WorldWideScience

Sample records for c2h4 c3h6o h2co

  1. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  2. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  3. Charge transfer processes in collisions of H+ ions with H2, D2, CO, CO2 CH4, C2H2, C2H6 and C3H8 molecules below 10 keV

    International Nuclear Information System (INIS)

    Kusakabe, T.; Buenker, R.J.; Kimura, M.

    2002-01-01

    Charge transfer processes resulting from collisions of H + ions with H 2 , D 2 , CO, CO 2 CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 molecules have been investigated in the energy range of 0.2 to 4.0 keV experimentally and theoretically. The initial growth rate method was employed in the experiment for studying the dynamics and cross sections. Theoretical analysis based on a molecular-orbital expansion method for H 2 , D 2 , CO, CH 4 and C 2 H 2 targets was also carried out. The present results for the H 2 , CO and CO 2 molecules by H + impact are found to be in excellent accord with most of previous measurements above 1 keV, but they show some differences below this energy where our result displays a stronger energy-dependence. For CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 targets, both experimental and theoretical results indicate that if one assumes vibrationally excited molecular ions (CH 4 + , C 2 H 2 + , C 2 H 6 + and C 3 H 8 + ) formed in the exit channel, then charge transfer processes sometimes become more favorable since these vibrationally excited fragments meet an accidental resonant condition. This is a clear indication of the role of vibrational excited states for charge transfer, and is an important realization for general understanding. (author)

  4. Modelling of phase equilibria in CH4C2H6C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4C 2 H 6C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  5. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  6. Nido-Carborane building-block reagents. 2. Bulky-substituent (alkyl)2C2B4H6 derivatives and (C6H5)2C2B4H6: synthesis and properties

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The preparation and chemistry of nido-2,3-R 2 C 2 C 2 B 4 H 6 carboranes in which R is n-butyl, isopentyl, n-hexyl, and phenyl was investigated in order to further assess the steric and electronic influence of the R groups on the properties of the nido-C 2 B 4 cage, especially with respect to metal complexation at the C 2 B 3 face and metal-promoted oxidative fusion. The three dialkyl derivatives were prepared from the corresponding dialkylacetylenes via reaction with B 5 H 9 and triethylamine, but the diphenyl compound could not be prepared in this manner and was obtained instead in a thermal reaction of B 5 H 9 with diphenylacetylene in the absence of amine. All four carboranes are readily bridge-deprotonated by NaH in THF, and the anions of the dialkyl species, on treatment with FeCl 2 and air oxidation, generate the respective R 4 C 4 B 8 H 8 carborane fusion products were R = n-C 4 H 9 , i-C 5 H 11 or n-C 6 H 13 . The diphenylcarborane anion Ph 2 C 2 B 4 H 5 - did not form detectable metal complexes with Fe 2+ , Co 2+ , or Ni 2+ , and no evidence of a Ph 4 C 4 B 8 H 8 fusion product has been found. Treatment of Ph 2 C 2 B 4 H 6 with Cr(CO) 6 did not lead to metal coordination of the phenyl rings, unlike (PhCH 2 ) 2 C 2 B 4 H 6 , which had previously been shown to form mono- and bis(tricarbonylchromium) complexes. However, the reaction of Ph 2 C 2 B 4 H 5 - , CoCl 2 , and (PhPCH 2 ) 2 did give 1,1-(Ph 2 PCH 2 ) 2 -1-Cl-1,2,3-Co(Ph 2 C 2 B 4 H 4 ), the only case in which metal complexation of the diphenylcarborane was observed. 14 references, 3 figures, 3 tables

  7. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  8. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  9. Densities, viscosities, and refractive indexes for {C2H5CO2(CH2)2CH3+C6H13OH+C6H6} at T=308.15 K

    International Nuclear Information System (INIS)

    Casas, Herminio; Garcia-Garabal, Sandra; Segade, Luisa; Cabeza, Oscar.; Franjo, Carlos; Jimenez, Eulogio

    2003-01-01

    In this work we present densities, kinematic viscosities, and refractive indexes of the ternary system {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH+C 6 H 6 } and the corresponding binary mixtures {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 6 }, {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH}, and {C 6 H 13 OH+C 6 H 6 }. All data have been measured at T=308.15 K and atmospheric pressure over the whole composition range. The excess molar volumes, dynamic viscosity deviations, and changes of the refractive index on mixing were calculated from experimental measurements. The results for binary mixtures were fitted to a polynomial relationship to estimate the coefficients and standard deviations. The Cibulka equation has been used to correlate the experimental values of ternary mixtures. Also, the experimental values obtained for the ternary mixture were used to test the empirical methods of Kohler, Jacob and Fitzner, Colinet, Tsao and Smith, Toop, Scatchard et al., and Hillert. These methods predict excess properties of the ternary mixtures from those of the involved binary mixtures. The results obtained for dynamic viscosities of the binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, McAllister, Auslaender, and Teja-Rice. Finally, the experimental refractive indexes were compared with the predicted results for the Lorentz-Lorenz, Gladstone-Dale, Wiener, Heller, and Arago-Biot equations. In all cases, we give the standard deviation between the experimental data and that calculated with the above named relations

  10. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua

    2005-01-01

    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  11. A novel layered bimetallic phosphite intercalating with organic amines: Synthesis and characterization of Co(H2O)4Zn4(HPO3)6.C2N2H1

    International Nuclear Information System (INIS)

    Lin Zhien; Fan Wei; Gao Feifei; Chino, Naotaka; Yokoi, Toshiyuki; Okubo, Tatsuya

    2006-01-01

    A new layered cobalt-zinc phosphite, Co(H 2 O) 4 Zn 4 (HPO 3 ) 6 .C 2 N 2 H 1 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) A, β=114.098(4) o , V=2542.3(2) A 3 , Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO 4 tetrahedra, CoO 6 octahedra and HPO 3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH 4 + cations without the collapse of the framework

  12. Solvothermal synthesis, crystal structure, and second-order nonlinear optical properties of a new noncentrosymmetric gallium-organic framework material, [N(C3H7)4]3Ga3[C6H3(CO2)3]4

    Science.gov (United States)

    Lee, Dong Woo; Jo, Vinna; Ok, Kang Min

    2012-10-01

    A novel noncentrosymmetric (NCS) gallium-organic framework material, [N(C3H7)4]3Ga3[C6H3(CO2)3]4 (CAUMOF-11) has been synthesized by a solvothermal reaction using Ga(NO3)3·xH2O, 1,3,5-C6H3(CO2H)3, N(C3H7)4Cl, HNO3, and HCON(CH3)2 at 180 °C. The structure of the reported material has been determined by single-crystal X-ray diffraction. CAUMOF-11 has an anionic three-dimensional framework with aligned four-coordinate GaO4 tetrahedra and 1,3,5-benzenetricarboxylate groups. Tetrapropylammonim cations reside within the channel and maintain the charge balance. Detailed structural analyses with full characterization including infrared spectroscopy, thermogravimetric analysis, elemental analysis, ion-exchange reactions, topotactic decomposition, and gas adsorption experiments are reported. Powder second-harmonic generating (SHG) measurements on CAUMOF-11, using 1064 nm radiation, exhibit SHG efficiency of 15 times that of α-SiO2 and the material is phase-matchable (type-1).

  13. Assembly of [Cu2(COO)4] and [M33-O)(COO)6] (M = Sc, Fe, Ga, and In) building blocks into porous frameworks towards ultra-high C2H2/CO2 and C2H2/CH4 separation performance.

    Science.gov (United States)

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Qu, Peng; Zhai, Quan-Guo

    2018-02-20

    A porous MOF platform (SNNU-65s) formed by creatively combining paddle-wheel-like [Cu 2 (COO) 4 ] and trigonal prismatic [M 33 -O)(COO) 6 ] building blocks was designed herein. The mixed and high-density open metal sites and the OH-functionalized pore surface promote SNNU-65s to exhibit ultra-high C 2 H 2 uptake and separation performance. Impressively, SNNU-65-Cu-Ga stands out for the highest C 2 H 2 /CO 2 (18.7) and C 2 H 2 /CH 4 (120.6) selectivity among all the reported MOFs at room temperature.

  14. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  15. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  16. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    Science.gov (United States)

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4C3H6 + H (2b) and CH3 + C2H4C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  17. Magnetocaloric effect in gadolinium-oxalate framework Gd2(C2O4)3(H2O)6⋅(0⋅6H2O)

    International Nuclear Information System (INIS)

    Sibille, Romain; Didelot, Emilie; Mazet, Thomas; Malaman, Bernard; François, Michel

    2014-01-01

    Magnetic refrigerants incorporating Gd 3+ ions and light organic ligands offer a good balance between isolation of the magnetic centers and their density. We synthesized the framework material Gd 2 (C 2 O 4 ) 3 (H 2 O) 6 ⋅0.6H 2 O by a hydrothermal route and characterized its structure. The honeycomb lattice of Gd 3+ ions interlinked by oxalate ligands in the (a,c) plane ensures their decoupling in terms of magnetic exchange interactions. This is corroborated by magnetic measurements indicating negligible interactions between the Gd 3+ ions in this material. The magnetocaloric effect was evaluated from isothermal magnetization measurements. The maximum entropy change −ΔS M max reaches 75.9 mJ cm −3 K −1 (around 2 K) for a moderate field change (2 T)

  18. Experimental studies of collisions of excited Li(4p) atoms with C2H4, C2H6, C3H8 and theoretical interpretation of the Li-C2H4 system

    International Nuclear Information System (INIS)

    Semmineh, Natenael; Bililign, Solomon; Hagebaum-Reignier, Denis; Jeung, Gwang-Hi

    2009-01-01

    Collisions of excited Li(4p) states with C 2 H 4 , C 2 H 6 and C 3 H 8 are studied experimentally using far-wing scattering state spectroscopy techniques. High-level ab initio quantum mechanical studies of the Li-C 2 H 4 system are conducted to explain the results of the experiment for this system. The recent and present works indicate that knowledge of the internal structure of the perturber (C 2 H 4 , C 2 H 6 and C 3 H 8 ) is essential to fully understand the interaction between the metal and the hydrocarbon molecules. The ab initio calculation shows that the Li(4d) (with little probability under the experimental conditions) and the Li(4p) can be formed directly through the laser pumping. It also shows that the Li(4s) and Li(3d) states can be formed through an electronic diabatic coupling involving a radiationless process. However, the Li(3p), Li(3s) and Li(2p) states can only be formed through a secondary diabatic coupling which is a much less probable process than the primary one. The calculation limited to two C 2v sections of the potential energy surfaces (PESs) shows peculiar multi-state crossings that we have never seen in other lithium complexes we studied

  19. Photodissociation dynamics of gaseous CpCo(CO)2 and ligand exchange reactions of CpCoH2 with C3H4, C3H6, and NH3.

    Science.gov (United States)

    Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd

    2012-05-31

    The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).

  20. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  1. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  2. Inorganic-organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3

    International Nuclear Information System (INIS)

    Mandal, Sukhendu; Natarajan, Srinivasan

    2005-01-01

    A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 o C for 96h followed by heating at 180 o C for 24h gave rise to a new inorganic-organic hybrid solid, [C 4 N 2 H 12 ][Co 4 (HPO 3 ) 2 (C 2 O 4 ) 3 ], I. The structure consists of edge-shared CoO 6 octahedra forming a [Co 2 O 10 ] dimers that are connected by HPO 3 and C 2 O 4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (T N =22K). Crystal data: I, monoclinic, space group=P2 1 /c (No. 14). a=7.614(15), b=7.514(14), c=17.750(3)A, β=97.351(3) o , V=1007.30(3)A 3 , Z=2, ρ calc =2.466g/cm 3 , μ (MoKα) =3.496mm -1 , R 1 =0.0310 and wR 2 =0.0807 data [I>2σ(I)

  3. Activation of sp3-CH Bonds in a Mono(pentamethylcyclopentadienyl)yttrium Complex. X-ray Crystal Structures and Dynamic Behavior of Cp*Y(o-C6H4CH2NMe2)2 and Cp*Y[o-C6H4CH2NMe(CH2-μ)][μ-o-C6H4CH2NMe(CH2-μ)]YCp*[THF

    NARCIS (Netherlands)

    Booij, Martin; Kiers, Niklaas H.; Meetsma, Auke; Teuben, Jan H.; Smeets, Wilberth J.J.; Spek, Anthony L.

    1989-01-01

    Reaction of Y(o-C6H4CH2NMe2)3 (1) with Cp*H gives Cp*Y(o-C6H4CH2NMe2)2 (2), which crystallizes in the monoclinic space group P21/n (No. 14) with a = 18.607 (4) Å, b = 15.633 (3) Å, c = 8.861 (3) Å, β = 102.73 (3)°, and Z = 4. Least-squares refinement with 3006 independent reflections (F > 4.0σ(F))

  4. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  5. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  6. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structures of (μ-H)(H)Os3(CO)10(CN-t-C4H9) and (μ-H)2Os3(CO)9(CN-t-C4H9)

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembski, N.M.

    1979-01-01

    The structures of the compounds (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ) and (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ) have been revealed by x-ray crystallographic techniques. For (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ): a = 9.064 (3), b = 12.225 (3), c = 20.364 (4) A; β = 98.73 (3) 0 ; space group P2 1 /c[C/sub 2h/ 5 ], No. 14; Z = 4; d/sub calcd/ = 2.79 g cm -3 . This compound contains a triangular cluster of three osmium atoms; Os(1)--Os(2) = 2.930 (1) A, Os(1)--Os(3) = 2.876 (1) A, and Os(2)--Os(3) = 3.000 (1) A. There are ten linear terminal carbonyl groups and one linear terminal isocyanide ligand which occupies an axial coordination site. The hydrogen atoms were not observed crystallographically, but their positions are strongly inferred from considerations of molecular geometry. For (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ): a = 15.220 (8), b = 12.093 (6), c = 23.454 (5) A; space group Pbcn [D/sub 2h/ 14 ], No. 60; Z = 8; d/sub calcd/ = 2.79 g cm -3 . The compound is analogous to the parent carbonyl (μ-H) 2 Os 3 (CO) 10 and has two normal and one short osmium--osmium bonds: Os(1)--Os(2) = 2.827 (1) A, Os(1)--Os(3) = 2.828 (1) A, Os(2)--Os(3) = 2.691 (1) A. The isocyanide ligand resides in an equatorial coordination site on osmium Os(2). The hydrogen atoms were not observed but are believed to occupy bridging positions as in the parent carbonyl complex. 2 figures, 7 tables

  7. The system Ba(H2PO4)2-Sr(H2PO4)2-H3PO4(30%)-H2O at 25, 40 and 60 deg C

    International Nuclear Information System (INIS)

    Taranenko, N.P.; Serebrennikova, G.M.; Stepin, B.D.; Oboznenko, Yu.V.

    1982-01-01

    The system Ba(H 2 PO 4 ) 2 -Sr(H 2 PO 4 ) 2 -H 3 PO 4 (30%)-H 2 O (25 deg C) belongs to eutonic type systems. Solubility isotherms of salt components at 40 and 60 deg C are calculated. Polytherms (25-60 deg C) of solubility of monosubstituted barium and strontium phosphates in 30-60% H 3 PO 4 are obtained. The value of cocrystallization coefficient of Sr 2 + and Ba(H 2 PO 4 ) 2 Dsub(Sr)=0.042+-0.005 remains stable in the temperature range of 25-60 deg C and concentrations 30-60% phosphoric acid at initial content [Sr 2 + ]=1x10 - 2 mass%

  8. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  9. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  10. [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4].4[H2O]: A new layered aluminum phosphate-oxalate

    International Nuclear Information System (INIS)

    Peng Li; Li Jiyang; Yu Jihong; Li Guanghua; Fang Qianrong; Xu Ruren

    2005-01-01

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H 3 N(CH 2 ) 4 NH 3 ] 2 [Al 4 (C 2 O 4 )(H 2 PO 4 ) 2 (PO 4 ) 4 ].4[H 2 O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31 P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, α=80.830(6) deg. , β=74.965(5) deg. , γ=78.782(6) deg. , Z=2, R 1[ I >2 σ ( I )] =0.0511 and wR 2(alldata) =0.1423. The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra

  11. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  12. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  13. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  14. DNA-Binding Study of Tetraaqua-bis(p-nitrobenzoatocobalt(II Dihydrate Complex: [Co(H2O4(p-NO2C6H4COO2]·2H2O

    Directory of Open Access Journals (Sweden)

    Hacali Necefoglu

    2007-06-01

    Full Text Available The interaction of [Co(H2O4(p-NO2C6H4COO2]. 2H2O with sheep genomicDNA has been investigated by spectroscopic studies and electrophoresis measurements.The interaction between cobalt(II p-nitrobenzoate and DNA has been followed by gelelectrophoresis while the concentration of the complex was increased from 0 to 14 mM.The spectroscopic study and electrophoretic experiments support the fact that the complexbinds to DNA by intercalation via p-nitrobenzoate into the base pairs of DNA. Themobility of the bands decreased as the concentration of complex was increased, indicatingthat there was increase in interaction between the metal ion and DNA.

  15. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

    Science.gov (United States)

    Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane

    2013-09-03

    The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

  16. Beyond 3 Au from the Sun: the Hypervolatiles CH4, C2H6, and CO in the Distant Comet C2006 W3 (Christensen)

    Science.gov (United States)

    Bonev, Boncho P.; Villanueva, Geronimo L.; Disanti, Michael A.; Boehnhardt, Hermann; Lippi, Manuela; Gibb, Erika L.; Paganini, Lucas; Mumma, Michael J.

    2017-01-01

    Comet C/2006 W3 (Christensen) remained outside a heliocentric distance (Rh) of 3.1 au throughout its apparition, but it presented an exceptional opportunity to directly sense a suite of molecules released from its nucleus. The Cryogenic Infrared Echelle Spectrograph at ESO-VLT detected infrared emissions from the three hypervolatiles (CO, CH4, and C2H6) that have the lowest sublimation temperatures among species that are commonly studied in comets by remote sensing. Even at Rh 3.25 au, the production rate of each molecule exceeded those measured for the same species in a number of other comets, although these comets were observed much closer to the Sun. Detections of CO at Rh = 3.25, 4.03, and 4.73 au constrained its post-perihelion decrease in production rate, which most likely dominated the outgassing. At 3.25 au, our measured abundances scaled as CO/CH4/C2H6 approx. = 100/4.4/2.1. The C2H6/CH4 ratio falls within the range of previously studied comets at Rh the nucleus of 67P/Churyumov-Gerasimenko conducted at a very similar Rh (3.15 au). The independent detections of H2O (Herschel Space Observatory) and CO (this work) imply a coma abundance H2O/CO approx. = 20% in C/2006 W3 near Rh = 5 au. All these measurements are of high value for constraining models of nucleus sublimation (plausibly CO-driven) beyond Rh = 3au, where molecular detections in comets are still especially sparse.

  17. Stabilization and reactivity of a terminal phosphidounit on Pt(II). Synthesis and X-ray structure of cationic diphelylphosphine [Pt{C6H3(CH2NMe2)2-2,6}(PHPh2)][CF3SO3] and Diphenyl-phosphido Bridged Pt(II)-Pd(II) Complex [Pt{C6H3(CH2NMe2)2-2,6} (µ-PPh2) Pd(C6H4CH2NMe2-2)(H2O)][BF4] CH2Cl2

    NARCIS (Netherlands)

    Koten, G. van; Maassarani, F.; Davidson, M.F.; Wehman-Ooyevaar, ICM; Grove, D.M.; Koten, M.A. van; Smeets, W.J.J.; Spek, A.L.

    1995-01-01

    Reaction of diphenylphosphine with the complexes [Pt(NCN)(H{2}O)]X (NCN = C{6}H{3}(CH{2}NMe{2}){2}-2, 6; X = BF{4} (1a), OSO{2}CF{3} (1b)) leads to substitution of the H{2}O ligand to afford the ionic Pt(II) complexes [Pt(NCN)(PHPh{2})]X (X = BF{4} (2a), OSO{2}CF{3} (2b)). The X-ray structure of the

  18. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  19. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  20. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  1. Hydrothermal synthesis and crystal structure of the Ni2(C4H4N2)(V4O12)(H2O)2 and Ni3(C4H4N2)3(V8O23) inorganic-organic hybrid compounds. Thermal, spectroscopic and magnetic studies of the hydrated phase

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2 , 1, and Ni 3 (C 4 H 4 N 2 ) 3 (V 8 O 23 ), 2, have been synthesized using mild hydrothermal conditions at 170 deg. C under autogenous pressure. Both phases crystallize in the P-1 triclinic space group, with the unit-cell parameters, a=7.437(7), b=7.571(3), c=7.564(4) A, α=65.64(4), β=76.09(4), γ=86.25(3) o for 1 and a=8.566(2), b=9.117(2), c=12.619(3) A, α=71.05(2), β=83.48(4), γ=61.32(3) o for 2, being Z=2 for both compounds. The crystal structure of the three-dimensional 1 is constructed from layers linked between them through the pyrazine molecules. The sheets are formed by edge-shared [Ni 2 O 6 (H 2 O) 2 N 2 ] nickel(II) dimers octahedra and rings composed by four [V 4 O 12 ] vanadium(V) tetrahedra linked through vertices. The crystal structure of 2 is formed from vertex shared [VO 4 ] tetrahedra that give rise to twelve member rings. [NiO 4 (C 4 H 4 N 2 ) 2 ] ∞ chains, resulting from [NiO 4 N 2 ] octahedra and pyrazine molecules, give rise to a 3D skeleton when connecting to [VO 4 ] tetrahedra. Diffuse reflectance measurements of 1 indicate a slightly distorted octahedral geometry with values of Dq=880, B=980 and C=2700 cm -1 . Magnetic measurements of 1, carried out in the 5.0-300 K range, indicate the existence of antiferromagnetic couplings with a Neel temperature near to 38 K. - Graphical abstract: Crystal structure of a sheet of Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2

  2. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    Science.gov (United States)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-04-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C4H5O6)(C4H4O6)][3H2O]. X-ray crystal structure analyses reveal that it crystallizes in the P41212 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau- Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  3. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    International Nuclear Information System (INIS)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-01-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C 4 H 5 O 6 )(C 4 H 4 O 6 )][3H 2 O]. X-ray crystal structure analyses reveal that it crystallizes in the P4 1 2 1 2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  4. Synthesis of binuclear rhodacarboranes from dianions 1,4- and 1,3-C6H4(CH2-9-C2H2B9H9-7,8-nido)22- and (Ph3P)3RhCl

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Zhigareva, G.G.

    1996-01-01

    Dianions 1,4 and 1,3-C 6 H 4 (CH 2 -9-C 2 H 2 B 9 H 9 -7,8-nido) 2 2- obtained from nido 7,8-dicarbollide-ion and 1,4-bis(bromomethyl) and 1,3-bis(bromomethyl)benzenes react with (Ph 3 P) 3 RhCl to give binuclear rhodacarboranes, 1,4- and 1,3-[3,3-(Ph 3 P) 2 -3-H-3,1,2-RhC 2 B 9 H 10 -4-CH 2 ] 2 C 6 H 6 with chemical reaction yield 85% and 87% respectively. 7 refs., 1 fig., 1 tab

  5. Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance.

    Science.gov (United States)

    Chen, Di-Ming; Sun, Chun-Xiao; Zhang, Nan-Nan; Si, Huan-Huan; Liu, Chun-Sen; Du, Miao

    2018-03-05

    As a modulatable class of porous crystalline materials, metal-organic frameworks (MOFs) have gained intensive research attention in the domain of gas storage and separation. In this study, we report on the synthesis and gas adsorption properties of two robust MOFs with the general formula [Co 33 -OH)(cpt) 3 Co 33 -OH)(L) 3 (H 2 O) 9 ](NO 3 ) 4 (guests) n [L = 3-amino-1,2,4-triazole (1) and 3,5-diamino-1,2,4-triazole (2); Hcpt = 4-(4-carboxyphenyl)-1,2,4-triazole], which show the same pacs topology. Both MOFs are isostructural to each other and show MIL-88-type frameworks whose pore spaces are partitioned by different functionlized trinuclear 1,2,4-triazolate-based clusters. The similar framework components with different amounts of functional groups make them an ideal platform to permit a systematic gas sorption/separation study to evaluate the effects of distinctive parameters on the C 2 H 2 uptake and separation performance. Because of the presence of additional amido groups, the MOF 2 equipped with a datz-based cluster (Hdatz = 3,5-diamino-1,2,4-triazole) shows a much improved C 2 H 2 uptake capacity and separation performance over that of the MOF 1 equipped with atz-based clusters (Hatz = 3-amino-1,2,4-triazole), although the surface area of the MOF 1 is almost twice than that of the MOF 2. Moreover, the high density of open metal sites, abundant free amido groups, and charged framework give the MOF 2 an excellent C 2 H 2 separation performance, with ideal adsorbed solution theory selectivity values reaching up to 11.5 and 13 for C 2 H 2 /C 2 H 4 (1:99) and C 2 H 2 /CO 2 (50:50) at 298 K and 1 bar, showing potential for use in natural gas purification.

  6. Electronic and electrochemical properties of platinum(II) and platinum-mercury-carboxylato complexes containing 2-Me2NCH2C6H4, 2,6-(Me2NCH2)2C6H3- and 2-Me2NC6H4CH2 - ligands

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Schmitz, J.E.J.; Linden, J.G.M. van der

    1982-01-01

    The organoplatinum(II) compounds [{2, 6-(Me{2}NCH{2}){2}C{6}H{3}}PtBr] and cis-[(C-N){2}Pt] (C-N = 2-Me{2}NCH{2}C{6}H{4}, 2-Me{2}NC{6}H{4}CH{2}) can be chemically irreversibly oxidized in the potential range 1.00 to 1.35 V vs. an Ag/AgCl electrode, whereas the organoplatinum@?mercury complexes

  7. Um estudo teórico de propriedades moleculares em complexos de hidrogênio trimoleculares C2H4···2HF, C2H2···2HF e C3h6···2HF A theoretical study of molecular properties of C2H4···2HF, C2H2···2HF AND C3H6···2HF trimolecular hydrogen-bonded complexes

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2008-01-01

    Full Text Available We present a theoretical study of molecular properties in C2H4···2HF, C2H2···2HF and C3H6···2HF trimolecular hydrogen-bonded complexes. From B3LYP/6-311++G(d,p calculations, the most important structural deformations are related to the C=C (C2H4, C≡C (C2H2, C-C (C3H6 and HF bond lengths. According to the Bader's atoms in molecules and CHELPG calculations, it was identified a tertiary interaction between the fluorine atom of the second hydrofluoric acid molecule and hydrogen atoms of the ethylene and acetylene within the C2H4···2HF and C2H2···2HF complexes, respectively. Additionally, the evaluation of the infrared spectrum characterized the new vibrational modes and bathochromic effect of the HF molecules.

  8. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  9. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Cluster-enhanced X-O-2 photochemistry (X=CH3I, C3H6, C6H12, and Xe)

    NARCIS (Netherlands)

    Baklanov, A.V.; Bogdanchikov, G.A.; Vidma, K.V.; Chestakov, D.A.; Parker, D.H.

    2007-01-01

    The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O-2 (X=CH3I, C3H6, C6H12, and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous

  11. (C6H16N2)Zn3(HPO3)4H2O: a new layered zinc phosphite templated by diprotonated trans-1,4-diaminocyclohexane

    International Nuclear Information System (INIS)

    Wang Yu; Yu Jihong; Li Yi; Du Yu; Xu Ruren; Ye Ling

    2003-01-01

    Employing trans-1,4-diaminocyclohexane (trans-1,4-DACH) as a template, a new two-dimensional layered zinc phosphite (C 6 H 16 N 2 )Zn 3 (HPO 3 ) 4 H 2 O (1) has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group P2 1 /n with a=10.458(2) A, b=14.720(3) A, c=13.079(3) A, β=97.93(3) deg. , V=1994.1(7) A 3 , Z=4, R 1 =0.0349 (I>2σ(I)) and wR 2 =0.0605 (all data). The inorganic layer is built up by alternation of ZnO 4 tetrahedra and HPO 3 pseudo pyramids forming a 4.6.8-net. The sheet is featured by a series of capped six-membered rings. The diprotonated trans-1,4-DACH molecules reside in the interlayer region and interact with the inorganic network through H-bonds

  12. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br): steric interaction between the organic and inorganic layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B; Dimitrakopoulos, Christos D; Maxcy, Karen R

    2003-03-24

    Two new semiconducting hybrid perovskites based on 2-substituted phenethylammonium cations, (2-XC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) (X = Br, Cl), are characterized and compared with the previously reported X = F compound, with a focus on the steric interaction between the organic and inorganic components. The crystal structure of (2-ClC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) is solved in a disordered subcell [C2/m, a = 33.781(7) A, b = 6.178(1) A, c = 6.190(1) A, beta = 90.42(3)(o), and Z = 2]. The structure is similar to the known (2-FC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) structure with regard to both the conformation of the organic cations and the bonding features of the inorganic sheet. The (2-BrC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) system adopts a fully ordered monoclinic cell [P2(1)/c, a = 18.540(2) A, b = 8.3443(7) A, c = 8.7795(7) A, beta = 93.039(1)(o), and Z = 2]. The organic cation adopts the anti conformation, instead of the gauche conformation observed in the X = F and Cl compounds, apparently because of the need to accommodate the additional volume of the bromo group. The steric effect of the bromo group also impacts the perovskite sheet, causing notable distortions, such as a compressed Sn-I-Sn bond angle (148.7(o), as compared with the average values of 153.3 and 154.8(o) for the fluoro and chloro compounds, respectively). The optical absorption features a substantial blue shift (lowest exciton peak: 557 nm, 2.23 eV) relative to the spectra of the fluoro and chloro compounds (588 and 586 nm, respectively). Also presented are transport properties for thin-film field-effect transistors (TFTs) based on spin-coated films of the two hybrid semiconductors.

  13. Kinetics of the reactions H+C2H4->C2H5, H+C2H5->2CH3 and CH3+C2H5->products studies by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Sillesen, A.; Ratajczak, E.; Pagsberg, P.

    1993-01-01

    Formation of methyl radicals via the consecutive reactions H+C2H4+M-->C2H5+M (1) and H+C2H5-->CH3+CH3 (2a) was initiated by pulse radiolysis of 10-100 mbar H-2 in the presence of ethylene. The kinetics of CH3 Were studied by monitoring the transient infrared absorption at the Q(3, 3) line of the ...

  14. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    Science.gov (United States)

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  15. Sensitivity of Mesoporous CoSb2O6 Nanoparticles to Gaseous CO and C3H8 at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2015-01-01

    Full Text Available Mesoporous CoSb2O6 nanoparticles, synthesized through a nonaqueous method (using cobalt nitrate, antimony trichloride, ethylenediamine, and ethanol as a solvent, were tested to establish their sensitivity to CO and C3H8 atmospheres at relatively low temperatures. The precursor material was dried at 200°C and calcined at 600°C. X-ray diffraction and scanning electron microscopy were employed to verify the existence of crystal phases (P42/mnm and the morphology of this trirutile-type CoSb2O6 oxide. Pyramidal and cubic shaped crystals (average size: 41.1 nm, embedded in the material’s surface, were identified. Mesopores (average size: 6.5 nm on the nanoparticles’ surface were observed by means of transmission electron microscopy. The best sensitivity of the CoSb2O6 in a CO atmosphere was at the relatively low temperatures of 250 and 350°C, whereas, in a C3H8 atmosphere, the sensitivity increased uniformly with temperature. These results encourage using the CoSb2O6 nanoparticles as gas sensors.

  16. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4

    Science.gov (United States)

    Mitzi, D. B.

    1999-07-01

    Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.

  17. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)24H2O

    Science.gov (United States)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)24H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  18. The Cs2SO4-Ce2(SO4)3-H2SO4-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Trofimov, G.V.

    1982-01-01

    Solubility in the system Cs 2 SO 4 -Ce 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O using the isothermal method at 150 and 200 deg C at molar ratios Cs 2 SO 4 :Ce 2 (SO 4 ) 3 =1:5 and conditions of sulfate crystallization Cs 2 SO 4 xCe 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 x0.5H 2 SO 4 xnH 2 O (n=2-3) and Ce 2 (SO 4 ) 3 x3H 2 SO 4 are determined. Double sulfate Cs 2 SO 4 xCe 2 (SO 4 ) 3 is studied using the methods of crystallooptical, thermal, X-ray phase analyses and IR spectroscopy

  19. Dentritic Carbosilanes Containing Silicon-Bonded 1-[C6H2(CH2NMe2)2-3,5-Li-4] or 1-[C6H3(CH2NMe2)-4-Li-3] Mono-and Bis(amino)aryllithium End Groups: Structure of {[CH2SiMe2C6H3(CH2NMe2)-4-Li-3]2}2

    NARCIS (Netherlands)

    Koten, G. van; Kleij, A.W.; Kleijn, H.; Jastrzebski, J.T.B.H.; Smeets, W.J.J.; Spek, A.L.

    1999-01-01

    A useful synthetic procedure for the incorporation of the potentially multidentate monoanionic 1-[C6H2(CH2NMe2)2-3,5]- (=NCN) and 1-[C6H3(CH2NMe2)-4]- (=CN) ligands via the para-position on the periphery of carbosilane (CS) dendrimers has been developed. Lithiation of suitable brominated precursors

  20. Hydrogenation and Deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} on Cold Grains: A Clue to the Formation Mechanism of C{sub 2}H{sub 6} with Astronomical Interest

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hitomi; Kawakita, Hideyo [Koyama Astronomical Observatory, Kyoto Sangyo University Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Hidaka, Hiroshi; Hama, Tetsuya; Watanabe, Naoki [Institute of Low Temperature Science, Hokkaido University N19-W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Lamberts, Thanja; Kästner, Johannes, E-mail: h_kobayashi@kyoto-nijikoubou.com [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2017-03-10

    We quantitatively investigated the hydrogen addition reactions of acetylene (C{sub 2}H{sub 2}) and ethylene (C{sub 2}H{sub 4}) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C{sub 2}H{sub 6}) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C{sub 2}H{sub 2} and C{sub 2}H{sub 4} by approximately a factor of 2 compared to those on the pure-solid C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C{sub 2}H{sub 4} is orders of magnitude larger than that of C{sub 2}H{sub 2}, the present results show that the difference in hydrogenation rates of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C{sub 2}H{sub 2} is four times faster than CO hydrogenation and can produce C{sub 2}H{sub 6} efficiently through C{sub 2}H{sub 4} even in the environment of a dark molecular cloud.

  1. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  2. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Science.gov (United States)

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  3. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4H2O

    Science.gov (United States)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  4. Reaction of the C2H radical with 1-butyne (C4H6): Low Temperature Kinetics and Isomer-Specific Product Detection

    Energy Technology Data Exchange (ETDEWEB)

    Soorkia, Satchin; Trevitt, Adam J.; Selby, Talitha M.; Osborn, David L.; Taatjes, Craig A.; Wilson, Kevin R.; Leone, Stephen R.

    2009-12-22

    The rate coefficient for the reaction of the ethynyl radical (C{sub 2}H) with 1-butyne (H-C{triple_bond}C-CH{sub 2}-CH{sub 3}) is measured in a pulsed Laval nozzle apparatus. Ethynyl radicals are formed by laser photolysis of acetylene (C{sub 2}H{sub 2}) at 193 nm and detected via chemiluminescence (C{sub 2}H + O{sub 2} {yields} CH (A{sup 2}{Delta}) + CO{sub 2}). The rate coefficients are measured over the temperature range of 74-295 K. The C{sub 2}H + 1-butyne reaction exhibits no barrier and occurs with rate constants close to the collision limit. The temperature dependent rate coefficients can be fit within experimental uncertainties by the expression k = (2.4 {+-} 0.5) x 10{sup -10} (T/295 K)-(0.04 {+-} 0.03) cm{sup 3} molecule{sup -1}s{sup -1}. Reaction products are detected at room temperature (295 K) and 533 Pa using a Multiplexed Photoionization Mass Spectrometer (MPIMS) coupled to the tunable VUV synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory. Two product channels are identified for this reaction: m/z = 64 (C{sub 5}H{sub 4}) and m/z = 78 (C{sub 6}H{sub 6}) corresponding to the CH{sub 3}- and H-loss channels, respectively. Photoionization efficiency (PIE) curves are used to analyze the isomeric composition of both product channels. The C{sub 5}H{sub 4} products are found to be exclusively linear isomers composed of ethynylallene and methyldiacetylene in a 4:1 ratio. In contrast, the C{sub 6}H{sub 6} product channel includes two cyclic isomers, fulvene 18({+-}5)% and 3,4-dimethylenecyclobut-1-ene 32({+-}8)%, as well as three linear isomers, 2-ethynyl-1,3-butadiene 8({+-}5)%, 3,4-hexadiene-1-yne 28({+-}8)% and 1,3-hexadiyne 14({+-}5)%. Within experimental uncertainties, we do not see appreciable amounts of benzene and an upper limit of 10% is estimated. Diacetylene (C{sub 4}H{sub 2}) formation via the C{sub 2}H{sub 5}-loss channel is also thermodynamically possible but cannot be observed due to experimental

  5. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] metallotectons

    Science.gov (United States)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)32H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  6. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  7. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  8. Photocrystallographic structure determination of a new geometric isomer of [Ru(NH3)4(H2O)(eta1-OSO)][MeC6H4SO3]2.

    Science.gov (United States)

    Bowes, Katharine F; Cole, Jacqueline M; Husheer, Shamus L G; Raithby, Paul R; Savarese, Teresa L; Sparkes, Hazel A; Teat, Simon J; Warren, John E

    2006-06-21

    The structure of a new metastable geometric isomer of [Ru(NH3)4(H2O)(SO2)][MeC6H4SO3]2 in which the SO2 group is coordinated through a single oxygen in an eta1-OSO bonding mode has been determined at 13 K; the new isomer was obtained as a 36% component of the structure within a single crystal upon irradiation using a tungsten lamp.

  9. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    Science.gov (United States)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  10. Comparative study of the catalytic activity of the complexes Cp*RuCl(PAr3)2 [Ar = -C6H5 and 4-CF3-C6H4] in the ATRP of styrene

    International Nuclear Information System (INIS)

    Villa-Hernandez, Alejandro M.; Rosales-Velazquez, Claudia P.; Torres-Lubian, Jose R.; Saldivar-Guerra, Enrique

    2011-01-01

    Styrene polymerization by ATRP was conducted independently using the complexes Cp * RuCl(PPh 3 ) 2 , and Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 as catalysts, in order to evaluate the influence of the electronic properties of the phosphine ligands on the rate and control of the polymerization. The kinetic data for polymerizations carried out with Cp * RuCl(PPh 3 ) 2 , show that molecular weights increase linearly with conversion with an average initiation efficiency of 0.77. The molecular weights obtained in the kinetic study with Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 also increase with conversion but show a marked deviation below the theoretical molecular weights. This behavior was explained by the gradual, irreversible, oxidation of catalyst Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 as confirmed by 31 P-NMR spectroscopy. Catalyst Cp * RuCl(PPh 3 ) 2 promotes the polymerization with a rate of polymerization higher than that obtained using Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 ; this is consistent with the better electron donating properties of PPh 3 versus P(4-CF 3 -C 6 H 4 ) 3 . Preliminary studies of styrene polymerization by ATRP in supercritical CO 2 , shows that only catalyst Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 , with fluorinated ligands, was active. (author)

  11. ENDOR determination of the proton positions around Gd3+ in La(C2H5SO4)3.9H2O

    International Nuclear Information System (INIS)

    Beer, R. de; Biesboer, F.; Ormondt, D. van

    1976-01-01

    The water proton positions around Gd 3+ in La(C 2 H 5 SO 4 ) 3 .9H 2 O have been determined by means of ENDOR. The positions of the nearest neighbour water oxygens are discussed on the basis of a superposition model analysis of the ratios b 2 0 /A 2 0 2 >, b 6 6 /b 6 0 and mod(A 6 6 )modA 6 0 . (Auth.)

  12. (3aS,7aS-5-[(S-3,3,3-Trifluoro-2-methoxy-2-phenylpropanoyl]-2,3,4,5,6,7-hexahydro-1H-pyrrolo[3,4-c]pyridin-3(2H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Huichun Zhu

    2010-01-01

    Full Text Available rac-Benzyl 3-oxohexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H-carboxylate was separated by chiral chromatography, and one of the enantiomers ([α]22D = +10° was hydrogenated in the presence of Pd/C in methanol, producing octahydro-3H-pyrrolo[3,4-c]pyridin-3-one. The latter was reacted with (2R-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride [(R-(−-Mosher acid chloride], giving rise to the title compound, C17H19F3N2O3·H2O. The present structure established the absolute configuration of the pyrrolopiperidine fragment based on the known configuration of the (R-Mosher acid chloride. The piperidine ring has a somewhat distorted chair conformation and is cis-fused with the five-membered envelope-shaped ring; the plane of the exocyclic amide bond is approximately orthogonal to the plane of the phenyl ring, making a dihedral angle of 82.31 (3°. The water molecule acts as an acceptor to the proton of the amino group in an N—H...O interaction, and as a double proton donor in O—H...O hydrogen bonds, generating infinite bands along the a axis.

  13. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 2. The systems H(+)-HSO4(-)-SO4(2-)-H2O from 0 to 3 mol kg(-1) as a function of temperature and H(+)-NH4(+)-HSO4(-)-SO4)2-)-H2O from 0 to 6 mol kg(-1) at 25 °C using a Pitzer ion interaction model, and NH4HSO4-H2O and (NH4)3H(SO4)2-H2O over the entire concentration range.

    Science.gov (United States)

    Clegg, S L; Wexler, A S

    2011-04-21

    A Pitzer ion interaction model has been applied to the systems H(2)SO(4)-H(2)O (0-3 mol kg(-1), 0-55 °C) and H(2)SO(4)-(NH(4))(2)SO(4)-H(2)O (0-6 mol kg(-1), 25 °C) for the calculation of apparent molar volume and density. The dissociation reaction HSO(4)(-)((aq)) ↔ H(+)((aq)) + SO(4)(2-)((aq)) is treated explicitly. Apparent molar volumes of the SO(4)(2-) ion at infinite dilution were obtained from part 1 of this work, (1) and the value for the bisulfate ion was determined in this study from 0 to 55 °C. In dilute solutions of both systems, the change in the degree of dissociation of the HSO(4)(-) ion with concentration results in much larger variations of the apparent molar volumes of the solutes than for conventional strong (fully dissociated) electrolytes. Densities and apparent molar volumes are tabulated. Apparent molar volumes calculated using the model are combined with other data for the solutes NH(4)HSO(4) and (NH(4))(3)H(SO(4))(2) at 25 °C to obtain apparent molar volumes and densities over the entire concentration range (including solutions supersaturated with respect to the salts).

  14. Reactions of 11C recoil atoms in the systems H2O-NH3, H2O-CH4 and NH3-CH4

    International Nuclear Information System (INIS)

    Nebeling, B.

    1988-11-01

    In this study the chemical reactions of recoil carbon 11 in the binary gas mixtures H 2 O-NH 3 , H 2 O-CH 4 and NH 3 -CH 4 in different mixing ratios as well as in solid H 2 O and in a solid H 2 O-NH 3 mixture were analyzed in dependence of the dose. The analyses were to serve e.g. the simulation of chemical processes caused by solar wind, solar radiation and cosmic radiation in the coma and core of comets. They were to give further information about the role of the most important biogeneous element carbon, i.e. carbon, in the chemical evolution of the solar system. Besides the actual high energy processes resulting in the so-called primary products, also the radiation-chemical changes of the primary products were also observed in a wide range of dosing. The generation of the energetic 11 C atoms took place according to the target composition by the nuclear reactions 14 N(p,α) 11 C, 12 C( 3 He,α) 11 C or the 16 O(p,αpn) 11 C reaction. The identification of the products marked with 11 C was carried out by means of radio gas chromatography or radio liquid chromatography (HPLC). (orig./RB) [de

  15. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  16. Optical spectroscopy of two-dimensional layered (C(6)H(5)C(2)H(4)-NH(3))(2)-PbI(4) perovskite.

    Science.gov (United States)

    Gauthron, K; Lauret, J-S; Doyennette, L; Lanty, G; Al Choueiry, A; Zhang, S J; Brehier, A; Largeau, L; Mauguin, O; Bloch, J; Deleporte, E

    2010-03-15

    We report on optical spectroscopy (photoluminescence and photoluminescence excitation) on two-dimensional self-organized layers of (C(6)H(5)C(2)H(4)-NH(3))(2)-PbI(4) perovskite. Temperature and excitation power dependance of the optical spectra gives a new insight into the excitonic and the phononic properties of this hybrid organic/inorganic semiconductor. In particular, exciton-phonon interaction is found to be more than one order of magnitude higher than in GaAs QWs. As a result, photoluminescence emission lines have to be interpreted in the framework of a polaron model.

  17. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  18. Bulk Kosterlitz-Thouless Type Molecular Superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.

    Science.gov (United States)

    Martin, Lee; Lopez, Jordan R; Akutsu, Hiroki; Nakazawa, Yasuhiro; Imajo, Shusaku

    2017-11-20

    A new molecular superconductor, β″-(BEDT-TTF) 2 [(H 2 O)(NH 4 ) 2 Cr(C 2 O 4 ) 3 ]·18-crown-6, has been synthesized from the organic donor molecule BEDT-TTF with the anion Cr(C 2 O 4 ) 3 3- . The crystal structure consists of conducting organic layers of BEDT-TTF molecules which adopt the β″ packing motif (layer A), layers of NH 4 + and Λ-Cr(C 2 O 4 ) 3 3- (layer B), layers of (H 2 O)(NH 4 )18-crown-6 (layer C), and layers of NH 4 + and Δ-Cr(C 2 O 4 ) 3 3- (layer D) which produce a superstructure with a repeating pattern of ABCDABCDA. As a result of this packing arrangement, this is the 2D superconductor with the widest gap between conducting layers where only a single donor packing motif is present (β″). Superconducting critical temperatures at ambient pressure observed by electrical transport and magnetic measurements are 4.0-4.9 and 2.5 K, respectively. The strong 2D nature of this system, the broad transition to T zero at 1.8K, and the transition of α of V ∝ I α from 1 to 3 on I-V curves strongly suggest that the superconducting transition is very close to a Kosterlitz-Thouless transition. The magnetic field dependence of the superconducting critical temperature parallel to the conducting plane gives an upper critical field μ 0 H c2∥ > 8 T, which is over the calculated Pauli-Clogston limit for this material.

  19. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  20. Solvothermal synthesis, crystal structure, and second-order nonlinear optical properties of a new noncentrosymmetric gallium-organic framework material, [N(C{sub 3}H{sub 7}){sub 4}]{sub 3}Ga{sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Woo; Jo, Vinna [Department of Chemistry, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul, 156-756 (Korea, Republic of)

    2012-10-15

    A novel noncentrosymmetric (NCS) gallium-organic framework material, [N(C{sub 3}H{sub 7}){sub 4}]{sub 3}Ga{sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 4} (CAUMOF-11) has been synthesized by a solvothermal reaction using Ga(NO{sub 3}){sub 3}{center_dot}xH{sub 2}O, 1,3,5-C{sub 6}H{sub 3}(CO{sub 2}H){sub 3}, N(C{sub 3}H{sub 7}){sub 4}Cl, HNO{sub 3}, and HCON(CH{sub 3}){sub 2} at 180 Degree-Sign C. The structure of the reported material has been determined by single-crystal X-ray diffraction. CAUMOF-11 has an anionic three-dimensional framework with aligned four-coordinate GaO{sub 4} tetrahedra and 1,3,5-benzenetricarboxylate groups. Tetrapropylammonim cations reside within the channel and maintain the charge balance. Detailed structural analyses with full characterization including infrared spectroscopy, thermogravimetric analysis, elemental analysis, ion-exchange reactions, topotactic decomposition, and gas adsorption experiments are reported. Powder second-harmonic generating (SHG) measurements on CAUMOF-11, using 1064 nm radiation, exhibit SHG efficiency of 15 times that of {alpha}-SiO{sub 2} and the material is phase-matchable (type-1). - Graphical Abstract: Second-order nonlinear optical measurements on CAUMOF-11 reveal that the material is phase-matchable (type-1) with SHG efficiency of 15 times that of {alpha}-SiO{sub 2}. Highlights: Black-Right-Pointing-Pointer A new NCS Ga-organic framework was solvothermally synthesized. Black-Right-Pointing-Pointer CAUMOF-11 exhibits SHG efficiency of 15 times that of {alpha}-SiO{sub 2}. Black-Right-Pointing-Pointer Thermal decomposition of CAUMOF-11 crystal maintains the original morphology.

  1. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  3. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  4. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  5. Heterocyclic Analogues of Xanthone and Xanthione. 1H-Pyrano[2,3-c:6,5-c]dipyrazol-4(7H-ones and Thiones: Synthesis and NMR Data

    Directory of Open Access Journals (Sweden)

    Wolfgang Holzer

    2010-09-01

    Full Text Available The synthesis of the title compounds is described. Reaction of 1-substituted 2-pyrazolin-5-ones with 5-chloro-1-phenyl-1H-pyrazole-4-carbonyl chloride or 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbonyl chloride, respectively, using calcium hydroxide in refluxing 1,4-dioxane gave the corresponding 4-heteroaroylpyrazol-5-ols, which were cyclized into 1H-pyrano[2,3-c:6,5-c]dipyrazol-4(7H-ones by treatment with K2CO3/DMF. The latter were converted into the corresponding thiones upon reaction with Lawesson’s reagent. Detailed NMR spectroscopic investigations (1H, 13C, 15N of the ring systems and their precursors are presented.

  6. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  7. Facile synthesis technology of Li_3V_2(PO_4)_3/C adding H_2O_2 in ball mill process

    International Nuclear Information System (INIS)

    Min, Xiujuan; Mu, Deying; Li, Ruhong; Dai, Changsong

    2016-01-01

    Highlights: • Sintering time of Li_3V_2(PO_4)_3 reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li_3V_2(PO_4)_3 was improved by reducing sintering time. • The Li_3V_2(PO_4)_3 production process was simplified during material synthesis stage. - Abstract: Li_3V_2(PO_4)_3/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li_3V_2(PO_4)_3/C was characterized by adding different amounts of H_2O_2. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li_3V_2(PO_4)_3/C electrochemical performance of adding 15 mL H_2O_2 was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g"−"1. Because of adding H_2O_2 in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H_2O_2 shortened the sintering time and significantly improved the electrochemical performance of Li_3V_2(PO_4)_3/C.

  8. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)22H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    Science.gov (United States)

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)22H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.

  9. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    -bonded configuration with the H2O subunit acting as the hydrogen bond donor to the π-cloud of C2H4. A (semi)-empirical value for the change of vibrational zero-point energy of 4.0–4.1 kJ mol−1 is proposed and the combination with quantum chemical calculations at the CCSD(T)-F12b/aug-cc-pVQZ level provides a reliable....... The present findings demonstrate that the relative stability of the weak hydrogen bond motifs is not entirely rooted in differences of electronic energy but also to a large extent by differences in the vibrational zero-point energy contributions arising from the class of large-amplitude intermolecular modes....... estimate of 7.1 ± 0.3 kJ mol−1 for the dissociation energy D0 of the C2H4H2O complex. In addition, tentative assignments for the two strongly infrared active OH librational modes of the ternary C2H4—HOH—C2H4 complex having H2O as a doubly OH⋯π hydrogen bond donor are proposed at 213.6 and 222.3 cm−1...

  10. The nido-osmaboranes [2,2,2-(CO)(PPh(3))(2)-nido-2-OsB(5)H(9)] and [6,6,6-(CO)(PPh(3))(2)-nido-6-OsB(9)H(13)].

    Science.gov (United States)

    Bould, J; Kennedy, J D; Thomas, R L; Rath, N P; Barton, L

    2001-11-01

    The structural characterization of the osmahexaborane 2-carbonyl-2,2-bis(triphenylphosphine)-nido-2-osmahexaborane(9), [Os(B(5)H(9))(C(18)H(15)P)(2)(CO)], (I), a metallaborane analogue of B(6)H(10), confirms the structure proposed from NMR spectroscopy. The structure of the osmadecaborane 6-carbonyl-6,6-bis(triphenylphosphine)-nido-6-osmadecaborane(13), [Os(B(9)H(13))(C(18)H(15)P)(2)(CO)], (IV), is similarly confirmed. The short basal B-B distance of 1.652 (8) A in (I), not bridged by an H atom, mirrors that in the parent hexaborane(10) [1.626 (4) A].

  11. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bhat Zahoor; Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in [Solid State Research Laboratory, Department of Physics, University of Kashmir, Srinagar 190006 (India)

    2016-04-14

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O]. X-ray crystal structure analyses reveal that it crystallizes in the P4{sub 1}2{sub 1}2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  12. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  13. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]63-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  14. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm)

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2014-01-01

    The thermal decomposition of Dy(III), Tb(III), Gd(III), Eu(III), and Sm(III) propionate monohydrates was studied in argon by means of simultaneous differential thermal analysis and thermogravimetry, infrared-spectroscopy, X-ray diffraction, and optical microscopy. After dehydration, which takes......, an intermediate stage involving a RE2O(C2H5CO2)4 composition was evidenced in the case of the Eu- and Sm-propionates. For all compounds, further decomposition of RE2O2CO3 into the corresponding sesquioxides (RE2O3) is accompanied by the release of CO2. The thermal decomposition of Dy- and Tb-propionates occurs...

  15. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  16. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Jaran Sritharathikhun

    2014-01-01

    Full Text Available This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ solar cells. A p-μc-SiO:H film with a wide optical band gap (E04, 2.1 eV, can be obtained by increasing the CO2/SiH4 ratio; however, the tradeoff between E04 and dark conductivity must be considered. The CO2/SiH4 ratio of the p-μc-SiO:H emitter layer also significantly affects the performance of the solar cells. Compared to the cell using p-μc-Si:H (CO2/SiH4 = 0, the cell with the p-μc-SiO:H emitter layer performs more efficiently. We have achieved the highest efficiency of 18.3% with an open-circuit voltage (Voc of 692 mV from the cell using the p-μc-SiO:H layer. The enhancement in the Voc and the efficiency of the solar cells verified the potential of the p-μc-SiO:H films for use as the emitter layer in c-Si-HJ solar cells.

  17. Ce2O3-SO3-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Belokoskov, V.I.; Trofimov, G.V.; Govorukhina, O.A.

    1978-01-01

    The solubility, solid phase composition and crystal characteristics in the Ce 2 O 3 -SO 3 -H 2 O system have been studied in a broad range of sulfuric acid concentrations (25 to 80% SO 3 ) at temperatures from 150 to 200 deg C. It has been established that in the system the equilibrium had been reached after 15 to 20 days. At 150 deg C, Ce 2 (SO 4 ) 3 x2H 2 O, Ce 2 (SO 4 ) 3 xH 2 O sulfates and Ce 2 (SO 4 ) 3 x3H 2 SO 4 acid salt crystallize in the system. At 200 deg C, the same sulfates crystallize in the system, except that the bisaturation points of the system are shifted, with respect to 150 deg C, into the region of higher SO 3 concentration and correspond to solutions with a SO 3 concentration of 57.8 and 65%. The solubility of cerium(3) at 150 deg C is about 0.5% Ce 2 O 3 . An increase in temperature up to 200 deg C leads to a slightly higher solubility of cerium sulfates

  18. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)26H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  19. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  20. Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH).{O2C-C6(CH3)4-CO2}.nH2O

    International Nuclear Information System (INIS)

    Serre, Christian; Millange, Franck; Devic, Thomas; Audebrand, Nathalie; Van Beek, Wouter

    2006-01-01

    Two new three-dimensional chromium(III) dicarboxylate, MIL-105 or Cr III (OH).{O 2 C-C 6 (CH 3 ) 4 -CO 2 }.nH 2 O, have been obtained under hydrothermal conditions, and their structures solved using X-ray powder diffraction data. Both solids are structural analogs of the known Cr benzenedicarboxylate compound (MIL-53). Both contain trans corner-sharing CrO 4 (OH) 2 octahedral chains connected by tetramethylterephthalate di-anions. Each chain is linked by the ligands to four other chains to form a three-dimensional framework with an array of 1D pores channels. The pores of the high temperature form of the solid, MIL-105ht, are empty. However, MIL-105ht re-hydrates at room temperature to finally give MIL-105lt with pores channels filled with free water molecules (lt: low temperature form; ht: high temperature form). The thermal behaviour of the two solids has been investigated using TGA. Crystal data for MIL-105ht: monoclinic space group C2/c with a = 19.653(1) A, b = 9.984(1) A, c = 6.970(1) A, β = 110.67(1) o and Z = 4. Crystal data for MIL-105lt: orthorhombic space group Pnam with a = 17.892(1) A, b = 11.165(1) A, c = 6.916(1) A and Z = 4

  1. Cs2SO4-Pr2(SO4)3-H2O and NiSO4-Pr2(SO4)3-H2O systems at 75 deg C

    International Nuclear Information System (INIS)

    Onishchenko, M.K.; Skorikov, V.M.; Shevchuk, V.G.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1979-01-01

    To investigate physico-chemical properties of equilibrium saturated solutions and to elucidate the chemical changes under way, the aqueous systems of cesium, nickel and praseodymium (3) sulfates are studied. The method of isothermal saturation of salts at 75 deg C is used. It has been found that in the system Cs 2 SO 4 -Pr 2 (SO 4 ) 3 -H 2 O in a wide concentration range the soluble binary salt Cs 2 SO 4 xPr 2 (SO 4 ) 3 csytallizes in a congruent way. For the system NiSO 4 -Pr 2 (SO 4 ) 3 -H 2 O a solubility curve of the eutonic type is obtained, there being no chemical interaction between the components. The solubility isotherms for the system are given

  2. Observation of stimulated Raman scattering in polar tetragonal crystals of barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Rhee, Hanjo; Eichler, Hans J.; Lux, Oliver [Institute of Optics and Atomic Physics, Technical University of Berlin (Germany); Nemec, Ivan [Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague (Czech Republic); Yoneda, Hitoki; Shirakawa, Akira [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan); Becker, Petra; Bohaty, Ladislav [Section Crystallography, Institute of Geology and Mineralogy, University of Cologne (Germany)

    2017-04-15

    The non-centrosymmetric polar tetragonal (P4{sub 1}) barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O, was found to be an attractive novel semi-organic crystal manifesting numerous χ{sup (2)}- and χ{sup (3)}-nonlinear optical interactions. In particular, with picosecond single- and dual-wavelength pumping SHG and THG via cascaded parametric four-wave processes were observed. High-order Stokes and anti-Stokes lasing related to two SRS-promoting vibration modes of the crystal, with ω{sub SRS1} ∼ 575 cm{sup -1} and ω{sub SRS2} ∼ 2940 cm{sup -1}, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS-active vibration modes is discussed. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.

    1988-01-01

    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  4. Experimental ion mobility measurements in Xe-C2H6

    Science.gov (United States)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-10-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.

  5. 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-ylmethyl]-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-yl-methyl]-6-hydroxy-1,3-di-methylpyrimidine-2,4(1H,3H-dione 3 was synthesized via a multicomponent reaction. The Aldol–Michael addition reactions of N,N-dimethylbarbituric acid, cyclohexane-1,3-dione, and 3-fluorobenzaldehyde in aqueous solution gave the product in high yield. The molecular structure of the compound was confirmed by spectroscopic methods and X-ray crystallography. The title compound (C19H19FN2OH2O crystallizes in the Monoclinic form, P21/c, a = 7.8630 (5 Å, b = 20.0308 (13 Å, c = 11.3987 (8 Å, β = 104.274 (3°, V = 1739.9 (2° Å3, Z = 4, Rint = 0.117, wR(F2 = 0.124, T = 100 K.

  6. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  7. Systems Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O at 25 deg C. Sistemy Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O pri 25 grad S

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Sadetdinov, Sh V; Akimov, V M; Mitrasov, Yu N; Petrova, O V; Klopov, Yu N [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (Russian Federation) Universitet Druzhby Narodov, Moscow (Russian Federation)

    1994-02-01

    Phase equilibriums in the Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM[sub 2]B[sub 4]O[sub 7][center dot]nN[sub 2]H[sub 3]C[sub 2]H[sub 4]OH[center dot]XH[sub 2]O, where M=Li, Na with hydrazine ethanol. K[sub 2]B[sub 4]O[sub 7][center dot]4H[sub 2]O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods.

  8. On the Formation of the C{sub 2}H{sub 6}O Isomers Ethanol (C{sub 2}H{sub 5}OH) and Dimethyl Ether (CH{sub 3}OCH{sub 3}) in Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-06-01

    The structural isomers ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H{sub 2}O/CH{sub 4}) ices to energetic electrons. The main goal is to understand the formation mechanisms in star-forming regions of two C{sub 2}H{sub 6}O isomers: ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical–radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C{sub 3}H{sub 4}), ketene (CH{sub 2}CO), propene (C{sub 3}H{sub 6}), vinyl alcohol (CH{sub 2}CHOH), acetaldehyde (CH{sub 3}CHO), and methyl hydroperoxide (CH{sub 3}OOH), in addition to ethane (C{sub 2}H{sub 6}), methanol (CH{sub 3}OH), and CO{sub 2} detected from infrared spectroscopy. The yield of all the confirmed species is also determined.

  9. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  10. [Protective effect of taxifolin on H2O2-induced 
H9C2 cell pyroptosis].

    Science.gov (United States)

    Ye, Yanqiong; Wang, Xiaoli; Cai, Qian; Zhuang, Jian; Tan, Xiaohua; He, Wei; Zhao, Mingyi

    2017-12-28

    To explore the effect of taxifolin on H2O2-induced pyroptosis in H9C2 cells and the possible mechanisms.
 Methods: The H9C2 cells was divided into 3 groups: a control group, a hydrogen peroxide (H2O2)group and a taxifolin group. The morphology of H9C2 cells was observed by inverted phase contrast microscope. The mitochondrial membrane potential was measured by JC-1 staining and flow cytometry. The alteration of the level of reactive oxygen species (ROS) was detected by specific mitochondrial probe. The protein levels of cysteinyl aspartate specific proteinase-1 (caspase-1)was determined by Western blot. The mRNA levels of interleukin-18 (IL-18), interleukin-1a (IL-1a), interleukin-1b (IL-1b), absent in melanoma 2 (AIM2), apoptosis-associated apeck-like protein (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing protein 4 (NLRC4) were determined by reverse transcription-polymerase chain reaction (RT-PCR).
 Results: Compared with the control group, the morphology of H9C2 cells obviously changed in the H2O2-treated group, which was guadually improved in the presence of taxifolin. Compared with the control group, the mitochondrial membrane potential was markedly decreased in the H2O2-treated cells, accompanied by the increase ofROS (both PH2O2 group, the mitochondrial membrane potential changes in the taxifolin group was increased while the ROS was decreased, with significant difference (both PH2O2-treated group were significantly increased (all PH2O2-induced H9C2 cell pyroptosis through inhibition of AIM2, NLRP3 and NLRC4 in flammasome.

  11. Magnetic susceptibility and specific heat of the one-dimensional conductor (H3O) sub (1,6) Pt (C2O4)2.nH2O at low temperatures

    International Nuclear Information System (INIS)

    Raede, H.S.

    1985-01-01

    It has been shown recently that some transition metal complexes exhibit one-dimensional metallic properties. It is reported, in this context, susceptibility and specific heat measurements of polycrystalline (H 3 O) 1 , 6 Pt(C 2 O 4 ) 2 .nH 2 O in the low temperature range. It is found that the susceptibility can be described by a non-uniform Curie law with a characteristic break in the slope. The specific heat reveals no linear temperature contribution, which could be explained by a transition into a Peierls distorted state. Until 13 0 K, the heat capacity follows a T 3 -law. Deviations at higher temperatures are possibly attributed to the anisotropy of the system [pt

  12. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis.

    Science.gov (United States)

    Yu, Bang-Wei; Li, Jin-Long; Guo, Bin-Bin; Fan, Hui-Min; Zhao, Wei-Min; Wang, He-Yao

    2016-11-01

    Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H 2 O 2 -induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. H9c2 cardiomyoblasts were exposed to H 2 O 2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H 2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Exposure to H 2 O 2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H 2 O 2 -induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H 2 O 2 -induced detrimental effects. Moreover, exposure to H 2 O 2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H 2 O 2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H 2 O 2 -induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H 2 O 2 -induced phosphorylation of JNK and ERK but not that of p38. Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  13. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  14. Completing the series. New coordination networks of composition {sup 3}{sub ∞}[RE{sub 2}(ADC){sub 3}(H{sub 2}O){sub 6}].2H{sub 2}O with RE = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Y and ADC{sup 2-} = acetylenedicarboxylate ({sup -}O{sub 2}C-C≡C-CO{sub 2}{sup -})

    Energy Technology Data Exchange (ETDEWEB)

    Gramm, Verena K.; Schuy, Andrea; Ruschewitz, Uwe [Institut fuer Anorganische Chemie, Koeln Univ. (Germany); Suta, Markus; Wickleder, Claudia [Anorganische Chemie, Universitaet Siegen (Germany); Sternemann, Christian [Fakultaet Physik / DELTA, Technische Universitaet Dortmund (Germany)

    2018-02-01

    The crystal structures of {sup 3}{sub ∞}[RE{sub 2}(ADC){sub 3}(H{sub 2}O){sub 6}].2H{sub 2}O (RE = Pr, Nd, Sm, Eu, Tb, Dy) were solved and refined from X-ray single crystal data. They crystallize in a structure type already known for RE = La, Ce and Gd (P1, no. 2, Z = 2), which is characterized by REO{sub 9} polyhedra forming dimeric units being the nodes of a 3D framework structure linked by ADC{sup 2-} anions ({sup -}O{sub 2}C-C≡C-CO{sub 2}{sup -} = acetylenedicarboxylate). From synchrotron powder diffraction data it was shown that isostructural coordination networks are formed for RE = Ho, Er, Y, whereas for RE = Tm, Yb, Lu a new structure type crystallizing in a highly complex crystal structure with a large orthorhombic unit cell is found. All compounds are obtained by slow evaporation of an aqueous solution containing RE(OAc){sub 3}.xH{sub 2}O and acetylenedicarboxylic acid (H{sub 2}ADC). The coordination networks of composition {sup 3}{sub ∞}[RE{sub 2}(ADC){sub 3}(H{sub 2}O){sub 6}].2H{sub 2}O were thoroughly investigated by thermal analysis and for RE = Eu, Tb, a strong red and green photoluminescence was observed and investigated by means of UV/Vis spectroscopy. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Synthesis, spectroscopic, structural and thermal characterizations of [(C7H6NO42TeBr6·4H2O

    Directory of Open Access Journals (Sweden)

    S. Smaoui

    2018-02-01

    Full Text Available Tellurium (IV complexes with pyridine-2,6-dicarboxylate ligand were synthesized by slow evaporation from aqueous solutions yielding a new compound: [(C7H6NO42TeBr6·4H2O]. The structure of this compound was solved and refined by single-crystal X-ray diffraction. The compound is centrosymmetric P21/c (N°: 14 with the parameters a = 8.875(5 Å, b = 15.174(5 Å, c = 10.199(5 Å, β = 94.271° (5 and Z = 2. The structure consists of isolated H2O, isolated [TeBr6]2− octahedral anions and (pyridine-2,6-dicarboxylate [C7H6NO4]+ cations. The stability of the structure was ensured by ionic and hydrogen bonding contacts (N–H⋯Br and O–H⋯Br and Van-Der Walls interaction. The thermal decomposition of the compound was studied by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The FTIR and Raman spectroscopy at different temperatures confirm the existence of vibrational modes that correspond to the organic, inorganic and water molecular groups. Additionally, the UV–Vis diffuse reflectance spectrum was recorded in order to investigate the band gap nature. The measurements show that this compound exhibits a semiconducting behavior with an optical band gap of 2.66 eV.

  16. Polymeric anionic networks using dibromine as a crosslinker; the preparation and crystal structure of [(C4H9)4N]2[Pt2Br10].(Br2)7 and [(C4H9)4N]2[PtBr4Cl2].(Br2)6.

    Science.gov (United States)

    Berkei, Michael; Bickley, Jamie F; Heaton, Brian T; Steiner, Alexander

    2002-09-21

    The reaction of M[PtX3(CO)] (M+ = [(C4H9)4N]+, X = Br, Cl) with an excess of Br2 gives the new platinum(IV) salts, [(C4H9)4N]2[Pt2Br10].(Br2)7, 1, and [(C4H9)4N]2[PtBr4Cl2].(Br2)6, 2, which, in the solid state, contain strong Br Br interactions resulting in the formation of polymeric networks; they could provide useful solid storage reservoirs for elemental bromine.

  17. Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Olchowka, Jakub; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry [Unite de Catalyse et Chimie du Solide (UCCS) - UMR CNRS 8181, Universite de Lille Nord de France, USTL-ENSCL, Villeneuve d' Ascq (France)

    2013-04-15

    A new heterometallic uranyl zinc carboxylate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O, has been hydrothermally prepared (150 C, 24 h) by using 1,2,3,4,5,6-benzenehexacarboxylic acid (mellitic acid) as organic linker in order to form a three-dimensional network. Four of the six carboxylate groups of the mellitate ligand interact with mononuclear uranyl or zinc cations, which are eightfold (hexagonal bipyramid, UO{sub 8}) or sixfold [octahedron, ZnO{sub 2}(H{sub 2}O){sub 4}] coordinated, respectively. The remaining free carboxylate arms of the mellitate species preferentially interact through hydrogen bonds with water molecules trapped within the framework. Thermogravimetric and X-ray thermodiffraction (up to 800 C) analyses and in situ infrared spectroscopy (up to 210 C) indicated that both free and bound water species are evacuated from the structure in one step between 80 and 170 C, followed by its transformation into an unknown, anhydrous, poorly crystalline phase [UO{sub 2}Zn(mel)] up to 320 C. After the formation of an amorphous phase, the re-crystallization of oxides α-ZnU{sub 3}O{sub 10} and ZnO was observed from 460 C. The fluorescence spectrum of the as-synthesized uranyl zinc mellitate shows the six bands that are typical for vibronic couplings of the [O=U=O]{sup 2+} moiety. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  19. Synthesis, crystal structure and magnetic properties of [Cu(mal(abpt(H2O].3/2H2O and [Cu2(sq(abpt 2].2H2O (mal = malonate, sq = squarate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole

    Directory of Open Access Journals (Sweden)

    Eno A. Ededet

    2011-04-01

    Full Text Available Two new mixed-ligand complexes of formula [Cu(mal(abpt(H2O].3/2H2O (1 and [Cu2(sq(abpt2].2H2O (2 [mal = malonate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole and sq = squarate], have been prepared and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 crystallizes in the monoclinic system, space group C2/c, with a = 14.0086(2 Å, b = 10.0980(2 Å, c = 25.630(4 Å; β = 97.5900(10 o, and Z = 8. Complex 2 crystallizes in the triclinic system, space group P-1 with a = 7.5696(15 Å, b = 8.4697(17 Å, c = 11.049(2 Å; β = 93.00(3o, α = 96.98(3, γ = 90.111(3 and Z = 1. Complex 1 consist of a neutral mononuclear [Cu(mal(abpt(H2O] unit and water molecule of crystallization in a distorted square pyramidal coordination sphere, while complex 2 is viewed as being made up of [Cu(sq(abpt2] units with the squarato ligand bridging the two copper(II cations. Variable temperature magnetic behaviour of the complexes reveals the existence of weak antiferromagnetic interaction for complex 1 and weak ferromagnetic intrachain interaction for complex 2.

  20. A new metal-organic framework for separation of C2H2/CH4 and CO2/CH4 at room temperature

    Science.gov (United States)

    Duan, Xing; Zhou, You; Lv, Ran; Yu, Ben; Chen, Haodong; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2018-04-01

    A 3D microporous metal-organic framework with open Cu2+ sites and suitable pore space, [Cu2(L)(H2O)2]·(H2O)4(DMF)8 (ZJU-15, H4L = 5,5‧-(9H-carbazole-2,7-diyl)diisophthalic acid; DMF = N,N-dimethylformamide; ZJU = Zhejiang University), has been constructed and characterized. The activated ZJU-15a has three different types of cages and exhibits BET surface area of 1660 m2 g-1, and can separate gas mixture of C2H2/CH4 and CO2/CH4 at room temperature.

  1. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao, E-mail: dbwang@qust.edu.cn; Wang, Wenqiang; Wang, Lei, E-mail: inorchemwl@126.com

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 22H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl(C{sub 2}O

  2. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  3. Synthesis and Crystal Structure of an Unprecedented Supramolecular Complex[Co2-ClO4)2(H2O)22MA

    Institute of Scientific and Technical Information of China (English)

    XU,Jing; BAI,Zhengshuai; SUN,Weiyin

    2009-01-01

    A new supramolecular framework[Co2-C104)2(H2O)22MA(1)[MA=melamine(C3H6N6)]has been syn-thesized by a hydrothermal method.Interestingly,there ale inorganic and organic building blocks with two different supramolecular synthons:(a)2D(4,4)network constructed by infinite inorganic 1D chains through interchain hy-drogen bonding interactions;(b)1D zigzag organic chains formed by hydrogen bonds, which further stack up through,ππ-interactions between the two adjacent MA molecules.The entire structure of 1 is a 3D supramolecular framework resulting from the presence of abundant hydrogen bonds between infinite[CO2-C1O4)2(H2O)2]n chains and zigzag MA chains in different sheets.1 gives a nice example of supramolecular framework based on non-covalent interactions including hydrogen bonding and π-π interactions.

  4. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr22-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  5. tert-Butyl 3-(8-bromo-4H,10H-1,2-oxazolo[4,3-c][1]benzoxepin-10-yl-2-methyl-1H-indole-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Ankur Trigunait

    2010-08-01

    Full Text Available In the title compound, C25H23BrN2O4, the seven-membered ring adopts a twisted-boat conformation. The indole ring system is planar within 0.021 (2 Å and the ester group [–C(=O—O—C–] is almost coplanar with it [dihedral angle = 3.0 (2°]. The conformation of the ester group is influenced by intramolecular C—H...O interactions. In the crystal structure, molecules are linked into chains along the b axis by C—H...N hydrogen bonds.

  6. High purity H2/H2O/Ni/SZ electrodes at 500º C

    DEFF Research Database (Denmark)

    Høgh, Jens Valdemar Thorvald; Hansen, Karin Vels; Norrman, Kion

    2013-01-01

    of stabilized zirconia (SZ) with 10, 13 and 18 mol% yttria and one with 6 mol% scandia plus 4 mol% yttria were studied at open circuit voltage at 400-500 C in mixtures of H2/H2O over 46 days. The polarization resistances (Rp) for all samples increased significantly during the first 10-20 days at 500 C...

  7. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  8. 2-(4-Methylphenyl-7-(2-methylpropoxy-4H-chromen-4-one–6-chloro-2-(4-methylphenyl-7-(2-methylpropoxy-4H-chromen-4-one (19/1

    Directory of Open Access Journals (Sweden)

    Vijay M. Barot

    2012-08-01

    Full Text Available The title co-crystal, 0.95C20H20O3·0.05C20H19ClO3, arises as the chloride carried over during the synthesis shares a position with an aromatic H atom; the partial occupancies are 0.947 (2 and 0.053 (2 for H and Cl, respectively. The molecular structure is stabilized by intramolecular C—H...O contacts, forming pseudo five- and six-membered rings with S(5 and S(6 graph-set motifs, respectively. The crystal structure features π–π stacking interactions between the centroids of the central fused ring systems [centroid–centroid distance = 3.501 (2 Å].

  9. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen

    Science.gov (United States)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.

    1991-01-01

    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  10. Aspects of transmetallation reactions of 2-Me2NCH2C6H4- and 2,6-(Me2NCH2)-C6H3-metal (Pd,Pt,Hg,Tl) complexes with metal carboxylates and low-valent metal (Pd,Pt) complexes

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Vrieze, K.

    1981-01-01

    A study has been made of reactions involving organometallic compounds containing ortho-Me{2}NCH{2} substituted aryl ligands. The single step syntheses of the new compounds [(2-Me{2}NCH{2}C{6}H{4}){2}TlCl], [ [{(S)-2-Me{2}NCH(Me)C{6}H{4}}{2}TlCl], [{(S)-2-Me{2}NCH(Me)C{6}H{4}}TlCl{2}], [{2,

  11. Multicomponent Biginelli's synthesis of 3,4-dihydropyrimidin-2(1H-ones promoted by SnCl2.2H2O

    Directory of Open Access Journals (Sweden)

    Russowsky Dennis

    2004-01-01

    Full Text Available The ability of SnCl2.2H2O as catalyst to promote the Biginelli three-component condensation reaction from a diversity of aromatic aldehydes, ethyl acetoacetate and urea or thiourea is described. The reaction was carried out in acetonitrile or ethanol as solvents in neutral media and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3.6H2O, NiCl2.6H2O and CoCl2.6H2O which were used with HCl as co-catalyst. The synthesis of 3,4-dihydropyrimidinones was achieved in good to excelent yields.

  12. Synthesis and structural characterization of two cobalt phosphites: 1-D (H3NC6H4NH3)Co(HPO3)2 and 2-D (NH4)2Co2(HPo3)3

    International Nuclear Information System (INIS)

    Cheng, C.-C.; Chang, W.-K.; Chiang, R.-K.; Wang, S.-L.

    2010-01-01

    Two new cobalt phosphites, (H 3 NC 6 H 4 NH 3 )Co(HPO 3 ) 2 (1) and (NH 4 ) 2 Co 2 (HPO 3 ) 3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO 4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO 4 tetrahedra and HPO 3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co 2 O 9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction. - Graphical abstract: The 2-D structure of (NH 4 ) 2 Co 2 (HPO 3 ) 3 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by dimmeric Co 2 O 9 to form complex layers.

  13. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  14. 1,4-Dihydroxyquinoxaline-2,3(1H,4H-dione

    Directory of Open Access Journals (Sweden)

    Wolfgang Frey

    2008-03-01

    Full Text Available The asymmetric unit of the title compound, C8H6N2O4, contains one half-molecule; a twofold rotation axis bisects the molecule. The quinoxaline ring is planar, which can be attributed to electron delocalization. In the crystal structure, intermolecular O—H...O hydrogen bonds link the molecules into R22(10 motifs, leading to layers, which interact via phenyl–phenyl interactions (C...C distances in the range 3.238–3.521 Å.

  15. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  16. Tinnunculite, C5H4N4O3 · 2H2O: Occurrences on the Kola Peninsula and Redefinition and Validation as a Mineral Species

    Science.gov (United States)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Belakovskiy, D. I.; Lykova, I. S.; Zubkova, N. V.; Shcherbakova, E. P.; Britvin, S. N.; Chervonnyi, A. D.

    2017-12-01

    Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as "guano microdeposits." The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. D calc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (-), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2 V obs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 O, 28.4 C, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/ c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern ( d, Å- I[ hkl]) are 8.82-84[002], 5.97-15[011], 5.63-24[102̅, 102], 4.22-22[112], 3.24-27[114̅,114], 3.18-100[210], 3.12-44[211̅, 211], 2.576-14[024].

  17. Soft template synthesis of mesoporous Co3O4/RuO2.xH2O composites for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Yang; Zhao Weiwei; Zhang Xiaogang

    2008-01-01

    Co 3 O 4 /RuO 2 .xH 2 O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO 3 ) 2 .6H 2 O and RuCl 3 .0.5H 2 O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 deg. C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m 2 g -1 . The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 deg. C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM)

  18. Specific primary ionization induced by minimum ionizing electrons in CH4, C2H6, C3H8, i-C4H10, Ar, DME,TEA and TMAE

    International Nuclear Information System (INIS)

    Melamud, G.; Breskin, A.; Chechik, R.; Pansky, A.

    1992-10-01

    Specific primary ionization induced by minimum ionizing electrons has been measured in several gases and vapors. Charges deposited by β-electrons in a low pressure gas, were collected, amplified by a multistep gaseous electron multiplier and counted. The high counting efficiency of the multiplier provided results of systematically higher values as compared to existing data. The respective values of the specific primary ionization in CH 4 C 2 H 6 , C 3 H 8 ,i-C 4 H 10 , Argon, Dimethylether, Triethylamine and Tetrakis(dimethylamino) ethylene are: 0.034, 0.065, 0.095, 0.12, 0.03, 0.082, 0.0195 and 0.370 clusters/cm*Torr. We present the experimental method and discuss the results and their accuracy. (authors)

  19. Interconversion of η3-H2SiRR' σ-complexes and 16-electron silylene complexes via reversible H-H or C-H elimination.

    Science.gov (United States)

    Lipke, Mark C; Neumeyer, Felix; Tilley, T Don

    2014-04-23

    Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling

  20. Optimization of a cascade refrigeration system using refrigerant C_3H_8 in high temperature circuits (HTC) and a mixture of C_2H_6/CO_2 in low temperature circuits (LTC)

    International Nuclear Information System (INIS)

    Nasruddin; Sholahudin, S.; Giannetti, N.; Arnas

    2016-01-01

    Highlights: • Multi-objective optimization is conducted in the cascade refrigeration system. • Combination of operating temperature and refrigerant performance has been studied. • Characteristic of C_3H_8 and a mixture of C_2H_6/CO_2 have been investigated. • Determining of CO_2 fraction to optimize refrigeration system has been done. - Abstract: This paper discusses the multi-objectives optimization of a cascade refrigeration system using refrigerant C_3H_8 in high temperature circuits (HTC) and a mixture of C_2H_6/CO_2 in low temperature circuits (LTC). The evaporator temperature, condenser temperature, C_2H_6/CO_2 mixture condensation temperature, cascade temperature differences, and the CO_2 mass fraction are chosen as the decision variables. Whereas cooling capacity, cold space temperature, and ambient temperature are taken as the constraints. The purpose of this research is to design a cascade refrigeration system whose optimum performance are defined in terms of economics and thermodynamics. Accordingly, there are two objective functions that should be simultaneously optimized including the total annual cost which consists of the capital and operational cost and the total exergy destruction of the system. To this aim, the optimum operating temperature of the system and CO_2 fraction should be determined so that the system has minimum exergy destruction and annual cost. Results show that, the optimum value of the decision variables for this system can be determined by trade-off between annual cost and exergy destruction.

  1. Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6(C10H8N22]·2C10N2H8·5H2O}n

    Directory of Open Access Journals (Sweden)

    Emmanuel Aubert

    2016-11-01

    Full Text Available The coordination polymer {[Cu(SiF6(C10H8N22]·2C10H8N2·5H2O}n, systematic name: poly[[bis(μ2-4,4′-bipyridine(μ2-hexafluoridosilicatocopper(II] 4,4′-bipyridine disolvate pentahydrate], contains pores which are filled with water and 4,4′-bipyridine molecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bipyridine guest molecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the molecules interact through π–π stacking. Ordered water molecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture perpendicular to the 4,4′-bipyridine channels.

  2. Synthesis and Structural Characterisation of [Ir4(CO8(CH3(m4-h3-Ph2PCCPh(m-PPh2] and of the Carbonylation Product [Ir4(CO8{C(OCH3}(m4-h3-Ph2PCCPh(m-PPh2]; First Evidence for the Formation of a CO Cluster Adduct before CO Insertion

    Directory of Open Access Journals (Sweden)

    Braga Dario

    1999-01-01

    Full Text Available Deprotonation of [(mu-HIr4(CO10(mu-PPh2], 1, gives [Ir4(CO10(mu-PPh2]- that reacts with Ph2PCCPh and CH3I to afford [Ir4(CO8(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2], 2 (34%, besides [Ir4(CO9(mu3-eta³-Ph2PC(HCPh(mu-PPh2] and [(mu-HIr4(CO9(Ph2PCºCPh(mu-PPh2]. Compound 2 was characterised by a single crystal X-ray diffraction analysis and exhibits a flat butterfly of metal atoms, with the Ph2PCCPh ligand interacting with all four Ir atoms and the methyl group bonded terminally to a wingtip Ir atom. Carbonylation of 2 yields initially (25 °C, 20 min a CO addition product that, according to VT 31P{¹H} and 13C{¹H} studies, exists in solution in the form of two isomers 4A and 4B (8:1, and then (40 °C, 7 h, the CO insertion product [Ir4(CO8{C(OCH3}(mu4-eta³-Ph2PCCPh(mu-PPh2], 5. The molecular structure of 5, established by an X-ray analysis, is similar to that of 2, except for the acyl group that remains bound to the same Ir atom. The process is reversible at both stages. Treatment of 2 with PPh3 and P(OMe3 affords the CO substitution products [Ir4(CO7L(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2] (L = PPh3, 6 and P(OMe3, 7, instead of the expected CO inserted products. According to the ¹H and 31P{¹H} NMR studies, the PPh3 derivative 6 exists in the form of two isomers (1:1 that differ with respect to the position of this ligand.

  3. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  4. 5-Isobutyl-4-phenylsulfonyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    M. Venkatesh

    2010-12-01

    Full Text Available The title compound, C13H16N2O3S, consists of two crystallographically independent molecules with similar geometries and exists in a keto form, the C=O bond lengths being 1.267 (2 and 1.254 (2 Å. In both molecules, the pyrazole rings are approximately planar, with maximum deviations of 0.017 (2 and 0.010 (2 Å, and the dihedral angles between the pyrazole and phenyl rings are 83.63 (11 and 70.07 (12°. In one molecule, an intramolecular C—H...O hydrogen bond with an S(6 ring motif is observed. In the crystal, intermolecular N—H...O and C—H...O hydrogen bonds link the molecules into two-dimensional networks parallel to the ab plane.

  5. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    Science.gov (United States)

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  6. Electrical properties of reactive-ion-sputtered Al{sub 2}O{sub 3} on 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Madhup, E-mail: madhup.iit@gmail.com [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Dutta, Gourab [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Mannam, Ramanjaneyulu [Department of Physics and Nano Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai 600036 (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-05-31

    Al{sub 2}O{sub 3} was deposited on n-type 4H-SiC by reactive-ion-sputtering (RIS) at room temperature using aluminum target and oxygen as a reactant gas. Post deposition oxygen annealing was carried out at a temperature of 1100 °C. Metal-oxide-semiconductor (MOS) test structures were fabricated on 4H-SiC using RIS-Al{sub 2}O{sub 3} as gate dielectric. The C-V characteristics reveal a significant reduction in flat band voltage for oxygen annealed RIS-Al{sub 2}O{sub 3} samples (V{sub fb} = 1.95 V) compared to as-deposited Al{sub 2}O{sub 3} samples (V{sub fb} > 10 V), suggesting a reduction in negative oxide charge after oxygen annealing. Oxygen annealed RIS-Al{sub 2}O{sub 3} samples also showed significant improvement in I-V characteristics compared to as-deposited RIS-Al{sub 2}O{sub 3} samples. A systematic analysis was carried out to investigate the leakage current mechanisms present in oxygen annealed RIS-Al{sub 2}O{sub 3} on 4H-SiC at higher gate electric field and at different operating temperature. For measurement temperature (T) < 303 K, Fowler–Nordheim (FN) tunneling was found to be the dominant leakage mechanism and for higher temperature (T ≥ 303 K), a combination of FN tunneling and Poole-Frenkel (PF) emission was confirmed. The improvement in I-V characteristics of oxygen annealed RIS-Al{sub 2}O{sub 3}/4H-SiC MOS devices is attributed to large effective barrier height (Φ{sub B} = 2.53 eV) at Al{sub 2}O{sub 3}/SiC interface, due to the formation of an interfacial SiO{sub 2} layer during oxygen annealing, as confirmed from X-ray Photoelectron Spectroscopy results. Further improvement in C-V characteristics for oxygen annealed RIS-Al{sub 2}O{sub 3}/4H-SiC MOS devices was observed after forming gas annealing at 400 °C. - Highlights: • O{sub 2} annealed RIS-Al{sub 2}O{sub 3} on 4H-SiC showed better performance than other reported result. • FN, FN + PF tunneling was found in O{sub 2} annealed RIS-Al{sub 2}O{sub 3} for different temp. ranges. • Al

  7. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  8. Ethyl 2-amino-4-(4-bromophenyl-6-methoxy-4H-benzo[h]chromene-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2013-03-01

    Full Text Available In the title compound, C23H20BrNO4, the pyran ring has a flattened boat conformation with the O and methine C atoms lying to one side of the plane [0.160 (5 and 0.256 (6 Å, respectively] defined by the remaining atoms. Nevertheless, the 4H-benzo[h]chromene ring system approximates a plane (r.m.s. deviation = 0.116 Å with the bromobenzene ring almost perpendicular [dihedral angle = 83.27 (16°] and the ester group coplanar [C—C—C—O = 3.4 (5°]; the methoxy substituent is also coplanar [C—O—C—C = 174.5 (3°]. In addition to an intramolecular N—H...O(ester carbonyl hydrogen bond, the ester carbonyl O atom also forms an intermolecular N—H...O hydrogen bond with the second amine H atom, generating a zigzag supramolecular chain along the c axis in the crystal packing. The chains are linked into layers in the bc plane by N—H...Br hydrogen bonds, and these layers are consolidated into a three-dimensional architecture by C—H...π interactions.

  9. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  10. Study of NaBH4 reaction with RhCl3·4H2O and H2PtCl6·6H2O in dimethylformamide

    International Nuclear Information System (INIS)

    Khain, V.S.; Val'kova, V.P.

    1988-01-01

    Data on study of NaBH 4 reactions with RhCl 3 x4H 2 O and H 2 PtCl 6 x6H 2 O in dimethylformamide, which is a good solvent of both complex hydride and compounds of platinum metals are presented. Rhodium (3) and platinum (4) reduction by sodium tetrahydridoborate in dimethylformamide proceeds quantitatively up to element state. Depositions of powder-like rhodium and platinum or their sols stable up to 8 months are formed depending on the ratio of concentrations of the reacting substances. Stoichiometry of redox-reactions is established based on spectrophotometric, gasovolumetric measurements,

  11. The MgSeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1984-01-01

    The method of isothermal solubility at 25 deg C has been used to study MgSeO 4 -UO 2 SeO 4 -H 2 O system. Formation of the new compound Mg 2 (UO 2 ) 3 (SeO 4 ) 5 X32H 2 O, congruently soluble in water is stated. Thermographic and X-ray diffraction investigations of the prepared magnesium selenato-uranylate and products of its dehydration are conducted

  12. Copper-promoted methylene C-H oxidation to a ketone derivative by O2.

    Science.gov (United States)

    Deville, Claire; McKee, Vickie; McKenzie, Christine J

    2017-01-17

    The methylene group of the ligand 1,2-di(pyridin-2-yl)-ethanone oxime (dpeo) is slowly oxygenated by the O 2 in air under ambient conditions when [Cu(dpeo) 2 ](ClO 4 ) 2 is dissolved in ethanol or acetonitrile. An initial transient ketone product, 2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone, (hidpe) was characterized in the heteroleptic copper(ii) complex [Cu(bpca)(hidpe)](ClO 4 ). The co-ligand in this complex, N-(2'-pyridylcarbonyl)pyridine-2-carboximidate (bpca - ), is derived from a copper-promoted Beckmann rearrangement of hidpe. In the presence of bromide only [Cu(bpca)Br] is isolated. When significant water is present in reaction mixtures copper complexes of dpeo, hidpe and bpca - are not recovered and [Cu(pic) 2 H 2 O] is isolated. This occurs since two equivalents of picolinate are ultimately generated from one equivalent of oxidized and hydrolysed dpeo. The copper-dependent O 2 activation and consequent stoichiometric dpeo C-H oxidation is reminiscent of the previously observed catalysis of dpeo oxidation by Mn(ii) [C. Deville, S. K. Padamati, J. Sundberg, V. McKee, W. R. Browne, C. J. McKenzie, Angew. Chem., Int. Ed., 2016, 55, 545-549]. By contrast dpeo oxidation is not observed during complexation reactions with other late transition metal(ii) ions (M = Fe, Co, Ni, Zn) under aerobic conditions. In these cases bis and tris complexes of bidentate dpeo are isolated in good yields. It is interesting to note that dpeo is not oxidised by H 2 O 2 in the absence of Cu or Mn, suggesting that metal-based oxidants capable of C-H activation are produced from the dpeo-Cu/Mn systems and specifically O 2 . The metastable copper complexes [Cu(dpeo) 2 ](ClO 4 ) 2 and [Cu(bpca)(hidpe)](ClO 4 ), along with [NiX 2 (dpeo) 2 ] (X = Cl, Br), [Ni(dpeo) 3 ](ClO 4 ) 2 , [Co(dpeo) 3 ](ClO 4 ) 3 and the mixed valence complex [Fe III Fe(dpeo-H) 3 (dpeo) 3 ](PF 6 ) 4 , have been structurally characterized.

  13. High pressure oxidation of C2H4/NO mixtures

    DEFF Research Database (Denmark)

    Giménez-López, J.; Alzueta, M.U.; Rasmussen, C.T.

    2011-01-01

    An experimental and kinetic modeling study of the interaction between C2H4 and NO has been performed under flow reactor conditions in the intermediate temperature range (600–900K), high pressure (60bar), and for stoichiometries ranging from reducing to oxidizing conditions. The main reaction...... pathways of the C2H4/O2/NOx conversion, the capacity of C2H4 to remove NO, and the influence of the presence of NOx on the C2H4 oxidation are analyzed. Compared to the C2H4/O2 system, the presence of NOx shifts the onset of reaction 75–150K to lower temperatures. The mechanism of sensitization involves...... the reaction HOCH2CH2OO+NO→CH2OH+CH2O+NO2, which pushes a complex system of partial equilibria towards products. This is a confirmation of the findings of Doughty et al. [3] for a similar system at atmospheric pressure. Under reducing conditions and temperatures above 700K, a significant fraction of the NOx...

  14. Sr{sub 2}CoMoO{sub 6} anode for solid oxide fuel cell running on H{sub 2} and CH{sub 4} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Engineering Research Center of Nano-GEO Materials of Education Ministry, China University of Geosciences, Wuhan 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Cheng, Jin-Guang; Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Mao, Zong-Qiang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2011-02-15

    The double perovskite Sr{sub 2}CoMoO{sub 6-{delta}} was investigated as a candidate anode for a solid oxide fuel cell (SOFC). Thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the cation array is retained to 800 C in H{sub 2} atmosphere with the introduction of a limited concentration of oxide-ion vacancies. Stoichiometric Sr{sub 2}CoMoO{sub 6} has an antiferromagnetic Neel temperature T{sub N} {approx} 37 K, but after reduction in H{sub 2} at 800 C for 10 h, long-range magnetic order appears to set in above 300 K. In H{sub 2}, the electronic conductivity increases sharply with temperature in the interval 400 C < T < 500 C due to the onset of a loss of oxygen to make Sr{sub 2}CoMoO{sub 6-{delta}} a good mixed oxide-ion/electronic conductor (MIEC). With a 300-{mu}m-thick La{sub 0.8}Sr{sub 0.12}Ga{sub 0.83}Mg{sub 0.17}O{sub 2.815} (LSGM) as oxide-ion electrolyte and SrCo{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as the cathode, the Sr{sub 2}CoMoO{sub 6-{delta}} anode gave a maximum power density of 1017 mW cm{sup -2} in H{sub 2} and 634 mW cm{sup -2} in wet CH{sub 4}. A degradation of power in CH{sub 4} was observed, which could be attributed to coke build up observed by energy dispersive spectroscopy (EDS). (author)

  15. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  16. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Antao, Sytle M.; Dhaliwal, Inayat

    2017-08-01

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedral dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average O>[6] = 2.122(1) Å and average 2–O>[6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average O>[4], O>[6], and 2–O>[6] distances increase linearly with V. The average O> distance is affected by M atoms, whereas the average O> distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.

  17. Comparative study of the catalytic activity of the complexes Cp{sup *}RuCl(PAr{sub 3}){sub 2} [Ar = -C{sub 6H}5 and 4-CF{sub 3}-C{sub 6}H{sub 4}] in the ATRP of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Hernandez, Alejandro M.; Rosales-Velazquez, Claudia P.; Torres-Lubian, Jose R., E-mail: rtorres@ciqa.mx [Departamento de Sintesis de Polimeros, Centro de Investigacion en Quimica Aplicada, Coah. (Mexico); Saldivar-Guerra, Enrique [Departamento de Procesos de Polimerizacion, Centro de Investigacion en Quimica Aplicada, Coah. (Mexico)

    2011-09-15

    Styrene polymerization by ATRP was conducted independently using the complexes Cp{sup *}RuCl(PPh{sub 3}){sub 2}, and Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2} as catalysts, in order to evaluate the influence of the electronic properties of the phosphine ligands on the rate and control of the polymerization. The kinetic data for polymerizations carried out with Cp{sup *}RuCl(PPh{sub 3}){sub 2}, show that molecular weights increase linearly with conversion with an average initiation efficiency of 0.77. The molecular weights obtained in the kinetic study with Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2} also increase with conversion but show a marked deviation below the theoretical molecular weights. This behavior was explained by the gradual, irreversible, oxidation of catalyst Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2} as confirmed by {sup 31}P-NMR spectroscopy. Catalyst Cp{sup *}RuCl(PPh{sub 3}){sub 2} promotes the polymerization with a rate of polymerization higher than that obtained using Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2}; this is consistent with the better electron donating properties of PPh{sub 3} versus P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}. Preliminary studies of styrene polymerization by ATRP in supercritical CO{sub 2}, shows that only catalyst Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2}, with fluorinated ligands, was active. (author)

  18. 1,4-Iron Migration for Expedient Allene Annulations through Iron-Catalyzed C-H/N-H/C-O/C-H Functionalizations.

    Science.gov (United States)

    Mo, Jiayu; Müller, Thomas; Oliveira, João C A; Ackermann, Lutz

    2018-06-25

    C-H activation bears great potential for enabling sustainable molecular syntheses in a step- and atom-economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C-H/N-H/C-O/C-H functionalization sequence. The powerful iron catalysis occurred under external-oxidant-free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4-iron migration regime for facile C-H activations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  20. Hydrothermal synthesis and crystal structure of CsFe23(HPO4)2(PO4)(H2O)

    International Nuclear Information System (INIS)

    Anisimova, N.Yu.; Ilyukhin, A.B.; Chudinova, N.N.; Serafin, M.

    2001-01-01

    The double acid iron-cesium orthophosphate CsFe 2 3 (HPO 4 ) 2 (PO 4 )(H 2 O) was prepared by hydrothermal synthesis (from the Fe 2 O 3 , Cs 2 CO 3 and H 3 PO 4 mixture at 290 Deg C during 1 h following by cooling to 25 Deg C). Its crystal structure (a = 5.021(3), b = 15.80(1), c = 13.646(8), β 94.49(4) Deg, sp. gr. P2 1 /n, Z = 4) was analyzed by X-ray diffraction. The structure is formed by the orthophosphate tetrahedrons and the FeO 6 octahedrons, the water molecule is coordinated by the iron atom [ru

  1. 6-Hydroxy-5-[(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl(4-nitrophenylmethyl]-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    N. Sureshbabu

    2013-11-01

    Full Text Available In the title compound, C21H23N3O7, the pyrimidinedione ring adopts a screw-boat conformation, whereas the cyclohexenone ring adopts an envelope conformation, with the C atom bearing the methyl groups as the flap atom. The dihedral angle between the mean planes of the pyrimidinedione and cyclohexenone rings is 58.78 (2°. The pyrimidinedione and cyclohexenone rings form dihedral angles of 59.94 (3 and 54.73 (2°, respectively, with the 4-nitrophenyl ring. Relatively strong intramolecular O—H...O hydrogen bonds are observed. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming a chain along the c-axis direction.

  2. Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25 C and the influence of Na2O

    International Nuclear Information System (INIS)

    Damidot, D.; Stronach, S.; Kindness, A.; Atkins, M.; Glasser, F.P.

    1994-01-01

    The solubilities of calcium hemicarboaluminate, calcium monocarboaluminate and calcium tricarboaluminate have been determined and the equilibrium phase diagram for the CaO-Al 2 O 3 -CaCO 3 -H 2 O closed system at 25 C has been calculated. Six isothermally invariant points have been located involving six stable hydrates: CH, C 3 AH 6 , AH 3 , calcium hemicarboaluminate, calcium monocarboaluminate and calcite. Calcium tricarboaluminate, the carbonate analogue of ettringite, does not appear to be stable at 25 C. This study was part of a larger study on radioactive waste solidification

  3. Nqrs Data for C3H2Cl10N2PSb[C3HCl4N2P·Cl6HSb](Subst. No. 0601)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C3H2Cl10N2PSb [C3HCl4N2P·Cl6HSb] (Subst. No. 0601)

  4. Cs2SeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1987-01-01

    Using the method of isothermal solubility at 25 deg C the interaction of cesium and uranyl selenates in aqueous solution is studied. Formation of congruently soluble Cs 2 UO 2 (SeO 4 ) 2 x2H 2 O and Cs 2 (UO 2 ) 2 x(SeO 4 ) 3 is ascertained, their crystallographic characteristics being determined

  5. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  6. Syntheses, characterization and nonlinear optical properties of sodium-scandium carbonate Na5Sc(CO3)4·2H2O

    Science.gov (United States)

    Chen, Jie; Luo, Min; Ye, Ning

    2014-10-01

    A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.

  7. Fast Homoepitaxial Growth of 4H-SiC Films on 4° off-Axis Substrates in a SiH4-C2H4-H2 System

    International Nuclear Information System (INIS)

    Liu Bin; Sun Guo-Sheng; Liu Xing-Fang; Zhang Feng; Dong Lin; Zheng Liu; Yan Guo-Guo; Liu Sheng-Bei; Zhao Wan-Shun; Wang Lei; Zeng Yi-Ping; Wang Zhan-Guo; Li Xi-Guang; Yang Fei

    2013-01-01

    Homoepitaxial growth of 4H-SiC epilayers is conducted in a SiH 4 -C 2 H 4 -H 2 system by low pressure hot-wall vertical chemical vapor deposition (CVD). Thick epilayers of 45 μm are achieved at a high growth rate up to 26 μm/h under an optimized growth condition, and are characterized by using a Normaski optical microscope, a scanning electronic microscope (SEM), an atomic force microscope (AFM) and an x-ray diffractometer (XRD), indicating good crystalline quality with mirror-like smooth surfaces and an rms roughness of 0.9 nm in a 5 μm × 5μm area. The dependence of the 4H-SiC growth rate on growth conditions on 4° off-axis 4H-SiC substrates and its mechanism are investigated. It is found that the H 2 flow rate could influence the surface roughness, while good surface morphologies without Si droplets and epitaxial defects such as triangular defects could be obtained by increasing temperature

  8. Analysis of the different zones of glow discharge of ethyl alcohol (C2H6O)

    International Nuclear Information System (INIS)

    Torres, C; Reyes, P G; Mulia, J; Castillo, F; Martínez, H

    2014-01-01

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C 6 H 5 (483.02 nm), CHO (519.56 nm) and H 2 (560.47 nm), in the positive column CO 2 + (315.52 y 337.00 nm), O + (357.48 nm), CH + (380.61 nm) and CO + (399.73 nm); in the cathode region we observed O + (391.19 nm), CHOCHO (428.00 nm), CO + (471.12 nm) and H 2 (656.52 nm). C 6 H 5 , CHO y H 2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  9. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  10. A two-dimensional yttrium phthalate coordination polymer, [Y4(H2O ...

    Indian Academy of Sciences (India)

    Unknown

    polymer, [Y4(H2O)2(C8H4O4)6]∞, I. The Y ions in I are present in four different ... Co etc., the analogous lanthanide ions are also being investigated.2–10 The .... O(18). –237(3). –913(3). 7101(2). 37(1). O(19). –3693(3). –1348(3). 10459(3).

  11. Construction of New Coordination Polymers from 4’-(2,4-disulfophenyl)- 3,2’:63”-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Li, Chao-Jie; He, Jia-En; Chen, Yin-Yu [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Sheng-Run, E-mail: zhengsr@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006 (China); Fan, Jun [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Wei-Guang, E-mail: wgzhang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006 (China)

    2016-01-15

    Nine new coordination compounds, namely, [Co(HDSPTP){sub 2}(H{sub 2}O){sub 4}]·4H{sub 2}O (H{sub 2}DSPTP=4’-(2,4-disulfophenyl)-3,2’:63”-terpyridine, 1 and 2), {[Ni(DSPTP)(H_2O)_43H_2O}{sub n} (3), {[Cu(HDSPTP)_2(H_2O)_3]·8H_2O}{sub n} (4), {[Cu(HDSPTP)_2(H_2O)_36H_2O}{sub n} (5), {[Cu(DSPTP)(H_2O)_2H_2O}{sub n} (6), {[Zn(DSPTP)(H_2O)_22H_2O}{sub n} (7), {[Cd(DSPTP)(H_2O)_22H_2O}{sub n} (8), and [Ag{sub 2}(DSPTP)(H{sub 2}O)]{sub n} (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H{sub 2}DSPTP with Co(NO{sub 3}){sub 2}.6H{sub 2}O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H{sub 2}DSPTP with Ni(NO{sub 3}){sub 26H{sub 2}O resulted in a 1D “S-shaped” coordination chain (compound 3). The reactions of Cu(II) with H{sub 2}DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H{sub 2}DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to µ{sub 7}-mode) and conformations (cis–cis and cis–trans) of HDSPTP{sup −}/DSPTP{sup 2−} ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits

  12. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  13. Picosecond real time study of the bimolecular reaction O(3P)+C2H4 and the unimolecular photodissociation of CH3CHO and H2CO

    Science.gov (United States)

    Abou-Zied, Osama K.; McDonald, J. Douglas

    1998-07-01

    The bimolecular reaction of O(3P) with ethylene and the unimolecular photodissociation of acetaldehyde and formaldehyde have been studied using a picosecond pump/probe technique. The bimolecular reaction was initiated in a van der Waals dimer precursor, C2H4ṡNO2, and the evolution of the vinoxy radical product monitored by laser-induced fluorescence. The NO2 constituent of the complex was photodissociated at 266 nm. The triplet oxygen atom then attacks a carbon atom of C2H4 to form a triplet diradical (CH2CH2O) which subsequently dissociates to vinoxy (CH2CHO) and H. The rise time of vinoxy radical production was measured to be 217 (+75-25) ps. RRKM theory was applied and a late high exit barrier was invoked in order to fit the measured rise time. The structure and binding energy of the van der Waals complex have been modeled using Lennard-Jones type potentials and the results were compared with other systems. The unimolecular side of the potential energy surfaces of this reaction has been investigated by photodissociating acetaldehyde at the same pump energy of 266 nm. The resulting photoproducts, acetyl radical (CH3CO) and formyl radical (HCO), have been monitored by resonance enhanced multiphoton ionization (REMPI) combined with a time-of-flight mass spectrometer. The similarity in the measured evolution times of both radicals indicates the same photodissociation pathway of the parent molecule. The photodissociation rate of acetaldehyde is estimated from RRKM theory to be very fast (3×1012s-1). The T1←S1 intersystem crossing (ISC) rate is found to be the rate determining step to photodissociation and increases with energy. The REMPI mechanism for the production of CH3CO+ is proposed to be the same as that of HCO+(2+1). The HCO product from the photodissociation of formaldehyde at 266 nm reveals a faster T1←S1 ISC rate than in acetaldehyde.

  14. Supramolecular assemblies in [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 46H{sub 2}O complex – Structural, spectroscopic, magnetic and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowska, Agnieszka, E-mail: agnieszka.wojciechowska@pwr.edu.pl [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland); Kochel, Andrzej [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław (Poland); Duczmal, Marek [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland)

    2016-10-01

    The reaction of L-arginine and oxalate ions with copper(II) salts yields a new complex with formula of [Cu(L-Arg){sub 2}(H{sub 2}O)]·C{sub 2}O{sub 46H{sub 2}O (1) (where L-Arg = L-arginine). Single crystals of 1 were synthesized by crystallization from aqueous solution. The complex properties were characterized by X-ray diffraction, spectroscopy (FT-IR, FT-Raman, NIR-Vis-UV and EPR) as well as thermal and magnetic methods. The square pyramidal (SP) geometry around Cu(II) ions in [Cu(L-Arg){sub 2}(H{sub 2}O)]{sup 2+} cation complex is formed by two cis-chelated L-arginine zwitterions and a water molecule coordinated in the apex of square pyramid. The trigonality distortion of SP geometry is relatively small, τ = 0.0087. The solid state EPR spectrum showed broad hyperfine splitting with g{sub ⊥} = 2.061 at 77 K. The copper centres distanced at 7.558(5) Å are joined in a single zig-zag structure via a chain based on the combination of Cu−O(5)−H(29)⋯O(2)−C1−O1−Cu hydrogen bonds along the b axis (d (O2O5) = 2.812 Å). Taking into account the structural features, the magnetic susceptibility data were best-fitted, giving the exchange parameter J = −0.16 cm{sup −1}. Complex 1 is thermally stable up to 66 °C, where it was observed to lose the crystallization water molecules with an 11.7% mass loss (calc. 11.5%). - Highlights: • Crystal and molecular structure of [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 46H{sub 2}O crystals have been studied. • The magnetic interactions of Cu(II) centres are assisted by the formation of single zig-zag chain. • Role of oxalate ions in completed relatively small square pyramid distortion is described. • The cis-fashioned L-arginine created the stronger ligand field than trans-configuration.

  15. Double molybdates in Li2MoO4 - Na2MoO4 - H2O system at 25 grad C

    International Nuclear Information System (INIS)

    Karov, Z.G.; Mirzoev, R.S.; Makitova, D.D.; Zhilova, S.B.; Podnek, A.G.; Urusova, R.Kh.

    1989-01-01

    Solubility in Li 2 MoO 4 - Na 2 MoO 4 - H 2 O system at 25 deg C is first stuied. Formation of two Li 2 MoO 4 · Na 2 MoO 4 · 4H 2 O and Li 2 MoO 4 · 3Na 2 MoO 4 · 12H 2 O compounds in a system is ascertained. Density, refractive index, viscosity, surface tension, electric conductivity and pH of saturated solutions are determined. Isothermes of mole volume, equivalent and reduced electric conductivity and seeming mole volume of salts sum in solutions are calculated. All these properties adequtely confirm the character of components interaction in a system determined by solubility method. Crystallhydrates of binary molybdates are separated, indentified and studied

  16. Suggestion for search of ethylene oxide (c-C2H4O) in a cosmic object

    Science.gov (United States)

    Sharma, M. K.; Sharma, M.; Chandra, S.

    2018-05-01

    Ethylene oxide (c-C2H4O) and its isomer acetaldehyde (CH3CHO) are important organic molecules because of their potential role in the formation of amino acids. The c-C2H4O molecule is a b-type asymmetric top molecule and owing to half-spin of each of the four hydrogen atoms, it has two distinct ortho (nuclear spin one) and para (nuclear spin zero and two) species. It has been detected in the Sgr B2N. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of c-C2H4O molecule and the Einstein A-coefficients for radiative transitions between the levels. The values of Einstein A-coefficients along with the scaled values for the collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer. Brightness-temperatures of five rotational transitions of each of the ortho and para species of c-C2H4O molecule are investigated. Out of these ten transitions, three transitions are found to show the anomalous absorption and rest seven are found to show the emission feature. We have also investigated seven transitions observed unblended in the Sgr B2(N). We have found that the transitions 3_{3 0} - 3_{2 1} (23.134 GHz), 2_{2 0} - 2_{1 1} (15.603 GHz), 3_{3 1} - 3_{2 2} (39.680 GHz) and 1_{1 1} - 0_{0 0} (39.582 GHz) may play important role for the identification of ethylene oxide in a cosmic object.

  17. Synthesis of 14C- and 2H-labeled 1,3 dihydro-3, 3-dimethyl-5-(1,4,5,6,- tetrahydro-6-oxo-3-pyridazinyl)-2H-indol-2-one (LY195115), an orally effective positive inotrope

    International Nuclear Information System (INIS)

    Robertson, D.W.; Krushinski, J.H.; Kau, D.

    1986-01-01

    The synthesis of 14 C- and 2 H-labeled 1,3-dihydro-3,3-dimethyl-5-(1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-2H-indol -2-one (LY195115), an extremely potent, orally-effective cardiotonic with inotropic and vasodilator activities is described. The 14 C-label was introduced in the antepenultimate step by reaction of a β-chloroketone precursor with Na 14 CN; acid-catalyzed hydrolysis and cyclization with hydrazine provided the tetrahydropyridazinone bearing the 14 C-label in the oxo-carbon. 1,3-Dihydro-3,3-di(methyl-d 3 ) -2H-indol-2-one was prepared by exhaustive methylation of 1-acetyl-1,3-dihydro-2H-indol-2-one with sodium hydride and iodomethane-d 3 , followed by removal of the nitrogen protecting group. This labeled material was converted in two steps to [ 2 H 6 ]-LY195115. (author)

  18. Crystal structure of 2-methylamino-4-(6-methyl-4-oxo-4H-chromen-3-yl-3-nitropyrano[3,2-c]chromen-5(4H-one with an unknown solvate

    Directory of Open Access Journals (Sweden)

    Rajamani Raja

    2015-09-01

    Full Text Available In the title compound, C23H16N2O7, the mean planes of the two chromene units (r.m.s. deviations = 0.031 and 0.064 Å are almost normal to one another with a dihedral angle of 85.59 (6°. The central six-membered pyran ring has a distorted envelope conformation, with the methine C atom at the flap. There is an intramolecular N—H...O hydrogen bond, which generates an S(6 ring motif. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(12 ring motif. The dimers are linked by pairs of C—H...O hydrogen bonds, enclosing R22(6 ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H...O hydrogen bonds, forming slabs parallel to (110. Within the slabs there are C—H...π interactions present. A region of disordered electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s.

  19. Chelate-size effects on the structures, chemical behavior, properties, and catalytic activity of the new palladium(II)-allyl complexes [Pd(eta(3)-1-R-1-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), n=2 or 1, and R-1 = h or ph}

    NARCIS (Netherlands)

    Pérez, S.; López, C.; Bosque, R.; Solans, X.; Font-Bardía, M.; Roig, A.; Molins, E.; van Leeuwen, P.W.N.M.; van Strijdonck, G.P.F.; Freixa, Z.

    2008-01-01

    The synthesis, X-ray crystal structures, and the study of the solution behavior of the palladium(II) allyl complexes [Pd(eta(3)-1R(1)-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {with Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), R-1 = H, and n = 2 (4) or 1 (5) or R-1 = Ph and n = 2 (6) or 1 (7)} are described. The

  20. 9-(3-Bromo-5-chloro-2-hydroxyphenyl-10-(2-hydroxyethyl-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2H,5H-dione

    Directory of Open Access Journals (Sweden)

    Mehmet Akkurt

    2014-06-01

    Full Text Available In the title compound, C33H27BrClNO4, the dihydropyridine ring adopts a flattened boat conformation. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond, with an S(8 ring motif. In the crystal, O—H...O, C—H...O and C—H...Cl hydrogen bonds, and C—H...π interactions link the molecules, forming a three-dimensional network. In the acridinedione ring system, the two ring C atoms at the 2- and 3-positions, and the C atom at the 6-position and the atoms of the phenyl ring attached to the C atom at the 6-position are disordered over two sets of sites with occupancy ratios of 0.783 (5:0.217 (5 and 0.526 (18:0.474 (18, respectively.

  1. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  2. Tritium Labeled Gentamicin C: II.- Bioradiactive Degradation Products of Gentamicin by Catalytic H2O-3H Exchange Reaction; Getamicina C Tritiada: II.- Productos de Degradacion Radiactivos y Bioactivos en el Intercambio Catalitico con H2O-3H

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C; Diaz, A; Paz, D; Jimeno, M L

    1992-07-01

    The main bio radioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + Cla) in basic form, are generated by N-demethylation in 3{sup -}N and 6-N positions. Their structures were confirmed by 1HNMR and 13CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicin are in basic form. In contrast with gentamicin sulfate, hydrolytic sub products as gramine, genta mines, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1> Cla. Because of 6'-N-demethyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicin were studied by strong and mild hydrolysis, and by methanolysis. (Author) 18 refs.

  3. Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2

    Science.gov (United States)

    Cai, Peiqing; Wang, Xiangfu; Seo, Hyo Jin; Yan, Xiaohong

    2018-04-01

    Bluish-white-light-emitting diodes (BWLEDs) are designed based on the two-dimensional mixed halide perovskite (C6H5C2H4NH3)2PbCl2Br2 at room temperature. Bluish-white electroluminescence devices were fabricated by a spin-coating method. The BWLEDs can be turned on at 4.9 V and depict a maximum luminance of ˜70 cd/m2 at 7 V. Low and room temperature photoluminescence spectra show the coexistence of free exciton and self-trapped exciton luminescence in a deformable lattice. The strategy of achieving white electroluminescence (EL) from mixed halide perovskite reported here can be applied to other two-dimensional perovskites to increase the optoelectronic efficiency of the device in the future.

  4. Synthesis of (R)-5-(Di[2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one-([3H]U-86170) and (R)-5-([2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo(4,5,1-ij) quinolin-2(1H)-one ([3H]U-91356)

    International Nuclear Information System (INIS)

    Moon, M.W.; Hsi, R.S.P.

    1992-01-01

    (R)-5-(diallylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (12b) was prepared in 9% overall yield from 3-aminoquinoline. Reaction of 12b in ethyl acetate with tritium gas in presence of a 5% platinum on carbon catalyst afforded a mixture of (R)-5-(di[2,3- 3 H 2 ]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]-quinolin-2(1H)-one ([ 3 H]U-86170, 69 Ci/mmol) and (R)-5-([2,3- 3 H 2 ]-propylamino)5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H)-one ( [ 3 H]U-91356, 34 Ci/mmol) which was separated by preparative reverse-phase chromatography. U-86170 and U-91356 are potent dopamine D2 agonists. The labelled compounds are useful for drug disposition studies. [ 3 H]U-86170 is also useful as a dopamine D2 agonist radioligand for receptor binding studies. (author)

  5. (E-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylideneamino]pyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Irvin Booysen

    2011-09-01

    Full Text Available In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å. The N=C bond is E-configured. Intracyclic angles in the pyridine moiety cover the range 117.6 (2–124.1 (2°. Intra- and intermolecular N—H...N and N—H...O hydrogen bonds are observed in the crystal structure, as are intra- and intermolecular C—H...O contacts which, in total, connect the molecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14 Å is between the two different types of six-membered rings.

  6. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    Science.gov (United States)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  7. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    Science.gov (United States)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  8. (4S)-4-(3,4-Dichloro?phen?yl)-1?-methyl-4?-phenyl-3,4-dihydronaphthalene-2-spiro-3?-pyrrolidine-2?-spiro-1??-acenaphthyl?ene-1,2??(2H,1??H)-dione

    OpenAIRE

    Murugan, R.; Gunasekaran, B.; Narayanan, S. Sriman; Manivannan, V.

    2008-01-01

    In the title compound, C37H27Cl2NO2, the 3,4-dichloro?phenyl ring makes a dihedral angle of 46.66?(6)? with the phenyl ring. The mol?ecular structure is stabilized by weak intra?molecular C?H?O inter?actions and the crystal structure is stabilized by weak inter?molecular C?H?O inter?actions. The C?C?C?C?C five-membered ring is planar, while the C?C?C?C?N five-membered ring adopts a half-chair conformation.

  9. Facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C adding H{sub 2}O{sub 2} in ball mill process

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiujuan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Mu, Deying [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Department of Environmental Engineering, Harbin University of Commerce, Harbin 150076 (China); Li, Ruhong [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China)

    2016-11-15

    Highlights: • Sintering time of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} was improved by reducing sintering time. • The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} production process was simplified during material synthesis stage. - Abstract: Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C was characterized by adding different amounts of H{sub 2}O{sub 2}. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C electrochemical performance of adding 15 mL H{sub 2}O{sub 2} was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g{sup −1}. Because of adding H{sub 2}O{sub 2} in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H{sub 2}O{sub 2} shortened the sintering time and significantly improved the electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C.

  10. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structure of (μ-H)(μ-eta1-C==N(H)(t-C4H9))Os3(CO)10

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembeski, N.M.

    1979-01-01

    The crystal and molecular structure of the compound (μ-H)(μ-eta 1 -C==N(H)(t-C 4 H 9 ))Os 3 (CO) 10 has been determined by X-ray crystallographic methods. The compound crystallizes in the centrosymmetric monoclinic space group P2 1 /n[C/sub 2h/ 5 ]:a = 13.651 (4) A, b = 9.156 (4) A, c = 18.275 (5) A, β = 111.42 (2) 0 , V = 2126.3 (25) A 3 , Z = 4, rho/sub calcd/ = 2.92 g cm -3 . A uniform triangular cluster of three osmium atoms contains ten linear carbonyl groups and a μ-eta 1 -C==N(H)(t-C 4 H 9 ) iminyl ligand. The carbon atom of the iminyl ligand symmetrically bridges one osmium-osmium bond, as is shown by the internuclear separations Os(2)-C(11) = 2.066 (8) A and Os(3)-C(11) = 2.043 (8) A. The iminyl bond, C(11)-N, is double with the C-N distance being 1.298 (10) A

  11. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    Science.gov (United States)

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  12. Interaction between exo-nido-ruthenacarborane [Cl(Ph3P)2Ru]-5,6,10-(μ-H)3-10-H-7,8-C2B9H8 and bromine

    International Nuclear Information System (INIS)

    Timofeev, S.V.; Lobanova, I.A.; Petrovskij, P.V.; Starikova, Z.A.; Bregadze, V.I.

    2001-01-01

    Interaction between exo-nido-ruthenacarborane [Cl(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 with bromine in CH 2 Cl 2 solutions at 0 deg C studied using the methods of elementary analysis, NMR, IR spectroscopy and X-ray diffraction analysis. It was ascertained that the reaction gives rise to bromine atom substitution for chlorine atom in octahedral surrounding of ruthenium atom with formation of complex [Br(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 . The complex is crystallized in monoclinic crystal system with the following unit cell parameters a = 12.592 (1), b = 20.687 (2), c = 16.628 (2) A, β = 94.372 (3) deg, sp. gr. P2 1 /n, Z = 4. Coordination octahedron of ruthenium atom is formed by three hydrogen atoms bound with boron atoms in one triangular face of carborane, two phosphorus atoms and one bromine atom [ru

  13. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η22 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W.

    Science.gov (United States)

    Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal

    2018-04-26

    The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 22 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  15. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8 H2 O.

    Science.gov (United States)

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8 H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diffuse soil emission of hydrothermal gases (CO2, CH4, and C6H6) at Solfatara crater (Campi Flegrei, southern Italy)

    International Nuclear Information System (INIS)

    Tassi, F.; Nisi, B.; Cardellini, C.; Capecchiacci, F.; Donnini, M.; Vaselli, O.; Avino, R.; Chiodini, G.

    2013-01-01

    Highlights: • We present the first measurements of soil C 6 H 6 fluxes in a volcanic system. • Methane oxidation rate is controlled by soil gas fluxes. • Benzene oxidation rate is controlled by presence of a SO 4 2- rich aquifer. • Fumarolic emissions cause a strong benzene air contamination at a local scale. • Endogenous monoaromatics are detected in air samples from the whole crater. - Abstract: Measurements of soil fluxes of hydrothermal gases, with special emphasis on C 6 H 6 , as well as chemical composition of mono-aromatic compounds in fumaroles and air, were carried out in April 2012 at the Solfatara crater (Campi Flegrei, Southern Italy) to investigate the distribution and behavior of these species as they migrate through the soil from their deep source to the atmosphere. Soil fluxes of CO 2 , CH 4 and C 6 H 6 exhibit good spatial correlation, suggesting that diffuse degassing is mainly controlled by local fractures. The calculated total output of diffuse C 6 H 6 from Solfatara is 0.10 kg day −1 , whereas fluxes of CO 2 and CH 4 are 79 × 10 3 and 1.04 kg day −1 , respectively. A comparison between soil gas fluxes and fumarole composition reveals that within the crater soil CH 4 is significantly affected by oxidation processes, which are more efficient for low gas fluxes, being dependent on the residence time of the uprising hydrothermal gases at shallow depth. Benzene degradation, mainly proceeding through oxidation via benzoate, seems to be strongly controlled by the presence of a shallow SO 4 2- rich aquifer located in the central and southwestern sectors of the crater, suggesting that the process is particularly efficient when SO 4 2- acts as terminal electron acceptor (SO 4 reduction). Relatively high C 6 H 6 /C 7 H 8 ratios, typical of hydrothermal fluids, were measured in air close to the main fumarolic field of Solfatara crater. Here, C 6 H 6 concentrations, whose detection limit is ∼0.1 μg m −3 , are more than one order of

  17. 2-(4-Fluorophenyl-2H-chromen-4(3H-one

    Directory of Open Access Journals (Sweden)

    Michał Wera

    2012-02-01

    Full Text Available In the crystal structure of the title compound, C15H11FO2, molecules form inversion dimers through pairs of weak C—H...O hydrogen bonds. Dimers oriented in parallel, linked by C—H...π contacts, are arranged in columns along the b axis. The fluorophenyl ring and the benzene ring of the 2H-chromen-4(3H-one unit are inclined to one another by 70.41 (16°. They are respectively parallel in a given column or almost perpendicular [oriented at an angle of 87.8 (1°] in neighbouring (inversely oriented columns, forming a herringbone pattern.

  18. The first 3D malonate bridged copper [Cu(O2C–CH2CO2H)2·2H2O]: Structure, properties and electronic structure

    International Nuclear Information System (INIS)

    Seguatni, A.; Fakhfakh, M.; Smiri, L.S.; Gressier, P.; Boucher, F.; Jouini, N.

    2012-01-01

    A new inorganic-organic compound [Cu(O 2 C–CH 2CO 2 H) 2 ·2H 2 O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)–malonic acid–H 2 O. Its framework is built up through carboxyl bridged copper where CuO 6 octahedra are elongated with an almost D 4h symmetry (4+2) due to the Jahn–Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2–300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U eff value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O 2 C–CH 2CO 2 H) 2 ·2H 2 O]: the first 3D hybrid organic–inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: ► A new organic–inorganic material with an unprecedented topology is synthesized. ► Crystallographic structure is determined using single crystal X-ray diffraction. ► Electronic structure is obtained from DFT, GGA+U calculation. ► Framework can be described as formed from CuC 4 tetrahedron sharing four corners. ► This structure can be classified as an extended diamond structure.

  19. Tritium labeled Gentamicin C : II.- Bioradioactive products of Gentamicin by Catalytic H2O-3H exchange reaction

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, A.; Paz, D.; Jimeno, M.L.

    1992-01-01

    The main bioradioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + C1a) in basic form, are generated by N-dimethylations in 3 - N and 6'-N positions. Their structures were confirmed by HNMR and 13 CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicina are in basic form. In contrast with gentamicin sulfate, hydrolytic subproducts as garamine, gentamicine, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1 > C1a. Because of 6' -N-dimenthyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H 2 O- 3 H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicins were studied by stron and mild hydrolysis, and by methanolysis. (author)

  20. [H2en]2{La2M(SO4)6(H2O)2} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    International Nuclear Information System (INIS)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan; Mao Jianggao; Clearfield, Abraham

    2005-01-01

    The first organically templated 3d-4f mixed metal sulfates, [H 2 en] 2 {La 2 M(SO 4 ) 6 (H 2 O) 2 } (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediamine cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)

  1. A 3d-4f complex constructed by the assembly of a cationic template, [Cu(en){sub 2}]{sup 2+}, and a 3D anionic coordination polymer, [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}(C{sub 5}O{sub 5})(H{sub 2}O){sub 2}]{sup 2-}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Szu-Yu; Yeh, Chang-Tsung; Wang, Chih-Chieh [Department of Chemistry, Soochow University, Taipei, Taiwan (China); Lee, Gene-Hsiang [Instrumentation Center, National Taiwan University, Taipei, Taiwan (China); Sheu, Hwo-Shuenn [National Synchrotron Radiation Research Center, Hsinchu, Taiwan (China)

    2017-05-18

    A three-dimensional (3D) 3d-4f complex, [Cu(en){sub 2}][Sm{sub 2}(C{sub 5}O{sub 5})(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 2}].8H{sub 2}O (1) (en = ethylenediamine, C{sub 5}O{sub 5}{sup 2-} = dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione), were prepared via the in-situ ring-opening oxidation reaction of croconate in the presence of the template-directed complex, [Cu(en){sub 2}]{sup 2+} cation. The structural characterization determined by X-ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}(C{sub 5}O{sub 5})(H{sub 2}O){sub 2}]{sup 2-} in 1 can be describe in terms of in-plane 2D honeycomb-like [Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}] layered frameworks bridged by oxalate with bis-chelating mode, being mutually interlinked via the bridge of μ{sub 1,2,3,4}-croconate ligands with bis-chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 x 11.893 Aa (longest atom-atom contact distances) along the b axis. The structure-directing complex, [Cu(en){sub 2}]{sup 2+}, and solvated water molecules are resided into these honeycomb-type hexagonal channels. The thermal stability of 1 was further studied by TGA and in-situ powder X-ray diffraction measurement. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. 14C2H4: distribution of 14C-labeled tissue metabolites in pea seedlings

    International Nuclear Information System (INIS)

    Giaquinta, R.; Beyer, E. Jr.

    1977-01-01

    The 14 C-metabolite distribution pattern following 14 C 2 H 4 metabolism in intact pea seedlings (Pisum sativum L.) was determined under various conditions. After a 24 hr exposure to 14 C 2 H 4 , the majority of 14 C-metabolites were water-soluble (60-70%) with lesser amounts in the protein (10-15%), lipid (1%), and insoluble (1-2%) fractions. Ion exchange chromatography of the water-soluble components into basic, neutral, and acidic fractions revealed a 50:40:10 distribution, respectively. Chromatography of the neutral fraction revealed two regions of radioactivity (Rf=0.38) and 0.63 which did not cochromatograph with twenty-two known sugars or neutral metabolites. Chromatograms of the basic fraction contained 3 regions of radioactivity. Similar distribution patterns were noted when 14 C 2 H 4 exposure was followed by a 6 hr air chase or when 5% CO 2 , an antagonist of ethylene action, was present during the exposure. Marked differences in the 14 C-metabolite distribution patterns were obtained when 14 CO 2 was substituted for 14 C 2 H 4 . These results indicate that the metabolic pathway involved in ethylene metabolism is different from that involved in intermediately carbon metabolism. (auth.)

  3. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  4. 1,4-Dimethyl-3-phenyl-3H-pyrazolo[3,4-c]isoquinolin-5(4H-one

    Directory of Open Access Journals (Sweden)

    Giuseppe Daidone

    2008-05-01

    Full Text Available The title compound, C18H15N3O, is the product of the thermal decomposition of the diazonium salt derived from 2-amino-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-ylbenzamide. It is characterized by a trans orientation of the methyl groups with respect to the tricyclic ring system. The molecule has a nearly planar phenylpyrazolo[3,4-c]isoquinolin-5-one system, the largest deviation from the mean plane being 0.066 (2 Å for the O atom. The dihedral angle between the phenyl substituent and the heterotricycle is 67 (1°. The packing is stabilized by C—H...N hydrogen-bond interactions, with the formation of molecular chains along the c axis.

  5. Diaquabis[2,6-bis(4H-1,2,4-triazol-4-ylpyridine-κN2]bis(selenocyanato-κNcobalt(II

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2012-08-01

    Full Text Available In the title compound, [Co(NCSe2(C9H7N72(H2O2], the Co2+ cation is coordinated by two selenocyanate anions, two 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligands and two water molecules within a slightly distorted N4O2 octahedron. The asymmetric unit consists of one Co2+ cation, which is located on a center of inversion, as well as one selenocyanate anion, one 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligand and one water molecule in general positions. Intermolecular O—H...N hydrogen bonds join the complex molecules into layers parallel to the bc plane. The layers are linked by C—H...N and C—H...Se hydrogen bonds into a three-dimensional supramolecular architecture.

  6. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation.

    Science.gov (United States)

    Trávníček, Zdeněk; Zbořil, Radek; Matiková-Maľarová, Miroslava; Drahoš, Bohuslav; Cernák, Juraj

    2013-01-01

    The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored. In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation. The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, (57)Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [Fe(II)(en)2(μ-NC)Co(III)(CN)4], Fe(III)(NH2CH2CH3)2(μ-NC)2Co(II)(CN)3] and Fe(III)[Co(II)(CN)5], which were suggested mainly from (57)Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4. It has been found that the thermal

  7. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    OpenAIRE

    Sritharathikhun, Jaran; Krajangsang, Taweewat; Moollakorn, Apichan; Inthisang, Sorapong; Limmanee, Amornrat; Hongsingtong, Aswin; Boriraksantikul, Nattaphong; Taratiwat, Tianchai; Akarapanjavit, Nirod; Sriprapha, Kobsak

    2014-01-01

    This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtain...

  8. Tritium Labeled Gentamicin C: II.- Bioradiactive Degradation Products of Gentamicin by Catalytic H2O-3H Exchange Reaction; Getamicina C Tritiada: II.- Productos de Degradacion Radiactivos y Bioactivos en el Intercambio Catalitico con H2O-3H

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C.; Diaz, A.; Paz, D.; Jimeno, M. L.

    1992-07-01

    The main bio radioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + Cla) in basic form, are generated by N-demethylation in 3{sup -}N and 6-N positions. Their structures were confirmed by 1HNMR and 13CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicin are in basic form. In contrast with gentamicin sulfate, hydrolytic sub products as gramine, genta mines, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1> Cla. Because of 6'-N-demethyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicin were studied by strong and mild hydrolysis, and by methanolysis. (Author) 18 refs.

  9. 4-Hydroxy-6-methyl-3-[3-(thiophen-2-ylacryloyl]-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    Salima Thabti

    2013-04-01

    Full Text Available The title compound, C13H10O4S, crystallizes with two molecules in the asymmetric unit in which the rings make dihedral angles of 3.9 (1 and 6.0 (1°; this planarity is due in part to the presence of an intramolecular O—H...O hydrogen bond, which generates an S(6 ring in each molecule. Both molecules represent E isomers with respect to the central C=C bond. In the crystal, molecules are linked by C—H...O interactions into a three-dimensional network.

  10. C_6_0"3"- versus C_6_0"4"- /C_6_0"2"- - synthesis and characterization of five salts containing discrete fullerene anions

    International Nuclear Information System (INIS)

    Boeddinghaus, M. Bele; Klein, Wilhelm; Wahl, Bernhard; Faessler, Thomas F.; Jakes, Peter; Eichel, Ruediger A.

    2014-01-01

    Five new compounds, [Rb(18crown-6)]_3[C_6_0] (1), [Rb(18crown-6)]_6[C_6_0]_2(C_3H_7NO)_2(C_4H_8O)_2 (2), [Rb(benzo18crown-6)]_6[C_6_0]_2(C_2H_8N_2)_5 (3), [Cs(benzo18crown-6)]_3C_6_0(C_2H_8N_2)_2 (4), and [Cs_3(benzo18crown-6)_5]C_6_0(C_2H_8N_2)_(_4_._5_+_x_) (5) were synthesized and characterized by single-crystal X-ray structure determination. All compounds contain discrete C_6_0 anions, which are ordered in 1, 2, and 4, where direct cation-anion contacts occur. The unit cells of 1 and 2 contain two independent fullerides, which coordinate to the rubidium atoms either of two or of four [Rb(18crown-6)] units. Owing to the presence of differently coordinated fullerene units in compounds 1 and 2, a possible disproportionation of C_6_0"3"- into C_6_0"2"- and C_6_0"4"- anions is discussed. In 3 and 4 the C_6_0 anions are coordinated by three Rb and Cs atoms, respectively. In all compounds the average charge of the anion is -3. Magnetic data reveal a doublet spin state for 3. The EPR spectra are discussed for compounds 3 and 5. The role of a dynamic Jahn-Teller distortion is discussed, and we report the first IR spectroscopic data of fullerene trianions, which have been obtained in solution. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. 4-[(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-ylphenylmethyl]-5-methyl-2-phenyl-1H-pyrazol-3(2H-one ethanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2009-01-01

    Full Text Available The asymmetric unit of the title compound, C27H24N4O2·0.5C2H6O, comprises two crystallographically independent molecules (A and B with slightly different conformations, and one ethanol molecule of crystallization. Intramolecular C—H...O and O—H...O hydrogen bonds generate six- and eight-membered rings, producing S(6 and S(8 ring motifs, respectively. In molecule A, one of the benzene rings is disordered over two positions, with site-occupancy factors of 0.542 (11 and 0.458 (11. The dihedral angles between the central benzene ring and the two outer benzene rings are 73.88 (9 and 82.6 (2/88.9 (2° in molecule A, and 80.81 (8 and 79.38 (8° in molecule B. In the crystal structure, molecules form infinite one-dimensional chains in the (101 plane. The crystal structure is stabilized by intermolecular O—H...N, N—H...N, N—H...O and C—H...O hydrogen bonds, weak C—H...π and π–π [centroid–centroid = 3.5496 (1 Å] interactions.

  12. 6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H-one

    Directory of Open Access Journals (Sweden)

    S. Dahmani

    2010-04-01

    Full Text Available The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one in dimethylformamide yields the title compound, C12H8BrN3O, which features nitrogen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å; the propynyl chains point in opposite directions relative to the fused ring. One acetylenic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related molecule, forming a dimer; adjacent dimers are linked by a second acetylene–pyridine C—H...N interaction, forming a layer motif.

  13. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  14. rac-6-Hydroxy-4-(4-nitrophenyl-5-(2-thienylcarbonyl-6-(trifluoromethyl-3,4,5,6-tetrahydropyrimidin-2(1H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Jian-Li Zhang

    2010-11-01

    Full Text Available The title compound, C16H12F3N3O5S·H2O, was prepared by reaction of 4-nitrobenzaldehyde, 4,4,4-trifluoro-1-(thiophen-2-ylbutane-1,3-dione and urea. The asymmetric unit contains two independent molecules, with essentially identical geometries and conformations. The dihydropyrimidine rings adopt a half-chair conformation. The dihedral angles between the benzene ring and the thiophene ring are 54.82 (8 and 58.72 (8° in the two molecules. The molecular conformation of one of the molecules is stabilized by two intramolecular O—H...O hydrogen bonds, generating an S(6 ring. The crystal structure is stabilized by intermolecular O—H...O and N—H...O hydrogen bonds.

  15. Synthesis, crystal structure, and spectroscopic characterization of trans-bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

    Science.gov (United States)

    Marinho, Maria Vanda; Yoshida, Maria Irene; Guedes, Kassilio J; Krambrock, Klaus; Bortoluzzi, Adailton J; Hörner, Manfredo; Machado, Flávia C; Teles, Wagner M

    2004-02-23

    From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

  16. Complexing in the system Rb2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Kuchumova, N.V.; Shtokova, I.P.; Serezhkina, L.B.; Serezhkin, V.N.

    1989-01-01

    Method of isothermal solubility at 25 deg C is used to study interaction of rubidium and uranyl selenates in aqueous solution. Formation of congruently soluble Rb 2 UO 2 (SeO 4 ) 2 x2H 2 O and Rb 2 (UO 2 ) 2 x(SeO 4 ) 3 x6H 2 O is stated. For the last compound crystallographic characteristics (a=10.668; b=14.935(9); c=13.891(7) A; β=104.94(1); Z=4, sp.gr. P2 1 /c) are determined. Thermal decomposition of a compound results in formation of Rb 2 U 2 O 7

  17. Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene (H-C[triple bond]C-:C-C[triple bond]C-H).

    Science.gov (United States)

    Bowling, Nathan P; Halter, Robert J; Hodges, Jonathan A; Seburg, Randal A; Thomas, Phillip S; Simmons, Christopher S; Stanton, John F; McMahon, Robert J

    2006-03-15

    1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.

  18. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  19. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    N. Saigusa

    1996-03-01

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  20. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Science.gov (United States)

    Saigusa, N.; Liu, S.; Oikawa, T.; Watanabe, T.

    1996-03-01

    The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3) dominated in early spring, and Imperata cylindrica (C4) and Andropogon virginicus (C4) grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution of C4 plants

  1. 5-Fluoro-6H,7′H,8′H-spiro[indoline-3,7′-pyrano[3,2-c:5,6-c′]di-1-benzopyran]-2,6′,8′-trione

    Directory of Open Access Journals (Sweden)

    J. Suresh

    2012-03-01

    Full Text Available In the title compound, C26H12FNO6, the central pyran ring and both benzopyran systems are nonplanar, having total puckering amplitudes of 0.139 (2, 0.050 (1 and 0.112 (2 Å, respectively. The central pyran ring adopts a boat conformation. The crystal structure is stabilized by C—H...O, N—H...O, N—H...F and C—H...π interactions.

  2. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  3. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas.

    Science.gov (United States)

    Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-11-28

    Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.

  4. A Convenient Approach to Heterocyclic Building Blocks: Synthesis of Novel Ring Systems Containing a [5,6]Pyrano[2,3-c]pyrazol-4(1H-one Moiety

    Directory of Open Access Journals (Sweden)

    Wolfgang Holzer

    2007-01-01

    Full Text Available Starting from commercially available educts, a straightforward synthetic route to new heterocyclic building blocks is exemplified with the one- or two-step synthesis of tri-, tetra-, or pentacyclic ring systems. Representatives of the following novel ring systems are prepared from 3-methyl-1-phenyl-2-pyrazolin-5-one and the corresponding o-halo-arenecarbonyl chloride using calcium hydroxide in refluxing 1,4-dioxane: pyrimidino[4',5':5,6]pyrano[2,3-c]pyrazol-4(1H-one, thieno[3',2':5,6]pyrano[2,3c]pyrazol- 4-(1H-one, thieno[3',4':5,6]pyrano[2,3-c]pyrazol-4(1H-one, thieno[3'',2'':4',5']thieno[2',3':5,6]-pyrano[2,3-c]pyrazol-4(1H-one, [1,3]dioxolo[5',6'][1]benzothieno[2',3':5,6]pyrano-[2,3-c]- pyrazol-4(1H-one, pyridazino[4',3':5,6]pyrano[2,3-c]pyrazol-4(1H-one and pyrazolo-[4'',3'':5',6']pyrido[3',4':5,6]pyrano[2,3-c]pyrazol-4(1H-one. While the latter two ring systems are directly obtained due to a spontaneous intramolecular substitution reaction, in the other reactions uncyclised 4-aroylpyrazol-5-ols are produced, which are cyclised into the target heterocycles in a subsequent synthetic step (i.e. treatment with NaH in DMF. Detailed NMR spectroscopic investigations (1H-, 13C-, 15N- with the obtained compounds were undertaken to unambiguously prove the new structures.

  5. Nano crystalline ZnO catalyzed one pot three-component synthesis of 7-alkyl-6H,7H- naphtho[1',2':5,6]pyrano[3,2-c] chromen-6-ones under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    M. J. Piltan

    2016-08-01

    Full Text Available In the present paper, an efficient one-pot synthesis of 7-alkyl-6H,7H-naphtho[1',2':5,6]pyrano[3,2-c]chromen-6-ones is described by three-component reaction of β-naphthol, aromatic aldehydes and 4-hydroxycoumarin using ZnO nanoparticles under solvent-free conditions. The present method provides a novel and efficient procedure for the synthesis of chromene derivatives with some advantageous such as short reaction times, easy workup, high yields, wide range of products, reusability of the catalyst, little catalyst loading and green conditions in the presence of ZnO nanoparticles (7 mol% at 110 ºC.

  6. Structure of ferroelastic K3H(SeO4)2

    International Nuclear Information System (INIS)

    Ichikawa, M.; Sato, S.; Komukae, M.; Osaka, T.

    1992-01-01

    Tripotassium hydrogenbis(selenate), K 3 H(SeO 4 ) 2 , M r = 404.2, monoclinic, A2/a, a = 10.1291 (8), b = 5.9038 (5), c = 14.961 (1) A, β = 103.640 (8) 0 , V = 869.5 (1) A 3 , Z = 4, D x = 3.086 Mg m -3 , λ(Mo Kα) = 0.71073 A, μ = 9.86 mm -1 , F(000) = 760, T = 299 K, R(F) = 0.0294 for 1670 unique reflections. K 3 H(SeO 4 ) 2 is isomorphous with most M 3 H(XO 4 ) 2 -type crystals (M=K,Rb and Cs; Cs; X = S and Se); two SeO 4 groups are connected by a crystallographically symmetric hydrogen bond into a dimer. The bond distances and angles in the SeO 4 group are similar to those in Rb 3 H(SeO 4 ) 2 and Rb 3 D(SeO 4 ) 2 . The hydrogen-bond length, 2.524 (5) A, is the shortest among the members of the M 3 H(SeO 4 ) 2 family exhibiting the low-temperature phase transition. (orig.)

  7. Fragmentation of C2H4 by charge-changing collisions of O2+ ions

    International Nuclear Information System (INIS)

    Sato, S.; Mizuno, T.; Yamada, T.; Imai, M.; Shibata, H.; Itoh, A.; Tsuchida, H.

    2009-01-01

    We investigated molecular fragmentation of C 2 H 4 in charge-changing collisions of 1.14MeV O 2+ ions. Branching ratios associated with decaying from temporary produced (C 2 H 4 ) r+ ions into various fragment channels were obtained. Dissociation via a C-C bond breaking is preferential in 1-electron loss collisions in comparison with 1-electron capture collisions. We confirmed that multiple ionization and dissociation rarely occur in electron capture collisions, while they occur rather strongly in electron loss collisions. (author)

  8. Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O.

    Science.gov (United States)

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert

    2010-04-21

    The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.

  9. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    Science.gov (United States)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  10. A FORMAÇÃO DE LIGAÇÕES DE HIDROGÊNIO π‧‧‧H, F‧‧‧H E C‧‧‧H NOS COMPLEXOS C2H2‧‧‧(HF, C2H2‧‧‧2(HF E C2H2‧‧‧3(HF

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2016-04-01

    Full Text Available In this work, a theoretical study on the basis of structural, vibrational, electronic and topological parameters of the C2H2‧‧‧(HF, C2H2‧‧‧2(HF and C2H2‧‧‧3(HF complexes concerning the formation of π‧‧‧H, F‧‧‧H and C‧‧‧H hydrogen bonds is presented. The main difference among these complexes is not properly the interaction strength, but the hydrogen bond type whose benchmark is ruled justly by the structure. Meanwhile, the occurrence of π‧‧‧H hydrogen bonds was unveiled in both C2H2‧‧‧(HF dimer and C2H2‧‧‧3(HF tetramer, although in latter, this interaction is stronger than C‧‧‧H of the C2H2‧‧‧2(HF trimer. However, the F‧‧‧H hydrogen bonds within the subunits of hydrofluoric acid are the strongest ones, reaching a partial covalent limit, and thereby contribute decisively to the stabilization of the tetramer structure. In line with this, the largest red-shifts were observed on the hydrofluoric acid trimer of the C2H2‧‧‧3(HF complex.

  11. Investigations on the synthesis and pharmacological properties of 4-alkoxy-2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl]-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    Science.gov (United States)

    Sladowska, Helena; Filipek, Barbara; Szkatuła, Dominika; Sabiniarz, Aleksandra; Kardasz, Małgorzata; Potoczek, Joanna; Sieklucka-Dziuba, Maria; Rajtar, Grazyna; Kleinrok, Zdzisław; Lis, Tadeusz

    2002-11-01

    Synthesis of 2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl] derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (8-12) is described. The chlorides used in the above synthesis can exist in two isomeric forms: chain (18-20) and cyclic (19a, 20a). The compounds 8-12 exhibited potent analgesic activity which was superior than that of acetylsalicylic acid in two different tests. Most of the investigated imides suppressed significantly spontaneous locomotor activity in mice.

  12. Speciation in the aqueous H+/H2VO4-/H2O2/citrate system of biomedical interest.

    Science.gov (United States)

    Gorzsás, András; Getty, Kendra; Andersson, Ingegärd; Pettersson, Lage

    2004-09-21

    The speciation in the quaternary aqueous H+/H2VO4-/H2O2/citrate (Cit3-) and H+/H2VO4-/Cit3-/L-(+)-lactate (Lac-) systems has been determined at 25 degrees C in the physiological medium of 0.150 M Na(Cl). A combination of 51V NMR integral intensities and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and evaluated with the computer program LAKE, which is able to treat multimethod data simultaneously. The pKa-values for citric acid have been determined as 2.94, 4.34 and 5.61. Altogether six vanadate-citrate species have been found in the ternary H+/H2VO4-/Cit3- system in the pH region 2-10, only two of which are mononuclear. Reduction of vanadium(V) becomes more pronounced at pH acidic solutions limited the final model to pH > 4. In the quaternary H+/H2VO4-/Cit3-/Lac- system, two mixed-ligand species have been determined, with the compositions V2CitLac2- and V2CitLac3- (pKa = 5.0). To our knowledge, this is the first time such complexes have been reported for vanadium(V). 51V NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. When suitable, structural proposals are given, based on 13C NMR measurements and available literature data of related compounds.

  13. Experimental and Theoretical Studies of the Factors Affecting the Cycloplatination of the Chiral Ferrocenylaldimine (SC-[(η5-C5H5Fe{(η5-C5H4C(H=N–CH(Me(C6H5}

    Directory of Open Access Journals (Sweden)

    Concepción López

    2014-11-01

    Full Text Available The study of the reactivity of the enantiopure ferrocenyl Schiff base (SC-[FcCH=N–CH(Me(C6H5] (1 (Fc = (η5-C5H5Fe(η5-C5H4 with cis-[PtCl2(dmso2] under different experimental conditions is reported. Four different types of chiral Pt(II have been isolated and characterized. One of them is the enantiomerically pure trans-(SC-[Pt{κ1-N[FcCH=N–CH(Me(C6H5]}Cl2(dmso] (2a in which the imine acts as a neutral N-donor ligand; while the other three are the cycloplatinated complexes: [Pt{κ2-C,N [(C6H4–N=CHFc]}Cl(dmso] (7a and the two diastereomers {(Sp,SC and (Rp,SC} of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}]Fe(η5-C5H5}Cl(dmso] (8a and 9a, respectively. Isomers 7a-9a, differ in the nature of the metallated carbon atom [CPh (in 7a or CFc (in 8a and 9a] or the planar chirality of the 1,2-disubstituted ferrocenyl unit (8a and 9a. Reactions of 7a–9a with PPh3 gave [Pt{κ2-C,N[(C6H4–N=CHFc]}Cl(PPh3] (in 7b and the diastereomers (Sp,SC and (Rp,SC of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}] Fe(η5-C5H5}Cl(PPh3] (8b and 9b, respectively. Comparative studies of the electrochemical properties and cytotoxic activities on MCF7 and MDA-MB231 breast cancer cell lines of 2a and cycloplatinated complexes 7b-9b are also reported. Theoretical studies based on DFT calculations have also been carried out in order to rationalize the results obtained from the cycloplatination of 1, the stability of the Pt(II complexes and their electrochemical properties.

  14. Tritium Labeled Gentamicin C: II.- Bioradiactive Degradation Products of Gentamicin by Catalytic H2O-3H Exchange Reaction

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, A.; Paz, D.; Jimeno, M. L.

    1992-01-01

    The main bio radioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + Cla) in basic form, are generated by N-demethylation in 3 - N and 6-N positions. Their structures were confirmed by 1HNMR and 13CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicin are in basic form. In contrast with gentamicin sulfate, hydrolytic sub products as gramine, genta mines, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1> Cla. Because of 6'-N-demethyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicin were studied by strong and mild hydrolysis, and by methanolysis. (Author) 18 refs

  15. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  16. Hydrothermal synthesis, thermal, structural, spectroscopic and magnetic studies of the Mn5-x Co x (HPO4)2(PO4)2(H2O)4 (x=1.25, 2, 2.5 and 3) finite solid solution

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    The Mn 5- x Co x (HPO 4 ) 2 (PO 4 ) 2 (H 2 O) 4 (x=1.25, 2, 2.5, 3) finite solid solution has been synthesized by mild hydrothermal conditions under autogeneous pressure. The phases crystallize in the C2/c space group with Z=4, belonging to the monoclinic system. The unit-cell parameters obtained from single crystal X-ray diffraction are: a=17.525(1), b=9.0535(6), c=9.4517(7) A, β=96.633(5) o being R1=0.0436, wR2=0.0454 for Mn75Co25; a=17.444(2), b=9.0093(9), c=9.400(1) A, β=96.76(1) o being R1=0.0381, wR2=0.0490 for Mn60Co40; a=17.433(2), b=8.9989(9), c=9.405(1) A, β=96.662(9) o being R1=0.0438, wR2=0.0515 for Mn50Co50 and a=17.4257(9), b=8.9869(5), c=9.3935(5) A, β=96.685(4) o being R1=0.0296, wR2=0.0460 for Mn40Co60. The structure consists of a three dimensional network formed by octahedral pentameric entities (Mn,Co) 5 O 16 (H 2 O) 6 sharing vertices with the (PO 4 ) 3- and (HPO 4 ) 2- tetrahedra. The limit of thermal stability of these compounds is, approximately, 165 deg. C, near to this mean temperature the phases loose their water content in two successive steps. IR spectra show the characteristic bands of the water molecules and the phosphate and hydrogen-phosphate oxoanions. The diffuse reflectance spectra are consistent with the presence of MO 6 octahedra environments in slightly distorted octahedral geometry, except for the M(3)O 6 octahedron which presents a remarkable distortion and so a higher Dq parameter. The mean value for the Dq and B-Racah parameter for the M(1),(2)O 6 octahedra is 685 and 850 cm -1 , respectively. These parameters for the most distorted M(3)O 6 polyhedron are 825 and 880 cm -1 , respectively. The four phases exhibit antiferromagnetic couplings as the major magnetic interactions. However, a small spin canting phenomenon is observed at low temperatures for the two phases with major content in the anisotropic-Co(II) cation. - Graphical abstract: Crystal structure of the finite solid solution Mn 5-x Co x (HPO 4 ) 2 (PO 4 ) 2 (H

  17. Crystal structure of RbCe(SeO4)2 · 5H2O

    International Nuclear Information System (INIS)

    Ovanesyan, S.M.; Iskhakova, L.D.; Trunov, V.K.

    1987-01-01

    RbTR(SeO 4 ) 2 x5H 2 O TR=La-Pr are synthesized. Crystal structure of RbCe(SeO 4 ) 2 x5H 2 O is studied. Monoclinic unit parameters are: a=7,200(2), b=8,723(1), c=19,258(6) A, Β=90,88(2), ρ (calc) =3,304 sp.gr. P2 1 /c. Within the structure the Ce nine vertex cages are united by Se(1)- and Se(2)-tetrahedrons in (Ce(SeO 4 ) 2 (H 2 O) 5 ) 2 ∞ n- layers. Some crystal structure regularities of the laminated MTR(EO 4 ) 2 xnH 2 O (M=NH 4 ,K,Rb,Cs; TR=La-Ln, E=S,Se) are considered

  18. Synthesis and pharmacological properties of new derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    Science.gov (United States)

    Sladowska, Helena; Sabiniarz, Aleksandra; Sapa, Jacek; Filipek, Barbara

    2009-01-01

    Synthesis of 2-(2-hydroxy-3-amino)propyl derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (24-35) is described. The chlorides used in the above synthesis exist mainly in the cyclic forms (18, 20-23). Only chloride with benzhydryl substituent at the nitrogen atom of piperazine has the chain structure (19). Among the studied imides the most active analgesics in the "writhing" syndrome test proved to be compounds 30 and 31 (with LD50 > 2000 mg/kg) containing 4-benzylpiperidino group. Furthermore, all imides suppressed significantly spontaneous locomotor activity of mice.

  19. 6,7-Dichloro-3-(2,4-dichlorobenzylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Jinpeng Zhang

    2012-08-01

    Full Text Available In the title compound, C15H8Cl4N2O, the quinoxaline ring system is almost planar, with a dihedral angle between the benzene and pyrazine rings of 3.1 (2°. The 2,4-dichlorophenyl ring is approximately perpendicular to the pyrazine ring, with a dihedral angle of 86.47 (13° between them. The crystal packing features intermolecular N—H...O hydrogen bonds and π–π stacking interactions, with centroid–centroid distances in the range 3.699 (34.054 (3 Å.

  20. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  1. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    Meng Xiangxin; Shuai Qi; Chen Sanping; Xie Gang; Gao Shengli; Shi Qizhen

    2005-01-01

    Four solid ternary complexes of RE (C5H8NS2)3(C12H8N2) (RE=Eu, Gd, Tb, Dy) were synthesized in absolute ethanol by rare earth chloride low hydrate with the mixed ligands of ammonium pyrrolidinedi-thiocarbamate (APDC) and 1, 10-phenanthroline*H2O (o-phen*H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes show that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen*H2O. It was assumed that the coordination number of RE3+ is eight. The constant-volume combustion energies of the complexes, ΔcU, were determined as (-16937.88±9.79 ), (-17588.79±8.62 ), (-17747.14±8.25 ) and (-17840.37±8.87 ) kJ*mol-1, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, ΔcHθm, and standard molar enthalpies of formation, ΔfHθm, were calculated as (-16953.37±9.79), (-17604.28±8.62), (-17762.63±8.25), (-17855.86±8.87) kJ*mol-1 and (-857.04±10.52), (-282.43±9.58), (-130.08±9.13), (-55.75±9.83) kJ*mol-1.

  2. Synthesis and some coordination chemistry of the PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4, attempts to prepare the PSiP analogue, and the effect of the E atom on the molecular structures of E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn).

    Science.gov (United States)

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2018-03-26

    The non-donor-stabilized PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4 (1) has been prepared by treating SnCl2 with Li2(NCH2PtBu2)2C6H4. All attempts to synthesize the analogous PSiP silylene by reduction of the (previously unknown) silanes SiCl2(NCH2PtBu2)2C6H4 (2), SiHCl(NCH2PtBu2)2C6H4 (3) and SiH(HMDS)(NCH2PtBu2)2C6H4 (4; HMDS = N(SiMe3)2) have been unsuccessful. The almost planar (excluding the tert-butyl groups) molecular structure of stannylene 1 (determined by X-ray crystallography) has been rationalized with the help of DFT calculations, which have shown that, in the series of diphosphanetetrylenes E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn), the most stable conformation of the compounds with E = Ge and Sn has both P atoms very close to the EN2C6H4 plane, near (interacting with) the E atom, whereas for the compounds with E = C and Si, both phosphane groups are located at one side of the EN2C6H4 plane and far away from the E atom. The size of the E atom and the strength of stabilizing donor-acceptor PE interactions (both increase on going down in group 14) are key factors in determining the molecular structures of these diphosphanetetrylenes. The syntheses of the chloridostannyl complexes [Rh{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η4-cod)] (5), [RuCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η6-cym)] (6) and [IrCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η5-C5Me5)] (7) have demonstrated the tendency of stannylene 1 to insert its Sn atom into M-Cl bonds of transition metal complexes and the preference of the resulting PSnP chloridostannyl group to act as a κ2Sn,P-chelating ligand, maintaining an uncoordinated phosphane fragment. X-ray diffraction data (of 6), 31P{1H} NMR data (of 5-7) and DFT calculations (on 6) are consistent with the existence of a weak PSn interaction involving the non-coordinated P atom of complexes 5-7, similar to that found in stannylene 1.

  3. Thermal, spectroscopic and magnetic properties of the Co xNi1-x(SeO3).2H2O (x = 0, 0.4, 1) phases

    International Nuclear Information System (INIS)

    Larranaga, A.; Mesa, J.L.; Pizarro, J.L.; Pena, A.; Chapman, J.P.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Co x Ni 1-x (SeO 3 ).2H 2 O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co 0.4 Ni 0.6 (SeO 3 ).2H 2 O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO 3 ).2H 2 O (M = Co and Ni) minerals and crystallizes in the P2 1 /n space group, with a 6.4681(7), b = 8.7816(7), c = 7.5668(7) A, β = 98.927(9) deg and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO 3 ) 2- selenite oxoanions and edge-sharing M 2 O 10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d 7 and 3d 8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO 3 ) 2- anions which are linked to the M 2 O 10 polyhedra in three dimensions

  4. Efficient removal of H2S at high temperature using the ionic liquid solutions of [C4mim]3PMo12O40-An organic polyoxometalate.

    Science.gov (United States)

    Ma, Yunqian; Liu, Xinpeng; Wang, Rui

    2017-06-05

    An innovative approach to H 2 S capture and sulfur recovery via liquid redox at high temperature has been developed using [C 4 mim] 3 PMo 12 O 40 at temperatures ranging from 80 to 180°C, which is superior to the conventional water-based system with an upper limit of working temperature normally below 60°C. The ionic liquids used as solvents include [C 4 mim]Cl, [C 4 mim]BF 4 , [C 4 mim]PF 6 and [C 4 mim]NTf 2 . Microscopic observation and turbidity measurement were used to investigate the dissolution of [C 4 mim] 3 PMo 12 O 40 in the ionic liquids. Stabilization energy between H 2 S and the anion of ionic liquid as well as H 2 O was calculated to illustrate the interaction between H 2 S and the solvents. The cavity theory can be adopted to illustrate the mechanism for H 2 S absorption: the Cl - ion with small radius can be incorporated into the cavities of [C 4 mim] 3 PMo 12 O 40 , and interact with H 2 S strongly. The underlying mechanism for sulfur formation is the redox reaction between H 2 S and PMo 12 O 40 3- . H 2 S can be oxidized to elemental sulfur and Mo 6+ is partly reduced during absorption, according to UV-vis and FTIR spectra. The [C 4 mim] 3 PMo 12 O 40 -[C 4 mim]Cl after reaction can be readily regenerated by air and thus enabling its efficient and repeatitive use. The absorbent of [C 4 mim] 3 PMo 12 O 40 -ionic liquid system provides a new approach for wet oxidation desulfurization at high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  6. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl43H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  7. Electrical properties of SiO{sub 2}/SiC interfaces on 2°-off axis 4H-SiC epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivona, M., E-mail: marilena.vivona@imm.cnr.it [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy); Fiorenza, P. [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy); Sledziewski, T.; Krieger, M. [Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Department of Physics, Staudtstrasse 7/Bld. A3, D-91058 Erlangen (Germany); Chassagne, T.; Zielinski, M. [NOVASiC, Savoie Technolac, BP267, F-73375 Le Bourget-du-Lac Cedex (France); Roccaforte, F. [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Processing and electrical characterization of MOS capacitors fabricated on 4H-SiC epilayers grown on 2°-off axis heavily doped substrates. • Excellent characteristics of the SiO{sub 2}/4H-SiC interface in terms of flatness, interface state density and oxide reliability. • Electrical behavior of the MOS devices comparable with that obtained for the state-of-the-art of 4°-off axis 4H-SiC material. • Demonstration of the maturity of the 2°-off axis material for application in 4H-SiC MOSFET device technology. - Abstract: In this paper, the electrical properties of the SiO{sub 2}/SiC interface on silicon carbide (4H-SiC) epilayers grown on 2°-off axis substrates were studied. After epilayer growth, chemical mechanical polishing (CMP) allowed to obtain an atomically flat surface with a roughness of 0.14 nm. Metal-oxide-semiconductor (MOS) capacitors, fabricated on this surface, showed an interface state density of ∼1 × 10{sup 12} eV{sup −1} cm{sup −2} below the conduction band, a value which is comparable to the standard 4°-off-axis material commonly used for 4H-SiC MOS-based device fabrication. Moreover, the Fowler–Nordheim and time-zero-dielectric breakdown analyses confirmed an almost ideal behavior of the interface. The results demonstrate the maturity of the 2°-off axis material for 4H-SiC MOSFET device fabrication.

  8. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Engel, J.M. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany); Schmidt, M. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Tsirlin, A.A. [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Ehrenberg, H. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany)

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra and ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.

  9. An asymmetric synthesis of (R)-5-(methylamino)-5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H) -one (1) and its [2-14C]-and [6,7-3H2]-labeled forms

    International Nuclear Information System (INIS)

    Heier, R.F.; Moon, M.W.; Stolle, W.T.; Easter, J.A.; Hsi, R.S.P.

    1996-01-01

    (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo [4,5,1-ij)quinolin-2(1H)-one (1) is a dopamine agonist which shows selectivity for the D2 receptor subtype, and is of interest as a potential drug for the treatment of Parkinson's disease. An asymmetric epoxidation approach has been used to prepare 1 in eleven steps (15% overall yield) from 8-nitroquinoline. An advanced intermediate in this synthesis, tert-butyl (R)-methyl(8-amino-1,2,3,4-tetrahydro-3-quinolinyl)carbamate, has been reacted with [ 14 C]phosgene to provide a two-step synthesis of 1 labeled with carbon-14 at the C-2 position (236 μCi/mg). Bromination of 1 gave the dibromo analogue which was reduced in the presence of tritium gas to give 1 labeled with tritium at the C-6 and C-7 positions (28.5 Ci/mmol). In addition to providing syntheses for labeled forms of the drug which are useful in drug disposition and receptor binding studies, this approach also provides a convenient synthesis for the unlabeled form of drug. (author)

  10. The synthesis of 1,2,7,11b-Tetrahydroisoxazolo[2,3-d][1,4]benzodiazepin-6(5H)-ones and 1,3,3a,9b-tetrahydroisoxazolo[4,3-c]quinolin-4(5H)-ones

    OpenAIRE

    Heaney, Frances; Bourke, Sharon

    1995-01-01

    The reaction of various ethyl 3-[[2-(1-hydroxyiminoalkyl)phenyl]carbamoyl]acrylates (2) with electron deficient olefins proceeds via a sequential dipole formation, dipolar cycloaddition sequence to furnish the tetrahydroisoxazolo[2,3-d][1,4]benzodiazepin-6(5H)-ones and tetrahydroisoxazolo[4,3-c]quinolin-4(5H)-ones (4) and (6). The product distribution reflects the nature of the reacting olefin and the position and extent of substitution on the acrylate moiety.

  11. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials

    International Nuclear Information System (INIS)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal; Denayer, Joeri F.M.; Biswas, Shyam

    2016-01-01

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH 3 , 4-CH 3 ; new ones with X=–C 6 H 4 , 5-C 6 H 4 ; –F 2 , 6-F 2 , –(CH 3 ) 2 , 7-(CH 3 ) 2 ) were synthesized under hydrothermal conditions. All the materials except 5-C 6 H 4 could be prepared by a general synthetic route, in which the mixtures of CrO 3 , H 2 BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C 6 H 4 , could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S BET range: 1273–2135 m 2 g −1 ). At 0 °C and 1 bar, the CO 2 adsorption capacities of the compounds fall in the 1.7–2.9 mmol g −1 range. Compounds 1-F and 6-F 2 showed enhanced CO 2 uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p 0 =0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH 3 suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N 2 , CO 2 and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO 2 adsorption capacities.

  12. 5-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-03-01

    Full Text Available The title compound, 5-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione, has been synthesized by condensation of 1,3-diethyl-2-thiobarbituric acid and 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR and EI-MS spectral analysis.

  13. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag: cement binding materials

    International Nuclear Information System (INIS)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian

    2016-01-01

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO 3 and CaSO 4 ·2H 2 O were added. This was done to study the compound effect of CaCO 3 and CaSO 4 ·2H 2 O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO 3 and CaSO 4 ·2H 2 O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO 3 and CaSO 4 ·2H 2 O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO 3 could accelerate the hydration of C 3 S. In addition, CaCO 3 was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO 4 ·2H 2 O could increase the number of AFt. The compound effect of CaCO 3 and CaSO 4 ·2H 2 O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  14. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    Science.gov (United States)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  15. Iridium complexes containing mesoionic C donors: selective C(sp3)-H versus C(sp2)-H bond activation, reactivity towards acids and bases, and catalytic oxidation of silanes and water.

    Science.gov (United States)

    Petronilho, Ana; Woods, James A; Mueller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2014-11-24

    Metalation of a C2-methylated pyridylimidazolium salt with [IrCp*Cl2]2 affords either an ylidic complex, resulting from C(sp(3))-H bond activation of the C2-bound CH3 group if the metalation is performed in the presence of a base, such as AgO2 or Na2CO3, or a mesoionic complex via cyclometalation and thermally induced heterocyclic C(sp(2))-H bond activation, if the reaction is performed in the absence of a base. Similar cyclometalation and complex formation via C(sp(2))-H bond activation is observed when the heterocyclic ligand precursor consists of the analogous pyridyltriazolium salt, that is, when the metal bonding at the C2 position is blocked by a nitrogen rather than a methyl substituent. Despite the strongly mesoionic character of both the imidazolylidene and the triazolylidene, the former reacts rapidly with D(+) and undergoes isotope exchange at the heterocyclic C5 position, whereas the triazolylidene ligand is stable and only undergoes H/D exchange under basic conditions, where the imidazolylidene is essentially unreactive. The high stability of the Ir-C bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation. The catalytic hydrosilylation of ketones proceeds with turnover frequencies as high as 6,000 h(-1) with both the imidazolylidene and the triazolylidene system, whereas water oxidation is enhanced by the stronger donor properties of the imidazol-4-ylidene ligands and is more than three times faster than with the triazolylidene analogue. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    Science.gov (United States)

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  17. Experimental and theoretical studies of the C{sub 6}H{sub 5} + C{sub 6}H{sub 6} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Burova, S.; Rodgers, A.S.; Lin, M.C.

    1999-11-11

    The absolute rate constants for the C{sub 6}H{sub 5} + C{sub 6}H{sub 6} and C{sub 6}D{sub 6} reactions have been measured by cavity ringdown spectrometry at temperatures between 298 and 495 K at a constant 40 Torr Ar pressure. The new results, which reveal no detectable kinetic isotopic effect, can be represented by the Arrhenius equation, {kappa}{sub 1} = 10{sup (11.91{+-}0.13)} exp[{minus}(2,102 {+-} 106)/T] cm{sup 3}/(mol s). Low-temperature data for the addition/stabilization process, C{sub 6}H{sub 5} + C{sub 6}H{sub 6} {r{underscore}arrow} C{sub 12}H{sub 11}, can be correlated with those obtained in a low-pressure, high-temperature Knudsen cell study for the addition/displacement reaction, C{sub 6}H{sub 5} + C{sub 6}H{sub 6} {r{underscore}arrow} C{sub 12}H{sub 10} + H, by the RRKM theory using the molecular and transition-state parameters computed at the B3LYP/6-311G(d,p) level of theory. Combination of these two sets of data gives {kappa}{sub 1} = 10{sup (11.98{+-}0.03)} exp[{minus}(2168 {+-} 34)/T] cm{sup 3}/(mol s) covering the temperature range 298--1,330 K. The RRKM theory also correlates satisfactorily the forward reaction data with the high-temperature shock-tube result for the reverse H-for-C{sub 6}H{sub 5} substitution process with 2.7 and 4.7 kcal/mol barriers for the entrance (C{sub 6}H{sub 5} + C{sub 6}H{sub 6}) and reverse (H + C{sub 12}H{sub 10}) reactions, respectively. For modeling applications, the authors have calculated the forward reaction rate constants for the formation of the two competing products, H + C{sub 12}H{sub 10} and C{sub 12}H{sub 11}, at several pressures covering 300 K {lt} T {lt} 2,500 K.

  18. Probing Metal Carbonation Reactions of CO2 in a Model System Containing Forsterite and H2O Using Si-29, C-13 Magic Angle Sample Spinning NMR Spectroscopy

    Science.gov (United States)

    Hu, J.; Kwak, J.; Hoyt, D. W.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.

    2009-12-01

    Ex situ solid state NMR have been used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration using a model silicate mineral forsterite (Mg2SiO4)+scCO2 with and without H2O. Run conditions were 80C and 96 bar. Si-29 NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce Mg2+, and mono- and oligomeric hydroxylated silica species. The surface hydrolysis products contain only Q0 (Si(OH)4) and Q1 (Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. Si-29 NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. C-13 MAS NMR identified a possible reaction intermediates as (MgCO3)4*Mg(OH)2*5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed. This research is part of a broader effort at PNNL to develop experimental tools and fundamental insights into chemical transformations affecting subsurface CO2 reactive transport. Si-29 (left) and C-13 (right) MAS NMR spectra of Mg2SiO4 under various reaction conditions. Si-29 NMR reveals that in scCO2 without H2O, no reaction is

  19. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Thabet, Safa, E-mail: safathabet@hotmail.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Ayed, Brahim, E-mail: brahimayed@yahoo.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Haddad, Amor [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, with a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.

  20. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.

    2005-01-01

    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  1. Synthesis, physical-chemical properties of 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioacetohydrazides

    Directory of Open Access Journals (Sweden)

    O. A. Suhak

    2017-04-01

    Full Text Available Aim. Analysis of the scientific literature over the past decade has shown that large synthetic possibilities towards creating new and effective drug substances have heterocyclic compounds, in particular the derivatives of 1,2,4-triazole. 1,2,4-Triazole is a structural fragment of many synthetic drugs. The special interest cause ylidene hydrazides of 2-(5-R-1,2,4-triazole-3-ylthioacetic acids as potential biologically active compounds, among which highly effective medicines can be found. With the aim of finding new biologically active compounds the derivatives of 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides have been synthesized, their physical-chemical properties have been studied with the use of modern methods, namely elemental analysis, IR,1H-NMR spectroscopy, and their individuality by HPLC-MS. Materials and methods. N'-R1-еden-2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides were received by adding aromatic (2-BrC6H4, 2,3-(OCH32C6H3, 3,5-(OCH32C6H3, 4-N(CH32C6H4, 3,4-F2C6H3, 2-NO2C6H4,4-NO2C6H4, 4-OHC6H4, 2-OHC6H4, 4-FC6H4, 2-CI-6-FC6H3 or heterocyclic (2-SC4H3, 5-NO2-2-C4H2O aldehyde to an equivalent amount of the appropriate 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazide in the acetic acid medium. The study of physical-chemical properties of obtained compounds was carried out according to the methods outlined in SPU. Chromato-mass-spectral studies were performed on hazarding chromatograph Agilent 1260 Infinity HPLC equipped with mass spectrometer Agilent 6120 with ionization in electro-spray (ESI. Conclusion. This suggests the possibility for further study of biological action of the synthesized compounds. As a result of studies the N'-R1-eden-2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides have been synthesized and their physical-chemical properties have been studied.

  2. Systems of Na/sup +/NO/sub 3/, Na/sub 2/SO/sub 4/, RbNO/sub 3/, Rb/sub 2/SO/sub 4/-H/sub 2/O and NaNO/sub 3/, Na/sub 2/SO/sub 4/, CsNO/sub 3/, Cs/sub 2/SO/sub 4/-H/sub 2/O at 25 and 75 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Poletaev, I F; Krasnenkova, L V

    1975-08-01

    Quaternary Na/sup +/, Rb/sup +///NO/sub 3/-, SO/sub 4//sup 2 -/-H/sub 2/O and Nsub(+), Cs/sup +///NO/sub 3/-, SO/sub 4//sup 2 -/-H/sub 2/O mutual systems have been studied isothermally. The following six fields of crystallization have been revealed in these systems at 25 deg C: Cs/sub 2/SO/sub 4/, Na/sub 2/SO/sub 4/, Na/sub 2/SO/sub 4/x10H/sub 2/O, NaNO/sub 3/xNa/sub 2/SO/sub 4/x2H/sub 2/O, NaNO/sub 3/, and CsNO/sub 3/.

  3. O(3P) + C2H4 Potential Energy Surface: Study at the Multireference Level

    Czech Academy of Sciences Publication Activity Database

    West, A. C.; Kretchmer, J. S.; Sellner, B.; Park, K.; Hase, W. L.; Lischka, Hans; Windus, T. L.

    2009-01-01

    Roč. 113, č. 45 (2009), s. 12663-12674 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen combustion * multireference methods * O(3P)+C2H4 reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  4. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Directory of Open Access Journals (Sweden)

    Ali Rayes

    2016-12-01

    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  5. 4-(2,3-Dihydroxybenzylideneamino-3-methyl-1H-1,2,4-triazol-5(4H-one

    Directory of Open Access Journals (Sweden)

    Şamil Işık

    2009-12-01

    Full Text Available All the non-H atoms of the title compound, C10H10N4O3, are almost coplanar, the maximum deviation from planarity being 0.065 (3 Å. The dihedral angle between the aromatic rings is 1.66 (6°. The molecule adopts the enol–imine tautomeric form with an intramolecular hydrogen-bonding interaction between the Schiff base N atom and the hydroxy group. In the crystal, intermolecular N—H...O and O—H...O hydrogen bonds link the molecules into a three-dimensional network.

  6. On the formation of C2H5O2+ ions having the structure of hydroxy-protonated acetic acid

    NARCIS (Netherlands)

    Terlouw, J.K.; Koster, C.G. de; Levsen, K.

    1984-01-01

    Experiments are reported which are best explained in terms of the formation of the long-sought hydroxy-protonated acetic acid, CH3C(O)OH2- This C2 H5O2+ species, generated upon dissociative ionization of 2,4-dihydroxy-2-methylpentane (consecutive losses of CH3. and C3H6), is characterized by a

  7. Electrical Conductivity of Cancrinite-Type Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) Crystals

    Science.gov (United States)

    Sorokin, N. I.

    2018-05-01

    The electrical conductivity of crystals of artificial cancrinite Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) has been studied in the temperature range of 498-604 K. These crystals were grown by hydrothermal synthesis on a seed in the Na2O-Al2O3-SiO2-H2O system ( t = 380-420°C, P = 3 × 107-9 × 107 Pa). The ionic conductivity of a single-crystal sample (sp. gr. P63), measured along the crystallographic axis c, is low: σ = 8 × 10-7 S/cm at 300°C. The electric transport activation energy is E a = 0.81 ± 0.05 eV. The relationship between the ionic conductivity and specific features of the atomic structure of cancrinites is discussed.

  8. Influence of the pressure and power on the non-equilibrium plasma chemistry of C{sub 2}, C{sub 2}H, C{sub 2}H{sub 2}, CH{sub 3} and CH{sub 4} affecting the synthesis of nanodiamond thin films from C{sub 2}H{sub 2} (1%)/H{sub 2}/Ar-rich plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid (Spain); Albella, J M [Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid (Spain)

    2004-02-01

    We have used a kinetic model to investigate the influence of changing the pressure (0.1-0.8 Torr) and power (100-300 W) on the non-equilibrium plasma chemistry of RF (13.56 MHz) produced C{sub 2}H{sub 2} (1%)/H{sub 2}/Ar plasmas of interest for the synthesis of nanodiamond thin films. We found that the concentrations of the species C{sub 2}(X{sup 1}SIGMA{sup +}{sub g}), C{sub 2}(a{sup 3}PI{sub u}) and C{sub 2}H are not sensitive to variations in the power but they exhibit a significant increase when the pressure decreases at high argon content in the plasma. In addition, the concentrations of C{sub 2}H{sub 2}, CH{sub 4} and CH{sub 3} exhibit a slight (case of C{sub 2}H{sub 2}) or negligible (case of CH{sub 3} and CH{sub 4}) power-dependence although they decrease (case of C{sub 2}H{sub 2} and CH{sub 4}) or remain almost constant (case of CH{sub 3}) as the pressure decreases. A reasonable agreement is found when comparing the model predictions with available experimental results. These findings provide a basic understanding of the plasma chemistry of hydrocarbon/Ar-rich plasma environments and, at the same time, can be of interest to optimize the processing conditions of nanodiamond films from medium pressure RF hydrocarbon/Ar-rich plasmas.

  9. A theoretical study of the reaction of O(3P) with an allyl radical C3H5

    Science.gov (United States)

    Park, Jong-Ho; Lee, Hohjai; Choi, Jong-Ho

    2003-11-01

    Ab initio calculations of the reaction of ground-state atomic oxygen [O(3P)] with an allyl radical (C3H5) have been carried out using the density functional method and the complete basis set model. On the calculated lowest doublet potential energy surface, the barrierless association of O(3P) to C3H5 forms three energy-rich addition intermediates, which are predicted to undergo subsequent isomerization and decomposition steps leading to various products: C3H4O+H, CH2O+C2H3, C2H4+CHO, C2H2O+CH3, C2H5+CO, C3H4+OH, and C2H4O+CH. The respective reaction mechanisms through the three addition intermediates are presented, and it has been found that the barrier height, reaction enthalpy, and the number of intermediates involved along the reaction coordinate are of extreme importance in understanding such reactive scattering processes. With the aid of Rice-Ramsperger-Kassel-Marcus calculations, the major reaction pathway is predicted to be the formation of acrolein (C3H4O)+H, which is consistent with the previous gas-phase bulk kinetic experiment performed by Gutman et al. [J. Phys. Chem. 94, 3652 (1990)]. For the minor C3H4+OH channel, which has been newly found in the recent crossed beam investigations, a second barrierless, direct H-atom abstraction from the central carbon of C3H5 is calculated to compete with the addition process due to the little C-H bond dissociation energy and the formation of a stable allene product. The dynamic and kinetic characteristics of the reaction mechanism are discussed on the basis of the comparison of prior statistical calculations to the nascent internal distributions of the observed OH product.

  10. MeB5O8(Me-Li, Na, K, NH4)-H2NCONHCOCH3-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Fedorov, Yu.A.; Molodkin, A.K.; Tsekhanskij, R.S.

    1986-01-01

    Using the methods of isothermal solubility, densi- and refractometry, systems MB 5 O 8 (M-Li, Na, K, NH 4 )-acetylcarbamide - H 2 O at 25 deg C have been studied. It is ascertained, that the systems investigated are of simple eutonic type

  11. Photodissociation of C3H5Br and C4H7Br at 234 nm

    International Nuclear Information System (INIS)

    Kim, Hyun Kook; Paul, Dababrata; Hong, Ki Ryong; Cho, Ha Na; Kim, Tae Kyu; Lee, Kyoung Seok

    2012-01-01

    The photodissociation dynamics of cyclopropyl bromide (C-3H 5 Br) and cyclobutyl bromide (C 4 H 7 Br) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonance enhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) atoms. The recoil anisotropies for the Br and Br* channels were measured to be βBr = 0.92 ± 0.03 and βBr* = 1.52 ± 0.04 for C 3 H 5 Br and βBr = 1.10 ± 0.03 and βBr* = 1.49 ± 0.05 for C 4 H 7 Br. The relative quantum yield for Br was found to be ΦBr = 0.13 ± 0.03 and for C 3 H 5 Br and C 4 H 7 Br, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed

  12. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  13. Hydrogen-bonded Three-Dimensional Networks Encapsulating One-dimensional Covalent Chains: [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-Aminopyridine)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-aminopyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P, a = 7.675(2), b = 8.225(3), c = 10.845(3) (A), α= 86.996(4), β = 76.292(4),γ = 68.890(4)°, V = 620.0(3) (A)3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(Ⅰ)). The structure consists of [Cu(3-ampy)(H2O)4]2+ cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.

  14. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  15. Structure and phase transitions of the 6,6-cyclopropane isomer of C61H2

    International Nuclear Information System (INIS)

    Stetzer, M.R.; Heiney, P.A.; Stephens, P.W.; Dinnebier, R.E.; Zhu, Q.; McGhie, A.R.; Strongin, R.M.; Brandt, B.M.; Smith, A.B. III

    2000-01-01

    We have used x-ray powder diffraction and differential scanning calorimetry to study the crystalline structures and thermal behavior of the 6,6-cyclopropane isomer of C 61 H 2 . At room temperature, the C 61 H 2 cyclopropane molecules, like those of the 6,5-annulene isomer and C 60 O epoxide, are orientationally disordered and crystallize on a face-centered-cubic lattice such that their methylene groups are statistically disordered among the octahedral voids. Unlike 6,5-C 61 H 2 and C 60 O, the low-temperature structure is not Pa3-bar, but rather a low-symmetry orthorhombic lattice in which a≅b< c. The orientational melting takes place via a two-step transition centered around 198-213 K

  16. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dinitrosyl(tetrahydroborato-κ2H,H′tungsten(0

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available In the title paramagnetic 19-electron neutral complex, [W(BH4(C21H24N22(NO2], the W(0 atom is coordinated by two 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand. Depending on the number of coordination sites (n assigned to the BH4− ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1 or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2. In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via C—H...O interactions.

  17. A novel highly efficient adsorbent {[Co4(L)23-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    Science.gov (United States)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)23-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  18. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.

    Science.gov (United States)

    Zhang, Xin; Liu, Yongfeng; Wang, Ke; Li, You; Gao, Mingxia; Pan, Hongge

    2015-12-21

    A nanocrystalline CeO2@C-containing NaAlH4 composite is successfully synthesized in situ by hydrogenating a NaH-Al mixture doped with CeO2@C. Compared with NaAlH4 , the as-prepared CeO2@C-containing NaAlH4 composite, with a minor amount of excess Al, exhibits significantly improved hydrogen storage properties. The dehydrogenation onset temperature of the hydrogenated [NaH-Al-7 wt % CeO2@C]-0.04Al sample is 77 °C lower than that of the pristine sample because of a reduced kinetic barrier. More importantly, the dehydrogenated sample absorbs ∼4.7 wt % hydrogen within 35 min at 100°C and 10 MPa of hydrogen. Compositional and structural analyses reveal that CeO2 is converted to CeH2 during ball milling and that the newly formed CeH2 works with the excess of Al to synergistically improve the hydrogen storage properties of NaAlH4. Our findings will aid in the rational design of novel catalyst-doped complex hydride systems with low operating temperatures, fast kinetics, and long-term cyclability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal structure of 5-[bis(methylsulfonylmethyl]-1,3-dimethyl-5-(methylsulfonylpyrimidine-2,4,6(1H,3H,5H-trione

    Directory of Open Access Journals (Sweden)

    Eyad Mallah

    2015-01-01

    Full Text Available In the title compound, C10H16N2O9S3, the pyrimidine ring of the 1,3-dimethyl barbituric acid moiety has an envelope conformation with the C atom carrying the methylsulfonyl and bis(methylsulfonylmethyl substituents as the flap. The dihedral angle between mean plane of the pyrimidine ring and the S/C/S plane is 72.4 (3°. In the crystal, molecules are linked via C—H...O hydrogen bonds, forming a three-dimensional structure.

  20. Adsorption properties of CO, H{sub 2} and CH{sub 4} over Pd/γ-Al{sub 2}O{sub 3} catalyst: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zijian; Wang, Ben, E-mail: benwang@hust.edu.cn; Yu, Jie; Ma, Chuan; Qu, Qinggong; Zeng, Zhao; Xiang, Jun; Hu, Song; Sun, Lushi, E-mail: sunlushi@hust.edu.cn

    2016-11-30

    Highlights: • Model of dimer Pd supported on γ-Al{sub 2}O{sub 3} (1 1 0) surface was established. • CO, H{sub 2} and CH{sub 4} adsorption on clean γ-Al{sub 2}O{sub 3} and on Pd/γ-Al{sub 2}O{sub 3} surface was studied by DFT calculations. • CO, H{sub 2} and CH{sub 4} adsorptions are energetically more favorable in the presence of dimer Pd. • Mechanism of CO, H{sub 2} and CH{sub 4} adsorption on Pd/γ-Al{sub 2}O{sub 3} (1 1 0) surface was explained. - Abstract: Density functional theory (DFT) calculations were employed to investigate the adsorption characteristics of carbon monoxide (CO), hydrogen (H{sub 2}), and methane (CH{sub 4}) on the surface of clean γ-Al{sub 2}O{sub 3} and Pd supported γ-Al{sub 2}O{sub 3}, which is of significant for catalytic combustion. The adsorption intensities of the three gas molecules in pure γ-Al{sub 2}O{sub 3} (1 1 0) and Pd/γ-Al{sub 2}O{sub 3} (1 1 0) were in the order of CO > H{sub 2} > CH{sub 4}. The corresponding adsorption energies on the Pd/γ-Al{sub 2}O{sub 3} (1 1 0) surface were at least three times higher than those on γ-Al{sub 2}O{sub 3} (1 1 0). Anlysis of Mulliken population and partial density of states (PDOS) showed that the adsorption mechanisms were as follow: (a) CO stably adsorbed on the bridge site of dimer Pd with two C−Pd bonds because of charges transfer from the surface to CO, and the triple bond (C≡O) was broken to a double bond (C=O); (b) H{sub 2} was dissociated into hydrogen atoms on the dimer Pd and produced a stable planar configuration; and (c) the tetrahedral structure of CH{sub 4} was destroyed on the surface and formed a −CH{sub 3} species bonded to the Pd atom, which contributes to the orbital hybridization between C and Pd atoms.

  1. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    Science.gov (United States)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  2. Utilization of Snail (Achatina fulica Shell Waste for Synthesis of Calcium Tartrate Tetrahydrate (CaC4H4O6.4H2O Single Crystals in Silica Gel

    Directory of Open Access Journals (Sweden)

    Imam Sakdi

    2012-01-01

    Full Text Available Snail (Achatina fulica shell waste is massively produced by many home industries in Indonesia, especially in East Java. The snail shell is known for high calcium; therefore it is potential to be used as calcium source of supernatant in the synthesis of piezoeletric material, such as single crystal of calcium tartrate tetrahydrate (CaTT. The aim of this research is to study the synthesis and characterization of CaTT or CaC4H4O6.4H2O from snail shell waste in silica gel. Supernatant solution of CaCl2 was prepared from CaO, which previously made by calcinating the shell at 1000°C, and then reacted with HCl 1,5M. Synthesis of CaTT was conducted in a single-tube reaction at room temperature in which silica gel was used as growth medium with gelling time of 10 days and growth time of 2 weeks. The pH of gel and CaCl2 concentration were varied, 3.00; 3.50; 4.00; 4.50; 5.00; and 0.27; 0.36; 0.45; 0.54 M respectively, in order to obtain optimum condition of the synthesis, which is indicated from crystal yields. The synthesized crystals were characterized by atomic adsorption spectrophotometry (AAS, infrared spectroscopy (IR and powder X-ray diffraction (XRD. Experimental data shows that optimum condition was obtained at pH of 3.50 and [CaCl2] of 0.45M with yield of 69.37%. The obtained single crystal has clear color and octahedral-like shape with size ranged between 4 – 9 mm. Analysis data by FTIR and powder XRD confirmed that the obtained crystal was CaTT single crystals with crystal system of orthorhombic.

  3. Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl · 2H2O

    International Nuclear Information System (INIS)

    Zhao, Pu Su; Lu, Lu De; Jian, Fang Fang

    2003-01-01

    The crystal structure of [Co(phen) 2 (Cl)(H 2 O)] Cl · 2H 2 O(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P 1 , with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)A, α=64.02(1), β=86.364(9), γ=78.58(2) .deg., and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33A). The intermolecular hydrogen bonds connect the [Co(phen) 2 (Cl)(H 2 O)] 1+ , H 2 O moieties and chloride ion

  4. Crystal structure of strontium osmate (8) Sr[OsO5(H2O)]x3H2O

    International Nuclear Information System (INIS)

    Nevskij, N.N; Ivanov-Ehmin, B.N.; Nevskaya, N.A.; Belov, N.V.; AN SSSR, Moscow. Inst. Kristallografii)

    1982-01-01

    Crystal structure of the Sr[OsO 5 (H 2 O)]x3H 2 O complex is studied. Rhombic P-cell has the parameters: a=6.426(1), b=7.888(1), c=14.377(5) A, Vsub(c)=729 A 3 . The R-factor equals 0.034. The coordinates of the basis atoms and isotropic temperature corrections, as well as basic interatomic distances, are determined

  5. Evolution of H2O, CO, and CO2 production in Comet C/2009 P1 Garradd during the 2011-2012 apparition

    Science.gov (United States)

    McKay, Adam J.; Cochran, Anita L.; DiSanti, Michael A.; Villanueva, Geronimo; Russo, Neil Dello; Vervack, Ronald J.; Morgenthaler, Jeffrey P.; Harris, Walter M.; Chanover, Nancy J.

    2015-04-01

    We present analysis of high spectral resolution NIR spectra of CO and H2O in Comet C/2009 P1 (Garradd) taken during its 2011-2012 apparition with the CSHELL instrument on NASA's Infrared Telescope Facility (IRTF). We also present analysis of observations of atomic oxygen in Comet Garradd obtained with the ARCES echelle spectrometer mounted on the ARC 3.5-m telescope at Apache Point Observatory and the Tull Coude spectrograph on the Harlan J. Smith 2.7-m telescope at McDonald Observatory. The observations of atomic oxygen serve as a proxy for H2O and CO2. We confirm the high CO abundance in Comet Garradd and the asymmetry in the CO/H2O ratio with respect to perihelion reported by previous studies. From the oxygen observations, we infer that the CO2/H2O ratio decreased as the comet moved towards the Sun, which is expected based on current sublimation models. We also infer that the CO2/H2O ratio was higher pre-perihelion than post-perihelion. We observe evidence for the icy grain source of H2O reported by several studies pre-perihelion, and argue that this source is significantly less abundant post-perihelion. Since H2O, CO2, and CO are the primary ices in comets, they drive the activity. We use our measurements of these important volatiles in an attempt to explain the evolution of Garradd's activity over the apparition.

  6. The C2H3O+ chemi-ion acetyl cation or O-protonated ketene

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1995-01-01

    The C2H3O+ chemi-ion sampled from a premixed methane/oxygen flame has been demonstrated to be the acetyl cation based on ion-molecule reactions with isoprene and 1,3-dioxolane.......The C2H3O+ chemi-ion sampled from a premixed methane/oxygen flame has been demonstrated to be the acetyl cation based on ion-molecule reactions with isoprene and 1,3-dioxolane....

  7. The synthesis of the 2H, 3H, and 14C-isotopomers of 2'-deoxy-2',2'-difluorocytidine hydrochloride, an anti-tumor compound

    International Nuclear Information System (INIS)

    Wheeler, W.J.; Mabry, T.E.; Jones, C.D.

    1991-01-01

    The 2 H, 3 H, and 14 C-isotopomers of 2'-deoxy-2', 2'-difluorocytidine hydrochloride (gemcitabine hydrochloride) have been synthesized in two radiochemical steps from the reaction of bis-trimethylsilylcytosine-[2- 14 C] and 3,5-O-bis-benzoyl-1-O-methanesulfonyl-2-deoxy-2,2-difluororibose. A mixture of anomers of 3',5'-dibenzoyl-2'-deoxy-2',2'-difluorocytidine or its 14 C-isotopomer were obtained which were readily separated by crystallization from ethyl acetate. Deprotection using methanolic ammonia yielded the target compound. The 2 H and 3 H-isotopomers were prepared by deuterium (or tritium) gas hydrogenolysis of 5-iodo-2'-deoxy-2',2'-difluorocytidine. (author)

  8. Quasielastic neutron scattering and infra-red band contour study of H2O reorientations in [Ni(H2O)6] (ClO4)2

    International Nuclear Information System (INIS)

    Janik, J.A.; Janik, J.M.; Otnes, K.; Stanek, T.

    1980-01-01

    IR band contour measurements carried out for [Ni(H 2 O) 6 ] (ClO 4 ) 2 revealed an existence of fast H 2 O 180 deg flips around Ni-O axes at room temperatures. These flips were subjected to a more accurate study by the quasielastic neutron scattering method. Correlation times of the order of picosecond were obtained for room temperatures and the barrier to rotation of ca. 7 kcal/mole. The results are compared to those previously obtained for [Mg(H 2 O) 6 ] (ClO 4 ) 2 and also to those for [Ni(NH 3 ) 6 ] (ClO 4 ) 2 and [Mg(NH 3 ) 6 ] (ClO 4 ) 2 . (author)

  9. Theoretical characterizations of novel C2H5O+ reactions

    Science.gov (United States)

    Hudson, Charles E.; McAdoo, David J.

    2004-03-01

    Assorted reactions of C2H5O+ isomers are characterized by theory, including tracing their courses by means of intrinsic reaction coordinate computations. We establish that CH3CH=OH+ eliminates methane by transferring H from oxygen to a methyl hydrogen and then to the CC bond to produce CHO++CH4. This adds to the limited knowledge of the involvement of hypervalent structures in the reactions of cations in the gas phase. Second, we characterized the course of CH3CH=OH+-->H3O++HC[triple bond; length as m-dash]CH. In this dissociation, H first migrates from the methyl to the oxygen to give O-protonated vinyl alcohol, a stable intermediate. Then the H2O swings outward to over the middle of the CC bond while one of the two hydrogens on the non-O-bearing carbon revolves to between the oxygen and the two carbons, leading to formation of a [H3O+ HC[triple bond; length as m-dash]CH] complex. This complex contains sufficient energy to dissociate its partners because a high barrier is crossed in its formation. Third, we found that methane elimination from CH3O+=CH2 involves stretching of the CH3---O bond and then rotation of the methyl so that a methyl hydrogen is pointed directly toward the oxygen. This reaction is completed by further rotation of the methyl to abstract a methylene hydrogen to the opposite side of the methyl from that initially bonded to oxygen. This clearly establishes that this dissociation takes place through an ion-neutral complex. Each of the reaction coordinates for the three preceding reactions traverses a novel bonding stage involving H, evidence that such are not unusual in gas phase ion chemistry. Finally, we showed that in the rearrangement CH3O+=CH2-->CH2=O+CH3, before Ht is transferred CH2 rotates around the C=C bond from being in the skeletal plane to being perpendicular to it, and Ht remains in the skeletal plane throughout its transfer. This pathway appears to balance avoiding an orbital symmetry-forbidden suprafacial transition state with

  10. Atom-radical reaction dynamics of O(3P)+C3H5→C3H4+OH: Nascent rovibrational state distributions of product OH

    Science.gov (United States)

    Park, Jong-Ho; Lee, Hohjai; Kwon, Han-Cheol; Kim, Hee-Kyung; Choi, Young-Sang; Choi, Jong-Ho

    2002-08-01

    The reaction dynamics of ground-state atomic oxygen [O(3P)] with allyl radicals (C3H5) has been investigated by applying a combination of crossed beams and laser induced fluorescence techniques. The reactants O(3P) and C3H5 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor allyl iodide, respectively. A new exothermic channel of O(3P)+C3H5→C3H4+OH was observed and the nascent internal state distributions of the product OH (X 2Π:υ″=0,1) showed substantial bimodal internal excitations of the low- and high-N″ components without Λ-doublet and spin-orbit propensities in the ground and first excited vibrational states. With the aid of the CBS-QB3 level of ab initio theory and Rice-Ramsperger-Kassel-Marcus calculations, it is predicted that on the lowest doublet potential energy surface the major reaction channel of O(3P) with C3H5 is the formation of acrolein (CH2CHCHO)+H, which is consistent with the previous bulk kinetic experiments performed by Gutman et al. [J. Phys. Chem. 94, 3652 (1990)]. The counterpart C3H4 of the probed OH product in the title reaction is calculated to be allene after taking into account the factors of reaction enthalpy, barrier height and the number of intermediates involved along the reaction pathway. On the basis of population analyses and comparison with prior calculations, the statistical picture is not suitable to describe the reactive atom-radical scattering processes, and the dynamics of the title reaction is believed to proceed through two competing dynamical pathways. The major low N″-components with significant vibrational excitation may be described by the direct abstraction process, while the minor but extraordinarily hot rotational distribution of high N″-components implies that some fraction of reactants is sampled to proceed through the indirect short-lived addition-complex forming process.

  11. Neutron diffraction analysis of HRh[P(C6H5)3]4

    International Nuclear Information System (INIS)

    Bau, R.; Stevens, R.C.; McLean, M.; Koetzle, T.F.

    1987-01-01

    We have collected neutron diffraction data on a large single crystal of the title compound. The most surprising result is an extremely short Rh-H distance of 1.31(8) A, presumably caused by steric interactions involving the bulky triphenyl phosphine ligands. Crystallographic details: HRh[P(C 6 H 5 ) 3 ] 4 . 1 / 2 C 6 H 6 crystallizes in the space group Pa3, with a = b = c = 22.776(3) A, Z = 8. Data were collected at the Brookhaven High Flux Beam reactor at a temperature of -23 0 C, λ = 1.15882(7) A -1 . Least-squares refinement (in which the phenyl rings were treated as rigid groups) resulted in an R factor [based on data with f > 4σ(F)] of 0.12 for 914 reflections and 95 parameters. 10 refs

  12. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  13. Crystal structure of Sm(NO3)3x6H2O

    International Nuclear Information System (INIS)

    Espenbetov, A.A.; Gerr, R.G.; Struchkov, Yu.T.; Sal'nikova, N.A.; Akimov, V.M.; Odinets, Z.K.

    1985-01-01

    X-ray diffraction study of a salt, prepared when mixing concentrated nitric acid solutions of NaNO 3 and Sm(NO 3 ) 3 , has been carried out. It is established, that the salt is a concretion of two crystals: NaNO 3 and Sm(NO 3 ) 3 x6H 2 O (1). X-ray diffraction study of 1 is carried out (lambda Mo, diffractometer, 1511 reflections, the method of heavy atom, the least square method in anisotropic approximation up to R=0.0348). The crystals of 1 are triclinic: a=6.755, b=9.168, c=11.684 A, α=69.93, β=88.86, γ=69.28, Z=2, Fedorov group P anti 1. Symmetery of 10-vertex coordination polyhedron (CP) of Sm atom is close to Csub(s). Sm atom coordination can be described as 4;5:1. Four H 2 O molecules are included into CP, at the expense of two remaining H 2 O molecules CP are bound with each other

  14. Crystal structure and spectroscopic behavior of synthetic novgorodovaite Ca2(C2O4)Cl2·2H2O and its twinned triclinic heptahydrate analog

    Science.gov (United States)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2018-02-01

    Synthetic novgorodovaite analog Ca2(C2O4)Cl2·2H2O is identical to its natural counterpart. It crystallizes in the monoclinic I2/ m space group with a = 6.9352(3), b = 7.3800(4), c = 7.4426(3) Å, β = 94.303(4)°, V = 379.85(3) Å3 and Z = 2. The heptahydrate analog, Ca2(C2O4)Cl2·7H2O, crystallizes as triclinic twins in the P \\overline{1} space group with a = 7.3928(8), b = 8.9925(4), c = 10.484(2) Å, α = 84.070(7), β = 70.95(1), γ = 88.545(7)°, V = 655.3(1) Å3 and Z = 2. The crystal packing of both calcium oxalate-chloride double salts favors the directional bonding of oxalate, C2O4 2-, ligands to calcium ions as do other related calcium oxalate minerals. The π-bonding between C and O atoms of the C2O4 2- oxalate group leaves sp 2-hydridised orbitals of the oxygen atoms available for bonding to Ca. Thus, the Ca-O bonds in both calcium oxalate-chloride double salts are directed so as to lie in the plane of the oxalate group. This behavior is reinforced by the short O···O distances between the oxygens attached to a given carbon atom, which favors them bonding to a shared Ca atom in bidentate fashion. Strong bonding in the plane of the oxalate anion and wide spacing perpendicular to that plane due to repulsion between oxalate π-electron clouds gives rise to a polymerized structural units which are common to both hydrates, explaining the nearly equal cell constants 7.4 Å which are defined by the periodicity of Ca-oxalate chains in the framework (monoclinic b ≈ triclinic a). When compared with novgorodovaite, the higher water content of Ca2(C2O4)Cl2·7H2O leads to some major differences in their structures and ensuing physical properties. While novgorodovaite has a three-dimensional framework structure, in the higher hydrate, the highly polar water molecules displace chloride ions from the calcium coordination sphere and surround them through OwH···Cl hydrogen bonds. As a result, polymerization in Ca2(C2O4)Cl2·7H2O solid is limited to the formation

  15. Underestimation of glucose turnover measured with [6-3H]- and [6,6-2H]- but not [6-14C]glucose during hyperinsulinemia in humans

    International Nuclear Information System (INIS)

    McMahon, M.M.; Schwenk, W.F.; Haymond, M.W.; Rizza, R.A.

    1989-01-01

    Recent studies indicate that hydrogen-labeled glucose tracers underestimate glucose turnover in humans under conditions of high flux. The cause of this underestimation is unknown. To determine whether the error is time-, pool-, model-, or insulin-dependent, glucose turnover was measured simultaneously with [6-3H]-, [6,6-2H2]-, and [6-14C]glucose during a 7-h infusion of either insulin (1 mU.kg-1.min-1) or saline. During the insulin infusion, steady-state glucose turnover measured with both [6-3H]glucose (8.0 +/- 0.5 mg.kg-1.min-1) and [6,6-2H2]glucose (7.6 +/- 0.5 mg.kg-1.min-1) was lower (P less than .01) than either the glucose infusion rate required to maintain euglycemia (9.8 +/- 0.7 mg.kg-1.min-1) or glucose turnover determined with [6-14C]glucose and corrected for Cori cycle activity (9.8 +/- 0.7 mg.kg-1.min-1). Consequently negative glucose production rates (P less than .01) were obtained with either [6-3H]- or [6,6-2H2]- but not [6-14C]glucose. The difference between turnover estimated with [6-3H]glucose and actual glucose disposal (or 14C glucose flux) did not decrease with time and was not dependent on duration of isotope infusion. During saline infusion, estimates of glucose turnover were similar regardless of the glucose tracer used. High-performance liquid chromatography of the radioactive glucose tracer and plasma revealed the presence of a tritiated nonglucose contaminant. Although the contaminant represented only 1.5% of the radioactivity in the [6-3H]glucose infusate, its clearance was 10-fold less (P less than .001) than that of [6-3H]glucose. This resulted in accumulation in plasma, with the contaminant accounting for 16.6 +/- 2.09 and 10.8 +/- 0.9% of what customarily is assumed to be plasma glucose radioactivity during the insulin or saline infusion, respectively (P less than .01)

  16. Matrix isolation and theoretical study of the photochemical reactions of C{sub 2}H{sub 3}Br and 1,2-C{sub 2}H{sub 2}Br{sub 2} with CrO{sub 2}Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, Christine E. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Goldberg, Nicola [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Klein-Riffle, Evan T. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Kronberg, Jon K. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States); Ault, Bruce S. [Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221 (United States)], E-mail: bruce.ault@uc.edu

    2006-08-01

    The matrix-isolation technique has been combined with infrared spectroscopy and theoretical calculations to characterize the products of the photochemical reactions of C{sub 2}H{sub 3}Br and 1,2-C{sub 2}H{sub 2}Br{sub 2} with CrO{sub 2}Cl{sub 2}. For these systems, oxygen-atom transfer occurred upon visible-near ultraviolet irradiation, yielding bromoacetaldehyde and CrOCl{sub 2} in the former case and bromoacetyl bromide and CrCl{sub 2}O in the latter. For each system, the products were formed in the same matrix cage and strongly interacted to form a distinct molecular complex. No evidence was obtained for the acetyl bromide derivative in the C{sub 2}H{sub 3}Br system, indicating the occurrence of oxygen-atom attack at the less substituted carbon of vinyl bromide, nor was any evidence obtained for the formation of a possible five-membered metallocycle. Two different modes of interaction were explored computationally: {eta}{sup 1} (end-on) to the oxygen atom and {eta}{sup 2} (side-on) to the C=O bond. Theoretical calculations indicated that the {eta}{sup 1} complex of CH{sub 2}BrCHO-CrCl{sub 2}O was 13 kcal mol{sup -1} more stable than the {eta}{sup 2} complex at the B3LYP/6-311++G(d,2p) level of theory. The binding energy of the {eta}{sup 1} complex was found to be 21 kcal mol{sup -1}, compared to 8 kcal mol{sup -1} for the {eta}{sup 2} complex at this level of theory.

  17. Mononuclear Amido and Binuclear Imido Zirconium Complexes Supported by Dibenzotetraaza[14]annulene Ligands. X-ray Structure of [(Me(4)taa)Zr(&mgr;-NR)(2)Zr(NHR)(2)] (R = Bu(t) or 2,6-C(6)H(3)Me(2)).

    Science.gov (United States)

    Nikonov, Georgii I.; Blake, Alexander J.; Mountford, Philip

    1997-03-12

    Reaction of 2 equiv of Li[NH-2,6-C(6)H(3)R(2)] with [(Me(4)taa)ZrCl(2)] (Me(4)taaH(2) = tetramethyldibenzotetraaza[14]annulene) gives the bis(amido) derivatives [(Me(4)taa)Zr(NH-2,6-C(6)H(3)R(2))(2)] [R = Pr(i) (1) and Me (2)]. Addition of Me(4)taaH(2) to [Zr(N-2,6-C(6)H(3)Pr(i)(2))(NH-2,6-C(6)H(3)Pr(i)(2))(2)(py)(2)] also affords 1. The reaction of 2 equiv of aryl or alkyl amines H(2)NR with the bis(alkyl) complex [(Me(4)taa)Zr(CH(2)SiMe(3))(2)] is the most versatile method for preparing [(Me(4)taa)Zr(NHR)(2)] (R = 2,6-C(6)H(3)Pr(i)(2), 2,6-C(6)H(3)Me(2), Ph, or Bu(t)). Reaction of 1 equiv of Me(4)taaH(2) with the binuclear complexes [(Bu(t)NH)(2)Zr(&mgr;-NBu(t))(2)Zr(NHBu(t))(2)] or [(py)(HN-2,6-C(6)H(3)Me(2))(2)Zr(&mgr;-N-2,6-C(6)H(3)Me(2))(2)Zr(NH-2,6-C(6)H(3)Me(2))(2)(py)] gives the asymmetrically substituted derivatives [(Me(4)taa)Zr(&mgr;-NR)(2)Zr(NHR)(2)] [R = Bu(t) (6) or 2,6-C(6)H(3)Me(2) (8)], which have been crystallographically characterized.

  18. (E-4-Hydroxy-6-methyl-3-[1-(2-phenylhydrazinylideneethyl]-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    Samra Rahmouni

    2016-05-01

    Full Text Available The title compound, C14H14N2O3, crystallized with three crystallographically independent molecules (A, B and C in the asymmetric unit. The three molecules each have an E conformation about the C=N bond but differ in the orientation of the phenyl and pyran rings. The dihedral angles between the phenyl and pyran ring planes are 14.30 (1, 28.38 (1 and 25.58 (1° in molecules A, B and C, respectively. There is an intramolecular O—H...N hydrogen bond in each molecule with an S(6 ring motif. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, forming layers parallel to (001, enclosing R22(8 and R33(21 ring motifs. The layers are linked via C—H...π interactions, forming bilayers, which are joined by a further C—H...π interaction, forming a three-dimensional structure.

  19. Thermodinamically stable phases in the CaO-SiO2-Al2O3-CaSO4-H2O closed system at 25 ºC. Application to cementitious systems

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2009-06-01

    Full Text Available One of the chief causes of cement and concrete deterioration is the loss of durability prompted by sulphate attack. The existing standards call for long test periods (2- 12 months. Thermodynamic modelling is a particularly appropriate technique for studying systems that only reach equilibrium in the long term. Used in the present study to establish the fields of thermodynamic stability for the phases in the CaO-SiO2-Al2O3-CaSO4-H2O system at 25 ºC. According to the model, gypsum is stable at sulphate ion concentrations of 1.23e-2 mol/kg and over, while ettringite exhibits stability at concentrations ranging from 7.64e-6 to 1.54e-2 mol/kg. Ettringite is compatible with all system phases except SH and gypsum only with ettringite, the C-S-H gels, AH3 and SH. None of the calcium aluminates or silicoaluminates in the system is compatible with gypsum: in its presence, they all decompose to cement deteriorating ettringite. Finally, the model revealed that the maximum sulphate concentration at which C-S-H gel is stable is slightly higher in systems with than without Al2O3.Uno de los principales problemas asociados al deterioro de cementos y hormigones es la pérdida de durabilidad por ataque de sulfatos. La normativa existente requiere largos tiempos de ensayo (2-12 meses. La modelización termodinámica es una técnica particularmente adecuada para el estudio de sistemas que alcanzan el equilibrio en tiempos largos. Aplicando esta metodología se han establecido los campos de estabilidad termodinámica de las fases del sistema CaO-SiO2-Al2O3-CaSO4-H2O a 25 ºC. El yeso es estable a partir de la [SO42-] = 1,23e-2 mol/kg, y la ettringita es estable en un rango de [SO42-] = 7,64e-6 -1,54e-2 mol/kg. La ettringita es compatible con todas las fases del sistema excepto con SH y el yeso sólo con la ettringita, los geles C-S-H, el AH3 y el SH. Ninguno de los aluminatos o silicoaluminatos cálcicos son compatibles con el yeso, en su presencia se descomponen

  20. [2,6-Difluoro-3-(pyridin-2-yl-κNpyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2013-11-01

    Full Text Available The title compound, [Ir(C10H5F2N22(C5H7O2], has a distorted octahedral coordination geometry around the IrIII atom, retaining the cis-C,C/trans-N,N chelate disposition in two 2,6-difluoro-3-(pyridin-2-yl-κNpyridin-4-yl ligands which are nearly mutually perpendicular [dihedral angle = 82.75 (15°]. The molecular structure is stabilized by weak C—H...O and C—H...F hydrogen-bond interactions. The crystal structure is stabilized by π–π stacking interactions (centroid–centroid distance = 3.951 Å.

  1. A chiral mixed carboxylate, [Nd4(H2O)2(OOC(CH2)3COO)4(C2O4)2], exhibiting NLO properties

    International Nuclear Information System (INIS)

    Vaidhyanathan, R.; Natarajan, Srinivasan; Rao, C.N.R.

    2004-01-01

    Reaction of a mixture of neodymium carbonate, HCl, oxamic acid and glutaric acid under hydrothermal conditions gives rise to a new mixed carboxylate of neodymium, [Nd 4 (H 2 O) 2 (OOC(CH 2 ) 3 COO) 4 (C 2 O 4 ) 2 ], I. The structure, determined using single crystal X-ray diffraction, comprises a helical column formed by the grafting of the oxalate unit on to helical NdO 9 chains, cross-linked by the glutarate anions. It is noteworthy that the pitch of the helix is equivalent to the length of the oxalate unit. Furthermore, I shows about 1.1 times the SHG activity of urea

  2. An Optimized Synthesis, Molecular Structure and Characterization of Benzylic Derivatives of 1,2,4-Triazin-3,5(2H,4H-dione

    Directory of Open Access Journals (Sweden)

    Long-Chih Hwang

    2017-11-01

    Full Text Available 4-Benzyl-1,2,4-triazin-3,5(2H,4H-dione (3-benzyl-6-azauracil, 2, and 2,4-dibenzyl-1,2,4-triazin-3,5(2H,4H-dione (1,3-dibenzyl-6-azauracil, 3 were synthesized by the reaction of 1,2,4-triazin-3,5(2H,4H-dione (6-azauracil, 1 with benzyl bromide and potassium carbonate in dry acetone via the 18-crown-6-ether catalysis. In these reaction methods, we developed more convenient and efficient methodologies to afford compounds 2 and 3 in good yields. These compounds were characterized by 1H- and 13C-NMR, MS spectrum, IR spectroscopy and elemental analysis. The structure of 2 was verified by 2D-NMR measurements, including gHSQC and gHMBC measurements. A single-crystal X-ray diffraction experiment indicated that compound 3, with the molecular formula C17H15N3O2, crystallized from a CH3OH/CH2Cl2 diffusion solvent system in a monoclinic space group P21/c with a = 13.7844(13, b = 8.5691(8, c = 13.0527(12 Å, β = 105.961(2°, V = 1482.3(2 Å3, Z = 4, resulting in a density Dcalc of 1.314 g/cm3. The crystal structure of compound 3 is tightly stabilized by contact with five other molecules from the six short contacts formed by intermolecular C−O···H−Car, C−H···Car, and weakly π···π stacking interactions. The dihedral angle 31.90° is formed by the mean planes of the benzene rings of the N-2 and N-4 benzyl groups.

  3. Synthesis and structure of the extended phosphazane ligand [(1,4-C6H4){N(μ-PN(t)Bu)2N(t)Bu}2](4).

    Science.gov (United States)

    Sevilla, Raquel; Less, Robert J; García-Rodríguez, Raúl; Bond, Andrew D; Wright, Dominic S

    2016-02-07

    The reaction of the phenylene-bridged precursor (1,4-C6H4)[N(PCl2)2]2 with (t)BuNH2 in the presence of Et3N gives the new ligand precursor (1,4-C6H4)[N(μ-N(t)Bu)2(PNH(t)Bu)2]2, deprotonation of which with Bu2Mg gives the novel tetraanion [(1,4-C6H4){N(μ-N(t)Bu)2(PN(t)Bu)2}2](4-).

  4. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  5. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    Science.gov (United States)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  6. Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts.

    Science.gov (United States)

    Loewen, Natalia D; Neelakantan, Taruna V; Berben, Louise A

    2017-09-19

    promote C-H bond formation. Thermochemical insights into the disparate reactivities of these clusters were achieved through hydricity measurements using SEC. We found that only [H-Fe 4 N(CO) 12 ] - and its derivative [H-Fe 4 N(CO) 11 (PPh 3 )] - have hydricities modest enough to avoid H 2 production but strong enough to make formate. [H-Fe 4 C(CO) 12 ] 2- is a stronger hydride donor, theoretically capable of making formate, but due to an overwhelming thermodynamic driving force and the increased electrostatic attraction between the more negative cluster and H + , only H 2 is observed experimentally. This illustrates the fundamental importance of controlling thermochemistry when designing new catalysts selective for C-H bond formation and establishes a hydricity range of 15.5-24.1 or 44-49 kcal mol -1 where C-H bond formation may be favored in water or MeCN, respectively.

  7. Mesoporous Co{sub 3}O{sub 4} and CoO rate at C topotactically transformed from chrysanthemum-like Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O and their lithium-storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shenglin; Zeng, Hua Chun [Department of Chemical and Biomolecular Engineering, KAUST-NUS GCR Program, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore (Singapore); Chen, Jun Song; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore (Singapore)

    2012-02-22

    In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of this organized product is investigated by examining different reaction intermediates during the synthesis. The growth and thus the final assembly of the Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O can be finely tuned by selecting preparative parameters, such as the molar ratio of the starting chemicals, the additives, the reaction time and the temperature. Using the flower-like Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O as a solid precursor, quasi-single-crystalline mesoporous Co{sub 3}O{sub 4} nanowire arrays are prepared via thermal decomposition in air. Furthermore, carbon can be added onto the spinel oxide by a chemical-vapor-deposition method using acetylene, which leads to the generation of carbon-sheathed CoO nanowire arrays (CoO rate at C). Through comparing and analyzing the crystal structures, the resultant products and their high crystallinity can be explained by a sequential topotactic transformation of the respective precursors. The electrochemical performances of the typical cobalt oxide products are also evaluated. It is demonstrated that tuning of the surface texture and the pore size of the Co{sub 3}O{sub 4} products is very important in lithium-ion-battery applications. The carbon-decorated CoO nanowire arrays exhibit an excellent cyclic performance with nearly 100% capacity retention in a testing range of 70 cycles. Therefore, this CoO rate at C nanocomposite can be considered to be an attractive candidate as an anode material for further investigation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Transparent colorless crystals of NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs) were obtained by blending aqueous solutions of Na{sub 3}[C{sub 6}N{sub 9}] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group P2{sub 1}/m (no. 11) with the cell parameters a = 815.56(16), b = 1637.7(4) and c = 1036.4(3) pm, and β = 110.738(12) for NaRb{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O and a = 843.32(6), b = 1708.47(11) and c = 1052.42(7) pm, and β = 112.034(2) for NaCs{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O, respectively. Raman spectra of the title compounds complement our results.

  9. Crystal structure of (CH3H6)3[Y(Edta)F2]xH2O

    International Nuclear Information System (INIS)

    Mistryukov, V.Eh.; Sergeev, A.V.; Chuklanova, E.B.; Mikhajlov, Yu.N.; Shchel okov, R.N.

    1997-01-01

    Difluoroethylenediaminetetraacetatoyttriate of guanidinium of the composition (CH 3 H 6 ) 3 [Y(Edta)F 2 ]xH 2 has been synthesized and studied by X-ray diffraction method. The crystals are monoclinic, unit cell parameters are as follows: a = 17.61(1), b = 10.435 (5), c = 13.467(8) A, β 100.70 (5), Z = 4, sp.gr. P2 1 /n. The structure is solved by the method of heavy atom and refined by means of the least square method in anisotropic approximation for other than hydrogen atoms up to R = 0.050; hydrogen atoms except H atoms in water molecule, localized from difference synthesis, are incorporated in the refining in fixed positions

  10. A 2D rhomboidal system of manganese(ii) [Mn(3-MeC6H4COO)2(H2O)2]n with spin canting: rationalization of the magnetic exchange.

    Science.gov (United States)

    Garcia-Cirera, Beltzane; Costa, Ramon; Moreira, Ibério de P R; Font-Bardia, Mercè; Corbella, Montserrat

    2018-03-12

    The crystal structure of Mn(ii) carboxylate with 3-methylbenzoate as a bridging ligand [Mn(3-MeC 6 H 4 COO) 2 (H 2 O) 2 ] n shows a rhomboidal layer, where each pair of neighbor Mn(ii) ions are bridged through only one carboxylate group with a syn-anti conformation. The magnetic exchange between neighbor ions is weakly antiferromagnetic (J = -0.52 cm -1 , g = 2.04), and at low temperature the system shows spin canting with T B = 3.8 K. Computational studies, based on periodic calculations of the energies of the significant spin states on the magnetic cell and some higher supercells, corroborate the weak AF interaction between the adjacent Mn(ii) ions and preclude the negligible effect of frustration caused by very weak interactions between the non-adjacent ions in the magnetic response of the system. The results provide compelling evidence that the observed spin canting is due to the local coordination geometry of the manganese ions leading to two antiferromagnetically coupled subnets with different axial vectors.

  11. Production of 34S-labeled gypsum (Ca34SO4.2H2O Produção de gesso (Ca34SO4.2H2O, marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2006-08-01

    Full Text Available Agricultural gypsum (CaSO4.2H2O stands out as an effective source of calcium and sulfur, and to control aluminum saturation in the soil. Labeled as 34S it can elucidate important aspects of the sulfur cycle. Ca34SO4.2H2O was obtained by chemical reaction between Ca(OH2 and H2(34SO4, performed under slow agitation. The acid was produced by ion exchange chromatography using the Dowex 50WX8 cation exchange resin and a Na2(34SO4 eluting solution. After precipitation, the precipitate was separated and dried in a ventilated oven at 60ºC. From 2.2 L H2SO4 0.2 mol L-1 and 33.6 g Ca(OH2, 73.7 ± 0.6 g Ca34SO4.2H2O were produced on average in the tests, representing a mean yield of 94.6 ± 0.8%, with 98% purity. The 34SO2 gas was obtained from Ca34SO4.2H2O in the presence of NaPO3 in a high vacuum line and was used for the isotopic determination of S in an ATLAS-MAT model CH-4 mass spectrometer.O gesso agrícola (CaSO4.2H2O destaca-se como fonte eficiente de cálcio e enxofre e na redução da saturação de alumínio no solo. O 34S como traçador isotópico pode elucidar aspectos importantes no ciclo do enxofre. Para tanto o Ca34SO4.2H2O foi obtido por reação química entre o Ca(OH2 e solução de H2(34SO4, realizada sob agitação lenta. O ácido foi produzido por cromatografia de troca iônica, utilizando resina catiônica Dowex 50WX8 e solução eluente de Na2(34SO4. Após a precipitação foi separado o precipitado e realizada a secagem em estufa ventilada à temperatura de 60ºC. Nos testes, a partir de 2,2 L de H2SO4 0,2 mol L-1 e 33,6 g de Ca(OH2, foram produzidos em média 73,7 ± 0,6 g de Ca34SO4.2H2O representando um rendimento médio de 94,6 ± 0,8%, com pureza de 98%. A partir do Ca34SO4.2H2O na presença de NaPO3, em linha de alto vácuo, obteve-se o gás 34SO2 utilizado para a determinação isotópica do S no espectrômetro de massas ATLAS-MAT modelo CH-4.

  12. Reaction rate and isomer-specific product branching ratios of C2H + C4H8: 1-butene, cis-2-butene, trans-2-butene, and isobutene at 79 K.

    Science.gov (United States)

    Bouwman, Jordy; Fournier, Martin; Sims, Ian R; Leone, Stephen R; Wilson, Kevin R

    2013-06-20

    The reactions of C2H radicals with C4H8 isomers 1-butene, cis-2-butene, trans-2-butene, and isobutene are studied by laser photolysis-vacuum ultraviolet mass spectrometry in a Laval nozzle expansion at 79 K. Bimolecular-reaction rate constants are obtained by measuring the formation rate of the reaction product species as a function of the reactant density under pseudo-first-order conditions. The rate constants are (1.9 ± 0.5) × 10(-10), (1.7 ± 0.5) × 10(-10), (2.1 ± 0.7) × 10(-10), and (1.8 ± 0.9) × 10(-10) cm(3) s(-1) for the reaction of C2H with 1-butene, cis-2-butene, trans-2-butene, and isobutene, respectively. Bimolecular rate constants for 1-butene and isobutene compare well to values measured previously at 103 K using C2H chemiluminescence. Photoionization spectra of the reaction products are measured and fitted to ionization spectra of the contributing isomers. In conjunction with absolute-ionization cross sections, these fits provide isomer-resolved product branching fractions. The reaction between C2H and 1-butene yields (65 ± 10)% C4H4 in the form of vinylacetylene and (35 ± 10)% C5H6 in the form of 4-penten-1-yne. The cis-2-butene and trans-2-butene reactions yield solely 3-penten-1-yne, and no discrimination is made between cis- and trans-3-penten-1-yne. Last, the isobutene reaction yields (26 ± 15)% 3-penten-1-yne, (35 ± 15)% 2-methyl-1-buten-3-yne, and (39 ± 15)% 4-methyl-3-penten-1-yne. The branching fractions reported for the C2H and butene reactions indicate that these reactions preferentially proceed via CH3 or C2H3 elimination rather than H-atom elimination. Within the experimental uncertainties, no evidence is found for the formation of cyclic species.

  13. (2-Methyl-4-oxo-4H-pyran-3-olato-κ2O3,O4bis(triphenylphosphane-κPcopper(I–triphenylphosphane–methanol (1/1/1

    Directory of Open Access Journals (Sweden)

    Fabian M. A. Muller

    2011-05-01

    Full Text Available In the title compound, [Cu(C6H5O3(C18H15P2C18H15P·CH3OH, the pyran-4-one ring is appromimately planar (r.m.s deviation = 0.0138 Å, with the CuI atom 0.451 (5 Å out of the plane. The CuI atom has a distorted tetrahedral coordination. The O—Cu—O angle is 80.07 (8° and the P—Cu—P angle is 123.49 (3°. The crystal packing is stablized by intramolecular C—H...O interactions and intermolecular C—H...O and O—H...O interactions.

  14. Hydration reactions in pastes C3S+C3A+CaSO4.2aq+H20 at 25°C.I

    NARCIS (Netherlands)

    Corstanje, W.A.; Stein, H.N.; Stevels, J.M.

    1973-01-01

    A characteristic retardation of the hydration of C3A is found in pastes C3S+C3A+CaSO4.2aq+H2O of weight ratios 1:3:z:4 at certain values of z, when sulphate concentration becomes insufficient for monosulphate formation. This retardation is ascribed to precipitation of amorphous Al(OH)3, when C3A

  15. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  16. Regioselective synthesis of 7,8-dihydroimidazo[5,1-c][1,2,4]triazine-3,6(2H,4H-dione derivatives: A new drug-like heterocyclic scaffold

    Directory of Open Access Journals (Sweden)

    Nikolay T. Tzvetkov

    2012-09-01

    Full Text Available Dihydroimidazo[5,1-c][1,2,4]triazine-3,6(2H,4H-dione derivatives were prepared by successive N3- and N1-alkylation of hydantoins, followed by regioselective thionation and subsequent cyclization under mild conditions. In a final alkylation step a further substituent may be introduced. The synthetic strategy allows broad structural variation of this new drug-like heterobicyclic scaffold. In addition to extensive NMR and MS analyses, the structure of one derivative was confirmed by X-ray crystallography.

  17. The crystal structure of ianthinite, [U24+(UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Burns, P.C.; Hawthorne, F.C.; Miller, M.L.; Ewing, R.C.

    1997-01-01

    Ianthinite, [U 4+ 2 (UO 2 ) 4 O 6 (OH) 4 (H 2 O) 4 ](H 2O) 5 , is the only known uranyl oxide hydrate mineral that contains U 4+ , and it has been proposed that ianthinite may be an important Pu 4+ -bearing phase during the oxidative dissolution of spent nuclear fuel. The crystal structure of ianthinite, orthorhombic, a=0.7178(2), b=1.1473(2), c=3.039(1) nm, V=2.5027 nm 3 , Z=4, space group P2 1 cn, has been solved by direct methods and refined by least-squares methods to an R index of 9.7% and a wR index of 12.6% using 888 unique observed [ vertical stroke F vertical stroke ≥5σ vertical stroke F vertical stroke ] reflections. The structure contains both U 6+ and U 4+ . The U 6+ cations are present as roughly linear (U 6+ O 2 ) 2+ uranyl ions (Ur) that are in turn coordinated by five O 2- and OH - located at the equatorial positions of pentagonal bipyramids. The U 4+ cations are coordinated by O 2- , OH - and H 2 O in a distorted octahedral arrangement. The Urφ 5 and U 4+ φ 6 (φ: O 2- , OH - , H 2 O) polyhedra link by sharing edges to form two symmetrically distinct sheets at z∼0.0 and z∼0.25 that are parallel to (001). The sheets have the β-U 3 O 8 sheet anion-topology. There are five symmetrically distinct H 2 O groups located at z∼0.125 between the sheets of Uφ n polyhedra, and the sheets of Uφ n polyhedra are linked together only by hydrogen bonding to the intersheet H 2 O groups. The crystal-chemical requirements of U 4+ and Pu 4+ are very similar, suggesting that extensive Pu 4+ U 4+ substitution may occur within the sheets of Uφ n polyhedra in the structure of ianthinite. (orig.)

  18. Tert-butyl 3-oxo-2,3,4,5,6,7-hexahydro-1H-pyrazolo[4,3-c]pyridine-5-carboxylate

    Directory of Open Access Journals (Sweden)

    Tara Shahani

    2010-01-01

    Full Text Available In the title compound, C11H17N3O3, the pyrazole ring is approximately planar, with a maximum deviation of 0.005 (2 Å, and forms a dihedral angle of 5.69 (13° with the plane through the six atoms of the piperidine ring. In the crystal, pairs of intermolecular N—H...O hydrogen bonds form dimers with neighbouring molecules, generating R22(8 ring motifs. These dimers are further linked into two-dimensional arrays parallel to the bc plane by intermolecular N—H...O and C—H...O hydrogen bonds.

  19. ZrOCl2.8H2O as a green and efficient catalyst for the expeditious synthesis of substituted 3-arylpyrimido[4,5-c]pyridazines in water

    Directory of Open Access Journals (Sweden)

    Mehdi Rimaz

    2015-09-01

    Full Text Available A new and simple synthetic methodology for the preparation of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H-diones and 3-aryl-5-oxo-7-thioxo-7,8-dihydropyrimido[4,5-c]pyridazin-5(6H-ones by a one-pot three component reaction of barbituric acid or thiobarbituric acid with arylglyoxals in the presence of catalytic amount of ZrOCl2∙8H2O as green Lewis acid and hydrazine hydrate at ambient temperature in water was reported. All of these pyrimidopyridazines derivatives have one clustered water molecule in their molecular structure. The use of ZrOCl2∙8H2O catalyst is feasible because of its easy availability, convenient handling, high stability, simple recovery, reusability, good activity and eco-friendly.

  20. Nqrs Data for C6H7F4N2OSb (Subst. No. 0879)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H7F4N2OSb (Subst. No. 0879)

  1. Synthesis and crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2·10H2O

    International Nuclear Information System (INIS)

    Baeva, E.Eh.; Serezhkina, L.B.; Virovets, A.V.; Peresypkina, E.V.

    2006-01-01

    The complex Na 6 [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 2 ·10H 2 O (I) is synthesized and studied by monocrystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a=14.2225(7) A, b=18.3601(7) A, c=16.5406(6) A, V=4319.2(3) A 3, Z=4, space group Cmcm, R 1 =0.0406. Compound I is found to be a representative of the crystal-chemical group A 3 M 3 M 3 2 T 2 3 (A=UO 2 2+ , M 3 =O 2- , M 2 =OH - , T 3 =SeO 4 2- ) of the uranyl complexes; it contains layer uranium-containing groups [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 3- . These layers are linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO 4 groups that belong to different layers [ru

  2. Low-temperature heat capacity of Al(C11H19O2)3

    International Nuclear Information System (INIS)

    Bespyatov, Michael A.; Chernyaikin, Ivan S.; Naumov, Viktor N.; Stabnikov, Pavel A.; Gelfond, Nikolay V.

    2014-01-01

    Highlights: • The temperature dependence of heat capacity of Al(C 11 H 19 O 2 ) 3 has been measured. • The experimental data were used to calculate standard thermodynamic functions. • The thermodynamic functions at 298.15 K are presented. - Abstract: The heat capacity of Al(C 11 H 19 O 2 ) 3 was measured by adiabatic-shield calorimetry in the temperature range 6–320 K; no transition or thermal anomalies were found. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. The obtained standard values are as follows: C° p,m = (882.3 ± 1.3) J mol −1 K −1 , Δ 0 298.15 S° m = J(980 ± 2) mol −1 K −1 , Δ 0 298.15 H° m = (145.1 ± 0.2) kJ mol −1 , Φ° m = (493.4 ± 1.7) J mol −1 K −1

  3. Ethyl 5-cyano-4-[2-(2,4-dichlorophenoxyacetamido]-1-phenyl-1H-pyrrole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2009-08-01

    Full Text Available In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14°. The C=O bond length is 1.213 (3 Å, indicating that the molecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The molecule is stabilized by an intramolecular N—H...O hydrogen-bonding interaction. In the crystal, the stacked molecules exhibit intermolecular C—H...O and C—H...N hydrogen-bonding interactions.

  4. A second polymorph with composition Co3(PO4)2·H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement. PMID:21200979

  5. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)26H2O

    International Nuclear Information System (INIS)

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-01

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu(en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 26H 2 O (1) has been synthesized by reaction of Sb 2 O 3 , Na 2 WO 4 ·2H 2 O, CuCl 2 ·2H 2 O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW 9 O 33 ] 9− subunits sandwiching a hexagonal (Cu 2 Na 4 ) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu 2 Na 4 ) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu 2 Na 4 ) sandwiched tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu (en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 26H 2 O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu 2 Na 4 sandwiched) tungstoantimonate [Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ] 10− . • Ferromagnetic tungstoantimonate

  6. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    Science.gov (United States)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  7. Synthesis of Some O-Substituted Derivatives of Natural 6-hydroxymethyl-4-methoxy-2H-pyran-2-one (opuntiol)

    International Nuclear Information System (INIS)

    Shahzadi, T.; Akhtar, M.; Rehman, A.; Riaz, T.; Ashraf, M.

    2013-01-01

    This manuscript reports the synthesis of a series of new O-substituted derivatives of opuntiol (1) which is a naturally occurring compound isolated from a plant Opuntia dillenii Haw belonging to family Cactaceae. These derivatives 3a-t, were characterized by FAB-MS, IR, and 1H-NMR and then screened against acetylcholinesterase, butyrylcholinesterase, lipoxygenase and H-chymotrypsin enzymes. The screening results revealed that 6-(acetyloxy) methyl- 4-methoxy-2H-pyran-2-one (3b) and N-(2,5-dimethylphenyl)-2-((4-methoxy-6-oxo-2H-pyran-2-yl) methoxy)acetamide (3p) were found to be the inhibitor of butyrylcholinesterase while 6-(acetyloxy) methyl- 4-methoxy-2H-pyran-2-one (3b), 6-(ethoxymethyl)-4-methoxy-2H-pyran-2-one (3c), 4-methoxy-6-((phenylmethoxy)methyl)-2H-pyran-2-one (3g), 6-((2-bromoethyloxy)methyl)-4-methoxy-2H-pyran-2-one (3j), N-(5-chloro-2-ethoxyphenyl)-2-((4-methoxy-6-oxo-2H-pyran-2-yl)methoxy) acetamide (3r), N-(3,4-dimethylphenyl)-2-((4-methoxy-6-oxo-2H-pyran-2-yl)methoxy)acetamide (3s) N-(3,5-dimethylphenyl)-2-((4-methoxy-6-oxo-2H-pyran-2-yl)methoxy)acetamide (3t) were found to be active against H-chymotrypsin and among these 3s was the good inhibitor of this enzyme having IC50 value of 142.71 +- 0.22 micro moles/L. (author)

  8. ON THE FORMATION AND ISOMER SPECIFIC DETECTION OF PROPENAL (C{sub 2}H{sub 3}CHO) AND CYCLOPROPANONE (c-C{sub 3}H{sub 4}O) IN INTERSTELLAR MODEL ICES—A COMBINED FTIR AND REFLECTRON TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Abplanalp, Matthew J.; Borsuk, Aleca; Jones, Brant M.; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI, 96822 (United States)

    2015-11-20

    The formation routes of two structural isomers—propenal (C{sub 2}H{sub 3}CHO) and cyclopropanone (c-C{sub 3}H{sub 4}O)—were investigated experimentally by exposing ices of astrophysical interest to energetic electrons at 5.5 K thus mimicking the interaction of ionizing radiation with interstellar ices in cold molecular clouds. The radiation-induced processing of these ices was monitored online and in situ via Fourier Transform Infrared spectroscopy and via temperature programmed desorption exploiting highly sensitive reflectron time-of-flight mass spectrometry coupled with single photon ionization in the post irradiation phase. To selectively probe which isomer(s) is/are formed, the photoionization experiments were conducted with 10.49 and 9.60 eV photons. Our studies provided compelling evidence on the formation of both isomers—propenal (C{sub 2}H{sub 3}CHO) and cyclopropanone (c-C{sub 3}H{sub 4}O)—in ethylene (C{sub 2}H{sub 4})—carbon monoxide (CO) ices forming propenal and cyclopropanone at a ratio of (4.5 ± 0.9):1. Based on the extracted reaction pathways, the cyclopropanone molecule can be classified as a tracer of a low temperature non-equilibrium chemistry within interstellar ices involving most likely excited triplet states, whereas propenal can be formed at ultralow temperatures, but also during the annealing phase via non-equilibrium as well as thermal chemistry (radical recombination). Since propenal has been detected in the interstellar medium and our laboratory experiments demonstrate that both isomers originated from identical precursor molecules our study predicts that the hitherto elusive second isomer—cyclopropanone—should also be observable toward those astronomical sources such as Sgr B2(N) in which propenal has been detected.

  9. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  10. Keggin type polyoxometalate H4[αSiW12O40].nH2O as intercalant for hydrotalcite

    Directory of Open Access Journals (Sweden)

    Neza Rahayu Palapa

    2017-06-01

    Full Text Available The synthesis of hydrotalcite and polyoxometalate H4[αSiW12O40].nH2O with the ratio (2:1, (1:1, (1:2 and (1:3 has been done. The product of intercalation was characterized using FT-IR spectrophotometer, XRD, and TG-DTA. Polyoxometalate H4[αSiW12O40].nH2O intercalated layered double hydroxide was optimised to use as adsorbent Congo red dye. Characterization using FT-IR was not showing the optimal insertion process. The result using XRD characterization was showed successful of polyoxometalate H4[αSiW12O40].nH2O inserted layered double hydroxide with a ratio (1:1 which the basal spacing was expanded from 7,8 Ȧ to 9,81 Ȧ. Furthermore, the thermal analysis was performed using TG-DTA. The result show that the decomposition of polyoxometalate H4[αSiW12O40].nH2O intercalated  hydrotalcite with ratio (1:1 was occured at 80oC to 400oC with a loss of OH in the layer at 150oC to 220oC, and then the decomposition of the compound polyoxometalate H4[αSiW12O40].nH2O at 350oC to 420oC. Keywords: Hydrotalcite, Layered Double Hydroxide, Polyoxometalate, Intercalation

  11. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  12. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC

    Science.gov (United States)

    He, Meizhi; Yang, Luwei; Zhang, Zhentao

    2018-01-01

    By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.

  13. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation of ...

  14. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    Science.gov (United States)

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  15. Synthesis and structural characterization of (H4APPIP)[V3(C2O4)2(HPO4)3(PO4)(H2O)]·6H2O (APPIP=1,4-bis(3-aminopropyl)piperazine), a layered vanadium oxalatophosphate containing double 6-ring units

    International Nuclear Information System (INIS)

    Tang, M.-F.; Lii, K.-H.

    2004-01-01

    A new vanadium(III) oxalatophosphate has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. It crystallizes in the triclinic space group P1-bar with a=11.604(2) A, b=12.391(2) A, c=15.220(3) A, α=71.090(3) deg., β=82.630(3) deg., γ=62.979(3) deg., V=1843.8(5) A 3 and Z=2. The structure consists of V 6 (HPO 4 ) 6 double 6-ring (D6R) units connected by coordinating C 2 O 4 2- and PO 4 3- anions to form anionic sheets in the ab plane with charge-compensating quadruply protonated 1,4-bis(3-aminopropyl)piperazinium cations and water molecules between the sheets. It is one of the few compounds with 2D layer structures and the second example containing D6R units in the system of metal oxalatophosphates. The iron analogue was also synthesized

  16. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    Science.gov (United States)

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Thermodynamic study on co-deposition of ZrB2–SiC from ZrCl4–BCl3–CH3SiCl3H2–Ar system

    International Nuclear Information System (INIS)

    Deng, Juanli; Cheng, Laifei; Zheng, Guopeng; Su, Kehe; Zhang, Litong

    2012-01-01

    Thermodynamics phase diagram of ZrB 2 –SiC co-deposited from precursors of ZrCl 4 –BCl 3 –CH 3 SiCl 3 (methyltrichlorosilane, MTS)–H 2 –Ar has been investigated in detail by using the FactSage code and its embedded database (130 species being involved). The yields of condensed phases in the co-deposition process have been examined as the functions of the inject reactant ratios of BCl 3 / (BCl 3 + MTS) and H 2 / (ZrCl 4 + BCl 3 + MTS), and the temperature at a fixed pressure of 5 kPa. The results show that their yields strongly depend on the molar ratios of the inject reactants and the temperature. Consequently, the pure ZrB 2 –SiC composite without free C, B 4 C, ZrC and ZrSi can be co-deposited under the ideal condition by adjusting the reactant ratios and the temperature. The gas-phase equilibrium concentration distribution shows that the high input amount of H 2 is favorable for the co-deposition of ZrB 2 and SiC at a fixed ratio of ZrCl 4 :BCl 3 :MTS:Ar. In the end, the theoretical results can lay down guidelines for increasing the experimental yields of ZrB 2 and SiC. - Highlights: ► The exact ratio of ZrB 2 and SiC could be obtained by adjusting input gas ratios. ► The other condensed phase species could appear under some suitable conditions ► The H 2 acting as reaction species directly influences the deposition process. ► The high H 2 input amount is favorable for the co-deposition of ZrB 2 and SiC. ► The flow rate range of the H 2 pump should be increased in the experimental study.

  18. Selective photocatalytic reduction of CO{sub 2} by H{sub 2}O/H{sub 2} to CH{sub 4} and CH{sub 3}OH over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad, E-mail: mtahir@cheme.utm.my [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Punjab (Pakistan); Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia)

    2016-12-15

    Highlights: • Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalysts tested for CO{sub 2} photoreduction with H{sub 2}O/H{sub 2}. • Production of CH{sub 4} and CH{sub 3}OH depends on reductants type and metal-loading to TiO{sub 2}. • CH{sub 4} production over Cu-In/TiO{sub 2} was 1.5 fold more than In/TiO{sub 2} and 5 times the TiO{sub 2}. • The Cu-promoted CH{sub 3}OH production while In gave more CH{sub 4} with water vapors. • The H{sub 2} reductant gave negative effect for CH{sub 4} but enhanced CH{sub 3}OH production. - Abstract: Photocatalytic CO{sub 2} reduction by H{sub 2}O and/or H{sub 2} reductant to selective fuels over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N{sub 2} adsorption-desorption, UV–vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO{sub 2}, oxidized as Cu{sup 2+} and In{sup 3+}, promoted efficient separation of photo-generated electron/hole pairs (e{sup −}/h{sup +}). The results indicate that the reduction rate of CO{sub 2} by H{sub 2}O to CH{sub 4} approached to 181 μmol g{sup −1} h{sup −1} using 0.5% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst, a 1.53 fold higher than the production rate over the 3% In{sub 2}O{sub 3}/TiO{sub 2} and 5 times the amount produced over the pure TiO{sub 2}. In addition, Cu was found to promote efficient production of CH{sub 3}OH and yield rate reached to 68 μmol g{sup −1} h{sup −1} over 1% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H{sub 2} reductant was less favorable for CH{sub 4} production, yet a significant amount of CH{sub 4} and CH{sub 3}OH were obtained using a mixture of H{sub 2}O/H{sub 2} reductant. Therefore, Cu-loaded In{sub 2}O{sub 3}/TiO{sub 2} catalyst has shown to be capable for

  19. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  20. Multiple C-H Bond Activations and Ring-Opening C-S Bond Cleavage of Thiophene by Dirhenium Carbonyl Complexes.

    Science.gov (United States)

    Adams, Richard D; Dhull, Poonam; Tedder, Jonathan D

    2018-06-14

    The reaction of Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H) (1) with thiophene in CH 2 Cl 2 at 40 °C yielded the new compound Re 2 (CO) 8 (μ-η 2 -SC 4 H 3 )(μ-H) (2), which contains a bridging σ-π-coordinated thienyl ligand formed by the activation of the C-H bond at the 2 position of the thiophene. Compound 2 exhibits dynamical activity on the NMR time scale involving rearrangements of the bridging thienyl ligand. The reaction of compound 2 with a second 1 equiv of 1 at 45 °C yielded the doubly metalated product [Re 2 (CO) 8 (μ-H)] 2 (μ-η 2 -2,3-μ-η 2 -4,5-C 4 H 2 S) (3), formed by the activation of the C-H bond at the 5 position of the thienyl ligand in 2. Heating 3 in a hexane solvent to reflux transformed it into the ring-opened compound Re(CO) 4 [μ-η 5 -η 2 -SCC(H)C(H)C(H)][Re(CO) 3 ][Re 2 (CO) 8 (μ-H)] (4) by the loss of one CO ligand. Compound 4 contains a doubly metalated 1-thiapentadienyl ligand formed by the cleavage of one of the C-S bonds. When heated to reflux (125 °C) in an octane solvent in the presence of H 2 O, the new compound Re(CO) 4 [η 5 -μ-η 2 -SC(H)C(H)C(H)C(H)]Re(CO) 3 (5) was obtained by cleavage of the Re 2 (CO) 8 (μ-H) group from 4 with formation of the known coproduct [Re(CO) 33 -OH)] 4 . All new products were characterized by single-crystal X-ray diffraction analyses.

  1. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  2. REACTIONS FORMING Cn=2,10(0,+), Cn=2,4H(0,+), AND C3H2(0,+) IN THE GAS PHASE: SEMIEMPIRICAL BRANCHING RATIOS

    International Nuclear Information System (INIS)

    Chabot, M.; Jallat, A.; Béroff, K.; Gratier, P.; Wakelam, V.

    2013-01-01

    The aim of this paper is to provide a new set of branching ratios (BRs) for interstellar and planetary chemical networks based on a semiempirical model. We applied, instead of zero-order theory (i.e., only the most exoergic decaying channel is considered), a statistical microcanonical model based on the construction of breakdown curves and using experimental high velocity collision BRs for their parameterization. We applied the model to ion-molecule, neutral-neutral, and ion-pair reactions implemented in the few popular databases for astrochemistry, such as KIDA, OSU, and UMIST. We studied the reactions of carbon and hydrocarbon species with electrons, He + , H + , CH + , CH, C, and C + leading to intermediate complexes of the type C n=2,10 , C n=2,4 H, C 3 H 2 , C n=2,10 + , C n=2,4 H + , or C 3 H 2 + . Comparison of predictions with measurements supports the validity of the model. Huge deviations with respect to database values are often obtained. Effects of the new BRs in time-dependent chemistry for dark clouds and for photodissociation region chemistry with conditions similar to those found in the Horsehead Nebula are discussed.

  3. Synthesis and reactivity of bis(tetramethylcyclopentadienyl) yttrium metallocenes including the reduction of Me(3)SiN(3) to [(Me(3)Si)(2)N](-) with [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)).

    Science.gov (United States)

    Lorenz, Sara E; Schmiege, Benjamin M; Lee, David S; Ziller, Joseph W; Evans, William J

    2010-07-19

    The metallocene precursors needed to provide the tetramethylcyclopentadienyl yttrium complexes (C(5)Me(4)H)(3)Y, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), and [(C(5)Me(4)H)(2)Y(mu-H)](2) for reactivity studies have been synthesized and fully characterized, and their reaction chemistry has led to an unexpected conversion of an azide to an amide. (C(5)Me(4)H)(2)Y(mu-Cl)(2)K(THF)(x), 1, synthesized from YCl(3) and KC(5)Me(4)H reacts with allylmagnesium chloride to make (C(5)Me(4)H)(2)Y(eta(3)-C(3)H(5)), 2, which is converted to [(C(5)Me(4)H)(2)Y][(mu-Ph)(2)BPh(2)], 3, with [Et(3)NH][BPh(4)]. Complex 3 reacts with KC(5)Me(4)H to form (C(5)Me(4)H)(3)Y, 4. The reduced dinitrogen complex, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), 5, can be synthesized from either [(C(5)Me(4)H)(2)Y](2)[(mu-Ph)(2)BPh(2)], 3, or (C(5)Me(4)H)(3)Y, 4, with potassium graphite under a dinitrogen atmosphere. The (15)N labeled analogue, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-(15)N(2)), 5-(15)N, has also been prepared, and the (15)N NMR data have been compared to previously characterized reduced dinitrogen complexes. Complex 2 reacts with H(2) to form the corresponding hydride, [(C(5)Me(4)H)(2)Y(mu-H)](2), 6. Complex 5 displays similar reactivity to that of the analogous [(C(5)Me(4)H)(2)Ln(THF)](2)(mu-eta(2):eta(2)-N(2)) complexes (Ln = La, Lu), with substrates such as phenazine, anthracene, and CO(2). In addition, 5 reduces Me(3)SiN(3) to form (C(5)Me(4)H)(2)Y[N(SiMe(3))(2)], 7.

  4. Hydrated aluminophosphate (AlPO/sub 4/. 1. 5H/sub 2/O) with PO/sub 4/, AlO/sub 4/ and AlO/sub 4/(H/sub 2/O)/sub 2/ groups and encapsulated water

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, J.J.; Smith, J.V.

    1986-09-15

    Aluminium phosphate hydrate, AlPO/sub 4/ /sub ./ 1.5H/sub 2/O, M/sub r/=148.98, orthorhombic, Pbca, a=19.3525(13), b=9.7272(7), c=9.7621(8) A, V=1837.7(1) A/sup 3/, Z=16, D/sub x/=2.15 g cm/sup -3/, lambda(CuK..cap alpha..)=1.5418 A, ..mu..=68.2 cm/sup -1/, F(000)=1200, Tproportional to 295 K, R=0.033 for 1530 diffractions. A 4-connected framework contains PO/sub 4/ tetrahedra interposed between AlO/sub 4/ tetrahedra and AlO/sub 4/(H/sub 2/O)/sub 2/ octahedra at the nodes of cross-linked alternate 6/sup 3/ and 4.8/sup 2/ nets. A two-dimensional channel system, limited by 8-rings, lies between adjacent 6/sup 3/ nets. One H/sub 2/O of each octahedron lies in a 6-ring, and the other forms a continuous chain with a third H/sub 2/O which is held in place only by hydrogen bonds.

  5. /sup 13/C, /sup 17/O, and /sup 33/S NMR spectra of alkyl phenyl sulfones C/sub 6/H/sub 5/SO/sub 2/Alk

    Energy Technology Data Exchange (ETDEWEB)

    Bzhezovskii, V.M.; Valeev, R.B.; Kalabin, G.A.; Aliev, I.A.

    1987-06-20

    The /sup 13/C, /sup 17/O, and /sup 33/S NMR spectra of alkyl phenyl sulfones C/sub 6/H/sub 5/SO/sub 2/Alk were obtained. The changes in the screening of the /sup 13/C, /sup 17/O, and /sup 33/S nuclei in these compounds are determined by the effect of the alkyl substituents, which alternates in sign and decreases along the chain of atoms in the order: CH/sub 3/, C/sub 2/H/sub 5/, iso-C/sub 3/H/sub 7/, and tert-C/sub 4/H/sub 9/. In the alkyl phenyl sulfides C/sub 6/H/sub 5/SAlk the additional effect of disruption in the p,..pi.. interaction between the sulfur atom and the benzene ring as a result of conformational changes is superimposed on the screening of the /sup 13/C/sup ortho/ nuclei. For the changes in the screening of the /sup 13/C/sup para/ nuclei in C/sub 6/H/sub 5/SAlk the steric disruption of the p,..pi.. conjugation by the alkyl substituents is determining.

  6. Ethyl 2-(3,4-dimethyl-5,5-dioxo-1H,4H-benzo[e]pyrazolo[4,3-c][1,2]thiazin-1-ylacetate

    Directory of Open Access Journals (Sweden)

    Sana Aslam

    2012-10-01

    Full Text Available In the title molecule, C15H17N3O4S, the heterocyclic thiazine ring adopts a twist-boat conformation, which differs from that in related compounds, with adjacent S and C atoms displaced by 0.981 (4 and 0.413 (5 Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean plane of the benzene ring makes a dihedral angle of 23.43 (14° with the mean plane of the pyrazole ring. In the crystal, molecules are connected by weak C—H...O hydrogen bonds to form a three-dimensional network. The H atoms of the methyl group attached to the pyrazole ring were refined over six sites with equal occupancies.

  7. First-principles study on the effect of SiO{sub 2} layers during oxidation of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tomoya, E-mail: ono@ccs.tsukuba.ac.jp [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Saito, Shoichiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-02-23

    The effect of SiO{sub 2} layers during the thermal oxidation of a 4H-SiC(0001) substrate is examined by performing the first-principles total-energy calculations. Although it is expected that a CO molecule is the most preferable product during the oxidation, CO{sub 2} molecules are mainly emitted from the SiC surface at the initial stage of the oxidation. As the oxidation proceeds, CO{sub 2} emission becomes less favorable and CO molecules are emitted from the interface. We conclude that the interface stress due to the lattice constant mismatch between 4H-SiC(0001) and SiO{sub 2} is responsible for the removal of C during the oxidation, resulting in the characteristic electronic property of the interface fabricated by the thermal oxidation.

  8. 4-{(E-[2-(4-Iodobutoxybenzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-07-01

    Full Text Available The title Schiff base compound, C22H24IN3O2, adopts an E configuration about the central C=N bond. The pyrazolone ring makes a dihedral angle of 49.68 (10° with its attached phenyl ring. The phenolate plane makes dihedral angles of 16.78 (9 and 50.54 (9°, respectively, with the pyrazolone ring and the terminal phenyl ring. An intramolecular C—H...O hydrogen bond generates an S(6 ring motif. In the crystal structure, an intermolecular C—H...O hydrogen bond is also observed.

  9. Origin of the Ability of α-Fe2 O3 Mesopores to Activate C-H Bonds in Methane.

    Science.gov (United States)

    Dong, Bing; Han, Zhen; Zhang, Yongbo; Yu, Youyi; Kong, Aiguo; Shan, Yongkui

    2016-02-01

    Methane is a most abundant and inexpensive hydrocarbon feedstock for the production of chemicals and fuels. However, it is extremely difficult to directly convert methane to higher hydrocarbons because the C-H bonds in methane are the most stable C-H bonds of all hydrocarbons. The activation of the C-H bonds in methane by using an efficient and mild route remains a daunting challenge. Here, we show that the inner surface structures of the pore walls in mesoporous α-Fe 2 O 3 possess excellent catalytic performance for methane activation and convert C-H bonds into the C-O bonds in an O 2 atmosphere at 140 °C. We found that such unusual structures are mainly comprised of turbostratic ribbons and K crystal faces and have higher catalytic activity than the (110) plane. These results are without precedent in the history of catalysis chemistry and will provide a new pathway for designing and preparing highly efficient catalytic materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and crystal structure of a new homoleptic tetraarylruthenium(IV) complex Ru(2,4,5-Me{sub 3}C{sub 6}H{sub 2}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chang-Jiu; Wu, Xiu-Li; Ma, Xiu-Fang; Jia, Ai-Quan; Zhang, Qian-Feng [Anhui Univ. of Technology, Anhui (China). Inst. of Molecular Engineering and Applied Chemistry and Anhui Province Key Lab. of Metallurgy Engineering and Resources Recycling

    2017-08-01

    Treatment of [Ru(acac){sub 3}] (acac-=acetylacetonate) with (2,4,5-Me{sub 3}C{sub 6}H{sub 2})MgBr, followed by column chromatography in air, afforded the homoleptic tetraaryl-ruthenium(IV) complex [Ru(2,4,5-Me{sub 3}C{sub 6}H{sub 2}){sub 4}] (1) in moderate yield. The product was characterized by proton NMR spectroscopy and microanalyses. Its crystal structure has also been established by X-ray crystallography.

  11. Cationic polyhydrido cluster complexes. Crystal and molecular structures of (Ir3(Ph2P(CH2)3PPh2)3(H)7(CO))2+ and (Ir3(Ph2P(CH2)2(2-py))3(H)7)2+

    International Nuclear Information System (INIS)

    Hsienhau Wang; Casalnuovo, A.L.; Johnson, B.J.; Mueting, A.M.; Pignolet, L.H.

    1988-01-01

    Two new cationic polyhydrido cluster complexes of iridium have been synthesized and characterized by single-crystal x-ray diffraction and by ir and 1 H and 31 P NMR spectroscopy (Ir 3 (dppp) 3 (H) 7 (CO)) 2+ (2) and (Ir3 (PN) 3 (H) 7)2+ (5), where dppp = 1,3-bis(diphenylphosphino)propane and PN = 1-(2-pyridyl)-2-(diphenylphosphino)ethane, were synthesized by the reaction of CO with (Ir 3 (dppp) 3 (H) 7 ) 2+ (1) in CH 2 Cl 2 solution and H 2 with (Ir(PN)(COD)) + (4) in CH 3 OH solution, respectively. Crystal structures for both compounds is reported. The hydride positions were not located in the crystal structure analyses but were deduced from structural and 1 H NMR data. The molecular structure of 2 consists of a bilateral triangle of three iridium atoms with a carbonyl at the vertex and a chelating dppp ligand on each iridium atom. 1 H NMR data with use of acetone-d 6 as solvent showed that 2 possesses four doubly bridging hydrides and three terminal hydrides, yielding C 1 symmetry. The molecular structure of 5 consists of an approximately equilateral triangle of three iridium atoms (average Ir-Ir distance 2.746 (1) angstrom) with one PN ligand chelated to each iridium atom. 1 H NMR analysis, with use of CD 2 Cl 2 as solvent, showed that 5 has one triply bridging hydride and six terminal hydrides, giving C 3 symmetry. (Ir 3 (dppp) 3 (H) 7 (CH 3 C 6 H 4 NC)) 2+ (3) a complex structurally analogous to 2, was synthesized from 1 and p-tolyl isocyanide in CH 2 Cl 2 solution and characterized by ir and 1 H and 31 P NMR spectroscopy. 44 refs., 3 figs., 3 tabs

  12. Interface Trap Profiles in 4H- and 6H-SiC MOS Capacitors with Nitrogen- and Phosphorus-Doped Gate Oxides

    Science.gov (United States)

    Jiao, C.; Ahyi, A. C.; Dhar, S.; Morisette, D.; Myers-Ward, R.

    2017-04-01

    We report results on the interface trap density ( D it) of 4H- and 6H-SiC metal-oxide-semiconductor (MOS) capacitors with different interface chemistries. In addition to pure dry oxidation, we studied interfaces formed by annealing thermal oxides in NO or POCl3. The D it profiles, determined by the C- ψ s method, show that, although the as-oxidized 4H-SiC/SiO2 interface has a much higher D it profile than 6H-SiC/SiO2, after postoxidation annealing (POA), both polytypes maintain comparable D it near the conduction band edge for the gate oxides incorporated with nitrogen or phosphorus. Unlike most conventional C- V- or G- ω-based methods, the C- ψ s method is not limited by the maximum probe frequency, therefore taking into account the "fast traps" detected in previous work on 4H-SiC. The results indicate that such fast traps exist near the band edge of 6H-SiC also. For both polytypes, we show that the total interface trap density ( N it) integrated from the C- ψ s method is several times that obtained from the high-low method. The results suggest that the detected fast traps have a detrimental effect on electron transport in metal-oxide-semiconductor field-effect transistor (MOSFET) channels.

  13. Synthesis and properties of 4-alkoxy-2-[2-hydroxy-3-(4-o,m,p-halogenoaryl-1 -piperazinyl)propyl]-6-methyl-1H-pyrrolo-[3,4-c]pyridine-1,3(2H)-diones with analgesic and sedative activities.

    Science.gov (United States)

    Sladowska, Helena; Sabiniarz, Aleksandra; Szkatuła, Dominika; Filipek, Barbara; Sapa, Jacek

    2006-01-01

    Synthesis of N-substituted derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (17-26) is described. The chlorides, containing OH group, used in the above synthesis can exist in two isomeric forms: chain (12, 14-16) and cyclic (12a, 14a-16a). All final imides studied exhibited analgesic activity in the "writhing syndrome" test which was superior than that of acetylsalicylic acid. In the "hot plate" test only two compounds (19, 20) were active as antinociceptive agents. Furthermore, all compounds tested significantly suppressed the spontaneous locomotor activity of mice.

  14. Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage

    Science.gov (United States)

    Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay

    2018-04-01

    The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.

  15. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(o-phen)

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-Xin; GAO Sheng-Li; CHEN San-Ping; YANG Xu-Wu; XIE Gang; SHI Qi-Zhen

    2005-01-01

    Five solid ternary complexes of RE(C5H8NS2)3(o-phen) (RE=Ho, Er, Tm, Yb, Lu) have been synthesized in absolute ethanol by rare earth chloride low hydrate reacting with the mixed ligands of ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline·H2O (o-phen·H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air. IR spectra of the complexes showed that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen·H2O. It was assumed that the coordination number of RE3+was eight. The constant-volume combustion energies of the complexes, △cU, were determined as (-16788.46±7.74), (- 15434.53± 8.28), (- 15287.807.31), (- 15200.50±7.22) and (- 15254.34±6.61) kJ·mol-1, respectively, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, △cH m,and standard molar enthalpies of formation, △fH m, were calculated as (-16803.95 ±7.74), (-15450.02±8.28),(-15303.29±9.28), (-15215.99±7.22), (-15269.83±6.61) kJ·mol-1 and (-1115.42±8.94), (-2477.80±9.15), (-2619.95 ±10.44), (-2670.17 ± 8.22), ( -2650.06± 8.49) kJ·mol-1, respectively.

  16. Three closely related 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridines: synthesis, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    Science.gov (United States)

    Sagar, Belakavadi K; Harsha, Kachigere B; Yathirajan, Hemmige S; Rangappa, Kanchugarakoppal S; Rathore, Ravindranath S; Glidewell, Christopher

    2017-03-01

    In each of 1-(4-fluorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 F 4 N 3 O 2 S, (I), 1-(4-chlorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 ClF 3 N 3 O 2 S, (II), and 1-(3-methylphenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 22 H 22 F 3 N 3 O 2 S, (III), the reduced pyridine ring adopts a half-chair conformation with the methylsulfonyl substituent occupying an equatorial site. Although compounds (I) and (II) are not isostructural, having the space groups Pbca and P2 1 2 1 2 1 , respectively, their molecular conformations are very similar, but the conformation of compound (III) differs from those of (I) and (II) in the relative orientation of the N-benzyl and methylsulfonyl substituents. In compounds (II) and (III), but not in (I), the trifluoromethyl groups are disordered over two sets of atomic sites. Molecules of (I) are linked into centrosymmetric dimers by C-H...π(arene) hydrogen bonds, molecules of (II) are linked by two C-H...O hydrogen bonds to form ribbons of R 3 3 (18) rings, which are themselves further linked by a C-Cl...π(arene) interaction, and a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules of (III) into sheets. Comparisons are made with the structures of some related compounds.

  17. 2-(4-Fluoroanilino-3-(2-hydroxyethylquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The molecular and crystal structures of the title compound, C16H14FN3O2, are stabilized by intramolecular N—H...O and intermolecular O—H...O hydrogen bonds. The existence of non-classical intramolecular C—H...N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1°.

  18. 4-(4-Chlorophenyl-6-hydroxy-5-(2-thienylcarbonyl-6-(trifluoromethyl-3,4,5,6-tetrahydropyrimidin-2(1H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Mosslemin

    2009-06-01

    Full Text Available The asymmetric unit of the title compound, C16H12ClF3N2O3H2O, contains two crystallographically independent organic molecules and two water molecules. The organic species are linked by an intermolecular O—H...O hydrogen bond, while the water molecules are connected to them through intermolecular O—H...N hydrogen bonds. The thiophene and phenyl rings are oriented at dihedral angles of 62.35 (4 in the first independent molecule and 60.74 (5° in the second, while the pyrimidine rings adopt twisted conformations in both molecules. Intramolecular N—H...F interactions result in the formation of two five-membered rings having envelope conformations. In the crystal structure, further intermolecular O—H...O and N—H...O hydrogen bonds link the molecules into chains.

  19. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  20. Electrically active defects in n-type 4H- and 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, J.P. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics]|[IBM Research Div., T.J. Watson Research Center, Yorktown Heights, NY (United States); Aboelfotoh, M.O. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics]|[North Carolina State Univ., Dept. of Materials Science and Engineering, Raleigh, NC (United States); Svensson, B.G. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1998-06-01

    We have found that in 6H-SiC, irradiation induced defects can become mobile at temperatures as low as 200 C. Through isochronal and isothermal annealing a level at 0.51 eV below the conduction band (with a capture cross-section of 2 x 10{sup -14} cm{sup 2}), appears to disassociate through a first order process with an activation energy of 1.45 eV+/-0.1 eV. In 4H-SiC, we have observed two irradiation induced defects assigned the positions 0.62 eV and 0.68 eV below E{sub c} (with capture cross-sections of 4 x 10{sup -14} cm{sup 2} and 5 x 10{sup -15} cm{sup 2}, respectively) which are found to be unstable at room temperature with time. SIMS analysis indicates that in both 6H- and 4H-SiC the defect levels are not due to the incorporation of the transition metals Ti, V, or Cr. Additionally, in both polytypes of SiC that were examined, the defects are found to display acceptor-like behavior as no evidence of a Poole-Frenkel shift was observed during DLTS measurements. (orig.) 10 refs.

  1. Hydrothermal synthesis, structure and magnetic properties of a new three-dimensional iron arsenate [C6N4H21][FeIII3(HAsO4)6

    International Nuclear Information System (INIS)

    Rao, Vandavasi Koteswara; Natarajan, Srinivasan

    2006-01-01

    A hydrothermal reaction of a mixture of iron oxalate, arsenic pentoxide, hydrofluoric acid and triethylenetetramine (TETA) at 150deg. C for 48h gives rise to a new iron arsenate [C 6 N 4 H 21 ][Fe 3 (HAsO 4 ) 6 ], I. The structure consists of a network of FeO 6 and AsO 4 building units connected through their vertices giving rise to a new secondary building unit, SBU-5. The SBU-5 units are through their corners forming a three-dimensional structure possessing one-dimensional channels bound by 8-T atoms (T=Fe, As). The formation of SBU-5 units is noteworthy. Variable temperature magnetic studies indicate antiferromagnetic interactions between the Fe centers with T N of 21.9K. Crystal data: M=1156.36, monoclinic, space group=C2/c (no. 15), a=18.422(3)A, b=8.8527(13)A, c=16.169(2)A, β=111.592(2) o , V=2451.9(6)A 3 , Z=8, ρ calc =3.037gcm -3 , μ(Mo Kα)=9.903mm -1 , R 1 =0.0358, wR 2 =0.0763, S=1.140 for 234 parameters

  2. Betaine Phosphate (CH3)3N+CH2COO-.H3PO4 Modification Using D2O

    International Nuclear Information System (INIS)

    Saryati; Ridwan; Deswita; Sugiantoro, Sugik

    2002-01-01

    Betaine fosfate (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 modification by using D 2 O has been studied. This modification was carried out by slowly evaporation the saturated Betaine phosphat in the D 2 O solution in the dry box at 40 o C, until the dry crystal were formed. Based on the NMR data, can be concluded that the exchange process with D has been runed well and Betaine phosphate-D (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 has been resulted. From the X-ray diffraction pattern data can be concluded that there are a deference in the crystal structure between Betaine phosphate and Betaine phosphate modification result. From the Differential Scanning Colorimeter (DSC) diagram at the range temperature from 30 o C to 250 o C, can be shown that the Betaine phosphate-H has two endothermic transition phase, at 99 o C with a very little adsorbed calor and at 221.50 o C with -26.75 cal/g. Modified Betaine phosphate has also two endothermic transition phase, at 99.86 o C with -1.94 cal/g and at 171.01 o C with -3.48 cal/g. It can be conclosed that the D atom substitution on the H atoms in Betaine phosphate, to change the crystal and the endothermic fase temperature and energy

  3. The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3

    International Nuclear Information System (INIS)

    Toops, Todd J.; Walters, Arden B.; Vannice, M.A.

    2002-01-01

    The effect of CO 2 , H 2 O and SO 2 on the kinetics of NO reduction by CH 4 over unsupported La 2 O 3 has been examined between 773 and 973K in the presence of O 2 in the feed. La 2 O 3 can maintain a stable, high specific activity (mol/(sm 2 )) for NO reduction with high concentrations of CO 2 and H 2 O in the feed; however, either of these two products reversibly inhibits the activity by about one-half in the presence of excess O 2 . The catalyst is poisoned by SO 2 at these temperatures and an oxysulfate phase is formed, but partial regeneration can be achieved at 1023K. CO 2 in the feed causes the formation of lanthanum oxycarbonate, which reverts to La 2 O 3 when CO 2 is removed, but no bulk La oxyhydroxide is detected after quenching with H 2 O in the feed. The influence of CO 2 and H 2 O on kinetic behavior can be described by assuming they compete with reactants for adsorption on surface sites, including them in the site balance equation, and using the rate expression proposed previously for NO reduction by CH 4 in excess O 2 . With O 2 in the feed, integral conversions of CH 4 and O 2 frequently occurred due to the direct combustion of CH 4 by O 2 , although NO conversions remained differential; thus, an integral reactor model was chosen to analyze the data which utilized a recently determined rate equation for CH 4 combustion on La 2 O 3 in conjunction with a previously proposed model for NO reduction by CH 4 . The following rate expression described the rate of N 2 formation: N 2 T = ' NO P NO P CH 4 P O 2 0.5 / 1 + K NO P NO + K CH 4 P CH 4 + K O 2 0.5 P O 2 0.5 + K CO 2 P CO 2 + K H 2 O P H 2 O 2 . It gave a good fit to the experimental rate data for NO reduction, as well as providing enthalpies and entropies of adsorption obtained from the fitting parameters that demonstrated thermodynamic consistency and were similar to previous values. The heats of adsorption were altered somewhat when either CO 2 or H 2 O was added to the feed, and the following

  4. Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao

    2005-01-01

    The title new neodymium(III) selenate-selenite was obtained by hydrothermal reactions of neodymium(III) oxide, H 2 SeO 4 and 1,10-phenanthroline at 140 o C. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group C2/c with cell parameters of a = 12.258(2) A, b 7.1024(15) A, c = 13.391(3) A, β = 104.250(2) o . The structure of Nd 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 is isomorphous with that of Er 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 , which was refined in the monoclinic space group C2 with the disordered selenate group. It features an ordered 3D network with channels along b-axis. The selenate or selenite groups alone can form a 2D layer with the Nd(III) ions. IR spectrum, TGA and luminescent studies have also been performed

  5. (E)-6-Amino-1,3-dimethyl-5-[(pyridin-2-yl-methyl-idene)amino]-pyrimidine-2,4(1H,3H)-dione.

    Science.gov (United States)

    Booysen, Irvin; Hlela, Thulani; Ismail, Muhammed; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-09-01

    In the title compound, C(12)H(13)N(5)O(2), a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å). The N=C bond is E-configured. Intra-cyclic angles in the pyridine moiety cover the range 117.6 (2)-124.1 (2)°. Intra- and inter-molecular N-H⋯N and N-H⋯O hydrogen bonds are observed in the crystal structure, as are intra- and inter-molecular C-H⋯O contacts which, in total, connect the mol-ecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14) Å is between the two different types of six-membered rings.

  6. Synthesis, characterisation and study of thermal, electrical and photocatalytic activity of nanocomposite of PANI with [Co(NH{sub 3}){sub 4} (C{sub 12}H{sub 8}N{sub 2})] Cl{sub 3}·5H{sub 2}O photoadduct

    Energy Technology Data Exchange (ETDEWEB)

    Naqash, Waseem; Majid, Kowsar, E-mail: Kowsarmajid@rediffmail.com

    2016-10-20

    Highlights: • Synthesis of new polyaniline nanocomposite with [Co(NH{sub 3}){sub 4} (C{sub 12}H{sub 8}N{sub 2})] Cl{sub 3}·5H{sub 2}O photoadduct. • Characterisation of the photoadduct and nanocomposite by FTIR, XRD and UV–Vis analysis. • Thermal study shows improved thermal stability of PANI nanocomposite over PANI. • Electrical study reveals modified non-linear I–V characteristic of nanocomposite. • The nanocomposite possesses photocatalytic activity. - Abstract: A new polyaniline (PANI) nanocomposite with [Co(NH{sub 3}){sub 4} (C{sub 12}H{sub 8}N{sub 2})] Cl{sub 3}·5H{sub 2}O photoadduct as filler was synthesised via in-situ oxidative polymerisation by ammonium persulphate in non-aqueous DMSO medium. The photoadduct has been synthesised through photo substitution by 1,10-phenenthroline (phen) ligand on irradiation. The as synthesised photoadduct was reduced in size prior to its incorporation in the PANI matrix. The synthesised photoadduct and PANI nanocomposite were characterised by FTIR, XRD, UV–Vis, SEM and elemental analysis. The results showed successful synthesis of photoadduct and PANI nanocomposite. The thermal and electrical measurement of PANI nanocomposite was carried out by thermal gravimetric technique (TGA) and four probe conductivity metre respectively. The results showed improvement in the thermal stability and conductance of nanocomposite over PANI. Besides, the nanocomposite was investigated for photocatalytic activity in the photochemical degradation of methyl orange (MO) dye.

  7. 2,2,6-Trimethyl-5-[2-(4-methylphenylethynyl]-4H-1,3-dioxin-4-one

    Directory of Open Access Journals (Sweden)

    Ignez Caracelli

    2009-11-01

    Full Text Available The 1,3-dioxin-4-one ring in the title compound, C16H16O3, is in a half-boat conformation with the quaternary O—C(CH32—O atom lying 0.546 (1 Å out of the plane defined by the remaining five atoms. The crystal structure is consolidated by C—H...O contacts that lead to supramolecular layers.

  8. Synthesis, structure and magnetic properties of a new iron phosphonate-oxalate with 3D framework: [Fe(O3PCH3)(C2O4)0.5(H2O)

    International Nuclear Information System (INIS)

    Zhang Yangyang; Qi Yue; Zhang Ying; Liu Ziyu; Zhao Yinfeng; Liu Zhongmin

    2007-01-01

    A new iron phosphonate-oxalate [Fe(O 3 PCH 3 )(C 2 O 4 ) 0.5 (H 2 O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO 6 octahedra and O 3 PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P2 1 /n (no. 14), a=4.851(2)A, b=16.803(7)A, c=7.941(4)A, β=107.516(6) o , V=617.2(5)A 3 , Z=4, R 1 =0.0337 and wR 2 =0.0874 for 1251 reflections [I>2σ(I)]. Mossbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with T N =30K due to a weak spin canting

  9. Periphery-palladated carbosilane dendrimers : Synthesis and reactivity of model organopalladium(II) and (IV) complexes : Crystal structure of [PdMe(C6H4(OCH2Ph)-4)(bpy)] (bpy=2,2'-bipyridine

    NARCIS (Netherlands)

    Koten, G. van; Hovestad, N.J.; Hoare, J.L.; Jastrzebski, J.T.B.H.; Canty, A.J.; Smeets, W.J.J.; Spek, A.L.

    1999-01-01

    A carbosilane dendrimer with 12 peripheral iodoarene groups, [Si{(CH2)3Si((CH2)3SiMe2(C6H4CH2OC6H4I-4))3}4] (G1-ArI, 9), and the corresponding G0 model compound [Si{(CH2)3SiMe2(C6H4CH2OC6H4I-4)}4] (G0-ArI, 8) have been prepared from [Si{(CH2)3Si((CH2)3SiMe2(C6H4CH2Br))3}4] (G1-Br, 7) and the

  10. Dual level reaction-path dynamics calculations on the C2H6 + OH → C2H5 + H2O reaction

    International Nuclear Information System (INIS)

    Coitino, E.L.; Truhlar, D.G.

    1996-01-01

    Interpolated Variational Transition State Theory with Multidimensional Tunneling contributions (IVTST/MT) has been applied to the reaction of C 2 H 6 + OH, and it yields rate constants that agree well with the available experimental information. The main disadvantage of this method is the difficulty of interpolating all required information from a few points along the reaction path. A more recent alternative is Variational Transition State Theory with Multidimensional Tunneling and Interpolated Corrections (VTST/MT-IC, also called dual-level direct dynamics), in which the reaction-path properties are first determined at an economical (lower) level of theory and then open-quotes correctedclose quotes using more accurate information obtained at a higher level for a selected number of points on the reaction path. The VTST/MT-IC method also allows for interpolation through die wider reaction swath when large-curvature tunneling occurs. In the present work we examine the affordability/accuracy tradeoff for several combinations of higher and lower levels for VTST/MT-IC reaction rate calculations on the C 2 H 6 + OH process. Various levels of theory (including NDDO-SRP and ab initio ROMP2, UQCISD, UQCISD(T), and UCCSD) have been employed for the electronic structure calculations. We also compare several semiclassical approaches implemented in the POLYRATE and MORATE programs for taking tunneling effects into account

  11. Experimental and kinetic modeling study of C2H4 oxidation at high pressure

    DEFF Research Database (Denmark)

    Lopez, Jorge Gimenez; Rasmussen, Christian Lund; Alzueta, Maria

    2009-01-01

    of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O-2 mixtures diluted in N-2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying......A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O-2 reaction was used to obtain rate coefficients over a wide range...

  12. Pyrrolophenanthridines. I. Synthesis of 2!H and 13C NMR spectra of 1H-pyrrolo[2,3-c]- and 1H-pyrrolo[3,2-i]-phenanthridines

    International Nuclear Information System (INIS)

    Frolova, E.P.; Akhvlediani, R.N.; Krasnokut-skii, S.N.; Kurkovskaya, L.N.; Suvorov, N.N.

    1987-01-01

    A preparative method is proposed for the synthesis of 3- and 8-aminophenanthridines, from which the new heterocyclic systems 1H-pyrrolo[2,3-c]- and 1H-pyrrolo[3,2-i]phenanthridines were synthesized by means of the Fischer reaction

  13. Synthesis and Molecular Structure of 6-Amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-03-01

    Full Text Available The title compound 6-amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one (4, molecular formula C11H10N6OS, was obtained by the reaction of3-amino-2-benzyl-6-hydrazino-1,2,4-triazin-5(2H-one (3 with carbon disulfide in awater/pyridine mixture. Compound 4 can also be synthesized by reacting6-amino-3(2Hmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (7 with benzylbromide in methanolic ammonia water. The compound crystallizes in the monoclinicspace group P21/c with a = 7.2926(15, b = 14.456(2, c = 11.436(2 å, β = 105.30(2°, V= 1162.9(4 å3 and Z = 4, resulting in a density Dcalc of 1.567 g/cm3. Molecules of 4 arelinked by extensive intermolecular N-H···N and N-H···O hydrogen bonding [graph set R22 (9]. The structure is further stabilized by π-π stacking interactions. 2

  14. Upper limits to the reaction rate coefficients of C(n)(-) and C(n)H(-) (n = 2, 4, 6) with molecular hydrogen.

    Science.gov (United States)

    Endres, Eric S; Lakhmanskaya, Olga; Hauser, Daniel; Huber, Stefan E; Best, Thorsten; Kumar, Sunil S; Probst, Michael; Wester, Roland

    2014-08-21

    In the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions. Hints were found that the reactions of CnH(–) with H2 may proceed with a low (rate [Eichelberger, B.; et al. Astrophys. J. 2007, 667, 1283]. Because of the high abundance of molecular hydrogen in the ISM, a precise knowledge of the reaction rate is needed for a better understanding of the low-temperature chemistry in the ISM. A suitable tool to analyze rare reactions is the 22-pole radiofrequency ion trap. Here, we report on reaction rates for Cn(–) and CnH(–) (n = 2, 4, 6) with buffer gas temperatures of H2 at 12 and 300 K. Our experiments show the absence of these reactions with an upper limit to the rate coefficients between 4 × 10(–16) and 5 × 10(–15) cm(3) s(–1), except for the case of C2(–), which does react with a finite rate with H2 at low temperatures. For the cases of C2H(–) and C4H(–), the experimental results were confirmed with quantum chemical calculations. In addition, the possible influence of a residual reactivity on the abundance of C4H(–) and C6H(–) in the ISM were estimated on the basis of a gas-phase chemical model based on the KIDA database. We found that the simulated ion abundances are already unaffected if reaction rate coefficients with H2 were below 10(–14) cm(3) s(–1).

  15. Solid solutions in the system Nd2(SeO4)3 - Sm2(SeO4)3 - H2O

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Tsybukova, T.N.; Velikov, A.A.

    1984-01-01

    Using the method of isothermal solubility at 25 deg C the system Nd 2 (SeO 4 ) 3 -Sm 2 (SeO 4 ) 3 -H 2 O has been studied. Roentgenographic recording of solid ''residues'' is realized. For solid solutions energies of interchange and formation heats are calculated. Formation heats of solid solutions on the basis of samarium selenates are also found experimentally

  16. Synthesis and vibrational spectra of cooper(II) and erbium(III) complexes with 2-diazo[2'-(oxymethyldiphenylphosphinyl)phenyl]-4-tert-butylphenol (HL) - [CuL22H2O and Er(NO3)3·2HL·2H2O. Crystal structure of [CuL22H2O

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Minacheva, L.Kh.; Ivanova, I.S.; Pyatova, E.N.; Sergienko, V.S.; Baulin, V.E.

    2008-01-01

    Paper describes synthesis of CuL 2 ·2H 2 O (I) complex cupric salt and of Er(NO 3 ) 3 ·2HL·2H 2 O (II) erbium nitrate complex (HL=2-diazo-[2'(oxymethyl-diphenyl-phosphinyl)phenyl]-4-tert-butylphenol). One interprets the fundamental frequencies within the IR-spectra of (I) and (II) compounds. One has performed X-ray diffraction analysis of I compound. The crystals are monoclinic ones, a=15.157(3), b=17.080(2), c=22.451(9) A, β=106.09(3) Deg, V=5584(3) A 3 , Z=4, C2/c sp.gr., R=0.0546 as to 1152 reflections with I>2σ(I). The copper atom coordination polyhedron (C 2 symmetry) may be described as a symmetrically-prolonged square bipyramid (4+2). Cu polyhedron central square is formed by substituted phenol oxygen atom and by one of diazo-group nitrogen atoms of either of two deprotonated ligands, namely: L - (Cu-N 1.969(6), Cu-O 1.899(5) A). The angles between lying opposite O and N atoms constitute 157.6 Deg, while the rest equatorial angles range within 90.6 Deg-95.9 Deg. The axial positions are occupied by O(2) and O(2A) anisole atoms (Cu-O 2.737(6) A, O(2)Cu(1)O(2A) angle constitutes 132.3 Deg). Within crystal I the complex molecules and the crystallization molecules of water are combined by by the hydrogen bond system. According to the IR-spectra data, within complex II in contrast to compound I erbium atom coordination by HL ligand involves oxygen phosphoryl atom [ru

  17. 5-AIQ inhibits H{sub 2}O{sub 2}-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun; Jang, Yong Chang [Department of Applied Biochemistry, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of); Yi, Kyu Yang [Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon, Chungnam, 305-600 (Korea, Republic of); Chung, Hun-Jong [Industrial Medicine Department, Chungju Hospital, Konkuk Medical School, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of); Park, Jong Seok [Department of Biomedical Laboratory Science, Taegu Health College, Taegu 702-722 (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of); Feng, Zhong-Ping [Department of Physiology, College of Medicine, University of Toronto, Toronto, Ont., Canada M5S 1A8 (Canada); Shin, Hwa-Sup, E-mail: hsshin@kku.ac.kr [Department of Applied Biochemistry, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of)

    2013-04-01

    Poly(adenosine 5′-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H{sub 2}O{sub 2}-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H{sub 2}O{sub 2}-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H{sub 2}O{sub 2}-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H{sub 2}O{sub 2}-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. - Highlights: ► 5-AIQ, a PARP inhibitor, decreased H{sub 2}O{sub 2}-induced H9c2 cell death and apoptosis. ► 5-AIQ upregulated antioxidant Mn-SOD and catalase, while decreasing ROS production. ► 5-AIQ decreased H{sub 2}O{sub 2}-induced increase in cleaved caspase-3 and Bax and decrease in Bcl2. ► 5-AIQ activated Akt and GSK-3

  18. 2-(2,4-Dichlorophenyl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylacetamide

    Directory of Open Access Journals (Sweden)

    B. Narayana

    2013-01-01

    Full Text Available In the crystal structure of the title compound, C19H17Cl2N3O2, the molecules form dimers of the R22(10 type through N—H...O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13 and 64.82 (12°, respectively. The dihedral angle between the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6°.

  19. Synthesis, characterization, and reactivity of nickel hydride complexes containing 2,6-C6H3(CH2PR2)2 (R = tBu, cHex, and iPr) pincer ligands.

    Science.gov (United States)

    Boro, Brian J; Duesler, Eileen N; Goldberg, Karen I; Kemp, Richard A

    2009-06-15

    The syntheses and full characterization of nickel hydrides containing the PCP "pincer"-type ligand, where PCP = 2,6-C(6)H(3)(CH(2)PR(2))(2) (R = tBu, cHex, and iPr), are reported. These Ni-H complexes are prepared by the conversion of ((R)PCP)NiCl precursors into the corresponding nickel hydrides by use of appropriate hydride donors. Surprisingly, although the ((R)PCP)NiCl precursors are quite similar chemically, the conversions to the hydrides were not straightforward and required different hydride reagents to provide analytically pure products. While NaBH(4) was effective in the preparation of pure ((tBu)PCP)NiH, Super-Hydride solution (LiEt(3)BH in THF) was required to prepare either ((cHex)PCP)NiH or ((iPr)PCP)NiH. Attempts to prepare a Ni-H from ((Ph)PCP)NiCl with a variety of hydride reagents yielded only the free ligand as an identifiable product. Two of the derivatives, tBu and cHex, have also been subjected to single crystal X-ray analysis. The solid-state structures each showed a classic, near-square planar arrangement for Ni in which the PCP ligand occupied three meridional ligand points with the Ni-H trans to the Ni-C bond. The resulting Ni-H bond lengths were 1.42(3) and 1.55(2) A for the tBu and cHex derivatives, respectively.

  20. 6-Methoxy-1-(4-methoxyphenyl-1,2,3,4-tetrahydro-9H-β-carbolin-2-ium acetate

    Directory of Open Access Journals (Sweden)

    Mohd Mustaqim Rosli

    2012-05-01

    Full Text Available In the title compound, C19H21N2O2C2H3O2−, the 1H-indole ring system is essentially planar [maximum deviation = 0.0257 (14 Å] and forms a dihedral angle of 87.92 (7 Å with the benzene ring attached to the tetrahydropyridinium fragment. The tetrahydropyridinium ring adopts a half-chair conformation. In the crystal, cations and anions are linked by interionic N—H...O, C—H...O and C—H...N hydrogen bonds into chains along the a axis.

  1. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  2. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  3. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  4. Compound effect of CaCO{sub 3} and CaSO{sub 42H{sub 2}O on the strength of steel slag: cement binding materials

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian, E-mail: ljxpost@263.net [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing (China)

    2016-03-15

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO{sub 3} and CaSO{sub 42H{sub 2}O were added. This was done to study the compound effect of CaCO{sub 3} and CaSO{sub 42H{sub 2}O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO{sub 3} and CaSO{sub 42H{sub 2}O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO{sub 3} and CaSO{sub 42H{sub 2}O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO{sub 3} could accelerate the hydration of C{sub 3}S. In addition, CaCO{sub 3} was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO{sub 42H{sub 2}O could increase the number of AFt. The compound effect of CaCO{sub 3} and CaSO{sub 42H{sub 2}O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  5. Synthesis and structure of [(NH2)2CSSC(NH2)2]2[OsBr6]Br2 . 3H2O

    International Nuclear Information System (INIS)

    Rudnitskaya, O. V.; Kultyshkina, E. K.; Stash, A. I.; Glukhova, A. A.; Venskovskii, N. U.

    2008-01-01

    The complex [(NH 2 ) 2 CSSC(NH 2 ) 2 ] 2 [OsBr 6 ]Br 2 . 3H 2 O is synthesized by the reaction of K 2 OsBr 6 with thiocarbamide in concentrated HBr and characterized using electronic absorption and IR absorption spectroscopy. Its crystal structure is determined by X-ray diffraction. The crystals are orthorhombic, a = 11.730(2) A, b = 14.052(3) A, c = 16.994(3) A, space group Cmcm, and Z = 4. The [OsBr 6 ] 2- anionic complex has an octahedral structure. The Os-Br distances fall in the range 2.483-2.490 A. The α,α'-dithiobisformamidinium cation is a product of the oxidation of thiocarbamide. The S-S and C-S distances are 2.016 and 1.784 A, respectively. The H 2 O molecules, Br - ions, and NH 2 groups of the cation are linked by hydrogen bonds.

  6. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH at Reunion Island (21° S, 55° E and comparisons with model data

    Directory of Open Access Journals (Sweden)

    D. B. A. Jones

    2012-11-01

    Full Text Available Reunion Island (21° S, 55° E, situated in the Indian Ocean at about 800 km east of Madagascar, is appropriately located to monitor the outflow of biomass burning pollution from Southern Africa and Madagascar, in the case of short-lived compounds, and from other Southern Hemispheric landmasses such as South America, in the case of longer-lived species. Ground-based Fourier transform infrared (FTIR solar absorption observations are sensitive to a large number of biomass burning products. We present in this work the FTIR retrieval strategies, suitable for very humid sites such as Reunion Island, for hydrogen cyanide (HCN, ethane (C2H6, acetylene (C2H2, methanol (CH3OH, and formic acid (HCOOH. We provide their total columns time-series obtained from the measurements during August–October 2004, May–October 2007, and May 2009–December 2010. We show that biomass burning explains a large part of the observed seasonal and interannual variability of the chemical species. The correlations between the daily mean total columns of each of the species and those of CO, also measured with our FTIR spectrometer at Reunion Island, are very good from August to November (R ≥ 0.86. This allows us to derive, for that period, the following enhancement ratios with respect to CO: 0.0047, 0.0078, 0.0020, 0.012, and 0.0046 for HCN, C2H6, C2H2, CH3OH, and HCOOH, respectively. The HCN ground-based data are compared to the chemical transport model GEOS-Chem, while the data for the other species are compared to the IMAGESv2 model. We show that using the HCN/CO ratio derived from our measurements (0.0047 in GEOS-Chem reduces the underestimation of the modeled HCN columns compared with the FTIR measurements. The comparisons between IMAGESv2 and the long-lived species C2H6 and C2H2 indicate that the biomass burning emissions used in the model (from the GFED3 inventory are probably underestimated in the late September–October period for all years of measurements, and

  7. Synthesis and structure of a 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Xiong Ming; Lin Jianhua

    2007-01-01

    A new 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, and β=90.42(3) deg. The anionic [B 7 O 10 (OH) 3 ] n 2n- layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H 3 N(CH 2 ) 6 NH 3 ] 2+ cations are located. - Graphical abstract: A layered 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ], was solvothermally synthesized at 150 deg. C. It is a layer borate and crystallized in monoclinic space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, β=90.42(3) deg

  8. TRACING H2 COLUMN DENSITY WITH ATOMIC CARBON (C I) AND CO ISOTOPOLOGS

    International Nuclear Information System (INIS)

    Lo, N.; Bronfman, L.; Cunningham, M. R.; Jones, P. A.; Lowe, V.; Cortes, P. C.; Simon, R.; Fissel, L.; Novak, G.

    2014-01-01

    We present the first results of neutral carbon ([C I] 3 P 1 - 3 P 0 at 492 GHz) and carbon monoxide ( 13 CO, J = 1-0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and the G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [C I] has very similar spectral emission profiles to 13 CO, with comparable line widths. We find that [C I] has an opacity of 0.1-1.3 across the mapped region while the [C I]/ 13 CO peak brightness temperature ratio is between 0.2 and 0.8. The [C I] column density is an order of magnitude lower than that of 13 CO. The H 2 column density derived from [C I] is comparable to values obtained from 12 CO. Our maps show that C I is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H 2 column density calculated from both tracers (both C I and 12 CO underestimate column density), as a significant amount of the C I in the warmer gas is likely in the higher energy state transition ([C I] 3 P 2 - 3 P 1 at 810 GHz), and thus it is likely that observations of both the above [C I] transitions are needed in order to recover the total H 2 column density

  9. Ethyl 3-[7-ethoxy-6-(4-methoxybenzenesulfonamido-2H-indazol-2-yl]propanoate

    Directory of Open Access Journals (Sweden)

    Najat Abbassi

    2012-04-01

    Full Text Available In the title compound, C21H25N3O6S, the dihedral angle between the methoxybenzene and indazole rings is 74.96 (5°. The crystal packing is stabilized by an N—H...O hydrogen bond into a two-dimensional network. In addition, C—H...π interactions and a π–π contact, with a centroid–centroid distance of 3.5333 (6 Å, are observed. The crystal packing is stabilized by N—H...O and C—H...O hydrogen bonds.

  10. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  11. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  12. Geothermal-brine modeling - prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO{sub 4}-OH-HCO{sub 3} CO{sub 3}-CO{sub 2}-H{sub 2}O system to high ionic strengths at 25{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Weare, J.H.

    1981-01-01

    The mineral solubility model of Harvie and Weare (1980) is extended to the eight component system, Na-K-Ca-Mg-H-Cl-SO{sub 4}-OH-HCO{sub 3}-CO{sub 3}-CO{sub 2}-H{sub 2}O at 25{sup 0}C to high concentrations. The model is based on the semi-empirical equations of Pitzer (1973) and co-workers for the thermodynamics of aqueous electrolyte solutions. The model is parameterized using many of the available isopiestic, electromotive force, and solubility data available for many of the subsystems. The predictive abilities of the model are demonstrated by comparison to experimental data in systems more complex than those used in parameterization. The essential features of a chemical model for aqueous electrolyte solutions and the relationship between pH and the equilibrium properties of a solution are discussed.

  13. Preparation of deuteriated adipic [2H2]-, [2H4]-, [2H6]-, and [2H8]-acids by use of Kolbe electrolysis as a key reaction

    International Nuclear Information System (INIS)

    Tashiro, Masahi; Tsuzuki, Hirohisa; Mataka, Shuntaro; Goto, Hideyuki; Ogasahara, Shoji

    1990-01-01

    Using Kolbe electrolysis of methyl hydrogen [ 2 H 0 ]-, [ 2 H 2 ]-, and [ 2 H 4 ]-succinates as a key reaction, adipic [2,2- 2 H 2 ]-, [2,3- 2 H 2 ]-, [2,2,3,3- 2 H 4 ]-, [2,3,4,5- 2 H 4 ]-, [2,3,5,5- 2 H 4 ]-, [2,2,3,3,5,5- 2 H 6 ]-, and [2,2,3,3,4,4,5,5- 2 H 8 ]-acids were prepared in high deuterium contents. (author)

  14. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd HO and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  15. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  16. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3.3H2O and Pr[M(CN)2]3.3H2O (M=Ag, Au)

    International Nuclear Information System (INIS)

    Assefa, Zerihun; Haire, Richard G.; Sykora, Richard E.

    2008-01-01

    We have prepared Cm[Au(CN) 2 ] 3 .3H 2 O and Cm[Ag(CN) 2 ] 3 .3H 2 O as a part of our continuing investigations into the chemistry of the 5f-elements' dicyanometallates. Single crystals of Cm[Au(CN) 2 ] 3 .3H 2 O were obtained from the reaction of CmCl 3 and KAu(CN) 2 under mild hydrothermal conditions. Due to similarities in size, the related praseodymium compounds were also synthesized and characterized for comparison with the actinide systems. The compounds crystallize in the hexagonal space group P6 3 /mcm, where the curium and the transition metals interconnect through cyanide bridging. Crystallographic data (Mo Kα, λ=0.71073 A): Cm[Au(CN) 2 ] 3 .3H 2 O (1), a=6.6614(5) A, c=18.3135(13) A, V=703.77(9), Z=2; Pr[Au(CN) 2 ] 3 .3H 2 O (3), a=6.6662(8) A, c=18.497(3) A, V=711.83(17), Z=2; Pr[Ag(CN) 2 ] 3 .3H 2 O (4), a=6.7186(8) A, c=18.678(2) A, V=730.18(14), Z=2. The Cm 3+ and/or Pr 3+ ions are coordinated to six N-bound CN - groups resulting in a trigonal prismatic arrangement. Three oxygen atoms of coordinated water molecules tricap the trigonal prismatic arrangement providing a coordination number of nine for the f-elements. The curium ions in both compounds exhibit a strong red emission corresponding to the 6 D 7/2 → 8 S 7/2 transition. This transition is observed at 16,780 cm -1 , with shoulders at 17,080 and 16,840 cm -1 for the Ag complex, while the emission is red shifted by ∼100 cm -1 in the corresponding gold complex. The Pr systems also provide well-resolved emissions upon f-f excitation. - Graphical abstract: Coordination polymeric compounds between a trans-plutonium element, curium and transition metal ions, gold(I) and silver(I), were prepared using the hydrothermal synthetic procedure. The curium ion and the transition metals are interconnected through cyanide bridging. The Cm ion has a tricapped trigonal prismatic coordination environment with coordination number of nine. Detail photoluminescence studies of the complexes are also reported

  17. Study of the reversible water vapour sorption process of MgSO{sub 4}.7H{sub 2}O and MgCl{sub 2}.6H{sub 2}O under the conditions of seasonal solar heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; De Boer, R. [Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven (Netherlands); Zondag, H.A.; Veldhuis, J.B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-08-15

    The characterization of the structural, compositional and thermodynamic properties of MgSO{sub 4}.7H{sub 2}O and MgCl{sub 2}.6H{sub O} has been done for seasonal heat storage using in-situ X-ray Diffraction and thermal analyses (TG/DSC) under practical conditions for seasonal heat storage (T{sub max} = 150C, p(H{sub 2}O)=13 mbar). This study showed that these two materials release heat after a dehydration/hydration cycle with energy densities of 0.38 GJ/m{sup 3} for MgSO{sub 4}.7H{sub 2}O and 0.71 GJ/m{sup 3} MgCl{sub 2}.6H{sub 2}O. The low heat release found for MgSO{sub 4}.7H2O is mainly attributed to the amorphization of the material during the dehydration performed at 13 mbar which reduces its sorption capacity during the rehydration. MgCl{sub 2}.6H{sub 2}O presents a high energy density which makes this material interesting for the seasonal heat storage in domestic applications. This material would be able to fulfil the winter heat demand of a passive house estimated at 6 GJ with a packed bed reactor of 8.5 m{sup 3}. However, a seasonal heat storage system based on the water vapour sorption process in MgCl{sub 2}.6H{sub 2}O should be carefully set with a restricted temperature of 40C for the hydration reaction to avoid the liquefaction of the material at ambient temperature which limits its performances for long term storage.

  18. 4-(2,4-Dichlorophenyl-2-(1H-indol-3-yl-6-methoxypyridine-3,5-dicarbonitrile

    Directory of Open Access Journals (Sweden)

    M. N. Ponnuswamy

    2008-10-01

    Full Text Available In the title compound, C22H12Cl2N4O, the indole ring system and the benzene ring form dihedral angles of 21.18 (7° and 68.43 (8°, respectively, with the pyridine ring. The methoxy group is coplanar with the pyridine ring. In the crystal structure N—H...N intermolecular hydrogen bonds link the molecules into C(10 chains running along [011]. Intramolecular C—H...N hydrogen bonds are also observed.

  19. X-ray and NQR studies of bromoindate(III) complexes. [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}, [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}, and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Takeharu; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Lork, Enno; Gesing, Thorsten M. [Bremen Univ. (Germany). Inst. of Inorganic Chemistry and Crystallography

    2017-03-01

    The crystal structures of [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}(1), [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}(2), and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}(3) were determined at 100(2) K: monoclinic, P2{sub 1}/n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2{sub 1}2{sub 1}2{sub 1}, a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr{sub 6}]{sup 3-} ion and a Br{sup -} ion. The structure of 2 contains three different isolated octahedral [InBr{sub 6}]{sup 3-} ions. The structure of 3 has a corner-shared double-octahedral [In{sub 2}Br{sub 11}]{sup 5-} ion and an isolated tetrahedral [InBr{sub 4}]{sup -} ion. The {sup 81}Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The {sup 81}Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr{sub 6}]{sup 3-} of 1 and for [In{sub 2}Br{sub 11}]{sup 5-} and [InBr{sub 4}]{sup -} of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of {sup 81}Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  20. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  1. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes.

    Science.gov (United States)

    Alaton, Idil Arslan; Balcioglu, Isil Akmehmet; Bahnemann, Detlef W

    2002-03-01

    In the present study the treatment efficiency of different AOPs (O3/OH- H2O2/UV-C and TiO2/UV-A) were compared for the oxidation of simulated reactive dyebath effluent containing a mixture of monochlorotriazine type reactive dyes and various dye auxiliary chemicals at typical concentrations encountered in exhausted reactive dyebath liquors. A525 (color), UV280 (aromaticity) and TOC removal rates were assessed to screen the most appropriate oxidative process in terms of reactive dyebath effluent treatment. Special emphasis was laid on the effect of reaction pH and applied oxidant (O3, H2O2) dose on the observed reaction kinetics. It was established that the investigated AOPs were negatively affected by the Na2CO3 content (= 867 mg/L) which is always present at high concentrations in dychouse effluents since it is applied as a pH buffer and dye fixation agent during the reactive dyeing process. The ozonation reaction exhibited almost instantaneous decolorization kinetics and a reasonable TOC reduction rate. It appeared to be stable under the investigated advanced oxidation conditions and outranked the other studied AOPs based on the above mentioned criteria. Besides, the electrical energy requirements based on the EE/O parameter (the electrical energy required per order of pollutant removal in 1 m3 wastewater) was calculated for the homogenous AOPs in terms of decolorization kinetics. In view of the electrical energy efficiency, ozonation and H2O2/UV-C oxidation at the selected treatment conditions appear to be promising candidates for full-scale dyehouse effluent decolorization.

  2. H2O Formation in C-rich AGB Winds

    NARCIS (Netherlands)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N.L.J.; De Ridder, J.; Khouri, T.; Agúndez, M.; Blommaert, J.A.D.L.; Gernicharo, J.; González-Alfonso, E.; Groenewegen, M.A.T.; Kerschbaum, F.; Neufeld, D.; Vandenbussche, B.; Waelkens, C.

    2015-01-01

    The Herschel detection of warm H2O vapor emission from C-rich winds of AGB stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O formation. In the first, penetration of UV interstellar radiation through a clumpy circumstellar

  3. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    Science.gov (United States)

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  4. 2-Methyl-3-(2-methylphenyl-7-nitroquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    Edward R. T. Tiekink

    2012-03-01

    Full Text Available In the title methaqualone analogue, C16H13N3O3, the 2-tolyl group is almost orthogonal [dihedral angle = 85.20 (5°] to the fused ring system (r.m.s. deviation of fitted non-H atoms = 0.029 Å. In the crystal, twofold symmetry generates two-molecule aggregates linked by C—H...O and π–π interactions [ring centroid–centroid distance = 3.4967 (6 Å].

  5. Structure elucidation of 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C23H18Cl2N4OS from synchrotron X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie; Tozkoparan, Birsen; Kaynak, Filiz Betül

    2017-12-01

    The 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C23H18Cl2N4OS compound was synthesized, as a member of the family of novel potential anticancer agents. The structure of the title compound was characterized by IR,1H-NMR, mass spectroscopy, and elemental analysis, previously. In this study, the crystal structure of this compound has been determined from synchrotron X-ray powder diffraction data. The crystal structure was solved by simulated annealing and the final structure was achieved by Rietveld refinement method using soft restrains on all interatomic bond lengths and angles. This compound crystallizes in space groupP21,Z= 2, with the unit-cell parametersa= 15.55645(11) Å,b= 8.61693(6) Å,c= 8.56702(6) Å,β= 104.3270(4)°, andV= 1112.68(1) Å3. In the crystal structure, strong C-H∙∙∙πand weak intermolecular hydrogen-bonding interactions link the molecules into a three-dimensional network. The molecules are in a head-to-head arrangement in the unit cell.

  6. Density effects on high-n molecular Rydberg states: CH3I and C6H6 in H2 and Ar

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; Rupnik, K.; McGlynn, S.P.; Ascarelli, G.

    1989-01-01

    The absorption spectra of high-n Rydberg states of methyl iodide and benzene perturbed by varying number densities of hydrogen or argon, range 0.9x10 20 --10.5x10 20 cm -3 for H 2 and 0.6x10 20 --7.5x10 20 cm -3 for Ar, have been investigated. The high-n molecular states of both absorbers were found to shift linearly with the number density of atomic Ar and molecular H 2 scatterers. The Fermi formula modified by the Alekseev--Sobel'man polarization term provides an excellent fit of the shift data. The electron scattering lengths obtained are: 0.93 a 0 for H 2 and -1.63 a 0 for Ar using the CH 3 I absorber; and 0.99 a 0 for H 2 and -1.57 a 0 for Ar using the C 6 H 6 absorber. The electron scattering lengths for H 2 and Ar agree with the results of an empirical model that correlates scattering lengths and the polarizabilities α(spherical) for inert atoms and α 2 (nonspherical) for H 2 molecule

  7. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    Science.gov (United States)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  8. (R,S-2′-Amino-6′-methyl-2,5′,5′-trioxo-6H-spiro[indoline-3,4′-pyrano[3,2-c][2,1]benzothiazine]-3′-carbonitrile dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Svitlana V. Shishkina

    2014-07-01

    Full Text Available The title solvate, C20H14N4O4C3H7NO, comprises a stereogenic centre but the centrosymmetric space group causes the presence of the racemate in the crystal. The spiro-joined fragments are almost orthogonal, with a dihedral angle of 86.8 (2° between the mean planes of the pyrane ring and the dihydroindolone ring system. The atoms of the indolinone bicycle are coplanar, with an r.m.s. deviation of 0.005 Å. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into centrosymmetric dimers which are linked to the dimethylformamide solvent molecules by further N—H...O hydrogen bonds. N—H...N hydrogen bonds link neighbouring dimers into [010] chains.

  9. Detonation study of two stoichiometric mixtures (CH{sub 4}/H{sub 2}/O{sub 2}/N{sub 2} and CH{sub 4}/C{sub 2}H{sub 6}/O{sub 2}/N{sub 2}). Influence of the relative proportion of both fuels and of the initially high temperature; Etude de la detonation de deux melanges stoechiometriques (CH{sub 4}/H{sub 2}/O{sub 2}/N{sub 2} et CH{sub 4}/C{sub 2}H{sub 6}/O{sub 2}/N{sub 2}). Influence de la proportion relative des deux combustibles et de la temperature initiale elevee

    Energy Technology Data Exchange (ETDEWEB)

    Matignon, Ch.

    2000-12-15

    Detonations of gaseous reactive mixtures made of two fuels of very different detonability xH{sub 2}+(1-x)CH{sub 4} and xC{sub 2}H{sub 6}+(1-x)CH{sub 4} in stoichiometric proportion with oxygen and diluted with nitrogen (in proportions varying from pure oxygen to the air) are investigated. The parameters of the study are the relative proportion x of fuels, nitrogen dilution B = O{sub 2}/N{sub 2} and the initial conditions of temperature and pressure. This study takes place within the general context of the chemical process safety improvement. Detonability was evaluated by the comparison between the characteristic cell size measurement of the three-dimensional structure of the autonomous and stationary detonation front with the chemical induction length calculated on the assumptions of the ZND model by means of several detailed chemical kinetics mechanisms. The results obtained for the mixtures with single fuel show that the detonability of methane decreases according to the initial temperature whatever the dilution B, and that the one of ethane and hydrogen decreases with B = 0 but increases with B = 3,76 (air) (the inversion of behaviour occurs for B = 2 for ethane, and B=1 for hydrogen). The results obtained for the mixtures with two fuels show that their detonability is each time influenced by the heaviest fuel, i.e. that the detonability of H{sub 2}/CH{sub 4} mixtures is rather controlled by CH{sub 4} whereas the one of C{sub 2}H{sub 6}/CH{sub 4} mixtures is rather controlled by C{sub 2}H{sub 6}. With pure oxygen (B = 0), these mixtures are desensitized by the increase of the initial temperature. Beyond a certain value x, an inversion of detonability according to x is observed. (author)

  10. Gas-phase nitrosation of ethylene and related events in the C2H4NO+ landscape.

    Science.gov (United States)

    Gerbaux, Pascal; Dechamps, Noemie; Flammang, Robert; Nam, Pham Cam; Nguyen, Minh Tho; Djazi, Fayçal; Berruyer, Florence; Bouchoux, Guy

    2008-06-19

    The C2H4NO(+) system has been examined by means of quantum chemical calculations using the G2 and G3B3 approaches and tandem mass spectrometry experiments. Theoretical investigation of the C2H4NO(+) potential-energy surface includes 19 stable C2H4NO(+) structures and a large set of their possible interconnections. These computations provide insights for the understanding of the (i) addition of the nitrosonium cation NO(+) to the ethylene molecule, (ii) skeletal rearrangements evidenced in previous experimental studies on comparable systems, and (iii) experimental identification of new C2H4NO(+) structures. It is predicted from computation that gas-phase nitrosation of ethylene may produce C2H4(*)NO(+) adducts, the most stable structure of which is a pi-complex, 1, stabilized by ca. 65 kJ/mol with respect to its separated components. This complex was produced in the gas phase by a transnitrosation process involving as reactant a complex between water and NO(+) (H2O.NO(+)) and the ethylene molecule and fully characterized by collisional experiments. Among the other C 2H 4NO (+) structures predicted by theory to be protected against dissociation or isomerization by significant energy barriers, five were also experimentally identified. These finding include structures CH3CHNO(+) (5), CH 3CNOH (+) ( 8), CH3NHCO(+) (18), CH3NCOH(+) (19), and an ion/neutral complex CH2O...HCNH(+) (12).

  11. Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces

    International Nuclear Information System (INIS)

    Ling, C.C.; Beling, C.D.; Fung, S.; Weng, H.M.

    2002-01-01

    Slow-positron emission from the surfaces of as-grown n-type 4H-SiC and 6H-SiC (silicon carbide) with a conversion efficiency of ∼10 -4 has been observed. After 30 min of 1000 deg. C annealing in forming gas, the conversion efficiency of the n-type 6H-SiC sample was observed to be enhanced by 75% to 1.9x10 -4 , but it then dropped to ∼10 -5 upon a further 30 min annealing at 1400 deg. C. The positron work function of the n-type 6H-SiC was found to increase by 29% upon 1000 deg. C annealing. For both p-type 4H-SiC and p-type 6H-SiC materials, the conversion efficiency was of the order of ∼10 -5 , some ten times lower than that for the n-type materials. This was attributed to the band bending at the p-type material surface which caused positrons to drift away from the positron emitting surface. (author)

  12. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 2-Methylsulfanyl-5,6-dihydro-2H-1,3-dithiolo[4,5-b][1,4]dioxin-2-ium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhou

    2012-04-01

    Full Text Available The title compound, C6H7O2S3+·BF4−, consists of a planar 2-thioxo-1,3-dithiol-4,5-yl unit [maximum deviation from the ring plane = 0.020 (3 Å], with an ethylenedioxy group fused at the 4,5-positions; the ethylenedioxy C atoms are disordered over two positions with site-occupancy factors of 0.5. The 1,4-dioxine ring has a twist-chair conformation. Weak cation–anion S...F interactions [3.022 (43.095 (4 Å] and an S...O [3.247 (4 Å] interaction are present.

  14. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2H4·H2O at room temperature

    Science.gov (United States)

    O, Song-Il; Yan, Jun-Min; Wang, Hong-Li; Wang, Zhi-Li; Jiang, Qing

    2014-09-01

    Ni/La2O3 nanocatalyst with Pt and Rh content as low as 5 mol%, respectively, is successfully synthesized by a facile co-reduction method in the presence of hexadecyl trimethyl ammonium chloride aqueous solution under ambient atmosphere. Interestingly, the resulted Ni/La2O3 catalyst with low cost exhibits excellent catalytic activity to dehydrogenation of hydrous hydrazine (N2H4·H2O), producing hydrogen with 100% selectivity at room temperature (298 K), which represents a promising step toward the practical application for N2H4·H2O system on fuel cells.

  15. Concentrations of ethane (C2H6) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra

    Science.gov (United States)

    Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.

    1987-01-01

    This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.

  16. Crystal structure of 2-[(3aS,6R-3,3,6-trimethyl-3,3a,4,5,6,7-hexahydro-2H-indazol-2-yl]thiazol-4(5H-one

    Directory of Open Access Journals (Sweden)

    Abdellah N'ait Ousidi

    2016-03-01

    Full Text Available The title compound, C13H19N3OS, is a new thiazolidin-4-one derivative prepared and isolated as the pure (3aS,6R-diastereisomer from (R-thiosemicarbazone pulegone. It crystallized with two independent molecules (A and B in the asymmetric unit. The compound is composed of a hexhydroindazole ring system (viz. a five-membered dihydropyrazole ring fused to a cyclohexyl ring with a thiazole-4-one ring system attached to one of the pyrazole N atoms (at position 2. The overall geometry of the two molecules differs slightly, with the mean planes of the pyrazole and thiazole rings being inclined to one another by 10.4 (1° in molecule A and 0.9 (1° in molecule B. In the crystal, the A and B molecules are linked via C—H...O hydrogen bonds, forming slabs parallel to the ab plane. There are C—H...π interactions present within the layers, and between the layers, so forming a three-dimensional structure.

  17. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    Science.gov (United States)

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of calcination temperature on the H{sub 2}O{sub 2} decomposition activity of nano-crystalline Co{sub 3}O{sub 4} prepared by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.Th. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Abu-Zied, B.M., E-mail: babuzied@aun.edu.eg [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mansoure, T.H. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt)

    2013-06-01

    Cobalt oxide nano-particles were prepared by combustion method using urea as a combustion fuel. The effects of calcination temperature, 350–1000 °C, on the physicochemical, surface and catalytic properties of the prepared Co{sub 3}O{sub 4} nano-particles were studied. The products were characterized by thermal analyses (TGA and DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Textural features of the obtained catalysts were investigated using nitrogen adsorption at −196 °C. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline Co{sub 3}O{sub 4} nano-particles. Transmission electron microscopy indicating that, the crystallite size of Co{sub 3}O{sub 4} nano-crystals was in the range of 8–34 nm. The catalytic activities of prepared nano-crystalline Co{sub 3}O{sub 4} catalysts were tested for H{sub 2}O{sub 2} decomposition at 35–50 °C temperature range. Experimental results revealed that, the catalytic decomposition of H{sub 2}O{sub 2} decreases with increasing the calcination temperature. This was correlated with the observed particle size increase accompanying the calcination temperature rise.

  19. The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa

    Science.gov (United States)

    Tollan, Peter M. E.; Smith, Rachel; O'Neill, Hugh St. C.; Hermann, Jörg

    2017-12-01

    The water solubility in olivine ({C}_{{H}_2O}) has been investigated at 1050 °C and 3 GPa as a function of water activity ({a}_{{H}_2O}) at subsolidus conditions in the piston-cylinder apparatus, with {a}_{{H}_2O} varied using H2O-NaCl fluids. Four sets of experiments were conducted to constrain the effect of {a}_{{H}_2O} on the four main substitution mechanisms. The experiments were designed to grow olivine in situ and thus achieve global equilibrium (G-type), as opposed to hydroxylating olivine with a pre-existing point-defect structure and impurity content (M-type). Olivine grains from the experiments were analysed with polarised and unpolarised FTIR spectroscopy, and where necessary, the spectra have been deconvoluted to quantify the contribution of each substitution mechanism. Olivine buffered with magnesiowüstite produced absorbance bands at high wavenumbers ranging from 3566 to 3612 cm-1. About 50% of the total absorbance was found parallel to the a-axis, 30% parallel to the b-axis and 20% parallel to the c-axis. The total absorbance and hence water concentration in olivine follows the relationship of {C}_{{H}_2O}∝ {a_{{H}_2O}}^2 , indicating that the investigated defect must involve four H atoms substituting for one Si atom (labelled as [Si]). Forsterite buffered with enstatite produced an absorbance band exclusively aligned parallel the c-axis at 3160 cm-1. The band position, polarisation and observed {C}_{{H}_2O}∝ {a}_{{H}_2O} are consistent with two H substituting for one Mg (labelled as [Mg]). Ti-doped, enstatite-buffered olivine displays absorption bands, and polarisation typical of Ti-clinohumite point defects where two H on the Si-site are charge-balanced by one Ti on a Mg-site (labelled as [Ti]). This is further supported by {C}_{{H}_2O}∝ {a}_{{H}_2O} and a 1:1 relationship of molar H2O and TiO2 in these experiments. Sc-doped, enstatite-buffered experiments display a main absorption band at 3355 cm-1 with {C}_{{H}_2O}∝ {a_{{H}_2O}}^{0

  20. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  1. Electric properties of La2O3/SiO2/4H-SiC MOS capacitors with different annealing temperatures

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2015-08-01

    Full Text Available In this work, we describe a rapid thermal annealing (RTA process for the La2O3/SiO2/4H-SiC interface and investigate its effect on the material’s electrical properties. Our results indicate that the trap charge density and interface state density (Dit are reduced as the RTA temperature increases due to the termination of residual carbon and dangling bonds. We demonstrate that the sample obtained after RTA at 500 °C has the highest breakdown electric field (Efb (7 MV/cm due to a decrease in the trap charge density and an improvement in the interfacial properties. However, when the RTA temperature reaches 600 °C or higher, a lower Efb value (1.2 MV/cm is obtained due to leakage routes generated by the crystallization of La2O3. Based on our results, we conclude that the ideal choice for the RTA temperature is 500 °C.

  2. Study of the reversible water vapour sorption process of MgSO4.7H2O and MgCl2.6H2O under the conditions of seasonal solar heat storage

    NARCIS (Netherlands)

    Ferchaud, C.; Zondag, H.A.; Veldhuis, J.B.J.; Boer, de R.

    2012-01-01

    The characterization of the structural, compositional and thermodynamic properties of MgSO4.7H2O and MgCl2.6H2O has been done using in-situ X-ray Diffraction and thermal analyses (TG/DSC) under practical conditions for seasonal heat storage (Tmax=150°C, p(H2O)=13 mbar). This study showed that these

  3. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors

    Science.gov (United States)

    Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.

    2018-02-01

    The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.

  4. Solubility Modeling of the Binary Systems Fe(NO3)3H2O, Co(NO3)2H2O and the Ternary System Fe(NO3)3Co(NO3)2H2O with the Extended Universal Quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Arrad, Mouad; Kaddami, Mohammed; Goundali, Bahija El

    2016-01-01

    Solubility modeling in the binary system Fe(NO3)3H2O, Co(NO3)2H2O and the ternary system Fe(NO3)3Co(NO3)2H2O is presented. The extended UNIQUAC model was applied to the thermodynamic assessment of the investigated systems. The model parameters obtained were regressed simultaneously using...... the available databank but with more experimental points, recently published in the open literature. A revision of previously published parameters for the cobalt ion and new parameters for the iron(III) nitrate system are presented. Based on this set of parameters, the equilibrium constants of hydrates...

  5. Bis(arene) actinide sandwich complexes, (η6-C6H3R3)2An: Linear or bent?

    International Nuclear Information System (INIS)

    Li, J.; Bursten, B.E.

    1999-01-01

    The syntheses of the sandwich complexes ferrocene, (η 5 -C 5 H 5 ) 2 -Fe, in 1951 and uranocene, (η 8 -C 8 H 8 ) 2 U, in 1968 ushered in the modern eras of organotransition metal and organoactinide chemistry, respectively. Ferrocene and uranocene are examples of linear sandwich complexes, that is, those in which the (ring centroid)-M-(ring centroid) angle (denoted θ) is 180 degree. In the case of (η 5 -C 5 H 5 ) 2 M chemistry, a number of bent (θ 2 An (An = Th-Am) and (η 6 -C 6 H 3 R 3 ) 2 An (An = Th, U, Pu; R = Me, t Bu) obtained by using local density approximation (LDA) and Perdew-Wang (PW91) gradient-corrected relativistic density functional theory (DFT) methods. These DFT methods are found to be able to reproduce the experimental geometries and vibrational frequencies of organoactinide complexes with satisfactory accuracy. The (TTB) 2 An calculations that are reported here are, to date, the largest full geometry optimizations to be carried out on an actinide system

  6. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  7. 6-Hydroxymethyl-4-methoxy-2H-pyran-2-one (Opuntiol

    Directory of Open Access Journals (Sweden)

    Muhammad Athar Abbasi

    2010-01-01

    Full Text Available The title compound, C7H8O4, isolated from Opuntia dillenii Haw (Cactaceae, is almost planar [maximum deviation of 0.027 (2 Å] except for the H atoms of the methylene and methyl groups. The crystal packing is stabilized by C—H...O and O—H...O intermolecular hydrogen bonds, resulting in the formation of a three-dimensional network.

  8. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH{sub 3}, –C{sub 6}H{sub 4}, –F{sub 2}, –(CH{sub 3}){sub 2}) materials

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Amlan [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India); Couck, Sarah [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Van Der Voort, Pascal [Department of Inorganic and Physical Chemistry, Ghent University, COMOC – Center for Ordered Materials, Organometallics and Catalysis, Krijgslaan 281-S3, 9000 Ghent (Belgium); Denayer, Joeri F.M. [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Biswas, Shyam, E-mail: sbiswas@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India)

    2016-06-15

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.7–2.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2

  9. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    Science.gov (United States)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  10. Nd(NH2SO3)(SO4) . 1.5 H2O: a non-centrosymmetric amidosulfate-sulfate of neodymium

    International Nuclear Information System (INIS)

    Wickleder, M.S.

    2005-01-01

    The thermal decomposition of Nd(NH 2 SO 3 ) 3 . 2 H 2 O in a closed tube leads to violet single crystals of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O. The compound crystallizes with the space group P1 (Z = 2, a = 689.2, b = 691.4, c = 962.0 pm, α = 109.64, β = 97.00, γ = 109.62 ). The triclinic unit cell can be transformed into the respective bodycentered setting I1 (Z = 2, a = 977.9, b = 795.6, c = 1113.0 pm, α = 90.69, β = 115.06, γ = 88.98 ) leading to a nearly monoclinic unit cell for the compound. In the crystal structure of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O two Nd 3+ ions are present. Nd(1) 3+ is coordinated by four NH 2 SO 3 - and two SO 4 2- ions, and one H 2 O molecule. Owing to the chelating attack of the sulfate groups, the CN is nine. Nd(2) 3+ is surrounded by four monodentate SO 4 2- and two NH 2 SO 3 - groups. Two H 2 O ligands fill up the coordination sphere and lead to a CN of eight. The linkage of the polyhedra leads to a three-dimensional network. (orig.)

  11. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3.H2O, and Th(CrO4)(IO3)2

    International Nuclear Information System (INIS)

    Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E.

    2006-01-01

    Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO 3 )(SeO 4 ) (1), Th(IO 3 ) 2 (SeO 4 )(H 2 O) 3 .H 2 O (2), and Th(CrO 4 )(IO 3 ) 2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO 9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO 3 2- , anions containing Se(IV), and tetrahedral selenate, SeO 4 2- , anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO 9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO 9 tricapped trigonal prisms. Each Th center is bound by six IO 3 1- anions and three CrO 4 2- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532nm light from 1064nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193K, MoKα, λ=0.71073): 1; monoclinic, P2 1 /c; a=7.0351(5)A, b=9.5259(7)A, c=9.0266(7)A, β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P2 1 /n, a=7.4889(9)A, b=8.002(1)A, c=20.165(3)A, β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P2 1 2 1 2 1 , a=7.3672(5)A, b=9.3617(6)A, c=11.9201(7)A, Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I)

  12. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Bastian, R.D.; Flanagan, K.L.

    1989-01-01

    Ruthenium disulfide catalysts have been synthesized, tested, and characterized during this period of research. It was observed that both the undoped and Cs-doped RuS[sub 2] catalysts produced alcohols and lower amounts of hydrocarbons from H[sub 2]/CO = 1.0 synthesis gas at temperatures above 300[degree]C. Calcination and catalytic testing resulted in partial reduction of the RuS[sub 2] to Ru[sup o]. Calcination under H[sub 2]S prevented the partial reduction of the RuS[sub 2] catalyst, but subsequent catalytic testing again resulted in the formation of a quantity of Ru[sup o]. A Cs-doped RuS[sub 2] catalyst was prepared, but it might have had too high of a loading of Cs. Upon testing, a lower activity was observed for the doped catalyst compared with the undoped catalyst, but the alcohol selectivity was the same for the two catalysts.

  13. Mobile Column Measurements of HCHO, NO2, NH3, and C2H6 in Colorado during FRAPPE

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Baidar, S.; Ortega, I.; Sinreich, R.; Hannigan, J. W.; Cooper, O. R.; Nussbaumer, E.; Pfister, G.

    2015-12-01

    Gases from anthropogenic sources have the potential to have a profound impact on air quality. Emissions from large cattle feedlots and ONG (Oil and Natural Gas) sites are comprised of NH3 (ammonia) and C2H6 (ethane) as pollutants. C2H6 contributes to photochemical ozone (O3) production and oxidation production of HCHO (formaldehyde). NH3 is a major source for reactive nitrogen to form particulate matter 2.5, which negatively affects human health. NO2 (nitrogen dioxide), emitted during combustion, is considered a large-scale pollutant and contributes to the formation of O3. Deploying an innovative suite of remote sensing instruments in a mobile laboratory, a Multi Axis Differential Optical Absorption Spectrometer (MAX-DOAS), a UV-Vis Spectrometer, and a Fourier Transform Infrared Spectrometer, we obtain mobile column measurements at high spatial and temporal resolution, 2 seconds for the UV-Vis and IR spectrometers and 20 seconds for the MAX-DOAS. Within the scope of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) we measure total columns of HCHO, NO2, NH3, and C2H6 using the University of Colorado mobile laboratory. Emissions of urban areas, agriculture, and ONG sites were studied. For the measurement of total columns the solar occultation flux method has been applied. We measured significant variability in the columns. The measurement of total columns allows one to determine the emission flux and source strength when driving a closed box around or upwind and downwind of a source with the mobile laboratory. We present results from select research drives.

  14. Rhodium(III)-Catalyzed [3+2]/[5+2] Annulation of 4-Aryl 1,2,3-Triazoles with Internal Alkynes through Dual C(sp2)-H Functionalization.

    Science.gov (United States)

    Yang, Yuan; Zhou, Ming-Bo; Ouyang, Xuan-Hui; Pi, Rui; Song, Ren-Jie; Li, Jin-Heng

    2015-05-26

    A rhodium(III)-catalyzed [3+2]/[5+2] annulation of 4-aryl 1-tosyl-1,2,3-triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7-cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp(2))-H functionalization, and [3+2]/[5+2] annulation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting.

    Science.gov (United States)

    Liu, Enzhou; Chen, Jibing; Ma, Yongning; Feng, Juan; Jia, Jia; Fan, Jun; Hu, Xiaoyun

    2018-08-15

    In this work, the 2D SnS 2 /g-C 3 N 4 heterojunctions were successfully prepared by heating the homogeneous dispersion of SnS 2 nanosheets and g-C 3 N 4 nanosheets using a microwave muffle. SEM, TEM and HRTEM images indicated that the SnS 2 nanosheets were loaded on the surface of the g-C 3 N 4 nanosheets. The UV-vis spectra show that the absorption intensity of the as-prepared samples was increased and the absorption range was also extended from 420 nm to approximately 600 nm. The H 2 production rate over 5 wt% SnS 2 /g-C 3 N 4 can reach 972.6 μmol·h -1 ·g -1 under visible light irradiation (λ > 420 nm) using TEOA as the sacrifice agent and Pt as the electron trap, which is 2.9 and 25.6 times higher than those of the pristine g-C 3 N 4 and SnS 2 , respectively. According to the obtained PL spectra, photocurrent and EIS spectra, the enhanced performance for H 2 generation over the heterojunctions is primarily ascribed to the rapid charge transfer arising from the suitable band gap positions leading to an improved photocatalytic performance. The recycling experiments indicated that the as-prepared composites exhibit good stability in H 2 production. Additionally, a possible enhanced mechanism for H 2 evolution was deduced based on the results obtained by various characterization techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Reaction of (CP(2)asterisk-lnH)(2) (ln=Y, La) and CP(2)asterisk-Y(2-C(6)H(4)CH(2)NMe(2)) with esters and amides and molecular-structure of [CP(2)asterisk-Y(mu- ocme=chc(oet)o)](2)

    NARCIS (Netherlands)

    Deelman, B.J; Wierda, F.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The activation of esters and amides by (Cp(2)*LnH)(2) [Ln = Y (1a), Ln = La (1b), Cp*=C(5)Me] and Cp(2)*Y(2-C(6)H(4)CH(2)NMe(2)) (2) is described. Compounds 1a and 1b react with ethyl acetate to form Cp(2)*YOEt (3a) and Cp(2)*LaOEt (30). With 1a and ethyl benzoate a 1:1 mixture of 3a and

  17. Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6

    Directory of Open Access Journals (Sweden)

    Shujun Qiu

    2017-01-01

    Full Text Available Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH2. For example, 2LiNH2-MgH2-0.1Li3AlH6 can desorb 6.43 wt % of hydrogen upon heating to 300 °C, with the onset dehydrogenation temperature at 78 °C. Isothermal dehydrogenation testing indicated that 2LiNH2-MgH2-0.1Li3AlH6 had superior dehydrogenation kinetics at low temperature. Moreover, the release of byproduct NH3 was successfully suppressed. Measurement of the thermal diffusivity suggests that the enhanced dehydrogenation properties may be ascribed to the fact that doping with Li3AlH6 could improve the heat transfer for solid–solid reaction.

  18. 2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6ferrate(III dihydrate

    Directory of Open Access Journals (Sweden)

    Andya Nemati

    2008-10-01

    Full Text Available The reaction of iron(II sulfate heptahydrate with the proton-transfer compound (pydaH(hypydcH (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxypyridine-2,6-dicarboxylic acid in an aqueous solution led to the formation of the title compound, (C5H8N3[Fe(C7H3NO52]·2H2O. The anion is a six-coordinated complex with a distorted octahedral geometry around the FeIII atom. Extensive intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, involving the complex anion, (pydaH+ counter-ion and two uncoordinated water molecules, and π–π [centroid-to-centroid distance 3.323 (11 Å] and C—O...π [O–centroid distance 3.150 (15 Å] interactions connect the various components into a supramolecular structure.

  19. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: Cu1.5Li(C2H10N2)P6O18·7H2O

    Science.gov (United States)

    Sleymi, Samira; Lahbib, Karima; Rahmouni, Nihed; Rzaigui, Mohamed; Besbes-Hentati, Salma; Abid, Sonia

    2017-09-01

    A new organic-inorganic hybrid transition metal phosphate, Cu1.5Li(C2H10N2)P6O18·7H2O, has been prepared and characterized by X-ray diffraction, spectroscopy (infrared, Raman, diffuse reflectance and UV-Vis) and thermal analysis (TG). In addition, its electrochemical behaviors, as well as its antioxidant and antibacterial activities, have been investigated. Its structure is built up by the alternate linkages between copper and phosphate polyhedra, forming puckered layers with intersecting 12-membered rings, in which the ethylenediammonium cations reside. This compound is the first framework structure constructed from cyclohexaphosphates and three distinct copper cations. Cyclic voltammetry study in an acetonitrile solution reveals the facile anodic oxidation of its organic part on a platinum disk and a progressive growing of a thin film, though the repetitive cycling of potential. The title compound was tested for its in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferrous chelating ability (FIC) and Ferric Reducing Power (FRP) methods. The antioxidant activity of Cu1.5Li(C2H10N2)P6O18·7H2O was analyzed simultaneously with its antibacterial capacity against Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium, Streptococcus agalactiae and Candida albicans. The tested compound showed significant antioxidant activities with low antibacterial properties.

  20. Influence of LaSiOx passivation interlayer on band alignment between PEALD-Al2O3 and 4H-SiC determined by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Shen, Lingyan; Zhang, Dongliang; Gu, Ziyue; Qian, Ru; Cao, Duo; Yu, Yuehui

    2018-01-01

    The influence of lanthanum silicate (LaSiOx) passivation interlayer on the band alignment between plasma enhanced atomic layer deposition (PEALD)-Al2O3 films and 4H-SiC was investigated by high resolution X-ray photoelectron spectroscopy (XPS). An ultrathin in situ LaSiOx interfacial passivation layer (IPL) was introduced between the Al2O3 gate dielectric and the 4H-SiC substrate to enhance the interfacial characteristics. The valence band offset (VBO) and corresponding conduction band offset (CBO) for the Al2O3/4H-SiC interface without any passivation were extracted to be 2.16 eV and 1.49 eV, respectively. With a LaSiOx IPL, a VBO of 1.79 eV and a CBO of 1.86 eV could be obtained across the Al2O3/4H-SiC interface. The difference in the band alignments was dominated by the band bending or band shift in the 4H-SiC substrate as a result of different interfacial layers (ILs) formed at the interface. This understanding of the physical details of the band alignment could be a good foundation for Al2O3/LaSiOx/4H-SiC heterojunctions applied in the 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  1. 9-Ethyl-2,3-dihydro-9H-carbazol-4(1H-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C28H30N2O2, the cyclohexene ring system adopts a sofa conformation. The crystal structure is stabilized by C—H...O interactions between methyl H atoms of the ethyl substituents and the O atoms of carbonyl groups of adjacent molecules, and by an intermolecular carbonyl–carbonyl interactions [3.207 (2 Å

  2. 4-(2,4-Dichlorophenyl-6-(1H-indol-3-yl-2,2′-bipyridine-5-carbonitrile

    Directory of Open Access Journals (Sweden)

    M. N. Ponnuswamy

    2009-05-01

    Full Text Available The title compound, C25H14Cl2N4, crystallizes with two independent molecules in the asymmetric unit. The two pyridine rings are almost coplanar, making dihedral angles of 3.2 (1 and 8.6 (1° in the two independent molecules. The dichlorophenyl and indole rings are twisted away from the bipyridine ring by 64.32 (5 and 18.46 (4°, respectively in the first molecule and by 51.0 (1 and 27.99 (5°, respectively in the second molecule. The crystal packing is stabilized by C—H...N, C—H...Cl, N—H...N and C—H...π interactions.

  3. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    Science.gov (United States)

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  4. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    Science.gov (United States)

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  5. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  6. C-A-S-H synthesis and thermodynamics modelling in CaO-Al2O3-SiO2-H2O system

    International Nuclear Information System (INIS)

    Haas, J.; Pochard, I.; Nonat, A.

    2015-01-01

    Ordinary Portland cement (OPC) is being increasingly replaced by blended cements, where part of the clinker is replaced by secondary cementitious materials (SCM) such as blast furnace or fly ash. The use of SCM enables to achieve various aims as the cost reduction by recovery of by-products, the CO 2 emission reduction, the obtaining of specific properties as low pH. So, blended cements are more and more current in different fields as civil engineering and nuclear waste repository. The use of silica and/or aluminium rich SCMs directly impacts the amount and the kind of hydrates formed, hence the volume and the porosity and finally the durability of these materials. Aluminates containing hydrates formation is not well understood. Al content can result from Al-uptake in C-S-H due to Al-substitution of Si-tetrahedra to well crystallised hydrates like straetlingite or katoite phases. This study proposes a surface dependant thermodynamic model to predict and to correlate the Al-uptake (substitution) of C-A-S-H with solutions representative of that of cement pores chemistry. For this purpose, pure C-A-S-H alkali-free were synthesized in diluted suspensions. On one hand, hydrates and their solutions were characterized at equilibrium. On the other hand, thermodynamics modelling were performed from these collected data to describe C-A-S-H in the equilibrium solutions. These results allowed evaluating the Al-availability in the cementitious system and especially for aluminates containing hydrates precipitation. (authors)

  7. Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2/H2O atmosphere

    International Nuclear Information System (INIS)

    Ardigo, M.R.; Popa, I.; Chevalier, S.; Girardon, P.; Perry, F.; Laucournet, R.; Brevet, A.; Desgranges, C.

    2014-01-01

    K41X (AISI 441) stainless steel evidenced a high electrical conductivity after 3000 h ageing in H 2 /H 2 O side when used as interconnect for solid oxide electrolyser cells (SOEC) working at 800 C. Perovskite (La 1-x Sr x MnO 3-δ ) and spinel (Co 3 O 4 ) oxides coatings were applied on the surface of the ferritic steel for ageing at 800 C for 3000 h. Both coatings improved the behaviour of the steel and give interesting opportunities to use the K41X steel as interconnect for hydrogen production via high temperature steam electrolysis. Co 3 O 4 reduced into Co leading to a very good Area Specific Resistance (ASR) parameter, 0.038 Ωcm 2 . Despite a good ASR (0.06 Ωcm 2 ), La 1-x Sr x MnO 3-δ was less promising because it partially decomposed into MnO and La 2 O 3 during ageing in H 2 /H 2 O atmosphere. (authors)

  8. Synthesis and characterization of new 3-(4,5-dihydro-5-arylisoxazol-3-yl-4-hydroxyquinolin-2(1H-ones and 3-(4-styrylisoxazolo[4,5-c]quinolin-4(5H-one derivatives

    Directory of Open Access Journals (Sweden)

    S. Sarveswari

    2016-09-01

    Full Text Available The 4-hydroxy-3-(3-arylacryloylquinolin-2(1H-ones were synthesized from 3-acetyl-4-hydroxyquinolin-2(1H-one by microwave assisted synthesis, which in turn converted into their corresponding 3-(4,5-dihydro-5-arylisoxazol-3-yl-4-hydroxyquinolin-2(1H-ones and 3-(4-styrylisoxazolo[4,5-c]quinolin-4(5H-one derivatives.

  9. Trapping {BW12}2 tungstoborate: synthesis and crystal structure of hybrid [{(H2BW12O42)2O}{Mo6O6S6(OH)4(H2O)2}]14- anion.

    Science.gov (United States)

    Korenev, V S; Abramov, P A; Vicent, C; Mainichev, D A; Floquet, S; Cadot, E; Sokolov, M N; Fedin, V P

    2012-12-28

    Reaction between monolacunary {BW(11)} tungstoborate and oxothiocationic building block, {Mo(2)O(2)S(2)}, results in the formation of a new polyoxothiometalate with a unique architecture in which two [H(2)BW(12)O(43)](9-) tungstoborate subunits are linked together with a hexamolybdate [Mo(V)(6)O(6)S(6)(OH)(4)(H(2)O)(2)](2+) bridge.

  10. 3-{2-[2-(2-Fluorobenzylidenehydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one

    Directory of Open Access Journals (Sweden)

    Afsheen Arshad

    2010-06-01

    Full Text Available In the title compound, C19H12FN3O2S, the chromene ring system and the thiazole ring are approximately planar [maximum deviations of 0.023 (3 Å and 0.004 (2 Å, respectively]. The chromene ring system is inclined at angles of 4.78 (10 and 26.51 (10° with respect to the thiazole and benzene rings, respectively, while the thiazole ring makes a dihedral angle of 23.07 (12° with the benzene ring. The molecular structure is stabilized by an intramolecular C—H...O hydrogen bond, which generates an S(6 ring motif. The crystal packing is consolidated by intermolecular N—H...O hydrogen bonds, which link the molecules into chains parallel to [100], and by C—H...π and π–π [centroid–centroid distance = 3.4954 (15 Å] stacking interactions.

  11. New metal-organic polygons involving MM quadruple bonds: M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6 (M=Mo, W).

    Science.gov (United States)

    Byrnes, Matthew J; Chisholm, Malcolm H; Patmore, Nathan J

    2005-12-12

    The reactions between M2(O2CtBu)4, where M=Mo or W, and thienyl-3,4-dicarboxylic acid (0.5-1.5 equiv) in toluene proceed via a series of detectable intermediates to the compounds M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6, which are isolated as air-sensitive yellow (M=Mo) or red (M=W) powders and show parent molecular ions in their mass spectra (MALDI). The structure of the molybdenum complex was determined by single-crystal X-ray crystallography and shown to contain an unusual M8 polygon involving four Mo2 quadruply bonded units linked via the agency of the six 3,4-thienylcarboxylate groups. The structure has crystallographically imposed S4 symmetry and may be described in terms of a highly distorted tetrahedron of Mo2 units or a bisphenoid in which two Mo2 units are linked by a thienyldicarboxylate such that intramolecular Mo2...O bonding is present, while the other thienylcarboxylate bridges merely serve to link these two [Mo2]...[Mo2] units together. The color of the compounds arises from intense M2 delta-to-thienyl pi transitions and, in THF, the complexes are redox-active and show four successive quasi-reversible oxidation waves. The [M8]+ radical cations, generated by one-electron oxidation with AgPF6, are shown to be valence-trapped (class II) by UV-vis-near-IR and electron paramagnetic resonance spectroscopy. These results are supported by the electronic structure calculations on model compounds M8(O2CH)4(mu-SC4H2-3,4-{CO}2)6 employing density functional theory that reveal only a small splitting of the M2 delta manifold via mixing with the 3,4-thienylcarboxylate pi system.

  12. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)23H2O, a New Mineral of the Eudialyte Group

    Science.gov (United States)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  13. NH4In(SeO4)2x4H2O crystal structure interpretation

    International Nuclear Information System (INIS)

    Soldatov, E.A.; Kuz'min, Eh.A.; Ilyukhin, V.V.

    1979-01-01

    The rhomb method has been applied to interpret the structure of monoclinic ammonium indium selenate NH 4 In(SeO 4 ) 2 x4H 2 O the elementary cell of which contains Z=4 formula units (a=10.728, b=9.434, c=11.086 A, γ=101.58). The space group is P2 1 /b. The structure foundation is composed of [In(SeO 4 ) 2 x2H 2 O] 1- mixed layers parallel to (100). ''Free'' H 2 O molecules and NH 4 + cations are situated between the layers

  14. Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu2O(111): a DFT-D and DFT+U study.

    Science.gov (United States)

    Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-10-04

    The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.

  15. Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium

    Science.gov (United States)

    Rachid, Marina G.; Faquine, Karla; Pilling, S.

    2017-12-01

    The C2H4O2 isomers methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO) have been detected in molecular clouds in the interstellar medium, as well as, hot cores, hot corinos and around protostellar objects. However, their abundances are very different, being methyl formate more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12 K) were monitored throughout the experiment using infrared vibrational spectroscopy (FTIR). The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species such as CO, CO2, H2O, CH4 and H2CO (only for methyl formate) and the hydrocarbons C2H6 and C5H10 (only for acetic acid). The half-lives of molecules at ices toward young stellar objects (YSOs) and inside molecular clouds (e.g. Sgr B2 and W51) due to the presence of incoming soft X-rays were estimated. We determined the effective formation rate and the branching ratios for assigned daughter species after the establishment of a chemical equilibrium. The main product from photodissociation of both methyl formate and acetic acid is CO, that can be formed by recombination of ions, formed during the photodissociation, in the ice surface. The relative abundance between methyl formate and acetic acid (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated. Our results suggest that such radiation field can be one of the factors that

  16. 1-Decyl-6-nitro-1H-benzimidazol-2(3H-one

    Directory of Open Access Journals (Sweden)

    Younes Ouzidan

    2011-11-01

    Full Text Available The title molecule, C17H25N3O3, is built up from fused six- and five-membered rings linked to a –C10H21 chain. The fused-ring system is essentially planar, the largest deviation from the mean plane being 0.009 (2 Å. The chain is roughly perpendicular to this plane, making a dihedral angle of 79.5 (2°. In the crystal, N—H...O hydrogen bonds build infinite chains along [010]. There are channels in the structure containing disordered hexane. The contribution of this solvent to the scattering power was suppressed using the SQUEEZE option in PLATON [Spek (2009. Acta Cryst. D65, 148–155].

  17. Solar processing of CO2 and H2O, routes for solar fuels

    International Nuclear Information System (INIS)

    Flammant, G.; Abanades, St.

    2008-01-01

    Complete text of publication follows: Concentrated solar energy provides heat in the temperature range 200 C - 3000 C for concentration ratio variation from 10 to 10 000 (three orders of magnitude). Consequently, solar-driven thermochemical processes may be proposed to produce hydrogen from water decomposition and to reduce carbon dioxide. This lecture gives an overview of such processes. High temperature thermochemical cycles for hydrogen production by water splitting are currently studied at PROMES lab, particularly 2-step and 3-step cycles based on the following reaction scheme, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + H 2 O → MOox + H 2 (low temperature non solar step). Volatile and non-volatile oxide cycles are developed from the chemical and the engineering points of view. A similar reaction scheme may be proposed to reduce carbon dioxide with concentrated solar energy (Fig. 1), it comes, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + CO 2 → MOox + CO (low temperature non solar step). As a result gas mixtures such as CO 2 /H 2 and CO/H 2 may be produced by solar energy. Such mixtures are the reactants for liquid fuels production (solar fuels)

  18. Study of surface exfoliation on 6H-SiC induced by H{sub 2}{sup +} implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [Department of Physics, School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Li, B.S., E-mail: b.s.li@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-03-01

    The effect of lattice damage generated by the H{sub 2}{sup +}-implantation on exfoliation efficiency in 6H-SiC wafers is investigated. <0001> 6H-SiC wafers were implanted with 134 keV H{sub 2}{sup +} ions to ion fluences from 1.5×10{sup 16} to 5×10{sup 16} H{sub 2}{sup +} cm{sup −2} and subsequently annealed at temperatures from 973 K to 1373 K. The samples were studied by a combination of optical microscopy and transmission electron microscopy. Only after 1373 K annealing for 15 min, blisters and exfoliation occur on the H{sub 2}{sup +}-implanted sample surface. With increasing the implantation fluences from 1.5×10{sup 16} to 3.75×10{sup 16} H{sub 2}{sup +} cm{sup −2}, the exfoliation mean size decreases, while the exfoliation density increases. For the highest fluence of 5×10{sup 16} H{sub 2}{sup +} cm{sup −2}, seldom exfoliations occur on the sample surface. Microstructure analysis shows that exfoliation efficiency is largely controlled by the H{sub 2}{sup +}-implantation-induced lattice damage. The depth of the microcrack is related to the implantation fluence. The effect of implantation fluence on dislocation loops, platelet nucleation and growth is investigated.

  19. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    Science.gov (United States)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  20. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  1. Rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes through C(sp²)-H/alkene functionalization.

    Science.gov (United States)

    Zhou, Ming-Bo; Pi, Rui; Hu, Ming; Yang, Yuan; Song, Ren-Jie; Xia, Yuanzhi; Li, Jin-Heng

    2014-10-13

    This study describes a new rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes using a Cu(OAc)2 oxidant for building a spirocyclic ring system, which includes the functionalization of an aryl C(sp(2))-H bond and addition/protonolysis of an alkene C=C bond. This method is applicable to a wide range of 5-aryl-2,3-dihydro-1H-pyrroles and internal alkynes, and results in the assembly of the spiro[indene-1,2'-pyrrolidine] architectures in good yields with excellent regioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2016-01-01

    Full Text Available Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2- induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR. Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.

  3. Molecular Structure and Chemical Shift Assignments of 4-(2-Methoxy-4-Methylphenoxy)Phthalonitrile (C16H12N2O2) By DFT And AB Initio HF Calculations

    International Nuclear Information System (INIS)

    Tarcan, E.

    2008-01-01

    The molecular geometry, gauge including atomic orbital (GIAO) 1 H and 13 C chemical shift values of 4-(2-Methoxy-4-methylphenoxy)phthalonitrile (C 1 6H 1 2N 2 O 2 ) in the ground state have been calculated by using the Hartree-Fock (HF) and density functional methods (B3LYP and BLYP) with 6-31G(d) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The optimized bond length numbers with bond angels are in good agreement with the X-ray data

  4. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [3H]-2-, [3H]-3-, and [14C]-6-glucose

    International Nuclear Information System (INIS)

    Bell, P.M.; Firth, R.G.; Rizza, R.A.

    1986-01-01

    Studies with tritiated isotopes of glucose have demonstrated that hyperglycemia per se stimulates glucose utilization and suppresses glucose production in humans. These conclusions rely on the assumption that tritiated glucose provides an accurate measure of glucose turnover. However, if in the presence of hyperglycemia the isotope either loses its label during futile cycling or retains its label during cycling through glycogen, then this assumption is not valid. To examine this question, glucose utilization and glucose production rates were measured in nine normal subjects with a simultaneous infusion of [ 3 H]-2-glucose, an isotope that may undergo futile cycling but does not cycle through glycogen; [ 14 C]-6-glucose, an isotope that may cycle through glycogen but does not futile cycle; and [ 3 H]-3-glucose, an isotope that can both undergo futile cycling and cycle through glycogen. In the postabsorptive state at plasma glucose concentration of 95 mg X dl-1, glucose turnover determined with [ 14 C]-6-glucose (2.3 +/- 0.1 mg X kg-1 X min-1) was greater than that determined with [3 3 H]glucose (2.1 +/- 0.1 mg X kg-1 X min-1, P = 0.002) and slightly less than that determined with [ 3 H]-2-glucose (2.7 +/- 0.2 mg X kg-1 X min-1, P = 0.08). Plasma glucose was then raised from 95 to 135 to 175 mg X dl-1 while insulin secretion was inhibited, and circulating insulin, glucagon, and growth hormone concentrations were maintained constant by infusion of these hormones and somatostatin. Glucose production and utilization rates determined with [ 14 C]-6-glucose continued to be less than those determined with [ 3 H]-2-glucose and greater than those seen with [ 3 H]-3-glucose

  5. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  6. Nido-Carborane building-block reagents. 3. Cyclic and open-chain oligomers incorporating -CB4H6C - units. Crown carboranes

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The open-chain dialkynes EtC≡C(CH 2 ) n C≡CEt (n = 4, 6), the trialkyne HC≡C(CH 2 ) 5 C≡CH, and the cyclic dialkynes CH 2 (CH 2 ) 4 C≡C(CH 2 ) n C≡C (n = 4-6) were treated with B 5 H 9 and (C 2 H 5 ) 3 to give the corresponding nido-carborane oligomers, in which the original -C≡C- units are converted to -CB 4 H 6 C- nido-carborane cages. In each case, all available -C≡C- groups were transformed to carborane moieties. No partially converted products (having both carborane and -C≡C- groups in the chain) were found; when the B 5 H 9 /-C≡C- ratio employed was 2+ and oxidative fusion, forming products incorporating C 4 B 8 cages. The cyclic bis(carborane) CH 2 (CH 2 ) 4 CB 4 H 6 C(CH 2 ) 5 CB 4 H 6 C is an air-stable oil that can be deprotonated but does not under metal-promoted oxidative fusion. All products were characterized by 11 B and 1 H NMR, infrared, visible-uv, and mass spectroscopy, and the 13 C NMR spectra of linear bis(carboranes) are reported. 9 references, 7 figures, 4 tables

  7. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  8. Interrogating the vibrational relaxation of highly excited polyatomics with time-resolved diode laser spectroscopy: C6H6, C6D6, and C6F6+CO2

    International Nuclear Information System (INIS)

    Sedlacek, A.J.; Weston, R.E. Jr.; Flynn, G.W.

    1991-01-01

    The vibrational relaxation of highly excited ground state benzene, benzene d 6 , and hexafluorobenzene by CO 2 has been investigated with high resolution diode laser spectroscopy. The vibrationally hot polyatomics are formed by single photon 248 nm excitation to the S 1 state followed by rapid radiationless transitions. It has been found that in all cases less than 1% of the energy initially present in the polyatomics is deposited into the high frequency mode of CO 23 ). An investigation of the CO 2 (00 0 1) nascent rotational distribution under single collision conditions reveals that very little rotational excitation accompanies vibrational energy transfer to the ν 3 mode. The CO 23 ) rotational states can be described by temperatures, T rot , as follows: C 6 H 6 , T rot =360±30 K; C 6 D 6 , T rot =350±35 K and C 6 F 6 , T rot =340±23 K. An estimate of left-angle ΔE right-angle ν3 , the mean energy transferred to the CO 2 ν 3 mode per collision, suggests that as the availability of low frequency modes in the excited molecule increases, less energy is deposited into the high frequency mode of CO 2 . Finally, evidence is presented suggesting that even at moderate laser fluences, the two-photon ionization of benzene can lead to substantial CO 2 ν 3 excitation via electron+CO 2 inelastic collisions

  9. Characterisation of the coke formed during metal dusting of iron in CO-H2-H2O gas mixtures

    International Nuclear Information System (INIS)

    Zhang, J.; Schneider, A.; Inden, G.

    2003-01-01

    Carbon deposits formed on the surface of iron samples during carburisation at 700 deg. C in a gas mixture of 75%CO-24.81%H 2 -0.19%H 2 O were characterised by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Moessbauer spectroscopy and transmission electron microscopy (TEM). Cross-section observation of the iron sample by light optical microscopy revealed the formation of cementite after only 10 min reaction, together with a thin layer of graphite. After 4 h reaction, a thick coke layer was formed on top of the cementite surface. SEM surface observation indicated the formation of filamentous carbon in the coke layer. Further analysis of the coke by XRD and Moessbauer showed the presence of mainly Fe 3 C and small amount of Fe 2 C but no metallic iron in the carbon deposit. TEM analysis of the coke detected very convoluted filaments with iron-containing particles at the tip or along their length. These particles were identified to be cementite by selected area diffraction. Carbon deposits produced at the same temperature but with other gas compositions were also analysed by using XRD. It was found that with a low content of CO, e.g. 5%, both α-Fe and Fe 3 C were detected in the coke. Increasing CO content to more than 30%, iron carbide was the only iron-containing phase

  10. Apparent molar volumes for dilute solutions of NaClO4 and [Co(en) 3](ClO4)3 in D2O and H2O at 278-318 K

    International Nuclear Information System (INIS)

    Bottomley, G.A.; Glossop, L.G.

    1981-01-01

    Apparent molar volumes for dilute solutions of NaClO 4 and [Co(en) 3 ](ClO 4 ) 3 in D 2 O and H 2 O were measured by using a dilatometry technique at 278, 298 and 318K. Comparison of limiting slopes with the Debye-Huckel predictions from the dielectric constant and compressibility of H 2 O and D 2 O is complicated by ion pairing. The apparent molar volumes for NaClO 4 were less in D 2 O than in H 2 O. The complex [Co(en) 3 ](ClO 4 ) 3 when studied in D 2 O had its amine protons exchanged by deuterium; this did not allow a direct comparison of the apparent molar volumes of the protonated complex in each solvent system, but revealed a large isotope effect. The apparent molar volumes of the [Co(en) 3 ](ClO 4 ) 3 showed a much larger temperature dependence than that of NaClO 4

  11. (Acetato-κO{bis[(2,4-dimethyl-1H-pyrazol-1-ylmethyl][(pyridin-2-ylmethyl]amine}cobalt(II hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2012-10-01

    Full Text Available In the title compound, [Co(CH3CO2(C18H24N6]PF6, the CoII atom is pentacoordinated in a distorted trigonal–bipyramidal geometry by four N atoms from a tripodal ligand and one O atom from a monodentate acetate ligand. The crystal packing is stabilized by intermolecular C—H...F and C—H...O hydrogen bonds.

  12. Preparation of ZrO2 thin films by CVD using H2-CO2 as oxidizer. H2-CO2 wo sanka gas ni mochiita CVD ho ni yoru ZrO2 maku no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, M; Kobayashi, C [Toto Ltd., Kitakyushu (Japan); Yamane, H; Hirai, T [Tohoku University, Sendai (Japan). Institute for Materials Research

    1993-02-01

    This report describes an outline on the results of investigation on the formation of ZrO2 films from [beta]-diketone chelate of Zr using H2/CO2 as oxidizing gas by application of the CVD method at a temperature as high as 1000[degree]C. The deposition rate is 4[mu]m/h at 650[degree]C, increases with rise of temperature and reaches 10[mu]m/h at 900-1000[degree]C. No lowering of the rate at high temperature seems to be caused by temperature dependence of water (increase of water concentration above 850[degree]C). The physical form of ZrO2 is black and amorphous at 650[degree]C; grey and tetragonal at 850[degree]C; white, monoclinic and tetragonal at 950-1000[degree]C. All of these films showed a fine-grain, polycrystalline structure at any temperature and became white by heat-treatment at 1100[degree]C for 100h. This treatment gave no change to amorphous films but transformed tetragonal films and the mixture films of tetragonal and monoclinic crystals into white monoclinic Zr films. This may be because oxygen defects were present in black and grey films of low deposition temperature due to insufficient oxydation of raw material by H2O. Instability of tetragonal crystals seems to be attributed to participation of oxygen defects. In conclusion, possibility of high-temperature film formation was confirmed. 17 refs., 4 figs.

  13. Synthesis of new dithiacobaltaborane clusters derived from arachno-6,8-S2B7H9

    International Nuclear Information System (INIS)

    Kang, S.O.; Sneddon, L.G.

    1988-01-01

    A series of air-stable dithiacobaltaborane clusters has been isolated from either the reaction of the arachno-S 2 B 7 H 8 - anion with cobalt chloride and pentamethylcyclopentadienide or the reaction of neutral arachno-6,8-S 2 B 7 H 9 with cobalt atoms and pentamethylcyclopentadiene. Thus, the reaction of arachno-S 2 B 7 H 8 - with CoCl 2 and C 5 (CH 3 ) 5 - in THF gave, as the major products, the triple-decker compound nido-4,6-η-C 5 (CH 3 ) 52 Co 2 -3,5-S 2 B 2 H 2 (I) and the 11-vertex cluster nido-8,10(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (III). Also isolated in smaller amounts were a chloride derivative of I, nido-1-Cl-4,6-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -3,5-S 2 B 2 H (II), two isomers of III, nido-3,10-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (IV) and nido-3,5-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (V), and the eight-boron cluster nido-8-(η-C 5 (CH 3 ) 5 )Co-7,9-S 2 B 8 H 8 (VI). Other trace products of the reaction included the six-boron clusters nido-5,8-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -6,9-S 2 B 6 H 6 (VII) and arachno-7-(η-C 5 (CH 3 ) 5 )Co-6,8-S 2 B 6 H 8 (VIII). Compound III was found to isomerize at 250 degree C to IV, which could then be converted to V at 300 degree C. The reaction of cobalt atoms with arachno-6,8-S 2 B 7 H 9 in the presence of pentamethylcyclopentadiene gave VIII as the major product; however, a number of other clusters including I, V, VI, and [(η-C 5 (CH 3 ) 5 ) 2 Co] + [(SB 10 H 10 ) 2 Co] - were isolated in trace amounts. 16 references, 6 figures, 3 tables

  14. Study on the equilibrium in the MBr2-CH3OH-H2O system (M = Sr2+, Ba2+) at 25 0C

    International Nuclear Information System (INIS)

    Zlateva, I.; Stoev, M.

    1985-01-01

    The dehydration processes in the three-component system MBr 2 -CH 3 OH-H 2 O (M = Sr 2+ , Ba 2+ ) have been studied at 25 0 C by physio-chemical analyses. Crystallization fields for the lower crystal hydrates SrBr 2 x H 2 O and BaBr 2 x H 2 O have been found. The solubility curves exhibit complex-formation processes. The dehydration and solvation processes in three-component system such as MBr 2 -CH 3 OH-H 2 O at 25 0 C with M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ have been discussed in general terms. (author)

  15. One-Step Synthesis of Cu–ZnO@C from a 1D Complex [Cu0.02Zn0.98(C8H3NO6(C12H8N2]n for Catalytic Hydroxylation of Benzene to Phenol

    Directory of Open Access Journals (Sweden)

    Guanghui Wang

    2018-05-01

    Full Text Available A novel one-dimensional bimetallic complex [Cu0.02Zn0.98(C8H3NO6(C12H8N2]n (“Complex” has been synthesized by a hydrothermal method. A Cu–ZnO@C composite was obtained by a one-step pyrolysis of Complex. Correlated with the characterization results, it is confirmed that both metallic Cu0 and ZnO nanoparticles were highly dispersed on/in the carbon substrate. This simple one-step pyrolysis method avoids the high-temperature pretreatment under H2 commonly required for preparation of such Cu–ZnO catalysts. The Cu–ZnO@C composite was tested with respect to its catalytic activities for the hydroxylation of benzene to phenol with H2O2. The results indicate that the benzene conversion, phenol yield, and phenol selectivity reached the maximum values (55.7%, 32%, and 57.5%, respectively at Complex carbonized at 600 °C, and were higher than those of the commercial mixed sample. Compared with the other candidate catalysts, the turnover frequency (TOF of our Cu–ZnO@C catalyst (117.9 mmol mol−1 s−1 can be ranked at the top. The higher catalytic activities should be due to the highly dispersed metallic Cu0 and ZnO particles as well as their synergistic interaction.

  16. Decomposition mechanisms and non-isothermal kinetics of LiHC_2O_4·H_2O

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The thermal decomposition process of LiHC2O4·H2O from 30 to 600 ℃ was investigated by the thermogravimetric and differential scanning calorimetry (TG-DSC). The phases decomposited at different temperature were characterized by X-ray diffraction (XRD), which indicated the decompositions at 150, 170, and 420℃, relating to LiHC2O4, Li2C2O4, Li2C2O4, and Li2CO3, respectively. Reaction mechanisms in the whole sintering process were determined, and the model fitting kinetic approaches were applied to data for non...

  17. Photodissociation of C{sub 3}H{sub 5}Br and C{sub 4}H{sub 7}Br at 234 nm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Kook; Paul, Dababrata; Hong, Ki Ryong; Cho, Ha Na; Kim, Tae Kyu [Pusan National University, Busan (Korea, Republic of); Lee, Kyoung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-01-15

    The photodissociation dynamics of cyclopropyl bromide (C-3H{sub 5}Br) and cyclobutyl bromide (C{sub 4}H{sub 7}Br) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonance enhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent Br({sup 2}P{sub 3/2}) and Br*({sup 2}P{sub 1/2}) atoms. The recoil anisotropies for the Br and Br* channels were measured to be βBr = 0.92 ± 0.03 and βBr* = 1.52 ± 0.04 for C{sub 3}H{sub 5}Br and βBr = 1.10 ± 0.03 and βBr* = 1.49 ± 0.05 for C{sub 4}H{sub 7}Br. The relative quantum yield for Br was found to be ΦBr = 0.13 ± 0.03 and for C{sub 3}H{sub 5}Br and C{sub 4}H{sub 7}Br, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed.

  18. (3′R-3′-Benzyl-2′,3′-dihydro-1H-spiro[indole-3,1′-naphtho[2,3-c]pyrrole]-2,4′,9′-trione

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2012-09-01

    Full Text Available In the title compound, C26H18N2O3, the maximum deviations from planarity for the tetrahydro-1H-naphtho[2,3-c]pyrrole and indoline rings systems are 0.091 (1 and 0.012 (2 Å, respectively. These ring systems make a dihedral angle of 89.95 (6° with each other and they make dihedral angles of 73.42 (8 and 71.28 (9°, respectively, with the benzene ring. In the crystal, inversion dimers linked by pairs of N—H...O hydrogen bonds generate R22(8 loops and C—H...O interactions connect the dimers into corrugated sheets lying parallel to the bc plane.

  19. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  20. Evaluation of sintering effects on SiC-incorporated UO2 kernels under Ar and Ar–4%H2 environments

    International Nuclear Information System (INIS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L.

    2013-01-01

    Silicon carbide (SiC) is suggested as an oxygen getter in UO 2 kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO 2 fuel kernels. Even though the presence of UC in either argon (Ar) or Ar–4%H 2 sintered samples suggested a lowering of the SiC up to 3.5–1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO 2 oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO 2 to form UC. The second process was direct UO 2 reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar–4%H 2 , but both atmospheres produced kernels with ∼95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content

  1. Reactivity of Surface Nitrates in H2-Assisted SCR of NOx Over Ag/Al2O3 Catalyst

    DEFF Research Database (Denmark)

    Sadokhina, N. A.; Doronkin, Dmitry E.; Baeva, G. N.

    2013-01-01

    The role of nitrate ad-species in H2-assisted SCR over Ag/Al2O3 was compared in NH3-SCR and n-C6H14-SCR processes. It was found that nitrates could be reduced by NH3 or n-C6H14 at similar rates with H2 co-feeding which indicates a common rate-limiting step. However, contributions of surface nitrate...... reduction to the overall NH3-SCR or n-C6H14-SCR are different as revealed by comparing the rates of nitrate reduction with the rates of steady-state processes. The rate of the steady-state n-C6H14-SCR is virtually identical to the rate of surface nitrate reduction suggesting a significant contribution...... of the surface nitrates reduction to the overall n-C6H14-SCR process. On the other hand, the steady-state rate of NH3-SCR is by ~15 times higher, which indicates that the reduction of surface nitrates plays a marginal role in the overall NH3-SCR....

  2. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Directory of Open Access Journals (Sweden)

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  3. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  4. Evolution of C-O-H-N volatile species in the magma ocean during core formation.

    Science.gov (United States)

    Dalou, C.; Le Losq, C.; Hirschmann, M. M.; Jacobsen, S. D.; Fueri, E.

    2017-12-01

    The composition of the Hadean atmosphere affected how life began on Earth. Magma ocean degassing of C, O, H, and N was a key influence on the composition of the Hadean atmosphere. To identify the nature of degassed C-O-H-N species, we determined their speciation in reduced basaltic glasses (in equilibrium with Fe-C-N metal alloy, synthetized at 1400 and 1600 ºC and 1.2-3 GPa) via Raman spectroscopy. We addressed the effect of oxygen fugacity (fO2) on C-O-H-N speciation between IW-2.3 and IW-0.4, representing the evolution of the shallow upper mantle fO2 during the Hadean. We observe H2, NH2, NH3, CH3, CH4, CO, N2, and OH species in all glasses. With increasing ƒO2, our results support the formation of OH groups at the expense of N-H and C-H bonds in the melt, implying the equilibria at IW-2: (1) 2OH- (melt) + ½ N2 (melt) ↔ NH2 (melt) + 2 O2- (melt) , (2) 2OH- (melt) + ½ N2 (melt) + ½ H2 (melt) ↔ NH3 (melt) + 2 O2- (melt) . With increasing fO2, eqs. (1) and (2) shift to the left. From IW-2 to IW, we also observe an increase in the intensity of the NH2 peak relative to NH3. Carbon is present as CH3, CH4, and CO in all our glasses. While CO is likely the main carbon specie under reduced conditions (e.g., Armstrong et al. 2015), CH species should remain stable from moderately (IW-0.4) to very reduced (IW-3; Ardia et al. 2014; Kadik et al. 2015, 2017) conditions in hydrous silicate glasses following the equilibria: (3) 3OH- (melt) + C (graphite) ↔ CH3 (melt) + 3O2- (melt) , (4) 4OH- (melt) + C (graphite) ↔ CH4 (melt) + 4O2- (melt) . With increasing fO2, eqs. (3) and (4) shift to the left. As metal segregation and core formation drove the ƒO2 of the magma ocean from IW-4 to IW during the Hadean (Rubie et al. 2011), the nature of species degassed by the magma ocean should have evolved during that time. The C-O-H-N species we observe dissolved in our reduced glasses may not directly correspond to those degassed (Schaeffer and Fegley, 2007), but a better

  5. Enthalpies of ligand substitution for [Mo(η5C5H5)(CO)2(NO)] – The role of π-bonding effects in metal–ligand bond strengths

    International Nuclear Information System (INIS)

    Majumdar, Subhojit; Captain, Burjor; Cazin, Catherine S.J.; Nolan, Steven P.; Hoff, Carl D.

    2014-01-01

    Graphical abstract: - Highlights: • Enthalpies of ligand substitution are measured for Mo(C 5 H 5 )(CO) 2 (NO). • Phosphines and N-heterocyclic carbenes are stronger ligands and displace CO. • Backbonding to π ∗ orbitals is an important part of complex stability. • FTIR studies show shifts to lower wavenumbers of ν-CO and ν-NO. • Structural studies show lengthening of the C-O and N-O bonds. - Abstract: Enthalpies of ligand substitution for [Mo(η 5 -C 5 H 5 )(CO) 2 (NO)] producing [Mo(η 5 -C 5 H 5 )Mo(CO)(L)(NO)] have been measured by solution calorimetry at 30 °C in THF for L = P(OMe) 3 2 2 Ph 3 (SIPr = 1,3-bis(2,6-bis(diisopropylphenyl)imidazolinylidene; IPr = 1,3-bis(2,6-bis(diisopropylphenyl)-imidazol-2-ylidene)). The accepting metal fragment [Mo(η 5 -C 5 H 5 )(CO)(NO)] has a vacant site containing strongly π-accepting carbonyl and nitrosyl ligands and this is shown to influence the stability of the product complex. Infrared studies of both ν CO and ν NO show that metal-to-ligand backbonding increases in the order P(OMe) 3 3 5 -C 5 H 5 )(CO)(IPr)(NO)] and [Mo(η 5 -C 5 H 5 )(CO)(SIPr)(NO)] are reported

  6. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.62), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  7. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2H4·H2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  8. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    Science.gov (United States)

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  9. Formation of closo-rhodacarboranes with the η23-(CH2=CHC5H6) ligand in the reaction of μ-dichloro-bis[(η4-norbornadiene)rhodium] with nido-dicarbaundecaborates [K][nido-7-R1-8-R2-7,8-C2B9H10

    International Nuclear Information System (INIS)

    Safronov, A.V.; Sokolova, M.N.; Vorontsov, E.V.; Petrovskij, P.V.; Barakovskaya, I.G.; Chizhevskij, I.T.

    2004-01-01

    New closo-(η 23 -(4-vinylcyclopentene-3-yl)rhodacarboranes were prepared by reaction of the complex [(η 4 -C 7 H 8 )RhCl] 2 (C 7 H 8 -norbornadiene) with salts of substituted nido-dicarbaundecaborates [K][nido-7-R 1 -8-R 2 -7,8-C 2 B 9 H 10 ] (R 1 =R 2 =H (a); R = R 2 =Me (b); R 1 , R 2 =1',2'-(CH 2 ) 2 C 6 H 4 (c); R 1 =Me, R 2 =Ph (d) in CH 2 Cl 2 . The structure of the compounds prepared in solution was studied by the method of multinuclear NMR spectroscopy. A probable mechanism of the norbornadiene ligand regrouping was suggested [ru

  10. Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC

    Science.gov (United States)

    Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua

    2018-05-01

    The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.

  11. (7aR-1-[(2R,5S,E-6-Hydroxy-5,6-dimethylhept-3-en-2-yl]-7a-methylhexahydro-1H-inden-4(2H-one

    Directory of Open Access Journals (Sweden)

    Marcos L. Rivadulla

    2013-02-01

    Full Text Available The chiral title compound, C19H32O2, contains a [4.3.0]-bicyclic moiety in which the shared C—C bond presents a trans configuration and a side chain in which the C=C double bond shows an E conformation. The conformations of five- and six-membered rings are envelope (with the bridgehead atom bearing the methyl substituent as the flap and chair, respectively, with a dihedral angle of 4.08 (17° between the idealized planes of the rings. In the crystal, the molecules are self-assembled via classical O—H...O hydrogen bonds, forming chains along [112]; these chains are linked by weak non-classical C—H...O hydrogen bonds, giving a two-dimensional supramolecular structure parallel to (010. The absolute configuration was established according to the configuration of the starting material.

  12. Theoretical Prediction on [5]Radialene Sandwich Complexes (CpM)2(C10H10) (Cp = η5-C5H5; M = Fe, Co, Ni): Geometry, Spin States, and Bonding.

    Science.gov (United States)

    Liu, Nan-Nan; Xue, Ying-Ying; Ding, Yi-Hong

    2017-02-09

    [5]Radialene, the missing link for synthesis of radialene family, has been finally obtained via the preparation and decomplexation of the [5]radialene-bis-Fe(CO) 3 complex. The stability of [5]radialene complex benefits from the coordination with Fe(CO) 3 by losing free 1,3-butadiene structures to avoid polymerization. In light of the similar coordination ability of half-sandwiches CpM(Cp = η 5 -C 5 H 5 ; M = Fe, Co, Ni), there is a great possibility that the sandwiched complexes of [5]radialene with CpM are available. Herein, we present the first theoretical prediction on the geometry, spin states and bonding of (CpM)(C 10 H 10 ) and (CpM) 2 (C 10 H 10 ). For M = Fe, Co, Ni, the ground states of (CpM)(C 10 H 10 ) and (CpM) 2 (C 10 H 10 ) are doublet and triplet, singlet and singlet, and doublet and triplet states, where each Fe, Co, and Ni adopts 17, 18, and 19 electron-configuration, respectively. In particular, (CpFe) 2 (C 10 H 10 ) and (CpNi) 2 (C 10 H 10 ) have considerable open-shell singlet features. Generally the trans isomers of (CpM) 2 (C 10 H 10 ) with two CpM fragments on the opposite sides of the [5]radialene plane are apparently more stable than the cis ones with CpM fragments on the same side. However, for the singlet and triplet isomers of (CpNi) 2 (C 10 H 10 ) (both cis and trans isomers), the energy differences are relatively small, indicating that these isomers all have the opportunity to exist. Besides, the easy Diels-Alder (DA) dimerization between the [3]dendralene-like fragments of (CpM)(C 10 H 10 ) suggests the great difficulty in isolating the (CpM)(C 10 H 10 ) monomer.

  13. rac-1-[6-Hydroxy-4-(4-methoxyphenyl-3,6-dimethyl-4,5,6,7-tetrahydro-2H-indazol-5-yl]ethanone

    Directory of Open Access Journals (Sweden)

    Konstantin A. Potekhin

    2013-02-01

    Full Text Available The title compound, C18H22N2O3, represents a (4S,5R,6S-stereoisomer, crystallizing as a racemate in a centrosymmetric space group. The six-membered aliphatic ring adopts a half-chair conformation, with the hydroxy- and acetyl-substituted C atoms deviating by 0.458 (2 and −0.366 (2 Å, respectively, from the plane defined by other four ring atoms. The pyrazole ring is essentially planar [r.m.s deviation = 0.004 (2 Å]. In the crystal, the molecules are linked into chains along the b axis by N—H...N hydrogen bonds. The chains are linked by O—H...N hydrogen bonds into layers parallel to the bc plane.

  14. The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3

    Science.gov (United States)

    Abendroth, Christian; Hofmeister, Antje; Hake, Sandra B.; Kamweru, Paul K.; Miess, Elke; Dornblut, Carsten; Küffner, Isabell; Deng, Wen; Leonhardt, Heinrich; Orthaus, Sandra; Hoischen, Christian; Diekmann, Stephan

    2015-01-01

    The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere–kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN) bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1C96A and H3.1C110A nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2. PMID:25775162

  15. The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3

    Directory of Open Access Journals (Sweden)

    Christian Abendroth

    2015-03-01

    Full Text Available The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere–kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1C96A and H3.1C110A nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2.

  16. Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology

    International Nuclear Information System (INIS)

    Yang, Mingjun; Zheng, Jianan; Liu, Weiguo; Liu, Yu; Song, Yongchen

    2015-01-01

    Hydrate-based technology has been developing for decades to meet the demands in industrial applications. With the global demands for reduced carbon dioxide (CO 2 ) emissions and more fresh water, CHBD (CO 2 hydrate-based desalination) was proposed and has developed rapidly. In this study, to provide basic data for the improvement of CHBD, the thermodynamic and kinetic characteristics of CO 2 and propane (C 3 H 8 ) mixed-gas hydrates in salt solution were experimentally investigated in which C 3 H 8 was chosen as the hydrate formation promoter. We studied nine experimental cases (54 cycles) with different C 3 H 8 proportions (ranging from 0 to 13%) and different initial solution saturations (30%, 40% and 50%). The hydrate phase equilibrium data were generated using the isochoric method, and the hydrate formation saturations were calculated using the relative gas uptake equation. The results indicated that the increase in the C 3 H 8 proportion significantly decreases the gas mixture hydrate equilibrium pressure. Additionally, the relative gas uptake was reduced as the C 3 H 8 proportion increased. A lower relative gas uptake was obtained at a lower gas pressure for the same gas mixture. The initial solution saturation exhibited an insignificant effect on the hydrate phase equilibrium conditions. When the initial solution saturations increased from 30% to 50%, the relative gas uptake decreased. - Highlights: • C 3 H 8 improves the thermodynamics and kinetics of CO 2 hydrates formation. • Hydrates equilibrium pressure decreases with the increase of C 3 H 8 proportion. • Higher C 3 H 8 proportion and/or solution saturation decrease relative gas uptake. • Initial pressure and solution saturation has interactive effect on gas uptake.

  17. Obtention of agricultural gypsum traced on 34 S (Ca34 SO4.2H2O), by chemical reaction between H234 SO4 and Ca(OH)2

    International Nuclear Information System (INIS)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique

    2002-01-01

    The gypsum (CaSO 4 .2H 2 O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer 34 S can elucidate important aspects in the sulfur cycle. The Ca 34 SO 4 .2H 2 O was obtained by chemical reaction between Ca(OH) 2 and H 2 34 SO 4 solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na 2 34 SO 4 solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca 34 SO 4 .2H 2 O produced was determined by method gravimetric. This way, a system contends resin 426 cm 3 , considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H 2 34 SO 4 , theoretically could be produced 78.0 g of Ca 34 SO 4 .2H 2 O approximately. With results of the tests were verified that there was not total precipitation of the Ca 34 SO 4 .2H 2 O. Were produced 73.7± 0.6 g of Ca 34 SO 4 .2H 2 O representing average income 94.6±0.8 %. The purity of the produced CaSO 4 .2H 2 O was 98%. (author)

  18. 2-Chloroquinazolin-4(3H-one

    Directory of Open Access Journals (Sweden)

    Dong-Lei Cao

    2012-06-01

    Full Text Available In the title compound, C8H5ClN2O, the quinazoline system is approximately planar with a maximum deviation from the least-squares plane of 0.034 (2 Å. In the crystal, classical N—H...O and weak non-classical C—H...N hydrogen bonds link the molecules.

  19. 6-Chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde

    Directory of Open Access Journals (Sweden)

    Yoshinobu Ishikawa

    2014-07-01

    Full Text Available In the title compound, C10H4ClFO3, a chlorinated and fluorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. = 0.0336 Å for the non-H atoms, with the largest deviation from the least-squares plane [0.062 (2 Å] being for a benzene-ring C atom. In the crystal, molecules are linked through stacking interactions [centroid–centroid distance between the benzene and pyran rings = 3.958 (3 Å and interplanar distance = 3.259 (3 Å], C—H...O hydrogen bonds, and short C...O contacts [2.879 (3 Å]. Unsymmetrical halogen–halogen interactions between the Cl and F atoms [Cl...F = 3.049 (3 Å, C—Cl...F = 148.10 (9° and C—F...Cl = 162.06 (13°] are also formed, giving a meandering two-dimensional network along the a axis.

  20. Photoelectron Diffraction Imaging for C2H2 and C2H4 Chemisorbed on Si(100) Reveals a New Bonding Configuration

    International Nuclear Information System (INIS)

    Xu, S. H.; Keeffe, M.; Yang, Y.; Chen, C.; Yu, M.; Lapeyre, G. J.; Rotenberg, E.; Denlinger, J.; Yates, J. T. Jr.

    2000-01-01

    A new adsorption site for adsorbed acetylene on Si(100) is observed by photoelectron imaging based on the holographic principle. The diffraction effects in the carbon 1s angle-resolved photoemission are inverted (including the small-cone method) to obtain an image of the atom's neighboring carbon. The chemisorbed acetylene molecule is bonded to four silicon surface atoms. In contrast to the C 2 H 2 case, the image for adsorbed C 2 H 4 shows it bonded to two Si surface atoms. (c) 2000 The American Physical Society