Spiking – RS, (2 cells that fire clusters of 2 – 5 action potentials with short ISIs (Intrinsic Bursting – IB, and (3 cells that fire in repetitive clusters of 2 – 5 action potentials with short ISIs (Repetitive Oscillatory Bursts – ROB. In vitro and in silico scientific studies, correlate the firing patterns of the pyramidal neurons to their morphological features. This study provides a quantitatively analysis via compartmental neuronal modelling of the effects of dendritic morphology and distribution and concentration of ionic mechanisms, along the basal and/or apical dendrites on the firing behavior of a 112-set of layer V rat PFC pyramidal cells. We focus on how particular morphological and passive features of the dendritic trees shape the neuronal firing patterns. Our results suggest that specific morphological parameters (such as total length, volume and branch number can discriminate the cells as RS or IB, regardless of what is the

  9. Energy substrates that fuel fast neuronal network oscillations

    Directory of Open Access Journals (Sweden)

    Lukas V. Galow

    2014-12-01

    Full Text Available Fast neuronal network oscillations in the gamma-frequency band (30-100 Hz provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i gamma oscillations persist in the presence of glucose (10 mmol/L for greater than 60 minutes in slice cultures while (ii lowering glucose levels (2.5 mmol/L significantly reduces the amplitude of the oscillation. (iii Gamma oscillations are absent at low concentration of lactate (2 mmol/L. (iv Gamma oscillations persist at high concentration (20 mmol/L of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective.

  10. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  11. An Analysis of Pyramidal Image Fusion Techniques

    OpenAIRE

    Meek, T. R.

    1999-01-01

    This paper discusses the application of multiresolution image fusion techniques to synthetic aperture radar (SAR) and Landsat imagery. Results were acquired through the development and application of image fusion software to test images. The test images were fused using six image fusion techniques that are the combinations from three types of image decomposition algorithms (ratio of low pass [RoLP] pyramids, gradient pyramids, and morphological pyramids) and two types of fusion algorithms (se...

  12. Inside and outside within combinatorial pyramids

    OpenAIRE

    Brun, Luc; Kropatsch, Walter G.

    2005-01-01

    Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are often used within the segmentation and the connected component analysis frameworks to detect meaningful objects together with their spatial and topological relationships. The graphs reduced in the pyramid may be region adjacency graphs, dual graphs or combinatorial maps. Using any of these graphs each vertex of a reduced graph encodes a region of the image. Using simple graphs one ed...

  13. Multichannel Texture Segmentation Using Bamberger Pyramids

    OpenAIRE

    Smith, Mark J.T.; Jose Gerardo Rosiles

    2009-01-01

    Abstract A multichannel texture segmentation algorithm is presented based on the image pyramids produced with the Bamberger directional filter bank. An extensive evaluation of Bamberger pyramids and their design parameters is presented. The impact on segmentation performance of factors like the number of pyramid levels, number of directional channels, redundancy and filter specifications is considered. The proposed system is shown to provide some of the best results reported to date when comp...

  14. The Emergence of Corporate Pyramids in China

    OpenAIRE

    Fan, Joseph P.H.; T.J. Wong; Zhang, Tianyu

    2006-01-01

    We examine the pyramidal ownership structure of a large sample of newly listed Chinese companies controlled by local governments or private entrepreneurs. Both types of the owners use layers of intermediate companies to control their firms. However, their pyramiding behaviors are likely affected by different property rights constraints. Local governments are constrained by the Chinese laws prohibiting free transfer of state ownership. Pyramiding allows them to credibly decentralize their firm...

  15. Urban Public Health: Is There a Pyramid?

    Directory of Open Access Journals (Sweden)

    Meirong Su

    2013-01-01

    Full Text Available Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH. Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000–2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  16. Selective serotonergic excitation of callosal projection neurons

    Directory of Open Access Journals (Sweden)

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  17. Update on the Pyramid Scheme

    CERN Document Server

    Banks, Tom

    2012-01-01

    We summarize recent work in which we attempt to make a consistent model of LHC physics, from the Pyramid Scheme. The models share much with the NMSSM, in particular, enhanced tree level contributions to the Higgs mass and a preference for small tan {\\beta}. There are 3 different singlet fields, and a new strongly coupled gauge theory, so the constraints of perturbative unification are quite different. We outline our general approach to the model, which contains a Kahler potential for three of the low energy fields, which is hard to calculate. Detailed calculations, based on approximations to the Kahler potential, will be presented in a future publication.

  18. 视觉发育关键期大鼠视皮层Ⅱ或Ⅲ层锥体神经元EPSC-IPSC变化特征%The variation characters of EPSC-IPSC in rat visual cortex Ⅱ / Ⅲ pyramidal neurons during critical period of visual development

    Institute of Scientific and Technical Information of China (English)

    刘玉燕; 史学锋; 牟海燕; 赵堪兴

    2012-01-01

    Objective To observe the characters of EPSC-IPSC induced by paired-pulse stimulation of rat visual cortex layer Ⅱ / Ⅲ pyramidal neurons during critical period of visual development,and discuss their relationships,to discuss the role of short-term synaptic plasticity in the critical period of visual development of rats.Methods Thirty Wistar rats were used,they were divided into P10-P12,P14-P16,P21-P23,P28-P30,P35-P37 five groups,n =6.Whole-cell voltage clamp recording was performed,the membrane potential was clamped on -50 mV,0 mV respectively to separate EPSC and IPSC.We set the PPR as the observation indicator,analyzed the developmental features of EPSC and IPSC induced by pairedpulse stimulation of different groups.Results The PPR of layer Ⅱ/Ⅲ pyramidal neurons in group P10-P12,P14-P16,P21-P23,P28-P30,P35-P37 was 0.43 ±0.08,0.07 ±0.08,0.10 ±0.10,0.20 ±0.07,0.22 ± 0.12 respectively.The PPR of group P14-P16 decreased,the difference was statistically significant compared with the group before eyes open (t =- 3.13,P =0.04 ).The PPR of corresponding groups was 0.6036 ± 0.3021,0.2830 ± 0.0504,0.0287 ± 0.0907,- 0.0449 ± 0.1443, - 0.3089 ± 0.05553 respectively(F =5.0799,P =0.0037),the PPR of IPSC gradually reduced with age,and turned negative from the P28-P30 group,changed from PPF to PPD.Conclusions The PPR of EPSC response to visual stimuli rapidly,but did not change significantly in the critical period of visual development (P19 -P32).The short-term depression of IPSC increased gradually from the eyes open to the end of the critical period of visual development,which may play a more important role in the process of layer Ⅱ / Ⅲ pyramidal neurons maturation and the critical period of visual development ending.%目的 观察正常大鼠视觉发育关键期内双脉冲刺激诱导的视皮层Ⅱ或Ⅲ层锥体神经元兴奋性突触后电流( EPSC) -抑制性突触后电流(IPSC)随发育改变的特征及其相互关系,探讨短时程突触可

  19. X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6

    Science.gov (United States)

    Burnus, T.; Hu, Z.; Wu, Hua; Cezar, J. C.; Niitaka, S.; Takagi, H.; Chang, C. F.; Brookes, N. B.; Lin, H.-J.; Jang, L. Y.; Tanaka, A.; Liang, K. S.; Chen, C. T.; Tjeng, L. H.

    2008-05-01

    By using x-ray absorption spectroscopy at the RhL2,3 , CoL2,3 , and FeL2,3 edges, we find a valence state of Co2+/Rh4+ in Ca3CoRhO6 and of Fe3+/Rh3+ in Ca3FeRhO6 . X-ray magnetic circular dichroism spectroscopy at the CoL2,3 edge of Ca3CoRhO6 reveals a giant orbital moment of about 1.7μB , which can be attributed to the occupation of the minority-spin d0d2 orbital state of the high-spin Co2+ (3d7) ions in trigonal prismatic coordination. This active role of the spin-orbit coupling explains the strong magnetocrystalline anisotropy and Ising-type magnetism of Ca3CoRhO6 .

  20. Structural aspects of calcium ion transport in Ca3(VO4)2 and Ca3-xNd2x/3(VO4)2 solid solutions

    International Nuclear Information System (INIS)

    Experimental data on electric conductivity dependence on temperature in the range of 750-1400 K for Ca3(VO4)2, Ca9Nd(VO4)7 and solid solutions Ca3-xNd2x/3(VO4)2 (0≤x≤3/7) are presented. It is ascertained that conductivity value in the solid solutions decreases essentially with increase in neodymium concentration. In Ca3(VO4)2 and Ca9Nd(VO4)7 phase transitions at 1383 and 1198 K have been detected. On the basis of the experimental data on conductivity and analysis of polyhedrons of whitlockite-like structure of Ca3(VO4)2 possible ways of calcium cations movement in the structure are discussed and substantiated

  1. The cradle of pyramids in satellite images

    OpenAIRE

    Sparavigna, Amelia Carolina

    2011-01-01

    We propose the use of image processing to enhance the Google Maps of some archaeological areas of Egypt. In particular we analyse that place which is considered the cradle of pyramids, where it was announced the discovery of a new pyramid by means of an infrared remote sensing.

  2. The Pyramid Phasing Sensor (PYPS)

    Science.gov (United States)

    Pinna, E.; Quirós-Pacheco­, F.; Esposito, S.; Puglisi, A.; Stefanini, P.

    2008-07-01

    PYPS is the pyramid wavefront sensor for the phasing and alignment of segmented mirrors developed in the framework of the Active Phase Experiment (APE). In this paper we will present the PYPS opto-mechanical design, and report the experimental results obtained in the Arcetri laboratories prior to its integration in the main APE bench. A piston-correction closed loop was performed under the presence of emulated turbulence (D/r0=33 @ 700nm and V/D=1.9Hz), achieving a final piston error of 10 nm rms in wavefront. Two filtering techniques were developed to average out faster the atmospheric disturbance reducing the required co-phasing time by two orders of magnitude. We will also present the first experimental results obtained with a synthetic interaction matrix attaining a final piston error of the same order of magnitude.

  3. PLACE CELL FORMATION BY GRID CELL CONVERGENCE IN THE DENDRITES OF A CA1 MODEL NEURON

    Directory of Open Access Journals (Sweden)

    Evangelia Pollali

    2014-04-01

    Full Text Available Place cells are pyramidal neurons in CA1 and CA3 regions of hippocampus which fire selectively when the animal is located in a particular place in space. CA1 place cells receive synaptic input from CA3 via the Schaffer collateral fibers to their proximal apical and basal dendrites and from the third layer of medial entorhinal cortex to their apical tuft dendrites. Both of these input pathways encode spatial information. Grid cells, which form the entorhinal input to CA1 cells, have a spatial firing field with multiple peaks which displays a regularly spaced, triangular grid pattern that covers the entire space of a given environment. Both grid and place cells are phase-modulated by theta rhythm and this modulation may be important for their spatial properties. Studying the formation of place cells is an important step in understanding how representation of the external environment is coded in neural networks that constitute spatial maps. It is not currently known how place fields emerge in CA1 neurons. An influential model of place cell formation predicts the convergence of various grid field inputs which combine linearly to create the place field output of CA1 cells. In this study, we constructed a model of CA1 place cell formation through the convergence of grid field inputs to the distal dendrites of our model neuron. We created a model of grid cell activity which represents the firing of grid cells modulated be the theta rhythm. We varied the number of different grid fields used as synaptic inputs to stimulate the distal dendrites of a biophysically constrained, detailed compartmental CA1 pyramidal cell model. In addition, inhibition was placed in both the distal and proximal dendrites. These inhibitory pathways are known to be active in different phases of the theta rhythm. We used this model to study the properties of CA1 place cell formation and to assess the output of the CA1 model cell during place cell activity. Additionally, we

  4. Morphological changes of cortical pyramidal neurons in hepatic encephalopathy

    OpenAIRE

    Chen, Jeng-Rung; Wang, Bing-Ning; Tseng, Guo-Fang; Wang, Yueh-Jan; Huang, Yong-San; Wang, Tsyr-Jiuan

    2014-01-01

    Background Hepatic encephalopathy (HE) is a reversible neuropsychiatric syndrome associated with acute and chronic liver diseases. It includes a number of neuropsychiatric disturbances including impaired motor activity and coordination, intellectual and cognitive function. Results In the present study, we used a chronic rat HE model by ligation of the bile duct (BDL) for 4 weeks. These rats showed increased plasma ammonia level, bile duct hyperplasia and impaired spatial learning memory and m...

  5. X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6

    OpenAIRE

    Burnus, T.; Z. Hu; Wu, Hua; Cezar, J. C.; Niitaka, S.; Takagi, H.; Chang, C. F.; Brookes, N. B.; Lin, H. -J.; Jang, L. Y.; Tanaka, A.; Liang, K. S.; Chen, C. T.; Tjeng, L. H.

    2008-01-01

    Using x-ray absorption spectroscopy at the Rh-L_2,3, Co-L_2,3, and Fe-L_2,3 edges, we find a valence state of Co^2+/Rh^4+ in Ca3CoRhO6 and of Fe^3+/Rh^3+ in Ca3FeRhO6. X-ray magnetic circular dichroism spectroscopy at the Co-L_2,3 edge of Ca3CoRhO6 reveals a giant orbital moment of about 1.7mu_B, which can be attributed to the occupation of the minority-spin d_0d_2 orbital state of the high-spin Co^2+ (3d^7) ions in trigonal prismatic coordination. This active role of the spin-orbit coupling ...

  6. Altered mitochondria and Bcl-2 expression in the hippocampal CA3 region in a rat model of acute epilepsy

    Institute of Scientific and Technical Information of China (English)

    Jiyan Cheng; Lina Wu; Qiaozhi Wang; Yanfeng Gan; Guangyi Liu; Hong Yu

    2009-01-01

    occurred prior to pathological changes in the neurons and nucleolus.CONCLUSION: Bcl-2 expression and mitochonddat damage increased in the hippocampal CA3 region in rats with epilepsy. Moreover, mitochondrial damage occurred prior to increased Bcl-2 expression and nucleolus damage.

  7. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons.

    Science.gov (United States)

    Cembrowski, Mark S; Wang, Lihua; Sugino, Ken; Shields, Brenda C; Spruston, Nelson

    2016-01-01

    Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus. PMID:27113915

  8. Use of confocal microscopy in the study of ischemia-induced hippocampal neuronal damage

    Directory of Open Access Journals (Sweden)

    Radenović Lidija

    2008-01-01

    Full Text Available The present study was undertaken to reveal by means of confocal laser microscopy the cytoarchitecture of hippocampal CA3 neurons in Mongolian gerbils before and after cerebral ischemia of different duration. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. On the 4th, 14th and 28th day after reperfusion, neuronal damage was examined by laser scanning confocal microscopy in the CA3 region of hippocampus (30 μm slices. Slices were stained with fluorescent Nissl staining and fluorescent membrane tracer DiI. Increased duration of cerebral ischemia resulted in a progressive loss of hippocampal CA3 neurons. Four days after the ischemic insult, neuronal damage in the hippocampal CA3 region was mild but visible. On the 28th day after reperfusion, neuronal damage in the observed brain structure was most severe. These results demonstrate the temporal profile of neuronal damage after an ischemic insult as observed using confocal microscopy.

  9. FABRIC DEFECT DETECTION USING STEERABLE PYRAMID

    Directory of Open Access Journals (Sweden)

    S. Mythili

    2011-05-01

    Full Text Available In this paper, a novel idea is proposed for fabric defect detection. De- fects are detected in the fabric using steerable pyramid along with a defect detection algorithm. Various steerable pyramid of four size 256*256, 128*128, 64*64, 32*32 and with four orientation bands 00,450, 900, 1350 are used. Utilizing a Steerable pyramid proved ade- quate in the representation of fabric images in multi-scale and multi- orientations; thus allowing defect detection algorithms to run more effectively. Defect detection algorithm identifies and locates the im- perfection in the defective sample using the statistics mean and stan- dard deviation. This statistics represents the relative amount of inten- sity in the texture and is sufficient to measure defects in the current model .The obtained result are compared with the existing methods wavelet based system and with Gaussian and Laplacian pyramid.

  10. Simulation of gene pyramiding in Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated.But it has not been used in animal breeding,and some theoretical investigation and simulation analysis with respect to its strategies,feasibility and efficiency are needed before it can be implemented in animals.In this study,we used four different pure fines of Drosophila melanogaster,each of which is homozygous at a specific mutant gene with a visible effect on phenotype,to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies.We finally got the ideal individuals,which are homozygous at the four target genes simultaneously.This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.

  11. Pyramidal micromirrors for microsystems and atom chips

    Science.gov (United States)

    Trupke, M.; Ramirez-Martinez, F.; Curtis, E. A.; Ashmore, J. P.; Eriksson, S.; Hinds, E. A.; Moktadir, Z.; Gollasch, C.; Kraft, M.; Vijaya Prakash, G.; Baumberg, J. J.

    2006-02-01

    Concave pyramids are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micromirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into micro-optoelectromechanical systems and atom chips. We have shown that structures of this shape can be used to laser-cool and hold atoms in a magneto-optical trap.

  12. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    Science.gov (United States)

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-01

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation. VIDEO ABSTRACT. PMID:26898780

  13. Direct measurement of specific membrane capacitance in neurons.

    OpenAIRE

    Gentet, L.J.; Stuart, G J; Clements, J D

    2000-01-01

    The specific membrane capacitance (C(m)) of a neuron influences synaptic efficacy and determines the speed with which electrical signals propagate along dendrites and unmyelinated axons. The value of this important parameter remains controversial. In this study, C(m) was estimated for the somatic membrane of cortical pyramidal neurons, spinal cord neurons, and hippocampal neurons. A nucleated patch was pulled and a voltage-clamp step was applied. The exponential decay of the capacitative char...

  14. Morphometric characteristics of Neuropeptide Y immunoreactive neurons of human cortical amygdaloid nucleus

    Directory of Open Access Journals (Sweden)

    Mališ Miloš

    2008-01-01

    Full Text Available Introduction Cortical amygdaloid nucleus belongs to the corticomedial part of the amygdaloid complex. In this nucleus there are neurons that produce neuropetide Y. This peptide has important roles in sleeping, learning, memory, gastrointestinal regulation, anxiety, epilepsy, alcoholism and depression. Material and methods We investigated morphometric characteristics (numbers of primary dendrites, longer and shorter diameters of cell bodies and maximal radius of dendritic arborization of NPY immunoreactive neurons of human cortical amygdaloid nucleus on 6 male adult human brains, aged 46 to 77 years, by immunohistochemical avidin-biotin technique. Results Our investigation has shown that in this nucleus there is a moderate number of NPY immunoreactive neurons. 67% of found neurons were nonpyramidal, while 33% were pyramidal. Among the nonpyramidal neurons the dominant groups were multipolar neurons (41% - of which 25% were multipolar irregular, and 16% multipolar oval. Among the pyramidal neurons the dominant groups were the neurons with triangular shape of cell body (21%. All found NPY immunoreactive neurons (pyramidal and nonpyramidal altogether had intervals of values of numbers of primary dendrites 2 to 6, longer diameters of cell bodies 13 to 38 µm, shorter diameters of cell bodies 9 to 20 µm and maximal radius of dendritic arborization 50 to 340 µm. More than a half of investigated neurons (57% had 3 primary dendrites. Discussion and conclusion The other researchers did not find such percentage of pyramidal immunoreactive neurons in this amygdaloid nucleus. If we compare our results with the results of the ather researchers we can conclude that all pyramidal NPY immunoreactive neurons found in this human amygdaloid nucleus belong to the class I of neurons, and that all nonpyramidal NPY immunoreactive neurons belong to the class II of neurons described by other researchers. We suppose that all found pyramidal neurons were projectional.

  15. A signature of attractor dynamics in the CA3 region of the hippocampus.

    Directory of Open Access Journals (Sweden)

    César Rennó-Costa

    2014-05-01

    Full Text Available The notion of attractor networks is the leading hypothesis for how associative memories are stored and recalled. A defining anatomical feature of such networks is excitatory recurrent connections. These "attract" the firing pattern of the network to a stored pattern, even when the external input is incomplete (pattern completion. The CA3 region of the hippocampus has been postulated to be such an attractor network; however, the experimental evidence has been ambiguous, leading to the suggestion that CA3 is not an attractor network. In order to resolve this controversy and to better understand how CA3 functions, we simulated CA3 and its input structures. In our simulation, we could reproduce critical experimental results and establish the criteria for identifying attractor properties. Notably, under conditions in which there is continuous input, the output should be "attracted" to a stored pattern. However, contrary to previous expectations, as a pattern is gradually "morphed" from one stored pattern to another, a sharp transition between output patterns is not expected. The observed firing patterns of CA3 meet these criteria and can be quantitatively accounted for by our model. Notably, as morphing proceeds, the activity pattern in the dentate gyrus changes; in contrast, the activity pattern in the downstream CA3 network is attracted to a stored pattern and thus undergoes little change. We furthermore show that other aspects of the observed firing patterns can be explained by learning that occurs during behavioral testing. The CA3 thus displays both the learning and recall signatures of an attractor network. These observations, taken together with existing anatomical and behavioral evidence, make the strong case that CA3 constructs associative memories based on attractor dynamics.

  16. Dependence of NMDA/GSK-3β Mediated Metaplasticity on TRPM2 Channels at Hippocampal CA3-CA1 Synapses

    Directory of Open Access Journals (Sweden)

    Xie Yu-Feng

    2011-12-01

    Full Text Available Abstract Transient receptor potential melastatin 2 (TRPM2 is a calcium permeable non-selective cation channel that functions as a sensor of cellular redox status. Highly expressed within the CNS, we have previously demonstrated the functional expression of these channels in CA1 pyramidal neurons of the hippocampus. Although implicated in oxidative stress-induced neuronal cell death, and potentially in neurodegenerative disease, the physiological role of TRPM2 in the central nervous system is unknown. Interestingly, we have shown that the activation of these channels may be sensitized by co-incident NMDA receptor activation, suggesting a potential contribution of TRPM2 to synaptic transmission. Using hippocampal cultures and slices from TRPM2 null mice we demonstrate that the loss of these channels selectively impairs NMDAR-dependent long-term depression (LTD while sparing long-term potentiation. Impaired LTD resulted from an inhibition of GSK-3β, through increased phosphorylation, and a reduction in the expression of PSD95 and AMPARs. Notably, LTD could be rescued in TRPM2 null mice by recruitment of GSK-3β signaling following dopamine D2 receptor stimulation. We propose that TRPM2 channels play a key role in hippocampal synaptic plasticity.

  17. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    International Nuclear Information System (INIS)

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation

  18. The nature of spin trimer in Ca3Cu2Ni(PO4)4

    International Nuclear Information System (INIS)

    The nature of spin trimer and 3d spin dynamics in Ca3Cu2Ni(PO4)4 was studied using 31P NMR measurements. This material is obtained replacing one of the Cu ions by a Ni ion in one dimensional spin trimer compound Ca3Cu3(PO4)4. NMR spectrum suggests the presence of two types of magnetically inequivalent phosphorous atoms as in the parent compound. This finding reveals the presence of only one type of trimer viz. Cu2-Cu1-Cu2 rather than three types viz., Cu2-Cu1-Cu2, Cu2-Cu1-Ni and Ni-Cu1-Ni as suggested from neutron scattering. Hence the ground state of Ca3Cu2Ni(PO4)4 appears to be a quintet. The present finding also explains the magnetic susceptibility behavior showing no indication of the reduction of net spin of a trimer in Ca3Cu2Ni(PO4)4, as expected for JNi-Cu = - 0.85 meV compared to JCu-Cu = - 4.74 meV, reported from neutron scattering. The spin lattice relaxation rate suggests that the three magnon mediated scattering process, dominant in Ca3Cu3(PO4)4, is reduced in Ca3Cu2Ni(PO4)4.

  19. Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zhouyan Feng; Jing Wang; Xiaojing Zheng

    2014-01-01

    The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.

  20. Pascal Pyramids, Pascal Hyper-Pyramids and a Bilateral Multinomial Theorem

    OpenAIRE

    Horn, Martin Erik

    2003-01-01

    Part I: The two-dimensional Pascal Triangle will be generalized into a three-dimensional Pascal Pyramid and four-, five- or whatsoever-dimensional hyper-pyramids. Part II: The Bilateral Binomial Theorem will be generalised into a Bilateral Trinomial Theorem resp. a Bilateral Multinomial Theorem.

  1. Clinical results of neurotransmission SPECT in extra-pyramidal diseases

    International Nuclear Information System (INIS)

    We present some methodological aspects and clinical applications of dopamine D2 receptor and transporter SPECT using new radiotracers radiolabeled with iodine 123. The gamma camera quality control and standardisation has to be adapted to the small volume and deep location of striata, where receptors and transporters are present. Phantom containing hollow spheres of different diameters which can be filled with different amounts of 99mTc or 123I. The semi quantitation of receptor and transporter molecular concentration is based on an equilibrium binding model. According to this model, the binding potential (Bmax. Ka) is equal to the ratio between specific binding in the striatum and circulating activity in a reference region of interest in the occipital cortex. By comparing ECD and ILIS SPECT, it has been shown that striatal ILIS binding does not depend on the local perfusion. The clinical applications mainly concern the extra-pyramidal pathology: ILIS and IBZM SPECT are able to differentiate pre- and post-synaptic lesions. In Parkinson disease the nigrostriatal pathway is damaged and D2 receptors are normal or increased, as shown by normal or elevated IBZM or ILIS uptake. In other extra pyramidal degenerative diseases as progressive supra nuclear palsy or multiple system atrophy striatal D2 receptors are damaged as shown by decreased IBZM or ILIS uptake. In our experience, 88 per cent of patients are correctly classified by ILIS SPECT and 86 per cent with IBZM SPECT. Dopamine transporter SPECT with βCIT and PE2I provides an evaluation of the presynaptic neuronal density in the striatum. One can expect an help for the early diagnosis and the evaluation of Parkinson disease. Another potential application of dopaminergic neurotransmission SPECT is the evaluation of neuronal loss after hypoxo-ischemia. We conclude that dopaminergic neurotransmission SPECT using specific ligands should become a useful diagnosis tool to study a large number of brain dysfunctions. (author)

  2. Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale

    International Nuclear Information System (INIS)

    In radiograms of rat embryos that received a single dose of [3H]thymidine between days E16 and E20 and were killed 24 hours after the injection, the heavily labeled cells (those that ceased to multiply soon after the injection) form a horizontal layer in the intermediate zone of the hippocampus, called the inferior band. The fate of these heavily labeled cells was traced in radiograms of the dorsal hippocampus in embryos that received [3H]thymidine on day E18 and were killed at different intervals thereafter. Two hours after injection the labeled proliferative cells are located in the Ammonic neuroepithelium. The heavily labeled cells that leave the neuroepithelium and aggregate in the inferior band 1 day after the injection become progressively displaced toward the stratum pyramidale 2-3 days later, and penetrate the stratum pyramidale of the CA1 region on the 4th day. In the stratum pyramidale of the CA3 region, farther removed from the Ammonic neuroepithelium, the heavily labeled cells are still sojourning in the intermediate zone 4 days after labeling. Observations in methacrylate sections suggest that two morphogenetic features of the developing hippocampus may contribute to the long sojourn of young pyramidal cells in the intermediate zone: the way in which the stratum pyramidale forms and the way in which the alveolar channels develop. The stratum pyramidale of the CA1 region forms before that of the CA3 region, which is the reverse of the neurogenetic gradient in the production of pyramidal cells. We hypothesize that this is so because the pyramidal cells destined to settle in the CA3 region, which will be contacted by granule cells axons (the mossy fibers), have to await the formation of the granular layer on days E21-E22

  3. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    Directory of Open Access Journals (Sweden)

    M. Surekha Bhat

    2007-01-01

    Full Text Available The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC housed in home cage and left in the laboratory; restrained rats (with three subgroups subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC having their restrainers kept in the laboratory; restrained pyramid rats (RP being kept in the pyramid; and restrained square box rats (RS in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH levels, erythrocyte glutathione peroxidase (GSH-Px and superoxide dismutase (SOD activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  4. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    Science.gov (United States)

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that

  5. K(Ca)2 and k(ca)3 channels in learning and memory processes, and neurodegeneration.

    Science.gov (United States)

    Kuiper, Els F E; Nelemans, Ad; Luiten, Paul; Nijholt, Ingrid; Dolga, Amalia; Eisel, Uli

    2012-01-01

    Calcium-activated potassium (K(Ca)) channels are present throughout the central nervous system as well as many peripheral tissues. Activation of K(Ca) channels contribute to maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP) that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different subtypes of K(Ca) channels were anticipated on the basis of their physiological and pharmacological profiles, and cloning revealed two well defined but phylogenetic distantly related groups of channels. The group subject of this review includes both the small conductance K(Ca)2 channels (K(Ca)2.1, K(Ca)2.2, and K(Ca)2.3) and the intermediate-conductance (K(Ca)3.1) channel. These channels are activated by submicromolar intracellular Ca(2+) concentrations and are voltage independent. Of all K(Ca) channels only the K(Ca)2 channels can be potently but differentially blocked by the bee-venom apamin. In the past few years modulation of K(Ca) channel activation revealed new roles for K(Ca)2 channels in controlling dendritic excitability, synaptic functioning, and synaptic plasticity. Furthermore, K(Ca)2 channels appeared to be involved in neurodegeneration, and learning and memory processes. In this review, we focus on the role of K(Ca)2 and K(Ca)3 channels in these latter mechanisms with emphasis on learning and memory, Alzheimer's disease and on the interplay between neuroinflammation and different neurotransmitters/neuromodulators, their signaling components and K(Ca) channel activation. PMID:22701424

  6. Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3

    Directory of Open Access Journals (Sweden)

    Gregory J. Brewer

    2013-10-01

    Full Text Available The mammalian hippocampus functions to encode and retrieve memories by transiently changing synaptic strengths, yet encoding in individual subregions for transmission between regions remains poorly understood. Toward the goal of better understanding the coding in the trisynaptic pathway from the dentate gyrus (DG to the CA3 and CA1, we report a novel microfabricated device that divides a micro-electrode array into two compartments of separate hippocampal network subregions connected by axons that grow through 3x10x400 μm tunnels. Gene expression by qPCR demonstrated selective enrichment of separate DG, CA3 and CA1 subregions. Reconnection of DG to CA3 altered burst dynamics associated with marked enrichment of GAD67 in DG and GFAP in CA3. Surprisingly, DG axon spike propagation was preferentially unidirectional to the CA3 region at 0.5 m/s with little reverse transmission. Therefore, select hippocampal subregions intrinsically self-wire in anatomically appropriate patterns and maintain their distinct subregion phenotype without external inputs

  7. Thermodynamic stability of Ca3TeO6 determined by a solid electrolyte EMF method

    International Nuclear Information System (INIS)

    Highlights: • Gibbs energy of formation of Ca3TeO6 experimentally determined for the first time. • Oxygen concentration galvanic cells based on YSZ solid electrolyte were employed. • In the Ca–Te–O system, Ca3TeO6 coexists with CaO and Te. - Abstract: The standard thermodynamic properties of Ca3TeO6 were determined electrochemically utilizing fast O2− ion conducting solid electrolyte yttria-stabilized zirconia. The ternary phase was synthesized from the pure oxides CaO and TeO2 in excess of CaO. The electromotive force measurements were performed on two similar electrochemical cells of the type Te + CaO + Ca3TeO6|YSZ|O2, within the temperature range from 850 to 949 K. The standard Gibbs energy of formation for the ternary compound Ca3TeO6 was determined for the first time, based on the experimental data obtained

  8. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.

    Science.gov (United States)

    Naumann, Robert K; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L; Brecht, Michael

    2016-03-01

    To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. PMID:26223342

  9. Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition

    NARCIS (Netherlands)

    F. Zeldenrust; W.J. Wadman

    2013-01-01

    Pyramidal cells perform computations on their inputs within the context of the local network. The present computational study investigates the consequences of feed-forward inhibition for the firing rate and reliability of a typical hippocampal pyramidal neuron that can respond with single spikes as

  10. Tiling a Pyramidal Polycube with Dominoes

    Directory of Open Access Journals (Sweden)

    Olivier Bodini

    2007-05-01

    Full Text Available The notion of pyramidal polycubes, namely the piling-up of bricks of a non-increasing size, generalizes in ℝ n the concept of trapezoidal polyominoes. In the present paper, we prove that n-dimensional dominoes can tile a pyramidal polycube if and only if the latter is balanced, that is, if the number of white cubes is equal to the number of black ones for a chessboard-like coloration, generalizing the result of [BC92] when n=2

  11. Pyramidal central configurations and perverse solutions

    OpenAIRE

    Zhifu Xie; Shiqing Zhang

    2004-01-01

    For $n$-body problems, a central configuration (CC) plays an important role. In this paper, we establish the relation between the spatial pyramidal central configuration (PCC) and the planar central configuration. We prove that the base of PCC is also a CC and we also prove that for some given conditions a planar CC can be extended to a PCC. In particular, if the pyramidal central configuration has a regular polygon base, then the masses of base are equal and the distance between the top vert...

  12. System Ca3(VO4)2-Na3VO4-LaVO4

    International Nuclear Information System (INIS)

    Using the method of x-ray phase analysis, the phase equilibria in the system Ca3(VO4)2-Na3VO4-LaVO4 were studied. An extensive solid solution in calcium orthovanadate bounded by the compositions Ca3(VO4)2-Ca9La(VO4)7-Ca10Na(VO4)7-Ca8.5Na1.75La0.75(V)4)7 was found. The unit cell parameters of whitlockite vanadates increase with a rise in the sodium or lanthanum concentration. Ferroelectric phase transitions in Ca3-3xLa2x(VO4)2 vanadates were studied using thermal analysis, electrical conductivity measurements, and dielectric constant measurements

  13. A new form of Ca3P2 with a ring of Dirac nodes

    International Nuclear Information System (INIS)

    We report the synthesis and crystal structure of a new high-temperature form of Ca3P2. The crystal structure was determined through Rietveld refinements of synchrotron powder x-ray diffraction data. This form of Ca3P2 has a crystal structure of the hexagonal Mn5Si3 type, with a Ca ion deficiency compared to the ideal 5:3 stoichiometry. This yields a stable, charge-balanced compound of Ca2+ and P3−. We also report the observation of a secondary hydride phase, Ca5P3H, which again is a charge-balanced compound. The calculated band structure of Ca3P2 indicates that it is a three-dimensional Dirac semimetal with a highly unusual ring of Dirac nodes at the Fermi level. The Dirac states are protected against gap opening by a mirror plane in a manner analogous to what is seen for graphene

  14. α-Internexin Is Present in the Pathological Inclusions of Neuronal Intermediate Filament Inclusion Disease

    OpenAIRE

    Cairns, Nigel J.; Zhukareva, Victoria; Uryu, Kunihiro; Zhang, Bin; Bigio, Eileen; Mackenzie, Ian R.A.; Gearing, Marla; Duyckaerts, Charles; Yokoo, Hideaki; Nakazato, Yoichi; Jaros, Evelyn; Perry, Robert H.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2004-01-01

    Neuronal intermediate filament (IF) inclusion disease (NIFID) is a novel neurological disease of early onset with a variable clinical phenotype including frontotemporal dementia, pyramidal, and extrapyramidal signs. Pathologically, in affected areas, there is neuronal loss, astrocytosis, and neuronal intracytoplasmic aggregates of abnormal neuronal IFs that contain neither tau nor α-synuclein. Thus, to characterize the neuronal IF protein profile of inclusions in NIFID, immunohistochemistry (...

  15. The determination of projection neuron identity in the developing cerebral cortex

    OpenAIRE

    Leone, Dino P.; Srinivasan, Karpagam; Chen, Bin; Alcamo, Elizabeth; McConnell, Susan K.

    2008-01-01

    Here we review the mechanisms that determine projection neuron identity during cortical development. Pyramidal neurons in the mammalian cerebral cortex can be classified into two major classes: corticocortical projection neurons, which are concentrated in the upper layers of the cortex, and subcortical projection neurons, which are found in the deep layers. Early progenitor cells in the ventricular zone produce deep layer neurons that express transcription factors including Sox5, Fezf2, and C...

  16. Multiresolution maximum intensity volume rendering by morphological adjunction pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2003-01-01

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D eros

  17. Thermoelectric Properties and Electronic Structure of Ca3Co2O6

    Institute of Scientific and Technical Information of China (English)

    AN Ji-ming; MIN Xin-min; CHEN Sheng-li; NAN Ce-wen

    2004-01-01

    The nanosized Ca3Co2O6 powder was synthesized via sol-gel process. The phase composition was characterized by means of X-ray diffraction. Polycrystalline samples of Ca3Co2O6 were prepared by a sintering procedure of nanosized power. The seebeck coefficient and electrical conductivity of the samples were measured from 450K up to 750K. The results show that the Seebeck coefficient increases with the increasing temperature. The electronic structures were calculated using the self-consistent full-potential linearized augmented plane-wave(LAPW) method within the density functional theory. The relationship between thermoelectric property and electronic structures was discussed.

  18. A new class of morphological pyramids for multiresolution image analysis

    OpenAIRE

    Roerdink, Jos B. T. M.; Asano, T.; Klette, R; Ronse, C.

    2003-01-01

    We study nonlinear multiresolution signal decomposition based on morphological pyramids. Motivated by a problem arising in multiresolution volume visualization, we introduce a new class of morphological pyramids. In this class the pyramidal synthesis operator always has the same form, i.e. a dilation by a structuring element A, preceded by upsampling, while the pyramidal analysis operator is a certain operator R(n)A indexed by an integer n, followed by downsampling. For n = 0, R(n)A equals th...

  19. Khufu, Khafre and Menkaure Pyramids and the Sun

    CERN Document Server

    Sparavigna, Amelia Carolina

    2016-01-01

    In this paper we discuss the orientation of the Egyptian pyramids at Giza with respect to sunrises and sunsets, using SunCalc.net software. We can see that Khufu and Khafre pyramids had been positioned in a manner that, from each pyramid, it was always possible to observe the points of the horizon where the sun was rising and setting on each day of the year. A discussion for the Menkaure pyramid is also proposed.

  20. State ownership pyramid: extend and control

    Czech Academy of Sciences Publication Activity Database

    Hanousek, Jan; Kočenda, Evžen

    Split : University of Split, Faculty of Economics, 2009, s. 1-25. [International Conference /8./ "Challenges of Europe: Financial Crisis and Climate Change". Split (HR), 21.05.2009-23.05.2009] Institutional research plan: CEZ:AV0Z70850503 Keywords : accounting efficiency * corporate pyramid * state control Subject RIV: AH - Economics

  1. Pyramid Project: An Exemplary Staff Development Plan.

    Science.gov (United States)

    Ardmore City Schools, OK.

    The Ardmore, Oklahoma, School District developed the 3-year Pyramid Project to implement the following recommendations of the Sid W. Richardson Foundation Study of exemplary programs for high ability students: (1) broaden the process for assessing student abilities, (2) adopt continuous progress and appropriate pacing, (3) cultivate students'…

  2. Food Guide Pyramid Becomes a Plate

    Science.gov (United States)

    ... español La pirámide nutricional se convierte en 'Mi plato' Plate = New Symbol for Healthy Eating Goodbye, pyramid. ... a friend Reprint Guidelines Sign up for our free weekly eNewsletters here About KidsHealth About Nemours Contact ...

  3. Ancient Pyramids Help Students Learn Math Concepts

    Science.gov (United States)

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  4. Teacher Acquisition of Functional Analysis Methods Using Pyramidal Training

    Science.gov (United States)

    Pence, Sacha T.; St. Peter, Claire C.; Giles, Aimee F.

    2014-01-01

    Pyramidal training involves an experienced professional training a subset of individuals who, in turn, train additional individuals. Pyramidal training is effective for training a variety of behavior-analytic skills with direct-care staff, parents, and teachers. As teachers' roles in behavioral assessment increase, pyramidal training may be…

  5. On the astronomical orientation of the IV dynasty Egyptian pyramids and the dating of the second Giza pyramid

    OpenAIRE

    Magli, Giulio

    2003-01-01

    The data on the astronomical orientation of the IV dynasty Egyptian pyramids are re-analyzed and it is shown that such data suggest an inverse chronology between the `first` and the `second` Giza pyramid.

  6. Pyramidal fractal dimension for high resolution images

    Science.gov (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  7. Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions

    OpenAIRE

    Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris

    2013-01-01

    Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where den...

  8. Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons

    OpenAIRE

    Atencio, Craig A.; Schreiner, Christoph E

    2008-01-01

    Excitatory pyramidal neurons and inhibitory interneurons constitute the main elements of cortical circuitry and have distinctive morphologic and electrophysiological properties. Here, we differentiate them by analyzing the time course of their action potentials (APs) and characterizing their receptive field properties in auditory cortex. Pyramidal neurons have longer APs and discharge as Regular-Spiking Units (RSUs), while basket and chandelier cells, which are inhibitory interneurons, have s...

  9. N-cadherin specifies first asymmetry in developing neurons

    OpenAIRE

    Gärtner, Annette; Fornasiero, Eugenio F.; Munck, Sebastian; Vennekens, Krist'l; Seuntjens, Eve; Huttner, Wieland B.; Valtorta, Flavia; Dotti, Carlos

    2012-01-01

    The precise polarization and orientation of developing neurons is essential for the correct wiring of the brain. In pyramidal excitatory neurons, polarization begins with the sprouting of opposite neurites, which later define directed migration and axo-dendritic domains. We here show that endogenous N-cadherin concentrates at one pole of the newborn neuron, from where the first neurite subsequently emerges. Ectopic N-cadherin is sufficient to favour the place of appearance of the first neurit...

  10. Persistently Active, Pacemaker-Like Neurons in Neocortex

    OpenAIRE

    Le Bon-Jego, Morgane; Yuste, Rafael

    2007-01-01

    The neocortex is spontaneously active, however, the origin of this self-generated, patterned activity remains unknown. To detect potential “pacemaker cells,” we use calcium imaging to directly identify neurons that discharge action potentials in the absence of synaptic transmissionin slices from juvenile mouse visual cortex. We characterize 60 of these neurons electrophysiologically and morphologically, finding that they belong to two classes of cells: one class composed of pyramidal neurons ...

  11. Using Semi-supervised Clustering for Neurons Classification

    OpenAIRE

    Fakhraee Seyedabad, Ali

    2013-01-01

    We wish to understand brain; discover its sophisticated ways of calculations to invent improved computational methods. To decipher any complex system, first its components should be understood. Brain comprises neurons. Neurobiologists use morphologic properties like “somatic perimeter”, “axonal length”, and “number of dendrites” to classify neurons. They have discerned two types of neurons: “interneurons” and “pyramidal cells”, and have a consensus about five classes of interneurons: PV, 2/3,...

  12. Persistently active, pacemaker-like neurons in neocortex

    OpenAIRE

    Morgane Le Bon-Jego; Rafael Yuste

    2007-01-01

    The neocortex is spontaneously active, however, the origin of this self-generated, patterned activity remains unknown. To detect potential pacemaker cells, we use calcium imaging to directly identify neurons that discharge action potentials in the absence of synaptic transmissionin slices from juvenile mouse visual cortex. We characterize 60 of these neurons electrophysiologically and morphologically, finding that they belong to two classes of cells: one class composed of pyramidal neurons...

  13. Oxygen transport kinetics of the misfit layered oxide Ca3Co4O9+d

    NARCIS (Netherlands)

    Thoréton, V.; Hu, Y.; Pirovano, C.; Capoen, E.; Nuns, N.; Mamede, A.S.; Dezanneau, G.; Yoo, C.-Y.; Bouwmeester, H.J.M.; Vannier, R.N.

    2014-01-01

    The oxygen transport kinetics of the misfit-layered cobaltite, Ca3Co4O9+d, known for its thermoelectric properties, was investigated by combined application of 18O/16O isotope exchange and electrical conductivity relaxation techniques. Although oxygen diffusion is found to be two orders of magnitude

  14. Preparation and Luminescence Characteristics of Ca3Y2(BO3)4:Eu3+ Phosphor

    Institute of Scientific and Technical Information of China (English)

    LI Pan-Lai; YANG Zhi-Ping; WANG Zhi-Jun; Guo Qing-Lin

    2007-01-01

    Ca3Y2(BO3)4:Eu3+ phosphor is synthesized by high temperature solid-state reaction method, and the luminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole 5 Do-7F2 transition of Eu3+ under 365 nm excitation, the reason is that Eu3+ substituting for y3+ occupies the non-centrosymmetric position in the crystal structure of Ca3Y2 (BO3 )4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm,365nm and 400nm) and blue (470nm) light. The effect of Eu3+ concentration on the emission intensity of Ca3Y2 (BO3 )4:Eu3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2(BO3)4:Eu3+ phosphor is (0.639, 0.357) at 15mol% Eu3+.

  15. Electronic Structure and Thermoelectric Properties of Ca3 Co4O9

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co4 O9 was studied using density function and discrete variation method (DFT-DVM).The gap between the highest valence band (HVB) and the lowest conduction band (LCB) shows a semiconducting property.Ca3 Co4 O9 colsists of CoO2 and Ca2 CoO3 two layers.The HVB and LCB near Fermi level are only mainly from O(2) 2p and Co(2) 3d in Ca2 CoO3 layer. Therefore, the semiconducting or thermoelectric property of Ca3 Co4 O9 should be mainly from Ca2 CoO3 layer, but it seems to have no direct relation to the CoO2 layer,which is consistent with that binary oxides hardly have a thermoelectric property, but trinary oxide compounds have quite a good thermoelectric property.The covalent and ionic bonds of Ca2 CoO3 layer are both weaker than those of CoO2 layer.Ca plays the role of connections between CoO2 and Ca2 CoO3 layers in Ca3 Co4 O9, decrease the ionic and covalent bond strength, and improve the thermoelectric property.

  16. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3.

    Science.gov (United States)

    Jarosch, Marlene S; Gebhardt, Christine; Fano, Silvia; Huchzermeyer, Christine; Ul Haq, Rizwan; Behrens, Christoph J; Heinemann, Uwe

    2015-07-01

    We investigated the effects of hypoxia on sharp wave-ripple complex (SPW-R) activity and recurrent epileptiform discharges in rat hippocampal slices, and the mechanisms underlying block of this activity. Oxygen levels were measured using Clark-style oxygen sensor microelectrodes. In contrast to recurrent epileptiform discharges, oxygen consumption was negligible during SPW-R activity. These network activities were reversibly blocked when oxygen levels were reduced to 20% or less for 3 min. The prolongation of hypoxic periods to 6 min caused reversible block of SPW-Rs during 20% oxygen and irreversible block when 0% oxygen (anoxia) was applied. In contrast, recurrent epileptiform discharges were more resistant to prolonged anoxia and almost fully recovered after 6 min of anoxia. SPW-Rs were unaffected by the application of 1-butyl-3-(4-methylphenylsulfonyl) urea, a blocker of KATP channels, but they were blocked by activation of adenosine A1 receptors. In support of a modulatory function of adenosine, the amplitude and incidence of SPW-Rs were increased during application of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Interestingly, hypoxia decreased the frequency of miniature excitatory post-synaptic currents in CA3 pyramidal cells, an effect that was converted into increased frequency by the adenosine A1 agonist DPCPX. In addition, DPCPX also delayed the onset of hypoxia-mediated block of SPW-Rs. Our data suggest that early adenosine release during hypoxia induces a decrease in pre-synaptic glutamate release and that both might contribute to transient block of SPW-Rs during hypoxia/anoxia in area CA3. PMID:25959377

  17. Hydrogen bonding to carbonyl oxygen of nitrogen-pyramidalized amide - detection of pyramidalization direction preference by vibrational circular dichroism spectroscopy.

    Science.gov (United States)

    Wang, Siyuan; Taniguchi, Tohru; Monde, Kenji; Kawahata, Masatoshi; Yamaguchi, Kentaro; Otani, Yuko; Ohwada, Tomohiko

    2016-03-01

    Nitrogen-pyramidalization of amide increases electron density on nitrogen and decreases that on carbonyl oxygen. We identified hydrogen-bonding to carbonyl of nitrogen-pyramidalized bicyclic β-proline derivatives by crystallography, and by NMR and vibrational circular dichroism (VCD) spectroscopy in solution. Such hydrogen-bonding can switch the preferred nitrogen-pyramidalization direction, as detected by VCD spectroscopy. PMID:26889607

  18. Neurofilament light mutation causes hereditary motor and sensory neuropathy with pyramidal signs.

    Science.gov (United States)

    Hashiguchi, Akihiro; Higuchi, Yujiro; Nomura, Miwa; Nakamura, Tomonori; Arata, Hitoshi; Yuan, Junhui; Yoshimura, Akiko; Okamoto, Yuji; Matsuura, Eiji; Takashima, Hiroshi

    2014-12-01

    To identify novel mutations causing hereditary motor and sensory neuropathy (HMSN) with pyramidal signs, a variant of Charcot-Marie-Tooth disease (CMT), we screened 28 CMT and related genes in four members of an affected Japanese family. Clinical features included weakness of distal lower limb muscles, foot deformity, and mild sensory loss, then late onset of progressive spasticity. Electrophysiological studies revealed widespread neuropathy. Electron microscopic analysis showed abnormal mitochondria and mitochondrial accumulation in the neurons and Schwann cells. Brain magnetic resonance imaging (MRI) revealed an abnormally thin corpus callosum. In all four, microarrays detected a novel heterozygous missense mutation c.1166A>G (p.Y389C) in the gene encoding the light-chain neurofilament protein (NEFL), indicating that NEFL mutations can result in a HMSN with pyramidal signs phenotype. PMID:25583183

  19. Neuronal intranuclear inclusions are ultrastructurally and immunologically distinct from cytoplasmic inclusions of neuronal intermediate filament inclusion disease

    OpenAIRE

    Mosaheb, Sabrina; Thorpe, Julian R.; Hashemzadeh-Bonehi, Lida; Bigio, Eileen H.; Gearing, Marla; Cairns, Nigel J.

    2005-01-01

    Abnormal neuronal cytoplasmic inclusions (NCIs) containing aggregates of α-internexin and the neurofilament (NF) subunits, NF-H, NF-M, and NF-L, are the signature lesions of neuronal intermediate filament (IF) inclusion disease (NIFID). The disease has a clinically heterogeneous phenotype, including fronto-temporal dementia, pyramidal and extrapyramidal signs presenting at a young age. NCIs are variably ubiquitinated and about half of cases also have neuronal intranuclear inclusions (NIIs), w...

  20. Atypical pyramidal cells in epileptic human cortex: CFLS and 3-D reconstructions.

    Science.gov (United States)

    Belichencko, P; Dahlström, A; von Essen, C; Lindström, S; Nordborg, C; Sourander, P

    1992-09-01

    Epileptic temporal cortices, removed from 3 patients with intractable partial epilepsy (IPE) during neurosurgery, were studied. Pyramidal neurons (40-50 per slice) in laminae III, V and white matter, were injected with lucifer yellow. Samples were examined in a confocal laser scanning microscope (Biorad 600) and individual cells scanned at 0.1-1 microns incremental levels. 2-D maximal linear projection was used for overview. Frames (50-60) of scanned neurons were transformed into 3-D volumes, using VoxelView software on a Silicone Graphics workstation and rotated. All samples contained neurons with duplicated apical dendrites, additional basal dendrites or were misplaced in a horizontal position in the white matter. The relation between these preliminary observations and the disease is discussed. PMID:1421134

  1. Insulating state and the importance of the spin-orbit coupling in Ca$_3$CoRhO$_6$

    OpenAIRE

    Wu, Hua; Z. Hu; Khomskii, D. I.; Tjeng, L. H.

    2007-01-01

    We have carried out a comparative theoretical study of the electronic structure of the novel one-dimensional Ca$_3$CoRhO$_6$ and Ca$_3$FeRhO$_6$ systems. The insulating antiferromagnetic state for the Ca$_3$FeRhO$_6$ can be well explained by band structure calculations with the closed shell high-spin $d^5$ (Fe$^{3+}$) and low-spin $t_{2g}^{6}$ (Rh$^{3+}$) configurations. We found for the Ca$_3$CoRhO$_6$ that the Co has a strong tendency to be $d^7$ (Co$^{2+}$) rather than $d^6$ (Co$^{3+}$), a...

  2. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    Science.gov (United States)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-08-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  3. How they (should have) built the pyramids

    CERN Document Server

    West, J; Waters, K

    2014-01-01

    A novel method is proposed for moving large, pyramid construction size, stone blocks. The method is inspired by a well known introductory physics homework problem, and is implemented by tying 12 identical rods of appropriately chosen radius to the faces of the block. The rods form the corners and new faces that transform the square prism into a dodecagon which can then be moved more easily by rolling than by dragging. Experimental results are presented and compared to independent work by another group which utilized wooden attachments providing a cylindrical shape. It is found that a small scale stone block converted to dodecagons can be moved across level open ground with a dynamic coefficient of friction of the order 0.2. For full scale pyramid blocks, the wooden rods would need to be posts of order 30 cm in diameter, similar in size to those used as masts on ships in the Nile.

  4. Approximate Particle Spectra in the Pyramid Scheme

    CERN Document Server

    Banks, Tom

    2012-01-01

    We construct a minimal model within the general class of Pyramid Schemes, which is consistent with both supersymmetry breaking and electroweak symmetry breaking. In order to do computations, we make unjustified approximations to the low energy K\\"ahler potential. The phenomenological viability of the resultant mass spectrum is then examined and compared with current collider limits. We show that, for certain regimes of parameters, the Pyramid Scheme can accommodate the current collider mass constraints on physics beyond the standard model with a tree-level light Higgs mass near 125 GeV. However, in this regime the model exhibits a little hierarchy problem, and one must permit fine-tunings that are generically 5%.

  5. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld; Noraberg, Jens; Jensen, Niels A

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...... data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human...... hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex....

  6. Promotion of Behavior - Learning and Effect on Number of Hippocampal Neurons of Mice Injured by Ischemia with Cordycepin Treatment%虫草素改善脑缺血小鼠学习记忆及对海马神经元数量的影响

    Institute of Scientific and Technical Information of China (English)

    蔡昭林; 李楚华; 王晓琦; 蒋中娇; 郑月; 李海航; 肖鹏

    2012-01-01

    采用双侧颈动脉夹闭建立脑缺血模型,观察造模后和造模前腹腔注射100 mg/kg虫草素对小鼠Y迷宫行为训练的影响,以及检测海马各区神经元数量的变化.结果表明,造模前给予虫草素能明显提高小鼠的正确反应率(P<0.05),减少达标所需训练次数(P<0.05),显著增加海马CA1区和CA3区锥体神经元数量(P<0.01).造模后给予虫草素显著减少小鼠达标所需训练次数(P<0.05);同时,海马CA3区神经元数量显著增加(P<0.01).由此可见,虫草素能改善脑缺血小鼠的学习能力,预防作用比治疗作用更为显著,可能与虫草素促进海马神经元的修复有关.%To investigate effects of cordycepin on learning and hippocampal neurons of mice injured by ischemia, we processed ischemic mice model by 2 - vessel occlusion, and observed Y maze training of mice with post - or pre - treatment of 100 mg/kg cordycepin (i. p. ) , which was followed by the detection of hippocampal neurons density in CA1, CA3 and DG region. The results indicated that pre - treatment of cordycepin increased rates of correct responses (RCR) and. decreased trails of reaching standard (TRS) significantly (P 0. 05) and, only improved the number of pyramidal neurons in hippocampal CA3 region (P <0. 01). Together, we concluded that cordycepin conspicuously ameliorated behavioral learning of mice injured by ischemia, which was more effective with pre - treatment, possibly attributing to restoration of hippocampal neurons with cordycepin application.

  7. Chaotic neuron clock

    International Nuclear Information System (INIS)

    Highlights: → A chaotic model of spontaneous neuron firing. → Mapping the irregular spiking time-series into telegraph signals. → Fundamental frequency of the Rossler attractor provides periodic component. → Spiking time-series from spontaneous activity of hippocampal neurons. → Comparison shows good agreement between the model and the experiment. - Abstract: A chaotic model of spontaneous (without external stimulus) neuron firing has been analyzed by mapping the irregular spiking time-series into telegraph signals. In this model the fundamental frequency of chaotic Roessler attractor provides (with a period doubling) the strong periodic component of the generated irregular signal. The exponentially decaying broad-band part of the spectrum of the Roessler attractor has been transformed by the threshold firing mechanism into a scaling tale. These results are compared with irregular spiking time-series obtained in vitro from a spontaneous activity of hippocampal (CA3) singular neurons (rat's brain slice culture). The comparison shows good agreement between the model and experimentally obtained spectra.

  8. Changes of delayed neuronal death of pyramidal cell and mitochondria by transmission electron microscopy in rats' hippocampus after endurance training and exhaustion treadmill running%耐力训练及力竭运动后大鼠大脑CA1区锥体细胞迟发性神经元死亡及其线粒体的超微结构变化

    Institute of Scientific and Technical Information of China (English)

    张雁儒; 张建军; 冯富明; 李月白; 王义生

    2012-01-01

    目的 观察耐力训练及力竭运动后大鼠大脑海马区锥体细胞及其线粒体的超微结构变化.方法 实验于2007年6月至2008年11月在郑州大学完成.选取8周龄雄性SD大鼠40只,随机设耐力训练组:安静组;急性力竭运动后24 h组;耐力训练+急性力竭运动后即刻组;耐力训练+急性力竭运动后24h组.每组10只.安静组不外加运动,其他组次日进行力竭运动,力竭运动开始的速度为10 m/min,逐渐提高速度并在3 min内到达预定的速度(中等强度、大强度力竭运动的速度分别为20 m/min、36 m/min),保持速度直至力竭,并记录力竭运动时间.耐力训练方案:大鼠在动物跑台进行运动训练,1次/d,6d/周.跑台速度由开始的10 m/min逐渐增加至第4周30 m/min,运动时间由30 min/d增加到40 min/d.力竭标准为大鼠用毛刷驱赶无效,在跑台尾端停留2 s仍不愿跑,且失去快速翻正反射.主要观察指标:断头处死分别取材检测大鼠大脑海马区锥体细胞及其线粒体的超微结构变化.结果 40只SD大鼠均完成实验设计方案,全部进入结果分析.结果发现耐力训练和力竭运动后大鼠大脑细胞凋亡数量显著增加,力竭运动强度增加,凋亡细胞数量增多,且多为神经胶质细胞,安静组大脑细胞凋亡率为(6.56±1.24)%、急性运动后24h组为(16.14 ±3.26)%、耐力训练+急性运动后即刻组为(29.78±1.96)%、耐力训练+急性运动后24h组为(32.43±2.35)%.通过图像分析系统的分析研究,海马神经元线粒体变性较为显著.结论 本实验观察到耐力训练和力竭运动对大脑细胞造成一定的损伤,海马区神经元线粒体变性,可能是由于疲劳训练引起脑组织的酸中毒和缺氧引起大脑细胞的一些变性现象.%Objective The pyramid neurons in the CA1 subfield of the hippocampus are vulnerable to ischemic attack,and transient global ischemia can lead to a specific neuronal death called the

  9. Ca3P2 and other topological semimetals with line nodes and drumhead surface states

    Science.gov (United States)

    Chan, Y.-H.; Chiu, Ching-Kai; Chou, M. Y.; Schnyder, Andreas P.

    2016-05-01

    As opposed to ordinary metals, whose Fermi surfaces are two dimensional, topological (semi)metals can exhibit protected one-dimensional Fermi lines or zero-dimensional Fermi points, which arise due to an intricate interplay between symmetry and topology of the electronic wave functions. Here, we study how reflection symmetry, time-reversal symmetry, SU(2) spin-rotation symmetry, and inversion symmetry lead to the topological protection of line nodes in three-dimensional semimetals. We obtain the crystalline invariants that guarantee the stability of the line nodes in the bulk and show that a quantized Berry phase leads to the appearance of protected surfaces states, which take the shape of a drumhead. By deriving a relation between the crystalline invariants and the Berry phase, we establish a direct connection between the stability of the line nodes and the drumhead surface states. Furthermore, we show that the dispersion minimum of the drumhead state leads to a Van Hove singularity in the surface density of states, which can serve as an experimental fingerprint of the topological surface state. As a representative example of a topological semimetal, we consider Ca3P2 , which has a line of Dirac nodes near the Fermi energy. The topological properties of Ca3P2 are discussed in terms of a low-energy effective theory and a tight-binding model, derived from ab initio DFT calculations. Our microscopic model for Ca3P2 shows that the drumhead surface states have a rather weak dispersion, which implies that correlation effects are enhanced at the surface of Ca3P2 .

  10. Hydrothermal synthesis of Ca3Bi8O15 rods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Graphical abstract: The novel Ca3Bi8O15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. - Highlights: • Ca3Bi8O15 rods were synthesized by a hydrothermal method. • They can utilize the sunlight efficiently with the small band-gap. • They showed good photocatalytic activities in the degradation of MO, RhB and 4-CP. • The conversion ratio of MO was up to 90% after 2 h of visible light irradiation. - Abstract: High efficient visible light Ca3Bi8O15 photocatalysts were synthesized by a hydrothermal method. Characterized by X-ray diffractometer, transmission electron microscopy, and the UV–vis diffuse reflectance spectroscopy, the results showed that the novel Ca3Bi8O15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. Furthermore, they also showed good photocatalytic activities in the degradation of rhodamine B and p-chlorophenol. Through the investigation of the degraded mechanism, the main active species played important roles in the degradation process were holes, O2·− and ·OH

  11. Optical conductivity of layered calcium cobaltate Ca3Co4O9.

    Science.gov (United States)

    Tanabe, Kenji; Okazaki, Ryuji; Taniguchi, Hiroki; Terasaki, Ichiro

    2016-03-01

    We report the optical properties of layered calcium cobaltate, Ca3Co4O9, which is regarded as a promising candidate for use as a thermoelectric material. The optical conductivity shows three broad peaks related to the inter-band transition below 4 eV, which are quite similar to those in the spectra of Na x CoO2. This similarity implies that the CoO2 layer, which is an essential unit for both Ca3Co4O9 and Na x CoO2, is dominant in the energy band structure below 4 eV. In addition, we estimate the effective carrier number per Co site and find similarity between the CoO2 layers of Ca3Co4O9 and Na0.75CoO2, which is consistent with the similarity in their Seebeck coefficients. To discuss the contribution of the rocksalt-type Ca2CoO3 layer in Ca3Co4O9, we propose the concept of optical sheet conductivity in the layered materials and estimate its value in the Ca2CoO3 layer. A comparison with the spin-polarized band calculation of the LDA  +  Hubbard U formalism with U  =  5 eV suggests that the Ca2CoO3 layer has the inter-band transition of 2.6 eV in the spin-down band structure. Evaluation of the valences of Co 3d orbitals indicates the existence of charge transfer from the Ca2CoO3 layer to the CoO2 layer and mixing of Co(3+) and Co(4+) in the CoO2 layer, which may be the origin of the large thermoelectric effect. PMID:26823444

  12. Centre of pressure correlates with pyramid performance in acrobatic gymnastics.

    Science.gov (United States)

    Floría, Pablo; Gómez-Landero, Luis Arturo; Harrison, Andrew J

    2015-01-01

    Acrobatic gymnasts need excellent balance control to execute pyramids where one gymnast is supported by another. The objectives of this study were: (1) to describe balance performance by assessing the centre of pressure displacement in a group of acrobatic gymnasts executing pyramids; (2) to determine the relationship between the parameters describing the centre of pressure oscillations and pyramid score; and (3) to examine the role of each foot in providing a solid base of support to maintain the balance of the pyramid. Sixteen acrobatic gymnasts grouped in pairs performed a Half pyramid and a Straddle pyramid held for 7 s on two force platforms. Path length, variance, range trajectory, and surface area of the centre of pressure of each foot were examined to analyse the balance of the pyramid. The path length was correlated with the pyramid score (Straddle: p = 0.692 [large]; Half: p = 0.407 [moderate]). There were differences in the functions of each leg to maintain balance, with the non-preferred leg supporting a higher weight of the pyramid while the preferred leg performed control movements to maintain balance. The results suggested that quantitative analysis of balance can provide important information on pyramid performance. PMID:26715236

  13. Crystal structure of Ca 3(VO 4) 2 synthesized at 11 GPa and 1373 K

    Science.gov (United States)

    Grzechnik, Andrzej

    2002-04-01

    A new polymorph of calcium orthovanadate Ca 3(VO 4) 2 has been synthesized at 11 GPa and 1373 K and recovered to ambient conditions. It crystallizes in a monoclinic cell (space group C2/m, Z=2) with a=9.6715(2), b=5.43276(7), c=7.0713(1) Å, β=116.949(1)°. The crystal structure has been solved ab initio from X-ray powder diffraction data using direct methods. The oxygen atoms form a hexagonal close packing. The VO 3-4 tetrahedra are radially and angularly distorted. The two crystallographically independent Ca atoms are in deformed octahedral and ten-fold coordinations. Unlike in the palmierite-derived parent Ba 3(VO 4) 2 (R 3¯m, Z=1) and Ca 3(VO 4) 2 (R3c, Z=7), this network is three-dimensional. The new monoclinic structure of calcium orthovanadate is discussed in relation to those of related orthophosphates and orthovanadates. It is suggested that the pressure-induced amorphization of Ca 3(VO 4) 2 (R3c, Z=7) at 10 GPa and room temperature could be due to kinetically inhibited changes in the dimensionality of the crystal structure.

  14. Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.

    NARCIS (Netherlands)

    I. van Welie; M.W.H. Remme; J.A. van Hooft; W.J. Wadman

    2006-01-01

    Pyramidal neurons in the subiculum typically display either bursting or regular-spiking behaviour. Although this classification into two neuronal classes is well described, it is unknown how these two classes of neurons contribute to the integration of input to the subiculum. Here, we report that bu

  15. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris).

    Science.gov (United States)

    Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob

    2016-01-01

    The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche. PMID:27166161

  16. At immature mossy fibers-CA3 connections, activation of presynaptic GABAB receptors by endogenously released GABA contributes to synapses silencing

    Directory of Open Access Journals (Sweden)

    Victoria F Safiulina

    2009-02-01

    Full Text Available Early in postnatal life correlated GABAergic activity in the hippocampus is thought to play a crucial role in synaptogenesis and in the development of adult neuronal networks. Unlike adulthood, at this developmental stage, mossy fibers (MF which are the axons of granule cells, release GABA into CA3 principal cells and interneurons. Here, we tested the hypothesis that at MF-CA3 connections, tonic activation of GABAB autoreceptors by GABA is responsible for the low probability of release and synapse silencing. Blocking GABAB receptors with CGP55845 enhanced the probability of GABA release and switched on silent synapses while the opposite was observed with baclofen. Both these effects were presynaptic and were associated with changes in paired-pulse ratio and coefficient of variation. In addition, enhancing the extracellular GABA concentration by repetitive stimulation of MF or by blocking the GABA transporter GAT-1, switched off active synapses, an effect that was prevented by CGP55845. In the presence of CGP55845, stimulation of MF induced synaptic potentiation. The shift of EGABA from the depolarizing to the hyperpolarizing direction with bumetanide, a blocker of the cation-chloride co-transporter NKCC1, prevented synaptic potentiation and caused synaptic depression, suggesting that the depolarizing action of GABA observed in the presence of CGP55845 is responsible for the potentiating effect. It is proposed that, activation of GABAB receptors by spillover of GABA from MF terminals reduces the probability of release and contributes to synapses silencing. This would act as a filter to prevent excessive activation of the auto-associative CA3 network and the emergence of seizures.

  17. Overproduction of Upper-Layer Neurons in the Neocortex Leads to Autism-like Features in Mice

    OpenAIRE

    Wei-Qun Fang; Wei-Wei Chen; Liwen Jiang; Kai Liu(Graduate University of Chinese Academy of Sciences, Beijing, P. R. China); Wing-Ho Yung; Amy K.Y. Fu; Nancy Y. Ip

    2014-01-01

    The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocort...

  18. Synaptic Mechanisms Underlying Functional Dichotomy between Intrinsic-Bursting and Regular-Spiking Neurons in Auditory Cortical Layer 5

    OpenAIRE

    Sun, Yujiao J.; Kim, Young-Joo; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.

    2013-01-01

    Corticofugal projections from the primary auditory cortex (A1) have been shown to play a role in modulating subcortical processing. However, functional properties of the corticofugal neurons and their synaptic circuitry mechanisms remain unclear. In this study, we performed in vivo whole-cell recordings from layer 5 (L5) pyramidal neurons in the rat A1 and found two distinct neuronal classes according to their functional properties. Intrinsic-bursting (IB) neurons, the L5 corticofugal neurons...

  19. Morphometric characteristics of the neurons of the human subiculum proper

    Directory of Open Access Journals (Sweden)

    Živanović-Mačužić Ivana

    2012-01-01

    Full Text Available The human subiculum is a significant part of the hippocampal formation positioned between the hippocampus proper and the entorhinal and other cortices. It plays an important role in spatial navigation, memory processing and control of the response to stress. The aim of our study was identification of the morphometric characteristics of the neurons of the human subiculum proper: the maximum length and width of cell body and total dendritic length and volume of cell body. Comparing the measured parameters of different types of subicular neurons (bipolar, multipolar, pyramidal neurons with triangular-shaped soma and neurons with oval-shaped soma, we can conclude that bipolar neurons have the lowest values of the measured parameters: the maximum length of their cell body is 14.1 ± 0.2 µm, the maximum width is 13.9 ± 0.5 µm, and total dendritic length is 14597 ± 3.1 µm. The lowest volume value was observed in bipolar neurons; the polymorphic layer is 1152.99 ± 662.69 µm3. The pyramidal neurons of the pyramidal layer have the highest value for the maximal length of the cell body (44.43 ± 7.94 µm, maximum width (23.64 ± 1.89 µm, total dendritic length (1830 ± 466.3 µm and volume (11768.65±4004.9 µm3 These characteristics of the pyramidal neurons indicate their importance, because the axons of these neurons make up the greatest part of the fornix, along with the axons of neurons of the CA1 hippocampal field.

  20. The Fezf2–Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex

    OpenAIRE

    Chen, Bin; Wang, Song S.; HATTOX, ALEXIS M.; Rayburn, Helen; Nelson, Sacha B.; McConnell, Susan K.

    2008-01-01

    Pyramidal neurons in the deep layers of the cerebral cortex can be classified into two major classes: callosal projection neurons and long-range subcortical neurons. We and others have shown that a gene expressed specifically by subcortical projection neurons, Fezf2, is required for the formation of axonal projections to the spinal cord, tectum, and pons. Here, we report that Fezf2 regulates a decision between subcortical vs. callosal projection neuron fates. Fezf2−/− neurons adopt the fate o...

  1. Optical-luminescence properties of Ce3+ ions in Ca3 Ga2 Ge4O14 single crystals

    International Nuclear Information System (INIS)

    The optical-luminescence spectroscopic properties of Ca3 Ga2 Ge4 O14 single crystals doped with Ce3+ ions are investigated. It is shown that activator ions in Ca3 Ga2 Ge4 O14 form Ce3+ centers in Thomson cubes (3 e positions)

  2. Vestibular Neuronitis

    Science.gov (United States)

    ... Prevent Painful Swimmer's Ear Additional Content Medical News Vestibular Neuronitis By Lawrence R. Lustig, MD NOTE: This ... Drugs Herpes Zoster Oticus Meniere Disease Purulent Labyrinthitis Vestibular Neuronitis Vestibular neuronitis is a disorder characterized by ...

  3. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  4. The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae).

    Science.gov (United States)

    Butti, Camilla; Janeway, Caroline M; Townshend, Courtney; Wicinski, Bridget A; Reidenberg, Joy S; Ridgway, Sam H; Sherwood, Chet C; Hof, Patrick R; Jacobs, Bob

    2015-11-01

    The present study documents the morphology of neurons in several regions of the neocortex from the bottlenose dolphin (Tursiops truncatus), the North Atlantic minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Golgi-stained neurons (n = 210) were analyzed in the frontal and temporal neocortex as well as in the primary visual and primary motor areas. Qualitatively, all three species exhibited a diversity of neuronal morphologies, with spiny neurons including typical pyramidal types, similar to those observed in primates and rodents, as well as other spiny neuron types that had more variable morphology and/or orientation. Five neuron types, with a vertical apical dendrite, approximated the general pyramidal neuron morphology (i.e., typical pyramidal, extraverted, magnopyramidal, multiapical, and bitufted neurons), with a predominance of typical and extraverted pyramidal neurons. In what may represent a cetacean morphological apomorphy, both typical pyramidal and magnopyramidal neurons frequently exhibited a tri-tufted variant. In the humpback whale, there were also large, star-like neurons with no discernable apical dendrite. Aspiny bipolar and multipolar interneurons were morphologically consistent with those reported previously in other mammals. Quantitative analyses showed that neuronal size and dendritic extent increased in association with body size and brain mass (bottlenose dolphin < minke whale < humpback whale). The present data thus suggest that certain spiny neuron morphologies may be apomorphies in the neocortex of cetaceans as compared to other mammals and that neuronal dendritic extent covaries with brain and body size. PMID:25100560

  5. Design and fabrication of a pyramid wavefront sensor

    Science.gov (United States)

    Wang, Aina; Yao, Jun; Cai, Dongmei; Ren, Hao

    2010-07-01

    A new pyramid wavefront sensor (PWFS), which utilizes a reflective pyramid mirror instead of a refractive pyramid prism at the focus of a telescope, is presented. As a key optical component in this PWFS, the pyramid mirror requires accurate microfabrication for excellent quality of the tip, the turned edges, and the surfaces. The moving mask lithography process is proposed for its economic, simple, and precise control to make the cross-sectional shape of the structure. The completed pyramid mirror has a square base of 1-mm length and four side facets inclined to the base at 3.7 deg. The sizes of the pyramid tip and turned edges are both about 6 μm, which show excellent aspects of sharpening-tip and knife-edges. The root mean square of four facets is approximately 70 nm, and the maximum profile deviation is 0.2 μm.

  6. Facial action detection using block-based pyramid appearance descriptors

    OpenAIRE

    Jiang, Bihan; Valstar, Michel F.; Pantic, Maja

    2012-01-01

    Facial expression is one of the most important non-verbal behavioural cues in social signals. Constructing an effective face representation from images is an essential step for successful facial behaviour analysis. Most existing face descriptors operate on the same scale, and do not leverage coarse v.s. fine methods such as image pyramids. In this work, we propose the sparse appearance descriptors Block-based Pyramid Local Binary Pattern (B-PLBP) and Block-based Pyramid Local Phase Quantisati...

  7. General Mechanisms for Inverted Biomass Pyramids in Ecosystems

    OpenAIRE

    Wang, Hao; Morrison, Wendy; Singh, Abhinav; Weiss, Howard

    2008-01-01

    Although the existence of robust inverted biomass pyramids seem paradoxical, they have been observed in planktonic communities, and more recently, in pristine coral reefs. Understanding the underlying mechanisms which produce inverted biomass pyramids provides new ecological insights, and for coral reefs, may help mitigate or restore damaged reefs. We present three classes of predator-prey models which elucidate mechanisms that generate robust inverted biomass pyramids. The first class of mod...

  8. Comparison of Morphological Pyramids for Multiresolution MIP Volume Rendering

    OpenAIRE

    Roerdink, Jos B. T. M.

    2002-01-01

    We recently proposed a multiresolution representation for maximum intensity projection (MIP) volume rendering based on morphological adjunction pyramids which allow progressive refinement and have the property of perfect reconstruction. In this algorithm the pyramidal analysis and synthesis operators are composed of morphological erosion and dilation, combined with dyadic downsampling for analysis and dyadic upsampling for synthesis. Here we introduce an alternative pyramid scheme in which a ...

  9. A top-down construction scheme for irregular pyramids

    OpenAIRE

    Goffe, Romain; Brun, Luc; Damiand, Guillaume

    2009-01-01

    Hierarchical data structures such as irregular pyramids are used by many applications related to image processing and segmentation. The construction scheme of such pyramids is bottom-up. Such a scheme forbids the definition of a level according to more global information defined at upper levels in the hierarchy. Moreover, the base of the pyramid has to encode any single pixel of the initial image in order to allow the definition of regions of any shape at higher levels. This last constraint r...

  10. GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells.

    Science.gov (United States)

    Jappy, Dave; Valiullina, Fliza; Draguhn, Andreas; Rozov, Andrei

    2016-01-01

    Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Another characteristic feature allowing functional classification of interneurons is cell type specific expression of different neurochemical markers and receptors. In the hippocampal CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors (CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1 receptors can be used for identification of the inhibitory input from CCK positive (CCK+) interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of long term plasticity at the synapses between interneurons expressing CB1Rs (putative CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We found that theta burst stimulation triggered robust long-term depression (LTD) at this synapse. The locus of LTD induction was postsynaptic and required activation of GABAB receptors. We also showed that LTD at this synaptic connection involves GABABR-dependent suppression of adenylyl cyclase and consequent reduction of PKA activity. In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other hippocampal inhibitory connections where theta burst stimulation results in long-term potentiation. PMID:26858602

  11. Incidence of a pyramidal lobe on thyroid scans

    International Nuclear Information System (INIS)

    Gamma camera pertechnetate and radioiodine thyroid scans were reviewed to determine the incidence of recognition of a pyramidal lobe. Ten to 17% of normals and of patients with various thyroid disease states had a pyramidal lobe on their scans. However, in patients with diffuse toxic goiter, 43% had a pyramidal lobe on the thyroid images. There appears to be a correlation between elevated thyroid function studies (likely in thyroid mass) and the incidence of a pyramidal lobe on thyroid scans in diffuse toxic goiter

  12. Base-of-the-pyramid global strategy

    Directory of Open Access Journals (Sweden)

    Boşcor, D.

    2010-12-01

    Full Text Available Global strategies for MNCs should focus on customers in emerging and developing markets instead of customers in developed economies. The “base-of-the-pyramid segment” comprises 4 billion people in the world. In order to be successful, companies will be required to form unconventional partnerships- with entities ranging from local governments to non-profit organizations - to gain the community’s trust and understand the environmental, infrastructure and political issues that may affect business. Being able to provide affordable, high-quality products and services in this market segment often means new approaches to marketing- new packaging and pricing structures, and using unfamiliar distribution structures.

  13. Cosmological SUSY Breaking and the Pyramid Schemes

    CERN Document Server

    Banks, T

    2014-01-01

    I review the ideas of holographic space-time (HST), Cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the standard model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right handed slepton, which should be discovered soon.

  14. Dirac Gluinos in the Pyramid Scheme

    CERN Document Server

    Banks, T

    2013-01-01

    I point out several terms in the low energy effective Lagrangian of the Pyramid Scheme, which were missed in a previous analysis of the phenomenological consequences of the model. They lead to a Dirac contribution to the gluino mass, much larger than the one loop Majorana mass. The gluino can thus be much heavier than in previous estimates, without introducing corresponding large loop corrections to squark masses. As pointed out by a number of authors, this ameliorates the tension between the predictions of the model, and LHC data. I also point out that the model has corrections to the Higgs potential, both at the tree and loop levels, which may ameliorate fine tuning.

  15. Effect of different Intensity Exercises in Treadmill on Learning and Memory and The Synaptic Ultrastructure in Hippocampal CA3 Area in Rats%不同强度跑台运动对大鼠学习记忆能力及海马CA3区突触超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    龚云

    2012-01-01

    Effect of the different intensity treadmill exercise on learning and memory ability and hippocampal CA3 area ultrastructure was studied in rats.40 SD rats were randomly divided into four groups(control group,low-intensity exercise group,medium-intensity exercise group and high-intensity exercise group),after 60d exercise according to their respective intensity,through the one-trial passive avoidance response,the time to step-through lateney(STL) of rats was measured in every exercise group.Then 5 rats were chosen from every group,through normal ultrathin section made method,hippocampal CA3 area was observed under JEM-1230EX transmission electron microscope and photographed.The results showed that: 24 hours of STL period after electrical shock was significantly longer(P0.05) in low-intensity exercise group rats,and the hippocampal CA3 area postsynaptic density material became significantly thicker(P0.01).The curved type of synaptic interface could be divided into positively curved,negatively curved and flat,the flat type was the main.As a result,low-intensity exercise can increase memory capacity,and make the neuron synapse occurring plastic changes in the hippocampal CA3 area.The thickness of postsynaptic density material came into being a positive correlation with the strength of memory.%探讨不同强度跑台运动对大鼠学习记忆能力及海马CA3区超微结构的影响。40只Wister大鼠随机被分为4组(对照组、低强度运动组、中强度运动组、高强度运动组,各10只),按各自强度运动60 d后,通过一次性被动回避反应实验,逐只测量其步入潜伏期的时间(STL);后每组任选5只大鼠,取右侧海马CA3区按常规方法制作超薄切片,60K倍透射电镜观察并拍照,Motic Images Advanced 3.1软件测量相关突触界面结构。结果表明:低强度运动组大鼠,电击后24 h步入潜伏期的时间显著延长(P〈0.05),海马CA3区突触后膜致密

  16. Energy transfer and luminescence dynamics in Ca3Gd2(BO3)4:Eu3+

    International Nuclear Information System (INIS)

    Eu3+-doped and -undoped Ca3Gd2(BO3)4 phosphors were synthesized by the high temperature solid-state reaction. The excitation and emission spectra and the decays of the Gd3+ and Eu3+ luminescence in Ca3Gd2(BO3)4:Eu3+ under excitation into the self-trapped excitation (STE) state are investigated in the wavelength region from vacuum ultraviolet to visible. The efficient energy transfer occurs from the host STE state to the emitting state of Eu3+5D0 via two intermediate states: the Gd3+6P7/2 state or the O–Eu charge transfer state. The analyses of decay curves of the Eu3+5D0 emission at 615 nm and the Gd3+6P7/2 emission at 314 nm show much faster energy transfer from Gd3+ to Eu3+ than the energy diffusion among the Gd3+ ions. -- Highlights: • Luminescence dynamics are investigated in Ca3Gd2(BO3)4:Eu3+. • The excited STE state relaxes to the Eu3+5D0 state through the Gd3+6P7/2 state or the O–Eu charge transfer state. • Much faster energy transfer occurs from Gd to Eu than the energy diffusion among the Gd3+ ions. • The feeding of the 5D0 population occurs dominantly from the O–Eu charge transfer state at higher Eu3+ concentration

  17. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    International Nuclear Information System (INIS)

    Single crystals of the osmium-containing compound Ca3OsO6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca3OsO6 were characterized as an ordered double-perovskite structure of space group P21/n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K. - Graphical Abstract: Schematic image of crystal structure of Ca3OsO6 as determined by X-ray diffraction, where the gray and black octahedrons are occupied by Ca and Os, respectively. Top inset reveals an optic image of a typical Ca3OsO6 single crystal. Highlights: ► Single crystals of Ca3OsO6 have been successfully grown under high-pressure. ► Ca3OsO6 crystalizes into an ordered double-perovskite structure. ► The Ca3OsO6 undergoes an antiferromagnetic transition at 50 K

  18. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3

    Directory of Open Access Journals (Sweden)

    O' Mahony Mark M

    2011-10-01

    Full Text Available Abstract Background Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences. Results One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site

  19. The antiferromagnetic insulator Ca3FeRhO6: characterization and electronic structure calculations

    OpenAIRE

    Eyert, V.; Schwingenschloegl, U.; Fresard, R.; Maignan, A.; Martin, C.; Nguyen, N.; Hackenberger, C.; Kopp, T.

    2006-01-01

    We investigate the antiferromagnetic insulating nature of Ca3FeRhO6 both experimentally and theoretically. Susceptibility measurements reveal a Neel temperature T_N = 20 K, and a magnetic moment of 5.3 muB/f. u., while Moessbauer spectroscopy strongly suggests that the Fe ions, located in trigonal prismatic sites, are in a 3+ high spin state. Transport measurements display a simple Arrhenius law, with an activation energy of 0.2 eV. The experimental results are interpreted with LSDA band stru...

  20. High-temperature stability of thermoelectric Ca3Co4O9 thin films

    DEFF Research Database (Denmark)

    Brinks, P.; Van Nong, Ngo; Pryds, Nini;

    2015-01-01

    An enhanced thermal stability in thermoelectric Ca3Co4O9 thin films up to 550 °C in an oxygen rich environment was demonstrated by high-temperature electrical and X-ray diffraction measurements. In contrast to generally performed heating in helium gas, it is shown that an oxygen/helium mixture...... provides sufficient thermal contact, while preventing the previously disregarded formation of oxygen vacancies. Combining thermal cycling with electrical measurements proves to be a powerful tool to study the real intrinsic thermoelectric behaviour of oxide thin films at elevated temperatures. © 2015 AIP...

  1. Regulation of phenylacetic acid uptake is sigma54 dependent in Pseudomonas putida CA-3.

    LENUS (Irish Health Repository)

    O' Leary, Niall D

    2011-10-13

    Abstract Background Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene\\/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences. Results One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site being resolved by

  2. A Pyramid Scheme for Particle Physics

    CERN Document Server

    Banks, Tom

    2009-01-01

    We introduce a new model, the Pyramid Scheme, of direct mediation of SUSY breaking, which is compatible with the idea of Cosmological SUSY Breaking (CSB). It uses the trinification scheme of grand unification and avoids problems with Landau poles in standard model gauge couplings. It also avoids problems, which have recently come to light, associated with rapid stellar cooling due to emission of the pseudo Nambu-Goldstone Boson (PNGB) of spontaneously broken hidden sector baryon number. With a certain pattern of R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid Scheme leads to a dark matter candidate that decays predominantly into leptons, with cross sections compatible with a variety of recent observations. The dark matter particle is not a thermal WIMP but a particle with new strong interactions, produced in the late decay of some other scalar, perhaps the superpartner of the QCD axion, with a reheat temperature in the TeV range. This is compatible with a variety of scenarios f...

  3. Oxygen potentials and phase equilibria in the system Ca–Co–O and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163

    International Nuclear Information System (INIS)

    Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3Co3.93+αO9.36−δ, are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+αO9.36−δ are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca–Co–O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. - Graphical abstract: Isothermal section of the phase diagram of the system Ca–Co–O at 1250 K. - Highlights: • Improved definition of cation and oxygen nonstoichiometry of Ca3Co3.93+αO9.36−δ. • Measurement of ΔμO2 associated with two 3-phase fields as a function of temperature. • Use of solid-state electrochemical cells for accurate measurement of ΔμO2. • Decomposition temperatures and thermodynamic properties for ternary oxides. • Characterization of ternary phase diagram of the system Ca–Co–O

  4. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury.

    Science.gov (United States)

    Norris, Christopher M; Sompol, Pradoldej; Roberts, Kelly N; Ansari, Mubeen; Scheff, Stephen W

    2016-02-01

    Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10 mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma. PMID:26607913

  5. Thermoelectric transport in the layered Ca3Co4-xRhxO9 single crystals

    Science.gov (United States)

    Ikeda, Yusuke; Saito, Kengo; Okazaki, Ryuji

    2016-06-01

    We have examined an isovalent Rh substitution effect on the transport properties of the thermoelectric oxide Ca3Co4O9 using single-crystalline form. With increasing Rh content x, both the electrical resistivity and the Seebeck coefficient change systematically up to x = 0.6 for Ca3Co4-xRhxO9 samples. In the Fermi-liquid regime where the resistivity behaves as ρ = ρ 0 + A T 2 around 120 K, the A value decreases with increasing Rh content, indicating that the correlation effect is weakened by Rh 4d electrons with extended orbitals. We find that, in contrast to such a weak correlation effect observed in the resistivity of Rh-substituted samples, the low-temperature Seebeck coefficient is increased with increasing Rh content, which is explained with a possible enhancement of a pseudogap associated with the short-range order of spin density wave. In high-temperature range above room temperature, we show that the resistivity is largely suppressed by Rh substitution while the Seebeck coefficient becomes almost temperature-independent, leading to a significant improvement of the power factor in Rh-substituted samples. This result is also discussed in terms of the differences in the orbital size and the associated spin state between Co 3d and Rh 4d electrons.

  6. Shubnikov-de Haas oscillations in Ca3Ru2O7 under pressure

    International Nuclear Information System (INIS)

    The bilayer ruthenate Ca3Ru2O7 undergoes a series of phase transitions on cooling, which lead to a low carrier density state at low temperature. Hydrostatic pressure is applied on this material in order to track the Fermi surface whilst tuning and ultimately suppressing the high temperature phase transitions. Quantum oscillations in the Hall component of Ca3Ru2O7 are investigated as a function pressure using a piston-cylinder cell. As the pressure is increased, the oscillation frequency decreases systematically, suggesting that the Fermi pockets shrink. Owing to the size of the frequencies and to the non-linear background, the evolution of the effective masses cannot be determined accurately enough to extract a trend other than that they remain of the order of 0.6me. Further work at higher pressures is under way, using anvil cells, to track the evolution of the Fermi surface through the pressures where the magnetic and structural transitions eventually are suppressed.

  7. The Alphabet Pyramid of Team Development and Situation Leadership.

    Science.gov (United States)

    Jarvis, Roy

    2001-01-01

    This pyramid model of team development has four sides--awareness, behavior, communication, and direction--on a foundation of evaluation. The four equal sides of a pyramid represent the equal importance of the different roles, including leader, within a team. All team members are involved in evaluation and deciding what is important, which empowers…

  8. Building Influenza Surveillance Pyramids in Near Real Time, Australia

    OpenAIRE

    Dalton, Craig B; Carlson, Sandra J.; Butler, Michelle T; Elvidge, Elissa; Durrheim, David N

    2013-01-01

    A timely measure of circulating influenza virus severity has been elusive. Flutracking, the Australian online influenza-like illness surveillance system, was used to construct a surveillance pyramid in near real time for 2011/2012 participants and demonstrated a striking difference between years. Such pyramids will facilitate rapid estimation of attack rates and disease severity.

  9. Some enkephalin- or VIP-immunoreactive hippocampal pyramidal cells contain neurofibrillary tangles in the brains of aged humans and persons with Alzheimer's disease.

    Science.gov (United States)

    Kulmala, H K

    1985-01-01

    Neurofibrillary tangles are one of the histopathological neuronal abnormalities present in normal aging and especially in Alzheimer's Disease. We have utilized immunocytochemical staining for neuropeptides followed by Congo red with gallocyanin counterstaining and polarized illumination to determine whether enkephalin (Enk), somatostatin (Som), cholecystokinin (CCK), or vasoactive intestinal polypeptide (VIP) are contained in neurons afflicted with such tangles. A few Enk- or VIP-immunoreactive pyramidal cells in field hl and subiculum were found to contain tangles. Many such Enk- or VIP-immunoreactive neurons and cells containing Som- or CCK-like immunoreactivity did not contain such tangles. PMID:2410823

  10. nD generalized map pyramids: definition, representations and basic operations

    OpenAIRE

    Grasset-Simon, Carine; Damiand, Guillaume; Lienhardt, Pascal

    2006-01-01

    Graph pyramids are often used for representing irregular image pyramids. For the 2D case, combinatorial pyramids have been recently defined in order to explicitly represent more topological information than graph pyramids. The main contribution of this work is the definition of pyramids of $n$-dimensional generalized maps. This extends the previous works to any dimension, and generalizes them in order to represent any type of pyramid built by using any removal and/or contraction operations. W...

  11. Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR

    International Nuclear Information System (INIS)

    High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky–Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co4+ ion, as well as the Co–Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6. (paper)

  12. The NGS Pyramid wavefront sensor for ERIS

    Science.gov (United States)

    Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.

    2014-07-01

    ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.

  13. Cationic disorder and Mn3+/Mn4+ charge ordering in the B′ and B″ sites of Ca3Mn2NbO9 perovskite: a comparison with Ca3Mn2WO9

    International Nuclear Information System (INIS)

    We describe the preparation, crystal structure determination, magnetic and transport properties of two novel Mn-containing perovskites, with a different electronic configuration for Mn atoms located in B site. Ca3Mn3+2WO9 and Ca3Mn3+/4+2NbO9 were synthesized by standard ceramic procedures; the crystallographic structure was studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD). Both phases exhibit a monoclinic symmetry (S.G.: P21/n); Ca3Mn2WO9 presents a long-range ordering over the B sites, whereas Ca3Mn2NbO9 is strongly disordered. By “in-situ” NPD, the temperature evolution of the structure study presents an interesting evolution in the octahedral size (〈Mn–O〉) for Ca3Mn2NbO9, driven by a charge ordering effect between Mn3+ and Mn4+ atoms, related to the anomaly observed in the transport measurements at T≈160 K. Both materials present a magnetic order below TC=30 K and 40 K for W and Nb materials, respectively. The magneto-transport measurements display non-negligible magnetoresistance properties in the paramagnetic regime. - Graphical abstract: Comparison between the octahedron size and the magnetic behaviour for Ca3Mn2NbO9 in the temperature region where the charge and magnetic order occur. Display Omitted - Highlights: • Two novel Mn-containing double perovskites were obtained by solid-state reactions. • Both double perovskites are monoclinic (P21/n) determined by XRPD and NPD. • Ca3Mn2WO9 contains Mn3+ while Ca3Mn2NbO9 includes mixed-valence cations Mn3+/Mn4+. • Ca3Mn2NbO9 presents a charge-ordering effect between Mn3+ and Mn4+ evidenced by NPD. • The magnetic and transport studies evidenced the charge ordering in Ca3Mn2NbO9

  14. Synthesis, structure and Eu2+-doped luminescence properties of bromosilicate compound Ca3SiO4Br2

    International Nuclear Information System (INIS)

    The bromosilicate Ca3SiO4Br2 crystal has been grown, and this compound crystallizes in triclinic symmetry, space group P-1 (No. 2), with unit cell parameters: a=8.0051(18) Å, b=8.720(3) Å, c=11.749(3)Å, α=69.07(0)°, β=89.98(0)°, γ=75.46(0)°, and cell volume V=737.88(1 9 6)Å3, Z=3. The unit cell of the Ca3SiO4Br2 crystal is composed of the alternating layers of CaBr2 and Ca2SiO4, therefore, the luminescence of Ca3SiO4Br2:Eu2+ gives a broad emission band centered at 469 nm with some asymmetry on the long wavelength side with different coordination environment. Their detailed photoluminescence (PL) properties, PL decay curves and the temperature dependent PL behavior were also discussed. - Highlights: ► The Ca3SiO4Br2 crystal has been grown and the structure has been analyzed. ► Ca3SiO4Br2:Eu2+ gives a blue emission band centered at 469 nm. ► PL decay curves and the temperature dependent PL behavior of Ca3SiO4Br2:Eu2+ have been discussed.

  15. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  16. Local-Circuit Phenotypes of Layer 5 Neurons in Motor-Frontal Cortex of YFP-H Mice

    OpenAIRE

    Sheets, Patrick L; Shepherd, Gordon M. G.

    2008-01-01

    Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specifi...

  17. A structural change in Ca3Co4O9 associated with enhanced thermoelectric properties

    International Nuclear Information System (INIS)

    Temperature dependent electrical resistivity, crystal structure and heat capacity measurements reveal a resistivity drop and electrical transport behavior change corresponding to a structural change near 400 K in Ca3Co4O9. The lattice parameter c varies smoothly with increasing temperature while anomalies in a, b1 and b2 lattice parameters occur near 400 K. The Ca site in the Ca2CoO3 block becomes distorted and a change in electrical transport behavior is found above 400 K. Resistivity and heat capacity measurements as a function of temperature under magnetic field combined with Co L-edge x-ray absorption spectra reveal only a weak spin contribution to this change. Reduced resistivity associated with the structural change enhances the thermoelectric properties at moderately high temperatures and points to the electrical transport behavior change as a mechanism for improved ZT in this thermoelectric oxide.

  18. Scintillation characteristics of Tm3+ in Ca3(BO3)2 crystals

    International Nuclear Information System (INIS)

    Basic optical properties and radiation responses of undoped, Tm3+ 1.0% and 2.0% activated Ca3(BO3)2 (CBO) crystalline scintillator prepared by the micro-pulling down (μ-PD) method are reported. Tm3+: CBO crystals showed three weak absorption bands around 190, 260 and 350 nm, owing to the Tm3+ 4f–4f transition. Strong blue luminescence peaks at 360 and 460 nm which are ascribed to the 1D2–3H6 and 1D2–3F4 transitions of Tm3+ respectively were observed under 241Am 5.5 MeV α-ray excitation. The scintillation light yield of 2.0% Tm3+-doped CBO crystal was evaluated to be about 250 ph/n from the 252Cf excited pulse height spectrum.

  19. Anisotropic laser properties of Yb:Ca3La2(BO3)4 disordered crystal

    Science.gov (United States)

    Wang, Lisha; Xu, Honghao; Pan, Zhongben; Han, Wenjuan; Chen, Xiaowen; Liu, Junhai; Yu, Haohai; Zhang, Huaijin

    2016-08-01

    A study is carried out experimentally on the anisotropy in the laser action of Yb:Ca3La2(BO3)4 disordered crystal, demonstrated with the output coupling changed over a wide range from 0.5% to 40%. Complex polarization state variation with output coupling and evolution with pump power are observed in the laser operation achieved with a- and c-cut crystal samples. A maximum output power of 8.2 W is produced at wavelengths around 1043 nm, with an incident pump power of 24.9 W, the optical-to-optical efficiency being 33%. The polarized absorption and emission cross section spectra are also presented.

  20. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons.

    Science.gov (United States)

    Graves, A R; Moore, S J; Spruston, N; Tryba, A K; Kaczorowski, C C

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity, and different extrahippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons yet decreases excitability in the other class. Furthermore, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain. PMID:27146982

  1. Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress

    Directory of Open Access Journals (Sweden)

    Garrett Alexander S

    2009-02-01

    Full Text Available Abstract Background Oxidative stress (OS is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches. Results In this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG and resistant (CA3 and cerebral cortex neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment, and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP in primary CbG neurons compared with cortical neurons. Conclusion Low energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons.

  2. Fabrication and measurement of a flexoelectric micro-pyramid composite

    Science.gov (United States)

    Huang, Wenbin; Shu, Longlong; Ryung Kwon, Seol; Zhang, Shujun; Yuan, Fuh-Gwo; Jiang, Xiaoning

    2014-12-01

    A fabrication method by combining precision mechanical dicing and wet etching was developed to prepare micro-pyramid structures based on (Ba0.67Sr0.33)TiO3 ceramics. The effective piezoelectric properties of flexoelectric pyramid structures in ten micrometers scale were investigated and measured through converse flexoelectric effect. The scaling effect of the flexoelectric response was demonstrated as the structure size shrinks down. The results do suggest the great potential of flexoelectric micro pyramids as an alternative to lead-free piezoelectric material.

  3. NONLINEAR BENDING THEORY OF DIAGONAL SQUARE PYRAMID RETICULATED SHALLOW SHELLS

    Institute of Scientific and Technical Information of China (English)

    肖潭; 刘人怀

    2001-01-01

    Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle .

  4. Papillary Carcinoma Arising from the Pyramidal Lobe of the Thyroid

    International Nuclear Information System (INIS)

    The authors present a rare case of papillary carcinoma arising from the pyramidal lobe of the thyroid in a 54-year-old woman, who presented with a right submental palpable mass. An ultrasound evaluation depicted a 3 cm mixed echoic mass from the thyroid cartilage level without a focal lesion in the thyroid gland. Surgical specimens obtained during bilateral thyroidectomy confirmed papillary carcinoma of the pyramidal lobe. To the authors' knowledge, this is the first case report to describe papillary carcinoma arising from the pyramidal lobe of the thyroid gland

  5. Subpallial origin of a population of projecting pioneer neurons during corticogenesis

    OpenAIRE

    Morante-Oria, Javier; Carleton, Alan; Ortino, Barbara; Kremer, Eric J.; Fairén, Alfonso; Lledo, Pierre-Marie

    2003-01-01

    Pyramidal neurons of the mammalian cerebral cortex are generated in the ventricular zone of the pallium whereas the subpallium provides the cortex with inhibitory interneurons. The marginal zone contains a subpial stream of migratory interneurons and two different classes of transient neurons, the pioneer neurons provided with corticofugal axons, and the reelin-expressing Cajal–Retzius cells. We found in cultured slices that the medial ganglionic eminence provides the reelin-negative pioneer ...

  6. Intrinsic Electrophysiology of Mouse Corticospinal Neurons: a Class-Specific Triad of Spike-Related Properties

    OpenAIRE

    Benjamin A Suter; Migliore, Michele; Gordon M. G Shepherd

    2012-01-01

    Corticospinal pyramidal neurons mediate diverse aspects of motor behavior. We measured spike-related electrophysiological properties of identified corticospinal neurons in primary motor cortex slices from young adult mice. Several consistent features were observed in the suprathreshold responses to current steps: 1) Corticospinal neurons fired relatively fast action potentials (APs; width at half-maximum 0.65 ± 0.13 ms, mean ± standard deviation [SD]) compared with neighboring callosally proj...

  7. INFLUENCE OF ELECTROACUPUNCTURE ON THE ULTRASTRUCTURE OF CA3 REGION OF THE HIPPOCAMPUS IN VD RATS

    Institute of Scientific and Technical Information of China (English)

    YAN Bing; XU Neng-gui; HE Li-lei; TANG Chun-zhi; SHAO Ying

    2006-01-01

    Objective: To observe the effect of electroacupuncture (EA) on learning and memory abilities and ultrastructure of synapses in CA3 region of the hippocampus in vascular dementia (VD) rats. Methods: A total of 32 SD rats were randomized into control (sham-operation, n = 7), model (n = 7), EA (n = 9) and medication (n=9) groups. VD model was established by occlusion of the bilateral vertebral arteries (electrocoagulation) and bilateral common carotid arteries (occlusion for 5 min and reperfusion for 10 min, repeated the procedure for 3 times to induce global ischemia). EA (150 Hz, 1 mA) was applied to "Baihui"(百会GV 20), "Geshu"(膈俞 BL 17), "Pishu"(脾俞 BL 20) and "Shenshu"(肾俞 BL 23) for 20 min, once daily and continuously for 15 days. In medication group, the rats were fed with Nimotong (12 mg/kg), once daily and continuously for 15 days. Morris water maze method was used to test the animals' learning and memory abilities (latencies to find the hidden platform determined by place navigation trials, and latencies to cross on the location of the removed platform determined by spatial probe trials) after the treatment. Ultrastructural changes (numerical density, NA,surface density, Sv and volume density, Vv) of Gray type 1 synapses in CA3 region of the hippocampus were observed by using transmission electronic microscope and automatic image analysis system. Results: 1 ) Place navigation test showed that in comparison with control group, the average escape latency of VD group was significantly longer (P<0.01), while in comparison with VD group, the latencies of both EA and medication groups decreased significantly ( P<0.01 ). No significant difference was found between EA and medication groups in the escape latency (P>0.05). 2) Spatial probe-test displayed that in comparison with control group, the times which the animals crossed the target platform in VD group decreased significantly (P<0.01), while compared with VD group, those of both EA and

  8. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  9. The Fishery of Truckee River and Pyramid Lake, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides an overview of the Washoe Project Act. Trout populations in Pyramid Lake began to decline in the 1930s due to poor water quality and poor...

  10. The Personal Marketing Pyramid: A Model for Secretarial Success.

    Science.gov (United States)

    Caudill, Donald W.

    1988-01-01

    The author describes his model of a synergistic approach to achieving success. His Personal Marketing Pyramid consists of four sciences: physiology, psychology, sociology, and philosophy. He uses examples related to success in a secretarial career. (CH)

  11. Fixing the Pole in the Pyramid

    CERN Document Server

    Banks, Tom; Kathrein, Scott

    2009-01-01

    We revisit the problem of the hidden sector Landau pole in the Pyramid Scheme. There is a fixed line in the plane of hidden sector gauge coupling and a Yukawa coupling between the trianon fields. We postulate that the couplings flow to this line, at a point where the hidden sector gauge coupling is close to the strong coupling edge of its perturbative regime. Below the masses of the heavier trianons, the model quickly flows to a confining N_F=N_C=3 supersymmetric gauge theory, as required by phenomenological considerations. We study possible discrete R-symmetries, which guarantee, among other things, that the basin of attraction of the fixed line has full co-dimension in the space of R-allowed couplings. The Yukawa couplings required to get the fixed line violate the pyrma-baryon symmetries we invoked in previous work to find a dark matter candidate. Omitting one of them, we have a dark matter candidate, and an acceptable RG flow down from the unification scale, if the confinement scale of the hidden sector g...

  12. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage

    Institute of Scientific and Technical Information of China (English)

    Yifan He; Jihong Zhu; Fang Huang; Liu Qin; Wenguo Fan; Hongwen He

    2014-01-01

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and

  13. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs

    Directory of Open Access Journals (Sweden)

    Zhang Guanjun

    2013-01-01

    Full Text Available Abstract Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.

  14. Investigation of flow and pressure characteristics around pyramidal buildings

    OpenAIRE

    Ikhwan, Muhammad

    2005-01-01

    Pyramidal buildings are undergoing a renaissance in todays architectural design due to their attractive mystery that has fascinated many architects. From an aerodynamic engineering point of view, structural buildings with the shape of a pyramid have their own interesting and particular aerodynamic characteristics as compared to other usual structural buildings (i.e. cuboidal). However, despite its distinct aerodynamic characteristics compared to other usual structural buildings, the flow a...

  15. Searching for Chambers and Caves in Teotihuacan's Sun Pyramid

    International Nuclear Information System (INIS)

    In this work a status report of a search for caves in the Sun pyramid in Teotihuacan, Mexico is presented. From an archeological perspective the main goal is to gather evidence to determine whether the pyramid was a state or a funerary temple. The general layout of the detector that is being built is an updated version of the one originally proposed by Alvarez et al.

  16. Pyramidal micro-mirrors for microsystems and atom chips

    CERN Document Server

    Trupke, M; Curtis, E A; Ashmore, J P; Eriksson, S; Hinds, E A; Moktadir, Z; Gollasch, C; Kraft, M; Prakash, G V; Baumberg, J J

    2005-01-01

    Concave pyramids are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micro-mirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into MOEMS and atom chips. We have shown that structures of this shape can be used to laser-cool and hold atoms in a magneto-optical trap.

  17. Multiresolution maximum intensity volume rendering by morphological adjunction pyramids

    OpenAIRE

    Roerdink, Jos B. T. M.

    2003-01-01

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D erosion and dilation, combined with dyadic downsampling for analysis and dyadic upsampling for synthesis. In this case the MIP operator can be interchanged with the synthesis operator. This fact is the...

  18. Mechanical Control of Graphene on Engineered Pyramidal Strain Arrays

    OpenAIRE

    Gill, Stephen T.; Hinnefeld, John H.; Zhu, Shuze; Swanson, William T.; Li, Teng; Mason, Nadya

    2015-01-01

    Strain can tune desirable electronic behavior in graphene, but there has been limited progress in controlling strain in graphene devices. In this paper, we study the mechanical response of graphene on substrates patterned with arrays of mesoscale pyramids. Using atomic force microscopy, we demonstrate that the morphology of graphene can be controlled from conformal to suspended depending on the arrangement of pyramids and the aspect ratio of the array. Non-uniform strains in graphene suspende...

  19. Multiresolution Maximum Intensity Volume Rendering by Morphological Pyramids

    OpenAIRE

    Roerdink, Jos B. T. M.; Ebert, D.; Favre, JM; Peikert, R.

    2001-01-01

    We propose a multiresolution representation for maximum intensity projection (MIP) volume rendering, based on morphological pyramids which allow progressive refinement and have the property of perfect reconstruction. The pyramidal analysis and synthesis operators are composed of morphological erosion and dilation, combined with dyadic downsampling for analysis and dyadic upsampling for synthesis. The structure of the multiresolution MIP representation is very similar to wavelet splatting, the...

  20. ASTRONOMICAL ALGORITHMS OF EGYPTIAN PYRAMIDS SLOPES AND THEIR MODULES DIVIDER

    OpenAIRE

    Aboulfotouh, Hossam M. K.

    2015-01-01

    This paper is an attempt to show the astronomical design principles that are encoded in the geometrical forms of the largest five pyramids of the fourth Egyptian dynasty, in Giza and Dahshur plateaus, based on using the pyramids’ design-modules that are mentioned in the so-called Rhind Mathematical Papyrus. It shows the astronomical algorithms for quantifying the slopes of pyramids, with reference to specific range of earth’s axial tilt, within spherical co-ordinates system. Besid...

  1. Searching for Chambers and Caves in Teotihuacan's Sun Pyramid

    Science.gov (United States)

    Alfaro, R.; Arrieta, E.; Barba P., L.; Becerril, A. D.; Belmont, E.; Carrillo, I.; Cabrera M., J. I.; Esquivel, O.; Grabski, V.; López R., J. M.; Manzanilla N., L.; Martínez D., A.; Menchaca R., A.; Moreno, M.; Núñez C., R.; Plascencia, J. C.; Rangel, M.; Villoro, M.

    2003-06-01

    In this work a status report of a search for caves in the Sun pyramid in Teotihuacan, México is presented. From an archeological perspective the main goal is to gather evidence to determine whether the pyramid was a state or a funerary temple. The general layout of the detector that is being built is an updated version of the one originally proposed by Alvarez et al..

  2. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

    Science.gov (United States)

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. PMID:27537197

  3. Oenanthe Javanica Extract Protects Against Experimentally Induced Ischemic Neuronal Damage via its Antioxidant Effects

    Institute of Scientific and Technical Information of China (English)

    Joon Ha Park; Jeong Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Jae-Chul Lee; Bai Hui Chen; Bich-Na Shin

    2015-01-01

    Background:Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity.In this study,we firstly examined the neuroprotective effect of Oenanthejavanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia.Methods:Gerbils were established by the occlusion of common carotid arteries for 5 min.The neuroprotective effect of OJE was estimated by cresyl violet staining.In addition,4 antioxidants (copper,zinc superoxide dismutase [SOD],manganese SOD,catalase,and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry.Results:Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia;at this point in time,all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells.Treatment with 200 mg/kg,not 100 mg/kg,OJE protected CA1 pyramidal neurons from ischemic damage.In addition,200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities.Especially,among the antioxidants,glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups.Conclusion:Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE.

  4. Epitaxial growth of one-dimensional Ca3Co2O6 thin films prepared by pulsed laser deposition

    Science.gov (United States)

    Moubah, R.; Bouaine, A.; Ulhaq-Bouillet, C.; Schmerber, G.; Versini, G.; Barre, S.; Loison, J. L.; Drillon, M.; Colis, S.; Dinia, A.

    2007-10-01

    We report on the growth and structural properties of Ca3Co2O6 thin films deposited by pulsed laser ablation on SrTiO3 substrates heated at 700°C. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy observations reveal that Ca3Co2O6 grows in a three-dimensional (3D) mode with a surface roughness of about 1.5nm rms. X-ray diffraction and cross-section transmission electron microscopy characterizations show that the deposited films are epitaxial without secondary phases and with a preferential growth orientation perpendicular to the (220) plane. Temperature dependent magnetization measurements reveal that the ferrimagnetic-ferromagnetic transition in the Ca3Co2O6 film is shifted toward higher temperatures with respect to the bulk cobaltite.

  5. Thermoelectric properties of Al substituted misfit cobaltite Ca3(Co1-xAlx)4O9 at low temperature

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Hong-mei Chen; Jin-lian Hu; Xu-bing Tang; Hai-jin Li; Wei Wang

    2014-01-01

    Thermoelectric properties of Al substituted compounds Ca3(Co1−xAlx)4O9 (x=0, 0.03, 0.05), prepared by a sol−gel process, have been investigated in the temperature range 305−20 K. The results indicate that after Al substitution for Co in Ca3(Co1−xAlx)4O9, the direct current electrical resistivity and thermopower increase due to the reduction of carrier concentration. Experiments show that Al substitution results in decreased lattice thermal conductivity. The figure of merit of temperature behavior suggests that Ca3(Co0.97Al0.03)4O9 would be a promising candidate thermoelectric material for high-temperature thermoelectric application.

  6. Enhancing the thermoelectric properties of Ca3Co4O9 thin films by Nb ion injection

    International Nuclear Information System (INIS)

    Highlights: •High quality Ca3Co4O9 thin films have been epitaxially grown on single crystal Al2O3 substrate. •Nb element was implanted into Ca3Co4O9 thin film by ion beam injection technique. •The effect of Nb doping was verified by resistivity measurement at room temperature. •Resistivity and Seebeck coefficient were measured in the temperature range 150–380 K. •The power factors of Ca3Co4O9 thin films increase when Nb doped. -- Abstract: High quality Ca3Co4O9 thin films have been grown epitaxially on single crystal Al2O3 substrates with pulsed laser deposition. Nb was implanted into the Ca3Co4O9 films using an ion beam injection technique. The microstructure of the thin films has been investigated by XRD, SEM and AFM. The epitaxial thin films were grown with the c-axis perpendicular to the substrate surface. The effect of Nb doping by ion beam injection was verified using resistivity measurements at room temperature. Resistivity and the Seebeck coefficient were also measured in the temperature range 150–380 K. The results indicate that the power factors of Ca3Co4O9 thin films increase when doped with Nb. When the concentration of doped Nb was 3.65 × 1019 atoms/cm3, the power factor of the thin films reached 0.10 mW/m K2 at room temperature, and it approached a maximum of 0.17 mW/m K2 at 380 K

  7. Amantadine improves cognitive outcome and increases neuronal survival after fluid percussion traumatic brain injury in rats.

    Science.gov (United States)

    Wang, Tao; Huang, Xian-Jian; Van, Ken C; Went, Gregory T; Nguyen, Jack T; Lyeth, Bruce G

    2014-02-15

    This study evaluated the effects of clinically relevant concentrations of amantadine (AMT) on cognitive outcome and hippocampal cell survival in adult rats after lateral fluid percussion traumatic brain injury (TBI). AMT is an antagonist of the N-methyl-D-aspartate-type glutamate receptor, increases dopamine release, blocks dopamine reuptake, and has an inhibitory effect on microglial activation and neuroinflammation. Currently, AMT is clinically used as an antiparkinsonian drug. Amantadine or saline control was administered intraperitoneally, starting at 1 h after TBI followed by dosing three times daily for 16 consecutive days at 15, 45, and 135 mg/kg/day. Terminal blood draws were obtained from TBI rats at the time of euthanasia at varying time points after the last amantadine dose. Pharmacokinetics analysis confirmed that the doses of AMT achieved serum concentrations similar to those observed in humans receiving therapeutic doses (100-400 mg/day). Acquisition of spatial learning and memory retention was assessed using the Morris water maze (MWM) on days 12-16 after TBI. Brain tissues were collected and stained with Cresyl-violet for long-term cell survival analysis. Treatment with 135mg/kg/day of AMT improved acquisition of learning and terminal cognitive performance on MWM. The 135-mg/kg/day dosing of AMT increased the numbers of surviving CA2-CA3 pyramidal neurons at day 16 post-TBI. Overall, the data showed that clinically relevant dosing schedules of AMT affords neuroprotection and significantly improves cognitive outcome after experimental TBI, suggesting that it has the potential to be developed as a novel treatment of human TBI. PMID:23574258

  8. Metamagnetism of single crystal Ca3Ru2O7 in high magnetic fields

    International Nuclear Information System (INIS)

    Ca3Ru2O7, which has a double-layered structure related to perovskites and high-Tc cuprates, exhibits several coupled magnetic and transport phases. As-grown single crystals have nonmetallic conductivity for T M=48K, antiferromagnetic ordering up to TN=56 K and bad metal conductivity, linear in temperature for T > TN. The current study reveals a metamagnetic transition with an accompanying nonmetal to metal transition found in pulsed high magnetic fields (Hc=37 T) for the field directed perpendicular to the Ru-O planes in the 'hard' axis (0 0 1) direction of this highly anisotropic system. By contrast, the transition occurs at 6T for the field along the 'easy' axis (1 1 0). The resistivity for current along (1 1 0) or (0 0 1) is anisotropic in zero field at low temperatures but becomes isotropic with H > Hc applied along the easy axis, in contrast to results expected from Fermi-liquid models

  9. Controlled growth of hexagonal GaN pyramids by hot-wall MOCVD

    OpenAIRE

    Lundskog, Anders; Hsu, Chih-Wei; Nilsson, Daniel; Karlsson, K. Fredrik; Forsberg, Urban; Holtz, Per-Olof; Janzén, Erik

    2013-01-01

    Hexagonal GaN pyramids have been fabricated by hot-wall metal organic chemical vapor deposition (hot-wall MOCVD) and the growth evolution have been studied. It was concluded that the pyramid growth can be divided into two regimes separated by the adsorption kinetics of the {1101} surfaces of the pyramids. In the adsorption regime, the pyramids grow simultaneously in the <1101> and [0001] -directions. In the zero-adsorption regime the pyramids grow only in the [0001] direction. Thus the ...

  10. A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (areas 17 and 18).

    Science.gov (United States)

    Werner, L; Winkelmann, E; Koglin, A; Neser, J; Rodewohl, H

    1989-01-01

    The morphological features of 298 neurons impregnated according to Golgi-Kopsch in areas 17 and 18 of Macaca mulatta were analyzed, and the same neurons were deimpregnated to visualize structural details of the somata in different types of neurons. The following cell types were investigated: Pyramidal and pyramid-like cells, spiny stellate cells, double bouquet cells, bipolar cells, chandelier cells, neurogliaform cells, basket and related cells. This procedure allows the evaluation of the nuclear-cytoplasmic proportion and the position of the nucleus besides shape and size of the cell body. Pyramidal and pyramid-like cells (N = 43), spiny stellate cells (N = 26), basket and related cells (N = 126) are variable in these features. A positive correlation between soma size and width of the cytoplasm is found in pyramidal, pyramid-like cells and spiny stellate cells. With the exception of some large somata in both these types of neurons the nucleus is found in a central position. Double bouquet cells (N = 6), bipolar cells (N = 13) and chandelier cells (N = 11) exhibit small cytoplasmic rims and centrally located nuclei. The small somata of neurogliaform cells (N = 37), however, and the small to very large somata of basket and related cells show broad cytoplasmic portions surrounding the eccentrically located nuclei. These findings allow the identification of different neuronal types in Nissl-stained sections on the basis of these soma features. This is a prerequisite for further detailed quantitative studies on the laminar distribution of different neuronal types in the visual cortex of the monkey. PMID:2610391

  11. Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo;

    2013-01-01

    Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density, and therm......Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density...

  12. Crystal Growth and Characterization of Ca3NbGa3Si2O14 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Single crystals of Ca3NbGa3Si2O14 (CNGS) with ordered Ca3Ga2Ge4O14 (CGG) structure were successfully grown from stoichiometric melts by conventional Czochralski technique along the a-axis and two large (001) facets and two small (100) facets appear in every crystal. An arrangement of parallel steps and a clear height change were observed in (001) facet by atomic force microscopy (AFM). High-resolution X-ray diffraction (HRXRD) results indicate that CNGS crystals have good quality and free low-angle boundaries. The crystals also exhibit good optical quality and high optical transmittance in c-direction.

  13. First principles study of the electronic structure and magnetic properties of spin chain compounds: Ca3ZnMnO6 and Ca3ZnCoO6.

    Science.gov (United States)

    Chakraborty, Jayita; Samanta, Subhasis; Nanda, B R K; Dasgupta, I

    2016-09-21

    We have studied the electronic structure and magnetism of the spin chain compounds Ca3ZnMnO6 and Ca3ZnCoO6 using density functional theory with generalised gradient approximation (GGA). In agreement with experiment our calculations reveal that high spin (HS) state for Mn(4+) ion and low spin (LS) state for Co(4+) ion stabilize the magnetic structure of the respective compounds. The magnetic exchange paths, calculated using Nth order muffin-tin orbital downfolding method, shows dominant intra-chain exchange interaction between the magnetic ions (Mn, Co) is antiferromagnetic for Ca3ZnMnO6 and ferromagnetic for Ca3ZnCoO6. The magnetic order of both the compounds is in accordance with the Goodenough-Kanamori-Anderson rules and is consistent with the experimental results. Finally we have investigated the importance of spin-orbit coupling (SOC) in these compounds. While SOC practically has no effect for the Mn system, it is strong enough to favor the spin quantization along the chain direction for the Co system in the LS state. PMID:27419390

  14. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng;

    2003-01-01

    (RPTPalpha) regulates SRC family kinases, potassium channels and NMDA receptors. Here, we report that absence of RPTPalpha compromises correct positioning of pyramidal neurons during development of mouse hippocampus. Thus, RPTPalpha is a novel member of the functional class of genes that control radial...... neuronal migration. The migratory abnormality likely results from a radial glial dysfunction rather than from a neuron-autonomous defect. In spite of this aberrant development, basic synaptic transmission from the Schaffer collateral pathway to CA1 pyramidal neurons remains intact in Ptpra(-/-) mice....... However, these synapses are unable to undergo long-term potentiation. Mice lacking RPTPalpha also underperform in the radial-arm water-maze test. These studies identify RPTPalpha as a key mediator of neuronal migration and synaptic plasticity....

  15. Na4Ca3(AlO2)10:Eu2+,Mn2+荧光粉的发光特性%Photoluminescence Characteristics of Na4 Ca3(AlO2)10:Eu2+ ,Mn2+

    Institute of Scientific and Technical Information of China (English)

    王雪; 田莲花

    2011-01-01

    A novel phosphor Na4Ca3(AlO2) 10:Eu2+ was prepared by solid state reaction method in a thermal-carbon reducing atmosphere. The photoluminescence(PL) properties were investigated in this paper. The excitation spectrum of Na4Ca3(AlO2) 10:Eu2+ showed two absorption bands centered at 262 nm and 320 nm respectively. The photoluminescence spectrum of Na4Ca3(AlO2) 10:Eu2+ exhibited a single emission peak centered at 441 nm, which could be attributed to 5d-4f transition of Eu + . The excitation spectrum of Na4Ca3(AlO2) 10:Eu2+ showed absorption peak at about 440 nm monitoring at 542 nm, which shows spectral overlap between emission spectrum of Na4Ca3(AlO2) 10:Eu2+. Co-doped Mn2+ with Eu2+, the photoluminescence spectra of Na4Ca3(AlO2) 10:Eu2+ were observed two peaks centered at 441 nm and 542 nm corresponding to the 5d-4f transition of Eu2+ and the d-d transition of Mn2+ , respectively. With increasing the concentration of Mn2+ ,the emission intensity of 5d-4f transition of Eu2+ at 441 nm was significantly decreased,whereas the d-d transition of Mn2+ at 542 nm was found to increase. The decay lifetime for Eu2+ was found to decrease with increasing Mn2+ dopant content, which was strong evidence for the energy transfer from Eu2+ to Mn2+ . We were also interested in investigating the energy transfer efficiency ηT of Eu2+→Mn2+ . With increasing Mn2+ dopant content, the energy transfer efficiency ηT was found to increase gradually. According to the Dexter's energy transfer formula of multipolar interaction, it was demonstrated that the energy transfer from Eu2+ to Mn2+ was due to the electric quadripole-quadripole interaction of the resonance transfer. According to the CIE chromaticity coordinates of Na4Ca3(AlO2) 10:Eu2+ , it was clearly observed that the CIE chro-maticity coordinates with the increase of Mn content shifted from blue region to white region.

  16. Altered spatial arrangement of layer V pyramidal cells in the mouse brain following prenatal low-dose X-irradiation. A stereological study using a novel three-dimensional analysis method to estimate the nearest neighbor distance distributions of cells in thick sections.

    Science.gov (United States)

    Schmitz, Christoph; Grolms, Norman; Hof, Patrick R; Boehringer, Robert; Glaser, Jacob; Korr, Hubert

    2002-09-01

    Prenatal X-irradiation, even at doses gallocyanin. Approximately 700 layer V pyramidal cells per animal were sampled in a systematic-random manner in the middle of the section's thickness. The x-y-z coordinates of these 'parent neurons' were recorded, as well as of all neighboring (up to 10) 'offspring neurons' close to each 'parent neuron'. From these data, the nearest neighbor distance (NND) distributions for layer V pyramidal cells were calculated. Using this novel 3D analysis method, we found that, in comparison to controls, prenatal X-irradiation had no effect on the total neuron number, but did cause a reduction in the mean volume of layer V by 26.5% and a more dispersed spatial arrangement of these neurons. Considering the recent literature, it seems reasonable to consider abnormal neuronal migration as the potential basic cause of this finding. PMID:12183394

  17. Learning and aging related changes in intrinsic neuronal excitability

    Directory of Open Access Journals (Sweden)

    Fernando A Oliveira

    2010-02-01

    Full Text Available A goal of many laboratories that study aging is to find a key cellular change(s that can be manipulated and restored to a young-like state, and thus, reverse the age-related cognitive deficits. We have chosen to focus our efforts on the alteration of intrinsic excitability (as reflected by the postburst afterhyperpolarization, AHP during the learning process in hippocampal pyramidal neurons. We have consistently found that the postburst AHP is significantly reduced in hippocampal pyramidal neurons from young adults that have successfully learned a hippocampus-dependent task. In the context of aging, the baseline intrinsic excitability of hippocampal neurons is decreased and therefore cognitive learning is impaired. In aging animals that are able to learn, neuron changes in excitability similar to those seen in young neurons during learning occur. Our challenge, then, is to understand how and why excitability changes occur in neurons from aging brains and cause age-associated learning impairments. After understanding the changes, we should be able to formulate strategies for reversing them, thus making old neurons function more as they did when they were young. Such a reversal should rescue the age-related cognitive deficits.

  18. Pyramid wavefront sensor for image quality evaluation of optical system

    Science.gov (United States)

    Chen, Zhendong

    2015-08-01

    When the pyramid wavefront sensor is used to evaluate the imaging quality, placed at the focal plane of the aberrated optical system e.g., a telescope, it splits the light into four beams. Four images of the pupil are created on the detector and the detection signals of the pyramid wavefront sensor are calculated with these four intensity patterns, providing information on the derivatives of the aberrated wavefront. Based on the theory of the pyramid wavefront sensor, we are going to develop simulation software and a wavefront detector which can be used to test the imaging quality of the telescope. In our system, the subpupil image intensity through the pyramid sensor is calculated to obtain the aberration of wavefront where the piston, tilt, defocus, spherical, coma, astigmatism and other high level aberrations are separately represented by Zernike polynomials. The imaging quality of the optical system is then evaluated by the subsequent wavefront reconstruction. The performance of our system is to be checked by comparing with the measurements carried out using Puntino wavefront instrument (the method of SH wavefront sensor). Within this framework, the measurement precision of pyramid sensor will be discussed as well through detailed experiments. In general, this project would be very helpful both in our understanding of the principle of the wavefront reconstruction and its future technical applications. So far, we have produced the pyramid and established the laboratory setup of the image quality detecting system based on this wavefront sensor. Preliminary results are obtained, in that we have obtained the intensity images of the four pupils. Additional work is needed to analyze the characteristics of the pyramid wavefront sensor.

  19. Intraoperative tractography and neuronavigation of the pyramidal tract

    International Nuclear Information System (INIS)

    Diffusion tensor imaging (DTI) based fiber tracking was applied to visualize the course of the pyramidal tract in the surgical field by microscope-based navigation. In 70 patients with lesions adjacent to the pyramidal tract, DTI data were integrated in a navigational setup. Diffusion data (b=0) were rigidly registered with standard T1-weighted 3-D images. Fiber tracking was performed applying a tensor-deflection algorithm using a multiple volume of interest approach as seed regions for tracking. fMRI data identifying the motor gyrus were applied as selection criteria to define the fibers of interest. After tracking, a 3-D object was generated representing the pyramidal tract. In selected cases, the intraoperative image data (1.5 T intraoperative MRI) were used to update the navigation system. In all patients the pyramidal tract could be visualized in the operative field applying the heads-up display of the operating microscope. In 8 patients (11%) a new or aggravated postoperative paresis could be observed, which was transient in 5 of them; thus, only in 3 patients (4.2%) was there a new permanent neurological deficit. Intraoperative imaging depicted a shifting of the pyramidal tract which amounted up to 15 mm; even the direction of shifting was variable and could not be predicted before surgery, so that mathematical models trying to predict brain shift behaviour are of restricted value only. DTI fiber tracking data can be reliably integrated into navigational systems providing intraoperative visualization of the pyramidal tract. This technique allowed the resection of lesions adjacent to the pyramidal tract with low morbidity. (author)

  20. Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons.

    Science.gov (United States)

    Calixto, Eduardo; Galván, Emilio J; Card, J Patrick; Barrionuevo, Germán

    2008-06-01

    We performed whole-cell recordings from CA3 s. radiatum (R) and s. lacunosum-moleculare (L-M) interneurons in hippocampal slices to examine the temporal aspects of summation of converging perforant path (PP) and mossy fibre (MF) inputs. PP EPSPs were evoked from the s. lacunosum-moleculare in area CA1. MF EPSPs were evoked from the medial extent of the suprapyramidal blade of the dentate gyrus. Summation was strongly supralinear when examining PP EPSP with MF EPSP in a heterosynaptic pair at the 10 ms ISI, and linear to sublinear at longer ISIs. This pattern of nonlinearities suggests that R and L-M interneurons act as coincidence detectors for input from PP and MF. Summation at all ISIs was linear in voltage clamp mode demonstrating that nonlinearities were generated by postsynaptic voltage-dependent conductances. Supralinearity was not detected when the first EPSP in the pair was replaced by a simulated EPSP injected into the soma, suggesting that the conductances underlying the EPSP boosting were located in distal dendrites. Supralinearity was selectively eliminated with either Ni2+ (30 microm), mibefradil (10 microm) or nimodipine (15 microm), but was unaffected by QX-314. This pharmacological profile indicates that supralinearity is due to recruitment of dendritic T-type Ca2+channels by the first subthreshold EPSP in the pair. Results with the hyperpolarization-activated (Ih) channel blocker ZD 7288 (50 microm) revealed that Ih restricted the time course of supralinearity for coincidently summed EPSPs, and promoted linear to sublinear summation for asynchronous EPSPs. We conclude that coincidence detection results from the counterbalanced activation of T-type Ca2+ channels and inactivation of Ih. PMID:18388134

  1. Memory effect in spin-chain single crystal Ca3Co1.62Mn0.38O6

    International Nuclear Information System (INIS)

    Highlights: • The memory effect exists in the spin-chain single crystal Ca3Co1.62Mn0.38O6. • The memory effect in Ca3Co1.62Mn0.38O6 is associated with chemical disorder and competing interactions. • The observed memory effect can be described by the phenomenological hierarchical model. - Abstract: Amazing memory effect due to spin glass-like freezing has been illustrated in the spin-chain single crystal of Ca3Co1.62Mn0.38O6 by systematic magnetization measurements including temperature- and time-dependent magnetization curves in low fields. The observed memory effect can be described by the phenomenological hierarchical model and its origin is associated with chemical disorder and competing antiferromagnetic and ferromagnetic interactions due to introduction of Mn. Thus, Ca3Co1.62Mn0.38O6 may be considered as a candidate material for the memory storage devices

  2. Effects of Synthesis and Processing on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo;

    In the present study, Ca3Co4O9+δ was synthesized by solid-state and sol-gel reactions followed by spark plasma sintering (SPS) under different conditions such as sintering temperatures, applied pressures and ramping rates. The materials were then characterized with respect to their microstructure...

  3. The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats

    NARCIS (Netherlands)

    Kole, MHP; Swan, L; Fuchs, E

    2002-01-01

    Recent hypotheses on the action of antidepressants imply a modulation of excitatory amino acid transmission. Here, the effects of long-term antidepressant application in rats with the drug tianeptine were examined at hippocampal CA3 commissural associational (c/a) glutamate receptor ion channels, em

  4. Evidence of the Current Collector Effect: Study of the SOFC Cathode Material Ca3Co4O9+d

    NARCIS (Netherlands)

    Rolle, A.; Thoréton, V.; Rozier, P.; Capoen, E.; Mentré, O.; Boukamp, B.A.; Daviero-Minaud, S.

    2012-01-01

    In the study of the performance of solid oxide fuel cell (SOFC) electrodes, the possible influence of the applied current collector is often not mentioned or recognized. In this article, as part of an optimization study of the potentially attractive Ca3Co4O9+δ cathode material (Ca349), special atten

  5. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3–CA1 synapses in adult hippocampus

    Science.gov (United States)

    Shinoda, Yo; Ishii, Chiaki; Fukazawa, Yugo; Sadakata, Tetsushi; Ishii, Yuki; Sano, Yoshitake; Iwasato, Takuji; Itohara, Shigeyoshi; Furuichi, Teiichi

    2016-01-01

    Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses. PMID:27545744

  6. Mechanical and thermal-expansion characteristics of Ca10(PO46(OH2-Ca3(PO42 composites

    Directory of Open Access Journals (Sweden)

    Ruseska G.

    2006-01-01

    Full Text Available Three types of composites consisting of Ca10(PO46(OH2 and Ca3(PO42 with composition: 75% (wt Ca10(PO46(OH2: 25%(wt Ca3(PO42; 50%(wt Ca10(PO46(OH2: 50%(wtCa3(PO42 and 25 %(wt Ca10(PO46(OH2: 75%(wt Ca3(PO42 were the subject of our investigation. Sintered compacts were in thermal equilibrium, which was proved by the absence of hysteresis effect of the dependence ΔL/L=f(T during heating /cooling in the temperature interval 20-1000-200C. Sintered compacts with the previously mentioned composition possess 26-50% higher values of the E-modulus, G-modulus and K-modulus indicating the presence of a synergism effect. Several proposed model equations for predicting the thermal expansion coefficient in dependence of the thermal and elastic properties of the constitutive phases and their volume fractions, given by: Turner, Kerner, Tummala and Friedberg, Thomas and Taya, were used for making correlations between mechanical and thermal-expansion characteristics of the Ca10(PO46(OH2 - Ca3(PO42 composites. Application of the previously mentioned model equations to all kinds of composites leads to the conclusion that the experimentally obtained results for the thermal expansion coefficient are in an excellent agreement with the theoretical calculated values on account of the volume fraction of each constitutive phase and with all applied model equations, with a coefficient of correlation from 98.16-99.86 %.

  7. Ephaptic coupling in cortical neurons

    Directory of Open Access Journals (Sweden)

    Costas Anastassiou

    2014-03-01

    Full Text Available The electrochemical processes that underlie neural function manifest themselves in ceaseless spatial and temporal fluctuations in the extracellular electric field. The local field potential (LFP, used to study neural interactions during various brain states, is regarded as an epiphenomenon of coordinated neural activity. Yet the extracellular field activity feeds back onto the electrical potential across the neuronal membrane via ephaptic coupling (Jefferys et al, Physiol Rev, 1995. The extent to which such ephaptic coupling alters the functioning of individual neurons and neural assemblies under physiological conditions has remained largely speculative despite recent advances (Ozen et al, JNeurosci, 2010; Fröhlich & McCormick, Neuron, 2010, Anastassiou et al, JNeurosci, 2010. To address this question we use a 12-pipette setup that allows independent positioning of each pipette under visual control with μm accuracy, with the flexibility of using an arbitrary number of these as patching, extracellularly stimulating or extracellular recording pipettes only a few μm away from the cell body of patched neurons (Anastassiou et al, Nat Neurosci, 2011. We stimulated in rat somatosensory cortical slices a variety of layer 5 neural types and recorded inside and outside their cell bodies while pharmacologically silencing synaptic transmission. Pyramidal cells couple to the extracellular field distinctly different from interneurons. Ephaptic coupling strength depends both on the field strength (as measured at the neuron soma as well as the spike-history of neurons. In particular, we find that ephaptic coupling strength depends both on the field strength (as measured at the cell body as well as the spike-history of neurons. How do such effects manifest themselves in vivo? We address this question through detailed large-scale simulations from thousands of biophysically realistic and interconnected neurons (Reimann, Anastassiou et al, Neuron, 2013 emulating

  8. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties.

    Directory of Open Access Journals (Sweden)

    Etay Hay

    2011-07-01

    Full Text Available The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+-spiking behavior as well as key dendritic active properties, including Ca(2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.

  9. Selective Thalamic Innervation of Rat Frontal Cortical Neurons.

    Science.gov (United States)

    Shigematsu, Naoki; Ueta, Yoshifumi; Mohamed, Alsayed A; Hatada, Sayuri; Fukuda, Takaichi; Kubota, Yoshiyuki; Kawaguchi, Yasuo

    2016-06-01

    Most glutamatergic inputs in the neocortex originate from the thalamus or neocortical pyramidal cells. To test whether thalamocortical afferents selectively innervate specific cortical cell subtypes and surface domains, we investigated the distribution patterns of thalamocortical and corticocortical excitatory synaptic inputs in identified postsynaptic cortical cell subtypes using intracellular and immunohistochemical staining combined with confocal laser scanning and electron microscopic observations in 2 thalamorecipient sublayers, lower layer 2/3 (L2/3b) and lower layer 5 (L5b) of rat frontal cortex. The dendrites of GABAergic parvalbumin (PV) cells preferentially received corticocortical inputs in both sublayers. The somata of L2/3b PV cells received thalamic inputs in similar proportions to the basal dendritic spines of L2/3b pyramidal cells, whereas L5b PV somata were mostly innervated by cortical inputs. The basal dendrites of L2/3b pyramidal and L5b corticopontine pyramidal cells received cortical and thalamic glutamatergic inputs in proportion to their local abundance, whereas crossed-corticostriatal pyramidal cells in L5b exhibited a preference for thalamic inputs, particularly in their distal dendrites. Our data demonstrate an exquisite selectivity among thalamocortical afferents in which synaptic connectivity is dependent on the postsynaptic neuron subtype, cortical sublayer, and cell surface domain. PMID:26045568

  10. Pyramidal ice crystal scattering phase functions and concentric halos

    Directory of Open Access Journals (Sweden)

    C. Liu

    Full Text Available Phase functions have been calculated using the Monte Carlo/geometric ray tracing method for single hexagonal pyramidal ice crystals (such as solid and hollow bullets randomly oriented in space and horizontal plane, in order to study the concentric halo formations. Results from three dimensional model calculations show that 9° halo can be as bright as the common 22° halo for pyramidal angle of 28°, and the 18°, 20°, 24° and 35° halos cannot be seen due to the strong 22° halo domination in the scattering phase function between 18° and 35°. For solid pyramidal ice crystals randomly oriented horizontally, the 35° arc can be produced and its intensity depends on the incident ray solar angle and the particle aspect ratio.

  11. A study of correlation technique on pyramid processed images

    Indian Academy of Sciences (India)

    M Sankar Kishore; K Veerabhadra Rao

    2000-02-01

    The pyramid algorithm is potentially a powerful tool for advanced television image processing and for pattern recognition. An attempt is made to design and develop both hardware and software for a system which performs decomposition and reconstruction of digitized images by implementing the Burt pyramid algorithm. In this work, an attempt is also made to study correlation performance on reconstructed images. That is, the reference image is taken from the original image and correlation is performed on expanded images of the same size. Similarly, correlation performance study is carried out on different pyramid- processed levels. In this paper results are presented in terms of RMS error between original and expanded images. Only still images are considered, and the hardware is designed around an i486 processor and software is developed in PL/M 86.

  12. Space Station view of the Pyramids at Giza

    Science.gov (United States)

    2002-01-01

    One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).

  13. Indoor radon and thoron concentrations in the pyramides of Teotihuacan

    International Nuclear Information System (INIS)

    Radon and thoron concentrations measured in the prehispanic tunnel of the Sun Pyramid and in the archeological tunnel 1 in the Moon Pyramid are presented. Radon and thoron concentrations were measured using several electret passive environmental radon monitor (E-PERM) configurations and detection systems. Results were in good agreement with no significant difference (P E) calculated for the highest concentration was much lower than the action level (3-10 mSv x y-1). A quality assurance program was improved. (author)

  14. Geometry and perspective in the landscape of the Saqqara pyramids

    CERN Document Server

    Magli, Giulio

    2009-01-01

    A series of peculiar, visual alignments between the pyramids of the pharaohs of the 4, 5 and 6 Egyptian dynasties exists. These alignments governed from the very beginning the planning of the funerary monuments of successive kings and, in some cases, led to establish building sites in quite inconvenient locations from the technical viewpoint. Explaining the topography of these monuments means therefore also investigating on their symbolic motivations: religion, power, dynastic lineage and social context, as well as getting insights on the skills of the ancient architects in astronomy and geometry. In the present paper we focus on the relationships between the Old Kingdom pyramids at Saqqara.

  15. Double Labeling Immunoelectron Microscopic Study on the Synaptic Connections between Glutamic Acid Neurons and GABA Neurons in the Hippocampus of Rats

    Institute of Scientific and Technical Information of China (English)

    ZHU Changgeng; CAI Qiuyun; LIU Qingying; WEI Ying

    2000-01-01

    In order to explore the roles of different neurotransmitters in epileptic pathogenesis,the synaptic connections between glutamic acid (Glu) neurons and GABA neurons in normal rat hippocampus were studied by pre-embedding double labeling immunoelectron microscopy. The GABA immunoreaction was first demonstrated by chromogen DAB, then the Glu immunoreaction was demonstrated by molybdic acid-TMB method. After being stabilized by DAB-cobalt chloride,the sections were processed for electron microscopic embedding. Under electron microscope, there were many Glu immunoreaction-positive neurons in the pyramidal layer of hippocampal CA1 area and some GABA immunoreaction-positive neurons with pyramidal or polygonal perikarya in the pyramidal, polymorphic and radiant layer of CA1 area. There were also symmetric dendro-axonic synapses formed by GABA-positive dendrites and Glu-positive axons in the polymorphic layer and symmetric axo-dendritic synapses formed by GABA-positive axons and Glu-positive dendrites in the radiant layer. In addition, there were symmetric autoregulatory axo-dendritic synapses between Glu-positive axons and dendrites and autoregulatory axo-axonic synapses (both symmetric and asymmetric) between GABA-positive axons. Above mentioned results, for the first time,showed that there were complex synaptic regulatory relationships between excitatory Glu neurons and inhibitory GABA neurons in the hippocampal CA1 area, thereby, providing ultrastructural evidence for different neurotransmitters participating in epileptic pathogenesis.

  16. Three-dimensional anisotropy contrast MRI and functional MRI of the human brain. Clinical application to assess pyramidal tract in patients with brain tumor and infarction

    International Nuclear Information System (INIS)

    We describe and evaluate the findings of three-dimensional anisotropy contrast MR axonography (3DAC MRX) and functional MRI (fMRI) in brain tumor and infarction. We obtained diffusion-weighted images (DWI) in 28 patients including 23 brain tumors and 15 acute infarctions located in or near pyramidal tract. Three anisotropic DWIs were transformed into graduations color-coded as red, green and blue, and then composed to form a combined color 3DAC MRX. We also performed functional MRI in 7 of the 28 patients and compared with cortical mapping of 3DAC MRX. 3DAC MRX with 23 brain tumors showed that the ipsilateral pyramidal tract was either discontinuous due to impaired anisotropy (n=8) or compressed due to mass effect (n=15). In 10 patients of acute infarction with motor impairment, pyramidal tract involvement was visually more conspicuous on 3DAC MRX compared to standard DWI. On functional MRI, hand motor activation was observed between blue vertical directional colors of pre- and post central gyrus. In conclusion, 3DAC MRX is a new noninvasive approach for visualization of the white matter neuronal tract and provides the information concerning pyramidal tract involvement. (author)

  17. Damage to the pyramidal tracts is necessary and sufficient for the production of the pyramidal syndrome in man.

    Science.gov (United States)

    de Oliveira-Souza, Ricardo

    2015-07-01

    The causal role played by damage to the pyramidal tracts in the production of spastic hemiplegia in man has been hotly debated over the past hundred years. Two broad streams of thought have emerged from this dispute. The first, which is grounded on the clinicopathological schools of Jean-Martin Charcot (1825-1893) and Paul Flechsig (1847-1929), claimed that the four cardinal signs of hemiplegia, namely (i) paralysis, (ii) spasticity, (iii) hyperactive phasic muscle reflexes ("tendon jerks") and (iv) the sign of Babinski, are caused by injury or dysfunction of the pyramidal tracts. The second school, championed by John Farquhar Fulton (1899-1960) and Derek Denny-Brown (1901-1981), reflects the increasing influence of experimental neurology on clinicopathological concepts after World War II. According to this school, most elements of the pyramidal syndrome are caused by the added release or injury of extrapyramidal structures at different levels of the forebrain and brainstem. Most symptoms of spastic hemiplegia were thus interpreted as signs of extrapyramidal (e.g., reticulospinal) release or damage. However, consensus on which symptoms of spastic hemiplegia were due to pyramidal or extrapyramidal changes was never reached. To add to this uncertainty, a number of clinicopathological cases that supported the old view were sporadically published over the same period. The purpose of the present essay is to provide clinicoanatomic perspective to the neurological literature in support of the hypothesis that damage to the pyramidal tracts is a necessary and sufficient condition for the production of the complete pyramidal syndrome in man. PMID:25959865

  18. Growth and polarized spectral properties of Sm3+ doped in Ca3La2(BO3)4 crystal

    Science.gov (United States)

    Wang, Yeqing; Chen, Aixi; Tu, Chaoyang

    2015-09-01

    A Sm3+-doped Ca3La2(BO3)4 single crystal was grown by the Czochralski method. Its polarized absorption, emission spectra and fluorescence lifetime measurements were carried out at room temperature. Based on the Judd-Ofelt theory, the spectroscopic parameters Ωt (t = 2, 4, 6), radiative transition probabilities, radiative lifetime and fluorescence branching ratios were obtained. The stimulated emission cross section, the fluorescence lifetime and the quantum efficiency of the promising laser transition were also calculated and compared with other reported crystals. The results showed that Sm3+:Ca3La2(BO3)4 is a promising candidate for the orange-yellow laser emission.

  19. Electron radiation damages to dicalcium (Ca2SiO4) and tricalcium (Ca3SiO5) orthosilicates

    Science.gov (United States)

    de Noirfontaine, Marie-Noëlle; Dunstetter, Frédéric; Courtial, Mireille; Signes-Frehel, Marcel; Wang, Guillaume; Gorse-Pomonti, Dominique

    2016-05-01

    Electron radiation damages to dicalcium silicate (Ca2SiO4) and tricalcium silicate (Ca3SiO5) are reported for the first time in this paper. With increasing flux, between 2.7 × 1017 and 2.2 × 1022 e- cm-2 s-1, decomposition into nanodomains of crystalline CaO plus an amorphous silica rich phase is first observed for both silicates, then amorphization at higher flux always for both silicates, and finally hole drilling but only for Ca3SiO5. These structural modifications are accompanied by a net reduction of Ca content under the electron beam depending on the silicate species. These radiation effects occur for values of flux and dose larger than in previously studied orthosilicates (like olivines), and much larger than in all tectosilicates.

  20. TOWARDS HIGHLY EFFICIENT THERMOELECTRICS: Ca3Co4O9+δ . n CaZrO3 COMPOSITE

    OpenAIRE

    Ondrej Jankovsky; Stepan Huber; Sedmidubsky David; Nadherny Ladislav; Hlasek Tomas; Sofer Zdenek

    2014-01-01

    We successfully prepared Ca3Co4O9+δ . n CaZrO3 composites by a ceramic route. These composites were characterized by X-Ray diffraction, differential thermal analysis, thermogravimetric analysis and scanning electron microscopy. Moreover, transport properties (Seebeck coefficient, electrical resistivity and thermal conductivity) were measured and the thermoelectric figure of merit ZT was determined. Addition of CaZrO3 led to a suppression of thermal conductivity of the samples. A high...

  1. Growth of Devitrite, Na2Ca3Si6O16, in Soda-Lime-Silica Glass

    OpenAIRE

    Knowles, Kevin M.; Thompson, Robert P.

    2014-01-01

    This article (Knowles, K. M., Thompson, R. P. (2014), Growth of Devitrite, Na2Ca3Si6O16, in Soda?Lime?Silica Glass. Journal of the American Ceramic Society, 97: 1425?1433. doi: 10.1111/jace.12922) is the author accepted manuscript, which can also be found on the publisher's website at: http://onlinelibrary.wiley.com/doi/10.1111/jace.12922/abstract ? 2014 The American Ceramic Society

  2. 76 FR 15358 - Culturally Significant Objects Imported for Exhibition Determinations: “Before the Pyramids: The...

    Science.gov (United States)

    2011-03-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Objects Imported for Exhibition Determinations: ``Before the Pyramids: The Origins of... ``Before the Pyramids: The Origins of Egyptian Civilization'' imported from abroad for temporary...

  3. Performance of resistance gene pyramids to races of rice bacterial blight in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    ZHENGKangle; ZHUANGJieyun; WANGHanrong

    1998-01-01

    The effect of gene pyramiding on resistance to bacterial blight (BB) in rice was evahlated among the IR24-based near isogenic lines conraining single resistance gene and gene pyramids containing two, three or lour resistancegenes (see table).

  4. Human neuroimaging studies on the hippocampal CA3 region – integrating evidence for pattern separation and completion

    Directory of Open Access Journals (Sweden)

    Lorena eDeuker

    2014-03-01

    Full Text Available Human functional magnetic imaging (fMRI studies have long investigated the hippocampus without differentiating between its subfields, even though theoretical models and rodent studies suggest that subfields support different and potentially even opposite functions. The CA3 region of the hippocampus has been ascribed a pivotal role both in initially forming associations during encoding and in reconstructing a memory representation based on partial cues during retrieval. These functions have been related to pattern separation and pattern completion, respectively. In recent years, studies using high-resolution fMRI in humans have begun to separate different hippocampal subregions and identify the role of the CA3 subregion relative to the other subregions. However, some of these findings have been inconsistent with theoretical models and findings from electrophysiology. In this review, we describe selected recent studies and highlight how their results might help to define different processes and functions that are presumably carried out by the CA3 region, in particular regarding the seemingly opposing functions of pattern separation and pattern completion. We also describe how these subfield-specific processes are related to behavioral, functional and structural alterations in patients with mild cognitive impairment and Alzheimer’s disease. We conclude with discussing limitations of functional imaging and briefly outline possible future developments of the field.

  5. Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9

    Science.gov (United States)

    Dai, Jia; Zhou, Ping; Wang, Peng-Shuai; Pang, Fei; Munsie, Tim J.; Luke, Graeme M.; Zhang, Jin-Shan; Yu, Wei-Qiang

    2015-12-01

    We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+ is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW˜ -55 K and the low Neel temperature TN˜ 1.45 K give a frustration factor f = | θCW/TN | ≈ 38, suggesting that Ca3CoNb2O9 resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling (ZFC) and field cooling (FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3CoNb2O9 is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374364 and 11222433), the National Basic Research Program of China (Grant No. 2011CBA00112). Research at McMaster University supported by the Natural Sciences and Engineering Research Council. Work at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  6. Action potentials reliably invade axonal arbors of rat neocortical neurons

    OpenAIRE

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  7. Human neuronal changes in brain edema and increased intracranial pressure.

    Science.gov (United States)

    Faragó, Nóra; Kocsis, Ágnes Katalin; Braskó, Csilla; Lovas, Sándor; Rózsa, Márton; Baka, Judith; Kovács, Balázs; Mikite, Katalin; Szemenyei, Viktor; Molnár, Gábor; Ozsvár, Attila; Oláh, Gáspár; Piszár, Ildikó; Zvara, Ágnes; Patócs, Attila; Barzó, Pál; Puskás, László G; Tamás, Gábor

    2016-01-01

    Functional and molecular changes associated with pathophysiological conditions are relatively easily detected based on tissue samples collected from patients. Population specific cellular responses to disease might remain undiscovered in samples taken from organs formed by a multitude of cell types. This is particularly apparent in the human cerebral cortex composed of a yet undefined number of neuron types with a potentially different involvement in disease processes. We combined cellular electrophysiology, anatomy and single cell digital PCR in human neurons identified in situ for the first time to assess mRNA expression and corresponding functional changes in response to edema and increased intracranial pressure. In single pyramidal cells, mRNA copy numbers of AQP1, AQP3, HMOX1, KCNN4, SCN3B and SOD2 increased, while CACNA1B, CRH decreased in edema. In addition, single pyramidal cells increased the copy number of AQP1, HTR5A and KCNS1 mRNAs in response to increased intracranial pressure. In contrast to pyramidal cells, AQP1, HMOX1and KCNN4 remained unchanged in single cell digital PCR performed on fast spiking cells in edema. Corroborating single cell digital PCR results, pharmacological and immunohistochemical results also suggested the presence of KCNN4 encoding the α-subunit of KCa3.1 channels in edema on pyramidal cells, but not on interneurons. We measured the frequency of spontaneous EPSPs on pyramidal cells in both pathophysiological conditions and on fast spiking interneurons in edema and found a significant decrease in each case, which was accompanied by an increase in input resistances on both cell types and by a drop in dendritic spine density on pyramidal cells consistent with a loss of excitatory synapses. Our results identify anatomical and/or physiological changes in human pyramidal and fast spiking cells in edema and increased intracranial pressure revealing cell type specific quantitative changes in gene expression. Some of the edema

  8. A first step toward combinatorial pyramids in nD spaces

    OpenAIRE

    Fourey, Sébastien; Brun, Luc

    2009-01-01

    Combinatorial maps define a general framework which allows to encode any subdivision of an nD orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of the objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D. This first work has latter been extended to pyramids of nD generalized combinatori...

  9. A first step toward combinatorial pyramids in n-D spaces

    OpenAIRE

    Fourey, Sébastien; Brun, Luc

    2009-01-01

    Combinatorial maps define a general framework which allows to encode any subdivision of an n-D orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of the objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D. This first work has later been extended to pyramids of n-D generalized combinator...

  10. Connecting walks and connecting dart sequences for n-D combinatorial pyramids

    OpenAIRE

    Fourey, Sébastien; Brun, Luc

    2009-01-01

    Combinatorial maps define a general framework which allows to encode any subdivision of an n-D orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D. This first work has later been extended to pyramids of n-D generalized combinatorial ...

  11. Building trust at the Base of the Pyramid

    NARCIS (Netherlands)

    Grootveld, P.; Vermeulen, P.A.M.

    2014-01-01

    More and more companies are serving the poorest communities of our world, the so-called Base of the Pyramid (BoP). Wal-Mart, for example, moved into the Mexican retail-banking sector, claiming not only to “sell more stuff” but also to compete against the entrenched domestic businesses that are not f

  12. Was the Great Pyramid Built with Simple Machines?

    Science.gov (United States)

    Kraft, Susan; Poynor, Leslie

    2004-01-01

    Recently one of the authors challenged her third-grade students to use their imagination and travel with her to Egypt. As they were exploring the Great Pyramid, she encouraged the students to speculate how ancient people could have built such a massive structure without the sophisticated machinery they have at our disposal today. This article…

  13. Using the Pyramid Approach to Teaching Marketing Research.

    Science.gov (United States)

    Peltier, James W.; Westfall, John; Ainscough, Thomas L.

    2001-01-01

    Underscores the need for teaching marketing research skills at the secondary level and shows how marketing research fits into marketing education. Provides an example of how to use the pyramid approach to research, which involves review of secondary sources, key informant interviews, focus groups, and quantitative research. (Author/JOW)

  14. Radon measurements in the interior of the great pyramid

    International Nuclear Information System (INIS)

    Radon concentration measurements were made in the interior of the great pyramid of ''Cheops'' at Giza. Measurements were carried out using CR-39 as a solid state nuclear track detector. The CR-39 sheets were placed inside the Queen's and King's chambers and along the ascending corridor leading to them. An evaluation of the radon concentration is presented and discussed. (author)

  15. Ligand for neurotransmission SPECT in extra-pyramidal diseases

    International Nuclear Information System (INIS)

    It is now possible to study by scintigraphy some parameters of dopaminergic neurotransmission with iodinated ligands. Some clinical studies have shown the interest of this kind of exploration for the early diagnosis, the differential diagnosis and the follow-up of evolution and treatment of the different extra pyramidal pathologies. However, advances are still expected in several fields (tracers, cameras resolutions). (N.C.)

  16. The Sphinx and the Pyramids at Giza. Educational Packet.

    Science.gov (United States)

    Gagliano, Sara; Rapport, Wendy

    This packet of materials was created to accompany the exhibit "The Sphinx and the Pyramids: 100 Years of American Archaeology at Giza" at the Semitic Museum of Harvard University. The lessons and teacher's guide focus on the following: (1) "The Mystery of the Secret Tomb" where students take on the role of an archaeologist by attempting to solve a…

  17. Organizing innovation in base-of-the-pyramid projects

    NARCIS (Netherlands)

    Boer, J. de; Steen, M.G.D.; Posthumus, A.L.

    2013-01-01

    Base-of-the-Pyramid (BoP) inclusive innovation projects aim to design, produce and market products and services for large and relatively poor market segments in developing countries, for example for people who have less than several dollars to spend per day. BoP projects have ‘normal’ goals, deliver

  18. The pyramid model as a structured way of quality management

    Directory of Open Access Journals (Sweden)

    van der Tuuk Adriani Willem

    2008-01-01

    Full Text Available Three quality systems that can be used in blood establishments are briefly explained. The Pyramid model is described as a tool to manage the quality systems. Finally, some experiences in other countries are given to prove the validity of the system.

  19. Coxeter Decompositions of Bounded Hyperbolic Pyramids and Triangular Prisms

    OpenAIRE

    Felikson, A.

    2002-01-01

    Coxeter decompositions of hyperbolic simplices where studied in math.MG/0212010 and math.MG/0210067. In this paper we use the methods of these works to classify Coxeter decompositions of bounded convex pyramids and triangular prisms in the hyperbolic space H^3.

  20. Increasing Accurate Preference Assessment Implementation through Pyramidal Training

    Science.gov (United States)

    Pence, Sacha T.; St. Peter, Claire C.; Tetreault, Allison S.

    2012-01-01

    Preference assessments directly evaluate items that may serve as reinforcers, and their implementation is an important skill for individuals who work with children. This study examined the effectiveness of pyramidal training on teachers' implementation of preference assessments. During Experiment 1, 3 special education teachers taught 6 trainees…

  1. [Diagnostic significance of pathologic synkinesis for detection of pyramidal pathology].

    Science.gov (United States)

    Baliasnyĭ, M M

    1991-01-01

    Five types of pathological synkinesis (++blepharo-ocular, ++blepharo-facial, ++bucco-manual, ++digito-digital on the hands, ++pedo-digital) are described. They are of definite importance for revealing pyramidal pathology including its early stages as well as for objective evaluation and observation of the time-course of changes in the illness. PMID:1654715

  2. Nanopore formation on Au coated pyramid under electron beam irradiations (plasmonic nanopore on pyramid

    Directory of Open Access Journals (Sweden)

    Seong Soo Choi

    2016-03-01

    Full Text Available There have been tremendous interests about the single molecule analysis using a sold-state nanopore. The solid-state nanopore can be fabricated either by drilling technique, or diffusion technique by using electron beam irradiations. The solid-state SiN nanopore device with electrical detection technique recently fabricated, however, the solid-state Au nanopore with optical detection technique can be better utilized as the next generation single molecule sensor. In this report, the nanometer size openings with its size less than 10 nm on the diffused membrane on the 200 nm Au pyramid were fabricated by using field emission scanning electron microscopy (FESEM electron beam irradiations, transmission electron microscopy (TEM, etc. After the sample was being kept under a room environment for several months, several Au (111 clusters with ~6 nm diameter formed via Ostwald ripening are observed using a high resolution TEM imaging. The nanopore with Au nanoclusters on the diffused membrane can be utilized as an optical nanopore device.

  3. CAMKII Activation Is Not Required for Maintenance of Learning-Induced Enhancement of Neuronal Excitability

    OpenAIRE

    Ori Liraz; Kobi Rosenblum; Edi Barkai

    2009-01-01

    Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP) which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sI(AHP). We have previously shown that learning-induced AHP redu...

  4. Second Harmonic Generation in Neurons: Electro-Optic Mechanism of Membrane Potential Sensitivity

    OpenAIRE

    Jiang, Jiang; Eisenthal, Kenneth B.; Yuste, Rafael

    2007-01-01

    Second harmonic generation (SHG) from membrane-bound chromophores can be used to image membrane potential in neurons. We investigate the biophysical mechanism responsible for the SHG voltage sensitivity of the styryl dye FM 4-64 in pyramidal neurons from mouse neocortical slices. SHG signals are exquisitely sensitive to the polarization of the incident laser light. Using this polarization sensitivity in two complementary approaches, we estimate a ∼36° tilt angle of the chromophore to the memb...

  5. K(Ca3.1 channel-blockade attenuates airway pathophysiology in a sheep model of chronic asthma.

    Directory of Open Access Journals (Sweden)

    Joanne Van Der Velden

    Full Text Available BACKGROUND: The Ca(2+-activated K(+ channel K(Ca3.1 is expressed in several structural and inflammatory airway cell types and is proposed to play an important role in the pathophysiology of asthma. The aim of the current study was to determine whether inhibition of K(Ca3.1 modifies experimental asthma in sheep. METHODOLOGY AND PRINCIPAL FINDINGS: Atopic sheep were administered either 30 mg/kg Senicapoc (ICA-17073, a selective inhibitor of the K(Ca3.1-channel, or vehicle alone (0.5% methylcellulose twice daily (orally. Both groups received fortnightly aerosol challenges with house dust mite allergen for fourteen weeks. A separate sheep group received no allergen challenges or drug treatment. In the vehicle-control group, twelve weeks of allergen challenges resulted in a 60±19% increase in resting airway resistance, and this was completely attenuated by treatment with Senicapoc (0.25±12%; n = 10, P = 0.0147. The vehicle-control group had a peak-early phase increase in lung resistance of 82±21%, and this was reduced by 58% with Senicapoc treatment (24±14%; n = 10, P = 0.0288. Senicapoc-treated sheep also demonstrated reduced airway hyperresponsiveness, requiring a significantly higher dose of carbachol to increase resistance by 100% compared to allergen-challenged vehicle-control sheep (20±5 vs. 52±18 breath-units of carbachol; n = 10, P = 0.0340. Senicapoc also significantly reduced eosinophil numbers in bronchoalveolar lavage taken 48 hours post-allergen challenge, and reduced vascular remodelling. CONCLUSIONS: These findings suggest that K(Ca3.1-activity contributes to allergen-induced airway responses, inflammation and vascular remodelling in a sheep model of asthma, and that inhibition of K(Ca3.1 may be an effective strategy for blocking allergen-induced airway inflammation and hyperresponsiveness in humans.

  6. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death.

    Science.gov (United States)

    Pérez-Juárez, Angélica; Chamorro, Germán; Alva-Sánchez, Claudia; Paniagua-Castro, Norma; Pacheco-Rosado, Jorge

    2016-08-01

    Context Arthrospira (Spirulina) platensis (SP) is a cyanobacterium which has attracted attention because of its nutritional value and pharmacological properties. It was previously reported that SP reduces oxidative stress in the hippocampus and protects against damaging neurobehavioural effects of systemic kainic acid (KA). It is widely known that the systemic administration of KA induces neuronal damage, specifically in the CA3 hippocampal region. Objective The present study determines if the SP sub-chronic treatment has neuroprotective properties against KA. Materials and methods Male SW mice were treated with SP during 24 d, at doses of 0, 200, and 800 mg/kg, once daily, and with KA (35 mg/kg, ip) as a single dose on day 14. After the treatment, a histological analysis was performed and the number of atrophic neuronal cells in CA3 hippocampal region was quantified. Results Pretreatment with SP does not protect against seizures induced by KA. However, mortality in the SP 200 and the SP 800 groups was of 20%, while for the KA group, it was of 60%. A single KA ip administration produced a considerable neuronal damage, whereas both doses of SP sub-chronic treatment reduced the number of atrophic neurons in CA3 hippocampal region with respect to the KA group. Discussion The SP neurobehaviour improvement after KA systemic administration correlates with the capacity of SP to reduce KA-neuronal death in CA3 hippocampal cells. This neuroprotection may be related to the antioxidant properties of SP. Conclusion SP reduces KA-neuronal death in CA3 hippocampal cells. PMID:26799655

  7. An algorithm for benchmarking an SIMD pyramid with the Abingdon Cross

    OpenAIRE

    Teeuw, W.B.; Duin, R. P. W.

    1990-01-01

    Benchmarking an SIMD pyramid with the Abingdon Cross is discussed. Measured results for a simulated pyramid architecture on a CLIP4 processor array are presented, as well as estimates for a hypothetical hardware pyramid built with CLIP4 like processing elements.

  8. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome.

    NARCIS (Netherlands)

    Fonzo, A. Di; Dekker, M.C.J.; Montagna, P.; Baruzzi, A.; Yonova, E.H.; Correia Guedes, L.; Szczerbinska, A.; Zhao, T.; Dubbel-Hulsman, L.O.; Wouters, C.H.; Graaff, E. de; Oyen, W.J.G.; Simons, E.J.; Breedveld, G.J.; Oostra, B.A.; Horstink, M.W.I.M.; Bonifati, V.

    2009-01-01

    BACKGROUND: The combination of early-onset, progressive parkinsonism with pyramidal tract signs has been known as pallido-pyramidal or parkinsonian-pyramidal syndrome since the first description by Davison in 1954. Very recently, a locus was mapped in a single family with an overlapping phenotype, a

  9. Neuron as an emotion-modulated combinatorial switch, and a model of human and animal learning behavior

    CERN Document Server

    Rvachev, Marat M

    2013-01-01

    This theoretical paper proposes a neuronal circuitry layout and synaptic plasticity principles that allow the (pyramidal) neuron to act as a combinatorial switch, whereby the neuron learns to be more prone to generate spikes given those combinations of firing input neurons for which a previous spiking of the neuron had been followed by positive emotional response; the emotional response, it is posited, is mediated by certain modulatory neurotransmitters or hormones. More generally, a trial-and-error learning paradigm is suggested in which the purpose of emotions is to trigger a mechanism of long-term enhancement or weakening of a neuron's spiking response to the preceding synaptic input firing pattern. Thus, emotions provide a feedback pathway that informs neurons whether their spiking was beneficial or detrimental given the combination of inputs. The neuron's ability to discern specific combinations of firing input neurons is achieved through random or predetermined spatial distribution of input synapses on ...

  10. Neurons of the dentate molecular layer in the rabbit hippocampus.

    Directory of Open Access Journals (Sweden)

    Francisco J Sancho-Bielsa

    Full Text Available The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections, eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.

  11. Inhibitory control of hippocampal inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Lisa Topolnik

    2012-11-01

    Full Text Available Information processing within neuronal networks is determined by a dynamic partnership between principal neurons and local circuit inhibitory interneurons. The population of GABAergic interneurons is extremely heterogeneous and comprises, in many brain regions, cells with divergent morphological and physiological properties, distinct molecular expression profiles, and highly specialized functions. GABAergic interneurons have been studied extensively during the past two decades, especially in the hippocampus, which is a relatively simple cortical structure. Different types of hippocampal inhibitory interneurons control spike initiation (e.g., axo-axonic and basket cells and synaptic integration (e.g., bistratified and oriens–lacunosum moleculare interneurons within pyramidal neurons and synchronize local network activity, providing a means for functional segregation of neuronal ensembles and proper routing of hippocampal information. Thus, it is thought that, at least in the hippocampus, GABAergic inhibitory interneurons represent critical regulating elements at all stages of information processing, from synaptic integration and spike generation to large-scale network activity. However, this raises an important question: if inhibitory interneurons are fundamental for network computations, what are the mechanisms that control the activity of the interneurons themselves? Given the essential role of synaptic inhibition in the regulation of neuronal activity, it would be logical to expect that specific inhibitory mechanisms have evolved to control the operation of interneurons. Here, we review the mechanisms of synaptic inhibition of interneurons and discuss their role in the operation of hippocampal inhibitory circuits.

  12. Experimental assessment of the pyramidal energy on water.

    Directory of Open Access Journals (Sweden)

    Pedro Díaz Rebollido

    2006-04-01

    Full Text Available Background and objectives: The debate around the so called ¨pyramidal energy¨ among those that accept their multiple uses and those that reject them has been present both in the scientific community and the population. A recent research has suggested changes in the conductivity and the pH of the water, exposed to the pyramidal effect. The need to asses such a claim is the reason for the present study. Method: The study was developed in the laboratory of Physiology of the Faculty of Medical Sciences of Cienfuegos. We worked with 30 test tube numbered consecutively, stuffed with 500 ml of water. It was measured the electric conductivity and the pH of the wa-ter in each one of them. Later on, half of them, chosen at random, were placed during four hours under a pyramid, and the remaining ones were located outside of the pyramid. The electric conductivity and the pH were determined by means of the potenciometric method The pyramid employed was built with solid bars of aluminum, of skeletal structure; their dimensions were those established by specialists. It was placed so that two sides of its base were parallel to the North-South axis magnetic of the Earth. The measures were carried out in a blind way by one of the ours under the supervision of the other two co authors. Confidence intervals of the mean differences were computed under both experimental conditions and for the two considered variables. Complementarily, the stockings were compared by means of the Student t test. Results and Conclusions: The average (DS of the conductivity in the exposed test tubes to the pyramid before the exposition was 3,20 (0,07 and after 3,20 (0,05 (p=0,622; in the non exposed test tubes it was 3,18 (0,07 and 3,17 (0.06, (p=0.928. On the other hand, the average (DS values of the pH in the test tubes exposed to the pyramid before the exposition was 8,08 (0,78 and after 8.42 (0.13 (p=0.605, and in the non exposed test tubes 8,32 (0,89 and 8,44 (0,08, (p=0,127. The

  13. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region

    Science.gov (United States)

    Morton, Russell A.; Valenzuela, C. Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  14. Inhibition Controls Asynchronous States of Neuronal Networks

    Science.gov (United States)

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  15. A study on radiation energy of Pyramidal shape 1- Effect of housing within a Pyramid model on cancer growth and some blood parameters of mice

    International Nuclear Information System (INIS)

    A study of solid tumor growth retardation by impaling the pyramid energy radiation in a pyramidal model shape was carried out. The great Pyramid of Egypt has evoked a keen interest since 1920, both for its architectural, marvel and mystical significance. Its strange thing (via shaping of razers, longer shelf life of vegetables, alerted states of consciousnesses, sleeping in hum and, wound healing). Power energy radiations are said to occur within a pyramid constructed in the exact geometric properties of Giza pyramid. The effect of housing in two different pyramidal shapes on cancer growth and some blood physiological indices in mice infected with cancer were observed. The results obtained that housing in pyramid shape cage significantly reduced the development of cancer, significant increase in liver enzymes activity and α feto proteins, however, no effect was observed in levels of thyroid hormones concentration when compared with their matched value in ordinary 2 inverted pyramid cages. It could be concluded that the radiation energy of pyramidal shapes might improve certain biochemical and physiological indices leading to tumor growth retardation

  16. Monitor and control of neuronal activities with femtosecond pulse laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; LIU XiuLi; L(U) XiaoHua; LI JiaSong; LUO QingMing; ZENG ShaoQun

    2008-01-01

    Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.

  17. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons.

    Science.gov (United States)

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-01-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks. PMID:27443913

  18. Measurement of infinitesimal phase response curves from noisy real neurons

    Science.gov (United States)

    Ota, Keisuke; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2011-10-01

    We sought to measure infinitesimal phase response curves (iPRCs) from rat hippocampal CA1 pyramidal neurons. It is difficult to measure iPRCs from noisy neurons because of the dilemma that either the linearity or the signal-to-noise ratio of responses to external perturbations must be sacrificed. To overcome this difficulty, we used an iPRC measurement model formulated as the Langevin phase equation (LPE) to extract iPRCs in the Bayesian scheme. We then simultaneously verified the effectiveness of the measurement model and the reliability of the estimated iPRCs by demonstrating that LPEs with the estimated iPRCs could predict the stochastic behaviors of the same neurons, whose iPRCs had been measured, when they were perturbed by periodic stimulus currents. Our results suggest that the LPE is an effective model for real oscillating neurons and that many theoretical frameworks based on it may be applicable to real nerve systems.

  19. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons

    Science.gov (United States)

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-07-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks.

  20. Manipulating Thermal Conductivity by Interfacial Modification of Misfit-Layered Cobaltites Ca3Co4O9

    Science.gov (United States)

    Fujii, Susumu; Yoshiya, Masato

    2016-03-01

    The phonon thermal conductivities of misfit-layered Ca3Co4O9, Sr3Co4O9, and Ba3Co4O9 were calculated using the perturbed molecular dynamics method to clarify the impact of lattice misfit on the phonon thermal conduction in misfit-layered cobaltites. Substitution of Sr and Ba for Ca substantially modified the magnitude of the lattice misfit between the CoO2 and rock salt (RS) layers, because of the different ionic radii, increasing overall phonon thermal conductivity. Further analyses with intentionally changed atomic masses of Ca, Sr, or Ba revealed that smaller ionic radius at the Ca site in the RS layer, instead of heavier atomic mass, is a critical factor suppressing the overall thermal conductivity of Ca3Co4O9, since it determines not only the magnitude of lattice misfit but also the dynamic interference between the two layers, which governs the phonon thermal conduction in the CoO2 and RS layers. This concept was demonstrated for Sr-doped Ca3Co4O9 as an example of atomistic manipulation for better thermoelectric properties. Phonon thermal conductivities not only in the RS layer but also in the CoO2 layer were reduced by the substitution of Sr for Ca. These results provide another strategy to improve the thermal conductivity of this class of misfit cobaltites, that is, to control the thermal conductivity of the CoO2 layer responsible for electronic and thermal conductivity by atomistic manipulation in the RS layer adjacent to the CoO2 layer.

  1. Atomic-resolution study of charge transfer and structural disorder in thermoelectric Ca3Co4O9

    Science.gov (United States)

    Klie, Robert

    2010-03-01

    Thermoelectric oxides have attracted increasing attention due to their high thermal power and temperature stability. In particular, Ca3Co4O9, a misfit layered structure consisting of single layer hole-doped CoO2 sandwiched between insulating Ca2CoO3 rocksalt layers, exhibits figure of merit (ZT) of >1 at 1000 K.^1 It was suggested that the Seebeck-coefficient can be further increased by controlling the spin- and valence-state of the Co-ions in the CoO2 layers. This study combines aberration-corrected scanning transmission electron microscopy with electron energy loss spectroscopy (EELS) to examine the atomic and electronic structures of Ca3Co4O9. Using annular dark and bright field imaging, it will be demonstrated that the CoO2 layers are ordered, while the CoO columns in the Ca2CoO3 layer exhibit a modulation along (010). Atomic-column resolved EELS reveals that the Ca2CoO3 layers act as charge reservoirs providing mobile holes to the CoO2 layers; the structural disorder in Ca2CoO3 is responsible for the low in-plane thermal conductivity. The temperature dependence of the Co-ion spin-state as the origin for the unusually high Seebeck coefficient of Ca3O4O9 will be examined.^2 ^1 K. Fujita, et al., Jpn. J. Appl. Phys. 40 (2001), 4644--47^ ^2 Funded by: NSF CAREER Award DMR-0846748

  2. Superconducting properties of Cu1-xTlxBa2Ca3Cu4O12-y thin films

    International Nuclear Information System (INIS)

    Superconducting thin films with a predominant single phase of Cu1-xTlxBa2Ca3Cu4O12-y [Cu1-xTlx-1234] have been prepared for the first time by employing a two-step method. In this method the crystalline material was prepared from the sputtered amorphous phase by thallium treatment. This process was carried out at 900 deg. C for 1 h in an Au capsule. The amorphous phase was prepared by sputter deposition onto an SrTiO3 substrate from a stoichiometric target of composition CuBa2Ca3Cu4Ox. The films achieved after thallium treatment were aligned bi-axially along the a- and c-axes. XRD (x-ray diffraction) measurements showed a single-phase material with a c-axis lattice constant of 18.74 A. The c-axis lattice constant of Cu1-xTlx-1234 films is in between that of Cu-1234 (17.99 A) and Tl-1234 (19.11 A) superconductors. The pole figure measurements of 103 reflection of the films showed a-axis-oriented crystals with Δφ=0.8 deg. The composition of the films after EDX (energy dispersive x-ray spectroscopy) measurements was Cu0.3Tl0.7Ba2Ca3Cu4O12-y. From the resistivity measurements Tc was 110 K and Jc measurements showed a current density of 2.0x106 A cm-2 (77 K, 0 T). The preparation of Cu1-xTlx-1234 superconductor films by this method was highly reproducible. (author)

  3. Photoemission resonance study of sintered and single-crystal Bi4Ca3Sr3Cu4O16+x

    Science.gov (United States)

    Tang, Ming; Chang, Y.; Zanoni, R.; Onellion, M.; Joynt, Robert; Huber, D. L.; Margaritondo, G.; Morris, P. A.; Bonner, W. A.; Tarascon, J. M.; Stoffel, N. G.

    1989-02-01

    We present soft x-ray photoemission spectra that probe the valence and core electronic structure of the high-Tc superconductor Bi4Ca3Sr3Cu4O16+x. The identification of spectral features was helped by the observation of the resonant behavior of a Cu-related satellite feature. The resonance occurs at photon energies near the Cu3p optical absorption edge, and affects a peak 12.5 eV below the Fermi edge. We identified this feature as a correlation satellite characteristic of Cu in the 2+ valence state. Other features observed in the spectra more than 7 eV below the Fermi edge are due to several different core levels. In particular, we observed a strong Bi5d doublet. Other core level peaks are due to the Sr4p and Ca3p orbitals, and to Bi, Sr and Ca s-orbitals. Within 7 eV of the Fermi edge, the spectra are dominated by valence states. The most important feature is the Bi4Ca3Sr3Cu4O16+x Fermi edge itself, which we observed for the first time on this, and whose existence was subsequently confirmed by several other groups. On the contrary, no edge was observed in the photoemission spectra of materials in the YBa2Cu3O7-x family. The observation of the Fermi edge has important implications for the theoretical interpretation of high-Tc superconductivity. Furthermore, it enabled us to see near-edge changes associated with the superconducting transition.

  4. Differential long-term depression in CA3 but not in dentate gyrus following low-frequency stimulation of the medial perforant path.

    Science.gov (United States)

    Fung, Thomas K; Peloquin, Pascal; Wu, Kun; Leung, L Stan

    2011-07-01

    Synaptic plasticity may depend not only on the afferent fibers but also on the recipient structure. The medial perforant path (MPP) from the entorhinalcortex projects to both the dentate gyrus (DG) and CA3, resulting in excitatory postsynaptic potentials (EPSPs) in both areas. In this study, we showed that long-term depression (LTD) following low-frequency stimulation of MPP was found only in CA3a, a CA3 subfield, but not in DG. Field potentials were recorded and current source density (CSD) analyzed in CA3a and DG following stimulation of MPP in urethane-anesthetized rats. MPP evoked a short-latency population spike (PS) and EPSP in CA3a, phosphonovaleric acid or a nonselective group I/II metabotropic glutamate receptor (mGluR) antagonist (RS)-α-methyl-4-carboxyphenylglycine. We conclude that an NMDAR and mGluR sensitive LTD is induced in CA3 but not in the DG following low-frequency MPP stimulation in vivo, and the bi-directional synaptic plasticity in CA3 may be responsible for its behavioral functions. PMID:21190218

  5. Using Pyramids Effects as a method of nuclear and radiation protection

    International Nuclear Information System (INIS)

    Results most of experiments fixed that When radioactive waste is placed inside the pyramids, there is a decrease in their level of radioactivity Based on result of these experiments we suggest - Using Pyramids Effects as a method of nuclear and radiation protection. Explanation of this method based on 3 factors. (2 of them - internal factors, 1 of them - external factor) Factor I. Based o the Theory of the Pyramids Effects we know, that Pyramid construction separate the normal geomagnetic field of the Earth to 2 parts, which have difference vise verse physical characteristics. Cause of the energetic barrier of side of Pyramid, internal space of the Pyramid isolate from the influence of the external normal geomagnetic field of Earth. Therefore, internal space of the Pyramid is fulfilling only by the attractive power of the Earth (pic.1)

  6. Correlation of cognitive performance and morphological changes in neocortical pyramidal neurons in aging

    OpenAIRE

    Allard, Simon; Scardochio, Tina; Cuello, A. Claudio; Ribeiro-da-Silva, Alfredo

    2010-01-01

    It is well established that the cerebral cortex undergoes extensive remodeling in aging. In this study, we used behaviorally characterized rats to correlate age-related morphological changes with cognitive impairment. For this, young and aged animals were tested in the Morris water maze to evaluate their cognitive performance. Following behavioral characterization, the animals were perfused and a combination of intracellular labeling and immunohistochemistry was applied. Using this approach, ...

  7. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell

    OpenAIRE

    Tao Wei; Yun-Hui Huang; Rui Zeng; Li-Xia Yuan; Xian-Luo Hu; Wu-Xing Zhang; Long Jiang; Jun-You Yang; Zhao-Liang Zhang

    2013-01-01

    A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, ...

  8. Magnetic phase separation in double layer ruthenates Ca3(Ru1−x Ti x )2O7

    OpenAIRE

    Jin Peng; Liu, J. Y.; J. Hu; Mao, Z. Q.; F. M. Zhang; Wu, X S

    2016-01-01

    A phase transition from metallic AFM-b antiferromagnetic state to Mott insulating G-type antiferromagnetic (G-AFM) state was found in Ca3(Ru1−x Ti x )2O7 at about x = 0.03 in our previous work. In the present, we focused on the study of the magnetic transition near the critical composition through detailed magnetization measurements. There is no intermediate magnetic phases between the AFM-b and G-AFM states, which is in contrasted to manganites where a similar magnetic phase transition takes...

  9. Lanthanides in phosphates with structure of vitlokite mineral [analog of β-Ca3(PO4)2

    International Nuclear Information System (INIS)

    Data on phosphates with structure of biogenic mineral vitlokite (analog of low-temperature modification of calcium phosphate β-Ca3(PO4)2) are analyzed. Possibility of isomorphism of cations in phosphates of such structure and formation of solid solutions with lanthanides is shown. Sol-gel method is used for synthesis of phosphates of Ca, Mg and Sm, Eu, and Gd. Characteristics of their thermal, thermal-mechanical and hydrolytic stability are determined. Results of hydrothermal and thermal tests are compared with literature data on Ca phosphate and other potential matrix materials for radioactive waste immobilization

  10. Growth kinetics of Cu1-xTlxBa2Ca3Cu4O12-y thin films

    International Nuclear Information System (INIS)

    Cu1-xTlxBa2Ca3Cu4O12-y (Cu1-xTlx-1234) thin films have been found to be very attractive candidates in the cuprate family due to their low superconductor anisotropy, long coherence length and, consequently, high Jc. The method of preparation has been reported previously, however the kinetics of their formation has not yet been studied. In this paper, we report on the growth kinetics of superconducting Cu1-xTlxBa2Ca3Cu4O12-y thin films. In the preparation, we use the amorphous phase epitaxy method, which is a thallium treatment of the amorphous phase at elevated temperatures. The amorphous phase was deposited on a SrTiO3 substrate by rf-sputtering from a stoichiometric target with a composition of CuBa2Ca3Cu4Oy. The thallium treatment of the amorphous phase was carried out in a gold capsule for 45 min. The mechanism of the growth kinetics has shown that the formation of Cu1-xTlxBa2Ca3Cu4O12-y thin films was accomplished from Cu1-xTlxBa2Ca1Cu2O8-y (Cu1-xTlx-1212) and Cu1-xTlxBa2Ca2Cu3O10-y (Cu1-xTlx-1223) by the successive introduction of CuO2 planes in these phases. We also studied the effect of the time and temperature of the thallium treatment on the growth of Cu1-xTlx-1234 films. The best synthesis temperature for Cu1-xTlx-1234 films was found to be 910 deg. C, but this phase could also be isolated as a single phase at lower temperatures (∼890 deg. C). However, the low-temperature synthesis results in a higher thallium content in the final compound. From the x-ray diffraction measurements the c-axis length was found to increase with the increase of the thallium content. The pole figure measurements of the (103) reflection of the films have shown a-axis oriented crystals with Δ φ = 0.8 deg. The observed critical temperature (Tc) for Cu1-xTlx-1212, Cu1-xTlx-1223 and Cu1-xTlx-1234 are 78 K, 103 K and 110 K respectively. Current density measurements have shown a maximum Jc∼2x106 A cm-2. (author)

  11. Distributed GIS oriented generalized image pyramid and its practice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gaussian pyramid framework (GPF) and Laplacian pyramid framework (LPF) are the two main frameworks used for transmission and structure of spatial image and geometric data.LPF is the main approach for progressive transmission of spatial image data.This paper discusses the issues in structure,transmission and storage efficiency of spatial data in the current spatially distributed visualization system.Later in the paper a novel approach is introduced to structure and store spatial data based on the LPF.This new approach builds (spatial) index for transformed frequency data within different ranges based on splitting high-frequency and low-frequency data by biorthogonal transformation.This approach decreases the storage consumption and network data traffic for transmission while enables the progressive transmission of spatial image.

  12. Effects of chronic prenatal ethanol exposure on locomotor activity, and hippocampal weight, neurons, and nitric oxide synthase activity of the young postnatal guinea pig.

    Science.gov (United States)

    Gibson, M A; Butters, N S; Reynolds, J N; Brien, J F

    2000-01-01

    Decreased nitric oxide synthase (NOS)-catalyzed formation of NO from L-arginine may be involved in ethanol teratogenesis involving the hippocampus. This hypothesis was tested by determining the effects of chronic prenatal ethanol exposure on locomotor activity and on hippocampal weight, number of CA1 and CA3 pyramidal cells and dentate gyrus granule cells, and NOS activity of the postnatal guinea pig. Timed, pregnant guinea pigs received one of the following chronic oral regimens throughout gestation: 4 g ethanol/kg maternal body weight/day, isocaloric-sucrose/pair-feeding, or water. At postnatal day (PD) 10, spontaneous locomotor activity was measured. At PD 12, histological analysis was performed on the hippocampal formation, in which hippocampal CA1 and CA3 pyramidal cells and dentate gyrus granule cells were counted; body, brain, and hippocampal weights were measured; and hippocampal NOS enzymatic activity was determined using a radiometric assay. Chronic prenatal ethanol exposure produced hyperactivity, decreased the brain and hippocampal weights with no change in body weight, decreased the number of hippocampal CA1 pyramidal cells by 25-30%, and had no effect on hippocampal NOS activity compared with the two control groups. These data, together with our previous findings in the fetal guinea pig, demonstrate that chronic prenatal ethanol exposure decreases hippocampal NOS activity in near-term fetal life that temporally precedes the selective loss of hippocampal CA1 pyramidal cells in postnatal life. PMID:10758347

  13. Discovery of a New Garnet Mineral, Ca_3Ti_2(SiAl_2)O_(12): An Alteration Phase in Allende

    OpenAIRE

    Ma, Chi; Krot, Alexander N.

    2013-01-01

    During a nanomineralogy investigation of the Allende CV3 carbonaceous chondrite, a new Ti-rich silicate, Ca_3Ti_2(SiAl_2)O_(12) with the Ia-3d garnet structure, was identified in the Type B1 Ca,Al-rich inclusion (CAI) Egg-3. Field-emission SEM with EDS and electron back-scatter diffraction and electron microprobe were used to characterize the composition and structure. Synthetic Ca_3Ti_2(SiAl_2)O_(12) is not reported. We present here the natural occurrence of Ca_3Ti_2(SiA...

  14. New considerations on construction methods of the Ancient Egyptian pyramids

    OpenAIRE

    Müller-Römer, Frank

    2011-01-01

    Many authors have attempted to account for the construction methods of the Old Kingdom pyramids, offering a broad scope of hypotheses concerning construction processes, building phases, mechanical devices, and workforce. Still, none of these suggestions have proved quite conclusive. All previous explanations involving ramps start from the assumption that building blocks were conveyed upwards on sledges pulled by bulls or workmen. However, in this case, sufficiently long ramps with a lesser sl...

  15. A Deep Pyramid Deformable Part Model for Face Detection

    OpenAIRE

    Ranjan, Rajeev; Patel, Vishal M.; Chellappa, Rama

    2015-01-01

    We present a face detection algorithm based on Deformable Part Models and deep pyramidal features. The proposed method called DP2MFD is able to detect faces of various sizes and poses in unconstrained conditions. It reduces the gap in training and testing of DPM on deep features by adding a normalization layer to the deep convolutional neural network (CNN). Extensive experiments on four publicly available unconstrained face detection datasets show that our method is able to capture the meanin...

  16. A novel optical multilayer hydrophone with a triangular pyramid substrate

    Institute of Scientific and Technical Information of China (English)

    Suyong Wu; Xingwu Long; Kaiyong Yang; Yun Huang

    2011-01-01

    @@ A novel concept for an optical multilayer ultrasonic hydrophone with the sensing film deposited on a triangular pyramid glass substrate is proposed. Using the calculation model for the spectral coefficients' derivatives of a dielectric multilayer optical coating, the acousto-optic sensitivity characteristic of the hydrophone is analyzed with different measurement laser polarizations and incident angles. We present a reasonable method and adjusting strategy for the optimum working point selection of the ultrasound measurement. Analytic results show that the novel hydrophone possesses all the other merits of a plate glass substrate optical multilayer hydrophone but with improved detection sensitivity. A longer measurement time without distortion decreases the difficulty of high frequency signal circuits. Spatial split of the ultrasound signal caused by the substrate's triangular pyramid roof simplifies the spatial spot area correction,which contributes to the accurate calibration of the hydrophone's wideband frequency response.%A novel concept for an optical multilayer ultrasonic hydrophone with the sensing film deposited on a triangular pyramid glass substrate is proposed. Using the calculation model for the spectral coefficients'derivatives of a dielectric multilayer optical coating, the acousto-optic sensitivity characteristic of the hydrophone is analyzed with different measurement laser polarizations and incident angles. We present a reasonable method and adjusting strategy for the optimum working point selection of the ultrasound measurement. Analytic results show that the novel hydrophone possesses all the other merits of a plate glass substrate optical multilayer hydrophone but with improved detection sensitivity. A longer measurement time without distortion decreases the difficulty of high frequency signal circuits. Spatial split of the ultrasound signal caused by the substrate's triangular pyramid roof simplifies the spatial spot area correction

  17. Induced Retirement, Social Security, and the Pyramid Mirage

    OpenAIRE

    Casey B. Mulligan

    2000-01-01

    Does Social Security redistribute across cohorts? Or is it a program for purchasing the jobs' of the elderly? I formalize both models, showing how they have some predictions in common the most important of which is that generational accounts have the appearance of a pyramid scheme.' I also derive important differences between the two interpretations, and compare those differences with data on the design and incidence of Social Security programs around the world. Since implicit and explicit ta...

  18. Genetic Stereo Matching Using Complex Conjugate Wavelet Pyramids

    OpenAIRE

    L. Luo; Clewer, DR; Canagarajah, CN; Bull, DR

    2001-01-01

    A new genetic algorithm-based optimisation technique for stereo matching using complex conjugate wavelet pyramids is proposed. Reliable disparity fields are estimated in the wavelet domain with low computational cost. The new cost function is composed of the differences in wavelet coefficient values, plus vertical discontinuity and ordering constraints. Within homogenous regions, smoothness constraints on the disparity field are also employed. A genetic algorithm is used, where previously est...

  19. Geometry and perspective in the landscape of the Saqqara pyramids

    OpenAIRE

    Magli, Giulio

    2009-01-01

    A series of peculiar, visual alignments between the pyramids of the pharaohs of the 4, 5 and 6 Egyptian dynasties exists. These alignments governed from the very beginning the planning of the funerary monuments of successive kings and, in some cases, led to establish building sites in quite inconvenient locations from the technical viewpoint. Explaining the topography of these monuments means therefore also investigating on their symbolic motivations: religion, power, dynastic lineage and soc...

  20. Invariant representative cocycles of cohomology generators using irregular graph pyramids

    OpenAIRE

    González Díaz, Rocío; Ion, Adrián; Iglesias Ham, Mabel; Kropatsch, Walter G.

    2011-01-01

    Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns `quantities' to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple level...

  1. Combinatorial pyramids and discrete geometry for energy-minimizing segmentation

    OpenAIRE

    Braure De Calignon, Martin; Brun, Luc; Lachaud, Jacques-Olivier

    2009-01-01

    This paper defines the basis of a new hierarchical framework for segmentation algorithms based on energy minimization schemes. This new framework is based on two formal tools. First, a combinatorial pyramid encode efficiently a hierarchy of partitions. Secondly, discrete geometric estimators measure precisely some important geometric parameters of the regions. These measures combined with photometrical and topological features of the partition allows to design energy terms based on discrete m...

  2. Image content authentication technique based on Laplacian Pyramid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper proposes a technique of image content authentication based on the Laplacian Pyramid to verify the authenticity of image content.First,the image is decomposed into Laplacian Pyramid before the transformation.Next,the smooth and detail properties of the original image are analyzed according to the Laplacian Pyramid,and the properties are classified and encoded to get the corresponding characteristic values.Then,the signature derived from the encrypted characteristic values is embedded in the original image as a watermark.After the reception,the characteristic values of the received image are compared with the watermark drawn out from the image.The algorithm automatically identifies whether the content is tampered by means of morphologic filtration.The information of tampered location is Presented at the same time.Experimental results show that the pro posed authentication algorithm can effectively detect the event and location when the original image content is tampered.Moreover,it can tolerate some distortions produced by compression,filtration and noise degradation.

  3. Amending Miller's Pyramid to Include Professional Identity Formation.

    Science.gov (United States)

    Cruess, Richard L; Cruess, Sylvia R; Steinert, Yvonne

    2016-02-01

    In 1990, George Miller published an article entitled "The Assessment of Clinical Skills/Competence/Performance" that had an immediate and lasting impact on medical education. In his classic article, he stated that no single method of assessment could encompass the intricacies and complexities of medical practice. To provide a structured approach to the assessment of medical competence, he proposed a pyramidal structure with four levels, each of which required specific methods of assessment. As is well known, the layers are "Knows," "Knows How," "Shows How," and "Does." Miller's pyramid has guided assessment since its introduction; it has also been used to assist in the assessment of professionalism.The recent emphasis on professional identity formation has raised questions about the appropriateness of "Does" as the highest level of aspiration. It is believed that a more reliable indicator of professional behavior is the incorporation of the values and attitudes of the professional into the identity of the aspiring physician. It is therefore proposed that a fifth level be added at the apex of the pyramid. This level, reflecting the presence of a professional identity, should be "Is," and methods of assessing progress toward a professional identity and the nature of the identity in formation should be guided by currently available methods. PMID:26332429

  4. The pyramid wavefront sensor for the high order testbench (HOT)

    Science.gov (United States)

    Pinna, E.; Puglisi, A. T.; Quiros-Pacheco, F.; Busoni, L.; Tozzi, A.; Esposito, S.; Aller-Carpentier, E.; Kasper, M.

    2008-07-01

    The High Order Testbench (HOT) is a joint experiment of ESO, Durham University and Arcetri Observatory to built and test in laboratory the performance of Shack-Hartmann and pyramid sensor in a high-order correction loop using a 32x32 actuators MEMS DM. This paper will describe the pyramid wavefront sensor unit developed in Arcetri and now installed in the HOT bench at ESO premises. In the first part of this paper we will describe the pyramid wavefront sensor opto-mechanics and its real-time computer realized with a commercial Linux-PC. In the second part we will show the sensor integration and alignment in the HOT bench and the experimental results obtained at ESO labs. Particular attention will be paid to the implementation of the modal control strategy, like modal basis definition, orthogonalization on the real pupil, and control of edge actuators. A stable closed loop controlling up to 667 modes has been achieved obtaining a Strehl ratio of 90 -- 93% in H band.

  5. Pulse sound generation, anterior swim bladder buckling and associated muscle activity in the pyramid butterflyfish, Hemitaurichthys polylepis.

    Science.gov (United States)

    Boyle, Kelly S; Tricas, Timothy C

    2010-11-15

    Acoustic behaviors are widespread among diverse fish taxa but mechanisms of sound production are known from relatively few species, vary widely and convergent mechanisms are poorly known. We examined the sound production mechanism in the pyramid butterflyfish, Hemitaurichthys polylepis, a member of the socially and ecologically diverse reef fish family Chaetodontidae. In the field, fish produce pulse trains at dusk during social interactions that are probably related to mate attraction and courtship. In laboratory experiments, sound production was synchronized to high-speed video to determine body movement associated with sound generation. In addition, electromyography (EMG) recordings tested the activity of six candidate muscles. Fish produced individual pulses with a mean peak frequency of 97 Hz in rapid succession. EMG experiments show that anterior hypaxial muscles contract at high bilaterally synchronous rates (up to 120 Hz) in near perfect association with rapid inward buckling visible outside the body over the anterior swim bladder. Muscle activity often showed EMG doublets that occurred within the time of a single sound pulse but was not sustained. Buckling and sound pulse rates correlated strongly (R(2)≈1.00) and sound pulse rate measured over two successive pulses (maximum of 38 pulses s(-1)) was lower than muscle firing rate. These results show that the extrinsic swim bladder muscles of pyramid butterflyfish involve single contractions that produce pulses in a manner similar to distantly related teleosts, but involve a novel doublet motor-neuron firing pattern. Thus, the sound production mechanism in pyramid butterflyfish is likely convergent with several percomorph taxa and divergent from the related chaetodontid genus Forcipiger. PMID:21037068

  6. Critical points in the Bragg glass phase of a weakly pinned crystal of Ca3Rh4Sn13

    Indian Academy of Sciences (India)

    S Sarkar; A D Thakur; C V Tomy; G Balakrishnan; D McK Paul; S Ramakrishnan; A K Grover

    2006-01-01

    New experimental data are presented on the scan rate dependence of the magnetization hysteresis width () (∝ critical current density c()) in isothermal - scans in a weakly pinned single crystal of Ca3Rh4Sn13, which displays second magnetization peak (SMP) anomaly as distinct from the peak effect (PE). We observe an interesting modulation in the field dependence of a parameter which purports to measure the dynamical annealing of the disordered bundles of vortices injected through the sample edges towards the destined equilibrium vortex state at a given . These data, in conjunction with the earlier observations made while studying the thermomagnetic history dependence in c() in the tracing of the minor hysteresis loops, imply that the partially disordered state heals towards the more ordered state between the peak field of the SMP anomaly and the onset field of the PE. The vortex phase diagram in the given crystal of Ca3Rh4Sn13 has been updated in the context of the notion of the phase coexistence of the ordered and disordered regions between the onset field of the SMP anomaly and the spinodal line located just prior to the irreversibility line. A multi-critical point and a critical point in the (, ) region of the Bragg glass phase have been marked in this phase diagram and the observed behavior is discussed in the light of recent data on multi-critical point in the vortex phase diagram in a single crystal of Nb.

  7. Effect of the nanometric scale thickness on the magnetization steps in Ca3Co2O6 thin films

    Science.gov (United States)

    Moubah, Reda; Colis, Silviu; Ulhaq-Bouillet, Corinne; Drillon, Marc; Dinia, Aziz

    2011-07-01

    We report on the effect of the film thickness on the magnetic properties of Ca3Co2O6 films with an emphasis on the magnetization steps usually observed in the M-H curves below 10 K. Films with thicknesses between 35 and 200 nm all present two magnetic transitions at about TC1 = 22 K and TC2 = 10 K, corresponding to a 3D long range ferrimagnetic order and the transition to the formation of a frozen spin state, respectively. The magnetization curves at 10 K exhibit the expected stepped variation. However, by decreasing the thickness below a critical value of about 60 nm, no magnetization plateau is observed when the M-H curve is recorded at 2 K. Moreover, an additional transition in the susceptibility curve is observed at 45 K. These changes can be attributed to the reduced coherence length of the propagation vector along and perpendicular to the chains, and are supported by the magnetization relaxation measurements which indicate a reduction of the relaxation time. These results are helpful for understanding the origin of the magnetization steps in the one-dimensional Ca3Co2O6 cobaltite and confront the theoretical models aimed at explaining the magnetic properties in this system.

  8. Luminescence and energy transfer in Ca3Sc2Si3O12:Ce3+,Mn2+ white LED phosphors

    International Nuclear Information System (INIS)

    Expanded emission spectra ranging from green to red are reported in Ca3Sc2Si3O12 (CSS):Ce3+,Mn2+ silicate garnets. Mn2+ may occupy Ca2+ site (Mn2+(I)) to generate a yellow emission band at 574 nm or Sc3+ site (Mn2+(II)) with red emission band at 680 nm. Efficient energy transfers from the green emitting Ce3+ to both Mn2+(I) and Mn2+(II) occur upon blue excitation into Ce3+. Concentration dependence of Mn2+ emission is analyzed based on Ce3+–Mn2+ energy transfer, steady state rate equations, and fluorescence lifetimes. Energy transfer efficiency (ηT) and rate (W) are calculated with values as high as 45% and 14.01×106 s−1, respectively. - Highlights: ► Mn2+ can occupy Ca2+ site to generate a yellow emission band at 574 nm in Ca3Sc2Si3O12 (CSS). ► Mn2+ can also occupy Sc3+ site to generate a red emission band at 680 nm in CSS. ► Remarkable energy transfers (ETs) from Ce3+ to Mn2+ occur upon blue excitation into Ce3+ in CSS. ► Full color emissions are obtained based on Ce3+–Mn2+ ETs in CSS:Ce3+,Mn2+.

  9. Microstructure and Thermoelectric Properties of Bi- and Cu-Substituted Ca3Co4O9 Oxides

    Institute of Scientific and Technical Information of China (English)

    Haoshan Hao; Limin Zhao; Xing Hu

    2009-01-01

    Bi- and Cu-substituted Ca3Co4O9 samples were prepared by conventional solid-state reaction method and the effect of element substitution on the microstructures and thermoelectric properties was investigated. Partial substitution of Cu for Co leads to an increase in electrical conductivity and a decrease in Seebeck coefficient due to the rise of hole concentration. The microstructure of Cu-substituted sample is almost unchanged compared with undoped Ca3Co4O9. On the other hand, partial substitution of Bi for Ca gives rise to a significant increase in the grain size, and c-axis-oriented structure can be formed in Ca2.7Bi0.3Co4O9, resulting in an obvious increase in electrical conductivity. Cu and Bi co-substitution further increases the grain growth and the electrical conductivity of Ca2.7Bi0.3Co3.7Cu0.3O9. Thus, Cu and Bi co-substitution samples possess the optimal thermoelectric performance at high temperature and the highest value of power factor can reach 3.1×10-4 Wm-1·K-2 at 1000 K.

  10. Spectral variations of Ca3Sc2Si3O12:Ce phosphors via substitution and energy transfer

    Institute of Scientific and Technical Information of China (English)

    LIU Yuanhong; ZHUANG Weidong; LIU Ronghui; HU Yunsheng; HE Huaqiang; ZHANG Shusheng; GAO Wei

    2012-01-01

    The luminescence intensity of emission peak at around 525 nm decreased in the Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphors.Mg2+ ion,which was likely incorporated into the Sc3+ position of the host crystal,was co-doped to adjust the crystal field and compensate for the excess positive charge due to the doping of Ce3+.The green emission belonged to the 5d→4f transition of Ce3+ moved toward longer wavelength by addition of Mg2+ in Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphor,which could increase the brightness of the phosphor.However,the position of weakening of luminescence intensity at around 525 nm remained basically unchanged by increasing the amount of Mg2+.The results showed that the weakening of luminescence intensity at around 525 nm caused by the absorption of Er3+,which had littleinfluence on the environment of the crystal field.

  11. Overproduction of Upper-Layer Neurons in the Neocortex Leads to Autism-like Features in Mice

    Directory of Open Access Journals (Sweden)

    Wei-Qun Fang

    2014-12-01

    Full Text Available The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocortical layers by using the small molecule XAV939 to expand the intermediate progenitor population. The resultant overpopulation of neurons perturbs development of dendrites and spines of excitatory neurons and alters the laminar distribution of interneurons. Furthermore, these phenotypic changes are accompanied by dysregulated excitatory and inhibitory synaptic connection and balance. Importantly, these mice exhibit behavioral abnormalities resembling those of human autism. Thus, our findings collectively suggest a causal relationship between neuronal overproduction and autism-like features, providing developmental insights into the etiology of autism.

  12. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  13. PARP1 activation/expression modulates regional-specific neuronal and glial responses to seizure in a hemodynamic-independent manner

    OpenAIRE

    Kim, J-E; Kim, Y-J; Kim, J.Y.; Kang, T-C

    2014-01-01

    Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis and other cellular processes after injury. Status epilepticus (SE) induces neuronal and astroglial death that show regional-specific patterns in the rat hippocampus and piriform cortex (PC). Thus, we investigated whether PARP1 regulates the differential neuronal/glial responses to pilocarpine (PILO)-induced SE in the distinct brain regions. In the present study, both CA1 and CA3 neurons showed PARP1 hyperacti...

  14. Enrichment of GABARAP relative to LC3 in the axonal initial segments of neurons.

    Directory of Open Access Journals (Sweden)

    Masato Koike

    Full Text Available GABAA receptor-associated protein (GABARAP was initially identified as a protein that interacts with GABAA receptor. Although LC3 (microtubule-associated protein 1 light chain 3, a GABARAP homolog, has been localized in the dendrites and cell bodies of neurons under normal conditions, the subcellular distribution of GABARAP in neurons remains unclear. Subcellular fractionation indicated that endogenous GABARAP was localized to the microsome-enriched and synaptic vesicle-enriched fractions of mouse brain as GABARAP-I, an unlipidated form. To investigate the distribution of GABARAP in neurons, we generated GFP-GABARAP transgenic mice. Immunohistochemistry in these transgenic mice showed that positive signals for GFP-GABARAP were widely distributed in neurons in various brain regions, including the hippocampus and cerebellum. Interestingly, intense diffuse and/or fibrillary expression of GFP-GABARAP was detected along the axonal initial segments (AIS of hippocampal pyramidal neurons and cerebellar Purkinje cells, in addition to the cell bodies and dendrites of these neurons. In contrast, only slight amounts of LC3 were detected along the AIS of these neurons, while diffuse and/or fibrillary staining for LC3 was mainly detected in their cell bodies and dendrites. These results indicated that, compared with LC3, GABARAP is enriched in the AIS, in addition to the cell bodies and dendrites, of these hippocampal pyramidal neurons and cerebellar Purkinje cells.

  15. Neocortical neuronal morphology in the newborn giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana).

    Science.gov (United States)

    Jacobs, Bob; Lee, Laura; Schall, Matthew; Raghanti, Mary Ann; Lewandowski, Albert H; Kottwitz, Jack J; Roberts, John F; Hof, Patrick R; Sherwood, Chet C

    2016-02-01

    Although neocortical neuronal morphology has been documented in the adult giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana), no research has explored the cortical architecture in newborns of these species. To this end, the current study examined the morphology of neurons from several cortical areas in the newborn giraffe and elephant. After cortical neurons were stained with a modified Golgi technique (N = 153), dendritic branching and spine distributions were analyzed by using computer-assisted morphometry. The results showed that newborn elephant neurons were considerably larger in terms of all dendritic and spine measures than newborn giraffe neurons. Qualitatively, neurons in the newborns appeared morphologically comparable to those in their adult counterparts. Neurons in the newborn elephant differed considerably from those observed in other placental mammals, including the giraffe, particularly with regard to the morphology of spiny projection neurons. Projection neurons were observed in both species, with a much larger variety in the elephant (e.g., flattened pyramidal, nonpyramidal multipolar, and inverted pyramidal neurons). Although local circuit neurons (i.e., interneurons, neurogliaform, Cajal-Retzius neurons) resembled those observed in other eutherian mammals, these were usually spiny, which contrasts with their adult, aspiny equivalents. Newborn projection neurons were smaller than the adult equivalents in both species, but newborn interneurons were approximately the same size as their adult counterparts. Cortical neuromorphology in the newborn giraffe is thus generally consistent with what has been observed in other cetartiodactyls, whereas newborn and adult elephant morphology appears to deviate substantially from what is commonly observed in other placental mammals. PMID:26104263

  16. NMDA spike/plateau potentials in dendrites of thalamocortical neurons.

    Science.gov (United States)

    Augustinaite, Sigita; Kuhn, Bernd; Helm, Paul Johannes; Heggelund, Paul

    2014-08-13

    Dendritic NMDA spike/plateau potentials, first discovered in cortical pyramidal neurons, provide supralinear integration of synaptic inputs on thin and distal dendrites, thereby increasing the impact of these inputs on the soma. The more specific functional role of these potentials has been difficult to clarify, partly due to the complex circuitry of cortical neurons. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus participate in simpler circuits. They receive their primary afferent input from retina and send their output to visual cortex. Cortex, in turn, regulates this output through massive feedback to distal dendrites of the TC neurons. The TC neurons can operate in two modes related to behavioral states: burst mode prevailing during sleep, when T-type calcium bursts largely disrupt the transfer of signals from retina to cortex, and tonic mode, which provides reliable transfer of retinal signals to cortex during wakefulness. We studied dendritic potentials in TC neurons with combined two-photon calcium imaging and whole-cell recording of responses to local dendritic glutamate iontophoresis in acute brain slices from mice. We found that NMDA spike/plateaus can be elicited locally at distal dendrites of TC neurons. We suggest that these dendritic potentials have important functions in the cortical regulation of thalamocortical transmission. NMDA spike/plateaus can induce shifts in the functional mode from burst to tonic by blockade of T-type calcium conductances. Moreover, in tonic mode, they can facilitate the transfer of retinal signals to cortex by depolarization of TC neurons. PMID:25122891

  17. Ischemia leads to apoptosis--and necrosis-like neuron death in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Stadelmann, Christine; Bastholm, Lone; Elling, Folmer; Lassmann, Hans; Johansen, Flemming Fryd

    2004-01-01

    Morphological evidence of apoptosis in transient forebrain ischemia is controversial. We therefore investigated the time sequence of apoptosis-related antigens by immunohistochemistry and correlated it with emerging nuclear patterns of cell death in a model of transient forebrain ischemia in CA1...... pyramidal cells of the rat hippocampus. The earliest ischemic changes were found on day 2 and 3, reflected by an upregulation of phospho-c-Jun in a proportion of morphologically intact CA1 neurons, which matched the number of neurons that succumbed to ischemia at later time points. At day 3 and later 3...... and/or caspase-3 expression represented a minor fraction (<10%) of ischemic neurons, while the vast majority followed a necrosis-like pathway. Our studies suggest that CA1 pyramidal cell death following transient forebrain ischemia may be initiated through c-Jun N-terminal kinase (JNK) pathway...

  18. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  19. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal.

    Science.gov (United States)

    Singh, Ram Kishore; Awasthi, Sharad; Dhayalan, Arunkumar; Ferreira, J M F; Kannan, S

    2016-05-01

    Pure and five silver-doped (0-5Ag) β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2]/chitosan composite coatings were deposited on Titanium (Ti) substrates and their properties that are relevant for applications in hard tissue replacements were assessed. Silver, β-TCP and chitosan were combined to profit from their salient and complementary antibacterial and biocompatible features.The β-Ca3(PO4)2 powders were synthesized by co-precipitation. The characterization results confirmed the Ag(+) occupancy at the crystal lattice of β-Ca3(PO4)2. The Ag-dopedβ-Ca3(PO4)2/chitosan composite coatings deposited by electrophoresis showed good antibacterial activity and exhibited negative cytotoxic effects towards the human osteosarcoma cell line MG-63. The morphology of the coatings was observed by SEM and their efficiency against corrosion of metallic substrates was determined through potentiodynamic polarization tests. PMID:26952474

  20. Location of cat brain stem neurons that drive sweating.

    Science.gov (United States)

    Shafton, Anthony D; McAllen, Robin M

    2013-05-15

    The brain stem premotor pathways controlling most noncardiovascular sympathetic outflows are unknown. Here, we mapped the brain stem neurons that drive sweating, by microinjecting excitant amino acid (L-glutamate or D,L-homocysteate: 0.4-3 nmol) into 420 sites over the pons and medulla of eight chloralose-anesthetized cats (70 mg/kg iv). Sweating was recorded by the electrodermal potential at the ipsilateral forepaw pad. Responses were classified as immediate (10 s latency). Immediate responses were obtained from 16 sites (1-3 per animal) and were accompanied by no change in blood pressure. Those sites were clustered between the facial nucleus and the pyramidal tract in the rostral ventromedial medulla (RVMM). Microinjections into 33 surrounding sites caused delayed electrodermal responses of lesser amplitude, while the remaining 371 sites evoked none. To retrogradely label bulbospinal neurons that may mediate electrodermal responses, fluorescent latex microspheres were injected into the region of the intermediolateral cell column in the fourth thoracic segment in an earlier preparatory procedure on six of the animals. A cluster of retrogradely labeled neurons was identified between the facial nucleus and the pyramidal tract. Neurons in this discrete region of the RVMM, thus, drive sweating in the cat's paw and may do so via direct spinal projections. PMID:23467325

  1. Preliminary X-ray crystallographic analysis of β-carbonic anhydrase psCA3 from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Two crystal forms of β-carbonic anhydrase psCA3 from P. aeruginosa were grown. Crystal form A belonged to space group P212121, with unit-cell parameters a = 81.9, b = 84.9, c = 124.2 Å, and diffracted X-rays to 2.9 Å resolution; crystal form B belonged to space group P21212, with unit-cell parameters a = 69.9, b = 77.7, c = 88.5 Å, and diffracted X-rays to 3.0 Å resolution. Pseudomonas aeruginosa is a Gram-negative bacterium that causes life-threatening infections in susceptible individuals and is resistant to most clinically available antimicrobials. Genomic and proteomic studies have identified three genes, pa0102, pa2053 and pa4676, in P. aeruginosa PAO1 encoding three functional β-carbonic anhydrases (β-CAs): psCA1, psCA2 and psCA3, respectively. These β-CAs could serve as novel antimicrobial drug targets for this pathogen. X-ray crystallographic structural studies have been initiated to characterize the structure and function of these proteins. This communication describes the production of two crystal forms (A and B) of β-CA psCA3. Form A diffracted to a resolution of 2.9 Å; it belonged to space group P212121, with unit-cell parameters a = 81.9, b = 84.9, c = 124.2 Å, and had a calculated Matthews coefficient of 2.23 Å3 Da−1 assuming four molecules in the crystallographic asymmetric unit. Form B diffracted to a resolution of 3.0 Å; it belonged to space group P21212, with unit-cell parameters a = 69.9, b = 77.7, c = 88.5 Å, and had a calculated Matthews coefficient of 2.48 Å3 Da−1 assuming two molecules in the crystallographic asymmetric unit. Preliminary molecular-replacement solutions have been determined with the PHENIX AutoMR wizard and refinement of both crystal forms is currently in progress

  2. Electrophysiological Profiles of Induced Neurons Converted Directly from Adult Human Fibroblasts Indicate Incomplete Neuronal Conversion

    Science.gov (United States)

    Koppensteiner, Peter; Boehm, Stefan

    2014-01-01

    Abstract The direct conversion of human fibroblasts to neuronal cells, termed human induced neuronal (hiN) cells, has great potential for future clinical advances. However, previous studies have not provided an in-depth analysis of electrophysiological properties of adult fibroblast-derived hiN cultures. We have examined the electrophysiological profile of hiN cells by measuring passive and active membrane properties, as well as spontaneous and evoked neurotransmission. We found that hiN cells exhibited passive membrane properties equivalent to perinatal rodent neurons. In addition, 30% of hiN cells were incapable of action potential (AP) generation and did not exhibit rectifying membrane currents, and none of the cells displayed firing patterns of typical glutamatergic pyramidal neurons. Finally, hiN cells exhibited neither spontaneous nor evoked neurotransmission. Our results suggest that current methods used to produce hiN cells provide preparations in which cells do not achieve the cellular properties of fully mature neurons, rendering these cells inadequate to investigate pathophysiological mechanisms. PMID:25437871

  3. M-Type Potassium Channels Modulate the Intrinsic Excitability of Infralimbic Neurons and Regulate Fear Expression and Extinction

    OpenAIRE

    Santini, Edwin; James T. Porter

    2010-01-01

    Growing evidence indicates that the activity of infralimbic prefrontal cortex (IL) is critical for inhibiting inappropriate fear responses following extinction learning. Recently, we showed that fear conditioning and extinction alter the intrinsic excitability and bursting of IL pyramidal neurons in brain slices. IL neurons from Sprague Dawley rats expressing high fear had lower intrinsic excitability and bursting than those from rats expressing low fear, suggesting that regulating the intrin...

  4. The CB1 cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis

    OpenAIRE

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, Francois; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-01-01

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB1 cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are...

  5. Parametric Anatomical Modeling: A method for modeling the anatomical layout of neurons and their projections

    Directory of Open Access Journals (Sweden)

    Martin ePyka

    2014-09-01

    Full Text Available Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM, to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: i the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, ii the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort.

  6. Technique Based on Image Pyramid and Bayes Rule for Noise Reduction in Unsupervised Change Detection

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-qiang; HUO hong; FANG Tao; ZHU Ju-lian; GE Wei-li

    2009-01-01

    In this paper, a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed. By using Gaussian pyramid to process two multitemporal images respectively, two image pyramids are constructed. The difference pyramid images are obtained by point-by-point subtraction between the same level images of the two image pyramids. By resizing all difference pyramid images to the size of the original multitemporal image and then making product operator among them, a map being similar to the difference image is obtained. The difference image is generated by point-by-point subtraction between the two multitemporal images directly. At last, the Bayes rule is used to distinguish the changed pixels. Both synthetic and real data sets are used to evaluate the performance of the proposed technique. Experimental results show that the map from the proposed technique is more robust to noise than the difference image.

  7. Piezoelectric Ca3NbGa3Si2O14 crystal: crystal growth, piezoelectric and acoustic properties

    Science.gov (United States)

    Roshchupkin, Dmitry; Ortega, Luc; Plotitcyna, Olga; Erko, Alexei; Zizak, Ivo; Vadilonga, Simone; Irzhak, Dmitry; Emelin, Evgenii; Buzanov, Oleg; Leitenberger, Wolfram

    2016-08-01

    Ca3NbGa3Si2O14 (CNGS), a five-component crystal of lanthanum-gallium silicate group, was grown by the Czochralski method. The parameters of the elementary unit cell of the crystal were measured by powder diffraction. The independent piezoelectric strain coefficients d{}_{11} and d_{14} were determined by the triple-axis X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves (SAW) were studied by high-resolution X-ray diffraction at BESSY II synchrotron radiation source. The velocity of SAW propagation and power flow angles in the Y-, X- and yxl/{+}36°-cuts of the CNGS crystal were determined from the analysis of the diffraction spectra. The CNGS crystal was found practically isotropic by its acoustic properties.

  8. Neural stem cell activation and glial proliferation in the hippocampal CA3 region of posttraumatic epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Yuanxiang Lin; Kun Lin; Dezhi Kang; Feng Wang

    2011-01-01

    The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrillary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-immunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-κB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.

  9. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell.

    Science.gov (United States)

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca(3)Co(2)O(6) (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm(-2) is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  10. Structural and magnetic anomalies among the spin-chain compounds, Ca3Co1+Ir1-O6

    Indian Academy of Sciences (India)

    S Rayaprol; Kausik Sengupta; E V Sampathkumaran

    2003-10-01

    The results of X-ray diffraction, and ac and dc magnetisation as a function of temperature are reported for a new class of spin-chain oxides, Ca3Co1+Ir1-O6. While the = 0.0, 0.3, 0.5 and 1.0 are found to form in the K4CdCl6-derived rhombhohedral (space group $\\bar{3}$) structure, the = 0.7 composition is found to undergo a monoclinic distortion in contrast to a literature report. Apparently, the change in the crystal symmetry with x manifests itself as a change in the sign of paramagnetic Curie temperature for this composition as though magnetic coupling sensitively depends on such crystallographic distortions. All the compositions exhibit spin-glass anomalies with an unusually large frequency dependence of the peak temperature in susceptibility in a temperature range below 50 K, interestingly obeying Vogel-Fulcher relationship even for the stoichiometric compounds.

  11. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  12. Effect of linearly polarized light on metamagnetic phase transition in Ca3 Mn2 Ge3O12

    International Nuclear Information System (INIS)

    It has been found that the field H1 of metamagnetic phase transitions in Ca3 Mn2 Ge3O12 garnet changes when the crystal is illuminated with linearly polarized light. The value of H1 decreases under illumination with the light polarization Εparallel [110] and it increases in the case of the light polarization Ε parallel [110]. The difference in the transition fields in these two cases was about 100 Oe at temperature T = 7 K when H1 approx 31,2 k Oe in an unexposed crystal. The change of the field of the metamagnetic phase transition is attributed to the light induction of the magnetic moment whose value and direction depend on polarization of induced light

  13. Site selective spectroscopy and crystal field analysis of Er3+ in Ca3Ga2Ge3O12 garnet

    International Nuclear Information System (INIS)

    A detailed study of the optical spectroscopy of Er3+ in Ca3Ga2Ge3O12 crystals is reported. Several site selective techniques were employed (absorption, luminescence, excitation and up-conversion). The combined use of these techniques allowed the separation and classification of the observed spectral lines. Six different Er3+ optical centres are observed. The energy level analysis was performed using a parametric Hamiltonian for the 4f11 electronic configuration of Er3+ in a D2 symmetry site. A set of parameters was obtained by fitting calculated to experimental energy levels for each identified centre. Differences among centres were analysed and related to the different charge compensating mechanisms. (author)

  14. Effects of Lu and Ni Substitution on Thermoelectric Properties of Ca3Co4O9+δ

    Science.gov (United States)

    Yang, Wenchao; Qian, Haoji; Gan, Jinyu; Wei, Wei; Wang, Zhihe; Tang, Guodong

    2016-06-01

    Effects of (Lu, Ni) co-doping on the thermoelectric properties of Ca3Co4O9+δ (CCO) have been systematically investigated from 20 K to 350 K. The electrical resistivity and thermopower of (Lu, Ni) co-doped samples increase, while their thermal conductivity is significantly depressed as compared to that of pristine CCO. The figure of merit (ZT) of co-doped samples is higher than those of Lu-doped samples and pristine CCO. A maximum ZT of 0.0185 is achieved at 350 K for Ca2.9Lu0.1Co3.9Ni0.1O9+δ . We demonstrate that the simultaneous increase of spin entropy and phonon scattering induced by (Lu, Ni) co-doping boosts ZT of CCO. This study indicates that (Lu, Ni) co-doping may promise an effective way to improve thermoelectric properties of the CCO system.

  15. Flux pinning in Tl1-xCxBa2Ca3Cu4O12-δ superconductor

    International Nuclear Information System (INIS)

    The dissipation mechanism in Tl1-xCxBa2Ca3Cu4O12-δ (x = 0, 0.25, 0.5 and 0.75) superconductor under the influence of external magnetic fields have been studied. The sample with x = 0.25 have shown strong flux pinning characteristic as compared to the Tl1-xCx-1234 (x = 0, 0.5 and 0.75) samples. The scanning electron micrographs of Tl1-xCx-1234 shows well connected grains in x = 0 and 0.25 samples. Whereas, x = 0.5 and 0.75 samples have relatively poor grain morphology, which shows that the source of pinning in Tl0.75C0.25-1234 sample is intrinsic one. The transition width data was also fitted to the thermally activated flux flow model. The apical phonon modes of vibrations were studied through FTIR absorption measurements.

  16. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    OpenAIRE

    Concha Bielza; Ruth Benavides-Piccione; Pedro López-Cruz; Pedro Larrañaga; Javier DeFelipe

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven differen...

  17. Formation of the Pyramid Lake Paiute Tribal Council, 1934-1936

    OpenAIRE

    Rusco, Elmer R.

    1988-01-01

    The Pyramid Lake Paiute Tribe is today recognized by the federal government as a semi-sovereign society within the American polity. Its government, the Pyramid Lake Paiute Tribal Council, is acknowledged to be the governing body of the tribe and to have jurisdiction over the Pyramid Lake Reservation in northwestern Nevada, except where that jurisdiction has been eliminated or weakened by explicit action of the Congress of the United States (Cohen 1982). Before the 1930s, however, although the...

  18. Determinants of Firm Affiliation to Pyramid Structure: A Survey from Malaysian Public Listed Firms

    OpenAIRE

    Irfah Najihah Basir Malan; Norhana Salamudin; Noryati Ahmad

    2013-01-01

    This research seeks to examine the determinants of affiliation to pyramid structure of Malaysian public listed firms. A motivation of the research comes from the phenomenon of pyramid structure causing divergence of ultimate owners’ actual ownership and control leading to severe expropriation of minority shareholders’ interest. The method adapts Attig Model and employs Panel Generalised Least Square on 136 Malaysian pyramid firms over a twenty one-year period from 1990 to 2010. There are ten ...

  19. Higher-Order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

    OpenAIRE

    Bergot, Morgane; Cohen, Gary; Duruflé, Marc

    2010-01-01

    We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conserved. Numerical results demonstrate the efficiency of hybrid meshes compared to pure tetrahedral mes...

  20. Removal and contraction operations to define combinatorial pyramids: application to the design of a spatial modeler

    OpenAIRE

    Damiand, Guillaume; Dexet, Martine; Lienhardt, Pascal; Andres, Eric

    2005-01-01

    Removal and contraction are basic operations for several methods conceived in order to handle irregular image pyramids, for multi-level image analysis for instance. We give the definitions of removal and contraction operations in the generalized maps framework. We propose a first experimentation of irregular pyramid as a basis for a discrete geometrical modeler that can handle both discrete and continuous representations of geometrical objects. This modeler is based on a pyramidal kernel with...