WorldWideScience

Sample records for ca1 pyramidal cell

  1. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    Science.gov (United States)

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion.

  2. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus.

    Science.gov (United States)

    Klausberger, Thomas

    2009-09-01

    The dendrites of pyramidal cells are active compartments capable of independent computations, input/output transformation and synaptic plasticity. Pyramidal cells in the CA1 area of the hippocampus receive 92% of their GABAergic input onto dendrites. How does this GABAergic input participate in dendritic computations of pyramidal cells? One key to understanding their contribution to dendritic computation lies in the timing of GABAergic input in relation to excitatory transmission, back-propagating action potentials, Ca(2+) spikes and subthreshold membrane dynamics. The issue is further complicated by the fact that dendritic GABAergic inputs originate from numerous distinct sources operating with different molecular machineries and innervating different subcellular domains of pyramidal cell dendrites. The GABAergic input from distinct sources is likely to contribute differentially to dendritic computations. In this review, I describe four groups of GABAergic interneuron according to their expression of parvalbumin, cholecystokinin, axonal arborization density and long-range projections. These four interneuron groups contain at least 12 distinct cell types, which innervate mainly or exclusively the dendrites of CA1 pyramidal cells. Furthermore, I summarize the different spike timing of distinct interneuron types during gamma, theta and ripple oscillations in vivo, and I discuss some of the open questions on how GABAergic input modulates dendritic operations in CA1 pyramidal cells.

  3. Dendritic development of hippocampal CA1 pyramidal cells in a neonatal hypoxia-ischemia injury model.

    Science.gov (United States)

    Zhao, Yan Dong; Ou, Shan; Cheng, Sai Yu; Xiao, Zhi; He, Wen Juan; Zhang, Jin Hai; Ruan, Huai Zhen

    2013-09-01

    It is believed that neonatal hypoxia-ischemia (HI) brain injury causes neuron loss and brain functional defects. However, the effect of HI brain injury on dendritic development of the remaining pyramidal cells of the hippocampus and the reaction of contralateral hippocampal neurons require further studies. The Morris water maze and Golgi-Cox staining were used to evaluate the learning and memory and dendritic morphology of pyramidal cells. The results of Golgi-Cox staining showed CA1 pyramidal neurons of HI injury models with fewer bifurcations and shorter dendrite length than the naive control group. The density of dendritic spines of hippocampal CA1 pyramidal neurons was significantly lower in the HI brain injury group than in controls. With respect to hippocampal function, the HI brain injury group presented cognitive deficits in the reference memory task and probe trail. In the HI group, the pyramidal cells of left hippocampus that did not experienced ischemia but did experience hypoxia had more complex dendrites and higher density of spine than the HI injury side and control. The functional implementation of injured hippocampus might depend mainly on the hypertrophy of contralateral hippocampus after HI brain injury. Corticosterone can partially prevent the hippocampal pyramidal cells from HI injury and reduce the difference of the bilateral hippocampus pyramidal cells, but there was no improvement in learning and memory.

  4. Postsynaptic blockade of inhibitory postsynaptic currents by plasmin in CA1 pyramidal cells of rat hippocampus.

    Science.gov (United States)

    Mizutani, A; Tanaka, T; Saito, H; Matsuki, N

    1997-06-27

    We have shown previously that plasmin facilitated the generation of long-term potentiation (LTP) in CA1 and dentate region of rat hippocampus. In the present study, we investigated the effects of plasmin on postsynaptic currents in CA1 pyramidal neurons of rat hippocampal slices. Plasmin (100 nM) had no effect on NMDA nor on non-NMDA receptor-mediated excitatory postsynaptic currents. However, plasmin significantly decreased GABA(A) receptor-mediated inhibitory postsynaptic currents. This effect of plasmin disappeared when intracellular Ca2+ was strongly chelated with BAPTA. Furthermore, plasmin attenuated the GABA-induced currents in CA1 pyramidal cells. These results suggest that the STP-enhancing effect of plasmin is due to a blockade of postsynaptic GABA(A) responses and that an increase in intracellular Ca2+ by plasmin may be involved in its mechanism.

  5. Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zhouyan Feng; Jing Wang; Xiaojing Zheng

    2014-01-01

    The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.

  6. Frequency-dependent signal processing in apical dendrites of hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Watanabe, H; Tsubokawa, H; Tsukada, M; Aihara, T

    2014-10-10

    Depending on an animal's behavioral state, hippocampal CA1 pyramidal cells receive distinct patterns of excitatory and inhibitory synaptic inputs. The time-dependent changes in the frequencies of these inputs and the nonuniform distribution of voltage-gated channels lead to dynamic fluctuations in membrane conductance. In this study, using a whole-cell patch-clamp method, we attempted to record and analyze the frequency dependencies of membrane responsiveness in Wistar rat hippocampal CA1 pyramidal cells following noise current injection directly into dendrites and somata under pharmacological blockade of all synaptic inputs. To estimate the frequency-dependent properties of membrane potential, membrane impedance was determined from the voltage response divided by the input current in the frequency domain. The cell membrane of most neurons showed low-pass filtering properties in all regions. In particular, the properties were strongly expressed in the somata or proximal dendrites. Moreover, the data revealed nonuniform distribution of dendritic impedance, which was high in the intermediate segment of the apical dendritic shaft (∼220-260μm from the soma). The low-pass filtering properties in the apical dendrites were more enhanced by membrane depolarization than those in the somata. Coherence spectral analysis revealed high coherence between the input signal and the output voltage response in the theta-gamma frequency range, and large lags emerged in the distal dendrites in the gamma frequency range. Our results suggest that apical dendrites of hippocampal CA1 pyramidal cells integrate synaptic inputs according to the frequency components of the input signal along the dendritic segments receiving the inputs.

  7. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    Science.gov (United States)

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-02

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation.

  8. Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons.

    Science.gov (United States)

    Takács, Virág T; Klausberger, Thomas; Somogyi, Peter; Freund, Tamás F; Gulyás, Attila I

    2012-06-01

    The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.

  9. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.

    Science.gov (United States)

    Saudargiene, Ausra; Cobb, Stuart; Graham, Bruce P

    2015-02-01

    Cellular activity in the CA1 area of the hippocampus waxes and wanes at theta frequency (4-8 Hz) during exploratory behavior of rats. Perisomatic inhibition onto pyramidal cells tends to be strongest out of phase with pyramidal cell activity, whereas dendritic inhibition is strongest in phase with pyramidal cell activity. Synaptic plasticity also varies across the theta cycle, from strong long-term potentiation (LTP) to long-term depression (LTD), putatively corresponding to encoding and retrieval phases for information patterns encoded by pyramidal cell activity (Hasselmo et al. (2002a) Neural Comput 14:793-817). The mechanisms underpinning the phasic changes in plasticity are not clear, but it is likely that inhibition plays a role by affecting levels of electrical activity and calcium concentration at synapses. We explore the properties of synaptic plasticity during theta at Schaffer collateral synapses on CA1 pyramidal neurons and the influence of spatially and temporally targeted inhibition using a detailed multicompartmental model of the CA1 pyramidal neuron microcircuit and a phenomenological model of synaptic plasticity. The results suggest CA3-CA1 synapses are potentiated on one phase of theta due to high calcium levels provided by paired weak CA3 and layer III entorhinal cortex (EC) inputs even when somatic spiking is inhibited by perisomatic interneuron activity. Weak CA3 inputs alone induce lower calcium transients and result in depression of the CA3-CA1 synapses. These synapses are depressed if activated in phase with dendritic inhibition as strong CA3 inputs alone are not able to cause high calcium in this theta phase even though the CA1 pyramidal neuron shows somatic spiking. Dendritic inhibition acts as a switch that prevents LTP and promotes LTD during the retrieval phases of the theta rhythm in CA1 pyramidal cell. This may be important for not overly reinforcing recalled memories and in forgetting no longer relevant memories.

  10. Phorbol esters broaden the action potential in CA1 hippocampal pyramidal cells.

    Science.gov (United States)

    Storm, J F

    1987-03-20

    Intracellular recordings were made from CA1 pyramidal cells in rat hippocampal slices. Single action potentials were elicited by injection of brief current pulses. Bath application of phorbol esters (4 beta-phorbol-12,13-diacetate, 0.3-5 microM; or 4 beta-phorbol-12,13-dibutyrate, 5-10 microM) broadened the action potential in each of the cells tested (n = 9). The broadening reflected slowing of the repolarization, whereas the upstroke of the spike was unchanged. This effect may enhance transmitter release from synaptic terminals, and contribute to enhancement of synaptic transmission through activation of protein kinase C, a mechanism which has been associated with long term potentiation.

  11. In vivo blockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells.

    Science.gov (United States)

    Groc, Laurent; Petanjek, Zdravko; Gustafsson, Bengt; Ben-Ari, Yehezkel; Hanse, Eric; Khazipov, Roustem

    2002-11-01

    During development, neural activity has been proposed to promote neuronal growth. During the first postnatal week, the hippocampus is characterized by an oscillating neural network activity and a rapid neuronal growth. In the present study we tested in vivo, by injecting tetanus toxin into the hippocampus of P1 rats, whether this neural activity indeed promotes growth of pyramidal cells. We have previously shown that tetanus toxin injection leads to a strong reduction in the frequency of spontaneous GABA and glutamatergic synaptic currents, and to a complete blockade of the early neural network activity during the first postnatal week. Morphology of neurobiotin-filled CA1 pyramidal cells was analyzed at the end of the first postnatal week (P6-10). In activity-reduced neurons, the total length of basal dendritic tree was three times less than control. The number, but not the length, of basal dendritic branches was affected. The growth impairment was restricted to the basal dendrites. The apical dendrite, the axons, or the soma grew normally during activity deprivation. Thus, the in vivo neural activity in the neonate hippocampus seems to promote neuronal growth by initiating novel branches.

  12. Estimating extracellular spike waveforms from CA1 pyramidal cells with multichannel electrodes.

    Science.gov (United States)

    Molden, Sturla; Moldestad, Olve; Storm, Johan F

    2013-01-01

    Extracellular (EC) recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the "local field potential" (LFP). In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe). We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike.

  13. Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells.

    Science.gov (United States)

    Kirizs, Tekla; Kerti-Szigeti, Katalin; Lorincz, Andrea; Nusser, Zoltan

    2014-06-01

    Potassium channels comprise the most diverse family of ion channels and play critical roles in a large variety of physiological and pathological processes. In addition to their molecular diversity, variations in their distributions and densities on the axo-somato-dendritic surface of neurons are key parameters in determining their functional impact. Despite extensive electrophysiological and anatomical investigations, the exact location and densities of most K(+) channels in small subcellular compartments are still unknown. Here we aimed at providing a quantitative surface map of two delayed-rectifier (Kv1.1 and Kv2.1) and one G-protein-gated inwardly rectifying (Kir3.2) K(+) channel subunits on hippocampal CA1 pyramidal cells (PCs). Freeze-fracture replica immunogold labelling was employed to determine the relative densities of these K(+) channel subunits in 18 axo-somato-dendritic compartments. Significant densities of the Kv1.1 subunit were detected on axon initial segments (AISs) and axon terminals, with an approximately eight-fold lower density in the latter compartment. The Kv2.1 subunit was found in somatic, proximal dendritic and AIS plasma membranes at approximately the same densities. This subunit has a non-uniform plasma membrane distribution; Kv2.1 clusters are frequently adjacent to, but never overlap with, GABAergic synapses. A quasi-linear increase in the Kir3.2 subunit density along the dendrites of PCs was detected, showing no significant difference between apical dendritic shafts, oblique dendrites or dendritic spines at the same distance from the soma. Our results demonstrate that each subunit has a unique cell-surface distribution pattern, and predict their differential involvement in synaptic integration and output generation at distinct subcellular compartments.

  14. Estimating extracellular spike waveforms from CA1 pyramidal cells with multichannel electrodes.

    Directory of Open Access Journals (Sweden)

    Sturla Molden

    Full Text Available Extracellular (EC recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the "local field potential" (LFP. In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe. We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike.

  15. Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells.

    Science.gov (United States)

    Griesemer, Désirée; Mautes, Angelika M

    2007-12-01

    Traumatic brain injury frequently elicits epileptic seizures hours or days after the impact. The mechanisms on cellular level are poorly understood. Because posttraumatic epilepsy appears in many cases as a temporal-lobe epilepsy which originated the hippocampus, we studied trauma-induced hyperexcitability on the cellular level in this brain area. We used the model of closed head injury to analyse the electrophysiological changes in CA1 and CA3 pyramidal cells and in interneurones of the CA1 field, which is extremely sensitive to ischemia. We found that morphologically closed head injury (CHI) led to a gradual progressive, cell type specific time course in neuronal degeneration. To analyse electrophysiological impairment we measured resting membrane potential, recorded spontaneous action potentials and induced action potentials by current pulses at different times after CHI. We found a dramatic increase in the frequency of spontaneous action potentials of CA1 but not of CA3 pyramidal cells after CHI. This hyperexcitability was maximal at 2 h (4.5-fold higher than sham), was also observed at 24 h after CHI and disappeared after 3 days. We found that CA1 interneurones responded by a much weaker increase of AP frequency after CHI. We conclude that the strong hyperexcitability after CHI is cell-type specific and transient. The understanding of the complex neuronal interactions probably offers a promising possibility for pharmacological intervention to prevent posttraumatic epilepsy.

  16. Specificity and actions of an arylaspartate inhibitor of glutamate transport at the Schaffer collateral-CA1 pyramidal cell synapse.

    Directory of Open Access Journals (Sweden)

    Weinan Sun

    Full Text Available In this study we characterized the pharmacological selectivity and physiological actions of a new arylaspartate glutamate transporter blocker, L-threo-ß-benzylaspartate (L-TBA. At concentrations up to 100 µM, L-TBA did not act as an AMPA receptor (AMPAR or NMDA receptor (NMDAR agonist or antagonist when applied to outside-out patches from mouse hippocampal CA1 pyramidal neurons. L-TBA had no effect on the amplitude of field excitatory postsynaptic potentials (fEPSPs recorded at the Schaffer collateral-CA1 pyramidal cell synapse. Excitatory postsynaptic currents (EPSCs in CA1 pyramidal neurons were unaffected by L-TBA in the presence of physiological extracellular Mg(2+ concentrations, but in Mg(2+-free solution, EPSCs were significantly prolonged as a consequence of increased NMDAR activity. Although L-TBA exhibited approximately four-fold selectivity for neuronal EAAT3 over glial EAAT1/EAAT2 transporter subtypes expressed in Xenopus oocytes, the L-TBA concentration-dependence of the EPSC charge transfer increase in the absence of Mg(2+ was the same in hippocampal slices from EAAT3 +/+ and EAAT3 -/- mice, suggesting that TBA effects were primarily due to block of glial transporters. Consistent with this, L-TBA blocked synaptically evoked transporter currents in CA1 astrocytes with a potency in accord with its block of heterologously expressed glial transporters. Extracellular recording in the presence of physiological Mg(2+ revealed that L-TBA prolonged fEPSPs in a frequency-dependent manner by selectively increasing the NMDAR-mediated component of the fEPSP during short bursts of activity. The data indicate that glial glutamate transporters play a dominant role in limiting extrasynaptic transmitter diffusion and binding to NMDARs. Furthermore, NMDAR signaling is primarily limited by voltage-dependent Mg(2+ block during low-frequency activity, while the relative contribution of transport increases during short bursts of higher frequency

  17. Ischemia-induced degeneration of CA1 pyramidal cells decreases seizure severity in a subgroup of epileptic gerbils and affects parvalbumin immunoreactivity of CA1 interneurons.

    Science.gov (United States)

    Winkler, D T; Scotti, A L; Nitsch, C

    2001-04-01

    Mongolian gerbils are epilepsy-prone animals. In adult gerbils two major groups can be differentiated according to their seizure behavior: Highly seizure-sensitive gerbils exhibit facial and forelimb clonus or generalized tonic-clonic seizures from the first test on, while kindled-like gerbils are seizure free for the first three to six consecutive tests, later develop forelimb myoclonus, and eventually progress to generalized tonic-clonic seizures. In the hippocampus, seizure history of the individual animal is mirrored in the intensity in which GABAergic neurons are immunostained for the calcium-binding protein parvalbumin: they lose parvalbumin with increasing seizure incidence. In a first step to clarify the influence of hippocampal projection neurons on spontaneous seizure behavior and related parvalbumin expression, we induced degeneration of the CA1 pyramidal cells by transient forebrain ischemia. This results in a decreased seizure sensitivity in highly seizure-sensitive gerbils. The kindling-like process, however, is not permanently blocked by the ischemic nerve cell loss, suggesting that an intact CA1 field is not a prerequisite for the development of seizure behavior. The seizure-induced loss of parvalbumin from the ischemia-resistant interneurons recovers after ischemia. Thus, changes in parvalbumin content brought about by repeated seizures are not permanent but can rather be modulated by novel stimuli.

  18. Three-dimensional structure of CA1 pyramidal cells in rat hippocampus——Optical recording of LSM and computer simulation of fractal structure

    Institute of Scientific and Technical Information of China (English)

    冯春华; 刘力; 刘守忠; 宁红; 孙海坚; 郭爱克

    1995-01-01

    The optical recording of three-dimensional(3-D)reconstruction of CA1 pyramidal cells wasderived from the studies on the CA1 region of the hippocampus in adult male Wistar rats.The recordingwas produced by the Confocal Laser Scan Microscope(LSM-10).The attemption was to outline themorphological neural network of CA1 pyramidal cells organization,following the trail of axo-dendritic connec-tions in 3-D spatial distributions among neurons.The fractal structure of neurons with their dendritic andaxonal trees using fractal algorithm was noticed,and 2—18 simulated cells were obtained using PC-486 comput-er.The simulational cells are similar in morphology to the natural CA1 hippocampal pyramidal cells.There-fore,the exploitation of an advanced neurohistological research technique combining optical recording of theLSM-10 and computer simulation of fractal structure can provide the quantitative fractal structural basis forchaosic dynamics of brain.

  19. Supralinear dendritic Ca(2+) signalling in young developing CA1 pyramidal cells.

    Science.gov (United States)

    Pohle, Jörg; Bischofberger, Josef

    2014-11-15

    Although Ca(2+) is critically important in activity-dependent neuronal development, not much is known about the regulation of dendritic Ca(2+) signals in developing neurons. Here, we used ratiometric Ca(2+) imaging to investigate dendritic Ca(2+) signalling in rat hippocampal pyramidal cells during the first 1-4 weeks of postnatal development. We show that active dendritic backpropagation of Nav channel-dependent action potentials (APs) evoked already large dendritic Ca(2+) transients in animals aged 1 week with amplitudes of ∼150 nm, similar to the amplitudes of ∼160 nM seen in animals aged 4 weeks. Although the AP-evoked dendritic Ca(2+) load increased about four times during the first 4 weeks, the peak amplitude of free Ca(2+) concentration was balanced by a four-fold increase in Ca(2+) buffer capacity κs (∼70 vs. ∼280). Furthermore, Ca(2+) extrusion rates increased with postnatal development, leading to a slower decay time course (∼0.2 s vs. ∼0.1 s) and more effective temporal summation of Ca(2+) signals in young cells. Most importantly, during prolonged theta-burst stimulation dendritic Ca(2+) signals were up to three times larger in cells at 1 week than at 4 weeks of age and much larger than predicted by linear summation, which is attributable to an activity-dependent slow-down of Ca(2+) extrusion. As Ca(2+) influx is four-fold smaller in young cells, the larger Ca(2+) signals are generated using four times less ATP consumption. Taken together, the data suggest that active backpropagations regulate dendritic Ca(2+) signals during early postnatal development. Remarkably, during prolonged AP firing, Ca(2+) signals are several times larger in young than in mature cells as a result of activity-dependent regulation of Ca(2+) extrusion rates.

  20. Persistent changes in action potential broadening and the slow afterhyperpolarization in rat CA1 pyramidal cells after febrile seizures.

    Science.gov (United States)

    Kamal, Amer; Notenboom, Robbert G E; de Graan, Pierre N E; Ramakers, Geert M J

    2006-04-01

    Febrile (fever-induced) seizures (FS) are the most common form of seizures during childhood and have been associated with an increased risk of epilepsy later in life. The relationship of FS to subsequent epilepsy is, however, still controversial. Insights from animal models do indicate that especially complex FS are harmful to the developing brain and contribute to a hyperexcitable state that may persist for life. Here, we determined long-lasting changes in neuronal excitability of rat hippocampal CA1 pyramidal cells after prolonged (complex) FS induced by hyperthermia on postnatal day 10. We show that hyperthermia-induced seizures at postnatal day 10 induce a long-lasting increase in the hyperpolarization-activated current I(h). Furthermore, we show that a reduction in the amount of spike broadening and in the amplitude of the slow afterhyperpolarization following FS are also likely to contribute to the hyperexcitability of the hippocampus long term.

  1. Unique somato-dendritic distribution pattern of Kv4.2 channels on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Kerti, Katalin; Lorincz, Andrea; Nusser, Zoltan

    2012-01-01

    A-type K(+) current (I(A)) plays a critical role in controlling the excitability of pyramidal cell (PC) dendrites. In vitro dendritic patch-pipette recordings have demonstrated a prominent, sixfold increase in I(A) density along the main apical dendrites of rat hippocampal CA1 PCs. In these cells, I(A) is mediated by Kv4.2 subunits, whose precise subcellular distribution and densities in small-diameter oblique dendrites and dendritic spines are still unknown. Here we examined the densities of the Kv4.2 subunit in 13 axo-somato-dendritic compartments of CA1 PCs using a highly sensitive, high-resolution quantitative immunogold localization method (sodium dodecyl sulphate-digested freeze-fracture replica-labelling). Only an approximately 70% increase in Kv4.2 immunogold density was observed along the proximo-distal axis of main apical dendrites in the stratum radiatum with a slight decrease in density in stratum lacunosum-moleculare. A similar pattern was detected for all dendritic compartments, including main apical dendrites, small-diameter oblique dendrites and dendritic spines. The specificity of the somato-dendritic labelling was confirmed in Kv4.2(-/-) tissue. No specific immunolabelling for the Kv4.2 subunit was found in SNAP-25-containing presynaptic axons. Our results demonstrate a novel distribution pattern of a voltage-gated ion channel along the somato-dendritic surface of CA1 PCs, and suggest that the increase in the I(A) along the proximo-distal axis of PC dendrites cannot be solely explained by a corresponding increase in Kv4.2 channel number.

  2. Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Leung, L Stan; Péloquin, Pascal

    2010-08-01

    We hypothesize that endogenous cholinergic modulation of dendritic processing of hippocampal CA1 is layer specific, and it specifically enhances spike output resulting from basal as compared with the apical dendritic excitation. Laminar profiles of evoked field potentials were recorded in the CA1 area of urethane-anesthetized rats using multichannel silicon probes and analyzed as current source density. High-frequency stimulation of the pontis oralis (PnO) attenuated the midapical more than the basal or distal apical dendritic excitatory sink. Population spike (PS) and excitatory sink-PS potentiation resulting from basal dendritic excitation were facilitated, while the PS evoked by apical dendritic stimulation was attenuated by PnO stimulation. Perfusion of cholinergic agonist carbachol onto hippocampal slices in vitro also attenuated the apical more than the basal dendritic excitatory postsynaptic potentials. Excitatory sink attenuation and PS changes after PnO stimulation were blocked by systemic or local scopolamine and by intracerebroventricular (icv) M1 receptor antagonist pirenzepine but not by icv M2 receptor antagonist AFDX-116 or nicotinic antagonists. However, a hippocampal theta rhythm activated by PnO stimulation was blocked by systemic but not by local scopolamine. We conclude that endogenous acetylcholine mediates a stronger presynaptic inhibition of the midapical than basal and distal apical excitation mainly through M1 receptors.

  3. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse☆

    Science.gov (United States)

    Kerrigan, T.L.; Brown, J.T.; Randall, A.D.

    2014-01-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9–10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled ‘Neurodevelopment Disorder’. PMID:24055500

  4. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro.

    Science.gov (United States)

    Hansen, Allan Kjeldsen; Nedergaard, Steen; Andreasen, Mogens

    2014-08-01

    Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted for by a somatic-dendritic interference model predicting the existence of an intrinsic dendritic oscillator. Here we describe an intrinsic oscillatory mechanism in apical dendrites of in vitro CA1 pyramidal cells, which is induced by suprathreshold depolarization and consists of rhythmic firing of slow spikes in the theta-frequency band. The incidence of slow spiking (29%) increased to 78% and 100% in the presence of the β-adrenergic agonist isoproterenol (2 μM) or 4-aminopyridine (2 mM), respectively. Prior depolarization facilitated the induction of slow spiking. Applied electrical field polarization revealed a distal dendritic origin of slow spikes. The oscillations were largely insensitive to tetrodotoxin, but blocked by nimodipine (10 μM), indicating that they depend on activation of L-type Ca2+ channels. Antagonists of T-, R-, N-, and P/Q-type Ca2+ channels had no detectable effect. The slow spike dimension and frequency was sensitive to 4-aminopyridine (0.1-2 mM) and TEA (10 mM), suggesting the contribution from voltage-dependent K+ channels to the oscillation mechanism. α-Dendrotoxin (10 μM), stromatoxin (2 μM), iberiotoxin (0.2 μM), apamin (0.5 μM), linorpidine (30 μM), and ZD7288 (20 μM) were without effect. Oscillations induced by sine-wave current injection or theta-burst synaptic stimulation were voltage-dependently attenuated by nimodipine, indicating an amplifying function of L-type Ca2+ channels on imposed signals. These results show that the apical dendrites have intrinsic oscillatory properties capable of generating rhythmic voltage fluctuations in the theta-frequency band.

  5. Identification of mRNA for endocannabinoid biosynthetic enzymes within hippocampal pyramidal cells and CA1 stratum radiatum interneuron subtypes using quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Merrill, C B; McNeil, M; Williamson, R C; Poole, B R; Nelson, B; Sudweeks, S; Edwards, J G

    2012-08-30

    The hippocampus is required for short-term memory and contains both excitatory pyramidal cells and inhibitory interneurons. These cells exhibit various forms of synaptic plasticity, the mechanism underlying learning and memory. More recently, endocannabinoids were identified to be involved in synaptic plasticity. Our goal was to describe the distribution of endocannabinoid biosynthetic enzymes within CA1 stratum radiatum interneurons and CA3/CA1 pyramidal cells. We extracted mRNA from single interneurons and pyramidal cells and used real-time quantitative polymerase chain reaction (RT-PCR) to detect the presence of 12-lipoxygenase, N-acyl-phosphatidylethanolamine-specific phospholipase D, diacylglycerol lipase α, and type I metabotropic glutamate receptors, all known to be involved in endocannabinoid production and plasticity. We observed that the expression of endocannabinoid biosynthetic enzyme mRNA does occur within interneurons and that it is coexpressed with type I metabotropic glutamate receptors, suggesting interneurons have the potential to produce endocannabinoids. We also identified that CA3 and CA1 pyramidal cells express endocannabinoid biosynthetic enzyme mRNA. Our data provide the first molecular biological evidence for putative endocannabinoid production in interneurons, suggesting their potential ability to regulate endocannabinoid-mediated processes, such as synaptic plasticity.

  6. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells.

    Science.gov (United States)

    Cunha-Reis, Diana; Sebastião, Ana M; Wirkner, Kerstin; Illes, Peter; Ribeiro, Joaquim Alexandre

    2004-11-01

    Vasoactive intestinal peptide (VIP) is present in the hippocampus in three subtypes of GABAergic interneurones, two of which innervate preferentially other interneurones, responsible for pyramidal cell inhibition. We investigated how pre- and postsynaptic modulation of GABAergic transmission (to both pyramidal cells and interneurones) by VIP could influence excitatory synaptic transmission in the CA1 area of the hippocampus. VIP (0.1-100 nM) increased [(3)H]GABA release from hippocampal synaptosomes (maximum effect at 1 nM VIP; 63.8 +/- 4.0%) but did not change [(3)H]glutamate release. VIP (0.3-30 nM) enhanced synaptic transmission in hippocampal slices (maximum effect at 1 nM VIP; field excitatory postsynaptic potentials (epsp) slope: 23.7 +/- 1.1%; population spike amplitude: 20.3 +/- 1.7%). The action on field epsp slope was fully dependent on GABAergic transmission since it was absent in the presence of picrotoxin (50 microM) plus CGP55845 (1 microM). VIP (1 nM) did not change paired-pulse facilitation but increased paired-pulse inhibition in CA1 pyramidal cells (16.0 +/- 0.9%), reinforcing the involvement of GABAergic transmission in the action of VIP. VIP (1 nM) increased muscimol-evoked inhibitory currents by 36.4 +/- 8.7% in eight out of ten CA1 interneurones in the stratum radiatum. This suggests that VIP promotes increased inhibition of interneurones that control pyramidal cells, leading to disinhibition of synaptic transmission to pyramidal cell dendrites. In conclusion, concerted pre- and postsynaptic actions of VIP lead to disinhibition of pyramidal cell dendrites causing an enhancement of synaptic transmission.

  7. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate the gain and the neural code transformation in hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Jang, Hyun Jae; Park, Kyerl; Lee, Jaedong; Kim, Hyuncheol; Han, Kyu Hun; Kwag, Jeehyun

    2015-12-01

    Diverse variety of hippocampal interneurons exists in the CA1 area, which provides either feedforward (FF) or feedback (FB) inhibition to CA1 pyramidal cell (PC). However, how the two different inhibitory network architectures modulate the computational mode of CA1 PC is unknown. By investigating the CA3 PC rate-driven input-output function of CA1 PC using in vitro electrophysiology, in vitro-simulation of inhibitory network, and in silico computational modeling, we demonstrated for the first time that GABAA receptor-mediated FF and FB inhibition differentially modulate the gain, the spike precision, the neural code transformation and the information capacity of CA1 PC. Recruitment of FF inhibition buffered the CA1 PC spikes to theta-frequency regardless of the input frequency, abolishing the gain and making CA1 PC insensitive to its inputs. Instead, temporal variability of the CA1 PC spikes was increased, promoting the rate-to-temporal code transformation to enhance the information capacity of CA1 PC. In contrast, the recruitment of FB inhibition sub-linearly transformed the input rate to spike output rate with high gain and low spike temporal variability, promoting the rate-to-rate code transformation. These results suggest that GABAA receptor-mediated FF and FB inhibitory circuits could serve as network mechanisms for differentially modulating the gain of CA1 PC, allowing CA1 PC to switch between different computational modes using rate and temporal codes ad hoc. Such switch will allow CA1 PC to efficiently respond to spatio-temporally dynamic inputs and expand its computational capacity during different behavioral and neuromodulatory states in vivo.

  8. Increased spike broadening and slow afterhyperpolarization in CA1 pyramidal cells of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kamal, A; Artola, A; Biessels, G J; Gispen, W H; Ramakers, G M J

    2003-01-01

    Diabetes mellitus is associated with impairments of cognitive function both in humans and animal models. In diabetic rats cognitive deficits are related to alterations in activity-dependent synaptic plasticity in the hippocampus. Many similarities with the pathophysiology of normal brain aging have been noted, and the view emerges that the effects of diabetes on the brain are best described as "accelerated brain aging."In the present study we examined whether CA1 pyramidal neurons from streptozotocin-induced diabetic rats display an increased slow afterhyperpolarization, often considered as a hallmark of neuronal aging. We found no differences in resting membrane potential, input resistance, membrane time-constant, and action potential amplitude and duration between CA1 pyramidal neurons from streptozotocin-induced diabetic and age-matched control rats. During a train of action potentials, however, there is an increased broadening of the action potentials in diabetic animals, so-called "spike broadening." The amplitude of the slow afterhyperpolarization elicited by a train of action potentials is indeed increased in diabetic animals. Interestingly, when the slow afterhyperpolarization is elicited by a Ca(2+) spike, there is no difference between control and diabetic rats. This indicates that the increased slow afterhyperpolarization in diabetes is likely to be due to an increased Ca(2+) influx resulting from the increased spike broadening. These data underscore the notion that the diabetic brain at the neuronal level shares properties with brain aging.

  9. Segregated Cell Populations Enable Distinct Parallel Encoding within the Radial Axis of the CA1 Pyramidal Layer

    Science.gov (United States)

    Geiller, Tristan; Royer, Sebastien

    2017-01-01

    Numerous studies have implicated the hippocampus in the encoding and storage of declarative and spatial memories. Several models have considered the hippocampus and its distinct subfields to contain homogeneous pyramidal cell populations. Yet, recent studies have led to a consensus that the dorso-ventral and proximo-distal axes have different connectivities and physiologies. The remaining deep-superficial axis of the pyramidal layer, however, remains relatively unexplored due to a lack of techniques that can record from neurons simultaneously at different depths. Recent advances in transgenic mice, two-photon imaging and dense multisite recording have revealed extensive disparities between the pyramidal cells located in the deep and the superficial layers. Here, we summarize differences between the two populations in terms of gene expression and connectivity with other intra-hippocampal subregions and local interneurons that underlie distinct learning processes and spatial representations. A unified picture will emerge to describe how such local segregations can increase the capacity of the hippocampus to compute and process numerous tasks in parallel. PMID:28243162

  10. 人体海马CA1区锥体细胞胞体的发育%The Development of the Cell Body of Human Fetal CA1 Pyramidal Neurons

    Institute of Scientific and Technical Information of China (English)

    贺立新; 卢大华; 蔡海荣

    2011-01-01

    Objective: To explore the process of cell body morphogenesis of human fetal CA1 pyramidal neurons. Methods: 19 gestational weeks (GW), 20GW, 26GW, 35GW, 38GW fetuses (Cystic induction of labor) and one 8-year-old (8Y) child {Killed in traffic accidents) were collected. All specimens were in line with the relevant laws and the ethical requirements. The Golgi staining technology and the confocal microscope equipped with "Neurolucida" software were used to observe the cell body of human fetal CA1 pyramidal neurons and analyze the length and area of the cell body. Results: The morphology of CA1 pyramidal neurons is not clear at 19GW and 20GW. The cell body length at 26GW, 35GW, 38GW, 8Y was 56.5 ± 2.5 (μ m), 80.8 ± 8.5 (μm),85.9± 12.2 (μm),91.3± 9.6 (μ m) respectively, and the cell body area was 254.5 ± 13.7 (μ m2). 362.5 ± 15.5 (μ m2), 380.5 ± 22.8 (μ m2), 460.8 ± 25.7 (μ m2) respectively. There were significant differences (P <0.05) in the length and area at 26GW compared to those at 35GW, 38 GW and 8Y. Compared with 38GW, the length and area at 8Y had a slight increase. Cell morphology: The plane sections of CA1 pyramidal cells showed oval or triangle shapes at 26W, 35W and 38W. With the growing of gestational age, the length and area of cell body were gradually increased, especially the basal parts of the cell body widened. The oval cell bodies were transformed into triangle cell bodies. Meanwhile, the number of base dendrites was increased gradually, which could be reached 4-7 at 38GW. At 8Y, almost all sections of CA1 neurons showed pyramidal shapes. The length and area at 8Y were slightly increased and relatively stable compared with those at 38GW. Conclusions: During body development, the CA1 pyramidal cells showed a gradual increase in length and area. The difference between 26GW and 35GW was most significant, while the difference of cell area between 38GW and 8Y was not significant. Such increase trends gradually slowed down and tended to

  11. Acute alterations of somatodendritic action potential dynamics in hippocampal CA1 pyramidal cells after kainate-induced status epilepticus in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Minge

    Full Text Available Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP dynamics immediately following status epilepticus (SE in mice. SE was induced by intraperitoneal (i.p. injection of kainate, and behavioral manifestation of SE was monitored for 3-4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca(2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2-5 mV. No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP, was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP-induced Ca(2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na(+ and K(+ current components.

  12. Calsyntenin-1 regulates targeting of dendritic NMDA receptors and dendritic spine maturation in CA1 hippocampal pyramidal cells during postnatal development.

    Science.gov (United States)

    Ster, Jeanne; Steuble, Martin; Orlando, Clara; Diep, Tu-My; Akhmedov, Alexander; Raineteau, Olivier; Pernet, Vincent; Sonderegger, Peter; Gerber, Urs

    2014-06-25

    Calsyntenin-1 is a transmembrane cargo-docking protein important for kinesin-1-mediated fast transport of membrane-bound organelles that exhibits peak expression levels at postnatal day 7. However, its neuronal function during postnatal development remains unknown. We generated a knock-out mouse to characterize calsyntenin-1 function in juvenile mice. In the absence of calsyntenin-1, synaptic transmission was depressed. To address the mechanism, evoked EPSPs were analyzed revealing a greater proportion of synaptic GluN2B subunit-containing receptors typical for less mature synapses. This imbalance was due to a disruption in calsyntenin-1-mediated dendritic transport of NMDA receptor subunits. As a consequence of increased expression of GluN2B subunits, NMDA receptor-dependent LTP was enhanced at Schaffer collateral-CA1 pyramidal cell synapses. Interestingly, these defects were accompanied by a decrease in dendritic arborization and increased proportions of immature filopodia-like dendritic protrusions at the expense of thin-type dendritic spines in CA1 pyramidal cells. Thus, these results highlight a key role for calsyntenin-1 in the transport of NMDA receptors to synaptic targets, which is necessary for the maturation of neuronal circuits during early development.

  13. Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism

    Science.gov (United States)

    Jiang, Man; Polepalli, Jai; Chen, Lulu Y.; Zhang, Bo; Südhof, Thomas C.; Malenka, Robert C.

    2016-01-01

    Neuroligins are postsynaptic cell-adhesion molecules implicated in autism and other neuropsychiatric disorders. Despite extensive work, the role of neuroligins in synapse function and plasticity, especially NMDA receptor (NMDAR)-dependent LTP, remains unclear. To establish which synaptic functions unequivocally require neuroligins, we analyzed single and triple conditional knockout (cKO) mice for all three major neuroligin isoforms (NL1-NL3). We inactivated neuroligins by stereotactic viral expression of Cre-recombinase in hippocampal CA1 region pyramidal neurons at postnatal day 0 (P0) or day 21 (P21), and measured synaptic function, synaptic plasticity, and spine numbers in acute hippocampal slices 2–3 weeks later. Surprisingly, we find that ablation of neuroligins in newborn or juvenile mice only modestly impaired basal synaptic function in hippocampus, and caused no alteration in postsynaptic spine numbers. However, triple cKO of NL1-NL3 or single cKO of NL1 impaired NMDAR-mediated excitatory postsynaptic currents (NMDAR EPSCs), and abolished NMDAR-dependent LTP. Strikingly, the NL1 cKO also abolished LTP elicited by activation of L-type Ca2+-channels during blockade of NMDARs. These findings demonstrate that neuroligins are generally not essential for synapse formation in CA1 pyramidal neurons but shape synaptic properties and that NL1 specifically is required for LTP induced by postsynaptic Ca2+-elevations, a function which may contribute to the pathophysiological role of neuroligins in brain disorders. PMID:27217145

  14. Weak sinusoidal electric fields entrain spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations.

    Science.gov (United States)

    Maeda, Kazuma; Maruyama, Ryuichi; Nagae, Toru; Inoue, Masashi; Aonishi, Toru; Miyakawa, Hiroyoshi

    2015-01-01

    Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of electric fields or by providing current source to generate electric fields. To test if dendritic activities can be modulated by electric fields, we developed a method to monitor local Ca-transients in the dendrites of a neuronal population in acute rat hippocampal slices by applying spinning-disk confocal microscopy and multi-cell dye loading technique. In a condition in which the dendrites of CA1 pyramidal neurons show spontaneous Ca-transients due to added 50 μM 4-aminopyridine to the bathing medium and adjusted extracellular potassium concentration, we examined the impact of sinusoidal electric fields on the Ca-transients. We have found that spontaneously occurring fast-Ca-transients in the tufts of the apical dendrites of CA1 pyramidal neurons can be blocked by applying 1 μM tetrodotoxin, and that the timing of the transients become entrained to sub-threshold 1-4 Hz electric fields with an intensity as weak as 0.84 mV/mm applied parallel to the somato-dendritic axis of the neurons. The extent of entrainment increases with intensity below 5 mV/mm, but does not increase further over the range of 5-20 mV/mm. These results suggest that population of pyramidal cells might be able to detect electric fields with biologically relevant intensity by modulating the timing of dendritic spikes.

  15. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    Science.gov (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  16. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures.

    Science.gov (United States)

    Dinocourt, Celine; Petanjek, Zdravko; Freund, Tamas F; Ben-Ari, Yezekiel; Esclapez, Monique

    2003-05-12

    In the pilocarpine model of chronic limbic seizures, vulnerability of GABAergic interneurons to excitotoxic damage has been reported in the hippocampal CA1 region. However, little is known about the specific types of interneurons that degenerate in this region. In order to characterize these interneurons, we performed quantitative analyses of the different populations of GABAergic neurons labeled for their peptide or calcium-binding protein content. Our data demonstrate that the decrease in the number of GAD mRNA-containing neurons in the stratum oriens of CA1 in pilocarpine-treated rats involved two subpopulations of GABAergic interneurons: interneurons labeled for somatostatin only (O-LM and bistratified cells) and interneurons labeled for parvalbumin only (basket and axo-axonic cells). Stratum oriens interneurons labeled for somatostatin/calbindin or somatostatin/parvalbumin were preserved. The decrease in number of somatostatin- and parvalbumin-containing neurons was observed as early as 72 hours after the sustained seizures induced by pilocarpine injection. Many degenerating cell bodies in the stratum oriens and degenerating axon terminals in the stratum lacunosum-moleculare were observed at 1 and 2 weeks after injection. In addition, the synaptic coverage of the axon initial segment of CA1 pyramidal cells was significantly decreased in pilocarpine-treated animals. These results indicate that the loss of somatostatin-containing neurons corresponds preferentially to the degeneration of interneurons with an axon projecting to stratum lacunosum-moleculare (O-LM cells) and suggest that the death of these neurons is mainly responsible for the deficit of dendritic inhibition reported in this region. We demonstrate that the loss of parvalbumin-containing neurons corresponds to the death of axo-axonic cells, suggesting that perisomatic inhibition and mechanisms controlling action potential generation are also impaired in this model.

  17. Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats.

    Science.gov (United States)

    Chowdhury, Tara G; Ríos, Mariel B; Chan, Thomas E; Cassataro, Daniela S; Barbarich-Marsteller, Nicole C; Aoki, Chiye

    2014-12-01

    Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this

  18. Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus.

    OpenAIRE

    Gage, P W; Robertson, B

    1985-01-01

    Spontaneous inhibitory postsynaptic currents (i.p.s.cs) were recorded in voltage-clamped CA1 neurones in rat hippocampal slices. The exponential decay of i.p.s.cs was prolonged by concentrations of sodium pentobarbitone as low as 50 microM. With concentrations up to 100 microM, there was no change in the amplitude or rise time of the currents but current amplitude was depressed at 200 microM. The prolongation of currents increased with drug concentration within the range tested (50 to 200 mic...

  19. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  20. EFFECTS OF GLUTAMATE ON SODIUM CHANNEL IN ACUTELY DISSOCIATED HIPPOCAMPAL CA1 PYRAMIDAL NEURONS OF RATS

    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣

    2011-01-01

    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  1. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina

    2011-04-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  2. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus.

    Science.gov (United States)

    Lunko, O O; Isaev, D S; Krishtal, O O; Isaeva, E V

    2015-01-01

    Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.

  3. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available The translocation of synaptic Zn(2+ to the cytosolic compartment has been studied to understand Zn(2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+ in the hippocampus was induced with clioquinol (CQ, a zinc ionophore. Zn(2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+ and/or the preferential vulnerability to Zn(2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+. The present study indicates that the transient increase in cytosolic Zn(2+ in CA1 pyramidal neurons reversibly impairs object recognition memory.

  4. Simple, biologically-constrained CA1 pyramidal cell models using an intact, whole hippocampus context [v1; ref status: indexed, http://f1000r.es/37u

    Directory of Open Access Journals (Sweden)

    Katie A. Ferguson

    2014-05-01

    Full Text Available The hippocampus is a heavily studied brain structure due to its involvement in learning and memory. Detailed models of excitatory, pyramidal cells in hippocampus have been developed using a range of experimental data. These models have been used to help us understand, for example, the effects of synaptic integration and voltage gated channel densities and distributions on cellular responses. However, these cellular outputs need to be considered from the perspective of the networks in which they are embedded. Using modeling approaches, if cellular representations are too detailed, it quickly becomes computationally unwieldy to explore large network simulations. Thus, simple models are preferable, but at the same time they need to have a clear, experimental basis so as to allow physiologically based understandings to emerge. In this article, we describe the development of simple models of CA1 pyramidal cells, as derived in a well-defined experimental context of an intact, whole hippocampus preparation expressing population oscillations. These models are based on the intrinsic properties and frequency-current profiles of CA1 pyramidal cells, and can be used to build, fully examine, and analyze large networks.

  5. Simple, biologically-constrained CA1 pyramidal cell models using an intact, whole hippocampus context [v2; ref status: indexed, http://f1000r.es/5fu

    Directory of Open Access Journals (Sweden)

    Katie A. Ferguson

    2015-06-01

    Full Text Available The hippocampus is a heavily studied brain structure due to its involvement in learning and memory. Detailed models of excitatory, pyramidal cells in hippocampus have been developed using a range of experimental data. These models have been used to help us understand, for example, the effects of synaptic integration and voltage gated channel densities and distributions on cellular responses. However, these cellular outputs need to be considered from the perspective of the networks in which they are embedded. Using modeling approaches, if cellular representations are too detailed, it quickly becomes computationally unwieldy to explore large network simulations. Thus, simple models are preferable, but at the same time they need to have a clear, experimental basis so as to allow physiologically based understandings to emerge. In this article, we describe the development of simple models of CA1 pyramidal cells, as derived in a well-defined experimental context of an intact, whole hippocampus preparation expressing population oscillations. These models are based on the intrinsic properties and frequency-current profiles of CA1 pyramidal cells, and can be used to build, fully examine, and analyze large networks.

  6. Electrophysiological actions of cyclosporin A and tacrolimus on rat hip-pocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Yong YU; Xue-qin CHEN; Yao-yuan CUI; Guo-yuan HU

    2007-01-01

    Aim: The aim of the present study was to investigate the electrophysiological actions of cyclosporin A (CsA) and tacrolimus (FK506) on neurons in the brain, and to elucidate the relevant mechanisms. Methods: Whole-cell current-clamp recording was made in CA1 pyramidal neurons in rat hippocampal slices; whole- cell voltage-clamp recording was made in dissociated hippocampal CA1 pyrami- dal neurons of rats. Results: CsA (100 μmol/L) and FKS06 (50 μmol/L) did not significantly alter the passive electrical properties of hippocampal CA1 pyramidal neurons, but slowed down the repolarizing phase of the action potential. CsA (10-100 μmol/L) selectively inhibited the delayed rectifier K~ current (IK,) in a concentration-dependent manner. CsA did not affect the kinetic properties of IK. Intracellular dialysis of CsA (100 μmol/L) had no effect on IK. The inhibition of IK by CsA (100/μmol/L) persisted under the low Ca2+ conditions that blocked the basal activity of calcineurin. Conclusion: CsA exerted calcineurin-independent inhibition on the IK in rat hippocampal pyramidal neurons. Taken together with our previous finding with FK506, it is conceivable that the spike broadening caused by the immunosuppressant drugs is due to direct inhibition on the IK.

  7. Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice.

    Science.gov (United States)

    Hulse, Brad K; Moreaux, Laurent C; Lubenov, Evgueniy V; Siapas, Athanassios G

    2016-02-17

    Ripples are high-frequency oscillations associated with population bursts in area CA1 of the hippocampus that play a prominent role in theories of memory consolidation. While spiking during ripples has been extensively studied, our understanding of the subthreshold behavior of hippocampal neurons during these events remains incomplete. Here, we combine in vivo whole-cell and multisite extracellular recordings to characterize the membrane potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the subthreshold depolarization during ripples is uncorrelated with the net excitatory input to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the circuit mechanism keeping most neurons silent during ripples. On a finer timescale, the phase delay between intracellular and extracellular ripple oscillations varies systematically with membrane potential. Such smoothly varying delays are inconsistent with models of intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations.

  8. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Sooyun Kim

    Full Text Available Oriens-lacunosum moleculare (O-LM interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.

  9. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.

    Science.gov (United States)

    Kim, Sooyun

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.

  10. Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation.

    Science.gov (United States)

    Yamada-Hanff, Jason; Bean, Bruce P

    2013-09-18

    Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current-voltage curve was dominated by inward TTX-sensitive persistent sodium current (I(NaP)) that activated near -75 mV and increased steeply with depolarization. In control, total membrane current was net outward (hyperpolarizing) near -70 mV so that cells had a stable resting potential. Muscarinic stimulation activated a small nonselective cation current so that total membrane current near -70 mV shifted to become barely net inward (depolarizing). The small depolarization triggers regenerative activation of I(NaP), which then depolarizes the cell from -70 mV to spike threshold. We quantified the relative contributions of I(NaP), hyperpolarization-activated cation current (I(h)), and calcium current to pacemaking by using the cell's own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substantial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium current were minimal. Thus, spontaneous activity is driven primarily by activation of I(NaP) in a positive feedback loop starting near -70 mV and providing increasing inward current to threshold. These results show that the pacemaking "engine" from I(NaP) is an inherent property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near -70 mV, as by muscarinic stimulation.

  11. Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus

    OpenAIRE

    Sooyun Kim

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive ...

  12. Metrifonate decreases sI(AHP) in CA1 pyramidal neurons in vitro.

    Science.gov (United States)

    Power, J M; Oh, M M; Disterhoft, J F

    2001-01-01

    Metrifonate, a cholinesterase inhibitor, has been shown to enhance learning in aging rabbits and rats, and to alleviate the cognitive deficits observed in Alzheimer's disease patients. We have previously determined that bath application of metrifonate reduces the spike frequency adaptation and postburst afterhyperpolarization (AHP) in rabbit CA1 pyramidal neurons in vitro using sharp electrode current-clamp recording. The postburst AHP and accommodation observed in current clamp are the result of four slow outward potassium currents (sI(AHP), I(AHP), I(M), and I(C)) and the hyperpolarization activated mixed cation current, I(h). We recorded from visually identified CA1 hippocampal pyramidal neurons in vitro using whole cell voltage-clamp technique to better isolate and characterize which component currents of the AHP are affected by metrifonate. We observed an age-related enhancement of the slow component of the AHP tail current (sI(AHP)), but not of the fast decaying component of the AHP tail current (I(AHP), I(M), and I(C)). Bath perfusion of metrifonate reduced sI(AHP) at concentrations that cause a reduction of the AHP and accommodation in current-clamp recordings, with no apparent reduction of I(AHP), I(M), and I(C). The functional consequences of metrifonate administration are apparently mediated solely through modulation of the sI(AHP).

  13. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures.

    OpenAIRE

    Dinocourt, Celine; Petanjek, Zdravko; Freund, Tamas,; Ben-Ari, Yezekiel; Esclapez, Monique

    2003-01-01

    International audience; In the pilocarpine model of chronic limbic seizures, vulnerability of GABAergic interneurons to excitotoxic damage has been reported in the hippocampal CA1 region. However, little is known about the specific types of interneurons that degenerate in this region. In order to characterize these interneurons, we performed quantitative analyses of the different populations of GABAergic neurons labeled for their peptide or calcium-binding protein content. Our data demonstrat...

  14. 慢性脑缺血大鼠海马CA1区锥体细胞树突形态及树突棘密度的变化%Changes of dendritic morphology and spine density in hippocampal CA1 pyramidal cells of chronic cerebral ischemic rats

    Institute of Scientific and Technical Information of China (English)

    贾贺; 张博爱; 刘宇; 张小敏; 姬亚杰; 李星; 刘荣丽

    2012-01-01

    目的:研究慢性脑缺血大鼠海马CA1区锥体细胞树突形态及树突棘密度的变化.方法:对大鼠进行双侧颈总动脉永久性结扎(2VO)制备慢性脑缺血模型,分别于2周、4周、8周通过Morris水迷宫对各组大鼠进行行为学评价,筛选造模成功大鼠,进行Golgi染色,光镜下观察海马CA1区锥体细胞树突的分支、长度及树突棘密度的变化.结果:与对照组相比,4周、8周模型组树突的分支及长度显著减少(P<0.01),各周模型组树突棘的密度均有显著减少(P<0.01);模型组内随着缺血时间延长,树突的分支及长度、树突棘密度均显著减少(P<0.05).结论:慢性脑缺血可导致海马CA1区锥体细胞树突及树突棘损伤性变化,从而构成进展性认知功能障碍的病理生理学基础.%AIM:To investigate the changes of dendritic morphology and spine density in hippocampal CA1 pyramidal cells of the chronic cerebral ischemic rats. METHODS:The model of chronic cerebral ischemia was established by permanent occlusion of the bilateral common carotid arteries ( 2VO ) in rats. Two weeks, 4 weeks or 8 weeks later, the behavior of the rats in each group was evaluated through the Morris water maze to select the successful modeling, and the brains were collected for processing Golgi staining. The changes in dendritic branch and length, and spine density in hippocampal CA1 pyramidal cells were observed under optical microscope. RESULTS: Compared with sham - operated group, dendritic branch and length in model group was significantly reduced in 4 -week group and 8 -week group ( P <0. 01 ), and spine density in model group were significantly reduced in 2 -week, 4 -week and 8 -week groups ( P <0. 01 ). With prolonged ischemia, dendritic branch and length, and spine density in model group were all significantly reduced ( P < 0. 05 ). CONCLUSION: Chronic cerebral ischemia leads to traumatic changes in dendrites and spines in hippocampal CA1 pyramidal cells, which

  15. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons.

    Science.gov (United States)

    King, Brian; Rizwan, Arsalan P; Asmara, Hadhimulya; Heath, Norman C; Engbers, Jordan D T; Dykstra, Steven; Bartoletti, Theodore M; Hameed, Shahid; Zamponi, Gerald W; Turner, Ray W

    2015-04-14

    Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies the sAHP has defied identification for decades. Here, we show that intermediate-conductance Ca2+-dependent K+ (IKCa) channels underlie the sAHP generated by trains of synaptic input or postsynaptic stimuli in CA1 hippocampal pyramidal cells. These findings are significant in providing a molecular identity for the sAHP of central neurons that will identify pharmacological tools capable of potentially modifying the several behavioral or disease states associated with the sAHP.

  16. Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Shojaei, A; Semnanian, S; Janahmadi, M; Moradi-Chameh, H; Firoozabadi, S M; Mirnajafi-Zadeh, J

    2014-11-01

    The mechanisms underlying antiepileptic or antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS) are poorly understood. In this study, we investigated the effect of rTMS applied during rapid amygdala kindling on some electrophysiological properties of hippocampal CA1 pyramidal neurons. Male Wistar rats were kindled by daily electrical stimulation of the basolateral amygdala in a semi-rapid manner (12 stimulations/day) until they achieved stage-5 seizure. One group (kindled+rTMS (KrTMS)) of animals received rTMS (1Hz for 4min) 5min after termination of daily kindling stimulations. Twenty four hours following the last kindling stimulation electrophysiological properties of hippocampal CA1 pyramidal neurons were investigated using whole-cell patch-clamp technique. Amygdala kindling significantly depolarized the resting membrane potential and increased the input resistance, spontaneous firing activity, number of evoked spikes and half-width of the first evoked spike. Kindling also decreased the first-spike latency and amplitude significantly. Application of rTMS during kindling somehow prevented the development of seizures and protected CA1 pyramidal neurons of hippocampus against deleterious effect of kindling on both passive and active neuronal electrophysiological properties. Interestingly, application of rTMS alone enhanced the excitability of CA1 pyramidal neurons significantly. Based on the results of our study, it may be suggested that rTMS exerts its anticonvulsant effect, in part, through preventing the amygdala kindling-induced changes in electrophysiological properties of hippocampal CA1 pyramidal neurons. It seems that rTMS exerts protective effects on the neural circuits involved in spreading the seizures from the focus to other parts of the brain.

  17. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    Full Text Available BACKGROUND: The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. METHODOLOGY/PRINCIPAL FINDINGS: An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the

  18. Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1--an anatomical study in the rat.

    Science.gov (United States)

    Kajiwara, Riichi; Wouterlood, Floris G; Sah, Anupam; Boekel, Amber J; Baks-te Bulte, Luciënne T G; Witter, Menno P

    2008-01-01

    The entorhinal cortex (EC) conveys information to hippocampal field CA1 either directly by way of projections from principal neurons in layer III, or indirectly by axons from layer II via the dentate gyrus, CA3, and Schaffer collaterals. These two pathways differentially influence activity in CA1, yet conclusive evidence is lacking whether and to what extent they converge onto single CA1 neurons. Presently we studied such convergence. Different neuroanatomical tracers injected into layer III of EC and into CA3, respectively, tagged simultaneously the direct entorhino-hippocampal fibers and the indirect innervation of CA1 neurons by Schaffer collaterals. In slices of fixed brains we intracellularly filled CA1 pyramidal cells and interneurons in stratum lacunosum-moleculare (LM) and stratum radiatum (SR). Sections of these slices were scanned in a confocal laser scanning microscope. 3D-reconstruction was used to determine whether boutons of the labeled input fibers were in contact with the intracellularly filled neurons. We analyzed 12 pyramidal neurons and 21 interneurons. Perforant path innervation to pyramidal neurons in our material was observed to be denser than that from CA3. All pyramidal neurons and 17 of the interneurons received contacts of both perforant pathway and Schaffer input on their dendrites and cell bodies. Four interneurons, which were completely embedded in LM, received only labeled perforant pathway input. Thus, we found convergence of both projection systems on single CA1 pyramidal and interneurons with dendrites that access the layers where perforant pathway fibers and Schaffer collaterals end.

  19. Computational modeling reveals dendritic origins of GABA(A-mediated excitation in CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Naomi Lewin

    Full Text Available GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABA(A-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABA(A receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABA(A-mediated excitation is complex. Experimentally it is difficult to determine the ionic mechanisms of depolarizing current since potassium transients are challenging to isolate pharmacologically and much GABA signaling occurs in small, difficult to measure, dendritic compartments. To address this problem and determine plausible ionic mechanisms of GABA(A-mediated excitation, we built a detailed biophysically realistic model of the CA1 pyramidal neuron that includes processes critical for ion homeostasis. Our results suggest that in dendritic compartments, but not in the somatic compartments, chloride buildup is sufficient to cause dramatic depolarization of the GABA(A reversal potential and dominating bicarbonate currents that provide a substantial current source to drive whole-cell depolarization. The model simulations predict that extracellular K(+ transients can augment GABA(A-mediated excitation, but not cause it. Our model also suggests the potential for GABA(A-mediated excitation to promote network synchrony depending on interneuron synapse location - excitatory positive-feedback can occur when interneurons synapse onto distal dendritic compartments, while interneurons projecting to the perisomatic

  20. Persistent sodium current properties in hippocampal CA1 pyramidal neurons of young and adult rats.

    Science.gov (United States)

    Lunko, Oleksii; Isaev, Dmytro; Maximyuk, Oleksandr; Ivanchick, Gleb; Sydorenko, Vadym; Krishtal, Oleg; Isaeva, Elena

    2014-01-24

    Persistent tetrodotoxin-sensitive sodium current (INaP) plays an important role in cellular and neuronal network excitability in physiological conditions and under different pathological circumstances. However, developmental changes in INaP properties remain largely unclear. In the present study using whole cell patch clamp technique we evaluated INaP properties in CA1 hippocampal pyramidal neurons isolated from young (postnatal day (P) 12-16) and adult (P60-75) rats. We show that the INaP density is substantially larger in the adult group. Although INaP inactivation characteristics were found to be similar in both groups, voltage dependence of INaP activation is shifted to more negative membrane potentials (young: -48.6±0.5mV vs. adult: -52.4±0.2mV, p<0.01). Our data indicates the increase of INaP contribution in the basal membrane sodium conductivity in the mature hippocampus.

  1. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  2. Effects of lithium chloride on outward potassium currents in acutely isolated hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaofeng; DU Huizhi; YANG Pin

    2006-01-01

    Although lithium possesses neuroprotective functions, the molecular mechanism underlying its actions has not been fully elucidated. In the present paper, the effects of lithium chloride on voltage-dependent potassium currents in the CA1 pyramidal neurons acutely isolated from rat hippocampus were studied using the whole-cell patch-clamp technique. Depolarizing test pulses activated two components of outward potassium currents: a rapidly activating and inactivating component, IA and a delayed component, IK. Results showed that lithium chloride increased the amplitude of IA in a concentration-dependent manner. Half enhancement concentration (EC50) was 22.80±5.45 μmol·L-1. Lithium chloride of 25 μmol·L-1 shifted the steady-state activation curve and inactivation curve of IA to more negative potentials, but mainly affected the activation kinetics. The amplitude and the activation processes of IK were not affected by lithium chloride. The effects of lithium chloride on potassium channel appear to possess neuroprotective properties by Ca2+-lowing effects modulate neuronal excitability by activating IA in rat hippocampal neurons.

  3. Place cells are more strongly tied to landmarks in deep than in superficial CA1

    Science.gov (United States)

    Geiller, Tristan; Fattahi, Mohammad; Choi, June-Seek; Royer, Sébastien

    2017-01-01

    Environmental cues affect place cells responses, but whether this information is integrated versus segregated in distinct hippocampal cell populations is unclear. Here, we show that, in mice running on a treadmill enriched with visual-tactile landmarks, place cells are more strongly controlled by landmark-associated sensory inputs in deeper regions of CA1 pyramidal layer (CA1d). Many cells in CA1d display several firing fields correlated with landmarks, mapping positions slightly before or within the landmarks. Supporting direct involvement of sensory inputs, their firing fields show instantaneous responses to landmark manipulations, persist through change of context, and encode landmark identity and saliency. In contrast, cells located superficially in the pyramidal layer have single firing fields, are context specific and respond with slow dynamics to landmark manipulations. These findings suggest parallel and anatomically segregated circuits within CA1 pyramidal layer, with variable ties to landmarks, allowing flexible representation of spatial and non-spatial information. PMID:28218283

  4. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

    Science.gov (United States)

    Hoffman, D A; Johnston, D

    1998-05-15

    We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kinases would be of significant interest. We investigated the effects of activators of cAMP-dependent protein kinase (PKA) and the Ca2+-dependent phospholipid-sensitive protein kinase (PKC) on K+ channels in cell-attached patches from the distal dendrites of hippocampal CA1 pyramidal neurons. Inclusion of the membrane-permeant PKA activators 8-bromo-cAMP (8-br-cAMP) or forskolin in the dendritic patch pipette resulted in a depolarizing shift in the activation curve for the transient channels of approximately 15 mV. Activation of PKC by either of two phorbol esters also resulted in a 15 mV depolarizing shift of the activation curve. Neither PKA nor PKC activation affected the sustained or slowly inactivating component of the total outward current. This downregulation of transient K+ channels in the distal dendrites may be responsible for some of the frequently reported increases in cell excitability found after PKA and PKC activation. In support of this hypothesis, we found that activation of either PKA or PKC significantly increased the amplitude of back-propagating action potentials in distal dendrites.

  5. 常压高氧处理对丙戊酸钠孤独症模型鼠学习记忆能力及海马CA1区锥体细胞形态学的影响%Effects of normobaric hyperoxia on the learning and memory abilities of valproic acid autism model rats and the morphology of pyramidal cells in hippocampal CA1 region

    Institute of Scientific and Technical Information of China (English)

    马遥; 衣明纪; 李音; 付伟伟; 万金娥

    2012-01-01

    目的 探讨常压高氧处理对丙戊酸钠(VPA)孤独症模型鼠学习记忆能力及海马CA1区锥体细胞形态学的影响.方法 Wistar大鼠怀孕第12.5天腹腔注射600 mg/kgVPA后所产下的子代雄鼠,根据子鼠睁眼时间、行为表现、断乳时体质量,结合生后第28天采用Y型电迷宫测试其学习记忆能力,获得40只造模成功的孤独症模型雄鼠,随机选取20只分为常压高氧模型组(A组)、常压空气模型组(B组),每组10只;选取Wistar孕鼠同期腹腔注射等量生理盐水后所产下的10只子代雄鼠作为常压空气正常组(C组).A组每日1 h,持续7d常压高氧治疗;B、C组常规喂养.3组子代雄鼠生后35 d时复测其学习记忆能力,并采用免疫组化和图像分析技术检测模型鼠海马CA1区锥体细胞形态学改变.结果 常压高氧处理孤独症模型鼠Y型电迷宫测试的尝试次数少于治疗前尝试次数[(31.15±0.99)次,(31.54 ±0.97)次,(t =2.739,P=0.018)],再现次数多于治疗前再现次数[(3.00±0.58)次,(2.69 ±0.48)次,t-2.309,P=0.040].A组治疗后尝试次数少于B组同期尝试次数(t=2.583,P=0.016),再现次数与B组同期无差异(t=0.244,P=0.810).孤独症模型鼠海马CA1区锥体神经元细胞发生凋亡,常压高氧处理后细胞凋亡减少、正常形态细胞数增多.结论 常压高氧处理可以提高丙戊酸钠孤独症模型鼠的学习记忆能力,减少海马CA1区锥体神经元凋亡.%Objective To investigate the effects of normobaric hyperoxia intervention on learning and memory abilities of valproic acid(VPA) autism model rats and the morphology of pyramidal cells in hippocampus CA1 area.Methods Animal model groups of autism were obtained in male offspring of the Wistar rats that received intraperitoneal injection of 600 mg/kg VPA at the 12.5 day after pregnancy.According to the eye opening time,behavior,weaning weight and the learning and memory abilities which were evaluated by the Y electricity maze

  6. Zbtb20-Induced CA1 Pyramidal Neuron Development and Area Enlargement in the Cerebral Midline Cortex of Mice

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Blom, Jonas B; Noraberg, Jens

    2010-01-01

    that are innervated by Schaffer collateral projections in ectopic strata oriens and radiatum. The Zbtb20-transformed neurons express Bcl11B, Satb2, and Calbindin-D28k, which are markers of adult CA1 pyramidal neurons. Downregulation of Zbtb20 expression by RNA interference impairs the normal maturation of CA1...... pyramidal neurons resulting in deficiencies in Calbindin-D28k expression and in reduced apical dendritic arborizations in stratum lacunosum moleculare. Overall, the results show that Zbtb20 is required for various aspects of CA1 pyramidal neuron development such as the postnatal extension of apical...... dendritic arbors in the distal target zone and the subtype differentiation of Calbindin-D28k-positive subsets. They further suggest that Zbtb20 plays a role in arealization of the midline cortex....

  7. Changes in membrane properties of CA1 pyramidal neurons after transient forebrain ischemia in vivo.

    Science.gov (United States)

    Gao, T M; Pulsinelli, W A; Xu, Z C

    1999-03-01

    We have previously identified three distinct populations of CA1 pyramidal neurons after reperfusion based on differences in synaptic response, and named these late depolarizing postsynaptic potential neurons (enhanced synaptic transmission), non-late depolarizing postsynaptic potential and small excitatory postsynaptic neurons (depressed synaptic transmission). In the present study, spontaneous activity and membrane properties of CA1 neurons were examined up to 48 h following approximately 14 min ischemic depolarization using intracellular recording and staining techniques in vivo. In comparison with preischemic properties, the spontaneous firing rate and the spontaneous synaptic activity of CA1 neurons decreased significantly during reperfusion; spontaneous synaptic activity ceased completely 36-48 h after reperfusion, except for a low level of activity which persisted in non-late depolarizing postsynaptic potential neurons. Neuronal hyperactivity as indicated by increasing firing rate was never observed in the present study. The membrane input resistance and time constant decreased significantly in late depolarizing postsynaptic potential neurons at 24-48 h reperfusion. In contrast, similar changes were not observed in non-late depolarizing postsynaptic potential neurons. The rheobase, spike threshold and spike frequency adaptation in late depolarizing postsynaptic potential neurons increased progressively following reperfusion. Only a transient increase in rheobase and spike threshold was detected in non-late depolarizing postsynaptic potential neurons and spike frequency adaptation remained unchanged in these neurons. The amplitude of fast afterhyperpolarization increased in all neurons after reperfusion, with the smallest increment in non-late depolarizing postsynaptic potential neurons. Small excitatory postsynaptic potential neurons shared similar changes to those of late depolarizing postsynaptic potential neurons. These results suggest that the enhancement

  8. The protective role of ascorbic acid on hippocampal CA1 pyramidal neurons in a rat model of maternal lead exposure.

    Science.gov (United States)

    Sepehri, Hamid; Ganji, Farzaneh

    2016-07-01

    Oxidative stress is a major pathogenic mechanism of lead neurotoxicity. The antioxidant ascorbic acid protects hippocampal pyramidal neurons against cell death during congenital lead exposure; however, critical functions like synaptic transmission, integration, and plasticity depend on preservation of dendritic and somal morphology. This study was designed to examine if ascorbic acid also protects neuronal morphology during developmental lead exposure. Timed pregnant rats were divided into four treatment groups: (1) control, (2) 100mg/kg ascorbic acid once a day via gavage, (3) 0.05% lead acetate in drinking water, and (4) 0.05% lead+100mg/kg oral ascorbic acid. Brains of eight male pups (P25) per treatment group were processed for Golgi staining. Changes in hippocampal CA1 pyramidal neurons' somal size were estimated by cross-sectional area and changes in dendritic arborization by Sholl's analysis. One-way ANOVA was used to compare results among treatment groups. Lead-exposed pups exhibited a significant decrease in somal size compared to controls (Pascorbic acid. Sholl's analysis revealed a significant increase in apical dendritic branch points near cell body (PAscorbic acid significantly but only partially reversed the somal and dendritic damage caused by developmental lead exposure. Oxidative stress thus contributes to lead neurotoxicity but other pathogenic mechanisms are also involved.

  9. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  10. Electrophysiological effects of SKF83959 on hippocampal CA1 pyramidal neurons: potential mechanisms for the drug's neuroprotective effects.

    Directory of Open Access Journals (Sweden)

    Hong-Yuan Chu

    Full Text Available Although the potent anti-parkinsonian action of the atypical D₁-like receptor agonist SKF83959 has been attributed to the selective activation of phosphoinositol(PI-linked D₁ receptor, whereas the mechanism underlying its potent neuroprotective effect is not fully understood. In the present study, the actions of SKF83959 on neuronal membrane potential and neuronal excitability were investigated in CA1 pyramidal neurons of rat hippocampal slices. SKF83959 (10-100 µM caused a concentration-dependent depolarization, associated with a reduction of input resistance in CA1 pyramidal neurons. The depolarization was blocked neither by antagonists for D₁, D₂, 5-HT(2A/2C receptors and α₁-adrenoceptor, nor by intracellular dialysis of GDP-β-S. However, the specific HCN channel blocker ZD7288 (10 µM antagonized both the depolarization and reduction of input resistance caused by SKF83959. In voltage-clamp experiments, SKF83959 (10-100 µM caused a concentration-dependent increase of Ih current in CA1 pyramidal neurons, which was independent of D₁ receptor activation. Moreover, SKF83959 (50 µM caused a 6 mV positive shift in the activation curve of Ih and significantly accelerated the activation of Ih current. In addition, SKF83959 also reduced the neuronal excitability of CA1 pyramidal neurons, which was manifested by the decrease in the number and amplitude of action potentials evoked by depolarizing currents, and by the increase of firing threshold and rhoebase current. The above results suggest that SKF83959 increased Ih current through a D₁ receptor-independent mechanism, which led to the depolarization of hippocampal CA1 pyramidal neurons. These findings provide a novel mechanism for the drug's neuroprotective effects, which may contributes to its therapeutic benefits in Parkinson's disease.

  11. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons.

    Science.gov (United States)

    Lenz, Maximilian; Platschek, Steffen; Priesemann, Viola; Becker, Denise; Willems, Laurent M; Ziemann, Ulf; Deller, Thomas; Müller-Dahlhaus, Florian; Jedlicka, Peter; Vlachos, Andreas

    2015-11-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human brain can lead to long-lasting changes in cortical excitability. However, the cellular and molecular mechanisms which underlie rTMS-induced plasticity remain incompletely understood. Here, we used repetitive magnetic stimulation (rMS) of mouse entorhino-hippocampal slice cultures to study rMS-induced plasticity of excitatory postsynapses. By employing whole-cell patch-clamp recordings of CA1 pyramidal neurons, local electrical stimulations, immunostainings for the glutamate receptor subunit GluA1 and compartmental modeling, we found evidence for a preferential potentiation of excitatory synapses on proximal dendrites of CA1 neurons (2-4 h after stimulation). This rMS-induced synaptic potentiation required the activation of voltage-gated sodium channels, L-type voltage-gated calcium channels and N-methyl-D-aspartate-receptors. In view of these findings we propose a cellular model for the preferential strengthening of excitatory synapses on proximal dendrites following rMS in vitro, which is based on a cooperative effect of synaptic glutamatergic transmission and postsynaptic depolarization.

  12. Loss of Functional A-Type Potassium Channels in the Dendrites of CA1 Pyramidal Neurons from a Mouse Model of Fragile X Syndrome

    OpenAIRE

    Routh, Brandy N.; Johnston, Daniel; Brager, Darrin H.

    2013-01-01

    Despite the critical importance of voltage-gated ion channels in neurons, very little is known about their functional properties in Fragile X syndrome: the most common form of inherited cognitive impairment. Using three complementary approaches, we investigated the physiological role of A-type K+ currents (IKA) in hippocampal CA1 pyramidal neurons from fmr1-/y mice. Direct measurement of IKA using cell-attached patch-clamp recordings revealed that there was significantly less IKA in the dendr...

  13. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.

    Science.gov (United States)

    Yamada-Hanff, Jason; Bean, Bruce P

    2015-10-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current-which amplifies EPSPs-was most effectively recruited by rapid voltage changes, while Ih-which blunts EPSPs-was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons.

  14. The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2015-10-01

    Full Text Available The mouse subventricular zone (SVZ generates large numbers of neuroblasts, which migrate in a distinct pathway, the rostral migratory stream (RMS, and replace specific interneurons in the olfactory bulb (OB. Here, we introduce an organotypic slice culture model that directly connects the RMS to the hippocampus as a new destination. RMS neuroblasts widely populate the hippocampus and undergo cellular differentiation. We demonstrate that RMS cells give rise to various neuronal subtypes and, surprisingly, to CA1 pyramidal neurons. Pyramidal neurons are typically generated before birth and are lost in various neurological disorders. Hence, this unique slice culture model enables us to investigate their postnatal genesis under defined in vitro conditions from the RMS, an unanticipated source for hippocampal pyramidal neurons.

  15. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    Science.gov (United States)

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  16. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons.

    Science.gov (United States)

    Moradi Chameh, Homeira; Janahmadi, Mahyar; Semnanian, Saeed; Shojaei, Amir; Mirnajafi-Zadeh, Javad

    2015-05-01

    In this study, the effect of repetitive transcranial magnetic stimulation (rTMS) on the kindling induced changes in electrophysiological firing properties of hippocampal CA1 pyramidal neurons was investigated. Male Wistar rats were kindled by daily electrical stimulation of the basolateral amygdala in a semi-rapid manner (12 stimulations/day) until they achieved stage-5 seizure. One group (kindled+rTMS (KrTMS)) of animals received rTMS (240 pulses at 1 Hz) at 5 min after termination of daily kindling stimulations. Twenty-four hours following the last kindling stimulation electrophysiological properties of hippocampal CA1 pyramidal neurons were investigated using a whole-cell patch clamp technique, under current clamp condition. Amygdala kindling significantly decreased the adaptation index, post-afterhyperpolarization, rheobase current, utilization time, and delay to the first rebound spike. It also caused an increase in the voltage sag, number of rebound spikes and number of evoked action potential. Results of the present study revealed that application of rTMS following kindling stimulations had antiepileptogenic effects. In addition, application of rTMS prevented hyperexcitability of CA1 pyramidal neurons induced by kindling and conserved the normal neuronal firing.

  17. Loss of functional A-type potassium channels in the dendrites of CA1 pyramidal neurons from a mouse model of fragile X syndrome.

    Science.gov (United States)

    Routh, Brandy N; Johnston, Daniel; Brager, Darrin H

    2013-12-11

    Despite the critical importance of voltage-gated ion channels in neurons, very little is known about their functional properties in Fragile X syndrome: the most common form of inherited cognitive impairment. Using three complementary approaches, we investigated the physiological role of A-type K(+) currents (I(KA)) in hippocampal CA1 pyramidal neurons from fmr1-/y mice. Direct measurement of I(KA) using cell-attached patch-clamp recordings revealed that there was significantly less I(KA) in the dendrites of CA1 neurons from fmr1-/y mice. Interestingly, the midpoint of activation for A-type K(+) channels was hyperpolarized for fmr1-/y neurons compared with wild-type, which might partially compensate for the lower current density. Because of the rapid time course for recovery from steady-state inactivation, the dendritic A-type K(+) current in CA1 neurons from both wild-type and fmr1-/y mice is likely mediated by K(V)4 containing channels. The net effect of the differences in I(KA) was that back-propagating action potentials had larger amplitudes producing greater calcium influx in the distal dendrites of fmr1-/y neurons. Furthermore, CA1 pyramidal neurons from fmr1-/y mice had a lower threshold for LTP induction. These data suggest that loss of I(KA) in hippocampal neurons may contribute to dendritic pathophysiology in Fragile X syndrome.

  18. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory

    Science.gov (United States)

    Niu, Yang; Dai, Zhonghua; Liu, Wenxue; Zhang, Cheng; Yang, Yanrui; Guo, Zhenzhen; Li, Xiaoyu; Xu, Chenchang; Huang, Xiahe; Wang, Yingchun; Shi, Yun S; Liu, Jia-Jia

    2017-01-01

    SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI: http://dx.doi.org/10.7554/eLife.20991.001 PMID:28134614

  19. Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Malik, Ruchi; Chattarji, Sumantra

    2012-03-01

    Environmental enrichment (EE) is a well-established paradigm for studying naturally occurring changes in synaptic efficacy in the hippocampus that underlie experience-induced modulation of learning and memory in rodents. Earlier research on the effects of EE on hippocampal plasticity focused on long-term potentiation (LTP). Whereas many of these studies investigated changes in synaptic weight, little is known about potential contributions of neuronal excitability to EE-induced plasticity. Here, using whole-cell recordings in hippocampal slices, we address this gap by analyzing the impact of EE on both synaptic plasticity and intrinsic excitability of hippocampal CA1 pyramidal neurons. Consistent with earlier reports, EE increased contextual fear memory and dendritic spine density on CA1 cells. Furthermore, EE facilitated LTP at Schaffer collateral inputs to CA1 pyramidal neurons. Analysis of the underlying causes for enhanced LTP shows EE to increase the frequency but not amplitude of miniature excitatory postsynaptic currents. However, presynaptic release probability, assayed using paired-pulse ratios and use-dependent block of N-methyl-d-aspartate receptor currents, was not affected. Furthermore, CA1 neurons fired more action potentials (APs) in response to somatic depolarization, as well as during the induction of LTP. EE also reduced spiking threshold and after-hyperpolarization amplitude. Strikingly, this EE-induced increase in excitability caused the same-sized excitatory postsynaptic potential to fire more APs. Together, these findings suggest that EE may enhance the capacity for plasticity in CA1 neurons, not only by strengthening synapses but also by enhancing their efficacy to fire spikes-and the two combine to act as an effective substrate for amplifying LTP.

  20. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  1. Responses of CA1 pyramidal neurons in rat hippocampus to transient forebrain ischemia: an in vivo intracellular recording study.

    Science.gov (United States)

    Xu, Z C; Pulsinelli, W A

    1994-04-25

    The electrophysiological responses of CA1 pyramidal neurons to 5 min forebrain ischemia were studied with intracellular recording and staining techniques in vivo. The baseline membrane potential rapidly depolarized to approximately -20 mV about 3 min after the onset of ischemia and began to repolarize 1-3 min after recirculation. The amplitude of this ischemic depolarization (ID) was related directly to the severity of ischemia and its latency of onset was inversely related to brain temperature. Spontaneous synaptic activity ceased shortly after ischemia onset while the evoke synaptic potentials lasted until shortly before the onset of ID. Inhibitory postsynaptic potentials (IPSPs) disappeared earlier than excitatory postsynaptic potentials (EPSPs) and the membrane input resistance of CA1 neurons increased after the onset of ischemia.

  2. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways.

    Science.gov (United States)

    Taylor, Ruth D T; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.

  3. Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons.

    Science.gov (United States)

    Wittner, Lucia; Henze, Darrell A; Záborszky, László; Buzsáki, György

    2006-09-01

    The specific connectivity among principal cells and interneurons determines the flow of activity in neuronal networks. To elucidate the connections between hippocampal principal cells and various classes of interneurons, CA3 pyramidal cells were intracellularly labelled with biocytin in anaesthetized rats and the three-dimensional distribution of their axon collaterals was reconstructed. The sections were double-stained for substance P receptor (SPR)- or metabotropic glutamate receptor 1alpha (mGluR-1alpha)-immunoreactivity to investigate interneuron targets of the CA3 pyramidal cells. SPR-containing interneurons represent a large portion of the GABAergic population, including spiny and aspiny classes. Axon terminals of CA3 pyramidal cells contacted SPR-positive interneuron dendrites in the hilus and in all hippocampal strata in both CA3 and CA1 regions (7.16% of all boutons). The majority of axons formed single contacts (87.5%), but multiple contacts (up to six) on single target neurons were also found. CA3 pyramidal cell axon collaterals innervated several types of morphologically different aspiny SPR-positive interneurons. In contrast, spiny SPR-interneurons or mGluR-1alpha-positive interneurons in the hilus, CA3 and CA1 regions were rarely contacted by the filled pyramidal cells. These findings indicate a strong target selection of CA3 pyramidal cells favouring the activation of aspiny classes of interneurons.

  4. Prenatal morphine exposure reduces pyramidal neurons in CA1, CA2 and CA3 subfields of mice hippocampus

    Directory of Open Access Journals (Sweden)

    Soraya Ghafari

    2014-03-01

    Full Text Available Objective(s:This study was carried out to evaluate the effect of maternal morphine exposure during gestational and lactation period on pyramidal neurons of hippocampus in 18 and 32 day mice offspring. Materials and Methods: Thirty female mice were randomly allocated into cases and controls. In case group, animals received morphinesulfate 10 mg/kg.body weight intraperitoneally during 7 days before mating, gestational period (GD 0-21, 18 and 32 days after delivery in the experimental groups. The control animals received an equivalent volume of normal saline. Cerebrum of six offsprings in each group was removed and stained with cresyl violet and a monoclonal antibody NeuN for immunohistochemical detection of surviving pyramidal neurons. Quantitative computer-assisted morphometric study was done on hippocampus. Results: The number of pyramidal neurons in CA1, CA2 and CA3 in treated groups was significantly reduced in postnatal day 18 and 32 (P18, P32 compared to control groups (P

  5. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.

    Directory of Open Access Journals (Sweden)

    Hui Kuang

    Full Text Available Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.

  6. Aβ induces acute depression of excitatory glutamatergic synaptic transmission through distinct phosphatase-dependent mechanisms in rat CA1 pyramidal neurons.

    Science.gov (United States)

    Yao, Wen; Zou, Hao-Jun; Sun, Da; Ren, Si-Qiang

    2013-06-17

    Beta-amyloid peptide (Aβ) has a causal role in the pathophysiology of Alzheimer's disease (AD). Recent studies indicate that Aβ can disrupt excitatory glutamatergic synaptic function at synaptic level. However, the underlying mechanisms remain obscure. In this study, we recorded evoked and spontaneous EPSCs in hippocampal CA1 pyramidal neurons via whole-cell voltage-clamping methods and found that 1 μM Aβ can induce acute depression of basal glutamatergic synaptic transmission through both presynaptic and postsynaptic dysfunction. Moreover, we also found that Aβ-induced both presynaptic and postsynaptic dysfunction can be reversed by the inhibitor of protein phosphatase 2B (PP2B), FK506, whereas only postsynaptic disruption can be ameliorated by the inhibitor of PP1/PP2A, Okadaic acid (OA). These results indicate that PP1/PP2A and PP2B have overlapping but not identical functions in Aβ-induced acute depression of excitatory glutamatergic synaptic transmission of hippocampal CA1 pyramidal neurons.

  7. Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Janardhan Prasad Bhattarai

    2014-01-01

    Full Text Available Background: In Nepali and Indian system of traditional medicine, Withania somnifera (WS is considered as a rejuvenative medicine to maintain physical and mental health and has also been shown to improve memory consolidation. Objective: In this study, a methanolic extract of WS (mWS was applied on mice hippocampal CA1 neurons to identify the receptors activated by the WS. Materials and Methods: The whole cell patch clamp recordings were performed on CA1 pyramidal neurons from immature mice (7-20 postnatal days. The cells were voltage clamped at -60 mV. Extract of WS root were applied to identify the effect of mWS. Results: The application of mWS (400 ng/μl induced remarkable inward currents (-158.1 ± 28.08 pA, n = 26 on the CA1 pyramidal neurons. These inward currents were not only reproducible but also concentration dependent. mWS-induced inward currents remained persistent in the presence of amino acid receptor blocking cocktail (AARBC containing blockers for the ionotropic glutamate receptors, glycine receptors and voltage-gated Na + channel (Control: -200.3 ± 55.42 pA, AARBC: -151.5 ± 40.58 pA, P > 0.05 suggesting that most of the responses by mWS are postsynaptic events. Interestingly, these inward currents were almost completely blocked by broad GABA A receptor antagonist, bicuculline- 20 μM (BIC (BIC: -1.46 ± 1.4 pA, P < 0.001, but only partially by synaptic GABA A receptor blocker gabazine (1 μM (GBZ: -18.26 ± 4.70 pA, P < 0.01. Conclusion: These results suggest that WS acts on synaptic/extrasynaptic GABA A receptors and may play an important role in the process of memory and neuroprotection via activation of synaptic and extrasynaptic GABA A receptors.

  8. Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia.

    Science.gov (United States)

    Lee, Jae-Chul; Tae, Hyun-Jin; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Choi, Soo Young; Bai, Hui Chen; Shin, Bich-Na; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho; Bae, Eun Joo

    2016-10-26

    Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic insults by specific mechanisms. We tested the hypothesis that IPC attenuates post-ischemic neuronal death in the gerbil hippocampal CA1 region (CA1) throughout hypoxia inducible factor-1α (HIF-1α) and its associated factors such as vascular endothelial growth factor (VEGF) and nuclear factor-kappa B (NF-κB). Lethal ischemia (LI) without IPC increased expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) in CA1 pyramidal neurons at 12 h and/or 1-day post-LI; thereafter, their expressions were decreased in the CA1 pyramidal neurons with time and newly expressed in non-pyramidal cells (pericytes), and the CA1 pyramidal neurons were dead at 5-day post-LI, and, at this point in time, their immunoreactivities were newly expressed in pericytes. In animals with IPC subjected to LI (IPC/LI)-group), CA1 pyramidal neurons were well protected, and expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) were significantly increased compared to the sham-group and maintained after LI. Whereas, treatment with 2ME2 (a HIF-1α inhibitor) into the IPC/LI-group did not preserve the IPC-mediated increases of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) expressions and did not show IPC-mediated neuroprotection. In brief, IPC protected CA1 pyramidal neurons from LI by upregulation of HIF-1α, VEGF, and p-IκB-α expressions. This study suggests that IPC increases HIF-1α expression in CA1 pyramidal neurons, which enhances VEGF expression and NF-κB activation and that IPC may be a strategy for a therapeutic intervention of cerebral ischemic injury.

  9. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Poolos, N P; Johnston, D

    1999-07-01

    Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.

  10. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    DEFF Research Database (Denmark)

    Kang, J.; Kang, N.; Yu, Y.;

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10...... min induced long-term potentiation of intrinsic neuronal excitability (LTP-IE) and a long-lasting increase in evoked EPSCs (eEPSCs) in CA1 pyramidal neurons in hippocampal slices. The increase in intrinsic neuronal excitability was a result of negative shifts in the action potential (AP) threshold...... NMDAR currents, suggesting that SR101 enhances activation of synaptic NMDARs. SR101-induced LTP-IE and potentiation of synaptic transmission triggered spontaneous neuronal firing in slices and in vivo epileptic seizures. Our results suggest that SR101 is an epileptogenic agent that long-lastingly lowers...

  11. Local Optogenetic Induction of Fast (20-40 Hz) Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity.

    Science.gov (United States)

    Dine, Julien; Genewsky, Andreas; Hladky, Florian; Wotjak, Carsten T; Deussing, Jan M; Zieglgänsberger, Walter; Chen, Alon; Eder, Matthias

    2016-01-01

    The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz) network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2) expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz) field potential oscillations in hippocampal area CA1 in vitro (at 25°C) and in vivo (i.e., slightly anesthetized NEX-Cre-ChR2 mice). As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer) and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I) oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells) and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM) in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC) in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1→PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive) P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  12. Local Optogenetic Induction of Fast (20-40 Hz Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2016-04-01

    Full Text Available The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2 expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz field potential oscillations in hippocampal area CA1 in vitro (at 25°C and in vivo (i.e., slightly anaesthetized NEX-Cre-ChR2 mice. As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  13. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo.

    Science.gov (United States)

    Gao, T M; Pulsinelli, W A; Xu, Z C

    1998-11-01

    Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to

  14. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  15. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    Science.gov (United States)

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  16. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.

    Science.gov (United States)

    Fernández de Sevilla, David; Fuenzalida, Marco; Porto Pazos, Ana B; Buño, Washington

    2007-05-01

    Pyramidal neuron dendrites express voltage-gated conductances that control synaptic integration and plasticity, but the contribution of the Ca(2+)-activated K(+)-mediated currents to dendritic function is not well understood. Using dendritic and somatic recordings in rat hippocampal CA1 pyramidal neurons in vitro, we analyzed the changes induced by the slow Ca(2+)-activated K(+)-mediated afterhyperpolarization (sAHP) generated by bursts of action potentials on excitatory postsynaptic potentials (EPSPs) evoked at the apical dendrites by perforant path-Schaffer collateral stimulation. Both the amplitude and decay time constants of EPSPs (tau(EPSP)) were reduced by the sAHP in somatic recordings. In contrast, the dendritic EPSP amplitude remained unchanged, whereas tau(EPSP) was reduced. Temporal summation was reduced and spatial summation linearized by the sAHP. The amplitude of the isolated N-methyl-D-aspartate component of EPSPs (EPSP(NMDA)) was reduced, whereas tau(NMDA) was unaffected by the sAHP. In contrast, the sAHP did not modify the amplitude of the isolated EPSP(AMPA) but reduced tau(AMPA) both in dendritic and somatic recordings. These changes are attributable to a conductance increase that acted mainly via a selective "shunt" of EPSP(NMDA) because they were absent under voltage clamp, not present with imposed hyperpolarization simulating the sAHP, missing when the sAHP was inhibited with isoproterenol, and reduced under block of EPSP(NMDA). EPSPs generated at the basal dendrites were similarly modified by the sAHP, suggesting both a somatic and apical dendritic location of the sAHP channels. Therefore the sAHP may play a decisive role in the dendrites by regulating synaptic efficacy and temporal and spatial summation.

  17. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  18. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Science.gov (United States)

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  19. 高压氧对丙戊酸钠孤独症模型鼠学习记忆能力及海马锥体细胞形态学的影响%Effects of hyperbaric oxygen on learning and memory ability in VPA autism and on the morphology of pyramidal cells in the CA1 region of the hippocampus

    Institute of Scientific and Technical Information of China (English)

    衣明纪; 冯雪英; 付伟伟; 李音

    2013-01-01

    Objective To investigate the effects of hyperbaric oxygen on learning and memory ability in rats with a model of VPA autism and on the pyramidal cells in the CA1 region of the hippocampus.Methods An animal model of autism was established in the offspring of Wistar rats which had received a single intraperitoneal injection of sodium valproate at the 12.5th day of pregnancy.A total of 48 male VPA autism model rats were randomly divided into the hyperbaric oxygen group,a high pressure air group,a normal pressure high oxygen group and a normal pressure air group (each group with 12 rats).A normal control group was obtained by injecting physiological saline.The autism model rats of the hyperbaric oxygen group were treated with high pressure oxygen in an animal experiment cabin which was cleaned with pure oxygen for 10 min,pressurized for 15 min,held at 2.0 atmospheres absolute (ATA) for 45 min and then had the pressure relieved over 15 min.For the high pressure air group the cabin was pressurized with air for 15 min,held at 2.0 ATA for 45 min and the pressure was relieved over 15 min.For the normal pressure,high oxygen group the cabin was cleaned for 10 min with pure oxygen,then pure oxygen was supplied for 1 hour with the cabin door open.The normal pressure air group rats were placed in the open cabin with no pressure or additional oxygen.The testing lasted 7 days for 1 hour per day.The normal control group rats were placed in ordinary cages.Learning and memory were evaluated using the Y electric maze test before and after the interventions.Any changes in the pyramidal cells in the CA1 region of the hippocampus were observed after hematoxylin and eosin (HE) staining.Results The average number of tries of the hyperbaric oxygen group after treatment was significantly less than before treatment and memory retention times were increased.The number was also less in the normobaric hyperoxia group and memory retention times again improved.The number of apoptotic cells was

  20. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    Science.gov (United States)

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus.

  1. Electrophysiological changes of CA1 pyramidal neurons following transient forebrain ischemia: an in vivo intracellular recording and staining study.

    Science.gov (United States)

    Xu, Z C; Pulsinelli, W A

    1996-09-01

    1. Electrophysiological changes of CA1 pyramidal neurons in rat hippocampus were studied before, during 5 min forebrain ischemia, and after reperfusion using in vivo intracellular recording and staining techniques. 2. membrane input resistance of CA1 neurons decreased from 25.98 +/- 7.24 M omega (mean +/- SD, n = 42) before ischemia to 16.33 +/- 6.50 M omega shortly after the onset of ischemia (n = 6, P < 0.01). The input resistance fell to zero during ischemic depolarization and quickly returned to 24.42 +/- 10.36 M omega (n = 11) within 2 h after reperfusion. 3. The time constant of CA1 neurons decreased from 11.49 +/- 5.45 ms (n = 36) to 3.09 +/- 1.66 ms (n = 6, P < 0.01) during ischemia. The time constant remained significantly less than preischemic levels within 2 h after reperfusion (5.40 +/- 2.60 ms, n = 13, P < 0.01) and gradually returned to preischemic levels 4-5 h after reperfusion. 4. The spike height decreased from 91 +/- 10.35 mV (n = 45) before ischemia to 82 +/- 8.00 mV (n = 9, P < 0.05) within 2 h after reperfusion and fully returned to preischemic level 2-5 h after reperfusion. The spike width increased from 1.14 +/- 0.22 ms (n = 45) before ischemia to 1.36 +/- 0.22 ms (n = 9, P < 0.05) within 2 h after reperfusion and remained at this level 4-5 h after reperfusion. 5. The spike threshold significantly increased from -54 +/- 3.93 mV (n = 45) before ischemia to -49 +/- 5.04 mV (n = 8, P < 0.01) within 2 h after reperfusion. The rheobase increased accordingly from 0.34 +/- 0.16 nA (n = 41) to 0.73 +/- 0.26 nA (n = 6, P < 0.01). The spike threshold returned to control levels 4-5 h after reperfusion, while the rheobase was still significantly higher than control levels (0.50 +/- 0.21 nA, n = 16, P < 0.01). 6. The frequency of repetitive firing evoked by depolarizing current pulses was suppressed within 2 h after reperfusion (n = 6, P < 0.01). The spike frequency increased slightly 2-5 h after reperfusion but was still significantly below the control

  2. Streptozotocin Inhibits Electrophysiological Determinants of Excitatory and Inhibitory Synaptic Transmission in CA1 Pyramidal Neurons of Rat Hippocampal Slices: Reduction of These Effects by Edaravone

    Directory of Open Access Journals (Sweden)

    Ting Ju

    2016-12-01

    Full Text Available Background: Streptozotocin (STZ has served as an agent to generate an Alzheimer's disease (AD model in rats, while edaravone (EDA, a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs, AMPAR-mediated eEPSCs (eEPSCsAMPA, evoked inhibitory postsynaptic currents (eIPSCs, evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR, it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.

  3. Interlamellar CA1 network in the hippocampus

    OpenAIRE

    Yang, Sunggu; Yang, Sungchil; Moreira, Thais; Hoffman, Gloria; Carlson, Greg C.; Bender, Kevin J.; Alger, Bradley E.; Tang, Cha-Min

    2014-01-01

    It has generally been thought that CA1 cells form only negligible connections with each other along the longitudinal axis of the hippocampus. But if CA1 cells were interconnected in an effective autoassociational network, this information would add a critical new dimension to our understanding of cellular processing within this structure. Here, we report the existence of a well-organized, longitudinally projecting synaptic network among CA1 pyramidal neurons. We further show that synapses of ...

  4. 小鼠海马CA1区锥体神经元树突棘的发育%Dendritic spine development of mouse hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    刘畅; 范文娟; 程维杰; 左曙光; 邓锦波

    2012-01-01

    Objective To investigate the developmental characteristics of dendritic spines in mouse hippocampal CA1 pyramidal neurons by analysing the spine density and morphological changes. Methods Fifty mice were collected at postnatal days ( P ) 0, 5, 10, 20 and 30, 10 mice for each age. Dil diolistic labeling with gene gun was performed to observe dendritic spines development in mouse hippocampal CA1 pyramidal neurons. High quality labeled neurons were examined and photographed under a confocal microscope, whereas the ultrastructure of spines was observed under a transmission electron microscope. Results Dendritic spines changed their morphology and density with mouse development in response to neuronal activity. The smooth endoplasmic reticulum and spine apparatus in dendritic spines of hippocampal CA1 were observed with electron microscopy analysis, which might be involved in the regulation of plasticity at individual synapses. Conclusion The development of dendritic spines may be closely related to synaptogenesis and the formation of synaptic plasticity.%目的 对小鼠海马CA1区锥体神经元正常发育中树突棘密度及各种形态变化进行分析测定,为深入研究突触发生及突触可塑性提供直接的形态学依据.方法 分别取出生后0、5、10、20及30d 5个年龄段的C57BL/6小鼠各10只,采用基因枪对小鼠海马CA1区锥体神经元树突棘进行亲脂性荧光染料DiI标记,通过激光共焦显微镜对其进行观察分析;同时利用透射电镜技术对树突棘的超微结构进行分析.结果 树突棘的形态、大小及其密度随小鼠发育而变化,成熟树突棘内部存在滑面内质网与棘器,可能参与了突触后膜结合蛋白及其转运体的合成.结论 树突棘的发育过程与突触连接的形成以及突触可塑性密切相关.

  5. Dopamine Inhibits High-Frequency Stimulation-Induced Long-Term Potentiation of Intrinsic Excitability in CA1 Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Chun-ling Wei

    2012-09-01

    Full Text Available The efficiency of neural circuits is modified by changes not only in synaptic strength, but also in intrinsic excitability of neurons. In CA1 hippocampal pyramidal neurons, bidirectional changes in the intrinsic excitability are often presented after induction of synaptic long-term potentiation or depression. This plasticity of intrinsic excitability has been identified as a cellular correlate of learning. Besides, behavioral learning often involves action of reinforcement or rewarding mediated by dopamine (DA. Here, we examined how DA influences the intrinsic plasticity of CA1 hippocampal pyramidal neurons when high-frequency stimulation (HFS was applied to Schaffer collaterals. The results showed that DA inhibits the decrease in rheobase and increase in mean firing rate of pyramidal neurons induced by HFS, and that this inhibition was abolished by the D1-like receptor antagonist SCH23390 but not by the D2-like receptor antagonist sulpiride. The results suggest that DA inhibits the potentiation of excitability induced by presynaptic HFS, and that this inhibition depends on the activation of D1-like receptors.

  6. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.

    Science.gov (United States)

    Magee, J C; Johnston, D

    1995-08-15

    1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a slope conductance of 15 +/- 0.3 pS (mean +/- S.E.M.), began with test commands to around -50 mV and consisted of both early transient channel activity and also later occurring prolonged openings of 5-15 ms. All Na+ channel activity was suppressed by inclusion of TTX (1 microM) in the recording pipette. 3. Ca2+ channel activity was recorded in about 80% of the patches examined (range: 1 to > 10 channels per patch). Several types of channel behaviour were observed in these patches. Single channel recordings in 110 mM BaCl2, revealed an approximately 10 pS channel of small unitary current amplitude (-0.5 pA at -20 mV). These channels began activating at relatively hyperpolarized potentials (-50 mV) and ensemble averages of this low voltage-activated (LVA) channel activity showed rapid inactivation. 4. A somewhat heterogeneous population of high voltage-activated, moderate conductance (HVAm; approximately 17 pS), Ca2+ channel activity was also encountered. These channels exhibited a relatively large unitary amplitude (-0.8 pA at 0 mV) and ensemble averages demonstrated moderate inactivation. The HVAm population of channels could be tentatively subdivided into two separate groups based upon mean channel open times. 5. Less frequently, HVA, large conductance (27 pS) Ca2+ channel activity (HVA1) was also observed. This large unitary amplitude (-1.5 pA at 0 mV) channel activity began with steps to approximately 0 mV and ensemble averages did not show any time-dependent inactivation. The dihydropyridine Ca2+ channel agonist Bay K 8644 (0.5 or 1 microM) was found to characteristically prolong these channel openings. 6. omega

  7. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Zahra-Nadia Sharifi

    2012-01-01

    Full Text Available Transient global cerebral ischemia causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the neurotrophic effect of the immunosuppressant agent FK506 in rat after global cerebral ischemia. Both common carotid arteries were occluded for 20 minutes followed by reperfusion. In experimental group 1, FK506 (6 mg/kg was given as a single dose exactly at the time of reperfusion. In the second group, FK506 was administered at the beginning of reperfusion, followed by its administration intraperitoneally (IP 6, 24, 48, and 72 hours after reperfusion. FK506 failed to show neurotrophic effects on CA1 region when applied as a single dose of 6 mg/kg. The cell number and size of the CA1 pyramidal cells were increased, also the number of cell death decreased in this region when FK506 was administrated 48 h after reperfusion. This work supports the possible use of FK506 in treatment of ischemic brain damage.

  8. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite.

    Science.gov (United States)

    Tyzio, R; Represa, A; Jorquera, I; Ben-Ari, Y; Gozlan, H; Aniksztejn, L

    1999-12-01

    We have performed a morphofunctional analysis of CA1 pyramidal neurons at birth to examine the sequence of formation of GABAergic and glutamatergic postsynaptic currents (PSCs) and to determine their relation to the dendritic arborization of pyramidal neurons. We report that at birth pyramidal neurons are heterogeneous. Three stages of development can be identified: (1) the majority of the neurons (80%) have small somata, an anlage of apical dendrite, and neither spontaneous nor evoked PSCs; (2) 10% of the neurons have a small apical dendrite restricted to the stratum radiatum and PSCs mediated only by GABA(A) receptors; and (3) 10% of the neurons have an apical dendrite that reaches the stratum lacunosum moleculare and PSCs mediated both by GABA(A) and glutamate receptors. These three groups of pyramidal neurons can be differentiated by their capacitance (C(m) = 17.9 +/- 0.8; 30.2 +/- 1.6; 43.2 +/- 3.0 pF, respectively). At birth, the synaptic markers synapsin-1 and synaptophysin labeling are present in dendritic layers but not in the stratum pyramidale, suggesting that GABAergic peridendritic synapses are established before perisomatic ones. The present observations demonstrate that GABAergic and glutamatergic synapses are established sequentially with GABAergic synapses being established first most likely on the apical dendrites of the principal neurons. We propose that different sets of conditions are required for the establishment of functional GABA and glutamate synapses, the latter necessitating more developed neurons that have apical dendrites that reach the lacunosum moleculare region.

  9. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.

    Science.gov (United States)

    Craig, Michael T; McBain, Chris J

    2015-02-25

    Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations.

  10. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    Science.gov (United States)

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  11. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)-dependent activation by blocking A1 adenosine receptors.

    Science.gov (United States)

    Klishin, A; Tsintsadze, T; Lozovaya, N; Krishtal, O

    1995-01-01

    When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors. PMID:8618915

  12. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Liu, Pin W; Bean, Bruce P

    2014-04-02

    Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.

  13. Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons

    Directory of Open Access Journals (Sweden)

    Michele eFerrante

    2015-11-01

    Full Text Available Feedforward inhibition (FFI enables pyramidal cells in area CA1 of the hippocampus (CA1PCs to remain easily excitable while faithfully representing a broad range of excitatory inputs without quickly saturating. Despite the cortical ubiquity of FFI, its specific function is not completely understood. FFI in CA1PCs is mediated by two physiologically and morphologically distinct GABAergic interneurons: fast-spiking, perisomatic-targeting basket cells and regular-spiking, dendritic-targeting bistratified cells. These two FFI pathways might create layer-specific computational sub-domains within the same CA1PC, but teasing apart their specific contributions remains experimentally challenging. We implemented a biophysically realistic model of CA1PCs using 40 digitally reconstructed morphologies and constraining synaptic numbers, locations, amplitude, and kinetics with available experimental data. First, we validated the model by reproducing the known combined basket and bistratified FFI of CA1PCs at the population level. We then analyzed how the two interneuron types independently affected the CA1PC spike probability and timing as a function of inhibitory strength. Separate FFI by basket and bistratified respectively modulated CA1PC threshold and gain. Concomitant FFI by both interneuron types synergistically extended the dynamic range of CA1PCs by buffering their spiking response to excitatory stimulation. These results suggest testable hypotheses on the precise effects of GABAergic diversity on cortical computation.

  14. [The effect of enzymatic treatment using proteases on properties of persistent sodium current in CA1 pyramidal neurons of rat hippocampus].

    Science.gov (United States)

    Lun'ko, O O; Isaiev, D S; Maxymiuk, O P; Kryshtal', O O; Isaieva, O V

    2014-01-01

    We investigated the effect of proteases, widely used for neuron isolation in electrophysiological studies, on the amplitude and kinetic characteristics of persistent sodium current (I(NaP)) in hippocampal CA1 pyramidal neurons. Properties of I(NaP) were studied on neurons isolated by mechanical treatment (control group) and by mechanical and enzymatic treatment using pronase E (from Streptomyces griseus) or protease type XXIII (from Aspergillus oryzae). We show that in neurons isolated with pronase E kinetic of activation and density of I(NaP) was unaltered. Enzymatic treatment with protease type XXIII did not alter I(NaP) activation but result in significant decrease in I(NaP) density. Our data indicates that enzymatic treatment using pronase E for neuron isolation is preferable for investigation of I(NaP).

  15. Sub-millisecond firing synchrony of closely neighboring pyramidal neurons in hippocampal CA1 of rats during delayed non-matching to sample task

    Directory of Open Access Journals (Sweden)

    Susumu Takahashi

    2009-09-01

    Full Text Available Firing synchrony among neurons is thought to play functional roles in several brain regions. In theoretical analyses, firing synchrony among neurons within sub-millisecond precision is feasible to convey information. However, little is known about the occurrence and the functional significance of the sub-millisecond synchrony among closely neighboring neurons in the brain of behaving animals because of a technical issue: spikes simultaneously generated from closely neighboring neurons are overlapped in the extracellular space and are not easily separated. As described herein, using a unique spike sorting technique based on independent component analysis together with extracellular 12-channel multi-electrodes (dodecatrodes, we separated such overlapping spikes and investigated the firing synchrony among closely neighboring pyramidal neurons in the hippocampal CA1 of rats during a delayed non-matching to sample task. Results showed that closely neighboring pyramidal neurons in the hippocampal CA1 can co-fire with sub-millisecond precision. The synchrony generally co-occurred with the firing rate modulation in relation to both internal (retention and comparison and external (stimulus input and motor output events during the task. However, the synchrony occasionally occurred in relation to stimulus inputs even when rate modulation was clearly absent, suggesting that the synchrony is not simply accompanied with firing rate modulation and that the synchrony and the rate modulation might code similar information independently. We therefore conclude that the sub-millisecond firing synchrony in the hippocampus is an effective carrier for propagating information—as represented by the firing rate modulations—to downstream neurons.

  16. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  17. The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Christie, B R; Magee, J C; Johnston, D

    1996-01-01

    Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold for action potentials, produced small changes in [Ca2+]i and failed to elicit LTD. Increasing the stimulus strength so that action potentials were generated produced both robust LTD and increases in [Ca2+]i. Back-propagating action potentials at 3 Hz in the absence of synaptic stimulation also produced increases in [Ca2+]i, but failed to induce LTD. When subthreshold synaptic stimulation was paired with back-propagating action potentials, however, large increases in [Ca2+]i were observed and robust LTD was induced. The LTD was blocked by the N-methyl-D-aspartate receptor (NMDAr) antagonist APV, and stimulus-induced increases in [Ca2+]i were reduced throughout the neuron under these conditions. The LTD was also dependent on Ca2+ influx via voltage-gated Ca2+ channels (VGCCs), because LTD was severely attenuated or blocked by both nimodipine and Ni2+. These findings suggest that back-propagating action potentials can exert a powerful control over the induction of LTD and that both VGCCs and NMDArs are involved in the induction of this form of plasticity.

  18. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells.

    Science.gov (United States)

    Maurer, Andrew P; Cowen, Stephen L; Burke, Sara N; Barnes, Carol A; McNaughton, Bruce L

    2006-12-27

    Although hippocampal interneurons typically do not show discrete regions of elevated firing in an environment, such as seen in pyramidal cell place fields, they do exhibit significant spatial modulation (McNaughton et al., 1983a). Strong monosynaptic coupling between pyramidal neurons and nearby interneurons in the CA1 stratum pyramidale has been strongly implicated on the basis of significant, short-latency peaks in cross-correlogram plots (Csicsvari et al., 1998). Furthermore, interneurons receiving a putative monosynaptic connection from a simultaneously recorded pyramidal cell appear to inherit the spatial modulation of the latter (Marshall et al., 2002). Buzsaki and colleagues hypothesize that interneurons may also adopt the firing phase dynamics of their afferent place cells, which show a phase shift relative to the hippocampal theta rhythm as a rat passes through the place field ("phase precession"). This study confirms and extends the previous reports by showing that interneurons in the dorsal and middle hippocampus with putative monosynaptic connections with place cells recorded on the same tetrode share other properties with their pyramidal cell afferents, including the spatial scale of the place field of pyramidal cell, a characteristic of the septotemporal level of the hippocampus from which the cells are recorded, and the rate of phase precession, which is slower in middle regions. Furthermore, variations in pyramidal cell place field scale within each septotemporal level attributable to task variations are similarly associated with variations in interneuron place field scale. The available data strongly suggest that spatial selectivity of CA1 stratum pyramidale interneurons is inherited from a small cluster of local pyramidal cells and is not a consequence of spatially selective synaptic input from CA3 or other sources.

  19. Dampening of hyperexcitability in CA1 pyramidal neurons by polyunsaturated fatty acids acting on voltage-gated ion channels.

    Directory of Open Access Journals (Sweden)

    Jenny Tigerholm

    Full Text Available A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (K(A channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel's steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the K(A channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of K(A channels, and the resting potential can be an effective treatment of epilepsy.

  20. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus

    Directory of Open Access Journals (Sweden)

    Jennifer eKim

    2012-07-01

    Full Text Available Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM interneurons (identified by green fluorescent protein expression in the GIN mouse line. Warming to 41°C caused depolarization, spontaneous action potentials, reduced input resistance and membrane time constant, and increased spontaneous synaptic activity of most pyramidal cells and O-LM interneurons. Pyramidal neurons of area CA3 were more strongly excited by hyperthermia than those of area CA1. About 90% of O-LM interneurons in both CA1 and CA3 increased their firing rates at hyperthermic temperatures; interneurons in CA3 fired faster than those in CA1 on average. Blockade of fast synaptic transmission did not abolish the effect of hyperthermia on neuronal excitability. Our results suggest that hyperthermia increases hippocampal excitability, particularly in seizure-prone area CA3, by altering the intrinsic membrane properties of pyramidal cells and interneurons.

  1. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus.

    Science.gov (United States)

    Kim, Jennifer A; Connors, Barry W

    2012-01-01

    Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM) interneurons (identified by green fluorescent protein (GFP) expression in the GIN mouse line). Warming to 41°C caused depolarization, spontaneous action potentials, reduced input resistance and membrane time constant, and increased spontaneous synaptic activity of most pyramidal cells and O-LM interneurons. Pyramidal neurons of area CA3 were more strongly excited by hyperthermia than those of area CA1. About 90% of O-LM interneurons in both CA1 and CA3 increased their firing rates at hyperthermic temperatures; interneurons in CA3 fired faster than those in CA1 on average. Blockade of fast synaptic transmission did not abolish the effect of hyperthermia on neuronal excitability. Our results suggest that hyperthermia increases hippocampal excitability, particularly in seizure-prone area CA3, by altering the intrinsic membrane properties of pyramidal cells and interneurons.

  2. Plasmonic Tipless Pyramid Arrays for Cell Poration.

    Science.gov (United States)

    Courvoisier, Sébastien; Saklayen, Nabiha; Huber, Marinus; Chen, Jun; Diebold, Eric D; Bonacina, Luigi; Wolf, Jean-Pierre; Mazur, Eric

    2015-07-08

    Improving the efficiency, cell survival, and throughput of methods to modify and control the genetic expression of cells is of great benefit to biology and medicine. We investigate, both computationally and experimentally, a nanostructured substrate made of tipless pyramids for plasmonic-induced transfection. By optimizing the geometrical parameters for an excitation wavelength of 800 nm, we demonstrate a 100-fold intensity enhancement of the electric near field at the cell-substrate contact area, while the low absorption typical for gold is maintained. We demonstrate that such a substrate can induce transient poration of cells by a purely optically induced process.

  3. Enhanced sensitivity to ethanol-induced inhibition of LTP in CA1 pyramidal neurons of socially isolated C57BL/6J mice: role of neurosteroids

    Directory of Open Access Journals (Sweden)

    Giuseppe eTalani

    2011-10-01

    Full Text Available Ethanol (EtOH–induced impairment of long-term potentiation (LTP in the rat hippocampus is prevented by the 5α-reductase inhibitor finasteride, suggesting that this effect of EtOH is dependent on the increased local release of neurosteroids such as 3α,5α-THP that promote GABA–mediated transmission. Given that social isolation (SI in rodents is associated with altered plasma and brain levels of such neurosteroids as well as with an enhanced neurosteroidogenic action of EtOH, we examined whether the inhibitory effect of EtOH on LTP at CA3-CA1 hippocampal excitatory synapses is altered in C57BL/6J mice subjected to SI for 6 weeks in comparison with group-housed (GH animals. Extracellular recording of fEPSPs as well as patch-clamp analysis were performed in hippocampal slices prepared from both SI and GH mice. Consistent with previous observations, recording of fEPSPs revealed that the extent of LTP induced in the CA1 region of SI mice was significantly reduced compared with that in GH animals. EtOH (40 mM inhibited LTP in slices from SI mice but not in those from GH mice, and this effect of EtOH was abolished by co-application of 1 µM finasteride. Current-clamp analysis of CA1 pyramidal neurons revealed a decrease in action potential frequency and an increase in the intensity of injected current required to evoke the first action potential in SI mice compared with GH mice, indicative of a decrease in neuronal excitability associated with SI. Together, our data suggest that SI results in reduced levels of neuronal excitability and synaptic plasticity in the hippocampus. Furthermore, the increased sensitivity to the neurosteroidogenic effect of EtOH associated with SI likely accounts for the greater inhibitory effect of EtOH on LTP in SI mice. The increase in EtOH sensitivity induced by SI may be important for the changes in the effects of EtOH on anxiety and on learning and memory associated with the prolonged stress attributable to social

  4. Spatial distributions of GABA receptors and local inhibition of Ca2+ transients studied with GABA uncaging in the dendrites of CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yuya Kanemoto

    Full Text Available GABA (γ-amino-butylic acid-mediated inhibition in the dendrites of CA1 pyramidal neurons was characterized by two-photon uncaging of a caged-GABA compound, BCMACM-GABA, and one-photon uncaging of RuBi-GABA in rat hippocampal slice preparations. Although we found that GABA(A-mediated currents were diffusely distributed along the dendrites, currents elicited at the branch points of the apical dendritic trunk were approximately two times larger than those elsewhere in the dendrite. We examined the inhibitory action of the GABA-induced currents on Ca(2+ transients evoked with a single back-propagating action potential (bAP in oblique dendrites. We found that GABA uncaging selectively inhibited the Ca(2+ transients in the region adjacent (20 µm. Our data indicate that GABA inhibition results in spatially confined inhibition of Ca(2+ transients shortly after bAP, and suggest that this effect is particularly potent at the dendritic branch points where GABA receptors cluster.

  5. Changes of delayed neuronal death of pyramidal cell and mitochondria by transmission electron microscopy in rats' hippocampus after endurance training and exhaustion treadmill running%耐力训练及力竭运动后大鼠大脑CA1区锥体细胞迟发性神经元死亡及其线粒体的超微结构变化

    Institute of Scientific and Technical Information of China (English)

    张雁儒; 张建军; 冯富明; 李月白; 王义生

    2012-01-01

    目的 观察耐力训练及力竭运动后大鼠大脑海马区锥体细胞及其线粒体的超微结构变化.方法 实验于2007年6月至2008年11月在郑州大学完成.选取8周龄雄性SD大鼠40只,随机设耐力训练组:安静组;急性力竭运动后24 h组;耐力训练+急性力竭运动后即刻组;耐力训练+急性力竭运动后24h组.每组10只.安静组不外加运动,其他组次日进行力竭运动,力竭运动开始的速度为10 m/min,逐渐提高速度并在3 min内到达预定的速度(中等强度、大强度力竭运动的速度分别为20 m/min、36 m/min),保持速度直至力竭,并记录力竭运动时间.耐力训练方案:大鼠在动物跑台进行运动训练,1次/d,6d/周.跑台速度由开始的10 m/min逐渐增加至第4周30 m/min,运动时间由30 min/d增加到40 min/d.力竭标准为大鼠用毛刷驱赶无效,在跑台尾端停留2 s仍不愿跑,且失去快速翻正反射.主要观察指标:断头处死分别取材检测大鼠大脑海马区锥体细胞及其线粒体的超微结构变化.结果 40只SD大鼠均完成实验设计方案,全部进入结果分析.结果发现耐力训练和力竭运动后大鼠大脑细胞凋亡数量显著增加,力竭运动强度增加,凋亡细胞数量增多,且多为神经胶质细胞,安静组大脑细胞凋亡率为(6.56±1.24)%、急性运动后24h组为(16.14 ±3.26)%、耐力训练+急性运动后即刻组为(29.78±1.96)%、耐力训练+急性运动后24h组为(32.43±2.35)%.通过图像分析系统的分析研究,海马神经元线粒体变性较为显著.结论 本实验观察到耐力训练和力竭运动对大脑细胞造成一定的损伤,海马区神经元线粒体变性,可能是由于疲劳训练引起脑组织的酸中毒和缺氧引起大脑细胞的一些变性现象.%Objective The pyramid neurons in the CA1 subfield of the hippocampus are vulnerable to ischemic attack,and transient global ischemia can lead to a specific neuronal death called the

  6. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents.

  7. AMPA receptor modulators have different impact on hippocampal pyramidal cells and interneurons.

    Science.gov (United States)

    Xia, Y-F; Arai, A C

    2005-01-01

    Positive modulators of AMPA receptors enhance synaptic plasticity and memory encoding. Facilitation of AMPA receptor currents not only results in enhanced activation of excitatory neurons but also increases the activity of inhibitory interneurons by up-modulating their excitatory input. However, little is known about the effects of these modulators on cells other than pyramidal neurons and about their impact on local microcircuits. This study examined the effects of members from three subfamilies of modulators (mainly CX516, CX546 and cyclothiazide) on excitatory synaptic responses in four classes of hippocampal CA1 neurons and on excitatory and disynaptically induced inhibitory field potentials in hippocampal slices. Effects on excitatory postsynaptic currents (EPSCs) were examined in pyramidal cells, in two types of inhibitory interneurons located in stratum radiatum and oriens, and in stratum radiatum giant cells, a novel type of excitatory neuron. With CX516, increases in EPSC amplitude in pyramidal cells were two to three times larger than in interneurons and six times larger than in radiatum giant cells. The effects of CX546 on response duration similarly were largest in pyramidal cells. However, this drug also strongly differentiated between stratum oriens and radiatum interneurons with increases being four times larger in the latter. In contrast, cyclothiazide had similar effects on response duration in all cell types. In field recordings, CX516 was several times more potent in enhancing excitatory postsynaptic potentials (EPSPs) than feedback or feedforward circuits, as expected from its larger influence on pyramidal cells. In contrast, BDP-20, a CX546 analog, was more potent in enhancing feedforward inhibition than either EPSPs or feedback inhibition. This preference for feedforward over feedback circuits is probably related to its higher potency in stratum radiatum versus oriens interneurons. Taken together, AMPA receptor modulators differ substantially

  8. Differential Vulnerability of CA1 versus CA3 Pyramidal Neurons After Ischemia: Possible Relationship to Sources of Zn2+ Accumulation and Its Entry into and Prolonged Effects on Mitochondria.

    Science.gov (United States)

    Medvedeva, Yuliya V; Ji, Sung G; Yin, Hong Z; Weiss, John H

    2017-01-18

    Excitotoxic mechanisms contribute to the degeneration of hippocampal pyramidal neurons after recurrent seizures and brain ischemia. However, susceptibility differs, with CA1 neurons degenerating preferentially after global ischemia and CA3 neurons after limbic seizures. Whereas most studies address contributions of excitotoxic Ca(2+) entry, it is apparent that Zn(2+) also contributes, reflecting accumulation in neurons either after synaptic release and entry through postsynaptic channels or upon mobilization from intracellular Zn(2+)-binding proteins such as metallothionein-III (MT-III). Using mouse hippocampal slices to study acute oxygen glucose deprivation (OGD)-triggered neurodegeneration, we found evidence for early contributions of excitotoxic Ca(2+) and Zn(2+) accumulation in both CA1 and CA3, as indicated by the ability of Zn(2+) chelators or Ca(2+) entry blockers to delay pyramidal neuronal death in both regions. However, using knock-out animals (of MT-III and vesicular Zn(2+) transporter, ZnT3) and channel blockers revealed substantial differences in relevant Zn(2+) sources, with critical contributions of presynaptic release and its permeation through Ca(2+)- (and Zn(2+))-permeable AMPA channels in CA3 and Zn(2+) mobilization from MT-III predominating in CA1. To assess the consequences of the intracellular Zn(2+) accumulation, we used OGD exposures slightly shorter than those causing acute neuronal death; under these conditions, cytosolic Zn(2+) rises persisted for 10-30 min after OGD, followed by recovery over ∼40-60 min. Furthermore, the recovery appeared to be accompanied by mitochondrial Zn(2+) accumulation (via the mitochondrial Ca(2+) uniporter MCU) in CA1 but not in CA3 neurons and was markedly diminished in MT-III knock-outs, suggesting that it depended upon Zn(2+) mobilization from this protein.

  9. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Williams, Tanya J; Torres-Reveron, Annelyn; Chapleau, Jeanette D; Milner, Teresa A

    2011-02-01

    Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that

  10. Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations.

    Science.gov (United States)

    Forro, Thomas; Valenti, Ornella; Lasztoczi, Balint; Klausberger, Thomas

    2015-05-01

    Travelling theta oscillations and sharp wave-associated ripples (SWRs) provide temporal structures to neural activity in the CA1 hippocampus. The contribution of rhythm-generating GABAergic interneurons to network timing across the septotemporal CA1 axis remains unknown. We recorded the spike-timing of identified parvalbumin (PV)-expressing basket, axo-axonic, oriens-lacunosum moleculare (O-LM) interneurons, and pyramidal cells in the intermediate CA1 (iCA1) of anesthetized rats in relation to simultaneously detected network oscillations in iCA1 and dorsal CA1 (dCA1). Distinct interneuron types were coupled differentially to SWR, and the majority of iCA1 SWR events occurred simultaneously with dCA1 SWR events. In contrast, iCA1 theta oscillations were shifted in time relative to dCA1 theta oscillations. During theta cycles, the highest firing of iCA1 axo-axonic cells was followed by PV-expressing basket cells and subsequently by O-LM together with pyramidal cells, similar to the firing sequence of dCA1 cell types reported previously. However, we observed that this temporal organization of cell types is shifted in time between dCA1 and iCA1, together with the respective shift in theta oscillations. We show that GABAergic activity can be synchronized during SWR but is shifted in time from dCA1 to iCA1 during theta oscillations, highlighting the flexible inhibitory control of excitatory activity across a brain structure.

  11. Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing.

    Science.gov (United States)

    Sun, Yanjun; Nguyen, Amanda Q; Nguyen, Joseph P; Le, Luc; Saur, Dieter; Choi, Jiwon; Callaway, Edward M; Xu, Xiangmin

    2014-04-10

    We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC), the medial septum (MS), and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  12. Postnatal development of temporal integration, spike timing and spike threshold regulation by a dendrotoxin-sensitive K⁺ current in rat CA1 hippocampal cells.

    Science.gov (United States)

    Giglio, Anna M; Storm, Johan F

    2014-01-01

    Spike timing and network synchronization are important for plasticity, development and maturation of brain circuits. Spike delays and timing can be strongly modulated by a low-threshold, slowly inactivating, voltage-gated potassium current called D-current (ID ). ID can delay the onset of spiking, cause temporal integration of multiple inputs, and regulate spike threshold and network synchrony. Recent data indicate that ID can also undergo activity-dependent, homeostatic regulation. Therefore, we have studied the postnatal development of ID -dependent mechanisms in CA1 pyramidal cells in hippocampal slices from young rats (P7-27), using somatic whole-cell recordings. At P21-27, these neurons showed long spike delays and pronounced temporal integration in response to a series of brief depolarizing current pulses or a single long pulse, whereas younger cells (P7-20) showed shorter discharge delays and weak temporal integration, although the spike threshold became increasingly negative with maturation. Application of α-dendrotoxin (α-DTX), which blocks ID , reduced the spiking latency and temporal integration most strongly in mature cells, while shifting the spike threshold most strongly in a depolarizing direction in these cells. Voltage-clamp analysis revealed an α-DTX-sensitive outward current (ID ) that increased in amplitude during development. In contrast to P21-23, ID in the youngest group (P7-9) showed smaller peri-threshold amplitude. This may explain why long discharge delays and robust temporal integration only appear later, 3 weeks postnatally. We conclude that ID properties and ID -dependent functions develop postnatally in rat CA1 pyramidal cells, and ID may modulate network activity and plasticity through its effects on synaptic integration, spike threshold, timing and synchrony.

  13. Topological organization of CA3-to-CA1 excitation.

    Science.gov (United States)

    Hongo, Yoshie; Ogawa, Koichi; Takahara, Yuji; Takasu, Keiko; Royer, Sebastien; Hasegawa, Minoru; Sakaguchi, Gaku; Ikegaya, Yuji

    2015-09-01

    The CA1-projecting axons of CA3 pyramidal cells, called Schaffer collaterals, constitute one of the major information flow routes in the hippocampal formation. Recent anatomical studies have revealed the non-random structural connectivity between CA3 and CA1, but little is known regarding the functional connectivity (i.e. how CA3 network activity is functionally transmitted downstream to the CA1 network). Using functional multi-neuron calcium imaging of rat hippocampal slices, we monitored the spatiotemporal patterns of spontaneous CA3 and CA1 burst activity under pharmacological GABAergic blockade. We found that spatially clustered CA3 activity patterns were transformed into layered CA1 activity sequences. Specifically, synchronized bursts initiated from multiple hot spots in CA3 ensembles, and CA1 neurons located deeper in the pyramidal cell layer were recruited during earlier phases of the burst events. The order of these sequential activations was maintained across the bursts, but the sequence velocity varied depending on the inter-burst intervals. Thus, CA3 axons innervate CA1 neurons in a highly topographical fashion.

  14. Role of reuniens nucleus projections to the medial prefrontal cortex and to the hippocampal pyramidal CA1 area in associative learning.

    Directory of Open Access Journals (Sweden)

    Lyndell Eleore

    Full Text Available We studied the interactions between short- and long-term plastic changes taking place during the acquisition of a classical eyeblink conditioning and following high-frequency stimulation (HFS of the reuniens nucleus in behaving mice. Synaptic changes in strength were studied at the reuniens-medial prefrontal cortex (mPFC and the reuniens-CA1 synapses. Input/output curves and a paired-pulse study enabled determining the functional capabilities of the two synapses and the optimal intensities to be applied at the reuniens nucleus during classical eyeblink conditioning and for HFS applied to the reuniens nucleus. Animals were conditioned using a trace paradigm, with a tone as conditioned stimulus (CS and an electric shock to the trigeminal nerve as unconditioned stimulus (US. A single pulse was presented to the reuniens nucleus to evoke field EPSPs (fEPSPs in mPFC and CA1 areas during the CS-US interval. No significant changes in synaptic strength were observed at the reuniens-mPFC and reuniens-CA1 synapses during the acquisition of eyelid conditioned responses (CRs. Two successive HFS sessions carried out during the first two conditioning days decreased the percentage of CRs, without evoking any long-term potentiation (LTP at the recording sites. HFS of the reuniens nucleus also prevented the proper acquisition of an object discrimination task. A subsequent study revealed that HFS of the reuniens nucleus evoked a significant decrease of paired-pulse facilitation. In conclusion, reuniens nucleus projections to prefrontal and hippocampal circuits seem to participate in the acquisition of associative learning through a mechanism that does not required the development of LTP.

  15. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.

    Science.gov (United States)

    Zemankovics, Rita; Veres, Judit M; Oren, Iris; Hájos, Norbert

    2013-07-24

    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.

  16. Radial microwire array solar cell with pyramidal structure

    Science.gov (United States)

    Priyadarshini, Bindu; Das, Mukul Kumar; Sen, Mrinal; Kumar, Subindu

    2016-10-01

    In this work, a theoretical model for radial p-n junction microwire array solar cell with pyramidal structures in the space between microwires has been developed. Incorporation of pyramidal structures results in reflection of light, which would otherwise be unused, and illuminates side walls of the microwires. This additional illumination enhances absorption and, hence, efficiency of the whole structure. Efficiency enhancement is analyzed by varying different device parameters e.g., radius and length of each microwire and packing fraction of the structure. Results show that the maximum fractional efficiency enhancement can be obtained as 30% by suitable choice of these parameters.

  17. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus.

    Science.gov (United States)

    Acsády, L; Görcs, T J; Freund, T F

    1996-07-01

    The postsynaptic targets of three vasoactive intestinal polypeptide-containing GABAergic interneuron types were examined in the rat hippocampus. Two of them showed remarkable target selectivity for other GABAergic neurons, while the third contacted the somata and proximal dendrites of pyramidal cells. Vasoactive intestinal polypeptide-positive interneurons innervating the stratum oriens/alveus border in the CA1 region were shown to establish multiple contacts with horizontal GABAergic interneurons immunoreactive for type 1 metabotropic glutamate receptor. Similarly, identified axons of vasoactive intestinal polypeptide-positive interneurons projecting to stratum radiatum were found to establish symmetrical synapses largely on GABAergic dendrites. The majority of these postsynaptic GABAergic neurons were shown to contain calbindin or vasoactive intestinal polypeptide. In contrast to the first two vasoactive intestinal polypeptide-containing cell populations, vasoactive intestinal polypeptide-positive interneurons arborizing in stratum pyramidale formed baskets around pyramidal cells. These results revealed a new element in cortical microcircuits, interneurons which are specialized to innervate other GABAergic interneurons. The role of this new component may be the synchronization of dendritic inhibition, or an input-specific disinhibition of pyramidal cells in various dendritic domains. In contrast, vasoactive intestinal polypeptide-containing basket cells are likely to be involved in perisomatic inhibition of pyramidal neurons, and represents a new basket cell type different from that containing parvalbumin.

  18. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  19. Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy.

    Science.gov (United States)

    Crimins, Johanna L; Rocher, Anne B; Peters, Alan; Shultz, Penny; Lewis, Jada; Luebke, Jennifer I

    2011-11-01

    Cortical neuron death is prevalent by 9 months in rTg(tau(P301L))4510 tau mutant mice (TG) and surviving pyramidal cells exhibit dendritic regression and spine loss. We used whole-cell patch-clamp recordings to investigate the impact of these marked structural changes on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) of layer 3 pyramidal cells in frontal cortical slices from behaviorally characterized TG and non-transgenic (NT) mice at this age. Frontal lobe function of TG mice was intact following a short delay interval but impaired following a long delay interval in an object recognition test, and cortical atrophy and cell loss were pronounced. Surviving TG cells had significantly reduced dendritic diameters, total spine density, and mushroom spines, yet sEPSCs were increased and sIPSCs were unchanged in frequency. Thus, despite significant regressive structural changes, synaptic responses were not reduced in TG cells, indicating that homeostatic compensatory mechanisms occur during progressive tauopathy. Consistent with this idea, surviving TG cells were more intrinsically excitable than NT cells, and exhibited sprouting of filopodia and axonal boutons. Moreover, the neuropil in TG mice showed an increased density of asymmetric synapses, although their mean size was reduced. Taken together, these data indicate that during progressive tauopathy, cortical pyramidal cells compensate for loss of afferent input by increased excitability and establishment of new synapses. These compensatory homeostatic mechanisms may play an important role in slowing the progression of neuronal network dysfunction during neurodegenerative tauopathies.

  20. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.

    Science.gov (United States)

    Hackett, Mark J; Smith, Shari E; Caine, Sally; Nichol, Helen; George, Graham N; Pickering, Ingrid J; Paterson, Phyllis G

    2015-12-01

    occur in the same CA1 pyramidal neurons 1 day after global ischemia. Further, analysis of serial tissue sections using X-ray absorption spectroscopy at the sulfur K-edge has revealed that CA1 pyramidal neurons have increased disulfide levels, a direct indicator of oxidative stress, at this time point. These changes at 1 day after ischemia precede a massive increase in aggregated protein and disulfide levels concomitant with loss of neuron integrity 2 days after ischemia. Therefore, this study has provided direct support for a correlative mechanistic link in both spatial and temporal domains between oxidative stress, protein aggregation and altered protein homeostasis prior to irreparable neuron damage following global ischemia.

  1. Expression and changes of hyperoxidized peroxiredoxins in non-pyramidal and polymorphic cells in the gerbil hippocampus during normal aging.

    Science.gov (United States)

    Yoo, Ki-Yeon; Park, Ok Kyu; Yu, Jiatian; Yan, Bingchun; Li, Hua; Lee, Choong Hyun; Choi, Jung Hoon; Kim, Dae Won; Hwang, In Koo; Won, Moo-Ho

    2009-05-01

    Oxidative stress is one of predisposing factors to age-related neurodegeneration in the brain. In particular, thiol-containing groups are susceptible to oxidative stress, which induces the formation of the disulfide bond and/or hyperoxidized form of thiol-containing proteins. We observed the protein thiol levels in the hippocampal homogenates and also investigated changes in hyperoxidized form of peroxiredoxin (Prx-SO(3)) immunoreactivity and proteins levels in the gerbil hippocampal subregions during normal aging. Levels of total thiol, non-protein thiol, and protein thiol were decreased in the hippocampal homogenates with age. At post-natal month 1 (PM 1), pyramidal and non-pyramidal cells in the hippocampal CA1 region (CA1) showed Prx-SO(3) immunoreactivity. Prx-SO(3) immunoreactivity in the cells was decreased by PM 12, thereafter, Prx-SO(3) immunoreactivity in the cells increased again with age. In the CA2/3, Prx-SO(3) immunoreactivity in pyramidal cells was not significantly changed; however, the immunoreactivity in pyramidal cells was very low at PM 12. Prx-SO(3) immunoreactivity in the dentate gyrus (DG) was distinctly changed during aging. At PM 1, Prx-SO(3) immunoreactivity in granule and polymorphic cells was weak and strong, respectively. The immunoreactivity in the neurons was decreased with age, not shown in any neurons at PM 12. Thereafter, Prx-SO(3) immunoreactivity increased again with age. In addition, Prx-SO(3) protein level in the hippocampus was lowest at PM 12. These results suggest that thiol-containing proteins are changed during aging and Prx-SO(3) immunoreactivity was different according to cells in the hippocampal subregion during aging.

  2. 钾通道阻断剂4-氨基吡啶诱导海马CA1锥体神经元钙瞬变%Calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine in acute hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    苏涛; 丛文东; 廖卫平

    2011-01-01

    Objective To investigate the calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine (4-AP) in acute hippocampal slices to explore the relation between potassium channel function and calcium transient, and their mechanism. Methods Fluorescent probe was employed to mark the hippocampai neurons in acute brain slices of rats; confocal microscopy was used to perform calcium imaging to observe the influences of different concentrations of 4-AP and perfusate with/without calcium on calcium transient of CA1 pyramidal neurons. Results The response of [Ca2+]I to lower concentration of 4-AP (<15 mmol/L) was in a dose-dependent manner (r2=0.910, P=0.000); the higher the concentration of 4-AP (20-80 mmol/L), the lower the peak level of calcium transient. The latency and amplitude of calcium transient induced by 4-AP were obviously reduced when the extracellular condition was switched to an absence of calcium, which was significantly different as compared with that with calcium (P<0.05). Conclusion Blockade of potassium channels with 4-AP can increase [Ca2+]I in the hippocampal pyramidal neurons of acute slices. The increase of [Ca2+]1 to 4-AP could be ascribe to calcium release from intracellular stores and calcium influx from extracellular matrix.%目的 研究4-氨基吡啶(4-AP)诱导的急性脑片海马CA1锥体神经元钙瞬变现象,探讨钾通道功能与钙瞬变的关系及可能机制.方法 荧光探针标记正常大鼠急性脑片海马神经元.共聚焦显微镜技术进行钙成像,观察不同浓度4-AP及细胞灌流液条件对神经元钙瞬变的影响.结果 低浓度(<15 mmol/L)4-AP诱导的钙瞬变峰值与剂量呈线性相关(r2=0.910,P=0.000),高浓度(20~80 mmol/L)4-AP诱导的钙瞬变峰值随浓度增高而下降.在无钙灌流液条件下,4-AP诱导的钙瞬变峰值水平下降,达峰时间延长,与含钙灌流液比较差异有统计学意义(P<0.05).结论 4-AP可诱导急性脑片海马CA1锥体神经

  3. Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy.

    NARCIS (Netherlands)

    G. Sun; T.R. Werkman; W.J. Wadman

    2006-01-01

    AIM: To study whether the functional properties of sodium channels, and subsequently the channel modulation by carbamazepine (CBZ) in hippocampal CA1 neurons can be changed after epileptic seizures. METHODS: We used the acutely dissociated hippocampal CA1 pyramidal cells from epilepsy model rats 3 w

  4. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M;

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA...... is dependent on glutamate release and intact innervation from CA3....

  5. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons [v2; ref status: indexed, http://f1000r.es/2gk

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-12-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2-/- and wildtype (C57BI/6j mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  6. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  7. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  8. Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Deepak eRopireddy

    2011-07-01

    Full Text Available Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g. with electron microscopy or on regional connectivity (tract tracing. An individual pyramidal cell extends thousands of synapses over macroscopic distances (~cm. The contrasting requirements of high resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these ‘potential synapses’ functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto pyramidal cell dendrites from the axons of a dentate granule cell, three CA3 pyramidal cells, one CA2 pyramidal cell, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g. CA3 vs. CA1, layer (e.g. oriens vs. radiatum, and septo-temporal location (e.g. dorsal vs. ventral. The overall ratio between the numbers of actual and potential synapses was ~0.20 for the granule and CA3 pyramidal cells. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post

  9. Age-related increase of sI(AHP) in prefrontal pyramidal cells of monkeys: relationship to cognition.

    Science.gov (United States)

    Luebke, J I; Amatrudo, J M

    2012-06-01

    Reduced excitability, due to an increase in the slow afterhyperpolarization (and its underlying current sI(AHP)), occurs in CA1 pyramidal cells in aged cognitively-impaired, but not cognitively-unimpaired, rodents. We sought to determine whether similar age-related changes in the sI(AHP) occur in pyramidal cells in the rhesus monkey dorsolateral prefrontal cortex (dlPFC). Whole-cell patch-clamp recordings were obtained from layer 3 and layer 5 pyramidal cells in dlPFC slices prepared from young (9.6 ± 0.7 years old) and aged (22.3 ± 0.7 years old) behaviorally characterized subjects. The amplitude of the sI(AHP) was significantly greater in layer 3 (but not layer 5) cells from aged-impaired compared with both aged-unimpaired and young monkeys, which did not differ. Aged layer 3, but not layer 5, cells exhibited significantly increased action potential firing rates, but there was no relationship between sI(AHP) and firing rate. Thus, in monkey dlPFC layer 3 cells, an increase in sI(AHP) is associated with age-related cognitive decline; however, this increase is not associated with a reduction in excitability.

  10. Flexible solar cells based on curved surface nano-pyramids

    Science.gov (United States)

    Shrestha, Anil; Mizuno, Genki; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.; Lewis, Jay

    2016-05-01

    The advent of ultrathin crystalline silicon (c-Si) solar cells has significantly reduced the cost of silicon solar cells by consuming less material. However, the very small thickness of ultrathin solar cells poses a challenge to the absorption of sufficient light to provide efficiency that is competitive to commercial solar cells. Light trapping mechanisms utilizing nanostructure technologies have been utilized to alleviate this problem. Unfortunately, a significant portion of light is still being lost even before entering the solar cells because of reflection. Different kinds of nanostructures have been employed to reduce reflection from solar cells, but reflection losses still prevail. In an effort to reduce reflection loss, we have used an array of modified nanostructures based cones or pyramids with curved sides, which matches the refractive index of air to that of silicon. Moreover, use of these modified nano-pyramids provides a quintic (fifth power) gradient index layer between air and silicon, which significantly reduces reflection. The solar cells made of such nanostructures not only significantly increase conversion efficiency at reduced usage of crystalline silicon material (e.g. thinner), but it also helps to make the c-Si based solar cell flexible. Design and optimization of flexible c-Si solar cell is presented in the paper.

  11. Lead exposure impairs NMDA agonist-induced no production in pyramidal hippocampal cells

    Directory of Open Access Journals (Sweden)

    Seyed Nasser Ostad

    2006-03-01

    Full Text Available Chronic exposure to Lead (Pb affects neural functions in central nervous system (CNS particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS where it is expected to increase nitric oxide level in hippocampus. In this study the role of Lead exposure in NMDA induced NO production in pyramidal hippocampal cells (CA1HP was investigated. The NO level was determined by measurement of concentration of nitrite and nitrate as NO products using the metHb production at 401 nm. The ACBD (NMDA agonist-induced NO level was almost reduced to the control level (2.5 nM in the presence of 10 and 100 nM of Lead acetate. Lead acetate at concentrations which normally results in chronic toxicity did not increase the nitric oxide (NO production by CA1HP. One reason for this finding could be the interaction of Lead with NMDA receptors due to similarity of Pb2+ to Zn2+ ion. Another reason may be related to direct interaction of Lead with NMDA receptors that inhibit the stimulated NO production.

  12. Extended studies on the effect of glutamate antagonists on ischemic CA-1 damage

    DEFF Research Database (Denmark)

    Diemer, Nils Henrik; Balchen, T; Bruhn, T;

    1996-01-01

    Glutamate receptors are numerous on the ischemia vulnerable CA-1 pyramidal cells. Postischemic use of the AMPA antagonist NBQX has shown up to 80% protection against cell death. Three aspects of this were studied: In the first study, male Wistar rats were given NBQX (30 mg/kg x 3) either 20 hours...

  13. Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores

    Directory of Open Access Journals (Sweden)

    Jozsef eSomogyi

    2012-05-01

    Full Text Available Nitric oxide synthase-expressing (NOS+ GABAergic interneurons are common in hippocampal stratum radiatum, but these cells are less well characterised than NOS+ ivy cells in stratum pyramidale or neurogliaform cells in stratum lacunosum-moleculare. Here we have studied the laminar distribution of the axons and dendrites, and the immunoreactivity of these neurons recorded in rat hippocampal slices. We have used spectral analysis of antibody- or streptavidin conjugated fluorophores to improve recognition of genuine signals in reactions for molecules such as NOS and neuropeptide-Y, when immunolabelling was low in the recorded cell. We found that most NOS+ cells with soma in the CA1 area stratum radiatum exhibit characteristic properties of ivy cells; all tested cells were positive for NPY and negative for reelin. However, laminar distributions of their neurites differ from original characterization of ivy cells with the soma close to stratum pyramidale. Both their dendrites and axon are mainly in stratum radiatum and to a lesser extent in stratum oriens. In addition, both the dendrites and axons often extend to stratum lacunosum-moleculare. We conclude that ivy cells in stratum radiatum are predominantly feedforward inhibitory interneurons in the CA1 area, and their axonal output delivering GABA, NPY and NO can influence both the entorhinal cortex innervated and the CA3 innervated zones pre- and postsynaptically. Spectral analysis of fluorophores provides an objective algorithm to analyze signals in immunoreactions for neurochemical markers.

  14. Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time

    Directory of Open Access Journals (Sweden)

    José Francisco eGómez González

    2011-11-01

    Full Text Available It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and superlinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini, 2006;Losonczy, 2006. This led to the conjecture that CA1 pyramidal neurons may only express their nonlinear integrative capabilities during the highly synchronized sharp waves and ripples that occur during slow wave sleep and resting/consummatory behavior, whereas during active exploration and REM sleep (theta rhythm, inadequate synchronization of excitation would lead CA1 pyramidal cells to function as essentially linear devices. Using a detailed single neuron model, we replicated the experimentally observed synchronization effect for brief inputs mimicking single synaptic release events. When synapses were driven instead by double pulses, more representative of the bursty inputs that occur in vivo, we found that the tolerance for input desynchronization was increased by more than an order of magnitude. The effect depended mainly on paired pulse facilitation of NMDA receptor-mediated responses at Schaffer collateral synapses. Our results suggest that CA1 pyramidal cells could function as nonlinear integrative units in all major hippocampal states.

  15. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  16. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells

    OpenAIRE

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Iryna

    2011-01-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic i...

  17. Low concentrations of the solvent dimethyl sulphoxide alter intrinsic excitability properties of cortical and hippocampal pyramidal cells.

    Directory of Open Access Journals (Sweden)

    Francesco Tamagnini

    Full Text Available Dimethylsulfoxide (DMSO is a widely used solvent in biology. It has many applications perhaps the most common of which is in aiding the preparation of drug solutions from hydrophobic chemical entities. Recent studies have suggested that this molecule may be able to induce apoptosis in neural tissues urging caution regarding its introduction into humans, for example as part of stem cell transplants. Here we have used in vitro electrophysiological methods applied to murine brain slices to examine whether a few hours treatment with 0.05% DMSO (a concentration regarded by many as innocuous alters intrinsic excitability properties of neurones. We investigated pyramidal neurones in two distinct brain regions, namely area CA1 of the hippocampus and layer 2 of perirhinal cortex. In the former there was no effect on resting potential but input resistance was decreased by DMSO pre-treatment. In line with this action potential count for any level of depolarizing current stimulus was reduced by ∼25% following DMSO treatment. Ih-mediated "sag" was also increased in CA1 pyramids and action potential waveform analysis demonstrated that DMSO treatment moved action potential threshold towards resting potential. In perirhinal cortex a decreased action potential output for various depolarizing current stimuli was also seen. In these cells action potential threshold was unaltered by DMSO but a significant increase in action potential width was apparent. These data indicate that pre-treatment with this widely employed solvent can elicit multifaceted neurophysiological changes in mammalian neurones at concentrations below those frequently encountered in the published literature.

  18. Development of synaptic connectivity onto interneurons in stratum radiatum in the CA1 region of the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Riebe Ilse

    2012-01-01

    Full Text Available Abstract Background The impact of a given presynaptic neuron on the firing probability of the postsynaptic neuron critically depends on the number of functional release sites that connect the two neurons. One way of determining the average functional synaptic connectivity onto a postsynaptic neuron is to compare the amplitudes of action potential dependent spontaneous synaptic currents with the amplitude of the synaptic currents that are independent of action potentials ("minis". With this method it has been found that average synaptic connectivity between glutamatergic CA3 and CA1 pyramidal cells increases from single connections in the neonatal rat, to multiple connections in the young adult rat. On the other hand, γ-aminobutyric acid (GABAergic interneurons form multiple connections onto CA1 pyramidal cells already in the neonatal rat, and the degree of multiple GABAergic connectivity is preserved into adulthood. In the present study, we have examined the development of glutamate and GABA connectivity onto GABAergic CA1 stratum radiatum interneurons in the hippocampal slice, and compared this to the connectivity onto CA1 pyramidal neurons. Results In GABAergic interneurons in the CA1 stratum radiatum, irrespective of developmental stage, we found that the average amplitude of action potential dependent spontaneous AMPA receptor-mediated synaptic currents were of the same magnitude as the mini AMPA receptor mediated synaptic currents. This finding indicates that these GABAergic interneurons, in contrast to the CA1 pyramidal neurons, preserve single glutamate connectivity throughout development. For GABA connectivity, on the other hand, we found multiple functional synaptic connections onto the interneurons, as onto the pyramidal cells. Conclusions The results presented here confirm that glutamate and GABA synaptic connectivity develop very differently in the hippocampal CA1 region. Thus, whereas average GABA connectivity is multiple

  19. Hippocampal CA1 interneurons: an in vivo intracellular labeling study.

    Science.gov (United States)

    Sik, A; Penttonen, M; Ylinen, A; Buzsáki, G

    1995-10-01

    Fast spiking interneurons in the CA1 area of the dorsal hippocampus were recorded from and filled with biocytin in anesthetized rats. The full extent of their dendrites and axonal arborizations as well as their calcium binding protein content were examined. Based on the spatial extent of axon collaterals, local circuit cells (basket and O-LM neurons) and long-range cells (bistratified, trilaminar, and backprojection neurons) could be distinguished. Basket cells were immunoreactive for parvalbumin and their axon collaterals were confined to the pyramidal layer. A single basket cell contacted more than 1500 pyramidal neurons and 60 other parvalbumin-positive interneurons. Commissural stimulation directly discharged basket cells, followed by an early and late IPSPs, indicating interneuronal inhibition of basket cells. The dendrites of another local circuit neuron (O-LM) were confined to stratum oriens and it had a small but high-density axonal terminal field in stratum lacunosum-moleculare. The fastest firing cell of all interneurons was a calbindin-immunoreactive bistratified neuron with axonal targets in stratum oriens and radiatum. Two neurons with their cell bodies in the alveus innervated the CA3 region (backprojection cells), in addition to rich axon collaterals in the CA1 region. The trilaminar interneuron had axon collaterals in strata radiatum, oriens and pyramidale with its dendrites confined to stratum oriens. Commissural stimulation evoked an early EPSP-IPSP-late depolarizing potential sequence in this cell. All interneurons formed symmetric synapses with their targets at the electron microscopic level. These findings indicate that interneurons with distinct axonal targets have differential functions in shaping the physiological patterns of the CA1 network.

  20. GABA application to hippocampal CA3 or CA1 stratum lacunosum-moleculare excites an interneuron network.

    Science.gov (United States)

    Perkins, Katherine L

    2002-03-01

    Whole cell voltage-clamp recording and focal application of the neurotransmitter gamma-aminobutyric acid (GABA) were used to investigate the ability of exogenous GABA applied to different locations within the guinea pig hippocampal slice to trigger a giant GABA-mediated postsynaptic current (GPSC) in pyramidal cells. A GPSC reflects the synchronous release of GABA from a group of interneurons. Recordings were done in the presence of 4-aminopyridine (4-AP) and blockers of ionotropic glutamatergic synaptic transmission. Spontaneous GPSCs occurred rhythmically in pyramidal cells under these conditions. Brief focal pressure application of GABA (500 microM; 30-200 ms) to CA3 stratum lacunosum-moleculare (SLM) or to the border between CA3 s. radiatum (SR) and SLM triggered an "all-or-none" GPSC in CA3 and CA1 pyramidal cells that looked like the spontaneous GPSCs. During the refractory period following a spontaneous GPSC, application of GABA could not trigger a GPSC. Both spontaneous GPSCs and GPSCs triggered by exogenous GABA were blocked by suppressing synaptic transmission with high Mg(2+)/low Ca(2+) bath solution. On the other hand, focal application of GABA to CA3 s. oriens (SO) or to proximal SR did not trigger a GPSC in the CA3 pyramidal cell; instead it produced a graded response. Focal application of GABA to regions other than CA3 was also tested. Focal application of GABA to CA1 SLM always triggered a GPSC in the CA3 pyramidal cell. Focal application of GABA within the outer two-thirds of the dentate molecular layer often elicited a GPSC in the CA3 pyramidal cell. In contrast, focal application of GABA to CA1 SO, to CA1 SR, or to the hilus elicited no current response in the CA3 pyramidal cell. These data indicate that the GPSC recorded in pyramidal cells that was triggered by focal GABA application resulted from the synchronous synaptic release of GABA from activated interneurons rather than from the binding of exogenous GABA to receptors on the pyramidal cell

  1. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    Science.gov (United States)

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  2. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  3. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  4. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    Science.gov (United States)

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  5. Morphological and electrophysiological properties of atypically oriented layer 2 pyramidal cells of the juvenile rat neocortex.

    Science.gov (United States)

    van Brederode, J F; Foehring, R C; Spain, W J

    2000-01-01

    We used whole-cell patch clamp recordings combined with intracellular dye-filling to examine the morphological and electrophysiological properties of atypically oriented pyramidal cells located at the layer 1/2 border of the juvenile rat neocortex. Orientation of the apical dendrite varied from oblique (>20 degrees from vertical) to truly horizontal (90 degrees from vertical). The length of the apical dendrite ranged from 150 to 400 microm. The total horizontal domain of the dendritic tree (including basal dendrites) of the longest horizontal pyramids exceeded 500 microm, but we also found short horizontal cells with horizontal dendritic domains of less than 300 microm. In addition, atypically oriented pyramids had long horizontal axon collaterals in layer 1/2. Electrophysiologically, atypically oriented pyramidal cells had intrinsic membrane properties similar to regularly oriented pyramids that have been described in the superficial layers at this age in the rat. Cells that fired repetitively were all regular spiking. In addition, we identified a subgroup of neurons (20%) in this sample, which were unable to fire more than a few spikes at the beginning of the current pulse. We suggest that the unique orientation and size of their dendritic trees and the length and arrangement of their local axons collaterals make atypically oriented pyramids in layer 2 ideally suited to perform horizontal integration of synaptic inputs in the neocortex.

  6. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids.

    Science.gov (United States)

    He, Lining; Lai, Donny; Wang, Hao; Jiang, Changyun; Rusli

    2012-06-11

    An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

  7. Pyramidal cells make specific connections onto smooth (GABAergic neurons in mouse visual cortex.

    Directory of Open Access Journals (Sweden)

    Rita Bopp

    2014-08-01

    Full Text Available One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1 of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively and smooth (GABAergic, 5% and 19%, respectively dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells. This suggests that either the neuropil of this particular mouse V1 had a dramatically different composition to that of V1 in cat and monkey, or that smooth neurons were specifically targeted by the pyramidal cells in that mouse. We tested these hypotheses by examining similar cells filled with biocytin in a sample of five mice. We found that the average composition of the neuropil in V1 of these mice was similar to that described for cat and monkey V1, but that the superficial layer pyramidal cells do form proportionately more synapses with smooth dendrites than the equivalent neurons in cat or monkey. These distributions may underlie the distinct differences in functional architecture of V1 between rodent and higher mammals.

  8. The mammalian neocortical pyramidal cell: a new theory on prenatal development

    Directory of Open Access Journals (Sweden)

    Miguel eMarín-Padilla

    2014-01-01

    Full Text Available Mammals’ new cerebral cortex (neocortex and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities using essentially analogous anatomical and neural makeups. The human neocortex starts to develop in the 6-week-old embryo with the establishment of a primordial cortical organization that resembles the primitive cortices of amphibian and reptiles that operated his early motor activities. From the 8th to the 15th week of age, the new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divide its components into those above it (neocortex first lamina and those below it (neocortex subplate elements. From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating the animal muscular activities. The new pyramidal neuron’ distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface without losing its original attachment to first lamina or the location of its soma retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs 2 pyramidal cell functional strata to carry out all its motor activities, the mouse three, cat four, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing including thinking as a premotor activity.

  9. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings

    Science.gov (United States)

    Alshal, Mohamed A.; Allam, Nageh K.

    2016-11-01

    A design for a highly efficient modified grating crystalline silicon (c-Si) thin film solar cell is demonstrated and analyzed using the two-dimensional (2-D) finite element method. The suggested grating has a double-sided pyramidal structure. The incorporation of the modified grating in a c-Si thin film solar cell offers a promising route to harvest light into the few micrometers active layer. Furthermore, a layer of silicon nitride is used as an antireflection coating (ARC). Additionally, the light trapping through the suggested design is significantly enhanced by the asymmetry of the top and bottom pyramids. The effects of the thickness of the active layer and facet angle of the pyramid on the spectral absorption, ultimate efficiency ( η), and short-circuit current density ( J sc) are investigated. The numerical results showed 87.9% efficiency improvement over the conventional thin film c-Si solar cell counterpart without gratings.

  10. Dense and overlapping innervation of pyramidal neurons by neocortical chandelier cells

    Science.gov (United States)

    Inan, Melis; Blázquez-Llorca, Lidia; Merchán-Perez, Angel; Anderson, Stewart A.; DeFelipe, Javier; Yuste, Rafael

    2013-01-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and thus could have an important role controlling the activity of cortical circuits. To understand their connectivity we labeled upper layers chandelier cells (ChCs) from mouse neocortex with a genetic strategy and studied how their axons contact local populations of pyramidal neurons, using immunohistochemical detection of axon initial segments. We studied ChCs located in the border of layers 1 and 2 from primary somatosensory cortex and find that practically all ChC axon terminals contact axon initial segments with an average of 3–5 boutons per cartridge. By measuring the number of putative synapses in initial segments we estimate that each pyramidal neuron is innervated, on average, by at least 4 ChCs. Additionally, each individual ChC contacts 35–50% of pyramidal neurons within its axonal arbor, with pockets of high innervation density. Finally, we find that ChC axons seems to have a conserved innervation pattern at different postnatal ages (P18–90), with only relatively small lateral expansions of their arbor and increases in the total number of their cartridges during the developmental period analyzed. We conclude that ChCs innervate neighboring pyramidal neurons in a dense and overlapping manner, an innervation pattern which could enable ChCs exert a widespread influence on their local circuits. PMID:23365230

  11. A threshold sodium current in pyramidal cells in rat hippocampus.

    Science.gov (United States)

    French, C R; Gage, P W

    1985-05-23

    Maintained, inward currents were activated by small depolarizations from the resting membrane potential (-50 to -60 mV) in voltage-clamped, pyramidal neurons in rat hippocampal slices. The currents were apparently Na currents as they were blocked by tetrodotoxin or removal of extracellular Na and were not affected by Cd. They showed little decrease in amplitude during prolonged depolarizations. The increase in Na conductance with depolarization was sigmoidal, with half-maximum conductance at about -50 mV, and saturated at -20 to -30 mV. This 'threshold' Na current may be involved in setting patterns of repetitive firing of action potentials.

  12. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    Science.gov (United States)

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  13. Inhibitory nature of tiagabine-augmented GABAA receptor-mediated depolarizing responses in hippocampal pyramidal cells.

    Science.gov (United States)

    Jackson, M F; Esplin, B; Capek, R

    1999-03-01

    Tiagabine is a potent GABA uptake inhibitor with demonstrated anticonvulsant activity. GABA uptake inhibitors are believed to produce their anticonvulsant effects by prolonging the postsynaptic actions of GABA, released during episodes of neuronal hyperexcitability. However, tiagabine has recently been reported to facilitate the depolarizing actions of GABA in the CNS of adult rats following the stimulation of inhibitory pathways at a frequency (100 Hz) intended to mimic interneuronal activation during epileptiform activity. In the present study, we performed extracellular and whole cell recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the functional consequences of tiagabine-augmented GABA-mediated depolarizing responses. Orthodromic population spikes (PSs), elicited from the stratum radiatum, were inhibited following the activation of recurrent inhibitory pathways by antidromic conditioning stimulation of the alveus, which consisted of either a single stimulus or a train of stimuli delivered at high-frequency (100 Hz, 200 ms). The inhibition of orthodromic PSs produced by high-frequency conditioning stimulation (HFS), which was always of much greater strength and duration than that produced by a single conditioning stimulus, was greatly enhanced following the bath application of tiagabine (2-100 microM). Thus, in the presence of tiagabine (20 microM), orthodromic PSs, evoked 200 and 800 ms following HFS, were inhibited to 7.8 +/- 2.6% (mean +/- SE) and 34.4 +/- 18.5% of their unconditioned amplitudes compared with only 35.4 +/- 12.7% and 98.8 +/- 12.4% in control. Whole cell recordings revealed that the bath application of tiagabine (20 microM) either caused the appearance or greatly enhanced the amplitude of GABA-mediated depolarizing responses (DR). Excitatory postsynaptic potentials (EPSPs) evoked from stratum radiatum at time points that coincided with the DR were inhibited to below the threshold for action-potential firing

  14. Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics.

    Science.gov (United States)

    Zemankovics, Rita; Káli, Szabolcs; Paulsen, Ole; Freund, Tamás F; Hájos, Norbert

    2010-06-15

    The intrinsic properties of distinct types of neuron play important roles in cortical network dynamics. One crucial determinant of neuronal behaviour is the cell's response to rhythmic subthreshold input, characterised by the input impedance, which can be determined by measuring the amplitude and phase of the membrane potential response to sinusoidal currents as a function of input frequency. In this study, we determined the impedance profiles of anatomically identified neurons in the CA1 region of the rat hippocampus (pyramidal cells as well as interneurons located in the stratum oriens, including OLM cells, fast-spiking perisomatic region-targeting interneurons and cells with axonal arbour in strata oriens and radiatum). The basic features of the impedance profiles, as well as the passive membrane characteristics and the properties of the sag in the voltage response to negative current steps, were cell-type specific. With the exception of fast-spiking interneurons, all cell types showed subthreshold resonance, albeit with distinct features. The HCN channel blocker ZD7288 (10 microM) eliminated the resonance and changed the shape of the impedance curves, indicating the involvement of the hyperpolarization-activated cation current I(h). Whole-cell voltage-clamp recordings uncovered differences in the voltage-dependent activation and kinetics of I(h) between different cell types. Biophysical modelling demonstrated that the cell-type specificity of the impedance profiles can be largely explained by the properties of I(h) in combination with the passive membrane characteristics. We conclude that differences in I(h) and passive membrane properties result in a cell-type-specific response to inputs at given frequencies, and may explain, at least in part, the differential involvement of distinct types of neuron in various network oscillations.

  15. Age-related changes of NGF, BDNF, parvalbumin and neuronal nitric oxide synthase immunoreactivity in the mouse hippocampal CA1 sector.

    Science.gov (United States)

    Hayakawa, Natsumi; Abe, Manami; Eto, Risa; Kato, Hiroyuki; Araki, Tsutomu

    2008-06-01

    We investigated the age-related alterations in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), parvalbumin and neuronal nitric oxide synthase (nNOS) immunoreactivity of the mouse hippocampal CA1 sector. NGF and BDNF immunoreactivity was unchanged in the hippocampal CA1 pyramidal neurons from 2 to 50-59 weeks of birth. In contrast, a significant increase in the NGF and BDNF immunoreactivity was observed in glial cells of the hippocampal CA1 sector from 40-42 to 50-59 weeks of birth. On the other hand, the number of parvalbumin- and nNOS-positive interneurons was unchanged in the hippocampal CA1 sector during aging processes, except for a significant decrease of nNOS-positive interneurons 2 weeks of birth. Our results indicate that NGF and BDNF immunoreactivity was unaltered in the hippocampal CA1 pyramidal neurons during aging processes. In contrast, a significant increase in the NGF and BDNF immunoreactivity was observed in glial cells of the hippocampal CA1 sector during aging processes. The present study also shows that the number of parvalbumin- and nNOS-positive interneurons was unchanged in the hippocampal CA1 sector during aging processes, except for a significant decrease of nNOS-positive interneurons 2 weeks of birth. These results demonstrate that the expression of glial NGF and BDNF may play a key role for helping survival and maintenance of pyramidal neurons and neuronal functions in the hippocampal CA1 sector during aging processes. Furthermore, our findings suggest that parvalbumin- and nNOS-positive interneurons in the hippocampal CA1 sector are resistant to aging processes. Moreover, our findings suggest that nitric oxide synthesized by the nNOS may play some role for neuronal growth during postnatal development.

  16. Inhibitory Gating of Input Comparison in the CA1 Microcircuit.

    Science.gov (United States)

    Milstein, Aaron D; Bloss, Erik B; Apostolides, Pierre F; Vaidya, Sachin P; Dilly, Geoffrey A; Zemelman, Boris V; Magee, Jeffrey C

    2015-09-23

    Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites.

  17. GluN2D-containing NMDA receptors-mediate synaptic currents in hippocampal interneurons and pyramidal cells in juvenile mice

    Directory of Open Access Journals (Sweden)

    Jakob evon Engelhardt

    2015-03-01

    Full Text Available The differential regulation of the two major N-methyl-D-aspartate receptor (NMDAR subunits GluN2A and GluN2B during development in forebrain pyramidal cells has been thoroughly investigated. In contrast, much less is known about the role of GluN2D, which is expressed at low levels and is downregulated following the second postnatal week. However, it appears that few cells, presumably interneurons, continue to express GluN2D also in juvenile mice. To investigate which hippocampal cell types express this subunit, we generated transgenic mice with EGFP-tagged GluN2D receptors. The expression of the transgene was confined to hippocampal interneurons, most of which were parvalbumin- and/or somatostatin-positive. Electrophysiological and morphological analyses showed that GluN2D was present mainly in fast spiking basket and axo-axonic cells. Based on pharmacological evidence and electrophysiological analysis of GluN2D knockout mice, we conclude that GluN2D-containing NMDARs mediate synaptic currents in hippocampal interneurons of young and juvenile mice and in CA1 pyramidal neurons of newborn mice.

  18. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  19. AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice.

    Directory of Open Access Journals (Sweden)

    Tomasz Jaworski

    Full Text Available In Alzheimer's disease tauopathy is considered secondary to amyloid, and the duality obscures their relation and the definition of their respective contributions.Transgenic mouse models do not resolve this problem conclusively, i.e. the relative hierarchy of amyloid and tau pathology depends on the actual model and the genes expressed or inactivated. Here, we approached the problem in non-transgenic models by intracerebral injection of adeno-associated viral vectors to express protein tau or amyloid precursor protein in the hippocampus in vivo. AAV-APP mutant caused neuronal accumulation of amyloid peptides, and eventually amyloid plaques at 6 months post-injection, but with only marginal hippocampal cell-death. In contrast, AAV-Tau, either wild-type or mutant P301L, provoked dramatic degeneration of pyramidal neurons in CA1/2 and cortex within weeks. Tau-mediated neurodegeneration proceeded without formation of large fibrillar tau-aggregates or tangles, but with increased expression of cell-cycle markers.We present novel AAV-based models, which demonstrate that protein tau mediates pyramidal neurodegeneration in vivo. The data firmly support the unifying hypothesis that post-mitotic neurons are forced to re-enter the cell-cycle in primary and secondary tauopathies, including Alzheimer's disease.

  20. Transition between fast and slow gamma modes in rat hippocampus area CA1 in vitro is modulated by slow CA3 gamma oscillations.

    Science.gov (United States)

    Pietersen, Alexander N J; Ward, Peter D; Hagger-Vaughan, Nicholas; Wiggins, James; Jefferys, John G R; Vreugdenhil, Martin

    2014-02-15

    Hippocampal gamma oscillations have been associated with cognitive functions including navigation and memory encoding/retrieval. Gamma oscillations in area CA1 are thought to depend on the oscillatory drive from CA3 (slow gamma) or the entorhinal cortex (fast gamma). Here we show that the local CA1 network can generate its own fast gamma that can be suppressed by slow gamma-paced inputs from CA3. Moderate acetylcholine receptor activation induces fast (45 ± 1 Hz) gamma in rat CA1 minislices and slow (33 ± 1 Hz) gamma in CA3 minislices in vitro. Using pharmacological tools, current-source density analysis and intracellular recordings from pyramidal cells and fast-spiking stratum pyramidale interneurons, we demonstrate that fast gamma in CA1 is of the pyramidal-interneuron network gamma (PING) type, with the firing of principal cells paced by recurrent perisomal IPSCs. The oscillation frequency was only weakly dependent on IPSC amplitude, and decreased to that of CA3 slow gamma by reducing IPSC decay rate or reducing interneuron activation through tonic inhibition of interneurons. Fast gamma in CA1 was replaced by slow CA3-driven gamma in unlesioned slices, which could be mimicked in CA1 minislices by sub-threshold 35 Hz Schaffer collateral stimulation that activated fast-spiking interneurons but hyperpolarised pyramidal cells, suggesting that slow gamma frequency CA3 outputs can suppress the CA1 fast gamma-generating network by feed-forward inhibition and replaces it with a slower gamma oscillation driven by feed-forward inhibition. The transition between the two gamma oscillation modes in CA1 might allow it to alternate between effective communication with the medial entorhinal cortex and CA3, which have different roles in encoding and recall of memory.

  1. Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells.

    Science.gov (United States)

    Swann, J W; Brady, R J

    1984-02-01

    Penicillin's ability to produce epileptiform discharges in the CA3 region of hippocampus was examined both extracellularly and intracellularly in slices taken from immature rats 3-25 days of age. Comparisons were made to similar recordings from slices taken from mature rats. Between postnatal days 9 and 19 penicillin treatment resulted in spontaneous extracellular epileptiform bursts and coincident intracellular depolarization shifts. These events were more prolonged and less frequent than in slices from mature rats, and the bursts were followed by prolonged afterdischarges, often 20-30 s in duration. Intracellularly these afterdischarges consisted of large, rhythmic slow depolarizing potentials, which resulted in one or more action potentials in individual CA3 pyramidal cells. Extracellular field recordings showed these events to be simultaneous with synchronous discharges of a large population of CA3 pyramidal cells. In pups 1-2 weeks of age the ability of hippocampus to produce prolonged afterdischarges was associated with a slow depolarizing afterpotential, which followed the downstroke of the depolarization shift. Coincident with this afterpotential was a prolonged negative field in the CA3 pyramidal cell body layer. By postnatal days 24 and 25 the tendency to generate afterdischarges was greatly reduced. In addition, afterdischarges were observed infrequently in slices taken during the first postnatal week. Spike trains produced by prolonged intracellular current injection in slices taken on postnatal days 9-19 were followed by large afterhyperpolarizations and were unable to produce afterdischarges in individual CA3 pyramidal cells. Intracellular recordings from presumed glial cells suggest that extracellular K+ accumulation may play a role in the pronounced capacity of hippocampus from 1- and 2-week-old rat pups to generate prolonged afterdischarges.

  2. Effects of glossy privet fruit on neural cell apoptosis in the cortical parietal lobe and hippocampal CA1 region of vascular dementia rats

    Institute of Scientific and Technical Information of China (English)

    Jing Cai; Fan Zhou; Jian Du

    2008-01-01

    BACKGROUND: Glossy privet fruit inhibits neural cell apoptosis following the onset of vascular dementia. OBJECTIVE: To confirm glossy privet fruit effects on neural cell apoptosis in the cortical parietal lobe and hippocampal CA1 region of rat models of vascular dementia using molecular biology techniques. DESIGN, TIME AND SETTING: The neural cell morphology experiment was performed at the Laboratory of Flow Cells and Biochemistry, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, and the Basic Room of Pathology, Academy of Chinese Medicine from December 2006 to May 2008.MATERIALS: A total of 60 Wistar rats were used to establish vascular dementia models using a photochemical reaction method. Glossy privet fruit was purchased from Fujian, China. Hydergine was co-produced by Sandoz, Switzerland and Huajin, China. METHODS: The 60 Wistar rats were randomly divided into 6 equal sized groups (n = 10), I.e. Model, blank, high, moderate and low doses of Chinese medicine, and hydergine control groups. Rats in the model group were treated with distilled water (1 mL/100 g) by gavage following model establishment. Rats in the blank group underwent experimental procedures as for the model group, except that rat models were created without illumination. Rats in the high, moderate and low doses of Chinese medicine groups, and the hydergine control group respectively received high, moderate and low doses of glossy privet fruit, and hydergine suspension (1 mL/100 g) by gavage, once a day, for 30 days. MAIN OUTCOME MEASURES: Morphology of neural cells from the rat cortical parietal lobe and hippocampal CA1 region of all groups was observed with an electron microscope. Positive neural cells in the injury site of the rat cortical parietal lobe and hippocampal CA1 region were investigated using the Fas immunohistochemical method. Absorbance of Fas-positive neurons was detected by the MPIAS-500 multimedia color imaging analysis system. RESULTS: Neural

  3. Encoding and retrieval in a model of the hippocampal CA1 microcircuit.

    Science.gov (United States)

    Cutsuridis, Vassilis; Cobb, Stuart; Graham, Bruce P

    2010-03-01

    It has been proposed that the hippocampal theta rhythm (4-7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half-cycles (Hasselmo et al. (2002) Neural Comput 14:793-817). We investigate, via computer simulations, the biophysical mechanisms by which storage and recall of spatio-temporal input patterns are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit is presented that uses biophysical representations of the major cell types, including pyramidal (P) cells and four types of inhibitory interneurons: basket (B) cells, axo-axonic (AA) cells, bistratified (BS) cells and oriens lacunosum-moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum. The EC input provides the sensory information, whereas all other inputs provide context and timing information. Septal input provides timing information for phasing storage and recall. Storage is accomplished via a local STDP mediated hetero-association of the EC input pattern and the incoming CA3 input pattern on the CA1 pyramidal cell target synapses. The model simulates the timing of firing of different hippocampal cell types relative to the theta rhythm in anesthetized animals and proposes experimentally confirmed functional roles for the different classes of inhibitory interneurons in the storage and recall cycles (Klausberger et al., (2003, 2004) Nature 421:844-848, Nat Neurosci 7:41-47). Measures of recall performance of new and previously stored input patterns in the presence or absence of various inhibitory interneurons are employed to quantitatively test the performance of our model. Finally, the mean recall quality of the CA1 microcircuit is tested as the number of stored patterns is increased.

  4. Facilitating and nonfacilitating synapses on pyramidal cells: a correlation between physiology and morphology

    OpenAIRE

    Bower, J M; Haberly, L B

    1986-01-01

    Pyramidal cells in piriform cortex receive excitatory inputs from two different sources that are segregated onto adjacent segments of their apical dendrites. The present studies show that excitatory postsynaptic potentials (EPSPs) evoked by primary olfactory tract afferents that terminate on distal apical segments display paired shock facilitation whereas ESPSs evoked by intrinsic association fibers that terminate on proximal apical segments do not. An ultrastructural comparison of the presyn...

  5. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.

    Science.gov (United States)

    Storm, J F

    1987-04-01

    1. The repolarization of the action potential, and a fast after-hyperpolarization (a.h.p.) were studied in CA1 pyramidal cells (n = 76) in rat hippocampal slices (28-37 degrees C). Single spikes were elicited by brief (1-3 ms) current pulses, at membrane potentials close to rest (-60 to -70 mV). 2. Each action potential was followed by four after-potentials: (a) the fast a.h.p., lasting 2-5 ms; (b) an after-depolarization; (c) a medium a.h.p., (50-100 ms); and (d) a slow a.h.p. (1-2 s). Both the fast a.h.p. and the slow a.h.p. (but not the medium a.h.p.) were inhibited by Ca2+-free medium or Ca2+-channel blockers (Co2+, Mn2+ or Cd2+); but tetraethylammonium (TEA; 0.5-2 nM) blocked only the fast a.h.p., and noradrenaline (2-5 microM) only the slow a.h.p. This suggests that two Ca2+-activated K+ currents were involved: a fast, TEA-sensitive one (IC) underlying the fast a.h.p., and a slow noradrenaline-sensitive one (IAHP) underlying the slow a.h.p. 3. Like the fast a.h.p., spike repolarization seems to depend on a Ca2+-dependent K+ current of the fast, TEA-sensitive kind (IC). The repolarization was slowed by Ca2+-free medium, Co2+, Mn2+, Cd2+, or TEA, but not by noradrenaline. Charybdotoxin (CTX; 30 nM), a scorpion toxin which blocks the large-conductance Ca2+-activated K+ channel in muscle, had a similar effect to TEA. The effects of TEA and Cd2+ (or Mn2+) showed mutual occlusion. Raising the external K+ concentration reduced the fast a.h.p. and slowed the spike repolarization, whereas Cl- loading of the cell was ineffective. 4. The transient K+ current, IA, seems also to contribute to spike repolarization, because: (a) 4-aminopyridine (4-AP; 0.1 mM), which blocks IA, slowed the spike repolarization; (b) depolarizing pre-pulses, which inactivate IA, had a similar effect; (c) hyperpolarizing pre-pulses speeded up the spike repolarization; (d) the effects of 4-AP and pre-pulses persisted during Ca2+ blockade (like IA); and (e) depolarizing pre-pulses reduced the

  6. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats.

    Science.gov (United States)

    Hermawati, Ery; Sari, Dwi Cahyani Ratna; Partadiredja, Ginus

    2015-09-01

    Monosodium glutamate (MSG) is believed to exert deleterious effects on various organs, including the hippocampus, likely via the oxidative stress pathway. Garlic (Alium sativum L.), which is considered to possess potent antioxidant activity, has been used as traditional remedy for various ailments since ancient times. We have investigated the effects of black garlic, a fermented form of garlic, on spatial memory and estimated the total number of pyramidal cells of the hippocampus in adolescent male Wistar rats treated with MSG. Twenty-five rats were divided into five groups: C- group, which received normal saline; C+ group, which was exposed to 2 mg/g body weight (bw) of MSG; three treatment groups (T2.5, T5, T10), which were treated with black garlic extract (2.5, 5, 10 mg/200 g bw, respectively) and MSG. The spatial memory test was carried out using the Morris water maze (MWM) procedure, and the total number of pyramidal cells of the hippocampus was estimated using the physical disector design. The groups treated with black garlic extract were found to have a shorter path length than the C- and C+ groups in the escape acquisition phase of the MWM test. The estimated total number of pyramidal cells in the CA1 region of the hippocampus was higher in all treated groups than that of the C+ group. Based on these results, we conclude that combined administration of black garlic and MSG may alter the spatial memory functioning and total number of pyramidal neurons of the CA1 region of the hippocampus of rats.

  7. Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells.

    Science.gov (United States)

    Früh, Simon; Romanos, Jennifer; Panzanelli, Patrizia; Bürgisser, Daniela; Tyagarajan, Shiva K; Campbell, Kevin P; Santello, Mirko; Fritschy, Jean-Marc

    2016-10-05

    Distinct types of GABAergic interneurons target different subcellular domains of pyramidal cells, thereby shaping pyramidal cell activity patterns. Whether the presynaptic heterogeneity of GABAergic innervation is mirrored by specific postsynaptic factors is largely unexplored. Here we show that dystroglycan, a protein responsible for the majority of congenital muscular dystrophies when dysfunctional, has a function at postsynaptic sites restricted to a subset of GABAergic interneurons. Conditional deletion of Dag1, encoding dystroglycan, in pyramidal cells caused loss of CCK-positive basket cell terminals in hippocampus and neocortex. PV-positive basket cell terminals were unaffected in mutant mice, demonstrating interneuron subtype-specific function of dystroglycan. Loss of dystroglycan in pyramidal cells had little influence on clustering of other GABAergic postsynaptic proteins and of glutamatergic synaptic proteins. CCK-positive terminals were not established at P21 in the absence of dystroglycan and were markedly reduced when dystroglycan was ablated in adult mice, suggesting a role for dystroglycan in both formation and maintenance of CCK-positive terminals. The necessity of neuronal dystroglycan for functional innervation by CCK-positive basket cell axon terminals was confirmed by reduced frequency of inhibitory events in pyramidal cells of dystroglycan-deficient mice and further corroborated by the inefficiency of carbachol to increase IPSC frequency in these cells. Finally, neurexin binding seems dispensable for dystroglycan function because knock-in mice expressing binding-deficient T190M dystroglycan displayed normal CCK-positive terminals. Together, we describe a novel function of dystroglycan in interneuron subtype-specific trans-synaptic signaling, revealing correlation of presynaptic and postsynaptic molecular diversity.

  8. Description of morphological changes in neurons and endothelial cells of CA1-area of hippocampus in rats with alloxan-induced hyp erglycemia under application of nootropic drugs

    Directory of Open Access Journals (Sweden)

    Zhylyuk V.I.

    2012-01-01

    Full Text Available Using neuromorphometry analysis differences in the effects of nootropic drugs on morphology and function of neurons and endothelial cells of hippocampus, content of RNA, content of apoptotic and destructive neurons were examined in white rats with chronic alloxan-induced hyperglycemia. It ha s been found that diabetes in rats is accompanied by specific morphological and functional changes and activation of apoptosis in neurons of the CA1-area in hi ppocampus, which may be related to disturbance of local blood flow due to endothelial damage. N-carbamoyl-methyl-4-phenyl-2-pyrrolidone (entrop, N-phenylacetyl-L-prolylglycine (noopept, pramiracetam, cerebrocurin and citicoline show protective effects on neurons and endothelial cells, which are much larger in force than effect s of ginkgo biloba extract, piracetam and pentoxifylline. This protective activity is characterized by reducing the number of apoptotic and dest ructive neurons in hippocampal CA1-area, increasing the density of functioning nerve and endothelial cells, activation of RNA biosynthesis in the neurocytes and endo-thelial cells

  9. Cell-type and state-dependent synchronization among rodent areas S1BF, V1, perirhinal cortex and hippocampus CA1

    Directory of Open Access Journals (Sweden)

    Martin eVinck

    2016-01-01

    Full Text Available Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1. S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1-LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions.

  10. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo.

    Science.gov (United States)

    Fernández-Ruiz, Antonio; Makarov, Valeri A; Herreras, Oscar

    2012-01-01

    Long-term potentiation (LTP) is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes it difficult to estimate the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs) in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency) that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average (STA) of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway-specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. They indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  11. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Oscar eHerreras

    2012-10-01

    Full Text Available Long term potentiation (LTP is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes difficult estimating the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. These indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  12. Cholinergic modulation of excitatory synaptic input integration in hippocampal CA1.

    Science.gov (United States)

    McQuiston, A Rory

    2010-10-01

    During theta rhythm, the timing of inputs to hippocampal CA1 from the perforant path (PP) of the entorhinal cortex and the Schaffer collaterals (SCs) from individual CA3 pyramidal neurons can vary within an individual theta period. Importantly, during theta rhythms these interactions occur during elevated acetylcholine concentrations. Thus, I examined the effect that PP inputs have on SC inputs in hippocampal CA1 during cholinergic receptor activation. To do this I measured the impact that a single electrical stimulus of the stratum lacunosum-moleculare (SLM, which contains the PP) had on excitation evoked by stimulation of the stratum radiatum (SR, which contains the SC) using voltage-sensitive dye imaging, field excitatory postsynaptic potentials and whole cell patch clamping in rat hippocampal brain slices. My data showed that SLM stimulation one half a theta cycle or less (25-75 ms) before SR stimulation resulted in the summation of excitatory events in SR and SP of hippocampal CA1. The summation was unaffected by cholinergic receptor activation by carbachol. SLM stimulation one theta cycle (150-225 ms) preceding SR stimulation significantly suppressed excitatory events measured in SR and SP. This SLM stimulus inhibition of SR-driven excitatory events was augmented by carbachol application. The carbachol effect was blocked by atropine and SLM-driven suppression of excitatory events was blocked by the GABA(B) receptor antagonist CGP 54626. SR field EPSP slopes were unaffected by SLM prepulses. Carbachol increased the probability of SR input to drive action potential firing in CA1 pyramidal neurons, which was inhibited by SLM prepulses (150-225 ms). Together these data provide important information regarding the integration of inputs in hippocampal CA1 during theta rhythms. More specifically, SR inputs can be differentially gated by SLM feedforward inhibition at varying temporal intervals within a theta cycle.

  13. Turtle Dorsal Cortex Pyramidal Neurons Comprise Two Distinct Cell Types with Indistinguishable Visual Responses.

    Directory of Open Access Journals (Sweden)

    Thomas Crockett

    Full Text Available A detailed inventory of the constituent pieces in cerebral cortex is considered essential to understand the principles underlying cortical signal processing. Specifically, the search for pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division of labor could create a rich substrate for computation. On the other hand, the extreme integration of individual neurons into the collective cortical circuit promotes the hypothesis that cellular individuality represents a smaller computational role within the context of the larger network. These competing hypotheses raise the important question to what extent the computational function of a neuron is determined by its individual type or by its circuit connections. We created electrophysiological profiles from pyramidal neurons within the sole cellular layer of turtle visual cortex by measuring responses to current injection using whole-cell recordings. A blind clustering algorithm applied to these data revealed the presence of two principle types of pyramidal neurons. Brief diffuse light flashes triggered membrane potential fluctuations in those same cortical neurons. The apparently network driven variability of the visual responses concealed the existence of subtypes. In conclusion, our results support the notion that the importance of diverse intrinsic physiological properties is minimized when neurons are embedded in a synaptic recurrent network.

  14. Time- and cell-type speciifc changes in iron, ferritin, and transferrin in the gerbil hippocampal CA1 region after transient forebrain ischemia

    Institute of Scientific and Technical Information of China (English)

    Dae Young Yoo; Yeo Sung Yoon; Moo-Ho Won; In Koo Hwang; Ki-Yeon Yoo; Joon Ha Park; Hyun Jung Kwon; Hyo Young Jung; Jong Whi Kim; Goang-Min Choi; Seung Myung Moon; Dae Won Kim

    2016-01-01

    In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased signiifcantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was signiifcantly increased. Transferrin im-munoreactivity was increased signiifcantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased signiifcantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was signiifcantly increased. Western blot analyses support-ed these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.

  15. Selective Pyramidal Cell Reduction of GABAA Receptor α1 Subunit Messenger RNA Expression in Schizophrenia

    OpenAIRE

    Glausier, Jill R; Lewis, David A.

    2011-01-01

    Levels of messenger RNA (mRNA) for the α1 subunit of the GABAA receptor, which is present in 60% of cortical GABAA receptors, have been reported to be lower in layer 3 of the prefrontal cortex (PFC) in subjects with schizophrenia. This subunit is expressed in both pyramidal cells and interneurons, and thus lower α1 subunit levels in each cell population would have opposite effects on net cortical excitation. We used dual-label in situ hybridization to quantify GABAA α1 subunit mRNA expression...

  16. The changes of brain-derived neurotrophic factor positive neurons and the morphology of pyramidal cells in hippocampal in sodium valproate induced autism rats%丙戊酸钠孤独症模型鼠海马脑源性神经营养因子阳性神经元表达及锥体细胞形态学的变化

    Institute of Scientific and Technical Information of China (English)

    衣明纪; 马小旭; 李音

    2013-01-01

    目的 观察丙戊酸钠(VPA)孤独症模型鼠海马脑源性神经营养因子(BDNF)阳性神经元表达及锥体细胞形态学改变.方法 按Schneider方法制作VPA孤独症动物模型,采用免疫组化和图像分析技术检测模型鼠海马CA1区BDNF阳性神经元表达水平及海马CA1区锥体细胞形态学的改变.结果 孤独症模型组与正常对照组比较,海马CA1区锥体细胞BDNF阳性神经元表达水平增强,孤独症模型组与正常对照组阳性细胞数分别为(5.00±1.60)/视野和(3.00±1.04)/视野,差异有统计学意义(t=3.63,P=0.0015);海马CA1区锥体细胞形态学显示,孤独症模型鼠海马CA1区锥体神经元发生凋亡增加.结论 孤独症的发病可能与海马CA1区锥体细胞BDNF表达水平以及锥体神经细胞的凋亡有关.%Objective To explore the pathogenesis of autism by observation of changes of brain-derived neurotrophic factor(BDNF) positive neurons and the morphology of pyramidal cells in hippocampal CA1 region,and provide theoretical evidence for the therapeutic schedule.Methods Animal model of autism was obtained by Schneider method.Using the immunohistochemistry methods and image analysis,the number of BDNF positive neurons was examined in hippocampal CA1 region of the autism model rats and the normal rats,and the changes of pyramidal cell were observed in hippocampal CA1 region after HE staining.Results The numbers of BDNF positive neurons in the hippocampal CA1 region of the autism model rats were more than those of the normal rats (5.00 ±1.60 vs 3.00 ± 1.04,t =3.63,P =0.0015).The morphology of pyramidal cells showed that the pyramidal cells of the autism model rats in hippocampal CA1 region had apoptosis.Conclusion The occurrence of autism may be related to the changes of BDNF and the morphology of pyramidal cells in hippocampal CA1 region.

  17. Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units.

    Science.gov (United States)

    Fernández-Ruiz, Antonio; Makarov, Valeri A; Benito, Nuria; Herreras, Oscar

    2012-04-11

    Information processing and exchange between brain nuclei are made through spike series sent by individual neurons in highly irregular temporal patterns. Synchronization in cell assemblies, proposed as a network language for internal neural representations, still has little experimental support. We use a novel technique to extract pathway-specific local field potentials (LFPs) in the hippocampus to explore the ongoing temporal structure of a single presynaptic input, the CA3 Schaffer pathway, and its contribution to the spontaneous output of CA1 units in anesthetized rat. We found that Schaffer-specific LFPs are composed of a regular succession of pulse-like excitatory packages initiated by spontaneous clustered firing of CA3 pyramidal cells to which individual units contribute variably. A fraction of these packages readily induce firing of CA1 pyramidal cells and interneurons, the so-called Schaffer-driven spikes, revealing the presynaptic origin in the output code of single CA1 units. The output of 70% of CA1 pyramidal neurons contains up to 10% of such spikes. Our results suggest a hierarchical internal operation of the CA3 region based on sequential oscillatory activation of pyramidal cell assemblies whose activity partly gets in the output code at the next station. We conclude that CA1 output may directly reflect the activity of specific ensembles of CA3 neurons. Thus, the fine temporal structure of pathway-specific LFPs, as an accurate readout of the activity of a presynaptic population, is useful in searching for hidden presynaptic code in irregular spikes series of individual neurons and assemblies.

  18. Blocking GABA(A) inhibition reveals AMPA- and NMDA-receptor-mediated polysynaptic responses in the CA1 region of the rat hippocampus.

    Science.gov (United States)

    Crépel, V; Khazipov, R; Ben-Ari, Y

    1997-04-01

    We have investigated the conditions required to evoke polysynaptic responses in the isolated CA1 region of hippocampal slices from Wistar adult rats. Experiments were performed with extracellular and whole cell recording techniques. In the presence of bicuculline (10 microM), 6-cyano-7-nitroquinoxaline-2-3-dione (10 microM), glycine (10 microM), and a low external concentration of Mg2+ (0.3 mM), electrical stimulation of the Schaffer collaterals/commissural pathway evoked graded N-methyl-D-aspartate (NMDA)-receptor-mediated late field potentials in the stratum radiatum of the CA1 region. These responses were generated via polysynaptic connections because their latency varied strongly and inversely with the stimulation intensity and they were abolished by a high concentration of divalent cations (7 mM Ca2+). These responses likely were driven by local collateral branches of CA1 pyramidal cell axons because focal application of tetrodotoxin (30 microM) in the stratum oriens strongly reduced the late synaptic component and antidromic stimulation of CA1 pyramidal cells could evoke the polysynaptic response. Current-source density analysis suggested that the polysynaptic response was generated along the proximal part of the apical dendrites of CA1 pyramidal cells (50-150 microm below the pyramidal cell layer in the stratum radiatum). In physiological concentration of Mg2+ (1.3 mM), the pharmacologically isolated NMDA-receptor-mediated polysynaptic response was abolished. In control artificial cerebrospinal fluid (with physiological concentration of Mg2+), bicuculline ( 10 microM) generated a graded polysynaptic response. Under these conditions, this response was mediated both by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA receptors. In the presence of D-2-amino-5-phosphonovalerate (50 microM), the polysynaptic response could be mediated by AMPA receptors, although less efficiently. In conclusion, suppression of gamma-aminobutyric acid

  19. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.

    Science.gov (United States)

    Hamad, Mohammad I K; Jack, Alexander; Klatt, Oliver; Lorkowski, Markus; Strasdeit, Tobias; Kott, Sabine; Sager, Charlotte; Hollmann, Michael; Wahle, Petra

    2014-04-01

    The ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptors (AMPARs) have been implicated in the establishment of dendritic architecture. The transmembrane AMPA receptor regulatory proteins (TARPs) regulate AMPAR function and trafficking into synaptic membranes. In the current study, we employ type I and type II TARPs to modulate expression levels and function of endogenous AMPARs and investigate in organotypic cultures (OTCs) of rat occipital cortex whether this influences neuronal differentiation. Our results show that in early development [5-10 days in vitro (DIV)] only the type I TARP γ-8 promotes pyramidal cell dendritic growth by increasing spontaneous calcium amplitude and GluA2/3 expression in soma and dendrites. Later in development (10-15 DIV), the type I TARPs γ-2, γ-3 and γ-8 promote dendritic growth, whereas γ-4 reduced dendritic growth. The type II TARPs failed to alter dendritic morphology. The TARP-induced dendritic growth was restricted to the apical dendrites of pyramidal cells and it did not affect interneurons. Moreover, we studied the effects of short hairpin RNA-induced knockdown of endogenous γ-8 and showed a reduction of dendritic complexity and amplitudes of spontaneous calcium transients. In addition, the cytoplasmic tail (CT) of γ-8 was required for dendritic growth. Single-cell calcium imaging showed that the γ-8 CT domain increases amplitude but not frequency of calcium transients, suggesting a regulatory mechanism involving the γ-8 CT domain in the postsynaptic compartment. Indeed, the effect of γ-8 overexpression was reversed by APV, indicating a contribution of NMDA receptors. Our results suggest that selected type I TARPs influence activity-dependent dendritogenesis of immature pyramidal neurons.

  20. Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus.

    Science.gov (United States)

    Hennou, Sonia; Khalilov, Ilgam; Diabira, Diabé; Ben-Ari, Yehezkel; Gozlan, Henri

    2002-07-01

    During postnatal development of CA1 pyramidal neurons, GABAergic synapses are excitatory and established prior to glutamatergic synapses. As interneurons are generated before pyramidal cells, we have tested the hypothesis that the GABAergic interneuronal network is operative before glutamate pyramidal neurons and provides the initial patterns of activity. We patch-clamp recorded interneurons in foetal (69 neurons) and neonatal P0 (162 neurons) hippocampal slices and performed a morphofunctional analysis of biocytin-filled neurons. At P0, three types of interneurons were found: (i) non-innervated "silent" interneurons (5%) with no spontaneous or evoked synaptic currents; (ii) G interneurons (17%) with GABA(A) synapses only; and (iii) GG interneurons with GABA and glutamatergic synapses (78%). Relying on the neuronal capacitance, cell body size and arborization of dendrites and axons, the three types of interneurons correspond to three stages of development with non-innervated neurons and interneurons with GABA(A) and glutamatergic synapses being, respectively, the least and the most developed. Recordings from both pyramidal neurons and interneurons in foetuses (E18-20) revealed that the majority of interneurons (65%) had functional synapses whereas nearly 90% of pyramidal neurons were quiescent. Therefore, interneurons follow the same GABA-glutamate sequence of synapse formation but earlier than the principal cells. Interneurons are the source and the target of the first synapses formed in the hippocampus and are thus in a position to modulate the development of the hippocampus in the foetal stage.

  1. Combined Effects of Pyramid-Like Structures and Antireflection Coating on Si Solar Cell Efficiency.

    Science.gov (United States)

    Cho, Chanseob; Oh, Junghwa; Lee, Byeungleul; Kim, Bonghwan

    2015-10-01

    We developed a novel process for synthesizing Si solar cells with improved efficiencies. The process involved the formation of pyramid-like structures on the Si substrate and the deposition and subsequent thermal annealing of an antireflection coating. The process consisted of three main stages. First, pyramid-like structures were textured on the Si substrate by reactive ion etching and subsequently etched using a mixture of HF, HNO3, and deionized water for 300 s. Next, an antireflection coating was deposited on the substrate and was subsequently thermally annealed in a furnace in a N2 atmosphere. After the annealing process, the minority carrier lifetime increased by approximately 40 μs. Further, because of the increase in the minority carrier lifetime and the uniform doping of the substrate, the leakage current decreased. As a result, the efficiency of resulting solar cell increased to 17.24%, in contrast to that of the reference cell, which was only 15.89%. Thus, uniform doping and the thermal annealing of the antireflective coating improved solar cell efficiency.

  2. A simulation study on the effects of dendritic morphology on layer V PFC pyramidal cell firing behavior

    Directory of Open Access Journals (Sweden)

    Maria Psarrou

    2014-03-01

    Full Text Available The majority of neuronal cells found in the cerebral cortex are pyramidal neurons. Their function has been associated with higher cognitive and emotional functions. Pyramidal neurons have a characteristic structure, consisting of a triangular shaped soma whereon descend two extended and complex dendritic trees, and a long bifurcated axon. All the morphological components of the pyramidal neurons exhibit significant variability across different brain areas and layers. Pyramidal cells receive numerous synaptic inputs along their structure, integration of which in space and in time generates local dendritic spikes that shape their firing pattern. In addition, synaptic integration is influenced by voltage-gated and ion channels, which are expressed in a large repertoire by pyramidal neurons. Electrophysiological categories of pyramidal cells can be established, based on the action potential frequency, generated from a fixed somatic stimulus: (1 cells that fire repetitive action potentials (Regular Spiking – RS, (2 cells that fire clusters of 2 – 5 action potentials with short ISIs (Intrinsic Bursting – IB, and (3 cells that fire in repetitive clusters of 2 – 5 action potentials with short ISIs (Repetitive Oscillatory Bursts – ROB. In vitro and in silico scientific studies, correlate the firing patterns of the pyramidal neurons to their morphological features. This study provides a quantitatively analysis via compartmental neuronal modelling of the effects of dendritic morphology and distribution and concentration of ionic mechanisms, along the basal and/or apical dendrites on the firing behavior of a 112-set of layer V rat PFC pyramidal cells. We focus on how particular morphological and passive features of the dendritic trees shape the neuronal firing patterns. Our results suggest that specific morphological parameters (such as total length, volume and branch number can discriminate the cells as RS or IB, regardless of what is the

  3. 豚鼠背侧海马锥体细胞自发放电特征%Spontaneous discharges of pyramidal cells in the dorsal hippocampus of guinea pig

    Institute of Scientific and Technical Information of China (English)

    高洁; 隋建峰; 朱志茹; 陈鹏慧; 伍亚民

    2005-01-01

    To determine the characteristics of spontaneous discharges of hippocampal pyramidal cells (PCs), extracellular neuronal firing in CA1 and CA3 regions of dorsal hippocampus was recorded, the firing modes and interspike interval (ISI) were analyzed with the conventional and nonlinear methods. PCs were discriminated from interneurons using the measurement of action-potential duration and firing rate in this study. There was no significant difference in duration, mean firing frequency, complexity and firing mode between the neurons in CA1 and CA3 regions both in anesthetized and awake animals. The complexity of neurons was higher in awake group than that in anesthetized group, though no difference was found in firing rate. There were differences in the type of pyramidal cells and the coefficient of variance of ISI of neurons. The results obtained from the spontaneous discharges of dorsal hippocampal pyramidal cells reveal some nonlinear and linear aspects in anesthetized and awake states. It seems likely that the combination of conventional and non-linear measurements of the hippocampal pyramidal cells encoding may reflect genuine characteristics of the hippocampal pyramidal cells.%实验采用细胞外玻璃微电极采集豚鼠海马神经元放电信号,并将信号转化为峰峰间期(interspike interval,ISI)以研究麻醉和清醒状态海马锥体细胞自发放电线性和非线性特点.实验建立了豚鼠海马锥体细胞与中间神经元电生理鉴别标准;麻醉和清醒状态下豚鼠海马CAl和CA3区锥体细胞自发放电频率、时程、复杂度等无显著区别;麻醉组豚鼠海马锥体细胞ISI序列的复杂度小于清醒组,锥体细胞分型和ISI变异度等表现不同.实验表明,麻醉和清醒状态下豚鼠海马锥体细胞自发放电呈不同线性和非线性特征.传统和非线性研究手段的结合,可能较全面地反映海马锥体细胞自发放电特性.

  4. Early establishment of multiple release site connectivity between interneurons and pyramidal neurons in the developing hippocampus.

    Science.gov (United States)

    Groc, Laurent; Gustafsson, Bengt; Hanse, Eric

    2003-05-01

    The strength of the synaptic transmission between two neurons critically depends on the number of release sites connecting the neurons. Here we examine the development of connectivity between gamma-aminobutyric acid (GABA)ergic interneurons and CA1 pyramidal neurons in the hippocampus. GABAergic postsynaptic currents (PSCs) were recorded in whole-cell voltage-clamped CA1 pyramidal neurons. By comparing spontaneous and miniature (action potential-independent) GABAergic PSCs, we found that multiple release site connectivity is established already at the first postnatal day and that the degree of connectivity remains unaltered into adulthood. During the same time there is a dramatic increase in the number of GABAergic synapses on each pyramidal neuron as indicated by the increase in frequency of miniature GABAergic PSCs. These results indicate that during development a given interneuron contacts an increasing number of target pyramidal neurons but with the same multiple release site connectivity. It has been shown previously that the connectivity between CA3 and CA1 pyramidal neurons is initially restricted to one release site, and develops gradually. The present result thus suggests different mechanisms to govern the maturation of excitatory and inhibitory synaptic transmissions.

  5. The effects of realistic synaptic distribution and 3D geometry on signal integration and extracellular field generation of hippocampal pyramidal cells and inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Attila I Gulyas

    2016-11-01

    Full Text Available In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree.We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that pyramidal cells and inhibitory neurons probably use different input integration strategies. In pyramidal cells, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies

  6. Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons.

    Science.gov (United States)

    Katona, Gergely; Kaszás, Attila; Turi, Gergely F; Hájos, Norbert; Tamás, Gábor; Vizi, E Sylvester; Rózsa, Balázs

    2011-02-01

    Inhibitory interneurons are considered to be the controlling units of neural networks, despite their sparse number and unique morphological characteristics compared with excitatory pyramidal cells. Although pyramidal cell dendrites have been shown to display local regenerative events--dendritic spikes (dSpikes)--evoked by artificially patterned stimulation of synaptic inputs, no such studies exist for interneurons or for spontaneous events. In addition, imaging techniques have yet to attain the required spatial and temporal resolution for the detection of spontaneously occurring events that trigger dSpikes. Here we describe a high-resolution 3D two-photon laser scanning method (Roller Coaster Scanning) capable of imaging long dendritic segments resolving individual spines and inputs with a temporal resolution of a few milliseconds. By using this technique, we found that local, NMDA receptor-dependent dSpikes can be observed in hippocampal CA1 stratum radiatum interneurons during spontaneous network activities in vitro. These NMDA spikes appear when approximately 10 spatially clustered inputs arrive synchronously and trigger supralinear integration in dynamic interaction zones. In contrast to the one-to-one relationship between computational subunits and dendritic branches described in pyramidal cells, here we show that interneurons have relatively small (∼14 μm) sliding interaction zones. Our data suggest a unique principle as to how interneurons integrate synaptic information by local dSpikes.

  7. Correlation-induced network oscillations of pyramidal cells in the weakly electric fish - theory and experiment

    Science.gov (United States)

    Lindner, Benjamin; Doiron, Brent; Longtin, Andre; Maler, Leonard; Bastian, Joseph

    2004-03-01

    The spiking activity of pyramidal cells in the weakly electric fish is studied. It is experimentally shown that the oscillatory spiking activity of these cells increases with the spatial correlations of external stochastic input. A model network of integrate-and-fire (IF) neurons with delayed inhibitory feedback reproduces this effect. Moreover, a novel analytical approach for stochastic neuron models with weak feedback is presented that leads to a simple expression for the power spectrum of the spike train of a single neuron. The analytical results agree well with simulation results of the leaky IF neurons; they also show the same qualitative features as the experimental spectra and are helpful in understanding the deeper origin of the correlation-induced oscillations.

  8. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.

    Science.gov (United States)

    Taxidis, Jiannis; Coombes, Stephen; Mason, Robert; Owen, Markus R

    2012-05-01

    The hippocampus, and particularly the CA3 and CA1 areas, exhibit a variety of oscillatory rhythms that span frequencies from the slow theta range (4-10 Hz) up to fast ripples (200 Hz). Various computational models of different complexities have been developed in an effort to simulate such population oscillations. Nevertheless the mechanism that underlies the so called Sharp Wave-Ripple complex (SPWR), observed in extracellular recordings in CA1, still remains elusive. We present here, the combination of two simple but realistic models of the rat CA3 and CA1 areas, connected together in a feedforward scheme mimicking Schaffer collaterals. Both network models are computationally simple one-dimensional arrays of excitatory and inhibitory populations interacting only via fast chemical synapses. Connectivity schemes and postsynaptic potentials are based on physiological data, yielding a realistic network topology. The CA3 model exhibits quasi-synchronous population bursts, which give rise to sharp wave-like deep depolarizations in the CA1 dendritic layer accompanied by transient field oscillations at ≈ 150-200 Hz in the somatic layer. The frequency and synchrony of these oscillations is based on interneuronal activity and fast-decaying recurrent inhibition in CA1. Pyramidal cell spikes are sparse and come from a subset of cells receiving stronger than average excitatory input from CA3. The model is shown to accurately reproduce a large number of basic characteristics of SPWRs and yields a new mechanism for the generation of ripples, offering an interpretation to a range of neurophysiological observations, such as the ripple disruption by halothane and the selective firing of pyramidal cells during ripples, which may have implications for memory consolidation during SPWRs.

  9. OLM interneurons are transiently recruited into field gamma oscillations evoked by brief kainate pressure ejections onto area CA1 in mice hippocampal slices.

    Science.gov (United States)

    Kipiani, E

    2009-02-01

    Oscillations (30-100 Hz) are correlated with the cognitive functions of the brain. In the hippocampus interactions between perisomatic and trilaminar interneurons with pyramidal cells are thought to underlie generation of field gamma oscillations. In area CA3 OLM interneurons receive synaptic input in gamma range but generate action potential (AP) output in theta band and are involved in theta oscillations synchronized along the longitudinal axis of the hippocampus. In slice preparations of CA3 area the spike timing of OLM cells could be modulated by carbachole induced gamma oscillations, although their firing rates are limited to theta frequency. Normally, OLM interneurons are somatostatin positive cells. In this study we tested whether parvalbumin (PV) containing OLM interneurons in area CA1 limit AP output during kainate pressure ejection also to theta frequency. We used focal short applications of kainate in area CA1 to induce filed gamma oscillations with an average frequency of about 44.7+/-4.4 Hz. The duration of field gamma was on average 8.9+/-3.5 s. During such oscillations CA1 PV positive OLM interneurons of mice hippocampus received excitatory synaptic input at gamma frequency. Moreover, their AP output was in gamma range as well. Thus, we show that beside the somatostatin containing OLM interneurons, which generate theta rhythm there are PV containing OLM cells, which could synchronize the distal dendrites of CA1 pyramidal cells to the field gamma oscillations.

  10. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Directory of Open Access Journals (Sweden)

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  11. Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching

    Energy Technology Data Exchange (ETDEWEB)

    Papet, P.; Nichiporuk, O.; Kaminski, A.; Rozier, Y.; Kraiem, J.; Lelievre, J.-F.; Chaumartin, A.; Fave, A.; Lemiti, M. [Laboratoire de Physique de la Matiere, UMR-CNRS 5511, Institut National des Sciences Appliquees de Lyon, Bat Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2006-09-22

    High-efficiency silicon solar cells need a textured front surface to reduce reflectance and to improve light trapping. Texturing of monocrystalline silicon is usually done in alkaline solutions. These solutions are cheaper, but are pollutants of silicon technologies. In this paper, we investigate an alternative solution containing tetramethyl ammonium hydroxide ((CH{sub 3}){sub 4}NOH, TMAH ). This study shows the influence of different parameters (concentration, agitation, duration and temperature), to obtain uniform and reliable pyramidal texturization on different silicon surfaces (as cut, etched and polished). Under optimized conditions, TMAH-textured surface led to an average weighted reflectance of 13%, without any antireflection coating independent of the initial silicon surface. Unlike potassium hydroxide (KOH) texturing solution, characterization of silicon oxide layer contamination after TMAH texturing process revealed no pollution, and passivation is less affected by TMAH than by KOH texturization. (author)

  12. A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Daliri

    2012-02-01

    Full Text Available A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010 which captures qualitative firing features of a detailed physiological model (Kanold & Manis, 2000.For our development we benefit from transient potassium currents properties i.e.fast activation and slow inactivation to generate long latency before start of firing.We compare our minimal model outputs in response to a hyperpolarizing stimulus fallowed by a depolarizing one with the data of KM-LIF model.The results conform well to the KM-LIF model with lower complexity.

  13. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.

    Directory of Open Access Journals (Sweden)

    Jake Ormond

    Full Text Available The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs followed rapidly by feedforward (disynaptic inhibitory postsynaptic potentials (IPSPs. Long-term potentiation (LTP of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs, required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.

  14. Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons.

    Science.gov (United States)

    Rombo, Diogo M; Dias, Raquel B; Duarte, Sofia T; Ribeiro, Joaquim A; Lamsa, Karri P; Sebastião, Ana M

    2016-03-01

    Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus.

  15. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    Science.gov (United States)

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-02-18

    There are substantial differences across species in the organisation and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration 'thin' spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the expression of Kv3.1b in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labelled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. This article is protected by copyright. All rights reserved.

  16. Efficiency enhancement of pyramidal Si solar cells with reduced graphene oxide hybrid electrodes

    Science.gov (United States)

    Tu, Wei-Chen; Huang, Chun-Ying; Fang, Chang-Wen; Lin, Ming-Yi; Lee, Wen-Chieh; Liu, Xiang-Sheng; Uen, Wu-Yih

    2016-12-01

    Developing a transparent and cost-effective electrode for a textured and large-scale optoelectronic device is an important requirement for high-throughput products. Here, we propose a costly fabrication procedure using reduced graphene oxide (rGO) hybrid materials composed of rGO, Au nanoparticles (AuNPs) and Ag nanowires (AgNWs) top electrodes for structured Si solar cells via a spin coating method. This work overcomes the obstacle of graphene damage during the transferred process and provides a simple way to form large-scale graphene-based films on textured surfaces. Due to the spin-coated rGO being uniform along with AgNW frameworks and plasmonic AuNPs, the pyramidal Si solar cell exhibits a significant improved efficiency of 10.75% compared with solar cells using pure rGO flakes as the top electrodes. Our study realizes the rGO hybrid materials deposited on a textured surface and has great potential for integration into transparent and structured devices for next-generation industrial production.

  17. Effects of serotonin in the hippocampus: how SSRIs and multimodal antidepressants might regulate pyramidal cell function.

    Science.gov (United States)

    Dale, Elena; Pehrson, Alan L; Jeyarajah, Theepica; Li, Yan; Leiser, Steven C; Smagin, Gennady; Olsen, Christina K; Sanchez, Connie

    2016-04-01

    The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor subtypes are expressed there. Furthermore, hippocampal cells often co-express multiple 5-HT receptor subtypes that can have either complementary or opposing effects on cell function, adding to the complexity of 5-HT neurotransmission. Here we review the current knowledge of how 5-HT, through its various receptor subtypes, modulates hippocampal output and the activity of hippocampal pyramidal cells in rodents. In addition, we discuss the relevance of 5-HT modulation for cognitive processing in rodents and possible clinical implications of these results in patients with MDD. Finally, we review the data on how SSRIs and vortioxetine, an antidepressant with multimodal activity, affect hippocampal function, including cognitive processing, from both a preclinical and clinical perspective.

  18. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  19. Regulation of GABA Equilibrium Potential by mGluRs in Rat Hippocampal CA1 Neurons.

    Science.gov (United States)

    Yang, Bo; Rajput, Padmesh S; Kumar, Ujendra; Sastry, Bhagavatula R

    2015-01-01

    The equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs) are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS)-a-Methyl-4-carboxyphenylglycine (MCPG), a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary.

  20. Regulation of GABA Equilibrium Potential by mGluRs in Rat Hippocampal CA1 Neurons.

    Directory of Open Access Journals (Sweden)

    Bo Yang

    Full Text Available The equilibrium potential for GABA-A receptor mediated currents (EGABA in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2 but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1. Theta-burst stimulation (TBS in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS-a-Methyl-4-carboxyphenylglycine (MCPG, a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary.

  1. Augmented inhibition from cannabinoid sensitive interneurons diminishes CA1 output after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Brian Neal Johnson

    2014-12-01

    Full Text Available The neurological impairments associated with traumatic brain injury include learning and memory deficits and increased risk of seizures. The hippocampus is critically involved in both of these phenomena and highly susceptible to damage by traumatic brain injury. To examine network activity in the hippocampal CA1 region after lateral fluid percussion injury, we used a combination of voltage sensitive dye, field potential and patch clamp recording in mouse hippocampal brain slices. When the stratum radiatum was stimulated in slices from injured mice we found decreased depolarization in stratum radiatum and increased hyperpolarization in stratum oriens, together with a decrease in the percentage of pyramidal neurons firing stimulus-evoked action potentials. Increased hyperpolarization in stratum oriens persisted when glutamatergic transmission was blocked. However, we found no changes in stratum oriens responses when the alveus was stimulated to directly activate stratum oriens. These results suggest that the increased stratum oriens hyperpolarization evoked by stratum radiatum stimulation was mediated by interneurons that have cell bodies and/or axons in stratum radiatum, and form synapses in stratum pyramidale and stratum oriens. A low concentration (100 nM of the synthetic cannabinoid WIN55,212-2,restored CA1 output in slices from injured animals. These findings support the hypothesis that increased GABAergic signaling by cannabinoid sensitive interneurons contributes to the reduced CA1 output following traumatic brain injury.

  2. Neuroprotective effect of olive oil in the hippocampus CA1 neurons following ischemia: Reperfusion in mice

    Directory of Open Access Journals (Sweden)

    M Zamani

    2013-01-01

    Full Text Available Introduction: Transient global ischemia induces selective, delayed neuronal death of pyramidal neurons in the hippocampal CA1. Oxidative Stress is considered to be involved in a number of human diseases including ischemia. Preliminary studies confirmed reduction of cell death in brain following treatment with antioxidants. Aim: According to this finding, we study the relationship between consumption of olive oil on cell death and memory disorder in brain ischemia. We studied the protective effect of olive oil against ischemia-reperfusion. Material and Methods: Experimental design includes three groups: Intact (n = 8, ischemic control (n = 8 and treatment groups with olive oil (n = 8. The mice treated with olive oil as pre-treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction of inflammation [a week after ischemia], the mice post-treated with olive oil. Nissl staining applied for counting necrotic cells in hippocampus CA1. Tunnel kit was used to quantify apoptotic cell death while to short term memory scale, we apply y-maze and shuttle box tests and for detection the rate of apoptotic and treated cell, we used western blotting test for bax and bcl2 proteins. Results: High rate of apoptosis was seen in ischemic group that significantly associated with short-term memory loss. Cell death was significantly lower when mice treated with olive oil. The memory test results were adjusted with cell death results and bax and bcl2 expression in all groups′ comparison. Ischemia for 15 min induced cell death in hippocampus with more potent effect on CA1. Conclusion: Olive oil intake significantly reduced cell death and decreased memory loss.

  3. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5.

    Science.gov (United States)

    Wirth, Marcus J; Brun, Annika; Grabert, Jochen; Patz, Silke; Wahle, Petra

    2003-12-01

    Neurotrophins are candidate molecules for regulating dendritogenesis. We report here on dendritic growth of rat visual cortex pyramidal and interneurons overexpressing 'brain-derived neurotrophic factor' BDNF and 'neurotrophin 4/5' NT4/5. Neurons in organotypic cultures were transfected with plasmids encoding either 'enhanced green fluorescent protein' EGFP, BDNF/EGFP or NT4/5/EGFP either at the day of birth with analysis at 5 days in vitro, or at 5 days in vitro with analysis at 10 days in vitro. In pyramidal neurons, both TrkB ligands increased dendritic length and number of segments without affecting maximum branch order and number of primary dendrites. In the early time window, only infragranular neurons were responsive. Neurons in layers II/III became responsive to NT4/5, but not BDNF, during the later time window. BDNF and NT4/5 transfectants at 10 days in vitro had still significantly shorter dendrites than adult pyramidal neurons, suggesting a massive growth spurt after 10 days in vitro. However, segment numbers were already in the range of adult neurons. Although this suggested a role for BDNF, long-term activity-deprived, and thus BDNF-deprived, pyramidal cells developed a dendritic complexity not different from neurons in active cultures except for higher spine densities on neurons of layers II/III and VI. Neutralization of endogenous NT4/5 causes shorter and less branched dendrites at 10 days in vitro suggesting an essential role for NT4/5. Neutralization of BDNF had no effect. Transfected multipolar interneurons became identifiable during the second time window. Both TrkB ligands significantly increased number of segments and branch order towards the adult state with little effects on dendritic length. The results suggested that early in development BDNF and NT4/5 probably accelerate dendritogenesis in an autocrine fashion. In particular, branch formation was advanced towards the adult pattern in pyramidal cells and interneurons.

  4. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties.

    Directory of Open Access Journals (Sweden)

    Etay Hay

    2011-07-01

    Full Text Available The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+-spiking behavior as well as key dendritic active properties, including Ca(2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.

  5. Spatiotemporal Progression of Microcalcification in the Hippocampal CA1 Region following Transient Forebrain Ischemia in Rats: An Ultrastructural Study.

    Directory of Open Access Journals (Sweden)

    Tae-Ryong Riew

    Full Text Available Calcification in areas of neuronal degeneration is a common finding in several neuropathological disorders including ischemic insults. Here, we performed a detailed examination of the onset and spatiotemporal profile of calcification in the CA1 region of the hippocampus, where neuronal death has been observed after transient forebrain ischemia. Histopathological examinations showed very little alizarin red staining in the CA1 pyramidal cell layer until day 28 after reperfusion, while prominent alizarin red staining was detected in CA1 dendritic subfields, particularly in the stratum radiatum, by 14 days after reperfusion. Electron microscopy using the osmium/potassium dichromate method and electron probe microanalysis revealed selective calcium deposits within the mitochondria of degenerating dendrites at as early as 7 days after reperfusion, with subsequent complete mineralization occurring throughout the dendrites, which then coalesced to form larger mineral conglomerates with the adjacent calcifying neurites by 14 days after reperfusion. Large calcifying deposits were frequently observed at 28 days after reperfusion, when they were closely associated with or completely engulfed by astrocytes. In contrast, no prominent calcification was observed in the somata of CA1 pyramidal neurons showing the characteristic features of necrotic cell death after ischemia, although what appeared to be calcified mitochondria were noted in some degenerated neurons that became dark and condensed. Thus, our data indicate that intrahippocampal calcification after ischemic insults initially occurs within the mitochondria of degenerating dendrites, which leads to the extensive calcification that is associated with ischemic injuries. These findings suggest that in degenerating neurons, the calcified mitochondria in the dendrites, rather than in the somata, may serve as the nidus for further calcium precipitation in the ischemic hippocampus.

  6. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  7. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats.

    Science.gov (United States)

    Bas, O; Odaci, E; Mollaoglu, H; Ucok, K; Kaplan, S

    2009-07-01

    Widespread use of mobile phones which are a major source of electromagnetic fields might affect living organisms. However, there has been no investigation concerning prenatal exposure to electromagnetic fields or their roles in the development of the pyramidal cells of the cornu ammonis in postnatal life. Two groups of pregnant rats, a control group and an experimental group, that were exposed to an electromagnetic field were used. For obtaining electromagnetic field offspring, the pregnant rats were exposed to 900 megahertz electromagnetic fields during the 1-19th gestation days. There were no actions performed on the control group during the same period. The offspring rats were spontaneously delivered--control group (n = 6) and electromagnetic field group (n = 6). Offspring were sacrificed for stereological analyses at the end of the 4th week. Pyramidal cell number in rat cornu ammonis was estimated using the optical fractionator technique. It was found that 900 megahertz of electromagnetic field significantly reduced the total pyramidal cell number in the cornu ammonis of the electromagnetic field group (P electromagnetic field exposure in the prenatal period.

  8. Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells.

    Science.gov (United States)

    Qi, Guanxiao; Feldmeyer, Dirk

    2016-04-01

    Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca(2+) or Na(+) action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.

  9. Clioquinol inhibits zinc-triggered caspase activation in the hippocampal CA1 region of a global ischemic gerbil model.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available BACKGROUND: Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clioquinol (CQ, in the CA1 region of the gerbil hippocampus after transient global ischemia. METHODOLOGY/PRINCIPAL FINDINGS: The common carotid arteries were occluded bilaterally, and CQ (10 mg/kg, i.p. was injected into gerbils once a day. The zinc chelating effect of CQ was examined with TSQ fluorescence and autometallography. Neuronal death, the expression levels of caspases and apoptosis inducing factor (AIF were evaluated using TUNEL, in situ hybridization and Western blotting, respectively. We were able to show for the first time that CQ treatment attenuates the ischemia-induced zinc accumulation in the CA1 pyramidal neurons, accompanied by less neuronal loss in the CA1 field of the hippocampus after ischemia. Furthermore, the expression levels of caspase-3, -9, and AIF were significantly decreased in the hippocampus of CQ-treated gerbils. CONCLUSIONS/SIGNIFICANCE: The present study indicates that the neuroprotective effect of CQ is related to downregulation of zinc-triggered caspase activation in the hippocampal CA1 region of gerbils with global ischemia.

  10. Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP

    Directory of Open Access Journals (Sweden)

    Jens eStepan

    2012-09-01

    Full Text Available There exists substantial evidence that some forms of explicit learning in mammals require long-term potentiation (LTP at hippocampal CA3-CA1 synapses. While CA1 LTP has been well characterized at the monosynaptic level, it still remains unclear how the afferent systems to the hippocampus can initiate formation of this neuroplastic phenomenon. Using voltage-sensitive dye imaging in a mouse brain slice preparation, we show that evoked entorhinal cortical (EC theta-frequency input to the dentate gyrus highly effectively generates waves of neuronal activity which propagate through the entire trisynaptic circuit of the hippocampus (‘HTC-Waves’. This flow of activity, which we also demonstrate in vivo, critically depends on frequency facilitation of mossy fiber to CA3 synaptic transmission. The HTC-Waves are rapidly boosted by the cognitive enhancer caffeine (5 µM and the stress hormone corticosterone (100 nM. They precisely follow the rhythm of the EC input, involve high-frequency firing (>100 Hz of CA3 pyramidal neurons, and induce NMDA receptor-dependent CA1 LTP within a few seconds. Our study provides the first experimental evidence that synchronous theta-rhythmical spiking of EC stellate cells, as occurring during EC theta oscillations, has the capacity to drive induction of CA1 LTP via the hippocampal trisynaptic pathway. Moreover, we present data pointing to a basic filter mechanism of the hippocampus regarding EC inputs and describe a methodology to reveal alterations in the ‘input-output relationship’ of the hippocampal trisynaptic circuit.

  11. Lovastatin reduces neuronal cell death in hippocampal CA1 subfield after pilocarpine-induced status epilepticus: preliminary results Lovastatina reduz a lesão celular na região CA1 do hipocampo após o status epilepticus induzido pela pilocarpina: resultados preliminares

    Directory of Open Access Journals (Sweden)

    Pauline Rangel

    2005-12-01

    Full Text Available OBJECTIVE: To further characterize the capacity of lovastatin to prevent hippocampal neuronal loss after pilocarpine-induced status epilepticus (SE METHOD: Adult male Wistar rats were divided into four groups: (A control rats, received neither pilocarpine nor lovastatin (n=5; (B control rats, received just lovastatin (n=5; (C rats that received just pilocarpine (n=5; (D rats that received pilocarpine and lovastatin (n=5. After pilocarpine injection (350mg/kg, i.p., only rats that displayed continuous, convulsive seizure activity were included in our study. Seizure activity was monitored behaviorally and terminated with an injection of diazepam (10 mg/kg, i.p. after 4 h of convulsive SE. The rats treated with lovastatin received two doses of 20mg/kg via an oesophagic probe immediately and 24 hours after SE induction. Seven days after pilocarpine-induced SE, all the animals were perfused and their brains were processed for histological analysis through Nissl method. RESULTS: The cell counts in the Nissl-stained sections performed within the hippocampal formation showed a significant cell loss in rats that received pilocarpine and presented SE (CA1= 26.8 ± 13.67; CA3= 38.1 ± 7.2; hilus= 43.8 ± 3.95 when compared with control group animals (Group A: CA1= 53.2 ± 9.63; CA3= 63.5 ± 13.35; hilus= 59.08 ± 10.24; Group B: CA1= 74.3 ± 8.16; CA3= 70.1 ± 3.83; hilus= 70.6 ± 5.10. The average neuronal cell number of CA1 subfield of rats that present SE and received lovastatin (44.4 ± 17.88 was statically significant increased when compared with animals that just presented SE. CONCLUSION: Lovastatin exert a neuroprotective role in the attenuation of brain damage after SE.OBJETIVO: Capacidade da lovastatina em prevenir a perda de neurônios hipocampais após o status epilepticus (SE induzido pela pilocarpina. MÉTODO: Ratos adultos Wistar foram divididos em 4 grupos: (A ratos controles que não receberam pilocarpina nem lovastatina (n=5; (B ratos

  12. Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice.

    Directory of Open Access Journals (Sweden)

    Corette J Wierenga

    Full Text Available The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2% or vasoactive intestinal peptide (VIP; 15±2%, while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping expression of neuropeptide Y (42±3%, cholecystokinin (25±3%, calbindin (20±2% or calretinin (20±2%. Most of these subtypes (with the exception of calretinin-expressing interneurons target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials.

  13. Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics

    OpenAIRE

    Zemankovics, Rita; Káli, Szabolcs; Paulsen, Ole; Freund, Tamás F.; Hájos, Norbert

    2010-01-01

    The intrinsic properties of distinct types of neuron play important roles in cortical network dynamics. One crucial determinant of neuronal behaviour is the cell's response to rhythmic subthreshold input, characterised by the input impedance, which can be determined by measuring the amplitude and phase of the membrane potential response to sinusoidal currents as a function of input frequency. In this study, we determined the impedance profiles of anatomically identified neurons in the CA1 reg...

  14. Spike timing of lacunosom-moleculare targeting interneurons and CA3 pyramidal cells during high-frequency network oscillations in vitro.

    Science.gov (United States)

    Spampanato, Jay; Mody, Istvan

    2007-07-01

    Network activity in the 200- to 600-Hz range termed high-frequency oscillations (HFOs) has been detected in epileptic tissue from both humans and rodents and may underlie the mechanism of epileptogenesis in experimental rodent models. Slower network oscillations including theta and gamma oscillations as well as ripples are generated by the complex spike timing and interactions between interneurons and pyramidal cells of the hippocampus. We determined the activity of CA3 pyramidal cells, stratum oriens lacunosum-moleculare (O-LM) and s. radiatum lacunosum-moleculare (R-LM) interneurons during HFO in the in vitro low-Mg(2+) model of epileptiform activity in GIN mice. In these animals, interneurons can be identified prior to cell-attached recordings by the expression of green-fluorescent protein (GFP). Simultaneous local field potential recordings from s. pyramidale and on-cell recordings of individual interneurons and principal cells revealed three primary firing behaviors of the active cells: 36% of O-LM interneurons and 60% of pyramidal cells fired action potentials at high frequencies during the HFO. R-LM interneurons were biphasic in that they fired at high frequency at the beginning of the HFO but stopped firing before its end. When considering only the highest frequency component of the oscillations most pyramidal cells fired on the rising phase of the oscillation. These data provide evidence for functional distinction during HFOs within otherwise homogeneous groups of O-LM interneurons and pyramidal cells.

  15. Cocultures of GFP(+) -granule cells with GFP(-) -pyramidal cells and interneurons for the study of mossy fiber neurotransmission with paired recordings.

    Science.gov (United States)

    Osorio, Beatriz; León, Uriel; Galván, Emilio J; Gutiérrez, Rafael

    2013-04-01

    Synaptic transmission of the granule cells (GCs) via their axons, the mossy fibers (MFs), is traditionally studied on acutely prepared or cultured slices. Usually, extracellular, bulk or minimal stimulation is used to evoke transmitter release from MF terminals, while recording from their postsynaptic target cells, the pyramidal cells and interneurons of CA3. However, the ideal method to assess MF neurotransmission, the simultaneous recording of a presynaptic GC and one of its target cells, is extremely difficult to achieve using slices. Alternatively, cultures of GCs establishing autapses have been developed, but in these, GCs do not contact their natural targets. We developed cocultures of GCs, dissociated from transgenic GFP(+) rats, with pyramidal cells and interneurons of CA3, dissociated from wild-type rats, and confirmed the expression of cell-specific markers by immunofluorescence. We conducted recordings of GFP(+) -GCs synaptically connected with their GFP(-) -target cells, and demonstrate that synaptic transmission and its plasticity have the signature of transmission of MF. Besides being strongly depressed by activation of mGluRs, high frequency activation of GC-to-pyramidal cells synapses undergo LTP, while GC-to-interneuron synapses undergo LTD. This coculture method allows a high reproducibility of recording connected pairs of identified cells, constituting a valuable tool to study MF transmission, as well as different combinations of identifiable pre- and postsynaptic cells.

  16. Influence of Slow Oscillation on Hippocampal Activity and Ripples Through Cortico-Hippocampal Synaptic Interactions, Analyzed by a Cortical-CA3-CA1 Network Model

    Directory of Open Access Journals (Sweden)

    Jiannis eTaxidis

    2013-02-01

    Full Text Available Hippocampal sharp wave-ripple complexes (SWRs involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway. The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.

  17. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1.

    Science.gov (United States)

    Nagode, Daniel A; Tang, Ai-Hui; Yang, Kun; Alger, Bradley E

    2014-01-01

    Neuronal electrical oscillations in the theta (4-14 Hz) and gamma (30-80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic afferents. In neocortex and hippocampal CA3 regions, parvalbumin (PV)-expressing basket cells, activated by ACh and glutamatergic agonists, largely mediate oscillations. However, in CA1 hippocampus in vitro, cholinergic agonists or the optogenetic release of endogenous ACh from septal afferents induces rhythmic, theta-frequency inhibitory postsynaptic currents (IPSCs) in pyramidal cells, even with glutamatergic transmission blocked. The IPSCs are regulated by exogenous and endogenous cannabinoids, suggesting that they arise from type 1 cannabinoid receptor-expressing (CB1R+) interneurons - mainly cholecystokinin (CCK)-expressing cells. Nevertheless, an occult contribution of PV-expressing interneurons to these rhythms remained conceivable. Here, we directly test this hypothesis by selectively silencing CA1 PV-expressing cells optogenetically with halorhodopsin or archaerhodopsin. However, this had no effect on theta-frequency IPSC rhythms induced by carbachol (CCh). In contrast, the silencing of glutamic acid decarboxylase 2-positive interneurons, which include the CCK-expressing basket cells, strongly suppressed inhibitory oscillations; PV-expressing interneurons appear to play no role. The low-frequency IPSC oscillations induced by CCh or optogenetically stimulated ACh release were also inhibited by a μ-opioid receptor (MOR) agonist, which was unexpected because MORs in CA1 are not usually associated with CCK-expressing cells. Our results reveal novel properties of an inhibitory oscillator circuit within CA1 that is activated by muscarinic agonists. The oscillations could contribute to behaviourally relevant, atropine-sensitive, theta rhythms and link cannabinoid and

  18. Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells

    KAUST Repository

    Wang, Hsin Ping

    2016-03-02

    The Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si (c-Si) photovoltaics due to the high open-circuit voltages (V). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the V loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density (J) and V). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a-Si:H passivation results in an enhanced V by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.

  19. Flexible a-Si:H Solar Cells with Spontaneously Formed Parabolic Nanostructures on a Hexagonal-Pyramid Reflector.

    Science.gov (United States)

    Dong, Wan Jae; Yoo, Chul Jong; Cho, Hyoung Won; Kim, Kyoung-Bo; Kim, Moojin; Lee, Jong-Lam

    2015-04-24

    Flexible amorphous silicon (a-Si:H) solar cells with high photoconversion efficiency (PCE) are demonstrated by embedding hexagonal pyramid nanostructures below a Ag/indium tin oxide (ITO) reflector. The nanostructures constructed by nanoimprint lithography using soft materials allow the top ITO electrode to spontaneously form parabolic nanostructures. Nanoimprint lithography using soft materials is simple, and is conducted at low temperature. The resulting structure has excellent durability under repeated bending, and thus, flexible nanostructures are successfully constructed on flexible a-Si:H solar cells on plastic film. The nanoimprinted pyramid back reflector provides a high angular light scattering with haze reflectance >98% throughout the visible spectrum. The spontaneously formed parabolic nanostructure on the top surface of the a-Si:H solar cells both reduces reflection and scatters incident light into the absorber layer, thereby elongating the optical path length. As a result, the nanopatterned a-Si:H solar cells, fabricated on polyethersulfone (PES) film, exhibit excellent mechanical flexibility and PCE increased by 48% compared with devices on a flat substrate.

  20. Layer-specific processing of excitatory signals in CA1 interneurons depends on postsynaptic M₂ muscarinic receptors.

    Science.gov (United States)

    Zheng, Fang; Seeger, Thomas; Nixdorf-Bergweiler, Barbara E; Alzheimer, Christian

    2011-05-02

    The hippocampus receives a diffuse cholinergic innervation which acts on pre- and postsynaptic sites to modulate neurotransmission and excitability of pyramidal cells and interneurons in an intricate fashion. As one missing piece in this puzzle, we explored how muscarinic receptor activation modulates the somatodendritic processing of glutamatergic input in CA1 interneurons. We performed whole-cell recordings from visually identified interneurons of stratum radiatum (SR) and stratum oriens (SO) and examined the effects of the cholinergic agonist carbachol (CCh) on EPSP-like waveforms evoked by brief glutamate pulses onto their proximal dendrites. In SO interneurons, CCh consistently reduced glutamate-induced postsynaptic potentials (GPSPs) in control rat and mice, but not in M₂ muscarinic receptor knockout mice. By contrast, the overwhelming majority of interneurons recorded in SR of control and M₂ receptor-deficient hippocampi exhibited muscarinic enhancement of GPSPs. Interestingly, the non-responding interneurons were strictly confined to the SR subfield closest to the subiculum. Our data suggest that postsynaptic modulation by acetylcholine of excitatory input onto CA1 interneurons occurs in a stratum-specific fashion, which is determined by the absence or presence of M₂ receptors in their (somato-)dendritic compartments. Thus cholinergic projections might be capable of recalibrating synaptic weights in different inhibitory circuits of the CA1 region.

  1. How a (subcellular coincidence detection mechanism featuring layer-5 pyramidal cells may help produce various visual phenomena

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2015-12-01

    Full Text Available Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of sub-second temporal scale.

  2. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus

    OpenAIRE

    Kim, Jennifer A; Barry W Connors

    2012-01-01

    Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM) interneurons (identified by green fluorescent protein (GFP) expression in the GIN mouse line). Warming to 41°C cau...

  3. Developmental Changes in Hippocampal CA1 Single Neuron Firing and Theta Activity during Associative Learning

    Science.gov (United States)

    Kim, Jangjin; Goldsberry, Mary E.; Harmon, Thomas C.; Freeman, John H.

    2016-01-01

    Hippocampal development is thought to play a crucial role in the emergence of many forms of learning and memory, but ontogenetic changes in hippocampal activity during learning have not been examined thoroughly. We examined the ontogeny of hippocampal function by recording theta and single neuron activity from the dorsal hippocampal CA1 area while rat pups were trained in associative learning. Three different age groups [postnatal days (P)17-19, P21-23, and P24-26] were trained over six sessions using a tone conditioned stimulus (CS) and a periorbital stimulation unconditioned stimulus (US). Learning increased as a function of age, with the P21-23 and P24-26 groups learning faster than the P17-19 group. Age- and learning-related changes in both theta and single neuron activity were observed. CA1 pyramidal cells in the older age groups showed greater task-related activity than the P17-19 group during CS-US paired sessions. The proportion of trials with a significant theta (4–10 Hz) power change, the theta/delta ratio, and theta peak frequency also increased in an age-dependent manner. Finally, spike/theta phase-locking during the CS showed an age-related increase. The findings indicate substantial developmental changes in dorsal hippocampal function that may play a role in the ontogeny of learning and memory. PMID:27764172

  4. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.

    Science.gov (United States)

    Gerace, E; Masi, A; Resta, F; Felici, R; Landucci, E; Mello, T; Pellegrini-Giampietro, D E; Mannaioni, G; Moroni, F

    2014-10-01

    An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting

  5. Multi-walled carbon nanotube inhibits CA1 glutamatergic synaptic transmission in rat's hippocampal slices.

    Science.gov (United States)

    Chen, Ting; Yang, Jiajia; Zhang, Hui; Ren, Guogang; Yang, Zhuo; Zhang, Tao

    2014-09-17

    The purpose of the study was to investigate the neurotoxic effect of multi-walled carbon nanotubes (MWCNTs) on the properties of glutamatergic synaptic transmission in rat's hippocampal slices using whole-cell patch clamp technique. The amplitude and frequency of excitatory postsynaptic current (EPSC) were accessed on the hippocampal pyramidal neurons. The alterations of glutamatergic synaptic transmission in CA3-CA1 were examined by measuring both the amplitude of evoked excitatory postsynaptic current (eEPSC) and paired-pulse ratio (PPR). The data showed that the amplitude of either spontaneous excitatory postsynaptic current (sEPSC) or miniature excitatory postsynaptic current (mEPSC) was significantly inhibited by 1 μg/mL MWCNTs. However, it was found that there was a trend of different change on the frequency index. When 1 μg/mL MWCNTs was applied, there were a decreased frequency of mEPSC and an increased frequency of sEPSC, which might be due to the effect of action potential. Furthermore, the amplitudes of eEPSC at CA3-CA1 synapses were remarkably decreased. And the mean amplitude of AMPAR-mediated eEPSC was significantly reduced as well. Meanwhile, a majority of PPRs data were greater than one. There were no significant differences of PPRs between control and MWCNTs states, but an increased trend of paired-pulse facilitation was found. These results suggested that MWCNT markedly inhibited hippocampal CA1 glutamatergic synaptic transmission in vitro, which provided new insights into the MWCNT toxicology on CNS at cellular level.

  6. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time.

    Science.gov (United States)

    Müllner, Fiona E; Wierenga, Corette J; Bonhoeffer, Tobias

    2015-08-01

    Inhibition plays a fundamental role in controlling neuronal activity in the brain. While perisomatic inhibition has been studied in detail, the majority of inhibitory synapses are found on dendritic shafts and are less well characterized. Here, we combine paired patch-clamp recordings and two-photon Ca(2+) imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca(2+) transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby inhibitory contacts. The inhibition of Ca(2+) transients depended on the precise spike-timing (time constant < 5 ms) and declined steeply in the proximal and distal direction (length constants 23-28 μm). Notably, Ca(2+) amplitudes in spines were inhibited to the same degree as in the shaft. Given the known anatomical distribution of inhibitory synapses, our data suggest that the collective inhibitory input to a pyramidal cell is sufficient to control Ca(2+) levels across the entire dendritic arbor with micrometer and millisecond precision.

  7. Inhibition of a slow synaptic response by a metabotropic glutamate receptor antagonist in hippocampal CA3 pyramidal cells.

    Science.gov (United States)

    Gerber, U; Lüthi, A; Gähwiler, B H

    1993-11-22

    The effects of a novel antagonist of metabotropic glutamate receptors were investigated in CA3 pyramidal cells in hippocampal slice cultures of the rat. Earlier experiments showed that selective activation of metabotropic glutamate receptors with low concentrations of an agonist, 1S, 3R-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD), induced an inward current associated with a decrease in membrane conductance and inhibition of the slow calcium-dependent potassium current. These responses were strongly and reversibly reduced by the antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 0.5-1 mM). In the presence of antagonists of ionotropic glutamate receptors, stimulation of the afferent mossy fibres evoked postsynaptic responses in CA3 pyramidal cells which paralleled those observed with exogenously applied metabotropic glutamate receptor agonists, i.e. a slow inward current and a reduction of calcium-dependent potassium current. Both responses were greatly reduced by bath-applied MCPG (1 mM). These results show that MCPG acts as an effective antagonist at metabotropic glutamate receptors coupled to potassium conductances in the hippocampus. Furthermore, they confirm that glutamate release from presynaptic terminals can modulate postsynaptic properties by activation of metabotropic glutamate receptors.

  8. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice.

    Science.gov (United States)

    Liu, F; Jiang, H; Zhong, W; Wu, X; Luo, J

    2010-12-15

    The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.

  9. Ongoing intrinsic synchronous activity is required for the functional maturation of CA3-CA1 glutamatergic synapses.

    Science.gov (United States)

    Huupponen, Johanna; Molchanova, Svetlana M; Lauri, Sari E; Taira, Tomi

    2013-11-01

    Fine-tuning of synaptic connectivity during development is guided by intrinsic activity of the immature networks characteristically consisting of intermittent bursts of synchronous activity. However, the role of synchronous versus asynchronous activity in synapse maturation in the brain is unclear. Here, we have pharmacologically prevented generation of synchronous activity in the immature rat CA3-CA1 circuitry in a manner that preserves unitary activity. Long-term desynchronization of the network resulted in weakening of AMPA-receptor-mediated glutamatergic transmission in CA1 pyramidal cells. This weakening was dependent on protein phosphatases and mGluR activity, associated with an increase in the proportion of silent synapses and a decrease in the protein levels of GluA4 suggesting postsynaptic mechanisms of expression. The findings demonstrate that synchronous activity in the immature CA3-CA1 circuitry is critical for the induction and maintenance of glutamatergic synapses and underscores the importance of temporal activity patterns in shaping the synaptic circuitry during development.

  10. Localization of brain-derived neurotrophic factor to distinct terminals of mossy fiber axons implies regulation of both excitation and feedforward inhibition of CA3 pyramidal cells.

    Science.gov (United States)

    Danzer, Steve C; McNamara, James O

    2004-12-15

    Hippocampal dentate granule cells directly excite and indirectly inhibit CA3 pyramidal cells via distinct presynaptic terminal specializations of their mossy fiber axons. This mossy fiber pathway contains the highest concentration of brain-derived neurotrophic factor (BDNF) in the CNS, yet whether BDNF is positioned to regulate the excitatory and/or inhibitory pathways is unknown. To localize BDNF, confocal microscopy of green fluorescent protein transgenic mice was combined with BDNF immunohistochemistry. Approximately half of presynaptic granule cell-CA3 pyramidal cell contacts were found to contain BDNF. Moreover, enhanced neuronal activity virtually doubled the percentage of BDNF-immunoreactive terminals contacting CA3 pyramidal cells. To our surprise, BDNF was also found in mossy fiber terminals contacting inhibitory neurons. These studies demonstrate that mossy fiber BDNF is poised to regulate both direct excitatory and indirect feedforward inhibitory inputs to CA3 pyramdal cells and reveal that seizure activity increases the pool of BDNF-expressing granule cell presynaptic terminals contacting CA3 pyramidal cells.

  11. Postnatal Dendritic Growth and Spinogenesis of Layer-V Pyramidal Cells Differ between Visual, Inferotemporal, and Prefrontal Cortex of the Macaque Monkey

    Science.gov (United States)

    Oga, Tomofumi; Elston, Guy N.; Fujita, Ichiro

    2017-01-01

    Pyramidal cells in the primate cerebral cortex, particularly those in layer III, exhibit regional variation in both the time course and magnitude of postnatal growth and pruning of dendrites and spines. Less is known about the development of pyramidal cell dendrites and spines in other cortical layers. Here we studied dendritic morphology of layer-V pyramidal cells in primary visual cortex (V1, sensory), cytoarchitectonic area TE in the inferotemporal cortex (sensory association), and granular prefrontal cortex (Walker's area 12, executive) of macaque monkeys at the ages of 2 days, 3 weeks, 3.5 months, and 4.5 years. We found that changes in the basal dendritic field area of pyramidal cells were different across the three areas. In V1, field size became smaller over time (largest at 2 days, half that size at 4.5 years), in TE it did not change, and in area 12 it became larger over time (smallest at 2 days, 1.5 times greater at 4.5 years). In V1 and TE, the total number of branch points in the basal dendritic trees was similar between 2 days and 4.5 years, while in area 12 the number was greater in the adult monkeys than in the younger ones. Spine density peaked at 3 weeks and declined in all areas by adulthood, with V1 exhibiting a faster decline than area TE or area 12. Estimates of the total number of spines in the dendritic trees revealed that following the onset of visual experience, pyramidal cells in V1 lose more spines than they grow, whereas those in TE and area 12 grow more spines than they lose during the same period. These data provide further evidence that the process of synaptic refinement in cortical pyramidal cells differs not only according to time, but also location within the cortex. Furthermore, given the previous finding that layer-III pyramidal cells in all these areas exhibit the highest density and total number of spines at 3.5 months, the current results indicate that pyramidal cells in layers III and V develop spines at different rates.

  12. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation.

    Science.gov (United States)

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-10-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.

  13. A fair comparison between ultrathin crystalline-silicon solar cells with either periodic or correlated disorder inverted pyramid textures.

    Science.gov (United States)

    Muller, Jérôme; Herman, Aline; Mayer, Alexandre; Deparis, Olivier

    2015-06-01

    Fabrication of competitive solar cells based on nano-textured ultrathin silicon technology is challenging nowadays. Attention is paid to the optimization of this type of texture, with a lot of simulation and experimental results published in the last few years. While previous studies discussed mainly the local features of the surface texture, we highlight here the importance of their filling fraction. In this work, we focus on a fair comparison between a technologically realizable correlated disorder pattern of inverted nano-pyramids on an ultrathin crystalline-silicon layer, and its periodically patterned counterpart. A fair comparison is made possible by defining an equivalent periodic structure for each hole filling fraction. Moreover, in order to be as realistic as possible, we consider patterns that could be fabricated by standard patterning techniques: hole-mask colloidal lithography, nanoimprint lithography and wet chemical etching. Based on numerical simulations, we show that inverted nano-pyramid patterns with correlated disorder provide typically greater efficiency than their periodic counterparts. However, the hole filling fraction of the etched pattern plays a crucial role and may limit the benefits of the correlated disorder due to experimental restrictions on pattern fabrication.

  14. Dissociation of CA3 pyramidal cells with attached, functional, identified mossy fiber and interneuronal boutons for studying glutamatergic and GABAergic synaptic transmission.

    Science.gov (United States)

    Beltrán, Jesús Q; Reyes, Sebastián; Pérez-Guzmán, José A; Elías-Viñas, David; Gutiérrez, Rafael

    2012-07-15

    Pyramidal cells of CA3 area receive glutamatergic signals from the mossy fibers (MFs), perforant path and collaterals of other pyramidal cells, as well as GABAergic inputs from interneurons. In hippocampal slices, an extracellular stimulation electrode is often used to activate the MFs, with the disadvantage of possibly activating fibers other than MFs. We set-up a preparation that allows the analysis of the glutamatergic input from identified, giant MF boutons as well as of GABAergic inputs from boutons of interneurons on single CA3 pyramidal cells. Mossy fiber boutons were labeled by exposing hippocampal slices to a zinc-reactive fluorescent dye, or by injecting a fluorescent dye in the granule cell layer and allowing its transport along the MFs to their terminals in CA3 area. After conducting an enzyme-free, mechanical dissociation of CA3 area, we obtained pyramidal cells containing fluorescent, giant MF boutons attached to their apical dendrites, as well as boutons of interneuronal origin. Whole cell recordings were then performed, whereby synaptic responses could be evoked by selective stimulation of the identified boutons. The synaptic currents evoked by stimulation of MF boutons, unlike those evoked by stimulation of interneuronal boutons, underwent strong frequency potentiation and were depressed by activation of metabotropic glutamate receptors, which are characteristics of transmission of MF origin. Combination of fluorophores can be used to label different tracts/boutons allowing the study of the different characteristics of neurotransmitter release from a variety of sources on single target cells.

  15. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  16. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.

    Science.gov (United States)

    Chang, Hyo Sik; Jung, Hyun-Chul

    2011-04-01

    The effect of two-step surface treatment on monocrystalline silicon solar cells was investigated. We changed the nanostructure on pyramidal surfaces by wet nano-texturing so that less light is reflected. The two-step nano-texturing process reduces the average reflectance to about 4% in the 300-1100 nm wavelength region. The use of an antireflection coating resulted in an effective reflectance of 1%. We found that the reflectance obtained by wet nano-texturing was lower than that obtained by conventional alkaline texturing. Thus, we can expect a further increase in the efficiency of silicon solar cells with two-step nano-texturing by a wet chemical process.

  17. Whole-cell recordings of voltage-gated Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Shuyun Huang; Qing Cai; Weitian Liu; Xiaoling Wang; Tao Wang

    2009-01-01

    Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hip-pocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca2+ currents, delayed rectifier K+ current and voltage-gated Na+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.

  18. Target Cell-Specific Modulation of Transmitter Release at Terminals from a Single Axon

    Science.gov (United States)

    Scanziani, Massimo; Gahwiler, Beat H.; Charpak, Serge

    1998-09-01

    In the hippocampus, a CA3 pyramidal cell forms excitatory synapses with thousands of other pyramidal cells and inhibitory interneurons. By using sequential paired recordings from three connected cells, we show that the presynaptic properties of CA3 pyramidal cell terminals, belonging to the same axon, differ according to the type of target cell. Activation of presynaptic group III metabotropic glutamate receptors decreases transmitter release only at terminals contacting CA1 interneurons but not CA1 pyramidal cells. Furthermore, terminals contacting distinct target cells show different frequency facilitation. On the basis of these results, we conclude that the pharmacological and physiological properties of presynaptic terminals are determined, at least in part, by the target cells.

  19. Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus.

    Science.gov (United States)

    Zhang, Hui; Wang, Hui; Xiao, Xi; Zhang, Tao

    2016-01-01

    Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration.

  20. Spinogenesis and pruning in the anterior ventral inferotemporal cortex of the macaque monkey: an intracellular injection study of layer III pyramidal cells

    Directory of Open Access Journals (Sweden)

    Guy N. Elston

    2011-07-01

    Full Text Available Cortical pyramidal cells grow and mature at different rates in visual, auditory and prefrontal cortex of the macaque monkey. In particular, differences across the areas have been reported in both the timing and magnitude of growth, branching, spinogenesis and pruning in the basal dendritic trees of cells in layer III. Presently available data suggest that these different growth profiles reflect the type of functions performed by these cells in the adult brain. However, to date, studies have focussed on only a relatively few cortical areas. In the present investigation we quantified the growth of the dendritic trees of layer III pyramidal cells in the anterior ventral portion of cytoarchitectonic area TE (TEav to better comprehend developmental trends in the cerebral cortex. We quantified the growth and branching of the dendrities, and spinogenesis and pruning of spines, from post-natal day 2 (PND2 to four and a half years of age. We found that the dendritic trees increase in size from PND2 to 7 months of age and thereafter become smaller. The dendritic trees became increasingly more branched from PND2 into adulthood. There was a 2-fold increase in the number of spines in the basal dendritic trees of pyramidal cells from PND2 to 3½ months of age and then a 10% net decrease in spine number into adulthood. Thus, the growth profile of layer III pyramidal cells in the anterior ventral portion of the inferotemporal cortex differs to that in other cortical areas associated with visual processing.

  1. Proteolytic degradation of glutamate decarboxylase mediates disinhibition of hippocampal CA3 pyramidal cells in cathepsin D-deficient mice.

    Science.gov (United States)

    Shimizu, Tokiko; Hayashi, Yoshinori; Yamasaki, Ryo; Yamada, Jun; Zhang, Jian; Ukai, Kiyoharu; Koike, Masato; Mine, Kazunori; von Figura, Kurt; Peters, Christoph; Saftig, Paul; Fukuda, Takaichi; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2005-08-01

    Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms

  2. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3.

    Science.gov (United States)

    Romo-Parra, Héctor; Vivar, Carmen; Maqueda, Jasmín; Morales, Miguel A; Gutiérrez, Rafael

    2003-06-01

    The granule cells of the dentate gyrus (DG) are considered to be glutamatergic, but they contain glutamic acid decarboxylase, gamma-amino butyric acid (GABA), and the vesicular GABA transporter mRNA. Their expression is regulated in an activity-dependent manner and coincides with the appearance of GABAergic transmission from the mossy fibers (MF) to pyramidal cells in area CA3. These data support the hypothesis that MF are able to release glutamate and GABA. Following the principle that a given neuron releases the same neurotransmitter(s) onto all its targets, we here demonstrate the emergence, after a generalized convulsive seizure, of MF GABAergic signaling sensitive to activation mGluR-III onto pyramidal cells and interneurons of CA3. Despite this, excitation overrides inhibition in interneurons, preventing disinhibition. Furthermore, on blockade of GABA and glutamate ionotropic receptors, an M1-cholinergic depolarizing signal is also revealed in both targets, which postsynaptically modulates the glutamatergic and GABAergic fast neurotransmission. The emergence of these nonglutamatergic signals depends on protein synthesis. In contrast to cholinergic responses evoked by associational/commissural fibers activation, cholinergic transmission evoked by DG stimulation is only observed after seizures and is strongly depressed by the activation of mGluR-II, whereas both are depressed by M2-AChR activation. With immunohistological experiments, we show that this cholinergic pathway runs parallel to the MF. Thus seizures compromise a delicate balance of excitation and inhibition, on which a complex interaction of different neurotransmitters emerges to counteract excitation at pre- and postsynaptic sites. Particularly, MF GABAergic inhibition emerges to exert an overall inhibitory action on CA3.

  3. Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons.

    Science.gov (United States)

    Sik, A; Tamamaki, N; Freund, T F

    1993-12-01

    The complete axon arborization of a single CA3 pyramidal cell has been reconstructed from 32 (60 microns thick) sections from the rat hippocampus following in vivo intracellular injection of neurobiotin. The same sections were double-immunostained for parvalbumin--a calcium-binding protein selectively present in two types of GABAergic interneurons, the basket and chandelier cells--in order to map boutons of the pyramidal cell in contact with dendrites and somata of these specific subsets of interneurons visualized in a Golgi-like manner. The axon of the pyramidal cell formed 15,295 boutons, 63.8% of which were in stratum oriens, 15.4% in stratum pyramidale and 20.8% in stratum radiatum. Only 2.1% of the axon terminals contacted parvalbumin-positive neurons. Most of these were single contacts (84.7%), but double or triple contacts (15.3%) were also found. The majority of the boutons terminated on dendrites (84.1%) of parvalbumin-positive cells, less frequently on cell bodies (15.9%). In order to estimate the proportion of contacts representing synapses, 16 light microscopically identified contacts between boutons of the filled pyramidal cell axon and the parvalbumin-positive targets were examined by correlated electron microscopy. Thirteen of them were found to be asymmetrical synapses, and in the remaining three cases synapses between the labelled profiles could not be confirmed. We conclude that the physiologically effective excitatory connections between single pyramidal cells and postsynaptic inhibitory neurons are mediated by a small number of contacts, mostly by a single synapse. This results in a high degree of convergence and divergence in hippocampal networks.

  4. Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2013-10-01

    Full Text Available The coupling of high frequency oscillations (HFOs; >100 Hz and theta oscillations (3-12 Hz in the CA1 region of rats increases during REM sleep, indicating that it may play a role in memory processing. However, it is unclear whether the CA1 region itself is capable of providing major contributions to the generation of HFOs, or if they are strictly driven through input projections. Parvalbumin-positive (PV+ interneurons may play an essential role in these oscillations due to their extensive connections with neighbouring pyramidal cells, and their characteristic fast-spiking. Thus, we created mathematical network models to investigate the conditions under which networks of CA1 fast-spiking PV+ interneurons are capable of producing high frequency population rhythms.We used whole-cell patch clamp recordings of fast-spiking, PV+ cells in the CA1 region of an intact hippocampal preparation in vitro to derive cellular properties, from which we constrained an Izhikevich-type model. Novel, biologically constrained network models were constructed with these individual cell models, and we investigated networks across a range of experimentally determined excitatory inputs and inhibitory synaptic strengths. For each network, we determined network frequency and coherence.Network simulations produce coherent firing at high frequencies (> 90 Hz for parameter ranges in which PV-PV inhibitory synaptic conductances are necessarily small and external excitatory inputs are relatively large. Interestingly, our networks produce sharp transitions between random and coherent firing, and this sharpness is lost when connectivity is increased beyond biological estimates. Our work suggests that CA1 networks may be designed with mechanisms for quickly gating in and out of high frequency coherent population rhythms, which may be essential in the generation of nested theta/high frequency rhythms.

  5. The Relationship between the Field-Shifting Phenomenon and Representational Coherence of Place Cells in CA1 and CA3 in a Cue-Altered Environment

    Science.gov (United States)

    Lee, Inah; Knierim, James J.

    2007-01-01

    Subfields of the hippocampus display differential dynamics in processing a spatial environment, especially when changes are introduced to the environment. Specifically, when familiar cues in the environment are spatially rearranged, place cells in the CA3 subfield tend to rotate with a particular set of cues (e.g., proximal cues), maintaining a…

  6. Three-dimensional Quantification of Dendritic Spines from Pyramidal Neurons Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gouder, Laura; Tinevez, Jean-Yves; Goubran-Botros, Hany; Benchoua, Alexandra; Bourgeron, Thomas; Cloëz-Tayarani, Isabelle

    2015-10-10

    Dendritic spines are small protrusions that correspond to the post-synaptic compartments of excitatory synapses in the central nervous system. They are distributed along the dendrites. Their morphology is largely dependent on neuronal activity, and they are dynamic. Dendritic spines express glutamatergic receptors (AMPA and NMDA receptors) on their surface and at the levels of postsynaptic densities. Each spine allows the neuron to control its state and local activity independently. Spine morphologies have been extensively studied in glutamatergic pyramidal cells of the brain cortex, using both in vivo approaches and neuronal cultures obtained from rodent tissues. Neuropathological conditions can be associated to altered spine induction and maturation, as shown in rodent cultured neurons and one-dimensional quantitative analysis (1). The present study describes a protocol for the 3D quantitative analysis of spine morphologies using human cortical neurons derived from neural stem cells (late cortical progenitors). These cells were initially obtained from induced pluripotent stem cells. This protocol allows the analysis of spine morphologies at different culture periods, and with possible comparison between induced pluripotent stem cells obtained from control individuals with those obtained from patients with psychiatric diseases.

  7. Input-to-output transformation in a model of the rat hippocampal CA1 network

    OpenAIRE

    Olypher, Andrey V; Lytton, William W; Prinz, Astrid A.

    2012-01-01

    Here we use computational modeling to gain new insights into the transformation of inputs in hippocampal field CA1. We considered input-output transformation in CA1 principal cells of the rat hippocampus, with activity synchronized by population gamma oscillations. Prior experiments have shown that such synchronization is especially strong for cells within one millimeter of each other. We therefore simulated a one-millimeter patch of CA1 with 23,500 principal cells. We used morphologically an...

  8. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    Science.gov (United States)

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons.

  9. Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy

    Institute of Scientific and Technical Information of China (English)

    Guang-chun SUN; Taco WERKMAN; Wytse J WADMAN

    2006-01-01

    Aim: To study whether the functional properties of sodium channels, and subsequently the channel modulation by carbamazepine (CBZ) in hippocampal CA1 neurons can be changed after epileptic seizures. Methods: We used the acutely dissociated hippocampal CA1 pyramidal cells from epilepsy model rats 3 weeks and 3 months respectively after kainate injection, and whole-cell voltage-clamp techniques. Results: After long-term epileptic seizures, both sodium channel voltage-dependence of activation and steady-state inactivation shifted to more hyperpolarizing potentials, which resulted in the enlarged window current; the membrane density of sodium current decreased and the time constant of recovery from inactivation increased. CBZ displayed unchanged efficacy on sodium channels, with a similar binding rate to them, except that at higher concentrations, the voltage shift of inactivation was reduced. For the short-term kainate model rats, no differences were detected between the control and epilepsy groups. Conclusion: These results indicate that the properties of sodium channels in acutely dissociated hippocampal neurons could be changed following long-term epilepsy, but the alternation might not be enough to induce the channel resistance to CBZ.

  10. Localization of Brain-Derived Neurotrophic Factor to Distinct Terminals of Mossy Fiber Axons Implies Regulation of Both Excitation and Feedforward Inhibition of CA3 Pyramidal Cells

    OpenAIRE

    Danzer, Steve C.; McNamara, James O.

    2004-01-01

    Hippocampal dentate granule cells directly excite and indirectly inhibit CA3 pyramidal cells via distinct presynaptic terminal specializations of their mossy fiber axons. This mossy fiber pathway contains the highest concentration of brain-derived neurotrophic factor (BDNF) in the CNS, yet whether BDNF is positioned to regulate the excitatory and/or inhibitory pathways is unknown. To localize BDNF, confocal microscopy of green fluorescent protein transgenic mice was combined with BDNF immunoh...

  11. Brief RU 38486 Treatment Normalizes the Effects of Chronic Stress on Calcium Currents in Rat Hippocampal CA1 Neurons.

    NARCIS (Netherlands)

    Karst, H.; Joëls, M.

    2007-01-01

    Chronic stress alters many properties in rat brain, like serotonin responsiveness and dendritic morphology. In the present study, we examined (i) whether unpredictable stress during 21 days affects calcium (Ca) currents of CA1 pyramidal neurons recorded on day 22; and (ii) if so, whether this change

  12. Pyramid Comet Sampler Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the sampling requirements, we propose an Inverted Pyramid sampling system. Each face of the pyramid includes a cutting blade which is independently actuated...

  13. Transplantation of mesenchymal stem cells could improve the cognitive function and increase the expression of EphB2 protein in Hippocampus of chronic cerebral ischemia rats%骨髓间充质干细胞移植对慢性脑缺血大鼠认知功能及海马CA1区EphB2的影响

    Institute of Scientific and Technical Information of China (English)

    李晓晓; 张博爱; 李俊敏; 刘宇; 于晓云; 崔璨

    2013-01-01

    Objective To investigate the effect of mesenchymal stem cells transplantation on cognitive impairment and the expression of EphB2 in Hippocampus CA1 pyramidal cells of the chronic cerebral ischemic rats. Methods Rats were randomly divided into sham operation group、model group ( permanent ligation of bilateral common carotid arteries, 2VO) and MSCs group. Each group was subdivided into 8,10 and 12 weeks groups. Cognitive function was evaluated by the Morris water maze and the expression of EphB2 protein was measured using by Western blotting and immunohistochemistry. Results In the Morris water maze test, the escape latency of the rats in model group and MSCs group obviously extended compared to that in the sham operation group(P <0. 05),while the escape latency in the MSCs group was shorter than that of model group(P<0.05) ,the expression of EphB2 in hippocampal CA1 areas in the MSCs group significantly increased than that of the model group by immunohistochemistry and Western blot test( P < 0. 05). Conclusion MSCs transplantation could improve cognitive function of chronic cerebral ischemia rats,the improvement maybe due to the increased expression of EphB2.%目的 观察骨髓间充质干细胞移植(mesenchymal stem cells,MSCs)对慢性脑缺血大鼠认知功能及海马CA1区EphB2的影响.方法 将SD大鼠随机分为假手术组、模型组、实验组(2VO模型+MSCs干预),选8、10、12w 3个时间点,采用双侧颈总动脉永久性阻断法(2VO)建立慢性脑缺血模型,通过Morris水迷宫检测各组大鼠的认知功能,同时用免疫组织化学的方法和Western blot检测大鼠海马CA1区EphB2的表达.结果 模型组和实验组大鼠与假手术组相比逃避潜伏期明显延长,在同一时间点实验组逃避潜伏期较模型组明显缩短(P<0.05),实验组海马CA1区EphB2的表达较模型组增多(P<0.05).结论 骨髓间充质干细胞移植能明显改善大鼠慢性脑缺血所致的认知功能障碍,其机

  14. β-Adrenergic activation enhances NMDA-induced current in pyramidal cells of the basolateral nucleus of amygdala

    Institute of Scientific and Technical Information of China (English)

    LIU Xinqiu; CAO Xiaohua; LI Bao-ming

    2005-01-01

    NMDA receptor (NMDA-R) in the amygdala complex is critical for both long-term potentiation (LTP) and formation of conditioned fear memory. It is reported that activation of β-adrenoceptors (β-AR) in the amygdala facilitates LTP and enhances memory consolidation. The present study examined the regulatory effect of β-AR activation on NMDA-R mediated current in pyramidal cells of the basolateral nucleus of amygdala (BLA), using whole-cell recording technique. Bath application of the β-AR agonist isoproterenol enhanced NMDA-induced current, and this facilitatory effect was blocked by co-administered propranolol, a β-AR antagonist. The facilitatory effect of isoproterenol on NMDA-induced current could not be induced when the protein kinase A (PKA) inhibitor Rp-cAMPs was added in electrode internal solution.The present results suggest that β-AR activation in the BLA could modulate NMDA-R activity directly and positively, probably via PKA.

  15. Modulation of NMDA and AMPA-mediated synaptic transmission by CB1 receptors in frontal cortical pyramidal cells.

    Science.gov (United States)

    Li, Qiang; Yan, Haidun; Wilson, Wilkie A; Swartzwelder, H Scott

    2010-06-25

    Although the endogenous cannabinoid system modulates a variety of physiological and pharmacological processes, the specific role of cannabinoid CB1 receptors in the modulation of glutamatergic neurotransmission and neural plasticity is not well understood. Using whole-cell patch clamp recording techniques, evoked or spontaneous excitatory postsynaptic currents (eEPSCs or sEPSCs) were recorded from visualized, layer II/III pyramidal cells in frontal cortical slices from rat brain. Bath application of the CB1 receptor agonist, WIN 55212-2 (WIN), reduced the amplitude of NMDA receptor-mediated EPSCs in a concentration-dependent manner. When co-applied with the specific CB1 antagonists, AM251 or AM281, WIN did not suppress NMDA receptor-mediated EPSCs. WIN also reduced the amplitude of evoked AMPA receptor-mediated EPSCs, an effect that was also reversed by AM251. Both the frequency and amplitude of spontaneous AMPA receptor-mediated EPSCs were significantly reduced by WIN. In contrast, WIN reduced the frequency, but not the amplitude of miniature EPSCs, suggesting that the suppression of glutamatergic activity by CB1 receptors in the frontal neocortex is mediated by a presynaptic mechanism. Taken together, these data indicate a critical role for endocannabinoid signaling in the regulation of excitatory synaptic transmission in frontal neocortex, and suggest a possible neuronal mechanism whereby THC regulates cortical function.

  16. Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis.

    Science.gov (United States)

    Vreugdenhil, M; Faas, G C; Wadman, W J

    1998-09-01

    Cellular excitability of CA1 neurons from a kindled focus in the rat hippocampus is persistently increased. The changes in the underlying voltage-dependent sodium current were characterized under whole-cell voltage-clamp conditions. We compared sodium currents in acutely isolated CA1 neurons from kindled rats with those in matched controls, one day and five weeks after cessation of kindling stimulations. The sodium current in CA1 neurons was tetrodotoxin sensitive and inactivated completely with two time-constants. In 97 cells from control rats, the current evoked at -20 mV consisted of a fast-inactivating component of 3.8 +/- 0.2 nA which decayed with a time-constant of 1.0 +/- 0.1 ms, and a slow-inactivating component of 1.2 +/- 0.1 nA with a time-constant of 3.6 +/- 0.1 ms. The potential of half-maximal inactivation was -72.2 +/- 1.0 mV for the fast-inactivating component and -63.2 +/- 1.0 mV for the slow-inactivating component. The time-constant of recovery at -80 mV was 14.1 +/- 0.4 ms for the fast-inactivating component and 9.3 +/- 0.4 ms for the slow-inactivating component. One day after kindling, the voltage dependence of inactivation of the slow-inactivating and the fast-inactivating component was shifted in the depolarizing direction (3.2 +/- 1.3 and 3.0 +/- 1.3 mV, respectively). The voltage dependence of recovery from inactivation was shifted in the same direction. Five weeks after kindling, the shift in voltage dependence of inactivation was (3.3 +/- 1.2 and 2.9 +/- 1.2 mV, respectively) and was accompanied by a 20% increase in sodium current amplitude. The voltage-dependent activation was not different after kindling. The changes in sodium current inactivation will increase the number of channels available for activation and may enhance the maximum firing rate. This implies that the changes in sodium current inactivation will contribute to the enhanced excitability of pyramidal neurons observed after kindling.

  17. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.

    Science.gov (United States)

    Chen, W; Zhang, J J; Hu, G Y; Wu, C P

    1996-07-01

    Two different types of action potentials were observed among the pyramidal cells and interneurons in cat motor cortex: the narrow action potentials and the wide action potentials. These two types of action potentials had similar rising phases (528.8 +/- 77.0 vs 553.1 +/- 71.8 mV/ms for the maximal rising rate), but differed in spike duration (0.44 +/- 0.09 vs 1.40 +/- 0.39 ms) and amplitude (57.31 +/- 8.22 vs 72.52 +/- 8.31 mV), implying that the ionic currents contributing to repolarization of these action potentials are different. Here we address this issue by pharmacological manipulation and using voltage-clamp technique in slices of cat motor cortex. Raising extracellular K+ concentration (from 3 mM to 10 mM), applying a low dose of 4-aminopyridine (2-200 microM) or administering a low concentration of tetraethylammonium (0.2-1.0 mM) each not only broadened the narrow action potentials, but also increased their amplitudes. In contrast, high K+ medium or low dose of tetraethylammonium only broadened the wide action potentials, leaving their amplitudes unaffected, and 4-aminopyridine had only a slight broadening effect on the wide spikes. These results implied that K+ currents were involved in the repolarization of both types of action potentials, and that the K+ currents in the narrow action potentials seemed to activate much earlier than those in the wide spikes. This early activated K+ current may counteract the rapid sodium current, yielding the extremely brief duration and small amplitude of the narrow spikes. The sensitivity of the narrow spikes to 4-aminopyridine may not be mainly attributed to blockade of the classical A current (IA), because depolarizing the membrane potential to inactivate IA did not reproduce the effects of 4-aminopyridine. Blockade of Ca2+ influx slowed the last two-thirds repolarization of the wide action potentials. On the contrary, the narrow action potentials were not affected by Ca(2+)-current blockers, but if they were first

  18. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning.

    Science.gov (United States)

    Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi

    2017-03-01

    Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7-10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.

  19. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.

    Science.gov (United States)

    Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta

    2013-07-01

    With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the

  20. Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model.

    Directory of Open Access Journals (Sweden)

    Matteo Farinella

    2014-04-01

    Full Text Available In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such 'background' synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5 pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a 'balanced' background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.

  1. Analysis of Pyramidal Surface Texturization of Silicon Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung

    2008-01-01

    Full Text Available The purpose of this paper is to explore the relations between surface texturization and absorptance of multicrystalline silicon solar cells by a simple new model, based on the classic molecular (MD dynamics simulation, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. In this study, the large tilted angle leads to the lower efficiency of solar cell. To consider the effect of incident angle, a range of high efficiency exists due to the increasing probability of second reflection. Furthermore, the azimuth angle of incident light also affects the efficiency of solar cells. Our results agree well with previous studies. This MD model can potentially be used to predict the efficiency promotion in any optical reflection-absorption cases.

  2. 参芎化瘀胶囊预处理对脑缺血再灌注大鼠海马CA1区细胞凋亡及原癌基因c-fos、c-jun表达的影响%Effect of Shenxiong-Huayu capsule preconditioning on cell apoptosis and the expression of C-fos and C-jun in the hippocampal CA1 area of rats with cerebral ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    刘斌; 李爱华; 蔡梅芝; 王新宇

    2012-01-01

    目的 观察参芎化瘀胶囊预处理对脑缺血再灌注大鼠海马CA1区细胞凋亡及c-fos、c-jun 表达的影响.方法 将SD大鼠采用完全随机的方法分为假手术组(24只)、脑缺血再灌注组(模型组24只)和参芎化瘀胶囊预处理组(预处理组24只).假手术组、模型组给予生理盐水1 ml灌胃,预处理组给予参芎化瘀胶囊生理盐水混悬液1 ml (480mg)灌胃.均给药7d,1次/d.第7天给药2h后,用线栓法制作大脑中动脉阻断再灌注模型(MCAO).采用TUNEL法检测细胞凋亡,免疫组织化学法检测c-fos、c-jun的表达.结果 ①模型组6、24、48、72 h海马CA1区细胞凋亡数分别为(11.17±3.71、39.83±5.67、48.33±5.32、22.17±3.71)个/高倍视野,预处理组分别为(7.83±2.04、15.00±3.58、29.50±6.89和10.17±2.32)个/高倍视野.与模型组比较,预处理组不同时间点凋亡细胞减少(P<0.05或P<0.01).②模型组6、24、48、72h海马CA1区c-fos表达分别为(14.50±3.45、33.67±1.63、42.33±3.32、32.00±2.90)个/高倍视野,预处理组分别为(10.17±2.93、21.50±2.43、30.83±3.76、25.17±5.27)个/高倍视野.模型组6、24、48、72 h海马CA1区c-jun表达结果分别为(15.50±4.19、22.83±5.64、33.10±4.19、14.67±3.08)个/高倍视野,预处理组分别为(9.67±3.63、15.67±2.73、21.26±3.63和9.33±3.61个/高倍视野.与模型组比较,预处理组不同时间点c-fos、c-jun表达减少(P<0.05或P<0.01).结论 预处理组可通过抑制c-fos、c-jun表达,减少细胞凋亡,对大鼠脑缺血再灌注损伤具有保护作用.%Objective To observe the effect of Shenxiong-Huayu Capsule preconditioning on cell apoptosis and the expression of c-fos、c-jun in the hippocampal CA1 area of rats with acute cerebral ischemia reperfusion injury.Methods SD rats were divided into 3 groups by completely randomized method:sham operation group(n=6),ischemia reperfusion group (model group),and Shenxiong-Huayu Capsule preconditioning group

  3. In vivo whole-cell patch-clamp recording of sensory synaptic responses of cingulate pyramidal neurons to noxious mechanical stimuli in adult mice

    Directory of Open Access Journals (Sweden)

    Descalzi Giannina

    2010-09-01

    Full Text Available Abstract The anterior cingulate cortex (ACC plays important roles in emotion, learning, memory and persistent pain. Our previous in vitro studies have demonstrated that pyramidal neurons in layer II/III of the adult mouse ACC can be characterized into three types: regular spiking (RS, intermediate (IM and intrinsic bursting (IB cells, according to their action potential (AP firing patterns. However, no in vivo information is available for the intrinsic properties and sensory responses of ACC neurons of adult mice. Here, we performed in vivo whole-cell patch-clamp recordings from pyramidal neurons in adult mice ACC under urethane anesthetized conditions. First, we classified the intrinsic properties and analyzed their slow oscillations. The population ratios of RS, IM and IB cells were 10, 62 and 28%, respectively. The mean spontaneous APs frequency of IB cells was significantly greater than those of RS and IM cells, while the slow oscillations were similar among ACC neurons. Peripheral noxious pinch stimuli induced evoked spike responses in all three types of ACC neurons. Interestingly, IB cells showed significantly greater firing frequencies than RS and IM cells. In contrast, non-noxious brush did not induce any significant response. Our studies provide the first in vivo characterization of ACC neurons in adult mice, and demonstrate that ACC neurons are indeed nociceptive. These findings support the critical roles of ACC in nociception, from mice to humans.

  4. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  5. Thermoluminescence of pyramid stones

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M.A.; Eid, A.M. (Atomic Energy Establishment, Cairo (Egypt))

    1982-01-01

    It is the aim of the present study to investigate some thermoluminescence properties of pyramid stones. Using a few grammes of pyramid stones from Pyramids I and II, the TL glow peaks were observed at 250 and 310/sup 0/C, respectively. The TL glow peaks of samples annealed at 600/sup 0/C, then exposed to /sup 60/Co ..gamma..-rays were observed at 120, 190 and 310/sup 0/C, respectively. The accumulated dose of natural samples is estimated to be around 310 Gray (31 krad). By assuming an annual dose is 1 mGy, the estimated age of pyramid stones is 0.31 M year.

  6. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short‐term facilitation at mossy fibre to CA3 pyramidal cell synapses

    Science.gov (United States)

    Booker, Sam A.; Campbell, Graham R.; Mysiak, Karolina S.; Brophy, Peter J.; Kind, Peter C.

    2017-01-01

    Key points Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity.Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low‐frequency dentate to CA3 glutamatergic synaptic transmission.High‐frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase‐deficient mice.Intact presynaptic mitochondrial function is critical for the short‐term dynamics of mossy fibre to CA3 synaptic function. Abstract Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole‐cell patch‐clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV‐deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy‐fibre synapse because the amplitude, input–output relationship and 50 ms paired‐pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short‐term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired‐pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect

  7. Regulation of Cajal-Retzius cell on the apical dendrite growth of pyramidal cell and himppocampal lamination%Cajal-Retzius细胞调节锥体细胞顶树突发育及海马片层化的形成

    Institute of Scientific and Technical Information of China (English)

    邹建玲; 刘青颖; 吴萍; 邓锦波

    2011-01-01

    cell grew and extended into molecular layer to form the inner molecular layer. Later, the inner molecular layer widened gradually, and it occupied stratum lucidum and stratum radiatum. The perforant fibers in stratum lucunosummoleculare were so coincident with the location of CR cells in CA1 , suggesting regulation of CR cells in the apical dendrite growth in inner molecular layer. Conclusion Reelin positive cells can function as a guidance to the path-finding of alvear path and perforant path. Meanwhile, the developmental characteristics of CR cells suggest that CR cells play important roles in the dendritic growth of pyramidal cells , hippocampal lamination and hippocampal localization.

  8. Environmental novelty elicits a later theta phase of firing in CA1 but not subiculum.

    Science.gov (United States)

    Lever, Colin; Burton, Stephen; Jeewajee, Ali; Wills, Thomas J; Cacucci, Francesca; Burgess, Neil; O'Keefe, John

    2010-02-01

    The mechanism supporting the role of the hippocampal formation in novelty detection remains controversial. A comparator function has been variously ascribed to CA1 or subiculum, whereas the theta rhythm has been suggested to separate neural firing into encoding and retrieval phases. We investigated theta phase of firing in principal cells in subiculum and CA1 as rats foraged in familiar and novel environments. We found that the preferred theta phase of firing in CA1, but not subiculum, was shifted to a later phase of the theta cycle during environmental novelty. Furthermore, the amount of phase shift elicited by environmental change correlated with the extent of place cell remapping in CA1. Our results support a relationship between theta phase and novelty-induced plasticity in CA1.

  9. 17beta-estradiol benzoate decreases the AHP amplitude in CA1 pyramidal neurons.

    Science.gov (United States)

    Kumar, Ashok; Foster, Thomas C

    2002-08-01

    Disruption of Ca(2+) homeostasis is hypothesized to mediate several electrophysiological markers of brain aging. Recent evidence indicates that estradiol can rapidly alter Ca(2+)-dependent processes in neurons through nongenomic mechanisms. In the current study, electrophysiological effects of 17beta-estradiol benzoate (EB) on the Ca(2+)-activated afterhyperpolarization (AHP) were investigated using intracellular sharp electrode recording in hippocampal slices from ovariectomized Fischer 344 female rats. The AHP amplitude was enhanced in aged (22-24 mo) compared with young (5-8 mo) rats and direct application of EB (100 pM) reduced the AHP in aged rats. The age-related difference was due, in part, to the increased AHP amplitude of aged animals, since an EB-mediated decrease in the AHP could be observed in young rats when the extracellular Ca(2+) was elevated to increase the AHP amplitude. In aged rats, bath application of EB occluded the ability of the L-channel blocker, nifedipine (10 microM), to attenuate the AHP. The results support a role for EB in modifying hippocampal Ca(2+)-dependent processes in a manner diametrically opposite that observed during aging, possibly through L-channel inhibition.

  10. Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons.

    Science.gov (United States)

    Müller, Christina; Beck, Heinz; Coulter, Douglas; Remy, Stefan

    2012-09-01

    The transformation of dendritic excitatory synaptic inputs to axonal action potential output is the fundamental computation performed by all principal neurons. We show that in the hippocampus this transformation is potently controlled by recurrent inhibitory microcircuits. However, excitatory input on highly excitable dendritic branches could resist inhibitory control by generating strong dendritic spikes and trigger precisely timed action potential output. Furthermore, we show that inhibition-sensitive branches can be transformed into inhibition-resistant, strongly spiking branches by intrinsic plasticity of branch excitability. In addition, we demonstrate that the inhibitory control of spatially defined dendritic excitation is strongly regulated by network activity patterns. Our findings suggest that dendritic spikes may serve to transform correlated branch input into reliable and temporally precise output even in the presence of inhibition.

  11. Different patterns of synaptic transmission revealed between hippocampal CA3 stratum oriens and stratum lucidum interneurons and their pyramidal cell targets.

    Science.gov (United States)

    Aaron, G B; Wilcox, K S; Dichter, M A

    2003-01-01

    Stratum lucidum (SL) interneurons likely mediate feedforward inhibition between the dentate gyrus mossy fibers and CA3 pyramidal cells, while stratum oriens (SO) interneurons likely provide both feedforward and feedback inhibition within the CA3 commissural/associational network. Using dual whole-cell patch-clamp recordings between interneurons and CA3 pyramidal cells, we have examined SL and SO interneurons and their synapses within organotypic hippocampal slice cultures. Biocytin staining revealed different morphologies between these interneuron groups, both being very similar to those found previously in acute slices. The kinetics of IPSCs were similar between the two groups, but the reliability of synaptic transmission of SL interneuron (SL-INT) IPSCs was significantly lower than the virtually 100% reliability (non-existent failure rates) of SO-INT IPSCs. The SL-INT IPSCs also had a lower quantal content than the SO-INT IPSCs. In addition, SL-INTs were less likely than SO-INTs to innervate or to be innervated by nearby CA3 pyramidal cells. Paired-pulse stimulation at 100 ms interstimulus intervals produced similar paired-pulse depression in both interneuron synapses, despite the significantly higher failure rate of IPSCs produced by the SL-INTs compared with SO-INTs. CV analysis supported the hypothesis that paired-pulse depression was presynaptic. During repetitive, high frequency stimulation (>10 Hz for 500 ms) the two different synapses exhibited distinctly different forms of short-term plasticity: all SL interneurons displayed significant short-term facilitation (mean 113% facilitation, n=4), while, by contrast, SO interneuron synapses displayed either short-term depression (mean 42% depression, n=5 of 8) or no net facilitation or depression (n=3 of 8). These results indicate that the synaptic properties of interneurons can be quite different for interneurons in different hippocampal circuits.

  12. Maskless inverted pyramid texturization of silicon.

    Science.gov (United States)

    Wang, Yan; Yang, Lixia; Liu, Yaoping; Mei, Zengxia; Chen, Wei; Li, Junqiang; Liang, Huili; Kuznetsov, Andrej; Xiaolong, Du

    2015-06-02

    We discovered a technical solution of such outstanding importance that it can trigger new approaches in silicon wet etching processing and, in particular, photovoltaic cell manufacturing. The so called inverted pyramid arrays, outperforming conventional pyramid textures and black silicon because of their superior light-trapping and structure characteristics, can currently only be achieved using more complex techniques involving lithography, laser processing, etc. Importantly, our data demonstrate a feasibility of inverted pyramidal texturization of silicon by maskless Cu-nanoparticles assisted etching in Cu(NO3)2 / HF / H2O2 / H2O solutions and as such may have significant impacts on communities of fellow researchers and industrialists.

  13. 胱氨酸干预下AD模型鼠海马CA1区神经干细胞凋亡影响因子NPM表达变化情况%Investigation of the CA1 neural stem cells apoptosis factor NPM' s expression and variation in AD model rat hippocampus under the intervention of cystine

    Institute of Scientific and Technical Information of China (English)

    李丛言; 盛宝英; 韩凤; 齐志国; 张瑞雪

    2015-01-01

    目的 研究胱氨酸干预下AD模型鼠海马CA1区神经干细胞凋亡影响因子NPM的表达变化情况.方法 取Wistar大鼠66只,随机分为正常组、AD模型组与胱氨酸治疗组,规定ld、3d、7d、14 d、21 d5个测定时间点,利用免疫印迹法及PCR方法测定NPM因子的表达情况,TUNEL细胞凋亡检测法测定各组大鼠细胞凋亡数.结果 进行实验3d后,NPM的表达开始升高(P<0.01),具有统计意义,并于14 d达到峰值,且胱氨酸治疗组AD模型鼠的NPM表达始终高于AD模型组AD模型鼠.参与实验的大鼠实验开始3d后细胞凋亡数明显增加并于14 d达到峰值,但胱氨酸治疗组大鼠的细胞凋亡数始终低于AD模型组.结论 胱氨酸可以抑制AD致伤的神经干细胞的凋亡,其促进NPM因子表达上调可能是其抑制细胞凋亡的机制之一.

  14. Rebuilding the Food Pyramid.

    Science.gov (United States)

    Willet, Walter C.; Stampfer, Meir J.

    2003-01-01

    Discusses the old food guide pyramid released in 1992 by the U.S. Department of Agriculture. Contradicts the message that fat is bad, which was presented to the public by nutritionists, and the effects of plant oils on cholesterol. Introduces a new food pyramid. (YDS)

  15. The Healthy Eating Pyramid

    Institute of Scientific and Technical Information of China (English)

    Jimmy; Lin

    2007-01-01

    Experts from the Harvard School of Public Health created the Healthy Eating Pyramid.The pyramid is about the links between diet and health and offers useable information to help people make better choices about what to eat. Remember:its base is daily exercise and weight control.

  16. Effects of electromagnetic radiation on spatial memory and synapses in rat hippocampal CA1

    Institute of Scientific and Technical Information of China (English)

    Yuhong Li; Changhua Shi; Guobing Lu; Qian Xu; Shaochen Liu

    2012-01-01

    In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52-1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region.

  17. Effects of carnosine on the evoked potentials in hippocampal CA1 region

    Institute of Scientific and Technical Information of China (English)

    Zhou-yan FENG; Xiao-jing ZHENG; Jing WANG

    2009-01-01

    Objective: To directly examine the effects of carnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exposed rat hippocampus. The changes of neuron activity in the CA1 region of hippocampus were evaluated by orthodromically- and antidromically-evoked potentials, as well as paired-pulse stimulation paradigm. Results: In both orthodromic and antidromic response potentials, carnosine transformed population spikes (PSs) with single spike into epileptiform multiple spikes. In addition, similar to the effect of γ-aminobutyric acidA (GABAA) antagonist picrotoxin, carnosine decreased paired-pulse stimulating depression significantly.However, no significant change was observed in the spontaneous field potentials during the application of carnosine. Conclusion:The results indicate a disinhibition-induced excitation effect of carnosine on the CA1 pyramidal neurons. It provides important information against the application of carnosine as a potential anticonvulsant in clinical treatment.

  18. Afferent-specific properties of interneuron synapses underlie selective long-term regulation of feedback inhibitory circuits in CA1 hippocampus.

    Science.gov (United States)

    Croce, Ariane; Pelletier, Joe Guillaume; Tartas, Maylis; Lacaille, Jean-Claude

    2010-06-15

    Hebbian long-term potentiation (LTP) develops at specific synapses onto hippocampal CA1 oriens/alveus interneurons (OA-INs), suggesting selective regulation of distinct input pathways. Afferent-specific properties at interneuron synapses have been characterized extensively in CA3 stratum lucidum cells, but given interneuron diversity these rules of transmission and plasticity may not hold in other interneuron types. Here, we used paired recordings and demonstrate that CA2/3 pyramidal cell (PC) feedforward and CA1 PC feedback synapses onto OA-INs show distinct AMPA receptor rectification and Ca(2+) permeability, short-term plasticity and mGluR2/3-mediated inhibition. Only feedback synapses undergo Hebbian LTP. OA-IN firing during repeated synaptic stimulation displays onset-transient or late-persistent responses consistent with activation of feedforward and feedback inputs, respectively. Input-output functions are preserved after theta-burst stimulation, but late-persistent responses selectively show mGluR1-dependent long-term increases. Thus, cell type- and afferent-specific rules of transmission and plasticity underlie distinct OA-IN input-output functions, providing selective long-term regulation in feedback inhibitory networks.

  19. Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors.

    Science.gov (United States)

    Khazipov, R; Congar, P; Ben-Ari, Y

    1995-11-01

    1. Whole cell patch-clamp recordings were employed to characterize monosynaptic inhibitory postsynaptic currents (IPSCs) in morphologically and electrophysiologically identified interneurons located in the stratum lacunosum moleculare, or near the border of the stratum radiatum (LM interneurons), in the CA1 region of hippocampal slices taken from 3- to 4-wk-old rats. Monosynaptic IPSCs, evoked in the presence of glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphopentanoate (APV; 50 microM) were biphasic. The gamma-aminobutyric acid-A (GABAA) receptor antagonist, bicuculline (20 microM), blocked the fast IPSC, and the slow IPSC was blocked by the GABAB receptor antagonist CGP35348 (500 microM). 2. Monosynaptic IPSCs were evoked by electrical stimulation in several distant regions including the stratum radiatum, the stratum oriens, the stratum lacunosum-moleculare, and the molecular layer of dentate gyrus, suggesting an extensive network of inhibitory interneurons in the hippocampus. In paired recordings of CA1 interneurons and pyramidal cells, IPSCs were evoked by electrical stimulation of most of these distal regions with the exception of the molecular layer of dentate gyrus, which evoked an IPSC only in LM interneurons. 3. Frequent (> 0.1 Hz) stimulation depressed the evoked IPSCs. With a paired-pulse protocol, the second IPSC was depressed and the maximal depression (40-50%) was observed with an interstimulus interval of 100-200 ms. 4. The GABAB receptor agonist baclofen (1 microM) reduced the amplitude of evoked IPSCs and the paired-pulse depression of the second IPSC. The GABAB receptor antagonist CGP35348 (0.5-1 mM) had no significant effect on the amplitude of isolated IPSCs. However, CGP35348 reduced but did not fully block paired-pulse depression, suggesting that this depression is partly due to the activation of presynaptic GABAB receptors. 5. The paired-pulse depression depended on the level of

  20. Hippocampal CA1 Ripples as Inhibitory Transients.

    Directory of Open Access Journals (Sweden)

    Paola Malerba

    2016-04-01

    Full Text Available Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  1. Hippocampal CA1 Ripples as Inhibitory Transients.

    Science.gov (United States)

    Malerba, Paola; Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim

    2016-04-01

    Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  2. Hippocampal Deletion of BDNF Gene Attenuates Gamma Oscillations in Area CA1 by Up-Regulating 5-HT3 Receptor

    OpenAIRE

    Ying Huang; Alexei Morozov

    2011-01-01

    BACKGROUND: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this recept...

  3. [The postnatal development of the lamina V pyramidal cells in the temporal cortex of the albino rat].

    Science.gov (United States)

    Nicolai, B

    1981-01-01

    1. The development of layer V pyramidal neurons is analysed quantitatively in albino rat temporal ("auditory") cortex from the 1st to the 90th postnatal days (12 stages). The length of apical dendrites, the number of primary dendrites and the total amount of apical dendrite spines are registered in Golgi-Cox preparations (55 animals). The diameters of the nucleus, length and width of the perikaryon and the relation between nucleus and perikaryon are measured in Nissl-series (45 animals). 2. Two types of development can be recognised by the examined parameters: --Length of apical dendrites, number of primary dendrites and of apical dendrite spines aspire more or less continuously to a maximum value. --Sizes of nucleus and perikaryon show intermediately a higher value than the terminal one ("overshooting growth"). 3. The postnatal development of the parameters suggests that the dendritic growth (also after initiated phase) starts from the perikaryon and relates with dendritic neuroplasmic flow. 4. In order to give general statements about the evolution of layer V pyramidal neuron's rates of growth are counted and their degree of maturity is determined. The biggest rates of growth are reached up to the 12th day post partum. At this time the pyramidal neurons have a relatively high degree of maturity. 5. There are two periods with especially marked alterations of structure of the layer V pyramidal neurons. These alterations are regarded as morphokineses according to Scharf. I. The morphological changes between the 8th and the 12th day are regarded as "morphokinesis as a reaction to planned crises" (2.2., according to Scharf 1970). In this case the critical situation is the beginning of hearing of the young rats, which is to be prepared. II. The morphological changes between the 24th and 36th day take place in the critical period of primary socialization (Scott et al. 1974). This could be understood as "morphokinesis as a reaction to environmental influences" (2

  4. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia.

    Science.gov (United States)

    Park, Seung Min; Park, Chan Woo; Lee, Tae-Kyeong; Cho, Jeong Hwi; Park, Joon Ha; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Ohk, Taek Geun; Cho, Jun Hwi; Won, Moo-Ho; Choi, Soo Young; Kim, In Hye

    2016-07-01

    Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia.

  5. Analysis of the electrosensory pyramidal cell bursting model for weakly electric fish: model prediction under low levels of dendritic potassium conductance.

    Science.gov (United States)

    Shirahata, T

    2012-09-01

    Pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish produce burst discharge. A Hodgkin-Huxley-type model, called ghostburster, consisting of two compartments (soma and dendrite) reproduces ELL pyramidal cell bursting observed in vitro. A previous study analyzed the ghostburster by treating Is and gDr,d as bifurcation parameters (Is: current injected into the somatic compartment and gDr,d: maximal conductance of the delayed rectifying potassium current in the dendritic compartment) and indicated that when both Is and gDr,d are set at particular values, the ghostburster shows a codimension-two bifurcation at which both saddle-node bifurcation of fixed points and saddle-node bifurcation of limit cycles occur simultaneously. In the present study, the ghostburster was investigated to clarify the bursting that occurred at gDr,d values smaller than that at the codimension-two bifurcation. Based on the number of spikes per burst, various burst patterns were observed depending on the (Is, gDr,d) values. Depending on the (Is, gDr,d) values, the burst trajectory in a phase space of the ghostburster showed either a high or a low degree of periodicity. Compared to the previous study, the present findings contribute to a more detailed understanding of ghostburster bursting.

  6. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors.

    Science.gov (United States)

    Ferguson, Alexandra L; Stone, Trevor W

    2010-04-01

    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  7. Effects and wavelet spectral entropy analysis of rhubarb extracts rhein on synaptic transmission in rat hippocampal ca1 area in vitro

    Institute of Scientific and Technical Information of China (English)

    GU Jian-wen; ZHENG Chong-xun; ZHANG Ai-hua; Hiroshi Hasuo; Takashi Akasu; YANG Wen-tao; YANG li-bin; XIA Xun; MA Yuan

    2005-01-01

    Background 5-dihydroxyanthraquinone-2-carboxylic acid (rhein) inhibits oxidoreduction induced by reducing nicotingamide adenine dinucleotide in the mitochondria and reducing reactive oxygen species, it also suppresses lipid peroxidation in rat brain homogenates. This study was to assess the effects of anthraquinone derivatives, rhein on synaptic transmission in the rat hippocampal CA1 pyramidal cell layer by intracellular recording.Methods The excitatory postsynaptic potential (EPSP) evoked by stimulation of the Schaffer collaterals in the presence of bicuculline (15 μmol/L) was depressed by application of rhein (0.3-30 μmol/L). The amplitude of the EPSP was restored within 20 minutes after removal of rhein from the supernatant. At a concentration of 30 μmol/L, rhein reduced the amplitude of the EPSP to 42%±3.7% (n=24) of the control. Subsequently, wavelet spectral entropy was used to analyze the EPSP. Results A strong positive correlation was observed between the wavelet spectral entropy and other parameters such as amplitude, slope of rising phase and slope of descending phase of the EPSP. The paired-pulse facilitation (PPF) of the EPSP was significantly increased by rhein (30 μmol/L). The inhibitory postsynaptic potential (IPSP) recorded in the presence of CNQX (20 μmol/L) and APV (40 μmol/L) is not altered by rhein (30 μmol/L). Conclusions Rhein (30 μmol/L) can decrease the frequency but not the amplitude of the miniature EPSP (mEPSP). It is suggested that rhein inhibits excitatory synaptic transmission by decreasing the release of glutamate in rat hippocampal CA1 pyramidal neurons.

  8. Optimal design for hetero-associative memory: hippocampal CA1 phase response curve and spike-timing-dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Ryota Miyata

    Full Text Available Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel's speculation (Lengyel et al., 2005, we firstly derive optimally designed spike-timing-dependent plasticity (STDP rules that are matched to neural interactions formalized in terms of phase response curves (PRCs for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons.

  9. Input-to-output transformation in a model of the rat hippocampal CA1 network.

    Science.gov (United States)

    Olypher, Andrey V; Lytton, William W; Prinz, Astrid A

    2012-01-01

    Here we use computational modeling to gain new insights into the transformation of inputs in hippocampal field CA1. We considered input-output transformation in CA1 principal cells of the rat hippocampus, with activity synchronized by population gamma oscillations. Prior experiments have shown that such synchronization is especially strong for cells within one millimeter of each other. We therefore simulated a one-millimeter ıt patch of CA1 with 23,500 principal cells. We used morphologically and biophysically detailed neuronal models, each with more than 1000 compartments and thousands of synaptic inputs. Inputs came from binary patterns of spiking neurons from field CA3 and entorhinal cortex (EC). On average, each presynaptic pattern initiated action potentials in the same number of CA1 principal cells in the patch. We considered pairs of similar and pairs of distinct patterns. In all the cases CA1 strongly separated input patterns. However, CA1 cells were considerably more sensitive to small alterations in EC patterns compared to CA3 patterns. Our results can be used for comparison of input-to-output transformations in normal and pathological hippocampal networks.

  10. Calretinin is present in non-pyramidal cells of the rat hippocampus--III. Their inputs from the median raphe and medial septal nuclei.

    Science.gov (United States)

    Acsády, L; Halasy, K; Freund, T F

    1993-02-01

    The subcortical innervation of a recently described subpopulation of non-pyramidal neurons, containing the calcium binding protein, calretinin, was investigated in the rat hippocampus using the anterograde tracer Phaseolus vulgaris-leucoagglutinin and double immunocytochemistry for calretinin and serotonin at the light and electron microscopic levels. Our results show that the GABAergic component of the septohippocampal pathway and the serotonergic raphe afferents establish multiple synaptic contacts with the calretinin-immunoreactive interneurons. The majority of the targets of both pathways were spine-free calretinin neurons known to innervate the dendritic region of the principal cells, but the GABAergic septal pathway was found to terminate also on the spiny neurons of stratum lucidum of the CA3 region and in the dentate hilus. The present results demonstrate that the serotonergic raphe-hippocampal and the GABAergic septohippocampal pathways are able to modulate dendritic inhibition of principal cells via calretinin-containing GABAergic interneurons.

  11. HIF-1α-mediated upregulation of SERCA2b: The endogenous mechanism for alleviating the ischemia-induced intracellular Ca(2+) store dysfunction in CA1 and CA3 hippocampal neurons.

    Science.gov (United States)

    Kopach, Olga; Maistrenko, Anastasiia; Lushnikova, Iryna; Belan, Pavel; Skibo, Galina; Voitenko, Nana

    2016-05-01

    Pyramidal neurons of the hippocampus possess differential susceptibility to the ischemia-induced damage with the highest vulnerability of CA1 and the lower sensitivity of CA3 neurons. This damage is triggered by Ca(2+)-dependent excitotoxicity and can result in a delayed cell death that might be potentially suspended through activation of endogenous neuroprotection with the hypoxia-inducible transcription factors (HIF). However, the molecular mechanisms of this neuroprotection remain poorly understood. Here we show that prolonged (30min) oxygen and glucose deprivation (OGD) in situ impairs intracellular Ca(2+) regulation in CA1 rather than in CA3 neurons with the differently altered expression of genes coding Ca(2+)-ATPases: the mRNA level of plasmalemmal Ca(2+)-ATPases (PMCA1 and PMCA2 subtypes) was downregulated in CA1 neurons, whereas the mRNA level of the endoplasmic reticulum Ca(2+)-ATPases (SERCA2b subtype) was increased in CA3 neurons at 4h of re-oxygenation after prolonged OGD. These demonstrate distinct susceptibility of CA1 and CA3 neurons to the ischemic impairments in intracellular Ca(2+) regulation and Ca(2+)-ATPase expression. Stabilization of HIF-1α by inhibiting HIF-1α hydroxylation prevented the ischemic decrease in both PMCA1 and PMCA2 mRNAs in CA1 neurons, upregulated the SERCA2b mRNA level and eliminated the OGD-induced Ca(2+) store dysfunction in these neurons. Cumulatively, these findings reveal the previously unknown HIF-1α-driven upregulation of Ca(2+)-ATPases as a mechanism opposing the ischemic impairments in intracellular Ca(2+) regulation in hippocampal neurons. The ability of HIF-1α to modulate expression of genes coding Ca(2+)-ATPases suggests SERCA2b as a novel target for HIF-1 and may provide potential implications for HIF-1α-stabilizing strategy in activating endogenous neuroprotection.

  12. Summation in the hippocampal CA3-CA1 network remains robustly linear following inhibitory modulation and plasticity, but undergoes scaling and offset transformations

    Directory of Open Access Journals (Sweden)

    Dhanya eParameshwaran

    2012-09-01

    Full Text Available Many theories of neural network function assume linear summation. This is in apparent conflict with several known forms of nonlinearity in real neurons. Furthermore, key network properties depend on the summation parameters, which are themselves subject to modulation and plasticity in real neurons. We tested summation responses as measured by spiking activity in small groups of CA1 pyramidal neurons using permutations of inputs delivered on an electrode array. We used calcium dye recordings as a readout of the summed spiking response of cell assemblies in the network. Each group consisted of 2-10 cells, and the calcium signal from each cell correlated with individual action potentials. We find that the responses of these small cell groups sum linearly, despite previously reported dendritic nonlinearities and the thresholded responses of individual cells. This linear summation persisted when input strengths were reduced. Blockage of inhibition shifted responses up towards saturation, but did not alter the slope of the linear region of summation. Long-term potentiation of synapses in the slice also preserved the linear fit, with an increase in absolute response. However, in this case the summation gain decreased, suggesting a homeostatic process for preserving overall network excitability. Overall, our results suggest that cell groups in the CA3-CA1 network robustly follow a consistent set of linear summation and gain-control rules, notwithstanding the intrinsic nonlinearities of individual neurons. Cell-group responses remain linear, with well-defined transformations following inhibitory modulation and plasticity. Our measures of these transformations provide useful parameters to apply to neural network analyses involving modulation and plasticity.

  13. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation.

    Science.gov (United States)

    Pitkänen, A; Amaral, D G

    1993-05-01

    The distribution of parvalbumin-immunoreactive cells and fibers in the various fields of the hippocampal formation was studied in the macaque monkey. Parvalbumin-immunoreactive neurons had aspiny or sparsely spiny dendrites that often had a beaded appearance; most resembled classically identified interneurons. Parvalbumin-immunoreactive fibers and terminals were confined to certain laminae in each field and generally had a pericellular distribution. In the dentate gyrus, there was a dense pericellular plexus of immunoreactive terminals in the granule cell layer. Except for a narrow supragranular zone, there was a marked paucity of terminals in the molecular and polymorphic cell layers. Immunoreactive neurons were mainly located immediately subjacent to the granule cell layer and comprised a variety of morphological cell types. The three fields of the hippocampus proper (CA3, CA2, and CA1) demonstrated differences in their parvalbumin staining characteristics. In CA3, there was a prominent pericellular terminal plexus in the pyramidal cell layer that was densest distally (closer to CA2). Immunoreactive cells were located either in the pyramidal cell layer, where many had a pyramidal shape and prominent apical and basal dendrites, or in stratum oriens. CA2 had a staining pattern similar to that in CA3, though both the number of labeled cells and the density of the pericellular terminal plexus were greater in CA2. In CA1, there was a markedly lower number of parvalbumin-labeled cells than in CA3 and CA2 and the cells tended to be located in the deep part of the pyramidal cell layer or in stratum oriens. The pyramidal cell layer of CA1 contained a pericellular terminal plexus that was substantially less dense than in CA3 and CA2. At the border between CA1 and the subiculum there was a marked increase in the number of parvalbumin-immunoreactive neurons. The positive cells were scattered throughout the pyramidal cell layer of the subiculum and comprised a variety of

  14. Climbing the Needs Pyramids

    Directory of Open Access Journals (Sweden)

    J. C. Lomas

    2013-08-01

    Full Text Available Abraham Maslow’s theory of human adult motivation is often represented by a pyramid image showing two proposals: First, the five needs stages in emergent order of hierarchical ascension and second, a percentage of the adult population suggested to occupy each needs tier. Specifically, Maslow proposed that adults would be motivated to satisfy their unfilled needs until they reached the hierarchy’s apex and achieved self-transcendence. Yet how adults can purposefully ascend Maslow’s pyramid through satisfying unfilled needs remains elusive. This brief article challenges this on the theory’s 70th anniversary by presenting a new image of the needs hierarchy, based on ecological design principles to support adults’ purposeful endeavors to climb the needs pyramid.

  15. Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment.

    Science.gov (United States)

    Shen, Ying; Kishimoto, Koji; Linden, David J; Sapirstein, Adam

    2007-04-03

    The arachidonic acid-generating enzyme cytosolic phospholipase A(2) alpha (cPLA(2)alpha) has been implicated in the progression of excitotoxic neuronal injury. However, the mechanisms of cPLA(2)alpha toxicity have yet to be determined. Here, we used a model system exposing mouse hippocampal slices to NMDA as an excitotoxic injury, in combination with simultaneous patch-clamp recording and confocal Ca(2+) imaging of CA1 pyramidal neurons. NMDA treatment caused significantly greater injury in wild-type (WT) than in cPLA(2)alpha null CA1 neurons. Bath application of NMDA evoked a slow inward current in voltage-clamped neurons (composed of both NMDA receptor-mediated and other conductances) that was smaller in cPLA(2)alpha null than in WT slices. This was not due to down-regulation of NMDA receptor function because NMDA receptor-mediated currents were equivalent in each genotype following brief photolysis of caged glutamate. Current-clamp recordings were made during and following NMDA exposure by eliciting a single action potential with a brief current injection. After NMDA exposure, WT CA1 neurons developed a spike-evoked plateau potential and an increased spike-evoked dendritic Ca(2+) transient. These effects were absent in CA1 neurons from cPLA(2)alpha null mice and WT neurons treated with a cPLA(2)alpha inhibitor. The Ca-sensitive K-channel toxins, apamin and paxilline, caused spike broadening and Ca(2+) enhancement in WT and cPLA(2)alpha null slices. NMDA application in WT and arachidonate applied to cPLA(2)alpha null cells occluded the effects of apamin/paxilline. These results indicate that cPLA(2)alpha activity is required for development of aberrant electrophysiologic events triggered by NMDA receptor activation, in part through attenuation of K-channel function.

  16. Norepinephrine modulates pyramidal cell synaptic properties in the anterior piriform cortex of mice: age-dependent effects of β-adrenoceptors

    Directory of Open Access Journals (Sweden)

    Abhinaba eGhosh

    2015-11-01

    Full Text Available Early odor preference learning in rodents occurs within a sensitive period (≤postnatal day (P10-12, during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g. stroking. Norepinephrine (NE release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice - odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8-11 and P14+, NE at two concentrations (0.1 and 10 μM did not alter intrinsic properties in either group. In contrast, in P8-11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM, suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.

  17. Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors.

    Science.gov (United States)

    Ghosh, Abhinaba; Purchase, Nicole C; Chen, Xihua; Yuan, Qi

    2015-01-01

    Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10-12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice - odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8-11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8-11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.

  18. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus.

    Science.gov (United States)

    Pawelzik, Hannelore; Hughes, David I; Thomson, Alex M

    2002-02-18

    portions of CA1 pyramidal cells. Most PV-IR cells are fast-spiking, whereas most CCK-IR cells are regular-spiking. In both neurochemical classes basket cells predominate, but both groups included subpopulations of dendrite-targeting cells. Despite these similarities, the two populations exhibited very different somatic distributions, and each contained cellular morphologies not represented in the other.

  19. Protective roles of heat stress on the neurons in hippocampal CA1 region of mice

    Institute of Scientific and Technical Information of China (English)

    WANG Chunxu; WANG Hanxing

    2007-01-01

    The effects of heat stress on the neurons in hippocampal CA1 region of brain ischemia/reperfusion were explored.The mice were pretreated with heat stress followed by ischemia/reperfusion by clipping bilateral cervical common arteries for 7 min.Mice were divided randomly into four groups as follows:(1)normal control group;(2)heat stress pretreated subsequent to ischemia/reperfusion group (HS/IR);(3)ischemia/reperfusion group(IR);and(4)heat stress group(HS).Animals in the last three groups were subdivided into three subgroups:1 d,4 d,14 d respectively.The Morris water maze was used to test the ability of learning and memorizing,Nissl staining was used to count the average number of survived neurons in hippocampal CA1 region,and immunohistochemistry combined with image analysis system to detect the changes of Microtubule associated protein 2 (MAP-2)expression.The results showed that mice in IR group exhibited increased escape latency when compared with that of normal,HS and HS/IR groups(P<0.01),and the mice in IR group adopted an inefficient search strategy,major in circling and restricted searching manners.Nissl staining results showed a significant reduction in the number of pyramidal neurons in hippocampal CA1 regions in HS/IR and IR groups,with a decrease in IR group(P<0.01).Compared with normal group,the expression of MAP-2 in hippocampal CA1 region obviously decreased in IR group(P<0.05).The present results indicate that heat stress pretreatment can improve the spatial learning and memorizing function through protection to hippocampal neurons.

  20. Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Ren, Wei; Ma, Xin-Ming

    2014-12-15

    Major depressive disorder is the most prevalent psychiatric condition, but the cellular and molecular mechanisms underlying this disorder are largely unknown, although multiple hypotheses have been proposed. The aim of this study was to characterize the progressive alteration of neuronal plasticity in the male rat hippocampus during depression induced by chronic unpredictable mild stress (CUMS), an established animal model of depression. The data in the hippocampus were collected on days 7, 14 and 21 after the onset of three-week CUMS. When analyzed on day 21, three-week CUMS induced typically depressive-like behaviors, impaired LTP induction, and decreased basal synaptic transmission at hippocampal CA3-CA1 synapses recorded in vivo, which was accompanied by decreased density of dendritic spines in CA1 and CA3 pyramidal neurons. The levels of both Kalirin-7 and brain-derived neurotrophic factor (BDNF) in the hippocampus were decreased at the same time. On day 14 (middle phase), some depressive-like behaviors were observed, which was accompanied by depressed basal synaptic transmission and enhanced LTP induction at the CA3-CA1 synapses. However, BDNF expression was decreased without alteration of Kalirin7 expression in comparison with no-stress control. Depressed basal synaptic transmission occurred in the middle phase of CUMS may contribute to decreased expression of BDNF. On day 7, depressive-like behaviors were not observed, and LTP induction, spine density, Kalirin-7 and BDNF expression were not altered by CUMS in comparison with no-stress control. These results showed that the functional changes at CA3-CA1synapses occurred earlier than the structural alteration during three-week CUMS as a strategy of neural adaptation, and rats required three weeks to develop depressive-like behaviors during CUMS. Our results suggest an important role of Kalirin-7 in CUMS-mediated alterations in spine density, synaptic function and overall depressive-like behaviors on day 21.

  1. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  2. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons.

    Science.gov (United States)

    Yin, Hong Z; Sensi, Stefano L; Ogoshi, Fumio; Weiss, John H

    2002-02-15

    Synaptic release of Zn2+ and its translocation into postsynaptic neurons probably contribute to neuronal injury after ischemia or epilepsy. Studies in cultured neurons have revealed that of the three major routes of divalent cation entry, NMDA channels, voltage-sensitive Ca2+ channels (VSCCs), and Ca2+-permeable AMPA/kainate (Ca-A/K) channels, Ca-A/K channels exhibit the highest permeability to exogenously applied Zn2+. However, routes through which synaptically released Zn2+ gains entry to postsynaptic neurons have not been characterized in vivo. To model ischemia-induced Zn2+ movement in a system approximating the in vivo situation, we subjected mouse hippocampal slice preparations to controlled periods of oxygen and glucose deprivation (OGD). Timm's staining revealed little reactive Zn2+ in CA1 and CA3 pyramidal neurons of slices exposed in the presence of O2 and glucose. However, 15 min of OGD resulted in marked labeling in both regions. Whereas strong Zn2+ labeling persisted if both the NMDA antagonist MK-801 and the VSCC blocker Gd3+ were present during OGD, the presence of either the Ca-A/K channel blocker 1-naphthyl acetyl spermine (NAS) or the extracellular Zn2+ chelator Ca2+ EDTA substantially decreased Zn2+ accumulation in pyramidal neurons of both subregions. In parallel experiments, slices were subjected to 5 min OGD exposures as described above, followed 4 hr later by staining with the cell-death marker propidium iodide. As in the Timm's staining experiments, substantial CA1 or CA3 pyramidal neuronal damage occurred despite the presence of MK-801 and Gd3+, whereas injury was decreased by NAS or by Ca2+ EDTA (in CA1).

  3. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M.; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J.; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB+1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons), and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions. PMID:25018703

  4. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα and degrading (MAGL, FAAH enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin and parvalbumin in the adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2014-06-01

    Full Text Available The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e. DAGLα enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL and FAAH and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. CB1, DAGLα and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB1+ fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons, and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  5. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  6. Activation of p42/44 mitogen-activated protein kinase pathway in long-term potentiation induced by nicotine in hippocampal CA1 region in rats%在烟碱诱导的大鼠海马CA1区长时程增强形成中p42/44促细胞分裂剂活化的蛋白激酶通路被激活

    Institute of Scientific and Technical Information of China (English)

    王捷; 陈远宾; 朱小南; 陈汝筑

    2001-01-01

    目的:研究p42/44 MAPK通路在烟碱诱导大鼠海马CA1区长时程增强(LTP)形成中的作用.方法:细 胞外场电位记录离体海马脑片CA1区锥体细胞层群体峰电位;蛋白质印迹检测p42/44 MAPK磷酸化程度及其总蛋白表达.结果:PD98059 25 μmol/L和50 μmol/L呈剂量依赖性抑制烟碱(10 μmol/L)诱导大鼠海马CA1区LTP的形成;在烟碱诱导LTP形成的海马CA1区组织内p42和p44 MAPK磷酸化均明显增强并有p42和p44 MAPK总蛋白表达量的增加.结论:p42/44 MAPK通路参与烟碱诱导大鼠海马CA1区LTP形成的信号转导过程.%AIM: To investigate the relationship between activation of p42/44 mitogen-activated protein kinase .(MAPK)pathway and hippocampal long term potentiation (LTP)induced by nicotine in area CA1. METHODS: Extracellular recording of population spike (PS) was performed within the pyramidal cell layer of hippocampal area CAl in vitro; Western blot analysis was employed to detect the active phosphorylated state and the total protein expression of p42/44 MAPK. RESULTS: PD98059concentration-dependently (25 μmol/L, 50 μmol/L) attenuated the induction of LTP induced by nicotine 10 μmol/L; both p42 and p44 MAPK were activated with their total protein expression increasing in CA1 subregion in response to LTP induced by nicotine. CONCLUSION: Activation of p42/44 MAPK pathway is required for hippocampal LTP induced by nicotine.

  7. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy.

    Directory of Open Access Journals (Sweden)

    Chunlin Gao

    Full Text Available The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC. However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD and bilateral carotid artery occlusion (BCCAO models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later. The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later. Akt phosphorylation and microtubule-associated protein light chain 3 (LC3-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.

  8. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy.

    Science.gov (United States)

    Gao, Chunlin; Cai, Ying; Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.

  9. PYRAMID ROADLESS AREA, CALIFORNIA.

    Science.gov (United States)

    Armstrong, Augustus K.; Scott, Douglas F.

    1984-01-01

    A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.

  10. Building the next pyramid

    CERN Document Server

    West, Joseph; Waters, Kevin; Ward, Stephen; Ward, Tia

    2015-01-01

    The results of experimental tests of a novel method for moving large (pyramid construction size) stone blocks by rolling them are presented. The method is implemented by tying 12 identical rods of appropriately chosen radius to the faces of the block forming a rough dodecagon prism. Experiments using a 1,000 kg block show that it can be moved across level open ground with a dynamic coefficient of friction of less than 0.06. This value is a factor of five lower than that obtained for dragging the block, and the best values reported for dragging by others, at 0.3. the results are more dramatic than those obtained on smaller scale experiments on a 29.6 kg block, also reported here. For full scale pyramid blocks, the wooden "rods" woudl need to be posts of order 30 cm in diameter, similar in size to those used as masts on ships in the Nile.

  11. Climbing the Needs Pyramids

    OpenAIRE

    J. C. Lomas

    2013-01-01

    Abraham Maslow’s theory of human adult motivation is often represented by a pyramid image showing two proposals: First, the five needs stages in emergent order of hierarchical ascension and second, a percentage of the adult population suggested to occupy each needs tier. Specifically, Maslow proposed that adults would be motivated to satisfy their unfilled needs until they reached the hierarchy’s apex and achieved self...

  12. Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel "climbing" migration mode during development.

    Science.gov (United States)

    Kitazawa, Ayako; Kubo, Ken-ichiro; Hayashi, Kanehiro; Matsunaga, Yuki; Ishii, Kazuhiro; Nakajima, Kazunori

    2014-01-22

    The hippocampus plays important roles in brain functions. Despite the importance of hippocampal functions, recent analyses of neuronal migration have mainly been performed on the cerebral neocortex, and the cellular mechanisms responsible for the formation of the hippocampus are not yet completely understood. Moreover, why a prolonged time is required for hippocampal neurons to complete their migration has been unexplainable for several decades. We analyzed the migratory profile of neurons in the developing mouse hippocampal CA1 region and found that the hippocampal pyramidal neurons generated near the ventricle became postmitotic multipolar cells and accumulated in the multipolar cell accumulation zone (MAZ) in the late stage of development. The hippocampal neurons passed through the pyramidal layer by a unique mode of migration. Their leading processes were highly branched and made contact with many radial fibers. Time-lapse imaging revealed that the migrating cells changed their scaffolds from the original radial fibers to other radial fibers, and as a result they proceed in a zigzag manner, with long intervals. The migrating cells in the hippocampus reminded us of "rock climbers" that instead of using their hands to pull up their bodies were using their leading processes to pull up their cell bodies. Because this mode of migration had never been described, we called it the "climbing" mode. The change from the "climbing" mode in the hippocampus to the "locomotion" mode in the neocortex may have contributed to the brain expansion during evolution.

  13. Imaging the Cheops Pyramid

    CERN Document Server

    Bui, H D

    2012-01-01

    In this book Egyptian Archeology  and Mathematics meet. The author is an expert in theories and applications in Solid Mechanics and Inverse Problems, a former professor at Ecole Polytechnique and now works with Electricité de France on maintenance operations on nuclear power plants. In the Autumn of 1986, after the end of the operation on the King’s chamber conducted under the Technological and Scientific Sponsorship of EDF, to locate a cavity, he was called to solve a mathematical inverse problem, to find the unknown tomb of the King and the density structure of the whole pyramid based on measurements of microgravity made inside and outside of the pyramid. This book recounts the various search operations on the pyramid of Cheops made at the request of the Egyptian and French authorities in 1986-1987. After the premature end of the Cheops operation in the Autumn of 1986, following the fiasco of unsuccessful drillings in the area suspected by both architects G. Dormion and J.P. Goidin and microgravity aus...

  14. Low doses of alcohol potentiate GABA sub B inhibition of spontaneous activity of hippocampal CA1 neurons in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Criado, J.R.; Thies, R. (Univ. of Oklahoma, Oklahoma City (United States))

    1991-03-11

    Low doses of alcohol facilitate firing of hippocampal neurons. Such doses also enhance the inhibitory actions of GABA. Alcohol is known to potentiate inhibition via GABA{sub A} receptors. However, the effects of alcohol on GABA{sub B} receptor function are not understood. Spontaneous activity of single units was recorded from CA1 neurons of male rats anesthetized with 1.0% halothane. Electrical recordings and local application of drugs were done with multi-barrel pipettes. CA1 pyramidal neurons fired spontaneous bursts of action potentials. Acute alcohol decreased the interval between bursts, a mild excitatory action. Alcohol also more than doubled the period of complete inhibition produced by local application of both GABA and baclofen. These data suggest that GABA{sub B}-mediated inhibition is also potentiated by low doses of alcohol.

  15. Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons.

    Science.gov (United States)

    Su, H; Alroy, G; Kirson, E D; Yaari, Y

    2001-06-15

    The generation of high-frequency spike bursts ("complex spikes"), either spontaneously or in response to depolarizing stimuli applied to the soma, is a notable feature in intracellular recordings from hippocampal CA1 pyramidal cells (PCs) in vivo. There is compelling evidence that the bursts are intrinsically generated by summation of large spike afterdepolarizations (ADPs). Using intracellular recordings in adult rat hippocampal slices, we show that intrinsic burst-firing in CA1 PCs is strongly dependent on the extracellular concentration of Ca(2+) ([Ca(2+)](o)). Thus, lowering [Ca(2+)](o) (by equimolar substitution with Mn(2+) or Mg(2+)) induced intrinsic bursting in nonbursters, whereas raising [Ca(2+)](o) suppressed intrinsic bursting in native bursters. The induction of intrinsic bursting by low [Ca(2+)](o) was associated with enlargement of the spike ADP. Low [Ca(2+)](o)-induced intrinsic bursts and their underlying ADPs were suppressed by drugs that reduce the persistent Na(+) current (I(NaP)), indicating that this current mediates the slow burst depolarization. Blocking Ca(2+)-activated K(+) currents with extracellular Ni(2+) or intracellular chelation of Ca(2+) did not induce intrinsic bursting. This and other evidence suggest that lowering [Ca(2+)](o) may induce intrinsic bursting by augmenting I(NaP). Because repetitive neuronal activity in the hippocampus is associated with marked decreases in [Ca(2+)](o), the regulation of intrinsic bursting by extracellular Ca(2+) may provide a mechanism for preferential recruitment of this firing mode during certain forms of hippocampal activation.

  16. Breast cancer 1 (BrCa1 may be behind decreased lipogenesis in adipose tissue from obese subjects.

    Directory of Open Access Journals (Sweden)

    Francisco J Ortega

    Full Text Available CONTEXT: Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1 interacts with acetyl-CoA carboxylase (ACC reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS: BrCa1 gene expression, total and phosphorylated (P- BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS: BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002 and subcutaneous (SC; 1.49-fold, p = 0.001 adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007 as well as in OM (p = 0.010 fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001 and protein (1.2-fold, p = 0.001 were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005 allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium, whereas lipogenic genes significantly decreased. CONCLUSIONS: The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

  17. Event Detection by Velocity Pyramid

    OpenAIRE

    2014-01-01

    In this paper, we propose velocity pyramid for multimediaevent detection. Recently, spatial pyramid matching is proposed to in-troduce coarse geometric information into Bag of Features framework,and is eective for static image recognition and detection. In video, notonly spatial information but also temporal information, which repre-sents its dynamic nature, is important. In order to fully utilize it, wepropose velocity pyramid where video frames are divided into motionalsub-regions. Our meth...

  18. Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct

    Institute of Scientific and Technical Information of China (English)

    Chuanyu Liu; Surong Zhou; Xuwen Sun; Zhuli Liu; Hongliang Wu; Yuanwu Mei

    2011-01-01

    Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex.These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.

  19. Neuroprotection of Ischemic Preconditioning is Mediated by Thioredoxin 2 in the Hippocampal CA1 Region Following a Subsequent Transient Cerebral Ischemia.

    Science.gov (United States)

    Lee, Jae-Chul; Park, Joon Ha; Kim, In Hye; Cho, Geum-Sil; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Soo Young; Cho, Jun Hwi; Kim, Dae Won; Kwon, Young-Guen; Kang, Il Jun; Won, Moo-Ho; Kim, Young-Myeong

    2016-04-26

    Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox-regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)-mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group, IPC + ischemia-operated group, IPC + auranofin (a TrxR2 inhibitor) + sham-operated group and IPC + auranofin + ischemia-operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia-operated-group 5 days after ischemia-reperfusion; in the IPC + ischemia-operated-group, pyramidal neurons in the SP were well protected. In the IPC + ischemia-operated-group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham-operated-group after ischemia-reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( O2-) production, denatured cytochrome c expression and TUNEL-positive cells in the IPC + ischemia-operated-group were similar to those in the sham-operated-group. Conversely, the treatment of auranofin to the IPC + ischemia-operated-group significantly increased cell damage/death and abolished the IPC-induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, O2- production, denatured cytochrome c

  20. Effect of chronic intracerebroventricular insulin administration in rats on the peripheral glucose metabolism and synaptic plasticity of CA1 hippocampal neurons.

    Science.gov (United States)

    Kamal, Amer; Ramakers, Geert M J; Gispen, Willem Hendrik; Biessels, Geert Jan

    2012-01-30

    In this study we examined the effects of sustained intracerebroventricular insulin infusion on hippocampal synaptic plasticity in rats. Insulin was infused intracerebroventricularly in male Wistar rats (n=12) for 3 months using osmotic minipumps. A control group (n=12) received a sham operation. Insulin infusion led to an initial reduction in food intake and body weight gain, but these differences attenuated over 12 weeks. Insulin infusion did not affect fasting or non-fasting blood glucose levels. Field synaptic potentials recording from the hippocampus demonstrated a defect in the expression of long-term potentiation. Sharp electrode current-clamp recording showed that CA1 pyramidal cells fire action potentials in response to prolonged depolarizing current injection and those action potentials showed progressive broadening. The action potential broadening in the insulin-perfused animals were significantly longer than the control. The amplitude of slow after hyperpolarization (sAHP) was measured after manually "clamping" the cells at -65 mV and injecting currents to evoke a train of four APs. The sAHP amplitude was significantly longer than in the control animals. We conclude that local insulin infusion into the brain of rats had significant effects on synaptic plasticity in the absence of marked effects on systemic glucose levels. These results indicate that long-term elevation of insulin levels can have adverse effects directly on the brain.

  1. 磷脂酰肌醇-3-激酶/蛋白激酶B信号转导通路与针刺保护癫痫继发海马神经元损伤的关系%PI 3 K/Akt Signaling Pathway Contributed to the Protective Effect of Acupuncture Intervention on Epileptic Seizure-induced Injury of Hippocampal Pyramidal Cells in Epilepsy Rats

    Institute of Scientific and Technical Information of China (English)

    杨帆; 昂文平; 沈德凯; 刘向国; 杨永清; 马允

    2013-01-01

    Objective To observe the protective effect of acupuncture stimulation on pyramidal cells in hippocampal CA 1 and CA 3 regions and to analyze the involvement of phosphatidy linositol-3-kinase (PI 3 K) /protein kinase B(PKB or Akt) signaling pathway in the acupuncture effect in epilepsy rats. Methods A total of 120 SD rats were randomly divided into normal control group, model group, LY 294002 (a specific antagonist for PI 3 K/Akt signaling) group, acupuncture + LY 294002 group and acupuncture group (n = 24 in each group, 12 for H. E. staining, and 12 for electron microscope observation). Epilepsy model was established by intraperitoneal injection of pentylenetetrazol (PTZ, 5 μL). Manual acupuncture stimulation was applied to "Baihui" (GV20) and "Dazhui" (GV 14) once daily for 5 days. Dimethyl Sulfoxide (DMSO, 5 μL, a control solvent) was given to rats of the normal, model and acupuncture groups, and LY 294002 (5 μL, dissolved in DMSO) given to rats of the LY 294002 and acupuncture+LY 294002 groups by lateral ventricular injection. Four hours and 24 h after modeling, the hippocampus tissues were sampled for observing pathological changes of CA 1 and CA 3 regions after H. E. staining under light microscope and for checking ultrastructural changes of the pyramidal cells under transmission electron microscope. Results In comparison with the normal control group, the numbers of pyramidal cells of hippocampal CA3 region in the model group were decreased significantly 4 h and 24 h after epileptic seizure (P0. 05). Findings of the light microscope and electron microscope showed that the injury severity of pyramidal cells of hippocampal CA 1 and CA 3 regions was moderate 4 h after epileptic seizure and even worse 24 h after seizure in the model group, LY 294002 group and acupuncture + LY 294002 group, but relatively lighter in the acupuncture group. These results suggested an elimination of the acupuncture effect after blocking the PI 3 K/Akt signaling pathway by lateral

  2. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Agnieszka I Wlodarczyk

    2013-12-01

    Full Text Available Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm. This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm, and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10 µM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency produced by current injection of 2 rheobases (500 ms. However, when larger current injections (3-6 rheobases were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modelling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50. When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.

  3. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons.

    Science.gov (United States)

    Wlodarczyk, Agnieszka I; Xu, Chun; Song, Inseon; Doronin, Maxim; Wu, Yu-Wei; Walker, Matthew C; Semyanov, Alexey

    2013-01-01

    Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm). This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm), and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10μM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency) produced by current injection of 2 rheobases (500 ms). However, when larger current injections (3-6 rheobases) were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modeling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50). When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.

  4. Cell-attached single-channel recordings in intact prefrontal cortex pyramidal neurons reveal compartmentalized D1/D5 receptor modulation of the persistent sodium current.

    Directory of Open Access Journals (Sweden)

    Natalia eGorelova

    2015-02-01

    Full Text Available The persistent Na current (INap is believed to be an important target of dopamine modulation in prefrontal cortex (PFC neurons. While past studies have tested the effects of dopamine on INap, the results have been contradictory largely because of difficulties in measuring INap using somatic whole-cell recordings. To circumvent these confounds we used the cell-attached patch-clamp technique to record single Na channels from the soma, proximal dendrite or proximal axon of intact prefrontal layer V pyramidal neurons. Under baseline conditions, numerous well resolved Na channel openings were recorded that exhibited an extrapolated reversal potential of 73 mV, a slope conductance of 14-19pS and were blocked by TTX. While similar in most respects, the propensity to exhibit prolonged bursts lasting >40ms was many fold greater in the axon than the soma or dendrite. Bath application of the D1 agonist SKF81297 shifted the ensemble current activation curve leftward and increased the number of late events recorded from the proximal dendrite but not the soma or axon. However, the greatest effect was on prolonged bursting where the D1 agonist increased their occurrence 3 fold in the proximal dendrite and nearly 7 fold in the soma, but not at all in the axon. As a result, D1 activation equalized the probability of prolonged burst occurrence across the proximal axosomatodendritic region. Therefore, D1 modulation appears to be targeted mainly to Na channels in the proximal dendrite/soma and not the proximal axon. By circumventing the pitfalls of previous attempts to study the D1R modulation of INap, we demonstrate conclusively that D1R can increase the INap generated proximally, however questions still remain as to how D1R modulates Na currents in the more distal initial segment where most of the INap is normally generated.

  5. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  6. 单晶硅小金字塔绒面及其对太阳电池性能的影响%Small Pyramids Texture and Performance of Mono-crystalline Silicon Solar Cells

    Institute of Scientific and Technical Information of China (English)

    梁学勤; 冯成坤; 陈奕峰; 沈辉; 闻立时

    2011-01-01

    TMAH(tetramethyl ammonium hydroxide) and NaOH solution were used to etch mono-crystalline silicon wafer to form small size pyramids, and the average sizes are smaller than 2μm. Before texturing, saw-damage etching was performed with NaOH and HF/HNO3 solution, resulting in a fairly flat surface and a surface covered with pits respectively. The outcome of the surface texturing is related to the original surface morphology of the wafer. It is found that, with etching saw-damage with HF/HNO3 solution, the wafer formed regular and small pyramids after texturing. Ⅰ-Ⅴ measurements are carried out to compare the performance of solar cells textured with TMAH and NaOH. The line contact resistance is related to size of pyramids. Small pyramids are necessarily to produce high efficiency crystalline silicon solar cells using laser technology.%研究了TMAH(四甲基氢氧化铵)和NaOH腐蚀液在制作单晶硅片小绒面中的应用,制作出平均尺寸小于2μm的金字塔绒面;比较了不同硅片预处理(酸减薄、碱减薄、原片)对金字塔绒面尺寸、均匀性、覆盖率以及反射率的影响以及电池的I-V性能,分析了不同绒面结构对接触电阻的影响;指出单晶硅小金字塔绒面是使用激光制备高效晶体硅太阳电池的关键.

  7. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons.

    Science.gov (United States)

    Epsztein, Jérôme; Milh, Mathieu; Bihi, Rachid Id; Jorquera, Isabel; Ben-Ari, Yehezkel; Represa, Alfonso; Crépel, Valérie

    2006-06-28

    Ischemic strokes are often associated with late-onset epilepsy, but the underlying mechanisms are poorly understood. In the hippocampus, which is one of the regions most sensitive to ischemic challenge, global ischemia induces a complete loss of CA1 pyramidal neurons, whereas the resistant CA3 pyramidal neurons display a long-term hyperexcitability several months after the insult. The mechanisms of this long-term hyperexcitability remain unknown despite its clinical implication. Using chronic in vivo EEG recordings and in vitro field recordings in slices, we now report spontaneous interictal epileptiform discharges in the CA3 area of the hippocampus from post-ischemic rats several months after the insult. Whole-cell recordings from CA3 pyramidal neurons, revealed a permanent reduction in the frequency of spontaneous and miniature GABAergic IPSCs and a parallel increase in the frequency of spontaneous and miniature glutamatergic postsynaptic currents. Global ischemia also induced a dramatic loss of GABAergic interneurons and terminals together with an increase in glutamatergic terminals in the CA3 area of the hippocampus. Altogether, our results show a morpho-functional reorganization in the CA3 network several months after global ischemia, resulting in a net shift in the excitatory-inhibitory balance toward excitation that may constitute a substrate for the generation of epileptiform discharges in the post-ischemic hippocampus.

  8. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  9. Thromboxane synthetase inhibitor ameliorates delayed neuronal death in the CA1 subfield of the hippocampus after transient global ischemia in gerbils.

    Science.gov (United States)

    Iijima, T; Sawa, H; Shiokawa, Y; Saito, I; Ishii, H; Nakamura, Z; Sankawa, H

    1996-07-01

    Thromboxane A2 accumulates in the hippocampus after global ischemia and may play a key role in postischemic hypoperfusion. Thromboxane synthetase inhibitor (OKY-046) inhibits the accumulation of thromboxane A2 and promotes prostacycline production. Therefore, we set out to determine whether the inhibition of thromboxane synthesis would ameriolate postischemic neuronal death. Three groups of six Mongolian gerbils were subjected to different treatments: untreated control, untreated ischemia, and treated ischemia. Immediately after forebrain ischemia, OKY-046 (10 mg/kg) was injected intraperitoneally into the treated group. After 7 days of survival, the histopathology of the brain was examined. Pyramidal cell density in the CA1 sector in the treated group was 147 +/- 70 nuclei/mm (mean +/- SD), which was significantly (p < 0.05) higher than than in the untreated group (33 +/- 10 (nuclei/mm). The findings were 231 +/- 7 nuclei/mm for the control group. No significant difference was seen in the profile of temporal muscle temperature before and after ischemia between the groups. Ultrastructurally, the vessels in the CAI sector showed lumen patency in the treated group, whereas occluded vessels with an extended perivascular space were observed in the untreated group. Thromboxane synthetase inhibitor thus partly ameliorates the selective vulnerability of the hippocampus after forebrain ischemia, suggesting that thromboxane A2 is involved in the development of delayed neuronal death, independently of any thermal effect.

  10. Effects of transient oxygen-glucose deprivation on G-proteins and G-protein-coupled receptors in rat CA3 pyramidal cells in vitro.

    Science.gov (United States)

    Tanabe, M; Gähwiler, B H; Gerber, U

    1998-06-01

    The role of guanosine triphosphate-binding proteins (G-proteins) in the generation of the outward current during transient oxygen-glucose deprivation (OGD) was investigated in CA3 pyramidal cells in rat hippocampal organotypic slice cultures using the single-electrode voltage-clamp technique with KMeSO4-filled microelectrodes. To simulate ischaemia, brief chemical OGD (2 mM 2-deoxyglucose and 3 mM NaN3 for 4-9 min) was used, which induced an outward K+ current associated with an increase in input conductance. OGD failed to induce the outward current under conditions where G-protein function was disrupted by loading cells with guanosine 5'-O-(2-thiodiphosphate) [GDPbetaS] or after prolonged injection of guanosine 5'-O(3-thiotdphosphate) [GTPgammaS]. However, in slices treated with pertussis toxin (PTX), OGD still elicited the outward current, indicating that PTX-insensitive G-proteins are involved. Consistent with this insensitivity to PTX, neither adenosine receptors nor GABA(B) (gamma-aminobutyric acid) receptors, which operate via PTX-sensitive G-proteins, mediate the OGD-induced outward current. When adenosine receptors or GABA(B) receptors were blocked with 1,3-dipropyl-8-psulphophenylxanthine (DPSPX, 5 microM) or CGP 52 432 (10 microM), respectively, the OGD-induced response was not modified. The response also persisted following pretreatment of slice cultures with tetanus toxin to prevent vesicular release of neurotransmitters and neuromodulators from presynaptic terminals. Both PTX-sensitive and PTX-insensitive G-protein-mediated responses were suppressed during OGD. The inward current induced by the metabotropic glutamate receptor agonist 1 S, 3R-1-aminocyclopentane-1,3-dicarboxylate (1S,3R-ACPD) and the outward current elicited by adenosine or baclofen were strongly or completely attenuated. In contrast, the ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) response was not affected. These findings suggest that during OGD there is

  11. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  12. Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments

    Directory of Open Access Journals (Sweden)

    Viviana eCulmone

    2012-07-01

    Full Text Available Several independent studies show that accumulation of β-amyloid (Aβ peptides , one of the characteristic hallmark of Alzheimer’s Disease (AD, can affect normal neuronal activity in different ways. However, in spite of intense experimental work to explain the possible underlying mechanisms of action, a comprehensive and congruent understanding is still lacking. Part of the problem might be the opposite ways in which Aβ have been experimentally found to affect the normal activity of a neuron; for example, making a neuron more excitable (by reducing the A- or DR-type K+ currents or less excitable (by reducing synaptic transmission and Na+ current. The overall picture is therefore confusing, since the interplay of many mechanisms makes it difficult to link individual experimental findings with the more general problem of understanding the progression of the disease. This is an important issue, especially for the development of new drugs trying to ameliorate the effects of the disease. We addressed these paradoxes through computational models. We first modeled the different stages of AD by progressively modifying the intrinsic membrane and synaptic properties of a realistic model neuron, while accounting for multiple and different experimental findings and by evaluating the contribution of each mechanism to the overall modulation of the cell’s excitability. We then tested a number of manipulations of channel and synaptic activation properties that could compensate for the effects of Aβ. The model predicts possible therapeutic treatments in terms of pharmacological manipulations of channels’ kinetic and activation properties. The results also suggest how and which mechanisms can be targeted by a drug to restore the original firing conditions.

  13. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels.

    Science.gov (United States)

    Leuner, Kristina; Li, Wei; Amaral, Michelle D; Rudolph, Stephanie; Calfa, Gaston; Schuwald, Anita M; Harteneck, Christian; Inoue, Takafumi; Pozzo-Miller, Lucas

    2013-01-01

    The standardized extract of the St. John's wort plant (Hypericum perforatum) is commonly used to treat mild to moderate depression. Its active constituent is hyperforin, a phloroglucinol derivative that reduces the reuptake of serotonin and norepinephrine by increasing intracellular Na(+) concentration through the activation of nonselective cationic TRPC6 channels. TRPC6 channels are also Ca(2+) -permeable, resulting in intracellular Ca(2+) elevations. Indeed, hyperforin activates TRPC6-mediated currents and Ca(2+) transients in rat PC12 cells, which induce their differentiation, mimicking the neurotrophic effect of nerve growth factor. Here, we show that hyperforin modulates dendritic spine morphology in CA1 and CA3 pyramidal neurons of hippocampal slice cultures through the activation of TRPC6 channels. Hyperforin also evoked intracellular Ca(2+) transients and depolarizing inward currents sensitive to the TRPC channel blocker La(3+) , thus resembling the actions of the neurotrophin brain-derived neurotrophic factor (BDNF) in hippocampal pyramidal neurons. These results suggest that the antidepressant actions of St. John's wort are mediated by a mechanism similar to that engaged by BDNF.

  14. Overcomplete steerable pyramid filters and rotation invariance

    OpenAIRE

    1994-01-01

    A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called 'steering coefficients'). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson (1983) pyramid. We apply the generated steerable pyramid to orientation-invariant texture analysis in order to demonstrate its excellent rotat...

  15. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  16. Potassium currents in isolated CA1 neurons of the rat after kindling epileptogenesis.

    Science.gov (United States)

    Vreugdenhil, M; Wadman, W J

    1995-06-01

    Daily tetanic stimulation of the Schaffer collaterals generates an epileptogenic focus in area CA1 of the rat hippocampus, ultimately leading to generalized tonic-clonic convulsions (kindling). Potassium currents were measured under voltage-clamp conditions in pyramidal neurons, acutely dissociated from the focus of fully kindled rats, one day and six weeks after the last generalized seizure. Their amplitude, kinetics, voltage dependence and calcium dependence were compared with controls. With Ca2+ influx blocked by 0.5 mM Ni2+, the sustained current (delayed rectifier) and the transient current (A-current) were not different after kindling. Calcium influx evoked an additional fast transient current component. This transient calcium-dependent current component was increased by 154%, but only immediately after the seizure. A second, slow calcium-dependent potassium current component was dependent on the intracellular calcium level, set by the pipette as well as on calcium influx. The peak amplitude of this slow calcium-dependent current was under optimal calcium conditions not different after kindling, but we found indications that either calcium homeostasis or the calcium sensitivity of the potassium channels was affected by the kindling process. In contrast to the previously described enhancement of calcium current, kindling epileptogenesis did not change the total potassium current amplitude. The minor changes that were observed can be related either to changes in calcium current or to changes in intracellular calcium homeostasis.

  17. The different roles of cyclinD1-CDK4 in STP and mGluR-LTD during the postnatal development in mice hippocampus area CA1

    Directory of Open Access Journals (Sweden)

    Wang Huili

    2007-05-01

    Full Text Available Abstract Background Cell-cycle-related proteins, such as cyclins or cyclin-dependent kinases, may have functions beyond that of cell cycle regulation. The expression and translocation of cyclinD1-CDK4 in post-mitotic neurons indicate that they may have supplementary functions in differentiated neurons that might be associated with neuronal plasticity. Results In the present study, our findings showed that the expression of CDK4 was localized mostly in nuclei and cytoplasm of pyramidal cells of CA1 at postnatal day 10 (P10; whereas at P28 staining of CDK4 could be detected predominantly in the cytoplasm but not nuclei. Basal synaptic transmission was normal in the presence of CDK4 inhibitor. Short-term synaptic plasticity (STP was impaired in CDK4 inhibitor pre-treated slices both from neonatal (P8-15 and adolescent (P21-35 animals; however there was no significant change in paired-pulse facilitation (PPF in slices pre-incubated with the CDK4 inhibitor from adolescent animals. By the treatment of CDK4 inhibitor, the induction or the maintenance of Long-term potentiation (LTP in response to a strong tetanus and NMDA receptor-dependent long-term depression (LTD were normal in hippocampus. However, long-term depression (LTD induced either by group I metabotropic glutamate receptors (mGluRs agonist or by paired-pulse low-frequency stimulation (PP-LFS was impaired in CDK4 inhibitor pretreated slices both from neonatal and adolescent animals. But the effects of the CDK4 inhibitor at slices from adolescent animals were not as robust as at slices from neonatal animals. Conclusion Our results indicated that the activation of cyclinD1-CDK4 is required for short-term synaptic plasticity and mGluR-dependent LTD, and suggested that this cyclin-dependent kinase may have different roles during the postnatal development in mice hippocampus area CA1.

  18. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Nabi Shamsaei; Mehdi Khaksari; Sohaila Erfani; Hamid Rajabi; Nahid Aboutaleb

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral isch-emic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic ex-ercise signiifcantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  19. Hippocampal deletion of BDNF gene attenuates gamma oscillations in area CA1 by up-regulating 5-HT3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Huang

    Full Text Available BACKGROUND: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice. CONCLUSION/SIGNIFICANCE: These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.

  20. The effect of two lipophilic gamma-aminobutyric acid uptake blockers in CA1 of the rat hippocampal slice

    DEFF Research Database (Denmark)

    Rekling, J C; Jahnsen, H; Mosfeldt Laursen, A

    1990-01-01

    the blood. 2. We have investigated the effect of these two uptake inhibitors on the responses to exogenous GABA and on GABA-mediated inhibitory synaptic potentials in pyramidal neurones of the CA1 region in the rat hippocampal slice. 3. We found that both drugs increased the amplitude and duration...... of responses to exogenous GABA. Furthermore, the inhibitory synaptic potentials increased in amplitude. This increase was seen in both early and late phases of the synaptic potentials. We conclude that NO-05-0328 and NO-05-0329, at least in vitro, are more effective than older GABA uptake inhibitors...... such as nipecotic acid and they therefore deserve consideration for clinical use....

  1. Effects of ketamine and midazolam on morphology of dendritic spines in hippocampal CA1 region of neonatal mice

    Institute of Scientific and Technical Information of China (English)

    TAN Hong; REN Rong-rong; XIONG Zhi-qi; WANG Ying-wei

    2009-01-01

    Background It is a common phenomenon that children experience multiple general anesthesias in clinical practice, which raises the question whether repeated exposure to general anesthetics would interfere with the development of the central nervous system of children. The present study was designed to evaluate the effects of repeated treatment with ketamine or midazolam on postnatal dendrite development by examining the morphology of the dendritic spines of the pyramidal neurons in the hippocampal CA1 region in mice.Methods The transgenic green fluorescent protein-M line (GFP-M) mice were used in this study. Ketamine (100 mg/kg), midazolam (50 mg/kg) or saline (10 ml/kg) was administered intraperitoneally once a day on consecutive days from postnatal day 8 (P8) to postnatal day 12 (P12). At postnatal day 13 (P13) and postnatal day 30 (P30), the density and length of the apical dendritic spines of the pyramidal neurons in the hippocampal CA1 region were examined under a confocal microscope.Results At P13, for both the ketamine group and the midazolam group, the dendritic spines were found with a comparatively lower density and longer average length than in the control group. At P30, no significant difference in the density or average length of dendritic spines was found between the anesthetic group and control group.Conclusions This study indicated that repeated exposure to ketamine or midazolam in neonatal mice impaired dendritic spine maturation immediately afterwards, but this influence seemed to disappear during further postnatal development.

  2. Apolipoprotein E gene knock-out and high-fat diet on IP3 and IP3R-1 expression in neurons of mice hippocampal CA1 and CA3%载脂蛋白E基因敲除及高脂饮食小鼠海马CA1和CA3区神经元内IP3及IP3R-1表达的变化

    Institute of Scientific and Technical Information of China (English)

    周祎; 刘娟; 黄大可; 桂丽; 汪渊; 贾雪梅

    2011-01-01

    Objective To observe the change of IP3 and IP3R-1's expression in neurons of mice's hippocampal CA1 and CA3 , which had been treated by Apolipoprotein E gene knock-out( ApoE KO ) and high-fat diet. Methods 30 C57BL/6J mice were divided int0 3 groups: the control group ( C group ), ApoE KO group ( KO group ),ApoE KO high-fat diet group ( KO-HF group ). After mice model established, weight and plasma lipid of these mice were measured. The brain tissues of the mice were observed by HE staining, immunohistochemistry staining,and computer image analysis. Results The weight, total cholesterol, triglyceride . low-density lipoprotein cholesterol of the KO and KO-HF groups were all higher than those in the control group( P < 0. 05 ). The H-E staining showed that, in the KO and KO-HF groups, the pyramidal cell layers ranged sparse and cell body were relatively small. Compared with C group, The average optical density of IP3 and IP3R-1 in neurons of hippocampal CA1 and CA3 in the KO group reduced. The average optical density in the KO-HF group reduced obviously( P < 0. 05 ).Conclusion ApoE KO and high-fat diet can decrease the expression level of IP3 and IP3 R-1 in neurons of hippocampal CA1 and CA3. These two proteins ( IP3 and IP3R-1 ) might take participate in the pathologic process in Alzheimer disease which caused by the abnormal ApoE.%目的 观察载脂蛋白E(ApoE)基因敲除(KO)及高脂饮食小鼠海马CA1和CA3区神经元内三磷酸肌醇(IP3)和三磷酸肌醇受体-Ⅰ(IP3R-1)表达的变化.方法 将30只C57BL/6J小鼠分为对照组(C组)、ApoE KO组(KO组)、ApoE KO高脂饮食组(KO-HF组).小鼠造模成功后称重;取血检测血脂;取小鼠脑组织分别进行HE染色、免疫组织化学染色和计算机图像分析.结果 与C组比较,KO、KO-HF组体重、总胆固醇、甘油三酯及低密度脂蛋白胆固醇含量明显升高(P<0.05).HE染色观察到,KO和KO-HF组小鼠海马锥体细胞排列较

  3. Neutron diffraction studies on Ca1-BaZr4P6O24 solid solutions

    Indian Academy of Sciences (India)

    S N Achary; O D Jayakumar; S J Patwe; A B Shinde; P S R Krishna; S K Kulshreshtha; A K Tyagi

    2008-11-01

    Herein we report the results of detailed crystallographic studies of Ca1-BaZr4P6O24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from the systematic variation of unit cell parameters. The variation of unit cell parameters with the composition indicates decreasing trend in parameter with increasing Ba2+ concentration contrast to an increasing trend in parameter.

  4. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

    Science.gov (United States)

    Lu, Wei; Bushong, Eric A; Shih, Tiffany P; Ellisman, Mark H; Nicoll, Roger A

    2013-05-08

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.

  5. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function

    OpenAIRE

    2013-01-01

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional seg...

  6. Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task.

    Science.gov (United States)

    Larkin, Margaret Carr; Lykken, Christine; Tye, Lynne D; Wickelgren, Jeanette Graham; Frank, Loren M

    2014-07-01

    Animals display an innate preference for novelty, spending more time exploring both novel objects and familiar objects in novel locations. This increase in exploration is thought to allow the animal to gather the information necessary to encode new experiences. Despite extensive evidence that increased exploration following spatial change requires the hippocampus, the pattern of hippocampal activity that supports this behavior remains unknown. We examined activity in hippocampal output area CA1 and one synapse upstream in area CA3 while freely behaving rats performed an object-place recognition task. We found that the presence of novelty substantially altered activity in CA1, but not in CA3. During exploration of displaced familiar objects and novel objects in unexpected locations, CA1 place cells showed robust increases in firing rate. These firing rate increases persisted during sharp wave ripples, when place cell representations of previous experiences are replayed. Unexpectedly, increases in CA1 activity were not spatially restricted to regions of the environment that underwent change, indicating a generalized novelty signal. We suggest that hippocampal area CA1 broadcasts the presence of novelty, rather than signaling what is novel, and simultaneously becomes more plastic, allowing the integration of new information into previously stored memories.

  7. Parvalbumin disappears from GABAergic CA1 neurons of the gerbil hippocampus with seizure onset while its presence persists in the perforant path.

    Science.gov (United States)

    Scotti, A L; Kalt, G; Bollag, O; Nitsch, C

    1997-06-20

    Mongolian gerbils are epilepsy prone animals, a trait observable at the behavioural level during the 2nd month of life. As a unique species difference, gerbils express the calcium-binding protein parvalbumin (PV) in the perforant path from the entorhinal cortex to the hippocampus. In this study, we determined the time of appearance of PV in the layer II neurons of the entorhinal cortex and the perforant path terminals in gerbils between post-natal days 30 and 50. Signs of low grade seizures were observed in few animals from P40 onward. PV stain in the entorhinal cortex and perforant path terminals was already detectable at P30, well before the onset of behavioural seizures and did not change with age. It is suggested that the presence of PV in this pathway may be related to the generation early in life of an epileptogenic focus in the limbic forebrain. Altered inhibitory hippocampal circuits have also been suggested as a cause of seizures in the gerbil. Therefore, we quantitated hippocampal GABA-immunoreactive neurons and the PV-immunoreactive subpopulation. A group of gerbils with a high density of stained pyramidal interneurons in CA1 and one lacking PV-stained perikarya could be distinguished at P40 and P50. The density of GABA-immunoreactive nerve cells however, remained the same in both groups and through the ages studied. Thus, perikaryal PV is lost from intact GABAergic nerve cells at the same time as behavioural seizures are observed. The loss of PV from GABAergic neurons may affect their functional properties and be instrumental for the maintainance of behavioural seizures.

  8. Pyramid Lake Task Force : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Pyramid Lake Task Force was created to address Pyramid Lake’s recession and recommend possible solutions that would consider both the needs for preserving the...

  9. One Kind of Network Complexity Pyramid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Pyramid architecture can be widely found in nature and most social fields. For example, Zoltvai and Barabasi firstly proposed the life’s complexity pyramid in biology science, and it was found that the

  10. A Rebuttal of NTL Institute's Learning Pyramid

    Science.gov (United States)

    Letrud, Kare

    2012-01-01

    This article discusses the learning pyramid corroborated by National Training Laboratories Institute. It present and compliment historical and methodological critique against the learning pyramid, and call upon NTL Institute ought to retract their model.

  11. BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia.

    Science.gov (United States)

    Ferrer, I; Ballabriga, J; Martí, E; Pérez, E; Alberch, J; Arenas, E

    1998-04-01

    The neurotrophin family of growth factors, which includes Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT3) and Neurotrophin-4/5 (NT4/5) bind and activate specific tyrosine kinase (Trk) receptors to promote cell survival and growth of different cell populations. For these reasons, growing attention has been paid to the use of neurotrophins as therapeutic agents in neurodegeneration, and to the regulation of the expression of their specific receptors by the ligands. BDNF expression, as revealed by immunohistochemistry, is found in the pre-subiculum, CA1, CA3, and dentate gyrus of the hippocampus. Strong TrkB immunoreactivity is present in most CA3 neurons but only in scattered neurons of the CA1 area. Weak TrkB immunoreactivity is found in the granule cell layer of the dentate gyrus. Unilateral grafting of BDNF-transfected fibroblasts into the hippocampus resulted in a marked increase in the intensity of the immunoreaction and in the number of TrkB-immunoreactive neurons in the granule cell layer of the dentate gyrus, pre-subiculum and CA1 area in the vicinity of the graft. No similar effects were produced after the injection of control mock-transfected fibroblasts. Delayed cell death in the CA1 area was produced following 5 min of forebrain ischemia in the gerbil. The majority of living cells in the CA1 area at the fourth day were BDNF/TrkB immunoreactive. Unilateral grafting of control mock-transfected or BDNF fibroblasts two days before ischemia resulted in a moderate non-specific protection of TrkB-negative, but not TrkB-positive cells, in the CA1 area of the grafted side. This finding is in line with a vascular and glial reaction, as revealed, by immunohistochemistry using astroglial and microglial cell markers. This astroglial response was higher in the grafted side than in the contralateral side in ischemic gerbils, but no differences were seen between BDNF-producing and non-BDNF-producing grafts. However, grafting of

  12. Urban Public Health: Is There a Pyramid?

    OpenAIRE

    Meirong Su; Bin Chen; Zhifeng Yang; Yanpeng Cai; Jiao Wang

    2013-01-01

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) ar...

  13. A magic pyramid of supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Anastasiou, A.; Borsten, L.; Duff, M.J.; Hughes, L.J.; Nagy, S. [Theoretical Physics, Blackett Laboratory, Imperial College London,London SW7 2AZ (United Kingdom)

    2014-04-29

    By formulating N=1,2,4,8, D=3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in ℝ,ℂ,ℍ,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D=3 supergravities. This was subsequently tied in with the more familiar ℝ,ℂ,ℍ,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D=3,4,6,10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D=3 is the known 4×4 magic square, while the higher levels are comprised of a 3×3 square in D=4, a 2×2 square in D=6 and Type II supergravity at the apex in D=10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D=3,4,6. The missing entry in D=10 is suggestive of an exotic theory with G/H duality structure F{sub 4(4)}/Sp(3)×Sp(1)

  14. A magic pyramid of supergravities

    Science.gov (United States)

    Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S.

    2014-04-01

    By formulating = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in , it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of anexotic theory with G/ H duality structure F 4(4)/Sp(3) × Sp(1).

  15. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  16. NO regulates the strength of synaptic inputs onto hippocampal CA1 neurons via NO-GC1/cGMP signalling.

    Science.gov (United States)

    Neitz, A; Mergia, E; Neubacher, U; Koesling, D; Mittmann, T

    2015-06-01

    GABAergic interneurons are the predominant source of inhibition in the brain that coordinate the level of excitation and synchronization in neuronal circuitries. However, the underlying cellular mechanisms are still not fully understood. Here we report nitric oxide (NO)/NO-GC1 signalling as an important regulatory mechanism of GABAergic and glutamatergic synaptic transmission in the hippocampal CA1 region. Deletion of the NO receptor NO-GC1 induced functional alterations, indicated by a strong reduction of spontaneous and evoked inhibitory postsynaptic currents (IPSCs), which could be compensated by application of the missing second messenger cGMP. Moreover, we found a general impairment in the strength of inhibitory and excitatory synaptic inputs onto CA1 pyramidal neurons deriving from NO-GC1KO mice. Finally, we disclosed one subpopulation of GABAergic interneurons, fast-spiking interneurons, that receive less excitatory synaptic input and consequently respond with less spike output after blockage of the NO/cGMP signalling pathway. On the basis of these and previous findings, we propose NO-GC1 as the major NO receptor which transduces the NO signal into cGMP at presynaptic terminals of different neuronal subtypes in the hippocampal CA1 region. Furthermore, we suggest NO-GC1-mediated cGMP signalling as a mechanism which regulates the strength of synaptic transmission, hence being important in gating information processing between hippocampal CA3 and CA1 region.

  17. The Chinese Pyramids and the Sun

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    The Chinese Pyramids are huge ancient burial mounds. In the satellite images we can see some complexes where the main buildings are the pyramidal mounds of an emperor and his empress. Here we discuss a possible sunrise/sunset orientation of these two pyramids on the solstices and equinoxes.

  18. Three Types of Network Complexity Pyramid

    Institute of Scientific and Technical Information of China (English)

    FANG; Jin-qing; LI; Yong; LIU; Qiang

    2012-01-01

    <正>Exploring the complexity and diversity of complex networks have been very challenging issues in network science and engineering. Among them exploring the network complexity pyramids (NCP) are one of important expressions in network complexity. So far as we have proposed the three types of the network complexity pyramid (NCP). The first type of NCP is the network model complexity pyramid with

  19. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus.

    Science.gov (United States)

    Hattiangady, Bharathi; Rao, Muddanna S; Shetty, Geetha A; Shetty, Ashok K

    2005-10-01

    The hippocampus is very susceptible to aging. Severely diminished dentate neurogenesis at middle age is one of the most conspicuous early changes in the aging hippocampus, which is likely linked to an early decline in the concentration of neurotrophic factors and signaling proteins that influence neurogenesis. We analyzed three proteins that are well-known to promote dentate neurogenesis and learning and memory function in the dentate gyrus and the hippocampal CA1 and CA3 subfields of young, middle-aged and aged F344 rats. These include the brain-derived neurotrophic factor (BDNF), the transcription factor phosphorylated cyclic AMP response element binding protein (p-CREB) and the neuropeptide neuropeptide Y (NPY). The BDNF was analyzed via ELISA and BDNF immunohistochemistry, the p-CREB through densitometric analysis of p-CREB immunopositive cells, and the NPY via stereological counting of NPY-immunopositive interneurons. We provide new evidence that the BDNF concentration, the p-CREB immunoreactivity and the number of NPY immunopositive interneurons decline considerably by middle age in both dentate gyrus and CA1 and CA3 subfields of the hippocampus. However, both BDNF concentration and NPY immunopositive interneuron numbers exhibit no significant decrease between middle age and old age. In contrast, the p-CREB immunoreactivity diminishes further during this period, which is also associated with reduced BDNF immunoreaction within the soma of dentate granule cells and hippocampal pyramidal neurons. Collectively, these results suggest that severely dampened dentate neurogenesis observed at middle age is linked at least partially to reduced concentrations of BDNF, p-CREB and NPY, as each of these proteins is a positive regulator of dentate neurogenesis. Dramatically diminished CREB phosphorylation (and persistently reduced levels of BDNF and NPY) at old age may underlie the learning and memory impairments observed during senescence.

  20. Phase transition in a tetragonal In sub 9 sub 0 Pb sub 1 sub 0 alloy under high pressure: a switch from c/a > 1 to c/a < 1

    CERN Document Server

    Degtyareva, V F; Porsch, F; Novokhatskaya, N I

    2003-01-01

    The effect of pressure on tetragonal In-Pb alloys with 10, 15, and 22 at.% Pb has been studied up to pressure 30 GPa with diamond anvil cells using synchrotron radiation. The In-type face-centred tetragonal phase of the In alloy with 10 at.% Pb undergoes under pressure a phase transition with a discontinuous jump of the axial ratio from c/a > 1 to c/a < 1 via a two-phase region from 7 to 20 GPa. The tetragonal phases of the In alloys with 15 and 22 at.% Pb with c/a < 1 at ambient pressure show only a slight decrease in c/a with pressure increase. The correlation of the axial ratio with the alloy content and its change with pressure in In alloys and In itself are attributed to Brillouin-zone-Fermi-sphere interactions.

  1. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses.

    Directory of Open Access Journals (Sweden)

    Rolando Berlinguer-Palmini

    Full Text Available Limited information is available on the brain expression and role of GPR35, a Gi/o coupled receptor activated by kynurenic acid (KYNA. In mouse cultured astrocytes, we detected GPR35 transcript using RT-PCR and we found that KYNA (0.1 to 100 µM decreased forskolin (FRSK-induced cAMP production (p<0.05. Both CID2745687 (3 µM, CID, a recently described GPR35 antagonist, and GPR35 gene silencing significantly prevented the action of KYNA on FRSK-induced cAMP production. In these cultures, we then evaluated whether GPR35 activation was able to modulate intracellular Ca(2+ concentration ([Ca(2+]i and [Ca(2+]i fluxes. We found that both KYNA and zaprinast, a phosphodiesterase (PDE inhibitor and GPR35 agonist, did not modify either basal or peaks of [Ca(2+]i induced by challenging the cells with ATP (30 µM. However, the [Ca(2+]i plateau phase following peak was significantly attenuated by these compounds in a store-operated Ca(2+ channel (SOC-independent manner. The activation of GPR35 by KYNA and zaprinast was also studied at the CA3-CA1 synapse in the rat hippocampus. Evoked excitatory post synaptic currents (eEPSCs were recorded from CA1 pyramidal neurons in acute brain slices. The action of KYNA on GPR35 was pharmacologically isolated by using NMDA and α7 nicotinic receptor blockers and resulted in a significant reduction of eEPSC amplitude. This effect was prevented in the presence of CID. Moreover, zaprinast reduced eEPSC amplitude in a PDE5- and cGMP-independent mechanism, thus suggesting that glutamatergic transmission in this area is modulated by GPR35. In conclusion, GPR35 is expressed in cultured astrocytes and its activation modulates cAMP production and [Ca(2+]i. GPR35 activation may contribute to KYNA effects on the previously reported decrease of brain extracellular glutamate levels and reduction of excitatory transmission.

  2. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons.

    Science.gov (United States)

    Leão, Richardson N; Mikulovic, Sanja; Leão, Katarina E; Munguba, Hermany; Gezelius, Henrik; Enjin, Anders; Patra, Kalicharan; Eriksson, Anders; Loew, Leslie M; Tort, Adriano B L; Kullander, Klas

    2012-11-01

    The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.

  3. Occurrence of complement protein C3 in dying pyramidal neurons in rat hippocampus after systemic administration of kainic acid.

    Science.gov (United States)

    Morita, Hiroyuki; Suzuki, Katsuaki; Mori, Norio; Yasuhara, Osamu

    2006-11-27

    To evaluate the roles of complement in kainic acid (KA)-induced neuronal damages, the immunohistochemical localization of the complement protein C3 was examined in rat hippocampus after systemic KA injection. The immunoreactivity for C3 was found in glial cells in control rats, and such glial cells were increased in number after KA injection. Our confocal study showed that C3-positive glial cells were microglia. Three to seven days after KA, C3 immunoreactivity appeared in CA1 and CA3 pyramidal neurons. Double staining for C3 combined with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling showed that occurrence of C3 immunoreactivity in neurons coincided well with that of DNA fragmentation. Western blot analysis and RT-PCR experiments suggested local synthesis of C3 by brain cells. Our results suggest that C3 contributes greatly to neuronal death after systemic KA administration, and that microglia and neurons are the local source of C3 in KA-induced brain injury.

  4. Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro.

    Science.gov (United States)

    Lacaille, J C

    1991-11-01

    1. Because interneurons of stratum pyramidale partly mediate the feed-forward inhibition of pyramidal cells, intracellular postsynaptic potentials (PSPs) evoked by activation of afferent fibers were examined in 32 nonpyramidal cells of stratum pyramidale of the CA1 region of rat hippocampal slices. 2. Electrical stimulation of stratum radiatum at the CA1-CA3 border elicited, in interneurons, PSPs that were composed of four components: a fast excitatory postsynaptic potential (EPSP), an early inhibitory postsynaptic potential (IPSPA), a late IPSPB, and in some cells a delayed, slower EPSP. These synaptic potentials summated and elicited single action potentials in 57% of cells (17/30) and burst of action potentials (2-10) in the remaining 43%. 3. The fast EPSP was observed in all cells, and the mean stimulation intensity at its threshold was 53.4 microA. Its amplitude increased with membrane hyperpolarization, and it was associated with a 45.4% decrease in cellular input resistance. The fast EPSP always elicited an action potential at short latencies (3.6-6.4 ms poststimulation). It was reversibly reduced by 6-cyano-7-nitroquinoxaline-2,3- dione (CNQX), a blocker of non-N-methyl-D-aspartate (non-NMDA) excitatory amino acid receptors. 4. The IPSPA was observed in 28/32 cells, and the mean intensity of stimulation was 57.6 microA at its threshold. The mean latency of its peak amplitude was 17.4 ms. The mean equilibrium potential (Erev) was -72.8 mV, and it was associated with a 38.9% decrease in cellular input resistance. IPSPA was blocked by the GABAA antagonist bicuculline. 5. The IPSPB was seen in 29/32 cells, and the mean intensity of stimulation at its threshold was 80.3 microA. Its latency to peak was 130.6 ms, its Erev was -107.6 mV, and it was associated with a small (7.6%) decrease in cellular input resistance. IPSPB was blocked by the GABAB antagonist phaclofen. 6. In 11/32 cells a slower EPSP was also observed. Its mean latency to peak was 53.3 ms, and the

  5. Inverted Pyramid of Care.

    Science.gov (United States)

    Sonek, Jiri D; Kagan, Karl Oliver; Nicolaides, Kypros H

    2016-06-01

    First-trimester pregnancy evaluation using fetal and maternal parameters not only allows for diagnoses to be made early in gestation but can also assess the risk of complications that become clinically evident later in pregnancy. This evaluation makes it possible for pregnancy care to be individualized. In select cases, treatment that reduces the risk of complications can be started early in pregnancy. Even though cell free DNA is a significant advance in diagnosing fetal aneuploidy, the combination of first-trimester ultrasound and maternal serum biochemistries casts a much wider diagnostic net; therefore, the 2 technologies are best used in combination.

  6. A magic pyramid of supergravities

    CERN Document Server

    Anastasiou, A; Duff, M J; Hughes, L J; Nagy, S

    2013-01-01

    By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also c...

  7. Loss of calbindin-immunoreactivity in CA1 hippocampal stratum radiatum and stratum lacunosum-moleculare interneurons in the aged rat.

    Science.gov (United States)

    Potier, B; Krzywkowski, P; Lamour, Y; Dutar, P

    1994-10-24

    Alterations in hippocampal circuitry may underly age-related learning and memory impairment. We showed in a previous study that the GABAB-mediated slow inhibitory postsynaptic potential (IPSP) induced in CA1 pyramidal neurons by electrical stimulation of stratum radiatum, is depressed in the hippocampus of the aged rat. This could be due to alterations in GABAergic interneuron functions. We report in this study that the number of hippocampal calbindin-immunoreactive (CaBP-IR) GABAergic interneurons is decreased in the aged rat. The mean number of CaBP-IR interneurons per slice decreases by 50% in the aged rat. The most severe loss was observed in the stratum radiatum of CA1 (78%), with a less consistent loss of immunoreactivity in CA3 (35%). In contrast, the mean number of interneurons containing parvalbumin (PV), was not significantly decreased in the aged rat. Our results show a loss of CaBP immunoreactivity in a population of GABAergic interneurons, which might be related to an altered function of these interneurons and consequently of GABAergic synaptic transmission in the aged rat. In contrast, PV immunoreactivity in interneurons located close to the pyramidal layer does not decrease in the hippocampus of the aged rat.

  8. Dendritic GIRK channels gate the integration window, plateau potentials and induction of synaptic plasticity in dorsal but not ventral CA1 neurons.

    Science.gov (United States)

    Malik, Ruchi; Johnston, Daniel

    2017-03-09

    Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G protein-coupled inward-rectifying potassium channel (GIRK) mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation.SIGNIFICANCE STATEMENTThe dorsal and ventral parts of the hippocampus encode spatial information at very different scales. While the place specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for long-term potentiation (LTP) and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By

  9. Space and time sequence and mosaicism of neurogenesis in hippocampal area CA1 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nazarevskaya, G.D.; Reznikov, K. Yu.

    1986-02-01

    The study of the times and sequence of neuron formation in various structures of the mammalian brain has made substantial progress thanks to the use of autoradiographic techniques, by which the germinative precursors of neurons can be tagged with tritium-thymidine and the subsequent fate of the labeled cells can be followed. The authors study the space and time sequence of neuron formation and look for the presence of mosaicism of neurogenesis in area CA1 of Ammon's horn of the mouse hippocampus, one of the most regularly arranged hippocampal areas. An analysis of the distribution of intensively labeled neurons in areas CA1 showed the presence of groups of intensively labeled neurons alternating with unlabeled and weakly labeled cells.. Mice receiving tritium-thymidine on the 13th-16th day of embryogenesis were most marked when the isotope was injected on the 14th-15th day of embroygeneisis. The investigation showed that a mosaic pattern of neurogenesis exists in the hippocampus, just as in the neocortex, and it can be regarded as the result of asynchronous production of neurons by local areas of the germinative zone, each of which constructs a radial segment of cortex.

  10. Local-moment formation and metal–nonmetal transition in Ca1-YVO3 and Ca1-YTiO3

    Indian Academy of Sciences (India)

    Y Nishihara; H Kawanaka; H Bando

    2002-05-01

    Electron-doped metallic states of Ca1-YVO3 and Ca1-YTiO3 change into nonmetallic states around ∼ 0.4 and 0.6, respectively. The residual resistivity in the metallic states increases with increasing effective magnetic moment or coefficient of 2 term of resistivity. The effective moment reaches ∼ 0.5 B/molecule in Ca1-YVO3 and also in Ca1-YTiO3 near the metal–nonmetal phase boundary. In these metallic states, ∼ 10% of 3 atoms seem to have large localized magnetic moments. In electron-doped metallic sample of Ca1-YVO3, the temperature dependence of resistance shows no resistance-minimum. However, weak negative magneto-resistance is observed for the sample with = 0.2 up to 50 Tesla at 4.2 K.

  11. Reverse stochastic resonance in a hippocampal CA1 neuron model.

    Science.gov (United States)

    Durand, Dominique M; Kawaguchi, Minato; Mino, Hiroyuki

    2013-01-01

    Stochastic resonance (SR) is a ubiquitous and counter- intuitive phenomenon whereby the addition of noise to a non-linear system can improve the detection of sub-threshold signals. The "signal" is normally periodic or deterministic whereas the "noise" is normally stochastic. However, in neural systems, signals are often stochastic. Moreover, periodic signals are applied near neurons to control neural excitability (i.e. deep brain stimulation). We therefore tested the hypothesis that a quasi-periodic signal applied to a neural network could enhance the detection of a stochastic neural signal (reverse stochastic resonance). Using computational methods, a CA1 hippocampal neuron was simulated and a Poisson distributed subthreshold synaptic input ("signal") was applied to the synaptic terminals. A periodic or quasi periodic pulse train at various frequencies ("noise") was applied to an extracellular electrode located near the neuron. The mutual information and information transfer rate between the output and input of the neuron were calculated. The results display the signature of stochastic resonance with information transfer reaching a maximum value for increasing power (or frequency) of the "noise". This result shows that periodic signals applied extracellularly can improve the detection of subthreshold stochastic neural signals. The optimum frequency (110 Hz) is similar to that used in patients with Parkinson's suggesting that this phenomenon could play a role in the therapeutic effect of high frequency stimulation.

  12. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.

    Science.gov (United States)

    Nissen, Wiebke; Szabo, Andras; Somogyi, Jozsef; Somogyi, Peter; Lamsa, Karri P

    2010-01-27

    Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

  13. Increased vulnerability of hippocampal CA1 neurons to hypoperfusion in ataxia and male sterility (AMS) mouse.

    Science.gov (United States)

    Liang, Xueyun; Nagai, Atsushi; Sheikh, Abdullah Md; Wang, Hui; Mitaki, Shingo; Araki, Asuka; Maruyama, Riruke; Harada, Takayuki

    2013-02-04

    The nna1 gene mutation is associated with spontaneous degeneration of cerebellar Purkinje cells and germ cells in Ataxia and Male Sterility (AMS) mouse. Since nna1 is also expressed in hippocampal neurons, we investigated their vulnerability to hypoperfusion in AMS mouse. Eight-week-old male wild type (WT) and AMS mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 10 min and sacrificed 1, 3, 7 and 28 days after BCCAO. Nissl staining revealed the neuronal cell loss and pyknotic change in the CA1 of AMS mice. TUNEL(+) apoptotic cells were found in the area at 7 days in AMS mice. Bcl-2 mRNA and protein in WT hippocampus were increased, while they were not increased in AMS. Bax mRNA was increased in AMS. Moreover, Bax activation was immunohistochemically demonstrated only in AMS at 3 and 7 days after BCCAO. An oxidative DNA damage marker, 8-hydroxydeoxyguanosine-positive cells were increased in both strains at 1 day; decreased in WT at 3 days but remained high in AMS. BCCAO increased glutathione, an antioxidant, in WT, but not in AMS at 3 days. The mRNA level of mitochondrial uncoupling protein 2, a regulator of oxidative stress, was increased only in WT at 1 day. Nna1 mRNA was similarly expressed in WT and AMS, but the protein was undetectable in AMS. Thus, our results indicate the increased vulnerability of hippocampal CA1 neurons of AMS mice to cerebral hypoperfusion could be due to an imbalance between oxidative stress and antioxidative defense system.

  14. The pyramids of Greece: Ancient meridian observatories?

    Science.gov (United States)

    Theodossiou, Efstratios; Manimanis, Vassilios N.; Dimitrijević, Milan S.; Katsiotis, Marco

    Pyramids, "Dragon Houses" ("Drakospita") and megalithic structures in general create always a special interest. We postulate that, as happens with the Drakospita of Euboea, the pyramid-like structures of Argolis (Eastern Peloponnese) were constructed by the Dryops. It is known that, in addition to Euboea and some Cyclades islands, this prehellenic people had also settled in Argolis, where they founded the city of Asine. We also propose that the pyramids of Argolis and in particular the pyramid of Hellinikon village were very likely, besides being a burial monument or guard house, might be served also for astronomical observations.

  15. Urban public health: is there a pyramid?

    Science.gov (United States)

    Su, Meirong; Chen, Bin; Yang, Zhifeng; Cai, Yanpeng; Wang, Jiao

    2013-01-28

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000-2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  16. Urban Public Health: Is There a Pyramid?

    Directory of Open Access Journals (Sweden)

    Meirong Su

    2013-01-01

    Full Text Available Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH. Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000–2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  17. DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia in the rat.

    Science.gov (United States)

    Petito, C K; Torres-Munoz, J; Roberts, B; Olarte, J P; Nowak, T S; Pulsinelli, W A

    1997-09-01

    Apoptosis is an active, gene-directed process of cell death in which early fragmentation of nuclear DNA precedes morphological changes in the nucleus and, later, in the cytoplasm. In ischemia, biochemical studies have detected oligonucleosomes of apoptosis whereas sequential morphological studies show changes consistent with necrosis rather than apoptosis. To resolve this apparent discrepancy, we subjected rats to 10 minutes of transient forebrain ischemia followed by 1 to 14 days of reperfusion. Parameters evaluated in the CA1 region of the hippocampus included morphology, in situ end labeling (ISEL) of fragmented DNA, and expression of p53. Neurons were indistinguishable from controls at postischemic day 1 but displayed cytoplasmic basophilia or focal condensations at day 2; some neurons were slightly swollen and a few appeared normal. In situ end labeling was absent. At days 3 and 5, approximately 40 to 60% of CA1 neurons had shrunken eosinophilic cytoplasm and pyknotic nuclei, but only half of these were ISEL. By day 14, many of the necrotic neurons had been removed by phagocytes; those remaining retained mild ISEL. Neither p53 protein nor mRNA were identified in control or postischemic brain by in situ hybridization with riboprobes or by northern blot analysis. These results show that DNA fragmentation occurs after the development of delayed neuronal death in CA1 neurons subjected to 10 minutes of global ischemia. They suggest that mechanisms other than apoptosis may mediate the irreversible changes in the CA1 neurons in this model.

  18. Proteasome alteration and delayed neuronal death in hippocampal CA1 and dentate gyrus regions following transient cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Pengfei Ge; Tianfei Luo; Jizhou Zhang; Haifeng Wang; Wenchen Li; Yongxin Luan; Feng Ling; Yi'nan Luo

    2009-01-01

    BACKGROUND:Proteasome dysfunction has been reported to induce abnormal protein aggregation and cell death.OBJECTIVE:To investigate the effect of proteasome changes on delayed neuronal death in CA1 and dentate gyrus (DG) regions of the rat hippocampus following transient cerebral ischemia.DESIGN,TIME AND SETTING:A randomized,controlled animal experiment.The study was performed at the Department of Biochemistry and Molecular Biology,Norman Bethune Medical College of Jilin University,from September 2006 to May 2008.MATERIALS:Rabbit anti-19S S10B polyclonal antibody was purchased from Bioreagents,USA;propidium iodide and fluorescently-labeled goat anti-rabbit IgG were purchased from Jackson Immunoresearch,USA;hematoxylin and eosin staining solution was purchased from Sigma,USA;LSM 510 confocal microscope was purchased from Zeiss,Germany.METHODS:A total of 40 healthy Wistar rats,male,4 months old,were randomly divided into sham surgery group (n=8) and model group (n=32).Ischemic models were established in the model group by transient clamping of the bilateral carotid arteries and decreased blood pressure.After 20 minutes of global ischemia,the clamp was removed to allow blood flow for 30 minutes,4,24,and 72 hours,respectively,with 8 rats at each time point.The bilateral carotid arteries were not ligated in the sham surgery group.MAIN OUTCOME MEASURES:Neuronal death in the CA1 and DG regions was observed by hematoxylin-eosin staining.Proteasome expression in CA1 and DG region neurons was detected by immunohistochemistry.RESULTS:Hematoxylin-eosin staining showed neuronal death in the CA1 region alone at 72 hours of reperfusion following ischemia.In comparison to the sham surgery group,a significant decrease in proteasome expression was observed,by immunohistochemistry,in the CA1 and DG regions in the model group,following 30 minutes,4,24,and 72 hours of reperfusion (P<0.01).After 72 hours of reperfusion following ischemia,proteasome expression had almost completely

  19. Age- and location-dependent differences in store depletion-induced h-channel plasticity in hippocampal pyramidal neurons.

    Science.gov (United States)

    Clemens, Ann M; Johnston, Daniel

    2014-03-01

    Disruptions of endoplasmic reticulum (ER) Ca(2+) homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca(2+) stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific (h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca(2+)-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca(2+) channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.

  20. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C

    2012-04-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.

  1. Adenosine A(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice.

    Science.gov (United States)

    Fontinha, Bruno M; Delgado-García, José M; Madroñal, Noelia; Ribeiro, Joaquim A; Sebastião, Ana M; Gruart, Agnès

    2009-06-01

    Previous in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation (LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A(2A) receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A(2A) receptor antagonist, SCH58261, upon a well-known associative learning paradigm-classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus (US). A single electrical pulse was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS-US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.) -injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261-injected mice. In conclusion, the endogenous activation of adenosine A(2A) receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.

  2. Active browsing using similarity pyramids

    Science.gov (United States)

    Chen, Jau-Yuen; Bouman, Charles A.; Dalton, John C.

    1998-12-01

    In this paper, we describe a new approach to managing large image databases, which we call active browsing. Active browsing integrates relevance feedback into the browsing environment, so that users can modify the database's organization to suit the desired task. Our method is based on a similarity pyramid data structure, which hierarchically organizes the database, so that it can be efficiently browsed. At coarse levels, the similarity pyramid allows users to view the database as large clusters of similar images. Alternatively, users can 'zoom into' finer levels to view individual images. We discuss relevance feedback for the browsing process, and argue that it is fundamentally different from relevance feedback for more traditional search-by-query tasks. We propose two fundamental operations for active browsing: pruning and reorganization. Both of these operations depend on a user-defined relevance set, which represents the image or set of images desired by the user. We present statistical methods for accurately pruning the database, and we propose a new 'worm hole' distance metric for reorganizing the database, so that members of the relevance set are grouped together.

  3. Delayed cell death in the contralateral hippocampus following kainate injection into the CA3 subfield.

    Science.gov (United States)

    Maglóczky, Z; Freund, T F

    1995-06-01

    A model of epileptic cell death has been developed employing unilateral injections of kainic acid, a glutamate agonist, into the CA3 subfield of the hippocampus. The contralateral hippocampus, where neuronal damage is induced by hyperactivity in afferent pathways, served as the model structure. The pattern of cell death in this model was shown earlier to correspond to the vulnerable regions in human temporal lobe epilepsy. In the present time-course study we demonstrated that the different subpopulations of vulnerable cells in the contralateral hippocampus of the rat degenerate at different times following kainate injection. Spiny calretinin-containing cells in the hilus and CA3 stratum lucidum disappear at 12-24 h, other types of hilar neurons and CA3c pyramidal cells show shrinkage and argyrophilia at two days, whereas CA1 pyramidal cells degenerate at three days postinjection. The majority of cells destined to die showed a transient expression of the heatshock protein 72, approximately one day (for hilar-CA3c) or two days (for CA1) before degeneration. Parvalbumin-immunoreactivity transiently disappeared from the soma and dendrites of interneurons between the first and the fourth day. The results suggest that seizure-induced cell death is delayed, therefore acute oedema, even if it occurs, is insufficient to kill neurons. The only exception is the population of calretinin-containing interneurons degenerating at 12-24 h. The further one day delay between hilar-CA3c and CA1 cell death is likely to be due to differences in the relative density of glutamate receptor types (kainate versus NMDA) and the source of afferent input of these subfields. Thus, simple pharmacotherapy targeting only one of the excitotoxic mechanisms (i.e. acute oedema of calretinin cells versus delayed death of hilar-CA3c and CA1 cells at different time points) is likely to fail.

  4. Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus.

    Science.gov (United States)

    Mercer, Audrey; Eastlake, Karen; Trigg, Hayley L; Thomson, Alex M

    2012-01-01

    There is a growing recognition that the CA2 region of the hippocampus has its own distinctive properties, inputs, and pathologies. The dendritic and axonal patterns of some interneurons in this region are also strikingly different from those described previously in CA1 and CA3. The local circuitry in this region, however, had yet to be studied in detail. Accordingly, using dual intracellular recordings and biocytin-filling, excitatory and inhibitory connections involving CA2 parvalbumin-positive basket cells were characterized for the first time. CA2 basket cells targeted neighboring pyramidal cells and received excitatory inputs from them. CA2 basket cells that resembled those in CA1 with a fast spiking behavior and dendritic tree confined to the region of origin received depressing excitatory postsynaptic potentials (EPSPs). In contrast, unlike CA1 basket cells but like CA1 Oriens-Lacunosum Moleculare (OLM) cells, the majority of CA2 basket cells had horizontally oriented dendrites in Stratum Oriens (SO), which extended into all three CA subfields, had an adapting firing pattern, presented a "sag" in their voltage responses to hyperpolarizing current injection, and received facilitating EPSPs. The expression of I(h) did not influence the EPSP time courses and paired pulse ratios (PPR). Estimates of the probability of release (p) for the depressing and facilitating EPSPs were correlated with the PPR. Connections with low probabilities of release had higher PPR. Quantal amplitude (q) for the facilitating connections was larger than q at depressing inputs onto fast spiking basket cells.

  5. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder

    Science.gov (United States)

    Arion, Dominique; Corradi, John P.; Tang, Shaowu; Datta, Dibyadeep; Boothe, Franklyn; He, Aiqing; Cacace, Angela M.; Zaczek, Robert; Albright, Charles F.; Tseng, George; Lewis, David A.

    2014-01-01

    Schizophrenia is associated with alterations in working memory that reflect dysfunction of dorsolateral prefrontal cortex (DLPFC) circuitry. Working memory depends on the activity of excitatory pyramidal cells in DLPFC layer 3, and to a lesser extent in layer 5. Although many studies have profiled gene expression in DLPFC gray matter in schizophrenia, little is known about cell type-specific transcript expression in these two populations of pyramidal cells. We hypothesized that interrogating gene expression specifically in DLPFC layer 3 or 5 pyramidal cells would reveal new and/or more robust schizophrenia-associated differences that would provide new insights into the nature of pyramidal cell dysfunction in the illness. We also sought to determine the impact of other variables, such as a diagnosis of schizoaffective disorder or medication use at time of death, on the patterns of gene expression in pyramidal neurons. Individual pyramidal cells in DLPFC layers 3 or 5 were captured by laser microdissection from 36 subjects with schizophrenia or schizoaffective disorder and matched normal comparison subjects. The mRNA from cell collections was subjected to transcriptome profiling by microarray followed by qPCR validation. Expression of genes involved in mitochondrial (MT) or ubiquitin-proteasome system (UPS) functions were markedly down-regulated in the patient group (p values for MT-related and UPS-related pathways were <10−7 and <10−5 respectively). MT-related gene alterations were more prominent in layer 3 pyramidal cells, whereas UPS-related gene alterations were more prominent in layer 5 pyramidal cells. Many of these alterations were not present, or found to a lesser degree, in samples of DLPFC gray matter from the same subjects, suggesting that they are pyramidal cell-specific. Furthermore, these findings principally reflected alterations in the schizophrenia subjects, were not present or present to a lesser degree in the schizoaffective disorder subjects

  6. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...... found in many optimal solutions to CVRP instances. An optimal solution to the PCVRP may therefore be useful in itself as a heuristic solution to the CVRP. Further, an attempt can be made to find an even better CVRP solution by solving a TSP, possibly leading to a non-pyramidal route, for each...... of the routes in the PCVRP solution. This paper develops an exact branch-and-cut-and-price (BCP) algorithm for the PCVRP. At the pricing stage, elementary routes can be computed in pseudo-polynomial time in the PCVRP, unlike in the CVRP. We have therefore implemented pricing algorithms that generate only...

  7. Altered network timing in the CA3-CA1 circuit of hippocampal slices from aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel J Kanak

    Full Text Available Network patterns are believed to provide unique temporal contexts for coordinating neuronal activity within and across different regions of the brain. Some of the characteristics of network patterns modeled in vitro are altered in the CA3 or CA1 subregions of hippocampal slices from aged mice. CA3-CA1 network interactions have not been examined previously. We used slices from aged and adult mice to model spontaneous sharp wave ripples and carbachol-induced gamma oscillations, and compared measures of CA3-CA1 network timing between age groups. Coherent sharp wave ripples and gamma oscillations were evident in the CA3-CA1 circuit in both age groups, but the relative timing of activity in CA1 stratum pyramidale was delayed in the aged. In another sample of aged slices, evoked Schaffer collateral responses were attenuated in CA3 (antidromic spike amplitude and CA1 (orthodromic field EPSP slope. However, the amplitude and timing of spontaneous sharp waves recorded in CA1 stratum radiatum were similar to adults. In both age groups unit activity recorded juxtacellularly from unidentified neurons in CA1 stratum pyramidale and stratum oriens was temporally modulated by CA3 ripples. However, aged neurons exhibited reduced spike probability during the early cycles of the CA3 ripple oscillation. These findings suggest that aging disrupts the coordination of patterned activity in the CA3-CA1 circuit.

  8. Entorhinal cortical innervation of parvalbumin-containing neurons (Basket and Chandelier cells) in the rat Ammon's horn.

    Science.gov (United States)

    Kiss, J; Buzsaki, G; Morrow, J S; Glantz, S B; Leranth, C

    1996-01-01

    Physiological data suggest that in the CA1-CA3 hippocampal areas of rats, entorhinal cortical efferents directly influence the activity of interneurons, in addition to pyramidal cells. To verify this hypothesis, the following experiments were performed: 1) light microscopic double-immunostaining for parvalbumin and the anterograde tracer Phaseolus vulgaris-leucoagglutinin injected into the entorhinal cortex; 2) light and electron microscopic analysis of cleaved spectrin-immunostained (i.e., degenerating axons and boutons) hippocampal sections following entorhinal cortex lesion; and 3) an electron microscopic study of parvalbumin-immunostained hippocampal sections after entorhinal cortex lesion. The results demonstrate that in the stratum lacunosum-moleculare of the CA1 and CA3 regions, entorhinal cortical axons form asymmetric synaptic contacts on parvalbumin-containing dendritic shafts. In the stratum lacunosum-moleculare, parvalbumin-immunoreactive dendrites represent processes of GABAergic, inhibitory basket and chandelier cells; these interneurons innervate the perisomatic area and axon initial segments of pyramidal cells, respectively. A feed-forward activation of these neurons by the entorhinal input may explain the strong, short-latency inhibition of pyramidal cells.

  9. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Directory of Open Access Journals (Sweden)

    Chen Tao

    2009-12-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i regular spiking (RS cells (24.7%, intrinsic bursting (IB cells (30.9%, and intermediate (IM cells (44.4%. In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5% and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.

  10. Reactive changes in astrocytes, and delayed neuronal death, in the rat hippocampal CA1 region following cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Guiqing Zhang; Xiang Luo; Zhiyuan Yu; Chao Ma; Shabei Xu; Wei Wang

    2009-01-01

    /reperfusion, astrocytes with abnormal morphology were detected in the rat hippocampal CA1 region in the delayed neuronal death (+) subgroup. No significant difference in GFAP expression was found in the rat hippocampal CA1 region at the ischemic hemisphere in the sham operation group, delayed neuronal death (+) subgroup and delayed neuronal death (-) subgroup (P > 0.05). After 7 days of ischemia/reperfusion, many GFAP-positive cells, which possessed a large cell body and an increased number of processes, were activated in the rat hippocampal CA1 region at the ischemic hemisphere. GFAP expression in the hippocampal CA1 region was greater in the delayed neuronal death (+) subgroup and delayed neuronal death (-) subgroup compared with the sham operation group (P 0.05). CONCLUSION: The activation of astrocytes was poor in the hippocampal CA1 region during the early stages of ischemia, which is an important reason for delayed neuronal death. Glial scar formation aggravated delayed neuronal death during the advanced ischemic stage.

  11. 海马电刺激对耐药性颞叶癫痫大鼠CA1区神经元钠通道电流的影响%Effect of hippocampal electrical stimulation on the sodium channel current in CA1 region neurons in rats with pharmacoresistant temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    伍国锋; 洪震; 高宾丽; 周凤

    2013-01-01

    group) and a pharmacoresistant control group (PR group).A low-frequency hippocampal stimulation was performed in the HS group,while the PR group received sham stimulation.The whole-cell recording technique by patch-clamp was used to observe the changes of sodium current of hippocampal pyramidal neurons after the hippocampal stimulation.Results Compared with the PR group,the pharmacoresistant epileptic rats in HS group underwent low-frequency stimulation for 2 weeks showed that the amygdale stimulus-induced seizures were decreased (2.32 ± 0.38 in HS group and 4.45 ± 0.42 in PR group,t =84.600,P =0.000) and the parameters of the after-discharges were improved significantly.In HS group,the peak current shifted towards depolarization,the sodium channels were difficult to activate,and were more susceptible to inactivation.Moreover,the recovery time after the sodium channel inactivation was slower in HS group ((17.9 ±0.6) s) than in PR group((16.3 +0.3) s,t =-25.420,P =0.000).Conclusions Hippocampal stimulation may inhibit the sodium channel current of pyramidal neurons in CA1 areas of hippocampus.The mechanism of hippocampal stimulation in the treatment of pharmacoresistant epilepsy might be achieved partly by inhibiting the sodium channel current so as to decrease the excitability of hippocampal neurons.

  12. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.

    Science.gov (United States)

    Tukker, John J; Fuentealba, Pablo; Hartwich, Katja; Somogyi, Peter; Klausberger, Thomas

    2007-08-01

    Cortical gamma oscillations contribute to cognitive processing and are thought to be supported by perisomatic-innervating GABAergic interneurons. We performed extracellular recordings of identified interneurons in the hippocampal CA1 area of anesthetized rats, revealing that the firing patterns of five distinct interneuron types are differentially correlated to spontaneous gamma oscillations. The firing of bistratified cells, which target dendrites of pyramidal cells coaligned with the glutamatergic input from hippocampal area CA3, is strongly phase locked to field gamma oscillations. Parvalbumin-expressing basket, axo-axonic, and cholecystokinin-expressing interneurons exhibit moderate gamma modulation, whereas the spike timing of distal dendrite-innervating oriens-lacunosum moleculare interneurons is not correlated to field gamma oscillations. Cholecystokinin-expressing interneurons fire earliest in the gamma cycle, a finding that is consistent with their suggested function of thresholding individual pyramidal cells. Furthermore, we show that field gamma amplitude correlates with interneuronal spike-timing precision and firing rate. Overall, our recordings suggest that gamma synchronization in vivo is assisted by temporal- and domain-specific GABAergic inputs to pyramidal cells and is initiated in pyramidal cell dendrites in addition to somata and axon initial segments.

  13. Atorvastatin increases dynamin 1 expression in hippocampal CA1 region in a rat model of vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Qinghua Li; Wensheng Zhou

    2011-01-01

    The current study examined a rat model of vascular dementia. The model rats exhibited obvious morphological and ultrastructural changes in neurons in the brain, and significantly reduced dynamin 1 expression in hippocampal CA1 region along with decreased learning and memory performance. Following atorvastatin treatment, the morphology and ultrastructure of cells in the model rat brain were significantly improved, dynamin 1 expression in hippocampal CA1 region was significantly enhanced, and learning and memory ability was significantly improved. The results demonstrated that impaired learning and memory abilities in vascular dementia model rats were closely correlated with decreased dynamin 1 expression. These findings indicate that atorvastatin can protect model rats against cognitive impairment by increasing dynamin 1 expression.

  14. Simulation of gene pyramiding in Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Gene pyramiding has been successfully practiced in plant breeding for developing new breeds or lines in which favorable genes from several different lines were integrated.But it has not been used in animal breeding,and some theoretical investigation and simulation analysis with respect to its strategies,feasibility and efficiency are needed before it can be implemented in animals.In this study,we used four different pure fines of Drosophila melanogaster,each of which is homozygous at a specific mutant gene with a visible effect on phenotype,to simulate the gene pyramiding process and analyze the duration and population size required in different pyramiding strategies.We finally got the ideal individuals,which are homozygous at the four target genes simultaneously.This study demonstrates that gene pyramiding is feasible in animal breeding and the interaction between genes may affect the final results.

  15. Waring’s Problem for Pyramidal Numbers

    Institute of Scientific and Technical Information of China (English)

    邓越凡; 杨振宁

    1994-01-01

    It has been proved that every positive integer is expressible as a sum of no more than eight pyramidal numbers P(m)=(m-1)m(m+1)/6.This paper reports on a computer calculation of the partition of integers from n=1 to 109 into pyramidal numbers.We find that no integer≤10°needs more than five pyramidal numbers for its partition,and only 241 of them do need five.We define J(n) as the least number of pyramidal numbers to partition n,and Nk(n) as the number of positive integers l less than or equal to n for which J(l)=k.Based on our numerical results we make conjectures about the asymptotic form of Nk(n) for n→∞

  16. FABRIC DEFECT DETECTION USING STEERABLE PYRAMID

    Directory of Open Access Journals (Sweden)

    S. Mythili

    2011-05-01

    Full Text Available In this paper, a novel idea is proposed for fabric defect detection. De- fects are detected in the fabric using steerable pyramid along with a defect detection algorithm. Various steerable pyramid of four size 256*256, 128*128, 64*64, 32*32 and with four orientation bands 00,450, 900, 1350 are used. Utilizing a Steerable pyramid proved ade- quate in the representation of fabric images in multi-scale and multi- orientations; thus allowing defect detection algorithms to run more effectively. Defect detection algorithm identifies and locates the im- perfection in the defective sample using the statistics mean and stan- dard deviation. This statistics represents the relative amount of inten- sity in the texture and is sufficient to measure defects in the current model .The obtained result are compared with the existing methods wavelet based system and with Gaussian and Laplacian pyramid.

  17. Evaluation of the Green Egyptian Pyramid

    Directory of Open Access Journals (Sweden)

    Mohamed Gamal Ammar

    2012-12-01

    The research concluded to the need of developing the Egyptian pyramid system through studying more global systems, in addition to the need to benefit from the Egyptian experience stock of solutions and environmental treatments in ancient architecture.

  18. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia

    Directory of Open Access Journals (Sweden)

    Rossner Moritz

    2007-10-01

    Full Text Available Abstract Background The different physiological repertoire of CA3 and CA1 neurons in the hippocampus, as well as their differing behaviour after noxious stimuli are ultimately based upon differences in the expressed genome. We have compared CA3 and CA1 gene expression in the uninjured brain, and after cerebral ischemia using laser microdissection (LMD, RNA amplification, and array hybridization. Results Profiling in CA1 vs. CA3 under normoxic conditions detected more than 1000 differentially expressed genes that belong to different, physiologically relevant gene ontology groups in both cell types. The comparison of each region under normoxic and ischemic conditions revealed more than 5000 ischemia-regulated genes for each individual cell type. Surprisingly, there was a high co-regulation in both regions. In the ischemic state, only about 100 genes were found to be differentially expressed in CA3 and CA1. The majority of these genes were also different in the native state. A minority of interesting genes (e.g. inhibinbetaA displayed divergent expression preference under native and ischemic conditions with partially opposing directions of regulation in both cell types. Conclusion The differences found in two morphologically very similar cell types situated next to each other in the CNS are large providing a rational basis for physiological differences. Unexpectedly, the genomic response to ischemia is highly similar in these two neuron types, leading to a substantial attenuation of functional genomic differences in these two cell types. Also, the majority of changes that exist in the ischemic state are not generated de novo by the ischemic stimulus, but are preexistant from the genomic repertoire in the native situation. This unexpected influence of a strong noxious stimulus on cell-specific gene expression differences can be explained by the activation of a cell-type independent conserved gene-expression program. Our data generate both novel

  19. An Improved Pyramid for Spatially Scalable Video Coding

    OpenAIRE

    2005-01-01

    This paper discusses an improved pyramid for spatially scalable video coding. We introduce additional update steps in the analysis and the synthesis of the Laplacian pyramid. Our pyramid is able to control efficiently the quantization noise energy in the reconstruction. Hence, it provides improved coding performance when compared to the standard Laplacian pyramid. Moreover, our pyramid does not require biorthogonal filters as they should be used for the frame reconstruction of the Laplacian p...

  20. Altered spatial arrangement of layer V pyramidal cells in the mouse brain following prenatal low-dose X-irradiation. A stereological study using a novel three-dimensional analysis method to estimate the nearest neighbor distance distributions of cells in thick sections.

    Science.gov (United States)

    Schmitz, Christoph; Grolms, Norman; Hof, Patrick R; Boehringer, Robert; Glaser, Jacob; Korr, Hubert

    2002-09-01

    Prenatal X-irradiation, even at doses <1 Gy, can induce spatial disarray of neurons in the brains of offspring, possibly due to disturbed neuronal migration. Here we analyze the effects of prenatal low-dose X-irradiation using a novel stereological method designed to investigate the three-dimensional (3D) spatial arrangement of neurons in thick sections. Pregnant mice were X-irradiated with 50 cGy on embryonic day 13 or were sham-irradiated. The right brain halves of their 180-day-old offspring were dissected into entire series of 150 microm thick frontal cryostat sections and stained with gallocyanin. Approximately 700 layer V pyramidal cells per animal were sampled in a systematic-random manner in the middle of the section's thickness. The x-y-z coordinates of these 'parent neurons' were recorded, as well as of all neighboring (up to 10) 'offspring neurons' close to each 'parent neuron'. From these data, the nearest neighbor distance (NND) distributions for layer V pyramidal cells were calculated. Using this novel 3D analysis method, we found that, in comparison to controls, prenatal X-irradiation had no effect on the total neuron number, but did cause a reduction in the mean volume of layer V by 26.5% and a more dispersed spatial arrangement of these neurons. Considering the recent literature, it seems reasonable to consider abnormal neuronal migration as the potential basic cause of this finding.

  1. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats.

    Science.gov (United States)

    Pellegrini-Giampietro, D E; Zukin, R S; Bennett, M V; Cho, S; Pulsinelli, W A

    1992-11-01

    Severe, transient global ischemia of the brain induces delayed damage to specific neuronal populations. Sustained Ca2+ influx through glutamate receptor channels is thought to play a critical role in postischemic cell death. Although most kainate-type glutamate receptors are Ca(2+)-impermeable, Ca(2+)-permeable kainate receptors have been reported in specific kinds of neurons and glia. Recombinant receptors assembled from GluR1 and/or GluR3 subunits in exogenous expression systems are permeable to Ca2+; heteromeric channels containing GluR2 subunits are Ca(2+)-impermeable. Thus, altered expression of GluR2 in development or following a neurological insult or injury to the brain can act as a switch to modify Ca2+ permeability. To investigate the molecular mechanism underlying delayed postischemic cell death, GluR1, GluR2, and GluR3 gene expression was examined by in situ hybridization in postischemic rats. Following severe, transient forebrain ischemia GluR2 gene expression was preferentially reduced in CA1 hippocampal neurons at a time point that preceded their degeneration. The switch in expression of kainate/AMPA receptor subunits coincided with the previously reported increase in Ca2+ influx into CA1 cells. Timing of the switch indicates that it may play a causal role in postischemic cell death.

  2. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling.

    Directory of Open Access Journals (Sweden)

    Francesca Boscia

    Full Text Available The glial cell line-derived neurotrophic factor (GDNF is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1 hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2 identity of GDNF-responsive hippocampal cells, (3 transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.

  3. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1.

    Science.gov (United States)

    Motloch, Lukas J; Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Wolny, Martin; Hoppe, Uta C

    2016-08-01

    Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.

  4. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan;

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...... described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene...... disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures....

  5. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    Science.gov (United States)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  6. The Babinski sign and the pyramidal syndrome.

    Science.gov (United States)

    Van Gijn, J

    1978-10-01

    The presence or absence of a Babinski sign can be puzzling, but in the light of existing pathological studies it is more fruitful to consider which pyramidal tract fibres release it than whether they release it. This was investigated clinically, by looking for correlations with other reflex changes and with motor deficits in the leg. A survey of 50 patients with a unilateral Babinski sign and six patients who lacked it in spite of other pyramidal tract signs was supplemented with follow-up of the patients who had acute lesions. Appearance of the Bibinski sign proved to depend on the interaction of two factors: (1) activity (not necessarily hyperactivity) in the segmental pathways of the flexion synergy; (2) a motor deficit of the foo