WorldWideScience

Sample records for c-terminal acidic tail

  1. Nonlinear dynamics of C-terminal tails in cellular microtubules

    Science.gov (United States)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  2. Nonlinear dynamics of C-terminal tails in cellular microtubules.

    Science.gov (United States)

    Sekulic, Dalibor L; Sataric, Bogdan M; Zdravkovic, Slobodan; Bugay, Aleksandr N; Sataric, Miljko V

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process. PMID:27475079

  3. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fueyo, Elena [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Acebes, Sandra [Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona (Spain); Ruiz-Dueñas, Francisco J.; Martínez, María Jesús; Romero, Antonio; Medrano, Francisco Javier, E-mail: fjmedrano@cib.csic.es [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Guallar, Victor, E-mail: fjmedrano@cib.csic.es [Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona (Spain); ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Martínez, Angel T., E-mail: fjmedrano@cib.csic.es [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-12-01

    The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their

  4. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    International Nuclear Information System (INIS)

    The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn2+-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn2+ oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd2+ binds at the Mn2+-oxidation site and competitively inhibits oxidation of both Mn2+ and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two

  5. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR.

    Directory of Open Access Journals (Sweden)

    Minky Son

    Full Text Available Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV. Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.

  6. Influence of C-terminal tail deletion on structure and stability of hyperthermophile Sulfolobus tokodaii RNase HI.

    Science.gov (United States)

    Chen, Lin; Zhang, Ji-Long; Zheng, Qing-Chuan; Chu, Wen-Ting; Xue, Qiao; Zhang, Hong-Xing; Sun, Chia-Chung

    2013-06-01

    The C-terminus tail (G144-T149) of the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) plays an important role in this protein's hyperstabilization and may therefore be a good protein stability tag. Detailed understanding of the structural and dynamic effects of C-terminus tail deletion is required for gaining insights into the thermal stability mechanism of Sto-RNase HI. Focused on Sulfolobus tokodaii RNase HI (Sto-RNase HI) and its derivative lacking the C-terminal tail (ΔC6 Sto-RNase HI) (PDB codes: 2EHG and 3ALY), we applied molecular dynamics (MD) simulations at four different temperatures (300, 375, 475, and 500 K) to examine the effect of the C-terminal tail on the hyperstabilization of Sto-RNase HI and to investigate the unfolding process of Sto-RNase HI and ΔC6 Sto-RNase HI. The simulations suggest that the C-terminal tail has significant impact in hyperstabilization of Sto-RNase HI and the unfolding of these two proteins evolves along dissimilar pathways. Essential dynamics analysis indicates that the essential subspaces of the two proteins at different temperatures are non-overlapping within the trajectories and they exhibit different directions of motion. Our work can give important information to understand the three-state folding mechanism of Sto-RNase HI and to offer alternative strategies to improve the protein stability.

  7. The Contribution of the C-Terminal Tails of Microtubules in Altering the Force Production Specifications of Multiple Kinesin-1.

    Science.gov (United States)

    Feizabadi, Mitra Shojania

    2016-09-01

    The extent to which beta tubulin isotypes contribute to the function of microtubules and the microtubule-driven transport of molecular motors is poorly understood. The major differences in these isotypes are associated with the structure of their C-terminal tails. Recent studies have revealed a few aspects of the C-terminal tails' regulatory role on the activities of some of the motor proteins on a single-molecule level. However, little attention is given to the degree to which the function of a team of motor proteins can be altered by the microtubule's tail. In a set of parallel experiments, we investigated this open question by studying the force production of several kinesin-1 (kinesin) molecular motors along two groups of microtubules: regular ones and those microtubules whose C-terminals are cleaved by subtilisin digestion. The results indicate that the difference between the average of the force production of motors along two types of microtubules is statistically significant. The underlying mechanism of such production is substantially different as well. As compared to untreated microtubules, the magnitude of the binding time of several kinesin-1 is almost three times greater along subtilisin-treated microtubules. Also, the velocity of the group of kinesin molecules shows a higher sensitivity to external loads and reduces significantly under higher loads along subtilisin-treated microtubules. Together, this work shows the capacity of the tails in fine-tuning the force production characteristics of several kinesin molecules. PMID:27503105

  8. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis.

    Science.gov (United States)

    Coceres, V M; Alonso, A M; Nievas, Y R; Midlej, V; Frontera, L; Benchimol, M; Johnson, P J; de Miguel, N

    2015-08-01

    The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction.

  9. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress1[OPEN

    Science.gov (United States)

    Zhang, Lingang; Kondo, Hideki

    2016-01-01

    Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1. PMID:27208228

  10. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    Science.gov (United States)

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  11. Combining protein identification and quantification: C-terminal isotope-coded tagging using sulfanilic acid.

    Science.gov (United States)

    Panchaud, Alexandre; Guillaume, Elisabeth; Affolter, Michael; Robert, Fabien; Moreillon, Philippe; Kussmann, Martin

    2006-01-01

    Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.

  12. Location and Flexibility of the Unique C-Terminal Tail of Aquifex aeolicus Co-Chaperonin Protein 10 as Derived by Cryo-Electron Microscopy and Biophysical Techniques

    OpenAIRE

    Chen, Dong-Hua; Luke, Kathryn; Zhang, Junjie; Chiu, Wah; Wittung-Stafshede, Pernilla

    2008-01-01

    Co-chaperonin protein 10 (cpn10, GroES in Escherichia coli) is a ring-shaped heptameric protein that facilitates substrate folding when in complex with cpn60 (GroEL in E. coli). The cpn10 from the hyperthermophilic, ancient bacterium Aquifex aeolicus (Aacpn10) has a 25-residue C-terminal extension in each monomer not found in any other cpn10 protein. Earlier in vitro work has shown that this tail is not needed for heptamer assembly or protein function. Without the tail, however, the heptamers...

  13. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

    Science.gov (United States)

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisne, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  14. A C-terminal acidic domain regulates degradation of the transcriptional coactivator Bob1.

    Science.gov (United States)

    Lindner, John M; Wong, Christina S F; Möller, Andreas; Nielsen, Peter J

    2013-12-01

    Bob1 (Obf-1 or OCA-B) is a 34-kDa transcriptional coactivator encoded by the Pou2af1 gene that is essential for normal B-cell development and immune responses in mice. During lymphocyte activation, Bob1 protein levels dramatically increase independently of mRNA levels, suggesting that the stability of Bob1 is regulated. We used a fluorescent protein-based reporter system to analyze protein stability in response to genetic and physiological perturbations and show that, while Bob1 degradation is proteasome mediated, it does not require ubiquitination of Bob1. Furthermore, degradation of Bob1 in B cells appears to be largely independent of the E3 ubiquitin ligase Siah. We propose a novel mechanism of Bob1 turnover in B cells, whereby an acidic region in the C terminus of Bob1 regulates the activity of degron signals elsewhere in the protein. Changes that make the C terminus more acidic, including tyrosine phosphorylation-mimetic mutations, stabilize the instable murine Bob1 protein, indicating that B cells may regulate Bob1 stability and activity via signaling pathways. Finally, we show that expressing a stable Bob1 mutant in B cells suppresses cell proliferation and induces changes in surface marker expression commonly seen during B-cell differentiation.

  15. Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes.

    Science.gov (United States)

    Steckbeck, Jonathan D; Sun, Chengqun; Sturgeon, Timothy J; Montelaro, Ronald C

    2010-01-01

    The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the "intracytoplasmic domain" based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical "Kennedy epitope" (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned.

  16. Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes.

    Directory of Open Access Journals (Sweden)

    Jonathan D Steckbeck

    Full Text Available The C-terminal tail (CTT of the HIV-1 gp41 envelope (Env protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the "intracytoplasmic domain" based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical "Kennedy epitope" (KE of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs. Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned.

  17. Active and accurate trans-translation requires distinct determinants in the C-terminal tail of SmpB protein and the mRNA-like domain of transfer messenger RNA (tmRNA).

    Science.gov (United States)

    Camenares, Devin; Dulebohn, Daniel P; Svetlanov, Anton; Karzai, A Wali

    2013-10-18

    Unproductive ribosome stalling in eubacteria is resolved by the actions of SmpB protein and transfer messenger (tm) RNA. We examined the functional significance of conserved regions of SmpB and tmRNA to the trans-translation process. Our investigations reveal that the N-terminal 20 residues of SmpB, which are located near the ribosomal decoding center, are dispensable for all known SmpB activities. In contrast, a set of conserved residues that reside at the junction between the tmRNA-binding core and the C-terminal tail of SmpB play an important role in tmRNA accommodation. Our data suggest that the highly conserved glycine 132 acts as a flexible hinge that enables movement of the C-terminal tail, thus permitting proper positioning and establishment of the tmRNA open reading frame (ORF) as the surrogate template. To gain further insights into the function of the SmpB C-terminal tail, we examined the tagging activity of hybrid variants of tmRNA and the SmpB protein, in which the tmRNA ORF or the SmpB C-terminal tail was substituted with the equivalent but highly divergent sequences from Francisella tularensis. We observed that the hybrid tmRNA was active but resulted in less accurate selection of the resume codon. Cognate hybrid SmpB was necessary to restore activity. Furthermore, accurate tagging was observed when the identity of the resume codon was reverted from GGC to GCA. Taken together, these data suggest that the engagement of the tmRNA ORF and the selection of the correct translation resumption point are distinct activities that are influenced by independent tmRNA and SmpB determinants.

  18. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining opioid receptor activity as an "address domain".

  19. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    Science.gov (United States)

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  20. Escherichia coli methionyl-tRNA formyltransferase: role of amino acids conserved in the linker region and in the C-terminal domain on the specific recognition of the initiator tRNA.

    Science.gov (United States)

    Gite, S; Li, Y; Ramesh, V; RajBhandary, U L

    2000-03-01

    The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.

  1. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment.

    Science.gov (United States)

    Souza, Andre L A; Díaz-Dellavalle, Paola; Cabrera, Andrea; Larrañaga, Patricia; Dalla-Rizza, Marco; De-Simone, Salvatore G

    2013-07-01

    An analysis of a series of five peptides composed of various portions of the pleurocidin (Plc) sequence identified a l2-amino acid fragment from the C-terminus of Plc, designated Plc-2, as the smallest fragment that retained a antimicrobial activity comparable to that of the parent compound. MIC tests in vitro with low-ionic-strength medium showed that Plc-2 has potent activity against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus but not against Enterococcus faecalis. The antifungal activity of the synthetic peptides against phytopathogenic fungi, such as Fusarium oxysporum, Colletotrichum sp., Aspergillus niger and Alternaria sp., also identified Plc-2 as a biologically active peptide. Microscopy studies of fluorescently stained fungi treated with Plc-2 demonstrated that cytoplasmic and nuclear membranes were compromised in all strains of phytopathogenic fungi tested. Together, these results identify Plc-2 as a potential antimicrobial agent with similar properties to its parent compound, pleurocidin. In addition, it demonstrated that the KHVGKAALTHYL residues are critical for the antimicrobial activity described for pleurocidin.

  2. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings

    OpenAIRE

    Bernhard Dold

    2014-01-01

    Sulphidic mine tailings are among the largest mining wastes on Earth and are prone to produce acid mine drainage (AMD). The formation of AMD is a sequence of complex biogeochemical and mineral dissolution processes. It can be classified in three main steps occurring from the operational phase of a tailings impoundment until the final appearance of AMD after operations ceased: (1) During the operational phase of a tailings impoundment the pH-Eh regime is normally alkaline to neutral and reduci...

  3. 重组蛋白药物C末端不同长度氨基酸序列的质谱分析%Mass spectrometry analysis of recombinant protein drugs with C-terminal amino acid sequence of different lengths

    Institute of Scientific and Technical Information of China (English)

    李萍; 赵永强; 薛燕; 刘锋; 刘炳玉; 何昆; 王红霞

    2011-01-01

    目的:基于本实验室已建立的溴化氰裂解蛋白质C末端方法结合优化后的质谱检测技术,对C末端长度分别为2~37个氨基酸,相对分子质量在200~5000的8个重组蛋白药物进行检测.方法:(1)针对重组蛋白药物的不同状态(SDS-PAGE、干粉或溶液)分别进行C末端胶内或溶液裂解;(2)质谱检测,正离子方式,雾化气为氮气,碰撞气体为氩气.源温80℃,锥孔电压50 V,MCP检测器电压为2.15 kV.结果:8个重组蛋白药物的C末端全部成功检测出,且基本为基峰.结论:建立的重组蛋白药物C末端测序联用方法应用于实际药物的检测具有很高的实用价值和学术意义.%Objective : Based on the method established by cyanogen bromide cleavage of proteins C - terminal combined with the optimized mass spectrometry in our laboratory, detection of C - terminal lengths of 2 to 37 amino acids, relative molecular mass 200 -5000 of the 8 recombinant protein drugs. Methods : ( 1 ) For different states of recombinant protein drugs ( SDS - PAGE,dry powder or solution) to C terminal cleavage in gel or solution, respectively. (2) Mass spectrometry detection, positive ion mode,atomization gas was nitrogen, collision gas was argon,source temperature 80 ℃ ,cone voltage 50 V ,MCP detector voltage of 2. 15 kV. Results : All of C - terminal of the 8 recombinant protein drugs successfully detected as the base peak. Conclusions: The established C - terminal sequencing method of the recombinant protein was applied to the actual drugs testing , have high practical value and academic significance.

  4. Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase.

    Science.gov (United States)

    Mason, A Brett; Allen, Kenneth E; Slayman, Carolyn W

    2006-08-18

    Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.

  5. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-05-01

    Full Text Available Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT. Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD. We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the cells and that it did not affect wild-type HIV-1 replication. However, as measured in both a single-round assay as well as in spreading infections, replication competence of mutant pNL-Tr712, lacking the Env-CT, was not restored in this H9 T-cell population. This means that the Env-CT per se cannot transcomplement the replication block of HIV-1 virions encoding C-terminally truncated Env proteins and suggests that the Env-CT likely exerts its function only in the context of the complete Env protein.

  6. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Birkelund, S; Holm, A;

    1996-01-01

    , in part, be due to Hc1-mediated alterations of DNA topology. To locate putative functional domains within Hc1, polypeptides Hc1(2-57) and Hc1(53-125), corresponding to the N- and C-terminal parts of Hc1, respectively, were generated. By chemical cross-linking with ethylene glycol-bis (succinic acid N...... retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect...

  7. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production

    Science.gov (United States)

    Ng, Ivan H. W.; Chan, Kitti W. K.; Zhao, Yongqian; Ooi, Eng Eong; Lescar, Julien; Jans, David A.; Forwood, Jade K.

    2016-01-01

    Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. PMID:27622521

  8. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production.

    Science.gov (United States)

    Tay, Moon Y F; Smith, Kate; Ng, Ivan H W; Chan, Kitti W K; Zhao, Yongqian; Ooi, Eng Eong; Lescar, Julien; Luo, Dahai; Jans, David A; Forwood, Jade K; Vasudevan, Subhash G

    2016-09-01

    Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. PMID:27622521

  9. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available Sulphidic mine tailings are among the largest mining wastes on Earth and are prone to produce acid mine drainage (AMD. The formation of AMD is a sequence of complex biogeochemical and mineral dissolution processes. It can be classified in three main steps occurring from the operational phase of a tailings impoundment until the final appearance of AMD after operations ceased: (1 During the operational phase of a tailings impoundment the pH-Eh regime is normally alkaline to neutral and reducing (water-saturated. Associated environmental problems include the presence of high sulphate concentrations due to dissolution of gypsum-anhydrite, and/or effluents enriched in elements such as Mo and As, which desorbed from primary ferric hydroxides during the alkaline flotation process. (2 Once mining-related operations of the tailings impoundment has ceased, sulphide oxidation starts, resulting in the formation of an acidic oxidation zone and a ferrous iron-rich plume below the oxidation front, that re-oxidises once it surfaces, producing the first visible sign of AMD, i.e., the precipitation of ferrihydrite and concomitant acidification. (3 Consumption of the (reactive neutralization potential of the gangue minerals and subsequent outflow of acidic, heavy metal-rich leachates from the tailings is the final step in the evolution of an AMD system. The formation of multi-colour efflorescent salts can be a visible sign of this stage.

  10. Influences of wetland plants on weathered acidic mine tailings

    International Nuclear Information System (INIS)

    Establishment of Carex rostrata, Eriophorum angustifolium and Phragmites australis on weathered, acidic mine tailings (pH ∼3) and their effect on pH in tailings were investigated in a field experiment. The amendments, sewage sludge and an ashes-sewage sludge mixture, were used as plant nutrition and their influence on the metal and As concentrations of plant shoots was analysed. An additional experiment was performed in greenhouse with E. angustifolium and sewage sludge as amendments in both weathered and unweathered tailings. After one year, plants grew better in amendments containing ashes in the field, also in those plants the metal and As shoot concentrations were generally lower than in other treatments. After two years, the only surviving plants were found in sewage sludge mixed with ashes. No effect on pH by plants was found in weathered acidic mine tailings in either field- or greenhouse experiment. - Wetland plant establishment on acidic mine tailings may contribute to a reduced metal release and a stabilisation of pH

  11. Assessment of Phytostabilization Success in Metalliferous Acid Mine Tailings

    Science.gov (United States)

    Wang, Y.; Root, R. A.; Hammond, C.; Amistadi, M. K.; Maier, R. M.; Chorover, J.

    2014-12-01

    Legacy mine tailings are a significant source of metal(loid)s due to wind and water erosion, especially in the arid southwest, and exposure to fugative dusts presents a health risk to surrounding populations. Compost assisted phytostabilization has been implemented to reduce off site emissions at the Iron King Mine U.S. Superfund Site in central Arizona, concurrent with a greenhouse mesocosm study for detailed study of subsurface mechanisms. Quantification of plant available toxic metal(loid)s in the amended tailings was accessed with a targeted single extraction of diethylenetriaminepentaactic acid (DTPA). Greenhouse mesocosms (1m dia, 0.4 m deep), run in triplicate, mimicked field treatments with: i) tailings only control (TO), ii) tailings plus 15 wt% compost (TC), iii) TC + quailbush seeds (TCA), and iv) TC + buffalo grass seeds (TCB). Core samples collected at 3-month intervals for 1 year were dissected by depth (10 cm each) for analysis. DTPA results indicated that compost treated samples decreased plant availability of Al, As, Cd, Cu, Fe, and Pb but increased Mn and Zn compared with TO. TCB decreased plant available metal(loid)s at all depths, whereas TCA plant available Al, As, Cd, Cu, Fe, Mn and Zn increased in the deeper 20-30cm and 30-40 cm relative to TCB. Samples from the greenhouse were compared to tailings from both the field site and tailings impacted soils used to grow vegetables. Mineral transformations and metal complexation, in the pre- and post-extracted tailings were analyzed by synchrotron transmission XRD and FTIR spectroscopy. The temporal change in plant available metal(loid)s in response to phytostabilization indicates mineralogical alteration that improves soil quality by reducing plant available metal(loid)s. These results will aid in the understanding and efficacy of phytostabilization as a means of remediating and reducing toxicity on mine tailings as well as providing information on health risk management in the region.

  12. A C-terminal truncated hepatitis C virus core protein variant assembles in vitro into virus-like particles in the absence of structured nucleic acids

    International Nuclear Information System (INIS)

    Little is known about the assembly pathway or structure of the hepatitis C virus (HCV). In this work a truncated HCcAg variant covering the first 120 aa (HCcAg.120) with a 32 aa N-terminal fusion peptide (6x Histag-Xpress epitope) was purified as a monomer under strong denaturing conditions. In addition, minor HCcAg.120 peaks exhibiting little different molecular mass by SDS-PAGE which possibly represents alternative forms harboring the N-termini of HCcAg.120 were detected. Analysis using gel filtration chromatography showed that HCcAg.120 assembled into high molecular weight structures in vitro in the absence of structured nucleic acids. The negative-stain electron microscopy analysis revealed that these structures correspond with spherical VLPs of uniform morphology and size distribution. The diameters of these particles ranged from 20 to 43 nm with an average diameter of approximately 30 nm and were specifically immunolabelled with a mouse monoclonal antibody against the residues 5-35 of HCcAg. Results presented in this work showed that HCcAg.120 assembled in vitro into VLPs in the absence of structured nucleic acids with similar morphology and size distribution to those found in sera and hepatocytes from HCV-infected patients. Therefore, these VLPs would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure

  13. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    Science.gov (United States)

    Feng, Zi-Ming; Zhan, Zhi-Lai; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2016-05-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method.

  14. The impact of the human DNA topoisomerase II C-terminal domain on activity.

    Directory of Open Access Journals (Sweden)

    Emma L Meczes

    Full Text Available BACKGROUND: Type II DNA topoisomerases (topos are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, alpha and beta, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity. METHODOLOGY/PRINCIPLE FINDINGS: We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIalpha and beta and topoIIalpha+beta-tail and topoIIbeta+alpha-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIalpha-CTD increasing activity, and the topoIIbeta-CTD decreasing activity. CONCLUSIONS/SIGNIFICANCE: In vivo complementation data show that the topoIIalpha C-terminal domain is needed for growth, but the topoIIbeta isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIbeta has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIalpha or beta C-terminal domain can affect strand passage activity. Data indicates that the topoIIbeta-CTD may be a negative regulator. This is the first report of in vitro

  15. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    Science.gov (United States)

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae. PMID:27377430

  16. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    Science.gov (United States)

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae.

  17. Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile, Manitoba, Canada

    Science.gov (United States)

    Tycholiz, C.; Ferguson, I. J.; Sherriff, B. L.; Cordeiro, M.; Sri Ranjan, R.; Pérez-Flores, M. A.

    2016-08-01

    Surface electrical and electromagnetic geophysical methods can map enhanced electrical conductivity caused by acid mine drainage in mine tailings piles. In this case study, we investigate quantitative relationships between geophysical responses and the electrical conductivity, acidity and salinity of tailing samples at the Central Manitoba Mine tailings in Manitoba, Canada. Previous electromagnetic surveys at the site identified zones of enhanced conductivity that were hypothesized to be caused by acid mine drainage. In the present study, high-resolution EM31 and DC-resistivity measurements were made on a profile through a zone of enhanced conductivity and laboratory measurements of salinity and pH were made on saturation paste extracts from an array of tailing samples collected from the upper 2 m of tailings along the profile. Observed spatial correlation of pH and pore-fluid salinity in the tailings samples confirms that the enhanced conductivity in the Central Manitoba Mine tailings is due to acid mine drainage. Contoured cross-sections of the data indicate that the acid mine drainage is concentrated near the base of the oxidized zone in the thicker parts of the tailings pile. The zone of increased acidity extends to the surface on sloping margins causing an increase in apparent conductivity in shallow penetrating geophysical responses. The quantitative relationship between measured pH and salinity shows that the conductivity increase associated with the acid mine drainage is due only in part to conduction by ions produced from dissociation of sulfuric acid. Comparison of the observations with fluid conductivity estimates based on statistical relationships of pH and ion concentrations in water samples from across the tailings pile shows that Ca2 + and Mg2 + ions also make significant contributions to the conductivity at all values of pH and Cu2 +, Al3 + and Fe3 + ions make additional contributions at low pH. Variability in the measured conductivity at constant

  18. Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Knudsen, Lotte Bjerre; Garibay, Patrick W.;

    2013-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C-terminally trun......The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C......, Cys458 and Cys462 are not. Extensive deletions were made in the C-terminal tail of GLP-1R in order to determine the limit for truncation. As for other family B GPCRs, we observed a direct correlation between the length of the C-terminal tail and specific binding of 125I-GLP-1, indicating...

  19. Bacteriophage endolysin Lyt μ1/6: characterization of the C-terminal binding domain.

    Science.gov (United States)

    Tišáková, Lenka; Vidová, Barbora; Farkašovská, Jarmila; Godány, Andrej

    2014-01-01

    The gene product of orf50 from actinophage μ1/6 of Streptomyces aureofaciens is a putative endolysin, Lyt μ1/6. It has a two-domain modular structure, consisting of an N-terminal catalytic and a C-terminal cell wall binding domain (CBD). Comparative analysis of Streptomyces phage endolysins revealed that they all have a modular structure and contain functional C-terminal domains with conserved amino acids, probably associated with their binding function. A blast analysis of Lyt μ1/6 in conjunction with secondary and tertiary structure prediction disclosed the presence of a PG_binding_1 domain within the CBD. The sequence of the C-terminal domain of lyt μ1/6 and truncated forms of it were cloned and expressed in Escherichia coli. The ability of these CBD variants fused to GFP to bind to the surface of S. aureofaciens NMU was shown by specific binding assays.

  20. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Guillermo Salgado-Moran

    2013-01-01

    Full Text Available The binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis was studied. The analysis was performed using an in silico approach in order to find out, by docking calculations and energy descriptors, the conformer of Ethambutol that forms the most stable complex with the C-terminal domain of arabinosyltransferase. The complex shows that location of the Ethambutol coincides with the cocrystallization ligand position and that amino acid residues ASH1051, ASN740, ASP1052, and ARG1055 should be critical in the binding of Ethambutol to C-terminal domain EmbC.

  1. Design and synthesis of peptide YY analogues with c-terminal backbone amide-to-ester modifications

    DEFF Research Database (Denmark)

    Albertsen, Louise; Andersen, J.J.; Paulsson, J.F.;

    2013-01-01

    Peptide YY (PYY) is a gut hormone that activates the G protein-coupled neuropeptide Y (NPY) receptors, and because of its appetite reducing actions, it is evaluated as an antiobesity drug candidate. The C-terminal tail of PYY is crucial for activation of the NPY receptors. Here, we describe...... the design and preparation of a series of PYY(3-36) depsipeptide analogues, in which backbone amide-to-ester modifications were systematically introduced in the C-terminal. Functional NPY receptor assays and circular dichroism revealed that the ψ(CONH) bonds at positions 30-31 and 33-34 are particularly...

  2. Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U).

    Science.gov (United States)

    Michigami, Y; Abe, K; Obata, H; Arai, S

    1995-12-01

    Ice nucleation-active (Ina) proteins of bacterial origin comprise three distinct domains, i.e., N-terminal (N-), central repeat (R-), and C-terminal (C-) domains, among which the R-domain is essential, and its length may be correlated with the ice nucleation activity. In addition, the short C-terminal domain of about 50 amino acid residues is indispensable for the activity. Using the Ina U protein of Erwinia uredovora, we carried out precise mutational analyses of its C-terminus. The ice nucleation activity (T50) assay showed that the C-terminal 12 amino acids were not necessary, and a deletion mutant (delta C29) with a new C-terminal, Met29 (numbered from the first amino acid residue of the C-domain and corresponding to Met1022), exhibited almost the same activity as the wild-type Ina U protein did. However, deletion of the C-terminal 13 residues including Met29 resulted in almost complete loss of the activity. In the deletion mutant (delta C29), amino acid replacement of the C-terminus, Met29, showed that the activity was retained when Met29 was replaced with a neutral, aromatic, or basic amino acid (Gly, Phe, or Lys), but was lost on the replacement with an acidic amino acid (Asp or Glu). In addition, two other residues in the C-terminal region commonly present in all Ina proteins were examined as to their importance, and it was shown that one of these residues, Tyr27, is important for the activity, although it is not exclusively required; the activity was lost to a great extent when this residue was replaced with Gly or Ala, but to a lesser extent when it was replaced with Leu. These results suggest that significance of the secondary and/or tertiary structure of the C-terminal region of the Ina U protein for the ice nucleation activity. PMID:8720147

  3. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  4. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules.

    Science.gov (United States)

    Altai, Mohamed; Wållberg, Helena; Orlova, Anna; Rosestedt, Maria; Hosseinimehr, Seyed Jalal; Tolmachev, Vladimir; Ståhl, Stefan

    2012-05-01

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  5. Synthesis of Metal Porphyrins Tailed with Salicylic Acid and their Interaction with Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    Tao JIA; Kai WANG; Yi Mei ZHAO; Zao Ying LI

    2004-01-01

    A synthetic method of porphyrins tailed with salicylic substituents is described. Reaction of bromoalkoxyphenyl porphyrin 1 with salicylic acid gave porphyrins 2~5. These new compounds were confirmed by 1H NMR, IR, UV-vis, MS and elemental analysis, and observed their interaction with bovine serum albumin (BSA) in fluorescence spectrum.

  6. Revegetation of non-Acid-generating, thickened tailings with boreal trees: a greenhouse study.

    Science.gov (United States)

    Larchevêque, Marie; Desrochers, Annie; Bussière, Bruno; Cartier, Hélène; David, Jean-Sébastien

    2013-01-01

    Tree planting presents clear advantages for mine reclamation that is aimed at achieving rapid reclamation of forested landscapes. A greenhouse study was conducted to evaluate the capacity of non-acid-generating, thickened tailings to support six boreal tree species during two growing seasons. One treatment was thickened tailings alone fertilized with inorganic N, P, and K fertilizer or chicken () manure. A thin layer of overburden topsoil was used to cover the tailings and was compared with topsoil alone, where normal tree growth was expected. Two amendments were also tested: overburden topsoil and vermicompost from food wastes. The presence of alkaline thickened tailings under the thin layer of acidic topsoil had a positive effect on tree height and root biomass (broadleaved and jack pine [ Lamb.]) by increasing topsoil pH and available Ca concentrations, which decreased Al, Zn, and Mn phytoavailability to trees; however, root contact with the tailings also increased their Cu concentrations. In thickened tailings that were mixed with topsoil, C/N ratios increased along the experiment from 21 to 40, a value where N immobilization by microorganisms occurred, as suggested by low N concentrations in tree tissues. In consequence, tree height growth (broadleaved) and biomass (conifers) were reduced. Amendment with compost raised the electrical conductivity (3.4 dS cm) to thresholds limiting broadleaved survival, while conifers showed a generalized decrease in biomass production. No trace metal contamination of the trees occurred in the mixtures, probably due to the near-neutral pH conferred by the tailings. PMID:23673827

  7. Efficient, chemoselective synthesis of immunomicelles using single-domain antibodies with a C-terminal thioester

    Directory of Open Access Journals (Sweden)

    Raats Jos MH

    2009-07-01

    Full Text Available Abstract Background Classical bioconjugation strategies for generating antibody-functionalized nanoparticles are non-specific and typically result in heterogeneous compounds that can be compromised in activity. Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester, providing a unique handle for site-specific conjugation using native chemical ligation (NCL. However, current methods to generate antibody fragments with C-terminal thioesters require cumbersome refolding procedures, effectively preventing application of NCL for antibody-mediated targeting and molecular imaging. Results Targeting to the periplasm of E. coli allowed efficient production of correctly-folded single-domain antibody (sdAb-intein fusions proteins. On column purification and 2-mercapthoethanesulfonic acid (MESNA-induced cleavage yielded single-domain antibodies with a reactive C-terminal MESNA thioester in good yields. These thioester-functionalized single-domain antibodies allowed synthesis of immunomicelles via native chemical ligation in a single step. Conclusion A novel procedure was developed to obtain soluble, well-folded single-domain antibodies with reactive C-terminal thioesters in good yields. These proteins are promising building blocks for the chemoselective functionalization via NCL of a broad range of nanoparticle scaffolds, including micelles, liposomes and dendrimers.

  8. Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution

    International Nuclear Information System (INIS)

    NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal domain of Escherichia coli trigger factor containing residues 113-149 and 247-432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from E. coli (Ferbitz et al., Nature 431:590-596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436-13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed. We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures. Dynamics analysis of the C-terminal domain using T1, T2 and heteronuclear NOE parameters show that the protein is

  9. Function of C-terminal hydrophobic region in fructose dehydrogenase

    International Nuclear Information System (INIS)

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  10. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    Science.gov (United States)

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.

  11. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  12. Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2003-05-01

    Full Text Available Abstract Background Hydrogenases catalyze the simplest of all chemical reactions: the reduction of protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hyp-genes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102, only the bidirectional (Synechocystis PCC 6803 or both NiFe-hydrogenases (Anabaena PCC 7120 prompted us to mine these genomes for hydrogenase maturation related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding C-terminal endopeptidases, in the three strains mentioned above. Results We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–41% to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from Escherichia coli, the crystal structure of which is known. However, computational secondary and tertiary structure modeling revealed the presence of conserved structural patterns around the highly conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are expressed under both nitrogen-fixing and non-nitrogen-fixing conditions. Conclusion Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of hyp-genes. Thus, in contrast to the Hyp-proteins, the C-terminal endopeptidases are the only known

  13. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues

    DEFF Research Database (Denmark)

    Magni, M; Pandiella, A; Helin, K;

    1991-01-01

    Mutant epidermal growth factor (EGF) receptors (obtained by substitution of one, two or three C-terminal autophosphorylable tyrosine residues with phenylalanine residues or by deletion of the C-terminal 19 amino acids, including the distal tyrosine) were expressed in mouse NIH-3T3 fibroblast clones...... a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple point mutants suggest that the role of phosphotyrosine residues is not in the participation in specific amino acid sequences, but rather...

  14. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17

    International Nuclear Information System (INIS)

    The C-terminal domain of the bacteriophage T7 fibre protein gp17, consisting of amino acids 371–553, has been crystallized. Diffraction data have been obtained to around 2.0 Å resolution from two different crystal forms. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress. Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371–553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P212121 (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C2221 (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress

  15. 157 nm Photodissociation of a Complete Set of Dipeptide Ions Containing C-Terminal Arginine

    Science.gov (United States)

    He, Yi; Webber, Nathaniel; Reilly, James P.

    2013-05-01

    Twenty singly-charged dipeptide ions with C-terminal arginine were photodissociated with 157 nm light and their tandem mass spectra recorded. Many of the small product ions that were observed are standard peptide fragments that have been commonly seen in VUV photodissociation studies. However, the study of a library of dipeptides containing all 20 N-terminal amino acids enabled the recognition of trends associated with the occurrence of w-, v-, and immonium ions, the observation of competition between forming N- and C-terminal fragments in dipeptide RR, and the identification of some unusual fragment ions appearing at masses of 183, 187, 196, and 197 Da. A highly accurate internal calibration of the photodissociation TOF-TOF data enabled molecular formulae for these four product ions to be derived. Their proposed structures reflect the rather high-energy nature of this fragmentation phenomenon.

  16. Regulation of Escherichia coli RelA Requires Oligomerization of the C-Terminal Domain

    OpenAIRE

    Gropp, Michal; Strausz, Yael; Gross, Miriam; Glaser, Gad

    2001-01-01

    The E. coli RelA protein is a ribosome-dependent (p)ppGpp synthetase that is activated in response to amino acid starvation. RelA can be dissected both functionally and physically into two domains: The N-terminal domain (NTD) (amino acids [aa] 1 to 455) contains the catalytic domain of RelA, and the C-terminal domain (CTD) (aa 455 to 744) is involved in regulating RelA activity. We used mutational analysis to localize sites important for RelA activity and control in these two domains. We inse...

  17. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    International Nuclear Information System (INIS)

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO3, to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH)2, neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO3 neutralization to pH 4 followed by neutralization with Ca(OH)2 to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH)2 as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO4 are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies

  18. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO/sub 3/, to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH)/sub 2/, neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO/sub 3/ neutralization to pH 4 followed by neutralization with Ca(OH)/sub 2/ to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH)/sub 2/ as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO/sub 4/ are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies.

  19. 傅里叶显微红外研究C-末端酸性蛋白对α-硫素原核表达过程的影响%Study on the Effect of C-Terminal Acidic Protein on the Prokaryotic Expression of α-Thionin by FTIR Microspectroscopy

    Institute of Scientific and Technical Information of China (English)

    刘艳; 冯娟; 陶栋梁; 翁诗甫; 任正隆

    2009-01-01

    Fourier transform infrared (FTIR) microspectroscopy was used to investigate the effects of C-terminal acidic protein on the secondary structure of wheat α-thionin in the absence of signal peptide during the prokaryotic expression process. SDS-PAGE analysis revealed that the presence of acidic protein gave rise to the formation of inclusion body, however, the absence of acidic protein greatly enhanced the solubility of the heterogenous protein expressed in E. coli BL21(DE3) with the induction of 1 containing S and Sc, which corresponds to the absence and presence of C-terminal acidic proteins, respectively. The second de-rivative of the difference spectra measured 2 h after induction showed one principal component at ~1 630 cm~(-1) , while no signifi-cant peak appeared at the same peak position when the spectra before induction were compared. Combined with SD~PAGE of recombinant protein, the authors presumed that the peak absorption at ~1 630 cm~(-1) is most likey to be assigned to protein ag-gregate within inclusion body. Gaussian curve-fitting was done on the Fourier self-deconvolution spectra within amide I region of intact cells containing S and Sc. The experimental data revealed that the relative content of aggregate absorption at (1 629 ± 1) cm~(-1) gradually increased with induction time, which is consistent with the results of SDS-PAGE. Simutaneously, the formation of aggregate gave rise to the increase of a-helix, as well as the decrease of fl-turn and random coil in the ease of Sc. It was not the case for S, however, where random coil experienced the increase in the relative average fractions, while β-turn and β-sheet at (1 629±1) cm~(-1) behaved in different ways. The above mentioned phenomenon indicated that fl-sheet and random coil are most likely to transform into aggregate and α-helix with the introduction of C-terminal acidic protein.%采用傅里叶变换显微红外手段研究了在信号肽缺失的情况下,C-末端酸性蛋白的

  20. Evolution of plant colonization in acid and alkaline mine tailing ponds after amendments and microorganisms application

    Science.gov (United States)

    Acosta, Jose Alberto; Faz, Ángel; Kabas, Sebla; Zornoza, Raúl; Martínez-Martínez, Silvia

    2014-05-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on plant cover establishment, as a consequence of metal immobilization and the improvement of soil properties. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Identification of plant species and biodiversity was determined on each plot, after 2, 4, 6 and 8 months of amendment addition. The results showed that, in those plots without application of microorganism, 8 months after applications the number of species and individuals of each

  1. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    Science.gov (United States)

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  2. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  3. The Role of the CAI-1 Fatty Acid Tail in the Vibrio cholerae Quorum Sensing Response

    Science.gov (United States)

    Perez, Lark J.; Ng, Wai-Leung; Marano, Paul; Brook, Karolina; Bassler, Bonnie L.; Semmelhack, Martin F.

    2013-01-01

    Quorum sensing is a mechanism of chemical communication among bacteria that enables collective behaviors. In V. cholerae, the etiological agent of the disease cholera, quorum sensing controls group behaviors including virulence factor production and biofilm formation. The major V. cholerae quorum-sensing system consists of the extracellular signal molecule called CAI-1 and its cognate membrane bound receptor called CqsS. Here, the ligand binding activity of CqsS is probed with structural analogs of the natural signal. Enabled by our discovery of a structurally simplified analog of CAI-1, we prepared and analyzed a focused library. The molecules were designed to probe the effects of conformational and structural changes along the length of the fatty acid tail of CAI-1. Our results, combined with pharmacophore modeling, suggest a molecular basis for signal molecule recognition and receptor fidelity with respect to the fatty acid tail portion of CAI-1. These efforts provide novel probes to enhance discovery of anti-virulence agents for the treatment of V. cholerae. PMID:23092313

  4. Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity

    Indian Academy of Sciences (India)

    Swasti Raychaudhuri; Rachana Banerjee; Subhasish Mukhopadhyay; Nitai P Bhattacharyya

    2014-09-01

    Human HYPK (Huntingtin Yeast-two-hybrid Protein K) is an intrinsically unstructured chaperone-like protein with no sequence homology to known chaperones. HYPK is also known to be a part of ribosome-associated protein complex and present in polysomes. The objective of the present study was to investigate the evolutionary influence on HYPK primary structure and its impact on the protein’s function. Amino acid sequence analysis revealed 105 orthologs of human HYPK from plants, lower invertebrates to mammals. C-terminal part of HYPK was found to be particularly conserved and to contain nascent polypeptide-associated alpha subunit (NPAA) domain. This region experiences highest selection pressure, signifying its importance in the structural and functional evolution. NPAA domain of human HYPK has unique amino acid composition preferring glutamic acid and happens to be more stable from a conformational point of view having higher content of -helices than the rest. Cell biology studies indicate that overexpressed C-terminal human HYPK can interact with nascent proteins, co-localizes with huntingtin, increases cell viability and decreases caspase activities in Huntington’s disease (HD) cell culture model. This domain is found to be required for the chaperone-like activity of HYPK in vivo. Our study suggested that by virtue of its flexibility and nascent peptide binding activity, HYPK may play an important role in assisting protein (re)folding.

  5. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry.

    Science.gov (United States)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (b(n-1) + H(2)O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H(2)O and NH(3)) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment

  6. Response of Key Soil Parameters During Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species

    Science.gov (United States)

    Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2012-01-01

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663

  7. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    Science.gov (United States)

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-01

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner

  8. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    Science.gov (United States)

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  9. Faceted fatty acid vesicles formed from single-tailed perfluorinated surfactants.

    Science.gov (United States)

    Zhang, Juan; Xu, Guiying; Song, Aixin; Wang, Lin; Lin, Meiqin; Dong, Zhaoxia; Yang, Zihao

    2015-09-28

    The aggregation behavior and rheological properties of two mixtures of perfluorononanoic acid (PFNA)/NaOH and perfluorodecanoic acid (PFDA)/NaOH were investigated in aqueous solutions. Interestingly, pH-sensitive polyhedral fatty acid vesicles were spontaneously formed in both systems, which were determined by freeze-fracture transmission electron microscopy (FF-TEM) measurements. Especially, a phase transition from faceted vesicles to the L3 phase with the increase of pH was observed in the PFNA/NaOH system while it was not observed in the PFDA/NaOH system. Differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS) measurements confirmed that the bilayers of the faceted vesicles were in the crystalline station indicating that the crystallization of fluorocarbon chains was the main driving force for their formation. Besides, the two systems of faceted perfluorofatty acid vesicles exhibit interesting rheological properties, for instance, they showed high viscoelasticity and shear-thinning behaviour, and the elastic modulus (G') and viscous modulus (G'') of PFDA/NaOH vesicles were much higher than those of PFNA/NaOH vesicles. Conversely, the solution of the L3 phase with fluid bilayers did not present viscoelastic properties. Therefore, the viscoelastic properties of vesicles resulted from the crystalline fluorinated alkyl chains with high rigidity at room temperature and the dense packing of vesicles. As far as we know, such faceted fatty acid vesicles formed from single-tailed perfluorinated surfactants have been rarely reported. Our work successfully constructs polyhedral fatty acid vesicles and proposes their formation mechanism, which should be a great advance in the fundamental research of fatty acid vesicles. PMID:26252803

  10. C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol.

    Science.gov (United States)

    Stemmler, Elizabeth A; Barton, Elizabeth E; Esonu, Onyinyechi K; Polasky, Daniel A; Onderko, Laura L; Bergeron, Audrey B; Christie, Andrew E; Dickinson, Patsy S

    2013-08-01

    Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptide discovery commonly involves chemical extraction from a tissue source followed by mass spectrometric characterization. Ideally, the extraction procedure accurately preserves the sequence and any inherent modifications of the native peptides. Here, we present data showing that this is not always true. Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin family members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated from full-length orcokinin precursors as the result of a highly selective peptide modification (peptide truncation with C-terminal methylation) that occurs during extraction. These peptides were observed by MALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent, but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanol excluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substituting deuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group, and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe is not produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears to result from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conversion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. This unusual and highly specific extraction-derived peptide conversion exemplifies the need to consider both chemical and biochemical processes that may modify the structure of endogenous neuropeptides.

  11. N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication

    Institute of Scientific and Technical Information of China (English)

    Yan-Chang Lei; Dong-Liang Yang; Yong-Jun Tian; Hong-Hui Ding; Bao-Ju Wang; Yan Yang; You-Hua Hao; Xi-Ping Zhao; Meng-Ji Lu; Fei-Li Gong

    2006-01-01

    AIM: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G(APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis B virus (HBV) in vitro and in vivo.METHODS: The mammalian hepatoma cells HepG2 and HuH7 were cotransfected with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vector and 1.3-fold-overlength HBV DNA as well as the linear monomeric HBV of genotype B and C. For in vivo study, an HBV vector-based mouse model was used in which APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vectors were co-delivered with 1.3-fold-overlength HBV DNA via high-volume tail vein injection. Levels of hepatitis B virus surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg) in the media of the transfected cells and in the sera of mice were determined by ELISA.The expression of hepatitis B virus core antigen (HBcAg)in the transfected cells was determined by Western blot analysis. Core-associated HBV DNA was examined by Southern blot analysis. Levels of HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by quantitative PCR and quantitative RT-PCR analysis, respectively.RESULTS: Human APOBEC3G exerted an anti-HBV activity in a dose-dependent manner in HepG2 cells,and comparable suppressive effects were observed on genotype B and C as that of genotype A. Interestingly,the N-terminal or C-terminal cytosine deaminase domain alone could also inhibit HBV replication in HepG2 cells as well as Huh7 cells. Consistent with in vitro results, the levels of HBsAg in the sera of mice were dramatically decreased, with more than 50 times decrease in the levels of serum HBV DNA and core-associated RNA in the liver of mice treated with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain as compared to the controls.CONCLUSION: Our findings provide probably the first

  12. A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the protonmotive force in Escherichia coli membrane vesicles by generating hydrophilic pores

    NARCIS (Netherlands)

    Goessens, Wil H.F.; Driessen, Arnold J.M.; Wilschut, Jan; Duin, Jan van

    1988-01-01

    The RNA phage MS2 encodes a protein, 75 amino acids long, that is necessary and sufficient for lysis of the host cell. DNA deletion analysis has shown that the lytic activity is confined to the C-terminal half of the protein. We have examined the effects of a synthetic peptide, covering the C-termin

  13. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    Science.gov (United States)

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. PMID:27450331

  14. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region.

    Science.gov (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I' band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D₂O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  15. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    Science.gov (United States)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  16. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  17. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    Science.gov (United States)

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  18. Structure of the C-terminal domain of nsp4 from feline coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Snijder, Eric J.; Gorbalenya, Alexander E. [Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Berglind, Hanna; Nordlund, Pär [Division of Biophysics, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, Karolinska Institute, SE-171 77 Stockholm (Sweden); Coutard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille (France); Tucker, Paul A., E-mail: tucker@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  19. Effect of C-terminal of human cytosolic thymidine kinase (TK1) on in vitro stability and enzymatic properties

    DEFF Research Database (Denmark)

    Munch-Petersen, Birgitte; Munch-Petersen, Sune; Berenstein, Dvora;

    2006-01-01

    and its activity fluctuates during cell cycle coinciding with the DNA synthesis rate and disappears during mitosis. This fluctuation is important for providing a balanced supply of dTTP for DNA replication. The cell cycle specific activity of TK1 is regulated at the transcriptional level...... acids of TK1 on in vitro stability, oligomerization, and enzyme kinetics. We found that deletion of the C-terminal fold markedly increased the stability as well as the catalytic activity....

  20. The C-terminal region of thermophilic tRNA (m7G46) methyltransferase (TrmB) stabilizes the dimer structure and enhances fidelity of methylation.

    Science.gov (United States)

    Tomikawa, Chie; Ochi, Anna; Hori, Hiroyuki

    2008-05-15

    Transfer RNA (m(7)G46) methyltransferase catalyzes methyl-transfer from S-adenosyl-L-methionine to N(7) atom of the semi-conserved G46 base in tRNA. Aquifex aeolicus is a hyper thermophilic eubacterium that grows at close to 95 degrees C. A. aeolicus tRNA (m(7)G46) methyltransferase [TrmB] has an elongated C-terminal region as compared with mesophilic counterparts. In this study, the authors focused on the functions of this C-terminal region. Analytic gel filtration chromatography and amino acid sequencing reveled that the start point (Glu202) of the C-terminal region is often cleaved by proteases during purification steps and the C-terminal region tightly binds to another subunit even in the presence of 6M urea. Because the C-terminal region contains abundant basic amino acid residues, the authors assumed that some of these residues might be involved in tRNA binding. To address this idea, the authors prepared eight alanine substitution mutant proteins. However, measurements of initial velocities of these mutant proteins suggested that the basic amino acid residues in the C-terminal region are not involved in tRNA binding. The authors investigated effects of the deletion of the C-terminal region. Deletion mutant protein of the C-terminal region (the core protein) was precipitated by incubation at 85 degrees C, while the wild type protein was soluble at that temperature, demonstrating that the C-terminal region contributes to the protein stability at high temperatures. The core protein had a methyl-transfer activity to yeast tRNA(Phe) transcript. Furthermore, the core protein slowly methylated tRNA transcripts, which did not contain G46 base. Moreover, the modified base was identified as m(7)G by two-dimensional thin layer chromatography. Thus, the deletion of the C-terminal region causes nonspecific methylation of N(7) atom of guanine base(s) in tRNA transcripts.

  1. Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M. [Departamento de Edafologia, EPS-CITE IIB, Canada San Urbano, Universidad de Almeria, 04120 Almeria (Spain)]. E-mail: msimon@ual.es; Martin, F. [Departamento de Edafologia, Facultad de Ciencias, Universidad de Granada, 18002 Granada (Spain); Garcia, I. [Departamento de Edafologia, EPS-CITE IIB, Canada San Urbano, Universidad de Almeria, 04120 Almeria (Spain); Bouza, P. [Centro Nacional Patagonico, CONICEF, Boulevard Brown s/n, 9120 Puerto Madryn, Chubut (Argentina); Dorronsoro, C. [Departamento de Edafologia, Facultad de Ciencias, Universidad de Granada, 18002 Granada (Spain); Aguilar, J. [Departamento de Edafologia, Facultad de Ciencias, Universidad de Granada, 18002 Granada (Spain)

    2005-05-01

    To characterise the coatings formed and to analyse element partitioning between the aqueous and solid phase, suspensions were prepared with four grain sizes of limestone and three different amounts of acidic solution from oxidized pyrite tailings. In all cases, red coatings with three different layers covered the grain surface, sealing off the acidic solution. The inner layer was composed mainly of basaluminite, the middle layer of schwertmannite, and the outer layer of gypsum and jarosite. Zn, Cd and Tl were co-precipitated by Fe and Al; As and Pb were co-precipitated almost completely by Fe; and Cu formed mainly Cu sulphates. All trace elements reached almost total precipitation at pH 6.3, but the precipitation of As and Pb tended to decrease as the pH rose. Consequently, liming should be calculated so that the soil pH does not exceed 6.3. This calculation should take into account that the armouring of the limestone grains can cause underestimations in the amount of liming material needed. - Basaluminite, schwertmannite and jarosite armored the limestone grains, and almost all trace elements co-precipitated, but the precipitation of As and Pb tended to decrease as the pH rose.

  2. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The optimum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liquid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  3. Potential Clinical Utility of Copeptin (C-terminal provasopressin) measurements in clinical medicine.

    Science.gov (United States)

    Lewandowski, K C; Brabant, G

    2016-03-01

    Copeptin is a 39-amino-acids containing glycosylated peptide derived from the C-terminal part of the arginine vasopressin (AVP) precursor. In the process of proteolysis the AVP precursor is processed to AVP, neurophysin II, and copeptin in equimolar amounts. In contrast to AVP, copeptin remains stable for several days at room temperature in serum or plasma. Hence, copeptin serves as a bona fide biomarker of AVP release. We briefly summarise clinical utility of copeptin in the diagnosis of diabetes insipidus. We also discuss potential applications of copeptin measurements in hyponatraemic states, assessment of an anterior pituitary function, as well as a wide range of several acute and chronic medical conditions, such as myocardial infarction, stroke or diabetes mellitus. PMID:27008633

  4. Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3.

    Directory of Open Access Journals (Sweden)

    Toni M Brand

    Full Text Available Nuclear localized HER family receptor tyrosine kinases (RTKs have been observed in primary tumor specimens and cancer cell lines for nearly two decades. Inside the nucleus, HER family members (EGFR, HER2, and HER3 have been shown to function as co-transcriptional activators for various cancer-promoting genes. However, the regions of each receptor that confer transcriptional potential remain poorly defined. The current study aimed to map the putative transactivation domains (TADs of the HER3 receptor. To accomplish this goal, various intracellular regions of HER3 were fused to the DNA binding domain of the yeast transcription factor Gal4 (Gal4DBD and tested for their ability to transactivate Gal4 UAS-luciferase. Results from these analyses demonstrated that the C-terminal domain of HER3 (CTD, amino acids distal to the tyrosine kinase domain contained potent transactivation potential. Next, nine HER3-CTD truncation mutants were constructed to map minimal regions of transactivation potential using the Gal4 UAS-luciferase based system. These analyses identified a bipartite region of 34 (B₁ and 27 (B₂ amino acids in length that conferred the majority of HER3's transactivation potential. Next, we identified full-length nuclear HER3 association and regulation of a 122 bp region of the cyclin D1 promoter. To understand how the B₁ and B₂ regions influenced the transcriptional functions of nuclear HER3, we performed cyclin D1 promoter-luciferase assays in which HER3 deleted of the B₁ and B₂ regions was severely hindered in regulating this promoter. Further, the overexpression of HER3 enhanced cyclin D1 mRNA expression, while HER3 deleted of its identified TADs was hindered at doing so. Thus, the ability for HER3 to function as a transcriptional co-activator may be dependent on specific C-terminal TADs.

  5. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    DU GaoXiang; ZHENG ShuiLin; DING Hao

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The op-timum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liq-uid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  6. Conformational effects of a common codon 751 polymorphism on the C-terminal domain of the xeroderma pigmentosum D protein

    Directory of Open Access Journals (Sweden)

    Monaco Regina

    2009-01-01

    Full Text Available Aim: The xeroderma pigmentosum D (XPD protein is a DNA helicase involved in the repair of DNA damage, including nucleotide excision repair (NER and transcription-coupled repair (TCR. The C-terminal domain of XPD has been implicated in interactions with other components of the TFIIH complex, and it is also the site of a common genetic polymorphism in XPD at amino acid residue 751 (Lys->Gln. Some evidence suggests that this polymorphism may alter DNA repair capacity and increase cancer risk. The aim of this study was to investigate whether these effects could be attributable to conformational changes in XPD induced by the polymorphism. Materials and Methods: Molecular dynamics techniques were used to predict the structure of the wild-type and polymorphic forms of the C-terminal domain of XPD and differences in structure produced by the polymorphic substitution were determined. Results: The results indicate that, although the general configuration of both proteins is similar, the substitution produces a significant conformational change immediately N-terminal to the site of the polymorphism. Conclusion: These results provide support for the hypothesis that this polymorphism in XPD could affect DNA repair capability, and hence cancer risk, by altering the structure of the C-terminal domain.

  7. Crystal Structure of the C-terminal Domain of Splicing Factor Prp8 Carrying Retinitis Pigmentosa Mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,L.; Shen, J.; Guarnieri, M.; Heroux, A.; Yang, K.; Zhao, R.

    2007-01-01

    Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an / structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn{sup 2+} coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn{sup 2+}-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.

  8. Selective enzymatic hydrolysis of C-terminal tert-butyl esters of peptides

    OpenAIRE

    Eggen, I.F.; Boeriu, C.G.

    2007-01-01

    The present invention relates to a process for the selective enzymatic hydrolysis of C-terminal esters of peptide substrates in the synthesis of peptides, comprising hydrolysing C-terminal tert-butyl esters using the protease subtilisin. This process is useful in the production of protected or unprotected peptides.

  9. Selective enzymatic hydrolysis of C-terminal tert-butyl esters of peptides

    NARCIS (Netherlands)

    Eggen, I.F.; Boeriu, C.G.

    2007-01-01

    The present invention relates to a process for the selective enzymatic hydrolysis of C-terminal esters of peptide substrates in the synthesis of peptides, comprising hydrolysing C-terminal tert-butyl esters using the protease subtilisin. This process is useful in the production of protected or unpro

  10. Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings.

    Science.gov (United States)

    Boudens, Ryan; Reid, Thomas; VanMensel, Danielle; Prakasan M R, Sabari; Ciborowski, Jan J H; Weisener, Christopher G

    2016-01-01

    Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS(-)) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri. PMID:26356184

  11. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    Science.gov (United States)

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  12. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    International Nuclear Information System (INIS)

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4N326L) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4N326L in the nucleus but only partially rescued radiosensitivity of M10-XRCC4N326L. These results collectively indicated that the functional defects of XRCC4N326L might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the nuclear localization of N

  13. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa, E-mail: yoshim@nr.titech.ac.jp

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  14. Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC).

    Science.gov (United States)

    Sheldon, Kely L; Gurnev, Philip A; Bezrukov, Sergey M; Sackett, Dan L

    2015-10-30

    It was previously shown that tubulin dimer interaction with the mitochondrial outer membrane protein voltage-dependent anion channel (VDAC) blocks traffic through the channel and reduces oxidative metabolism and that this requires the unstructured anionic C-terminal tail peptides found on both α- and β-tubulin subunits. It was unclear whether the α- and β-tubulin tails contribute equally to VDAC blockade and what effects might be due to sequence variations in these tail peptides or to tubulin post-translational modifications, which mostly occur on the tails. The nature of the contribution of the tubulin body beyond acting as an anchor for the tails had not been clarified either. Here we present peptide-protein chimeras to address these questions. These constructs allow us to easily combine a tail peptide with different proteins or combine different tail peptides with a particular protein. The results show that a single tail grafted to an inert protein is sufficient to produce channel closure similar to that observed with tubulin. We show that the β-tail is more than an order of magnitude more potent than the α-tail and that the lower α-tail activity is largely due to the presence of a terminal tyrosine. Detyrosination activates the α-tail, and activation is reversed by the removal of the glutamic acid penultimate to the tyrosine. Nitration of tyrosine reverses the tyrosine inhibition of binding and even induces prolonged VDAC closures. Our results demonstrate that small changes in sequence or post-translational modification of the unstructured tails of tubulin result in substantial changes in VDAC closure. PMID:26306046

  15. A Novel Preparation Method of C-Terminal Glutamine Dipeptides

    Institute of Scientific and Technical Information of China (English)

    QIAN Shao-Song; LIU Yi; CHEN Ran; LI Jia-You; WU Xiao-Yan; JIAO Qing-Cai

    2006-01-01

    A novel synthesis method of dipeptides containing glutamine is reported. Protected L-amino acids were prepared by using inexpensive phthaloyl as the protecting group. Then the phthaloyl-L-amino acids were condensed with glutamine salts by the mixed anhydride method to afford phthaloyl dipeptides. Subsequently, the phthaloyl was removed from the dipeptides with hydrazine hydrate. As a result, optically pure glutamine-containing dipeptides were obtained in good yields.

  16. Disulfide assignment of the C-terminal cysteine knot of agouti-related protein (AGRP) by direct sequencing analysis.

    Science.gov (United States)

    Young, Y; Zeni, L; Rosenfeld, R D; Stark, K L; Rohde, M F; Haniu, M

    1999-12-01

    We have assigned the disulfide structure of Md-65 agouti-related protein (Md65-AGRP) using differential reduction and alkylation followed by direct sequencing analysis. The mature human AGRP is a single polypeptide chain of 112 amino acid residues, consisting of an N-terminal acidic region and a unique C-terminal cysteine-rich domain. The C-terminal domain, a 48 amino acid peptide named Md65-AGRP, was expressed in Escherichia coil cells and refolded under different conditions from the mature recombinant protein. The disulfide bonds in the cystine knot structure of Md65-AGRP were partially reduced using tris(2-carboxyethyl) phosphine (TCEP) under acidic conditions, followed by alkylation with N-ethylmaleimide (NEM). The procedure generated several isoforms with varying degrees of NEM alkylation. The multiple forms of Md65-AGRP generated by partial reduction and NEM modification were then completely reduced and carboxymethylated to identify unreactive disulfide bonds. Differentially labeled Md65-AGRP were directly sequenced and analyzed by MALDI mass spectrometry. The results confirmed that Md65-AGRP contained the same disulfide structure as that of Md5-AGRP reported previously [Bures, E. J., Hui, J. O., Young, Y. et al. (1998) Biochemistry 37, 12172-12177].

  17. C-terminal domain of hepatitis C virus core protein is essential for secretion

    Institute of Scientific and Technical Information of China (English)

    Soo-Ho Choi; Kyu-Jin Park; So-Yeon Kim; Dong-Hwa Choi; Jung-Min Park; Soon B. Hwang

    2005-01-01

    AIM: We have previously demonstrated that hepatitis C virus (HCV) core protein is efficiently released into the culture medium in insect cells. The objective of this study is to characterize the HCV core secretion in insect cells.METHODS: We constructed recombinant baculoviruses expressing various-length of mutant core proteins, expressed these proteins in insect cells, and examined core protein secretion in insect cells.RESULTS: Only wild type core was efficiently released into the culture medium, although the protein expression level of wild type core was lower than those of other mutant core proteins. We found that the shorter form of the core construct expressed the higher level of protein. However, if more than 18 amino acids of the core were truncated at the C-terminus,core proteins were no longer seareted into the culture medium.Membrane flotation data show that the secreted core proteins are associated with the cellular membrane protein, indicating that HCV core is secreted as a membrane complex.CONCLUSION: The C-terminal 18 amino acids of HCV core were crucial for core secretion into the culture media.Since HCV replication occurs on lipid raft membrane structure,these results suggest that HCV may utilize a unique core release mechanism to escape immune surveillance, thereby potentially representing the feature of HCV morphogenesis.

  18. Secretin and its C-terminal hexapeptide potentiates insulin release in mouse islets

    DEFF Research Database (Denmark)

    Kofod, Hans; Hansen, B; Lernmark, A;

    1986-01-01

    Peptides representing the C-terminal end of secretin were synthetized and their effects tested along with secretin on column-perifused isolated mouse pancreatic islets. Insulin release induced by 10 mmol/l D-glucose was potentiated by secretin tested in a concentration range of 0.01-10 micrograms...... [Val-NH2, S-(24-27)] or only marginally [S-(26-27), S-(23-27)] potentiating effects on insulin release in the presence of 10 mmol/l D-glucose. The effects of secretin and S-(22-27) were not influenced by 2 mmol/l glutamine. The intact hormone and the five synthetic peptides as well as Val-NH2 had...... no stimulatory effect on islet glutamate dehydrogenase activity. In fact, S-(23-27), S-(24-27), and S-(25-27) inhibited the islet glutamate dehydrogenase activity, the activation by which amino acids and amino acid derivatives are known to elicit a potentiation of insulin release. Our results suggest that the C...

  19. Comparative evaluation of recombinant HSP70 (N & C-terminal) fragments in the detection of equine trypanosomosis.

    Science.gov (United States)

    Kumar, Jaideep; Chaudhury, A; Yadav, S C

    2016-06-15

    Trypanosomosis (Surra) is an economically important disease caused by Trypanosoma evansi which is an extracellular parasite present in the plasma, tissues and other body fluids of a wide range of hosts including domesticated animals. Currently, serological reports are based on detection of antibodies by ELISA using whole cell lysate (WCL) antigen, which has a limitation of persistence of anti-trypanosomal antibodies after successful treatment of the disease. Moreover, it has some ethical issues also like requirement of mice for in vivo maintenance of parasite for preparing the antigen. Therefore, in the present study, an attempt was made to evaluate the in vitro production of recombinant heat shock protein 70 (HSP70) for detection of antibodies in experimentally infected ponies. The amino acid sequence analysis of HSP70 revealed that N-terminal region of the protein was highly conserved while the C-terminal region was most divergent. The four different regions of HSP70 protein viz. HSP-1, HSP-2, HSP-3 and HSP-4 were cloned and expressed, among which HSP-1 (N-terminal region) & HSP-2 (C-terminal region) were truncated while HSP-3 & HSP-4 were complete C-terminal proteins. The recombinant fragments were probed with sequentially pooled experimental serum samples where antibodies were detected in these fragments from 10(th) day post infection till the termination of the experiment. Further, these recombinant fragments were also comparatively evaluated with WCL antigen in ELISA using experimental as well as field serum samples. It was observed that after successful treatment of infected ponies, there was a sharp fall in antibodies (within 90 days) when tested with recombinant HSP's fragments, while antibodies persisted even after 469 days when tested against WCL antigen. The sensitivity and specificity of all HSP70 fragments were also estimated from field serum samples with reference to WCL antigen ELISA. The HSP-1 showed minimum sensitivity (41.03%) among all the

  20. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  1. Relevance of amyloid precursor-like protein 2 C-terminal fragments in pancreatic cancer cells

    OpenAIRE

    PETERS, HALEY L.; Tuli, Amit; Wang, Xiaojian; Liu, Cuiling; Pan, Zenggang; Ouellette, Michel M.; Hollingsworth, Michael A.; MacDonald, Richard G.; Solheim, Joyce C.

    2012-01-01

    In some cellular systems, particularly neurons, amyloid precursor-like protein 2 (APLP2), and its highly homologous family member amyloid precursor protein (APP), have been linked to cellular growth. APLP2 and APP undergo regulated intramembrane proteolysis to produce C-terminal fragments. In this study, we found comprehensive expression of APLP2 C-terminal fragments in a panel of pancreatic cancer cell lines; however, APP C-terminal fragments were notably limited to the BxPC3 cell line. Exte...

  2. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Science.gov (United States)

    Austin, Ryan S; Provart, Nicholas J; Cutler, Sean R

    2007-01-01

    kingdoms and across eukaryotes. Motifs of note include a serine-acidic peptide (DSD*) as well as several lysine enriched motifs found in nearly all eukaryotic genomes examined. Conclusion We have successfully generated a high confidence representation of eukaryotic motifs anchored at the C-terminus. A high incidence of true-positives in our results suggests that several previously unidentified tripeptide patterns are strong candidates for representing novel peptide motifs of a widely employed nature in the C-terminal biology of eukaryotes. Our application of comparative genomics, statistical over-representation and the adjustment for protein family homology has generated several hypotheses concerning the C-terminal topology as it pertains to sorting and potential protein interaction signals. This approach to background reduction could be expanded for application to protein motif prediction in the protein interior. A parallel N-terminal analysis is presented as supplementary data. PMID:17594486

  3. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    Institute of Scientific and Technical Information of China (English)

    Gulsen Tozsin

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul-fide-bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu-tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul-fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  4. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    Science.gov (United States)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  5. Paracellular permeation-enhancing effect of AT1002 C-terminal amidation in nasal delivery

    Directory of Open Access Journals (Sweden)

    Song KH

    2015-03-01

    Full Text Available Keon-Hyoung Song,1 Sang-Bum Kim,2 Chang-Koo Shim,2 Suk-Jae Chung,2 Dae-Duk Kim,2 Sang-Ki Rhee,1 Guang J Choi,1 Chul-Hyun Kim,3 Kiyoung Kim4 1Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; 3Department of Sports Medicine, 4Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea Background: The identification of permeation enhancers has gained interest in the development of drug delivery systems. A six-mer peptide, H-FCIGRL-OH (AT1002, is a tight junction modulator with promising permeation-enhancing activity. AT1002 enhances the transport of molecular weight markers or agents with low bioavailability with no cytotoxicity. However, AT1002 is not stable in neutral pH or after incubation under physiological conditions, which is necessary to fully uncover its permeation-enhancing effect. Thus, we increased the stability or mitigated the instability of AT1002 by modifying its terminal amino acids and evaluated its subsequent biological activity.Methods: C-terminal-amidated (FCIGRL-NH2, Pep1 and N-terminal-acetylated (Ac-FCIGRL, Pep2 peptides were analyzed by liquid chromatography–mass spectrometry. We further assessed cytotoxicity on cell monolayers, as well as the permeation-enhancing activity following nasal administration of the paracellular marker mannitol.Results: Pep1 was nontoxic to cell monolayers and showed a relatively low decrease in peak area compared to AT1002. In addition, administration of mannitol with Pep1 resulted in significant increases in the area under the plasma concentration–time curve and peak plasma concentration at 3.63-fold and 2.68-fold, respectively, compared to mannitol alone. In contrast, no increase in mannitol concentration was shown with mannitol/AT1002 or mannitol/Pep2 compared to the control. Thus, Pep1 increased

  6. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  7. C-terminal engineering of CXCL12 and CCL5 chemokines: functional characterization by electrophysiological recordings.

    Directory of Open Access Journals (Sweden)

    Antoine Picciocchi

    Full Text Available Chemokines are chemotactic cytokines comprised of 70-100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K(+ channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures.

  8. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau.

    Science.gov (United States)

    Scaramozzino, Francesca; Peterson, Dylan W; Farmer, Patrick; Gerig, J T; Graves, Donald J; Lew, John

    2006-03-21

    Alzheimer's disease most closely correlates with the appearance of the neurofibrillary tangles (NFTs), intracellular fibrous aggregates of the microtubule-associated protein, tau. Under native conditions, tau is an unstructured protein, and its physical characterization has revealed no clues about the three-dimensional structural determinants essential for aggregation or microtubule binding. We have found that the natural osmolyte trimethylamine N-oxide (TMAO) induces secondary structure in a C-terminal fragment of tau (tau(187)) and greatly promotes both self-aggregation and microtubule (MT) assembly activity. These processes could be distinguished, however, by a single-amino acid substitution (Tyr(310) --> Ala), which severely inhibited aggregation but had no effect on MT assembly activity. The inability of this mutant to aggregate could be completely reversed by TMAO. We propose a model in which TMAO induces partial order in tau(187), resulting in conformers that may correspond to on-pathway intermediates of either aggregation or tau-dependent MT assembly or both. These studies set the stage for future high-resolution structural characterization of these intermediates and the basis by which Tyr(310) may direct pathologic versus normal tau function. PMID:16533051

  9. New Catalyst for Removal of N2O from Nitric Acid Plant Tail Gases

    OpenAIRE

    Obalová, L.

    2013-01-01

    In the present work, the Co-Mn-Al mixed oxide modified by K was prepared in the pilot plant scale for the first time and tested in real conditions. Result of N2O catalytic decomposition in the pilot plant reactor installed at the bypassed tail gas from the nitric production plant are shown and obtained kinetic datae used for modelling of full scale reactor for N2O emissions abatement.

  10. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    International Nuclear Information System (INIS)

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P21, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress

  11. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Membrane-associated decay accelerating factor (DAF) of human erythrocytes (E/sup hu/) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the E/sup hu/ acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact E/sup hu/ with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated for urine. Nitrous acid deamination cleavage of E/sup hu/ DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H] ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. The findings indicate that DAF and AChE are anchored in E/sup hu/ by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi

  12. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  13. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.

    Directory of Open Access Journals (Sweden)

    Mala V Rao

    Full Text Available Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M(tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M(tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M(tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.

  14. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    Directory of Open Access Journals (Sweden)

    Noonan James P

    2001-07-01

    Full Text Available Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10 or PML (promyelocytic leukemia nuclear bodies, where it associates with TOPIIIα, and to the nucleolus. Results This report demonstrates that the N-terminal domain of BLM is responsible for localization of the protein to the nuclear bodies, while the C-terminal domain directs the protein to the nucleolus. Deletions of the N-terminal domain of BLM have little effect on sister chromatid exchange frequency and chromosome stability as compared to helicase and C-terminal mutations which can increase SCE frequency and chromosome abnormalities. Conclusion The helicase activity and the C-terminal domain of BLM are critical for maintaining genomic stability as measured by the sister chromatid exchange assay. The localization of BLM into the nucleolus by the C-terminal domain appears to be more important to genomic stability than localization in the nuclear bodies.

  15. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    Energy Technology Data Exchange (ETDEWEB)

    Serek, Robert; Forwood, Jade K. [School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Hume, David A. [School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072 (Australia); Cooperative Research Centre for Chronic Inflammatory Diseases, University of Queensland, Brisbane, Queensland 4072 (Australia); Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072 (Australia); Martin, Jennifer L.; Kobe, Bostjan, E-mail: b.kobe@uq.edu.au [School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072 (Australia); Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072 (Australia)

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  16. Contribution of Chitinase A’s C-Terminal Vacuolar Sorting Determinant to the Study of Soluble Protein Compartmentation

    Directory of Open Access Journals (Sweden)

    Egidio Stigliano

    2014-06-01

    Full Text Available Plant chitinases have been studied for their importance in the defense of crop plants from pathogen attacks and for their peculiar vacuolar sorting determinants. A peculiarity of the sequence of many family 19 chitinases is the presence of a C-terminal extension that seems to be important for their correct recognition by the vacuole sorting machinery. The 7 amino acids long C-terminal vacuolar sorting determinant (CtVSD of tobacco chitinase A is necessary and sufficient for the transport to the vacuole. This VSD shares no homology with other CtVSDs such as the phaseolin’s tetrapeptide AFVY (AlaPheValTyr and it is also sorted by different mechanisms. While a receptor for this signal has not yet been convincingly identified, the research using the chitinase CtVSD has been very informative, leading to the observation of phenomena otherwise difficult to observe such as the presence of separate vacuoles in differentiating cells and the existence of a Golgi-independent route to the vacuole. Thanks to these new insights in the endoplasmic reticulum (ER-to-vacuole transport, GFPChi (Green Fluorescent Protein carrying the chitinase A CtVSD and other markers based on chitinase signals will continue to help the investigation of vacuolar biogenesis in plants.

  17. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA.

    Directory of Open Access Journals (Sweden)

    Gajendradhar R Dwivedi

    Full Text Available DNA processing protein A (DprA plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA and double stranded DNA (dsDNA. Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed.

  18. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA.

    Science.gov (United States)

    Dwivedi, Gajendradhar R; Srikanth, Kolluru D; Anand, Praveen; Naikoo, Javed; Srilatha, N S; Rao, Desirazu N

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  19. Order through disorder: hyper-mobile C-terminal residues stabilize the folded state of a helical peptide. a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Kalliopi K Patapati

    Full Text Available Conventional wisdom has it that the presence of disordered regions in the three-dimensional structures of polypeptides not only does not contribute significantly to the thermodynamic stability of their folded state, but, on the contrary, that the presence of disorder leads to a decrease of the corresponding proteins' stability. We have performed extensive 3.4 µs long folding simulations (in explicit solvent and with full electrostatics of an undecamer peptide of experimentally known helical structure, both with and without its disordered (four residue long C-terminal tail. Our simulations clearly indicate that the presence of the apparently disordered (in structural terms C-terminal tail, increases the thermodynamic stability of the peptide's folded (helical state. These results show that at least for the case of relatively short peptides, the interplay between thermodynamic stability and the apparent structural stability can be rather subtle, with even disordered regions contributing significantly to the stability of the folded state. Our results have clear implications for the understanding of peptide energetics and the design of foldable peptides.

  20. Automation of C-terminal sequence analysis of 2D-PAGE separated proteins

    Directory of Open Access Journals (Sweden)

    P.P. Moerman

    2014-06-01

    Full Text Available Experimental assignment of the protein termini remains essential to define the functional protein structure. Here, we report on the improvement of a proteomic C-terminal sequence analysis method. The approach aims to discriminate the C-terminal peptide in a CNBr-digest where Met-Xxx peptide bonds are cleaved in internal peptides ending at a homoserine lactone (hsl-derivative. pH-dependent partial opening of the lactone ring results in the formation of doublets for all internal peptides. C-terminal peptides are distinguished as singlet peaks by MALDI-TOF MS and MS/MS is then used for their identification. We present a fully automated protocol established on a robotic liquid-handling station.

  1. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin.

    Science.gov (United States)

    Zik, Moriyah; Fridmann-Sirkis, Yael; Fromm, Hillel

    2006-05-01

    Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.

  2. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...... expression vectors encoding either cystatin C, KDEL extended cystatin C, or cystatin C extended with a control sequence. It is concluded that cystatin C with the KDEL tetrapeptide as a C-terminal extension is retained intracellularly without apparent accumulation of the molecule....

  3. Structure of the C-terminal fragment 300-320 of the rat angiotensin II AT1A receptor and its relevance with respect to G-protein coupling.

    Science.gov (United States)

    Franzoni, L; Nicastro, G; Pertinhez, T A; Tatò, M; Nakaie, C R; Paiva, A C; Schreier, S; Spisni, A

    1997-04-11

    Angiotensin II AT1A receptor is coupled to G-protein, and the molecular mechanism of signal transduction is still unclear. The solution conformation of a synthetic peptide corresponding to residues 300-320 of the rat AT1A receptor, located in the C-terminal cytoplasmic tail and indicated by mutagenesis work to be critical for the G-protein coupling, has been investigated by circular dichroism (CD), nuclear magnetic resonance (NMR) and restrained molecular dynamics calculations. The CD data indicate that, in acidic water, at concentration below 0.8 mM, the peptide exists in a predominantly coil structure while at higher concentration it can form helical aggregates; addition of small amounts of trifluoroethanol induces a secondary structure, mostly due to the presence of helical elements. Using NMR-derived constraints, an ensemble of conformers for the peptide has been determined by restrained molecular dynamics calculations. Analysis of the converged three-dimensional structures indicates that a significant population of them adopts an amphipathic alpha-helical conformation that, depending upon experimental conditions, presents a variable extension in the stretch Leu6-Tyr20. An equilibrium with nonhelical structured conformers is also observed. We suggest that the capability of the peptide to modulate its secondary structure as a function of the medium dielectric constant, as well as its ability to form helical aggregates by means of intermolecular hydrophobic interactions, can play a significant role for G-protein activation.

  4. C-terminal interactors of the AMPA receptor auxiliary subunit Shisa9.

    Directory of Open Access Journals (Sweden)

    Anna R Karataeva

    Full Text Available Shisa9 (initially named CKAMP44 has been identified as auxiliary subunit of the AMPA-type glutamate receptors and was shown to modulate its physiological properties. Shisa9 is a type-I transmembrane protein and contains a C-terminal PDZ domain that potentially interacts with cytosolic proteins. In this study, we performed a yeast two-hybrid screening that yielded eight PDZ domain-containing interactors of Shisa9, which were independently validated. The identified interactors are known scaffolding proteins residing in the neuronal postsynaptic density. To test whether C-terminal scaffolding interactions of Shisa9 affect synaptic AMPA receptor function in the hippocampus, we disrupted these interactions using a Shisa9 C-terminal mimetic peptide. In the absence of scaffolding interactions of Shisa9, glutamatergic AMPA receptor-mediated synaptic currents in the lateral perforant path of the mouse hippocampus had a faster decay time, and paired-pulse facilitation was reduced. Furthermore, disruption of the PDZ interactions between Shisa9 and its binding partners affected hippocampal network activity. Taken together, our data identifies novel interaction partners of Shisa9, and shows that the C-terminal interactions of Shisa9 through its PDZ domain interaction motif are important for AMPA receptor synaptic and network functions.

  5. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  6. Role of the C-terminal YG repeats of the primer-dependent streptococcal glucosyltransferase, GtfJ, in binding to dextran and mutan.

    Science.gov (United States)

    Kingston, Kim B; Allen, Donna M; Jacques, Nicholas A

    2002-02-01

    The recombinant primer-dependent glucosyltransferase GtfJ of Streptococcus salivarius possesses a C-terminal glucan-binding domain composed of eighteen 21 aa YG repeats. By engineering a series of C-terminal truncated proteins, the position at which truncation prevented further mutan synthesis was defined to a region of 43 aa, confirming that not all of the YG motifs were required for the formation of mutan by GtfJ. The role of the YG repeats in glucan binding was investigated in detail. Three proteins consisting of 3.8, 7.2 or 11.0 C-terminal YG repeats were expressed in Escherichia coli. Each of the three purified proteins bound to both the 1,6-alpha-linked glucose residues of dextran and the 1,3-alpha-linked glucose residues of mutan, indicating that a protein consisting of nothing but 3.8 YG repeats could attach to either substrate. Secondary structure predictions of the primary amino acid sequence suggested that 37% of the amino acids were capable of forming a structure such that five regions of beta-sheet were separated by regions capable of forming beta-turns and random coils. CD spectral analysis showed that the purified 3.8 YG protein possessed an unordered secondary structure with some evidence of possible beta-sheet formation and that the protein maintained this relatively unordered structure on binding to dextran. PMID:11832518

  7. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Nielsen, Morten Schallburg; Brejning, Jeanette; García, R.;

    1997-01-01

    -terminal folding domain binds to alpha2MR/LRP, it remains uncertain whether it binds to heparin and to HSPG. To identify segments important for binding to alpha2MR/LRP and to clarify possible binding to heparin, we produced constructs of the human C-terminal folding domain, LpL-(313-448), and of the fragment Lp....../LRP was essentially abolished following deletion of residues 404-430, and pretreatment of CHO cells with the peptide comprising aa 402-423 inhibited the binding of LpL-(313-448). We conclude that the C-terminal folding domain of human LpL has a site for binding to heparin and to HSPG, presumably involving amino acids...... within residues 404-430. Two segments of the domain are necessary for efficient binding to alpha2MR/LRP, one comprising residues 380-384 and another overlapping the segment important for binding to heparin....

  8. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein: Importance of the C-terminal unstructured tail

    OpenAIRE

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisné, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interac...

  9. PI(4P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail.

    Directory of Open Access Journals (Sweden)

    Kai Jiang

    2016-02-01

    Full Text Available In Hedgehog (Hh signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog receptor complex relieves Ptc inhibition on Smoothened (Smo. A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4P. Increased levels of PI(4P promote, whereas decreased levels of PI(4P inhibit, Hh signaling activity. We further found that PI(4P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH domain of G protein-coupled receptor kinase 2 (Gprk2 as an essential component for enriching PI(4P and facilitating Smo activation. PI(4P also binds mouse Smo (mSmo and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4P but decreases the interaction between Ptc and PI(4P, indicating that, in addition to promoting PI(4P production, Hh regulates the pool of PI(4P associated with Ptc and Smo.

  10. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  11. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Lottermoser, Bernd G., E-mail: Bernd.Lottermoser@utas.edu.au [School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001 (Australia); Ashley, Paul M. [Earth Sciences, University of New England, Armidale, New South Wales 2351 (Australia)

    2011-10-15

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. - Highlights: > In tropical Australia, Eleocharis equisetina grows in an acid mine tailings pond. > Eleocharis equisetina excludes environmentally significant elements from its biomass. > Inspections of equatorial mined lands can reveal metal-excluding aquatic macrophytes. > Such plants are of use in land and water remediation in tropical regions. - The metal-excluding aquatic macrophyte Eleocharis equisetina is of use in land and water remediation in tropical regions.

  12. Sequential on-line C-terminal sequencing of peptides based on carboxypeptidase Y digestion and optically gated capillary electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Tian, Miaomiao; Zhang, Ning; Liu, Xiaoxia; Guo, Liping; Yang, Li

    2016-08-12

    We report a novel method for sequential on-line C-terminal sequencing of peptides, which combines carboxypeptidase Y (CPY) digestion with on-line derivatization and optically gated capillary electrophoresis with laser-induced fluorescence detection (OGCE-LIF). Various factors that may affect the C-terminal sequencing were investigated and optimized. High repeatability of on-line derivatization and the sequential OGCE-LIF assay of amino acids (AAs) was achieved with relative standard deviation (RSD) (n=20) less than 1.5% and 3.2% for migration time and peak height, respectively. A total of 13 AAs was efficiently separated in the present study, indicating that the method can be used for sequencing of peptides consisting of the 13 AAs studied. Using two synthesized N-terminally blocked peptides as test examples, we show that the present method can on-line monitor the released AAs with a temporal resolution of 50s during the entire CPY digestion process. The rates of AA release as a function of digestion time were easily measured; thus, the AA sequence of the peptide was determined with just one OGCE assay. Our study indicates the present approach is an effective, reliable, and convenient method for rapid analysis of the C-terminal sequence of peptides, with potential application in peptide analysis and proteome research. PMID:27425760

  13. Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Teresa M Treweek

    Full Text Available BACKGROUND: Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including alphaB-crystallin, play a role in the prevention of protein deposition. METHODOLOGY/PRINCIPAL FINDINGS: A series of site-directed mutants of the human molecular chaperone, alphaB-crystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of alphaB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of alphaB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. CONCLUSIONS/SIGNIFICANCE: Together, our results highlight the important role of the C-terminal region of alphaB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify alphaB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation.

  14. Modulation of voltage-gated potassium Kv2.1 via the cytoplasmic C terminal

    Institute of Scientific and Technical Information of China (English)

    Man Jin; Peiyuan Lu

    2011-01-01

    Voltage-gated potassium channels comprise 12 subtypes (Kv1-Kv12). Kv2.1, which is expressed in most mammalian central neurons, provides the majority of delayed-rectifier K current in cortical and hippocampal pyramidal neurons, and plays an especially prominent role in repolarizing membrane potential, as well as in facilitation of exocytosis. Kv2.1-encoded K efflux is essential for neuronal apoptosis programming. The human form of the Kv2.1 potassium channel contains large intracellular regions. The cytoplasmic C-terminal plays a key role in modulating Kv2.1 gating. The present manuscript summarized Kv2.1 structure and modulation in neurons and analyzed the roles of the cytoplasmic C-terminal.

  15. C-Terminally modified peptides via cleavage of the HMBA linker by O-, i>N>- or S-nucleophiles

    DEFF Research Database (Denmark)

    Hansen, Jonas; Diness, Frederik; Meldal, Morten Peter

    2016-01-01

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high puri...

  16. The C-Terminal RpoN Domain of sigma54 Forms an unpredictedHelix-Turn-Helix Motif Similar to domains of sigma70

    Energy Technology Data Exchange (ETDEWEB)

    Doucleff, Michaeleen; Malak, Lawrence T.; Pelton, Jeffrey G.; Wemmer, David E.

    2005-11-01

    The ''{delta}'' subunit of prokaryotic RNA-polymerase allows gene-specific transcription initiation. Two {sigma} families have been identified, {sigma}{sup 70} and {sigma}{sup 54}, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the {sigma}{sup 70}-type factors have been well characterized structurally by x-ray crystallography, no high-resolution structural information is available for the {sigma}{sup 54}-type factors. Here we present the NMR derived structure of the C-terminal domain of {sigma}{sup 54} from Aquifex aeolicus. This domain (Thr323 to Gly389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the {sigma}{sup 70}-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. This structure's homology with other DNA binding proteins, combined with previous biochemical data, suggest how the C-terminal domain of {sigma}{sup 54} binds to DNA.

  17. Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk.

    Science.gov (United States)

    Qian, Zhi-Gang; Zhou, Ming-Liang; Song, Wen-Wen; Xia, Xiao-Xia

    2015-11-01

    Stimuli-responsive hydrogels have great potentials in biomedical and biotechnological applications. Due to the advantages of precise control over molecular weight and being biodegradable, protein-based hydrogels and their applications have been extensively studied. However, protein hydrogels with dual thermosensitive properties are rarely reported. Here we present the first report of dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. First, we found that recombinant C-terminal domain of major ampullate spidroin 1 (MaSp1) of the spider Nephila clavipes formed hydrogels when cooled to approximately 2 °C or heated to 65 °C. The conformational changes and self-assembly of the recombinant protein were studied to understand the mechanism of the gelation processes using multiple methods. It was proposed that the gelation in the low-temperature regime was dominated by hydrogen bonding and hydrophobic interaction between folded protein molecules, whereas the gelation in the high-temperature regime was due to cross-linking of the exposed hydrophobic patches resulting from partial unfolding of the protein upon heating. More interestingly, genetic fusion of the C-terminal domain to a short repetitive region of N. clavipes MaSp1 resulted in a chimeric protein that formed a hydrogel with significantly improved mechanical properties at low temperatures between 2 and 10 °C. Furthermore, the formation of similar hydrogels was observed for the recombinant C-terminal domains of dragline silk of different spider species, thus demonstrating the conserved ability to form dual thermosensitive hydrogels. These findings may be useful in the design and construction of novel protein hydrogels with tunable multiple thermosensitivity for applications in the future.

  18. REE behavior and effect factors in AMD-type acidic groundwater at sulfide tailings pond, BS nickel mine, W.A.

    Institute of Scientific and Technical Information of China (English)

    LEI Liang-qi; SONG Ci-an; XIE Xiang-li; LI Yan-hong

    2008-01-01

    AMD(Acid Mine Drainage)-type acidic groundwater (pH<4) from oxidizing sulfide tailings in BS nickel mine (Western Australia) is of higher total rare earth element(REE) contents and Ce enrichment (PAAS normalization), different from setting groundwater (pH>6.5, with lower total REE contents, Ce depletion). While the AMD contaminated groundwater (pH=4.0-6.5) around tailings pond is characterized by transition from acidic to setting groundwater in total REE content, and associated with Ce depletion (like setting groundwater). The light REE in all type groundwater shows up depletion, but its depleted extent in acidic groundwater is more remarkable. This work indicates that REE behavior in AMD-type acidic groundwater is controlled mainly by pH value and metal (Al, Mn and Fe) contents. And the critical pH value that affects REE behavior in ground acidic water would be 4, lower than the previous value (pH=5) that has been believed prevalently in surface acidic waters. The pH could affect REE behavior in groundwater by controlling the solubility of metal (Al, Mn and Fe) hydroxides and the valence of cerium. Finally, light REE depletion in acidic groundwater may due to element affinity. High content Al (affinity with heavy REE) and low content Fe (affinity with light REE) may lead to heavy REE enrichment while light REE relative depletion in water.

  19. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  20. Combined Triplex/Duplex Invasion of Double-Stranded DNA by "Tail-Clamp" Peptide Nucleic Acid

    DEFF Research Database (Denmark)

    Bentin, Thomas; Larsen, H. J.; Nielsen, Peter E.

    2003-01-01

    that this was due to a dramatically reduced dissociation rate of such complexes. Increasing the PNA net charge also increased binding efficiency, but unexpectedly, this increase was much more pronounced for tailless-clamp PNAs than for tail-clamp PNAs. Finally, shortening the tail-clamp PNA triplex invasion moiety...

  1. Analysis of the piggyBac transposase reveals a functional nuclear targeting signal in the 94 c-terminal residues

    Directory of Open Access Journals (Sweden)

    Fraser Tresa S

    2008-08-01

    Full Text Available Abstract Background The piggyBac transposable element is a popular tool for germ-line transgenesis of eukaryotes. Despite this, little is known about the mechanism of transposition or the transposase (TPase itself. A thorough understanding of just how piggyBac works may lead to more effective use of this important mobile element. A PSORTII analysis of the TPase amino acid sequence predicts a bipartite nuclear localization signal (NLS near the c-terminus, just upstream of a putative ZnF (ZnF. Results We fused the piggyBac TPase upstream of and in-frame with the enhanced yellow fluorescent protein (EYFP in the Drosophila melanogaster inducible metallothionein protein. Using Drosophila Schneider 2 (S2 cells and the deep red fluorescent nuclear stain Draq5, we were able to track the pattern of piggyBac localization with a scanning confocal microscope 48 hours after induction with copper sulphate. Conclusion Through n and c-terminal truncations, targeted internal deletions, and specific amino acid mutations of the piggyBac TPase open reading frame, we found that not only is the PSORTII-predicted NLS required for the TPase to enter the nucleus of S2 cells, but there are additional requirements for negatively charged amino acids a short length upstream of this region for nuclear localization.

  2. Synaptic Vesicle Tethering and the CaV2.2 Distal C-terminal

    Directory of Open Access Journals (Sweden)

    Fiona K Wong

    2014-03-01

    Full Text Available . Evidence that synaptic vesicles (SVs can be gated by a single voltage sensitive calcium channel (CaV2.2 predict a molecular linking mechanism or ‘tether’[Stanley 1993]. Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel [Kaeser et al. 2011;Wong, Li, and Stanley 2013] while genetic analysis proposed a double tether mechanism via RIM: directly to the C terminus PDZ ligand domain or indirectly via a more proximal proline rich site [Kaeser et al. 2011]. Using a novel in vitro SV-PD binding assay, we reported that SVs bind to a fusion protein comprising the C-terminal distal third (C3, aa 2137-2357 [Wong, Li, and Stanley 2013]. Here we limit the binding site further to the last 58 aa, beyond the proline rich site, by the absence of SV capture by a truncated C3 fusion protein (aa 2137-2299. To test PDZ-dependent binding we generated two C terminus-mutant C3 fusion proteins and a mimetic blocking peptide (H-WC, aa 2349-2357 and validated these by elimination of MINT-1 or RIM binding. Persistence of SV capture with all three fusion proteins or with the full length C3 protein but in the presence of the blocking peptide, demonstrated that SVs can bind to the distal C-terminal via a PDZ-independent mechanism. These results were supported in situ by normal SV turnover in H-WC-loaded synaptosomes, as assayed by a novel peptide cryoloading method. Thus, SVs tether to the CaV2.2 C-terminal within a 49 aa region immediately prior to the terminus PDZ ligand domain. Long tethers that could reflect extended C termini were imaged by electron microscopy of synaptosome ghosts. To fully account for SV tethering we propose a model where SVs are initially captured, or ‘grabbed’, from the cytoplasm by a binding site on the distal region of the channel C-terminal and are then retracted to be ‘locked’ close to the channel by a second attachment mechanism in preparation for single channel domain gating.

  3. Probing the Impact of the EchinT C-Terminal Domain on Structure and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    S Bardaweel; J Pace; T Chou; V Cody; C Wagner

    2011-12-31

    Histidine triad nucleotide binding protein (Hint) is considered as the ancestor of the histidine triad protein superfamily and is highly conserved from bacteria to humans. Prokaryote genomes, including a wide array of both Gram-negative bacteria and Gram-positive bacteria, typically encode one Hint gene. The cellular function of Hint and the rationale for its evolutionary conservation in bacteria have remained a mystery. Despite its ubiquity and high sequence similarity to eukaryote Hint1 [Escherichia coli Hint (echinT) is 48% identical with human Hint1], prokaryote Hint has been reported in only a few studies. Here we report the first conformational information on the full-length N-terminal and C-terminal residues of Hint from the E. coli complex with GMP. Structural analysis of the echinT-GMP complex reveals that it crystallizes in the monoclinic space group P2{sub 1} with four homodimers in the asymmetric unit. Analysis of electron density for both the N-terminal residues and the C-terminal residues of the echinT-GMP complex indicates that the loops in some monomers can adopt more than one conformation. The observation of conformational flexibility in terminal loop regions could explain the presence of multiple homodimers in the asymmetric unit of this structure. To explore the impact of the echinT C-terminus on protein structure and catalysis, we conducted a series of catalytic radiolabeling and kinetic experiments on the C-terminal deletion mutants of echinT. In this study, we show that sequential deletion of the C-terminus likely has no effect on homodimerization and a modest effect on the secondary structure of echinT. However, we observed a significant impact on the folding structure, as reflected by a significant lowering of the T{sub m} value. Kinetic analysis reveals that the C-terminal deletion mutants are within an order of magnitude less efficient in catalysis compared to wild type, while the overall kinetic mechanism that proceeds through a fast step

  4. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    Science.gov (United States)

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  5. Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings

    Science.gov (United States)

    Solís-Domínguez, Fernando A.; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2011-01-01

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p < 0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  6. C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity.

    Science.gov (United States)

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  7. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    Science.gov (United States)

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  8. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    Science.gov (United States)

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer. PMID:27156192

  9. A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum

    OpenAIRE

    Lichang Wu; Yu Sun; Liqiao Ma; Jun Zhu; Baoxia Zhang; Qingjie Pan; Yuyin Li; Huanqi Liu; Aipo Diao; Yinchuan Li

    2016-01-01

    The Bestrophin family has been characterized as Cl− channels in mammals and Na+ channels in bacteria, but their exact physiological roles remian unknown. In this study, a natural C-terminally truncated variant of mouse Bestrophin 3 (Best3V2) expression in myoblasts and muscles is demonstrated. Unlike full-length Best3, Best3V2 targets the two important intracellular Ca stores: the lysosome and the ER. Heterologous overexpression leads to lysosome swelling and renders it less acidic. Best3V2 o...

  10. A Region Near the C-Terminal End of Escherichia coli DNA Helicase II Is Required for Single-Stranded DNA Binding

    OpenAIRE

    MECHANIC, LEAH E.; Latta, Marcy E.; Matson, Steven W.

    1999-01-01

    The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDΔ107C (deletion of the last 107 C-terminal amino acids), UvrDΔ102C, and UvrDΔ40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDΔ107C and UvrDΔ102C failed to substitute for the wild-t...

  11. Functional implications of C-terminus of TBX5 with high homology to C-terminal domain of yeast DNA-directed RNA polymerase Ⅱ largest subunit

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-ren; GONG Li-guo; GENG Wen-qing; QIU Guang-rong; SUN Kai-lai

    2008-01-01

    @@ TBX5, as a member of the T-box-containing transcription factor family, encodes a protein of 518 amino acids and is expressed in the embryonic heart and developing limb tissues.1 The coding region of TBX5 cDNA is 1.5 kb with eight exons including the N-terminal portion, the DNA binding domain and C-terminal region. We reported that the abnormality in transcription level of the TbX5 gene might be the mechanism underlying human simple congenital heart disease in the absence of TBX5 mutations.

  12. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Science.gov (United States)

    Williams, Alison A; Mehler, Vera J; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  13. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Directory of Open Access Journals (Sweden)

    Alison A Williams

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X, a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80 and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  14. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Science.gov (United States)

    Williams, Alison A; Mehler, Vera J; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  15. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    OpenAIRE

    Noonan James P; Yankiwski Victor; Neff Norma F

    2001-01-01

    Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of ...

  16. A novel PKD2L1 C-terminal domain critical for trimerization and channel function

    OpenAIRE

    Zheng, Wang; Hussein, Shaimaa; Yang, Jungwoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen

    2015-01-01

    As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does n...

  17. The crystal structures of the synthetic C-terminal octa- and dodecapeptides of trichovirin.

    Science.gov (United States)

    Gessmann, R; Benos, P; Brückner, H; Kokkinidis, M

    1999-02-01

    The structures of two synthetic peptides with sequences corresponding to the C-terminal region of the naturally occurring 14-residue peptaibol trichovirin have been determined. The crystal structures of 8- and 12-residue segments are presented and are compared with the structures of the tetrapeptide and of the 9-residue segment, which have been reported earlier. A comparison between these segments leads to the hypothesis that the three-dimensional structure of trichovirin is to a large extent determined by the properties of a periodically repeating -Aib-Pro- pattern in the sequence of the peptide.

  18. Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95.

    Science.gov (United States)

    Gudiukaitė, Renata; Gegeckas, Audrius; Kazlauskas, Darius; Citavicius, Donaldas

    2014-01-01

    GD-95 lipase from Geobacillus sp. strain 95 and its modified variants lacking N-terminal signal peptide and/or 10 or 20 C-terminal amino acids were successfully cloned, expressed and purified. To our knowledge, GD-95 lipase precursor (Pre-GD-95) is the first Geobacillus lipase possessing more than 80% lipolytic activity at 5 °C. It has maximum activity at 55 °C and displays a broad pH activity range. GD-95 lipase was shown to hydrolyze p-NP dodecanoate, tricaprylin and canola oil better than other analyzed substrates. Structural and sequence alignments of bacterial lipases and GD-95 lipase revealed that the C-terminus forms an α helix, which is a conserved structure in lipases from Pseudomonas, Clostridium or Staphylococcus bacteria. This work demonstrates that 10 and 20 C-terminal amino acids of GD-95 lipase significantly affect stability and other physicochemical properties of this enzyme, which has never been reported before and can help create lipases with more specific properties for industrial application. GD-95 lipase and its modified variants GD-95-10 can be successfully applied to biofuel production, in leather and pulp industries, for the production of cosmetics or perfumes. These lipases are potential biocatalysts in processes, which require extreme conditions: low or high temperature, strongly acidic or alkaline environment and various organic solvents.

  19. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation.

    Science.gov (United States)

    Wu, Xiaobin; García-Estrada, Carlos; Vaca, Inmaculada; Martín, Juan-Francisco

    2012-02-01

    The first step in the penicillin biosynthetic pathway is the non-ribosomal condensation of L-α-aminoadipic acid, L-cysteine and L-valine into the tripeptide δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV). This reaction is catalysed by the multienzyme ACV synthetase (ACVS), which is encoded in the filamentous fungus Penicillium chrysogenum by the pcbAB gene. This enzyme contains at least ten catalytic domains. The precise role of the C-terminal domain of this multidomain NRPS still remains obscure. The C-terminal region of ACVS bears the epimerase and the thioesterase domains and may be involved in the epimerization of LLL-ACV to LLD-ACV and in the hydrolysis of the thioester bond. In this work, the conserved motifs (3371)EGHGRE(3376) (located in the putative epimerase domain) and (3629)GWSFG(3633) (located in the thioesterase domain) were changed by site-directed-mutagenesis to LGFGLL and GWAFG, respectively. In addition, the whole thioesterase domain (230 amino acids) and the different parts of this domain were deleted. The activity of these mutant enzymes was assessed in vivo by two different procedures: i) through the quantification of bisACV produced by the fungus and ii) by quantifying the benzylpenicillin production using tailored strains of P. chrysogenum, which lack the pcbAB gene, as host strains. All indicated mutant enzymes showed lower or null activity than the control strain confirming that E3371, H3373, R3375 and E3376 belong to the epimerase active centre. Different fragments included in the C-terminal region of ACVS control thioester hydrolysis. Overexpression of the sequence encoding the ACVS integrated thioesterase domain as a separate (stand-alone) transcriptional unit complemented mutants lacking the integrated thioesterase domain, although with low ACV releasing activity, suggesting that the stand-alone thioesterease interacts with the other ACVS domains.

  20. Replacement of the C-terminal tetrapeptide (314PAPV317 to 314SSSM317) in interferon regulatory factor-2 alters its N-terminal DNA-binding activity

    Indian Academy of Sciences (India)

    Krishna Prakash; Pramod C Rath

    2010-12-01

    Interferon regulatory factor-2 (IRF-2) is an important transcription factor involved in cell growth regulation, immune response and cancer. IRF-2 can function as a transcriptional repressor and activator depending on its DNA-binding activity and protein–protein interactions. We compared the amino acid sequences of IRF-2 and found a C-terminal tetrapeptide (314PAPV317) of mouse IRF-2 to be different (314SSSM317) from human IRF-2. Recombinant GST-IRF-2 with 314PAPV317 (wild type) and 314SSSM317 (mutant) expressed in Escherichia coli were assessed for DNA-binding activity with 32P-(GAAAGT)4 by electrophoretic mobility shift assay (EMSA). Wild type- and mutant GST-IRF-2 showed similar expression patterns and immunoreactivities but different DNA-binding activities. Mutant (mt) IRF-2 formed higher-molecular-mass, more and stronger DNA–protein complexes in comparison to wild type (wt) IRF-2. Anti-IRF-2 antibody stabilized the DNA–protein complexes formed by both wt IRF-2 and mt IRF-2, resolving the differences. This suggests that PAPV and SSSM sequences at 314-317 in the C-terminal region of mouse and human IRF-2 contribute to conformation of IRF-2 and influence DNA-binding activity of the N-terminal region, indicating intramolecular interactions. Thus, evolution of IRF-2 from murine to human genome has resulted in subtle differences in C-terminal amino acid motifs, which may contribute to qualitative changes in IRF-2-dependent DNA-binding activity and gene expression.

  1. C-terminal moiety of Tudor contains its in vivo activity in Drosophila.

    Directory of Open Access Journals (Sweden)

    Joël Anne

    Full Text Available BACKGROUND: In early Drosophila embryos, the germ plasm is localized to the posterior pole region and is partitioned into the germline progenitors, known as pole cells. Germ plasm, or pole plasm, contains the polar granules which form during oogenesis and are required for germline development. Components of these granules are also present in the perinuclear region of the nurse cells, the nuage. One such component is Tudor (Tud which is a large protein containing multiple Tudor domains. It was previously reported that specific Tudor domains are required for germ cell formation and Tud localization. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the function of Tud the distribution and functional activity of fragments of Tud were analyzed. These fragments were fused to GFP and the fusion proteins were synthesized during oogenesis. Non-overlapping fragments of Tud were found to be able to localize to both the nuage and pole plasm. By introducing these fragments into a tud mutant background and testing their ability to rescue the tud phenotype, I determined that the C-terminal moiety contains the functional activity of Tud. Dividing this fragment into two parts reduces its localization in pole plasm and abolishes its activity. CONCLUSIONS/SIGNIFICANCE: I conclude that the C-terminal moiety of Tud contains all the information necessary for its localization in the nuage and pole plasm and its pole cell-forming activity. The present results challenge published data and may help refining the functional features of Tud.

  2. The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters.

    Science.gov (United States)

    Algarra, B; Han, L; Soriano-Úbeda, C; Avilés, M; Coy, P; Jovine, L; Jiménez-Movilla, M

    2016-01-01

    OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg. PMID:27601270

  3. Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA

    OpenAIRE

    Deretic, Dusanka; Schmerl, Sonia; Hargrave, Paul A.; Arendt, Anatol; McDowell, J. Hugh

    1998-01-01

    Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within ...

  4. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA

    OpenAIRE

    Akiyama, Benjamin M.; Loper, John; Najarro, Kevin; Stone, Michael D.

    2012-01-01

    The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA. Telomerase holoenzyme proteins are required to fold telomerase RNA into its active conformation. In this study, the Stone laboratory employed a combination of single-molecule FRET and RNase protection mapping to demonstrate that the C-terminal domain of the Tetrahymena telomerase holoenzyme protein p65 is essential for its RNA folding activity. RNase probin...

  5. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility.

    Science.gov (United States)

    Senda, Yoshie; Murata-Kamiya, Naoko; Hatakeyama, Masanori

    2016-07-01

    Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis. PMID:27116701

  6. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. PMID:26405031

  7. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D. [Department of Microbiology and Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada (Canada); Mymryk, Joe S., E-mail: jmymryk@uwo.ca [Department of Microbiology and Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada (Canada); Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, Ontario (Canada)

    2014-11-15

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situated between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.

  8. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    International Nuclear Information System (INIS)

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [32P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  9. Drosophila DBT Autophosphorylation of Its C-Terminal Domain Antagonized by SPAG and Involved in UV-Induced Apoptosis.

    Science.gov (United States)

    Fan, Jin-Yuan; Means, John C; Bjes, Edward S; Price, Jeffrey L

    2015-07-01

    Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations. Mutation of 6 serines and threonines in the C terminus (DBT(C/ala)) prevented autophosphorylation-dependent DBT turnover and electrophoretic mobility shifts in S2 cells. Unlike the effect of autophosphorylation on CKIδ, DBT autophosphorylation in S2 cells did not reduce its in vitro activity. Moreover, overexpression of DBT(C/ala) did not affect circadian behavior differently from wild-type DBT (DBT(WT)), and neither exhibited daily electrophoretic mobility shifts, suggesting that DBT autophosphorylation is not required for clock function. While DBT(WT) protected S2 cells and larvae from UV-induced apoptosis and was phosphorylated and degraded by the proteasome, DBT(C/ala) did not protect and was not degraded. Finally, we show that the HSP-90 cochaperone spaghetti protein (SPAG) antagonizes DBT autophosphorylation in S2 cells. These results suggest that DBT autophosphorylation regulates cell death and suggest a potential mechanism by which the circadian clock might affect apoptosis.

  10. Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB

    Energy Technology Data Exchange (ETDEWEB)

    Roujeinikova, Anna, E-mail: anna.roujeinikova@manchester.ac.uk [Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom)

    2008-04-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of a putative peptidoglycan-binding domain of H. pylori MotB, a stator component of the bacterial flagellar motor, are reported. The C-terminal domain of MotB (MotB-C) contains a putative peptidoglycan-binding motif and is believed to anchor the MotA/MotB stator unit of the bacterial flagellar motor to the cell wall. Crystals of Helicobacter pylori MotB-C (138 amino-acid residues) were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 50.8, b = 89.5, c = 66.3 Å, β = 112.5°. The crystals diffract X-rays to at least 1.6 Å resolution using a synchrotron-radiation source. Self-rotation function and Matthews coefficient calculations suggest that the asymmetric unit contains one tetramer with 222 point-group symmetry. The anomalous difference Patterson maps calculated for an ytterbium-derivative crystal using diffraction data at a wavelength of 1.38 Å showed significant peaks on the v = 1/2 Harker section, suggesting that ab initio phase information could be derived from the MAD data.

  11. Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase.

    Science.gov (United States)

    Valle, Lorena; Abatedaga, Inés; Vieyra, Faustino E Morán; Bortolotti, Ana; Cortez, Néstor; Borsarelli, Claudio D

    2015-03-16

    The role of the mobile C-terminal extension present in Rhodobacter capsulatus ferredoxin-NADP(H) reductase (RcFPR) was evaluated using steady-state and dynamic spectroscopies for both intrinsic Trp and FAD in a series of mutants in the absence of NADP(H). Deletion of the six C-terminal amino acids beyond Ala266 was combined with the replacement A266Y to emulate the structure of plastidic reductases. Our results show that these modifications of the wild-type RcFPR produce subtle global conformational changes, but strongly reduce the local rigidity of the FAD-binding pocket, exposing the isoalloxazine ring to the solvent. Thus, the ultrafast charge-transfer quenching of (1) FAD* by the conserved Tyr66 residue was absent in the mutant series, producing enhancement of the excited singlet- and triplet-state properties of FAD. This work highlights the delicate balance of the specific interactions between FAD and the surrounding amino acids, and how the functionality and/or photostability of redox flavoproteins can be modified. PMID:25641205

  12. Urea Unfolding Study of E. coli Alanyl-tRNA Synthetase and Its Monomeric Variants Proves the Role of C-Terminal Domain in Stability

    Science.gov (United States)

    Banerjee, Baisakhi; Banerjee, Rajat

    2015-01-01

    E. coli alanyl-tRNA exists as a dimer in its native form and the C-terminal coiled-coil part plays an important role in the dimerization process. The truncated N-terminal containing the first 700 amino acids (1–700) forms a monomeric variant possessing similar aminoacylation activity like wild type. A point mutation in the C-terminal domain (G674D) also produces a monomeric variant with a fivefold reduced aminoacylation activity compared to the wild type enzyme. Urea induced denaturation of these monomeric mutants along with another alaRS variant (N461 alaRS) was studied together with the full-length enzyme using various spectroscopic techniques such as intrinsic tryptophan fluorescence, 1-anilino-8-naphthalene-sulfonic acid binding, near- and far-UV circular dichroism, and analytical ultracentrifugation. Aminoacylation activity assay after refolding from denatured state revealed that the monomeric mutants studied here were unable to regain their activity, whereas the dimeric full-length alaRS gets back similar activity as the native enzyme. This study indicates that dimerization is one of the key regulatory factors that is important in the proper folding and stability of E. coli alaRS. PMID:26617997

  13. Urea Unfolding Study of E. coli Alanyl-tRNA Synthetase and Its Monomeric Variants Proves the Role of C-Terminal Domain in Stability

    Directory of Open Access Journals (Sweden)

    Baisakhi Banerjee

    2015-01-01

    Full Text Available E. coli alanyl-tRNA exists as a dimer in its native form and the C-terminal coiled-coil part plays an important role in the dimerization process. The truncated N-terminal containing the first 700 amino acids (1–700 forms a monomeric variant possessing similar aminoacylation activity like wild type. A point mutation in the C-terminal domain (G674D also produces a monomeric variant with a fivefold reduced aminoacylation activity compared to the wild type enzyme. Urea induced denaturation of these monomeric mutants along with another alaRS variant (N461 alaRS was studied together with the full-length enzyme using various spectroscopic techniques such as intrinsic tryptophan fluorescence, 1-anilino-8-naphthalene-sulfonic acid binding, near- and far-UV circular dichroism, and analytical ultracentrifugation. Aminoacylation activity assay after refolding from denatured state revealed that the monomeric mutants studied here were unable to regain their activity, whereas the dimeric full-length alaRS gets back similar activity as the native enzyme. This study indicates that dimerization is one of the key regulatory factors that is important in the proper folding and stability of E. coli alaRS.

  14. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response

    Institute of Scientific and Technical Information of China (English)

    Suzanne Paz; Rongtuan Lin; John Hiscott; Myriam Vilasco; Steven J Werden; Meztli Arguello; Deshanthe Joseph-Pillai; Tiejun Zhao; Thi Lien-Anh Nguyen; Qiang Sun; Eliane F Meurs

    2011-01-01

    Recognition of viral RNA structures by the cytosolic sensor retinoic acid-inducible gene-Ⅰ (RIG-Ⅰ) results in the activation of signaling cascades that culminate with the generation of the type Ⅰ interferon (IFN) antiviral response. Onset of antiviral and inflammatory responses to viral pathogens necessitates the regulated spatiotemporal recruitment of signaling adapters,kinases and transcriptional proteins to the mitochondrial antiviral signaling protein (MAVS). We previously demonstrated that the serine/threonine kinase IKKε is recruited to the C-terminal region of MAVS following Sendal or vesicular stomatitis virus (VSV) infection,mediated by Lys63-linked polyubiquitination of MAVS at Lys500,resulting in inhibition of downstream IFN signaling (Paz et al,Mol Cell Biol,2009). In this study,we demonstrate that C-terminus of MAVS harbors a novel TRAF3-binding site in the aa450-468 region of MAVS. A consensus TRAF-interacting motif (TIM),455-PEENEY-460,within this site is required for TRAF3 binding and activation of IFN antiviral response genes,whereas mutation of the TIM eliminates TRAF3 binding and the downstream IFN response. Reconstitution of MAVS-/- mouse embryo fibroblasts with a construct expressing a TIM-mutated version of MAVS failed to restore the antiviral response or block VSV replication,whereas wild-type MAVS reconstituted antiviral inhibition of VSV replication. Furthermore,recruitment of IKKε to an adjacent C-terminal site (aa 468-540) in MAVS via Lys500 ubiquitination decreased TRAF3 binding and protein stability,thus contributing to IKKε-mediated shutdown of the IFN response. This study demonstrates that MAVS harbors a functional C-terminal TRAF3-binding site that participates in positive and negative regulation of the IFN antiviral response.

  15. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1 Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif.

    Directory of Open Access Journals (Sweden)

    Julia Bender

    Full Text Available The corticotropin-releasing hormone receptor type 1 (CRHR1 plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK family: postsynaptic density protein 95 (PSD95, synapse-associated protein 97 (SAP97, SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2. CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1 binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.

  16. Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein.

    Directory of Open Access Journals (Sweden)

    Marcos T Oliveira

    Full Text Available Biochemical studies of the mitochondrial DNA (mtDNA replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB. Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold. Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.

  17. Tailings transformer

    Energy Technology Data Exchange (ETDEWEB)

    Bentein, Jim

    2011-06-15

    Patrick Wells, manager of research engineering at Suncor Energy, has developed a method of moving tailing fines to slopes using 3D modelling so they could be more easily dried. He improved on this by adding a polymer flocculant to the mature fine tailings (MFT), speeding up the dewatering process. Suncor plans to spend more than $1 billion over the next years to implement this technology.

  18. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Khandelia, Himanshu; Morth, J Preben;

    2010-01-01

    The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume...... regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases...... operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when...

  19. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPas

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Khandelia, Himanshu; Morth, Jens Preben;

    2010-01-01

    The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume...... regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases...... operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when...

  20. The C-terminal region of E1A: a molecular tool for cellular cartography.

    Science.gov (United States)

    Yousef, Ahmed F; Fonseca, Gregory J; Cohen, Michael J; Mymryk, Joe S

    2012-04-01

    The adenovirus E1A proteins function via protein-protein interactions. By making many connections with the cellular protein network, individual modules of this virally encoded hub reprogram numerous aspects of cell function and behavior. Although many of these interactions have been thoroughly studied, those mediated by the C-terminal region of E1A are less well understood. This review focuses on how this region of E1A affects cell cycle progression, apoptosis, senescence, transformation, and conversion of cells to an epithelial state through interactions with CTBP1/2, DYRK1A/B, FOXK1/2, and importin-α. Furthermore, novel potential pathways that the C-terminus of E1A influences through these connections with the cellular interaction network are discussed.

  1. The C-Terminal Portion of the Nucleocapsid Protein Demonstrates SARS-CoV Antigenicity

    Institute of Scientific and Technical Information of China (English)

    Guozhen Liu; Bo You; Ye Yin; Shuting Li; Hao Wang; Yan Ren; Jia Ji; Xiaoqian Zhao; Yongqiao Sun; Xiaowei Zhang; Jianqiu Fang; Shaohui Hu; Jian Wang; Siqi Liu; Jun Yu; Heng Zhu; Huanming Yang; Yongwu Hu; Peng Chen; Jianning Yin; Jie Wen; Jingqiang Wang; Liang Lin; Jinxiu Liu

    2003-01-01

    In order to develop clinical diagnostic tools for rapid detection of SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC)gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter.Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls.The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.

  2. Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-β

    Science.gov (United States)

    Baftizadeh, Fahimeh; Pietrucci, Fabio; Biarnés, Xevi; Laio, Alessandro

    2013-04-01

    By extended atomistic simulations in explicit solvent and bias-exchange metadynamics, we study the aggregation process of 18 chains of the C-terminal segment of amyloid-β, an intrinsically disordered protein involved in Alzheimer’s disease and prone to form fibrils. Starting from a disordered aggregate, we are able to observe the formation of an ordered nucleus rich in beta sheets. The rate limiting step in the nucleation pathway involves crossing a barrier of approximately 40kcal/mol and is associated with the formation of a very specific interdigitation of the side chains belonging to different sheets. This structural pattern is different from the one observed experimentally in a microcrystal of the same system, indicating that the structure of a “nascent” fibril may differ from the one of an “extended” fibril.

  3. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  4. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    Science.gov (United States)

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  5. Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure.

    Science.gov (United States)

    de-Bashan, Luz E; Hernandez, Juan-Pablo; Nelson, Karis N; Bashan, Yoav; Maier, Raina M

    2010-11-01

    Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p < 0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development.

  6. Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Nelson, Karis N.; Bashan, Yoav

    2010-01-01

    Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p<0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development. PMID:20632001

  7. The N-terminal and C-terminal portions of NifV are encoded by two different genes in Clostridium pasteurianum.

    Science.gov (United States)

    Wang, S Z; Dean, D R; Chen, J S; Johnson, J L

    1991-05-01

    The nifV gene products from Azotobacter vinelandii and Klebsiella pneumoniae share a high level of primary sequence identity and are proposed to catalyze the synthesis of homocitrate. While searching for potential nif (nitrogen fixation) genes within the genomic region located downstream from the nifN-B gene of Clostridium pasteurianum, we observed two open reading frames (ORFs) whose deduced amino acid sequences exhibit nonoverlapping sequence identity to different portions of the nifV gene products from A. vinelandii and K. pneumoniae. Conserved regions were located between the C-terminal 195 amino acid residues of the first ORF and the C-terminal portion of the nifV gene product and between the entire sequence of the second ORF (269 amino acid residues) and the N-terminal portion of the nifV gene product. We therefore designated the first ORF nifV omega and the second ORF nifV alpha. The deduced amino acid sequences of nifV omega and nifV alpha were also found to have sequence similarity when compared with the primary sequence of the leuA gene product from Salmonella typhimurium, which encodes alpha-isopropylmalate synthase. Marker rescue experiments were performed by recombining nifV omega and nifV alpha from C. pasteurianum, singly and in combination, into the genome of an A. vinelandii mutant strain which has an insertion and a deletion mutation located within its nifV gene. A NifV+ phenotype was obtained only when both the C. pasteurianum nifV omega and nifV alpha genes were introduced into the chromosome of this mutant strain. These results suggest that the nifV omega and nifV alpha genes encode separate domains, both of which are required for homocitrate synthesis in C. pasteurianum. PMID:2022611

  8. Biochemical analysis of the interactions of IQGAP1 C-terminal domain with CDC42

    Institute of Scientific and Technical Information of China (English)

    Sarah; F; Elliott; George; Allen; David; J; Timson

    2012-01-01

    AIM:To understand the interaction of human IQGAP1 and CDC42,especially the effects of phosphorylation and a cancer-associated mutation. METHODS:Recombinant CDC42 and a novel C-termi- nal fragment of IQGAP1 were expressed in,and puri- fied from,Escherichia coli.Site directed mutagenesis was used to create coding sequences for three phos- phomimicking variants(S1441E,S1443D and S1441E/ S1443D)and to recapitulate a cancer-associated mu- tation(M1231I).These variant proteins were also ex- pressed and purified.Protein-protein crosslinking using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was used to investigate interactions between the C-terminal fragment and CDC42.These interactions were quanti- fied using surface plasmon resonance measurements.Molecular modelling was employed to make predictions about changes to the structure and flexibility of the protein which occur in the cancer-associated variant. RESULTS:The novel,C-terminal region of human IQGAP1 (residues 877-1558)is soluble following expression and purification.It is also capable of binding to CDC42,as judged by crosslinking experiments.Interaction appears to be strongest in the presence of added GTP.The three phosphomimicking mutants had different affini- ties for CDC42.S1441E had an approximately 200-fold reduction in affinity compared to wild type.This was caused largely by a dramatic reduction in the associa- tion rate constant.In contrast,both S1443D and the double variant S1441E/S1443D had similar affinities to the wild type.The cancer-associated variant,M1231I, also had a similar affinity to wild type.However,in the case of this variant,both the association and dis- sociation rate constants were reduced approximately 10-fold.Molecular modelling of the M1231I variant, based on the published crystal structure of part of the C-terminal region,revealed no gross structural changes compared to wild type(root mean square deviation of 0.564over 5556 equivalent atoms).However,pre- dictions of the

  9. Interactions of the C-terminal Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    Science.gov (United States)

    Hu, Shaowen; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku(sub 70/80) complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The C-terminal domain of Ku70 (Ku70c, residues 559-609), contains an helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the Ku70c/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the subunit Ku70c and a 14 base pairs DNA duplex, whose starting structures are designed to be variable so as to mimic their different binding modes. By analyzing conformational changes and energetic properties of the complex during MD simulations, we found that interactions are preferred at DNA ends, and within the major groove, which is consistent with previous experimental investigations. In addition, the results indicate that cooperation of Ku70c with other subunits of Ku(sub 70/80) is necessary to explain the high affinity of binding as observed in experiments.

  10. C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjögren syndrome.

    Science.gov (United States)

    Howes, Jennifer; Shimizu, Yuichiro; Feige, Matthias J; Hendershot, Linda M

    2012-03-01

    Marinesco-Sjögren syndrome (MSS) is an autosomal recessive, neurodegenerative, multisystem disorder characterized by severe phenotypes developing in infancy. Recently, mutations in the endoplasmic reticulum (ER)-associated co-chaperone SIL1/BAP were identified to be the major cause of MSS. SIL1 acts as a nucleotide exchange factor for BiP, the ER Hsp70 orthologue, which plays an essential role in the folding and assembly of nascent polypeptide chains in the ER. SIL1 facilitates the release of BiP from unfolded protein substrates, enabling the subsequent folding and transport of the protein. Although most mutations leading to MSS result in deletion of the majority of the protein, three separate mutations have been identified that disrupt only the last five or six amino acids of the protein, which were assumed to encode a divergent ER retention motif. This study presents an in depth analysis of two of these mutants and reveals that the phenotype in the affected individuals is not likely to be due to depletion of SIL1 from the ER via secretion. Instead, our analyses show that the mutant proteins are particularly unstable and either form large aggregates in the ER or are rapidly degraded via the proteasome. In agreement with our findings, homology modeling suggests that the very C-terminal residues of SIL1 play a role in its structural integrity rather than its localization. These new insights might be a first step toward a possible pharmacological treatment of certain types of MSS by specifically stabilizing the mutant SIL1 protein.

  11. The role of formin tails in actin nucleation, processive elongation, and filament bundling.

    Science.gov (United States)

    Vizcarra, Christina L; Bor, Batbileg; Quinlan, Margot E

    2014-10-31

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.

  12. The Intracellular Distal Tail of the Na+/H+ Exchanger NHE1 Is Intrinsically Disordered

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Hendus-Altenburger, Ruth; Bjerre, Gabriel;

    2011-01-01

    dysfunction is implicated in several clinically important diseases. This study shows, for the first time for any carrier protein, that the distal part of the C-terminal intracellular tail (the cdt, residues V686-Q815) from human (h) NHE1 is intrinsically disordered. Further, we experimentally demonstrated...... disrupted the putative binding feature. When this mutant NHE1 was expressed in full length NHE1 in AP1 cells, it exhibited impaired trafficking to the plasma membrane. This study demonstrated that the distal regulatory domain of NHE1 is intrinsically disordered yet contains conserved regions of transient...... structure. We suggest that normal NHE1 function depends on a protein recognition element within the ID region that may be linked to NHE1 trafficking via an acidic ER export motif....

  13. C-Terminal Alpha-1 Antitrypsin Peptide: A New Sepsis Biomarker with Immunomodulatory Function

    Science.gov (United States)

    Blaurock, Nancy; Schmerler, Diana; Hünniger, Kerstin; Kurzai, Oliver; Ludewig, Katrin; Baier, Michael; Brunkhorst, Frank Martin; Imhof, Diana; Kiehntopf, Michael

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is a life threatening condition and the leading cause of death in intensive care units. Although single aspects of pathophysiology have been described in detail, numerous unknown mediators contribute to the progression of this complex disease. The aim of this study was to elucidate the pathophysiological role of CAAP48, a C-terminal alpha-1 antitrypsin fragment, that we found to be elevated in septic patients and to apply this peptide as diagnostic marker for infectious and noninfectious etiologies of SIRS. Incubation of human polymorphonuclear neutrophils with synthetic CAAP48, the SNP-variant CAAP47, and several control peptides revealed intense neutrophil activation, induction of neutrophil chemotaxis, reduction of neutrophil viability, and release of cytokines. We determined the abundance of CAAP48 in patients with severe sepsis, severe SIRS of noninfectious origin, and viral infection. CAAP48 levels were 3-4-fold higher in patients with sepsis compared to SIRS of noninfectious origin and allowed discrimination of those patients with high sensitivity and specificity. Our results suggest that CAAP48 is a promising discriminatory sepsis biomarker with immunomodulatory functions, particularly on human neutrophils, supporting its important role in the host response and pathophysiology of sepsis. PMID:27382189

  14. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    Science.gov (United States)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (pcancer cell lines with C-CPE disrupts tight junction barrier function.

  15. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication.

    Science.gov (United States)

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  16. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability.

    Directory of Open Access Journals (Sweden)

    Brittany Ebersole

    Full Text Available We have used bioorthogonal click chemistry (BCC, a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R, a G protein-coupled receptor (GPCR crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443 of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH screen, we identified the palmitoyl acyltransferase (PAT zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R.

  17. Functional and structural analysis of C-terminal BRCA1 missense variants.

    Directory of Open Access Journals (Sweden)

    Francisco Quiles

    Full Text Available Germline inactivating mutations in BRCA1 and BRCA2 genes are responsible for Hereditary Breast and Ovarian Cancer Syndrome (HBOCS. Genetic testing of these genes is available, although approximately 15% of tests identify variants of uncertain significance (VUS. Classification of these variants into pathogenic or non-pathogenic type is an important challenge in genetic diagnosis and counseling. The aim of the present study is to functionally assess a set of 7 missense VUS (Q1409L, S1473P, E1586G, R1589H, Y1703S, W1718L and G1770V located in the C-terminal region of BRCA1 by combining in silico prediction tools and structural analysis with a transcription activation (TA assay. The in silico prediction programs gave discrepant results making its interpretation difficult. Structural analysis of the three variants located in the BRCT domains (Y1703S, W1718L and G1770V reveals significant alterations of BRCT structure. The TA assay shows that variants Y1703S, W1718L and G1770V dramatically compromise the transcriptional activity of BRCA1, while variants Q1409L, S1473P, E1586G and R1589H behave like wild-type BRCA1. In conclusion, our results suggest that variants Y1703S, W1718L and G1770V can be classified as likely pathogenic BRCA1 mutations.

  18. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    Science.gov (United States)

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  19. Serpin A1 C-Terminal Peptides as Collagen Turnover Modulators.

    Science.gov (United States)

    Pascarella, Simona; Tiberi, Caterina; Sabatino, Giuseppina; Nuti, Francesca; Papini, Anna Maria; Giovannelli, Lisa; Rovero, Paolo

    2016-08-19

    The modulation of collagen turnover can be a relevant pharmacological target in the context of treating either pathological or pathophysiological conditions, such as collagen-related diseases and skin aging. Our recent work has focused on the search for short-chain peptides as lead compounds for further development of compounds that enhance the production of type I collagen. In this study we selected and synthesized overlapping peptides of the C-terminal portion of serpin A1 (residues 393-418), the impact of which on collagen production has been reported previously, in order to identify shorter and still active fragments and to provide insight on the mechanisms involved. The biological activity of each fragment was evaluated with cultured normal human dermal fibroblasts, and changes in the amounts of collagen were monitored in collected culture media by a sandwich ELISA technique developed in house. Interestingly, we identified a decapeptide, termed SA1-III (Ac-MGKVVNPTQK-NH2 ), as a promising candidate for our purposes; it is able to induce a significant increase in type I collagen levels in the culture medium of treated cells at micromolar concentrations. PMID:26615979

  20. Physical association of GPR54 C-terminal with protein phosphatase 2A

    International Nuclear Information System (INIS)

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  1. Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif.

    Science.gov (United States)

    Estell, Kim; Braunstein, Gavin; Tucker, Torry; Varga, Karoly; Collawn, James F; Schwiebert, Lisa M

    2003-01-01

    Despite the identification of 1,000 mutations in the cystic fibrosis gene product CFTR, there remains discordance between CFTR genotype and lung disease phenotype. The study of CFTR, therefore, has expanded beyond its chloride channel activity into other possible functions, such as its role as a regulator of gene expression. Findings indicate that CFTR plays a role in the expression of RANTES in airway epithelia. RANTES is a chemokine that has been implicated in the regulation of mucosal immunity and the pathogenesis of airway inflammatory diseases. Results demonstrate that CFTR triggers RANTES expression via a mechanism that is independent of CFTR's chloride channel activity. Neither pharmacological inhibition of CFTR nor activation of alternative chloride channels, including hClC-2, modulated RANTES expression. Through the use of CFTR disease-associated and truncation mutants, experiments suggest that CFTR-mediated transcription factor activation and RANTES expression require (i) insertion of CFTR into the plasma membrane and (ii) an intact CFTR C-terminal PDZ-interacting domain. Expression of constructs encoding wild-type or dominant-negative forms of the PDZ-binding protein EBP50 suggests that EBP50 may be involved in CFTR-dependent RANTES expression. Together, these data suggest that CFTR modulates gene expression in airway epithelial cells while located in a macromolecular signaling complex at the plasma membrane. PMID:12509457

  2. C-Terminal Alpha-1 Antitrypsin Peptide: A New Sepsis Biomarker with Immunomodulatory Function

    Directory of Open Access Journals (Sweden)

    Nancy Blaurock

    2016-01-01

    Full Text Available Systemic inflammatory response syndrome (SIRS is a life threatening condition and the leading cause of death in intensive care units. Although single aspects of pathophysiology have been described in detail, numerous unknown mediators contribute to the progression of this complex disease. The aim of this study was to elucidate the pathophysiological role of CAAP48, a C-terminal alpha-1 antitrypsin fragment, that we found to be elevated in septic patients and to apply this peptide as diagnostic marker for infectious and noninfectious etiologies of SIRS. Incubation of human polymorphonuclear neutrophils with synthetic CAAP48, the SNP-variant CAAP47, and several control peptides revealed intense neutrophil activation, induction of neutrophil chemotaxis, reduction of neutrophil viability, and release of cytokines. We determined the abundance of CAAP48 in patients with severe sepsis, severe SIRS of noninfectious origin, and viral infection. CAAP48 levels were 3-4-fold higher in patients with sepsis compared to SIRS of noninfectious origin and allowed discrimination of those patients with high sensitivity and specificity. Our results suggest that CAAP48 is a promising discriminatory sepsis biomarker with immunomodulatory functions, particularly on human neutrophils, supporting its important role in the host response and pathophysiology of sepsis.

  3. The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles

    Science.gov (United States)

    De Pablos, Luis Miguel; Díaz Lozano, Isabel María; Jercic, Maria Isabel; Quinzada, Markela; Giménez, Maria José; Calabuig, Eva; Espino, Ana Margarita; Schijman, Alejandro Gabriel; Zulantay, Inés; Apt, Werner; Osuna, Antonio

    2016-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite’s genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite. PMID:27270330

  4. Sol–gel immobilization of Alcalase from Bacillus licheniformis for application in the synthesis of C-terminal peptide amides

    NARCIS (Netherlands)

    Corici, L.N.; Frissen, A.E.; Zoelen, van D.J.; Eggen, I.F.; Peter, F.; Davidescu, C.M.; Boeriu, C.G.

    2011-01-01

    Alcalase 2.4L FG, a commercial preparation of Subtilisin A, was physically entrapped in glass sol–gel matrices using alkoxysilanes of different types mixed with tetramethoxysilane (TMOS). The materials were used for catalyzing C-terminal amidation of Z-Ala-Phe-OMe in a mixture of tert-butanol/DMF. F

  5. Influence of charge differences in the C-terminal part of nisin on antimicrobial activity and signaling capacity

    NARCIS (Netherlands)

    Kraaij, Cindy van; Breukink, Eefjan; Rollema, Harry S.; Siezen, Roland J.; Demel, Rudy A.; Kruijff, Ben de; Kuipers, Oscar P.

    1997-01-01

    Three mutants of the lantibiotic nisin Z, in which the Val32 residue was replaced by a Glu, Lys or Trp residue, were produced and characterized for the purpose of establishing the role of charge differences in the C-terminal part of nisin on antimicrobial activity and signaling properties. 1H-NMR an

  6. Specific recognition of the C-terminal end of A beta 42 by a high affinity monoclonal antibody

    DEFF Research Database (Denmark)

    Axelsen, T.V.; Holm, A.; Birkelund, S.;

    2009-01-01

    The neurotoxic peptide A beta(42) is derived from the amyloid precursor protein by proteolytic cleavage and is deposited in the brain of patients suffering from Alzheimer's disease (AD). In this study we generate a high affinity monoclonal antibody that targets the C-terminal end of A beta(42) with...

  7. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar;

    2013-01-01

    The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequenc...

  8. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.

    2011-01-24

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  9. Growth hormone receptor C-terminal domains required for growth hormone-induced intracellular free Ca2+ oscillations and gene transcription

    DEFF Research Database (Denmark)

    Billestrup, N; Bouchelouche, P; Allevato, G;

    1995-01-01

    of varying frequency and amplitude. GH-induced transcription of the serine protease inhibitor 2.1 gene required the same C-terminal 52-amino acid domain of the receptor as for Ca2+ signaling. Mutation of the four proline residues in the conserved box 1 region of the GHR, which is responsible for binding......The biological effects of growth hormone (GH) are initiated by its binding to the GH receptor (GHR) followed by association and activation of the tyrosine kinase JAK2. Here we report that GH can stimulate an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cells expressing wild...... and activation of JAK2 kinase, completely abolished GH-induced gene transcription but did not affect the GH-induced rise in [Ca2+]i. The Ca2+ channel blocker verapamil prevented GH-induced Ca2+ signaling as well as GH-induced gene transcription in cells expressing endogenous GHRs. These findings indicate...

  10. Axonopathy in an α-synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal-truncated α-synuclein.

    Science.gov (United States)

    Games, Dora; Seubert, Peter; Rockenstein, Edward; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Ettle, Benjamin; Ghassemiam, Majid; Barbour, Robin; Schenk, Dale; Nuber, Silke; Masliah, Eliezer

    2013-03-01

    Progressive accumulation of α-synuclein (α-syn) in limbic and striatonigral systems is associated with the neurodegenerative processes in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). The murine Thy-1 (mThy1)-α-syn transgenic (tg) model recapitulates aspects of degenerative processes associated with α-syn accumulation in these disorders. Given that axonal and synaptic pathologies are important features of DLB and PD, we sought to investigate the extent and characteristics of these alterations in mThy1-α-syn tg mice and to determine the contribution of α-syn c-terminally cleaved at amino acid 122 (CT α-syn) to these abnormalities. We generated a novel polyclonal antibody (SYN105) against the c-terminally truncated sequence (amino acids 121 to 123) of α-syn (CT α-syn) and performed immunocytochemical and ultrastructural analyses in mThy1-α-syn tg mice. We found abundant clusters of dystrophic neurites in layers 2 to 3 of the neocortex, the stratum lacunosum, the dentate gyrus, and cornu ammonis 3 of the hippocampus, striatum, thalamus, midbrain, and pons. Dystrophic neurites displayed intense immunoreactivity detected with the SYN105 antibody. Double-labeling studies with antibodies to phosphorylated neurofilaments confirmed the axonal location of full-length and CT α-syn. α-Syn immunoreactive dystrophic neurites contained numerous electrodense laminated structures. These results show that neuritic dystrophy is a prominent pathologic feature of the mThy1-α-syn tg model and suggest that CT α-syn might play an important role in the process of axonal damage in these mice as well as in DLB and PD. PMID:23313024

  11. Androgen deprivation causes truncation of the C-terminal region of androgen receptor in human prostate cancer LNCaP cells.

    Science.gov (United States)

    Harada, Naoki; Inoue, Kaoru; Yamaji, Ryoichi; Nakano, Yoshihisa; Inui, Hiroshi

    2012-06-01

    The androgen receptor (AR) acts as a ligand-dependent transcription factor, whereas mutant AR lacking the C-terminal ligand-binding domain functions in a ligand-independent manner. In the present study we report that the C-terminal truncated AR, which we named AR-NH1 (the N-terminal fragment of AR cleaved in the neighborhood of helix 1 of the ligand-binding domain), is produced in LNCaP prostatic carcinoma cells. The AR-NH1 of ~90 kDa was observed in an androgen-independent LNCaP subline and was further accumulated by the proteasome inhibitor MG132. MG132 treatment caused the accumulation of AR-NH1 even in parent LNCaP cells. AR-NH1 was produced in the absence of ligand or in the presence of the AR antagonist bicalutamide, whereas AR agonists suppressed its production. AR-NH1 was detected with different AR antibodies recognizing amino acid residues 1-20 and 300-316 and was also generated from exogenous AR. Both siRNA-mediated AR knockdown and treatment with a serine protease inhibitor (4-(2-aminoethyl)-benzenesulfonyl fluoride) reduced AR-NH1 levels. According to the predicted cleavage site (between amino acid residues 660-685) and its nuclear localization, it is assumed that AR-NH1 functions as a constitutively active transcription factor. These data suggest that AR-NH1 is produced under hormone therapy and contributes to the development of castration-resistant prostate cancer due to its ligand-independent transcriptional activity.

  12. Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein.

    Directory of Open Access Journals (Sweden)

    Gerrit Volkmann

    Full Text Available BACKGROUND: Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. METHODOLOGY: A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. CONCLUSIONS: We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.

  13. A C-terminal truncated mutation of spr-3 gene extends lifespan in Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Ruilin Sun; Minghui Yao; Weidong Chen; Zhugang Wang; Jian Fei

    2013-01-01

    The lifespan of Caenorhabditis elegans is determined by various genetic and environmental factors.In this paper,spr-3,a C.elegans homologous gene of the mammalian neural restrictive silencing factor (NRSF/REST),is reported to be an important gene regulating lifespan of C.elegans.A deletion mutation ofspr-3,spr-3(ok2525),or RNAi inhibition of spr-3 expression led to the short lifespan phenotype in C.elegans.However,a nonsense mutation of spr-3,spr3(by108),increased the lifespan by 26% when compared with that of wild-type nematode.The spr-3(by108) also showed increased resistance to environmental stress.The spr-3(by108) mutated gene encodes a C-terminal truncated protein with a structure comparable with the REST4,a splice variant of the NRSF/REST in mammalian.The long lifespan phenotype of spr-3(by108) mutant is confirmed as a gain of function and dependent on normal functions of daf16 and glp-1.The lifespan of the spr-3(by108) can be synergistically enhanced by inducing a mutation in daf-2.Quantitative polymerase chain reaction results showed that the expression of daf-16 as well as its target gene sod-3,mtl1,and sip-1 was up-regulated in the spr-3(by108) mutant.These results would be helpful to further understand the complex function of NRSF/REST gene in mammalian,especially in the aging process and longevity determination.

  14. Evolutionary origins of C-terminal (GPPn 3-hydroxyproline formation in vertebrate tendon collagen.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    Full Text Available Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPPn in addition to the fully occupied A1 site at Pro986. The C-terminal (GPPn motif has five consecutive GPP triplets in α1(I, four in α2(I and three in α1(II, all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin and type II collagen (cartilage and notochord were examined by mass spectrometry. The (GPPn domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human, up to five 3-hydroxyproline residues per (GPPn motif were found in α1(I and four in α2(I, with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPPn site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species.

  15. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans.

    Science.gov (United States)

    Reid, A; Sherry, T J; Yücel, D; Llamosas, E; Nicholas, H R

    2015-12-17

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans.

  16. Iron-hydroxide, iron-sulfate and hydrous-silica coatings in acid-mine tailings facilities: A comparative study of their trace-element composition

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, J.L. [Department of Earth Sciences, Laurentian University, Sudbury, ON, P3E 2C6 (Canada); Schindler, M., E-mail: mschindler@laurentian.ca [Department of Earth Sciences, Laurentian University, Sudbury, ON, P3E 2C6 (Canada)

    2011-08-15

    Highlights: > Distribution and concentration of trace elements in rock coatings in Acid-Mine-Drainage systems. > Coatings occur along ponds and lakes of different pH and composition and are composed of Fe-hydroxides, Fe-sulfates and hydrous silica. > Silica-rich coatings have higher or similar trace-elements concentrations to Fe-rich coatings. > High trace-metal concentrations in Si-rich coatings are the result of the formation of jarosite-type phases in a silica-rich matrix. > Jarosite-type phases nucleate in silica-rich coatings via mixing of Fe-sulfate-rich solutions with trace-elements of underlying rock. - Abstract: Surface alteration-layers often coat minerals in acid-mine drainage systems and the characterization of their chemical composition is required to understand the uptake or release of potentially toxic elements. Samples with micrometer-thick rock coatings were collected from bedrock in contact with three acidic tailings ponds and a small lake, all located within the Copper Cliff mine tailings disposal area in Sudbury, Ontario, Canada. Distribution and concentration of trace-metals in the rock coatings were characterized with Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy and Micro X-ray Fluorescence Spectroscopy. The rock coatings are composed of goethite, ferrihydrite, schwertmannite, jarosite and amorphous silica. The latter phase is a product of the non-stoichiometric weathering of the underlying siliceous rock. Layers within the coatings are distinguished on the basis of their atomic Fe:Si ratios: FeO{sub x} coatings have Fe:Si > 4:1, Si-FeO{sub x} coatings have Fe:Si = 4:1 to 1:1 and SiO{sub x} coatings have Si > Fe. Iron-rich coatings (FeO{sub x}) in contact with acidic tailings ponds (pH < 3.5) have lower trace-metal concentrations than their Si-rich counterparts, whereas FeO{sub x} in contact with lake water at near neutral pH have similar trace-metal concentrations than Si-FeO{sub x} and SiO{sub x}, most likely the result of

  17. The adsorption of oil sands naphthenic acids from process-affected tailings water using activated petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Small, C.C.; Hashisho, Z.; Ulrich, A.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Eighty percent of the organic acids in the Athabasca oil sands region are comprised of naphthenic acids that are toxic to a variety of aquatic life-forms as well as being highly corrosive. This PowerPoint presentation discussed a method of adsorbing naphthenic acids from process-affected water. Activated petroleum coke was studied in order to investigate optimal physical activation conditions for adsorbing oil sands naphthenic acids. Experimental tests were conducted in a centrifuge and analyzed with Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and fluorescence spectrometry. The study demonstrated that delayed and fluid petroleum cokes can be turned into high surface area carbons with increased activation time, temperature, and steam rate. The coke can be used as an adsorbent to remove oil sands naphthenic acids. tabs., figs.

  18. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice.

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    Full Text Available Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse compared with anti-inflammatory drug diclofenac sodium (10 mg/kg] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histopathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model.

  19. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice

    Science.gov (United States)

    Gupta, Ashok Kumar; Parasar, Devraj; Sagar, Amin; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Renu; Ashish; Khatri, Neeraj

    2015-01-01

    Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model. PMID:26426535

  20. Alkalis scrubbing vs sulphuric acid production with Claus tail gases%克劳斯尾气碱洗涤与生产硫酸的比较

    Institute of Scientific and Technical Information of China (English)

    M. RAMESHNI; 金苏闽(译)

    2012-01-01

    为使克劳斯硫回收装置的硫回收率达到100%,讨论并比较了碱洗涤与生产硫酸这2种尾气处理技术。这2种技术都可用于满足最苛刻的排放要求,生产硫酸的成本略低。但除了成本之外,还应考虑炼油厂的总体布置、原油类型及硫和氮含量、产品酸的市场需求、所需公用工程的供应等因素。%In order to reach the sulphur recovery of 100% from Claus plants, two technology options for the tail gas treating, caustic scrubbing and sulphuric acid production, are discussed and compared. Both of them can be applied to achieve the most stringent requirements and the cost of sulphuric acid production is slightly lower. Be- sides the cost, the factors of overall refinery configuration, crude type and sulphur and nitrogen contents, market demand for selling acid, availability of required utilities, and so on, should also be considered.

  1. 以氢氟酸协同草酸精制石英砂尾矿及其作用机理%Refining quartz sand tailings and mechanisms by hydrofluoric acid associated with oxalic acid

    Institute of Scientific and Technical Information of China (English)

    张亚南; 范天博; 郭洪范; 李雪; 胡彬; 刘元元; 周永红; 刘云义

    2016-01-01

    High purity quartz sand is widely used in construction,glass manufacturing,casting and other industrial fields. In order to obtain the replacement products of high purity quartz sand,quartz sand tailings were treated by removing Fe and Al. In this work,the method of quartz tailings from Guangdong Heyuan as raw material refined with hydrofluoric acid associated with oxalate was proposed,and the optimum operating conditions were also provided. Oxalic acid dosage and reaction temperature were determined by oxalic acid complexation experiments. The acid leaching reaction time and material ratio were determined by refining experimentsvia hydrofluoric acid associated with oxalic acid. The results showed that the best operating conditions of refining the quartz sand tailings were as follows. Quartz sand tailings of 200g with the particle size≤250μm were immersed into the 100mL mixed solution of saturated oxalic acid and hydrofluoric acid in the volume ratio is 25∶1 for 4 hours. Temperature was kept at 80℃. After refining,the silica content in the refined quartz sand tailings could reach 99.97%,with the whiteness of 87.5. Experimental results demonstrated that refined solution was recycled by adding oxalic acid and hydrofluoric acid. Oxalic acid could be crystallized from the uncooled refined solution. The residual refined solution and refined quartz sand water lotion was treated as waste liquid. The impurities in the waste liquid were precipitated by the addition of a saturated lime water. The experimental results showed that the tail liquid was treated completely when the volume ratio of the tail liquid and the lime water is 1∶13 and after the end solution treatment,the tail liquid can be used as recycled water discharge.%高纯度石英砂在建筑、玻璃制造、铸造等工业领域应用广泛,将石英砂尾矿进行除Fe、Al处理,能够得到相当于高纯度石英砂的替代产品。本研究采用广东河源石英

  2. Jarosite versus Soluble Iron-Sulfate Formation and Their Role in Acid Mine Drainage Formation at the Pan de Azúcar Mine Tailings (Zn-Pb-Ag, NW Argentina

    Directory of Open Access Journals (Sweden)

    Jesica Murray

    2014-05-01

    Full Text Available Secondary jarosite and water-soluble iron-sulfate minerals control the composition of acid mine waters formed by the oxidation of sulfide in tailings impoundments at the (Zn-Pb-Ag Pan de Azúcar mine located in the Pozuelos Lagoon Basin (semi-arid climate in Northwest (NW Argentina. In the primary zone of the tailings (9.5 wt % pyrite-marcasite precipitation of anglesite (PbSO4, wupatkite ((Co,Mg,NiAl2(SO44 and gypsum retain Pb, Co and Ca, while mainly Fe2+, Zn2+, Al3+, Mg2+, As3+/5+ and Cd2+ migrate downwards, forming a sulfate and metal-rich plume. In the oxidation zone, jarosite (MFe3(TO42(OH6 is the main secondary Fe3+ phase; its most suitable composition is M = K+, Na+, and Pb2+and TO4 = SO42−; AsO42−. During the dry season, iron-sulfate salts precipitate by capillary transport on the tailings and at the foot of DC2 (tailings impoundment DC2 tailings dam where an acid, Fe2+ rich plume outcrops. The most abundant compounds in the acid mine drainage (AMD are SO42−, Fe2+, Fe3+, Zn2+, Al3+, Mg2+, Cu2+, As3+/5+, Cd2+. These show peak concentrations at the beginning of the wet season, when the soluble salts and jarosite dissolve. The formation of soluble sulfate salts during the dry season and dilution during the wet season conform an annual cycle of rapid metals and acidity transference from the tailings to the downstream environment.

  3. Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives

    Science.gov (United States)

    Lioe, Hadi; O'Hair, Richard A. J.; Gronert, Scott; Austin, Allen; Reid, Gavin E.

    2007-11-01

    The proton affinities of methionine, methionine sulfoxide and their derivatives (methionine methyl ester, methionine sulfoxide methyl ester, methionine methyl amide, methionine sulfoxide methyl amide, N-acetyl methionine, N-acetyl methionine sulfoxide, N-acetyl methionine methyl ester, N-acetyl methionine sulfoxide methyl ester, N-acetyl methionine methyl amide and N-acetyl methionine sulfoxide methyl amide) were experimentally determined using the kinetic method, in which proton bound dimers formed via electrospray ionization (ESI) were subjected to collision induced dissociation (CID) in a triple quadrupole mass spectrometer. In addition, theoretical calculations carried out at the MP2/6-311 + G(2d,p)//B3LYP/6-31 + G(d,p) level of theory to determine the global minima of the neutral and protonated species of all derivatives studied, were used to predict theoretical proton affinities. The density function theory calculations not only support the experimental proton affinities, but also provide structural insights into the types of hydrogen bonding that stabilize the neutral and protonated methionine or methionine sulfoxide derivatives. Comparison of the proton affinities of the various methionine and methionine sulfoxide derivatives reveals that: (i) oxidation of methionine derivatives to methionine sulfoxide derivatives results in an increase in proton affinity due to higher intrinsic proton affinity and an increase in the ring size formed through charge complexation of the sulfoxide group, which allows more efficient hydrogen bonding compared to the sulfide group; (ii) C-terminal modification by methyl esterification or methyl amidation increases the proton affinity in the order of methyl amide > methyl ester > carboxylic acid due to improved charge stabilization; (iii) N-terminal modification by N-acetylation decreases proton affinity of the derivatives due to lower intrinsic proton affinity of the N-acetyl group as well as due to stabilization of the attached

  4. An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice.

    Science.gov (United States)

    Walker, Adam K; Tripathy, Kalyan; Restrepo, Clark R; Ge, Guanghui; Xu, Yan; Kwong, Linda K; Trojanowski, John Q; Lee, Virginia M-Y

    2015-12-20

    Frontotemporal dementia (FTD) causes progressive personality, behavior and/or language disturbances and represents the second most common form of dementia under the age of 65. Over half of all FTD cases are classified pathologically as frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein of 43 kDa (TDP-43) pathology (FTLD-TDP). In FTLD-TDP brains, TDP-43 is phosphorylated, C-terminally cleaved, lost from the nucleus and accumulates in the cytoplasm and processes of neurons and glia. However, the contribution of TDP-43 C-terminal fragments (CTFs) to pathogenesis remains poorly understood. Here, we developed transgenic (Tg) mice with forebrain Camk2a-controlled doxycycline-suppressible expression of a TDP-43 CTF (amino acids 208-414, designated 208 TDP-43 CTF), previously identified in FTLD-TDP brains. In these 208 TDP-43 Tg mice, detergent-insoluble 208 TDP-43 CTF was present in a diffuse punctate pattern in neuronal cytoplasm and dendrites without forming large cytoplasmic inclusions. Remarkably, the hippocampus showed progressive neuron loss and astrogliosis in the dentate gyrus (DG). This was accompanied by phosphorylated TDP-43 in the CA1 subfield, and ubiquitin and mitochondria accumulations in the stratum lacunosum moleculare (SLM) layer, without loss of endogenous nuclear TDP-43. Importantly, 208 TDP-43 CTF and phosphorylated TDP-43 were rapidly cleared when CTF expression was suppressed in aged Tg mice, which ameliorated neuron loss in the DG despite persistence of ubiquitin accumulation in the SLM. Our results demonstrate that Camk2a-directed 208 TDP-43 CTF overexpression is sufficient to cause hippocampal pathology and neurodegeneration in vivo, suggesting an active role for TDP-43 CTFs in the pathogenesis of FTLD-TDP and related TDP-43 proteinopathies.

  5. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  6. 1H, 13C and 15N resonance assignments of a C-terminal domain of human CHD1.

    Science.gov (United States)

    Mohanty, Biswaranjan; Silva, Ana P G; Mackay, Joel P; Ryan, Daniel P

    2016-04-01

    Chromatin remodelling proteins are an essential family of eukaryotic proteins. They harness the energy from ATP hydrolysis and apply it to alter chromatin structure in order to regulate all aspects of genome biology. Chromodomain helicase DNA-binding protein 1 (CHD1) is one such remodelling protein that has specialised nucleosome organising abilities and is conserved across eukaryotes. CHD1 possesses a pair of tandem chromodomains that directly precede the core catalytic Snf2 helicase-like domain, and a C-terminal SANT-SLIDE DNA-binding domain. We have identified an additional conserved domain in the C-terminal region of CHD1. Here, we report the backbone and side chain resonance assignments for this domain from human CHD1 at pH 6.5 and 25 °C (BMRB No. 25638). PMID:26286320

  7. Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods

    Science.gov (United States)

    Hochstein, Rebecca A.; Amenabar, Maximiliano J.; Munson-McGee, Jacob H.; Boyd, Eric S.

    2016-01-01

    ABSTRACT The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In

  8. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation

    DEFF Research Database (Denmark)

    van den Bremer, E. T. J.; Beurskens, F. J.; Voorhorst, M.;

    2015-01-01

    . Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules...

  9. C-Peptide and Its C-Terminal Fragments Improve Erythrocyte Deformability in Type 1 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    Thomas Hach

    2008-01-01

    Full Text Available Aims/hypothesis. Data now indicate that proinsulin C-peptide exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. This study aimed to investigate the influence of C-peptide and fragments thereof on erythrocyte deformability and to elucidate the relevant signal transduction pathway. Methods. Blood samples from 23 patients with type 1 diabetes and 15 matched healthy controls were incubated with 6.6 nM of either human C-peptide, C-terminal hexapeptide, C-terminal pentapeptide, a middle fragment comprising residues 11–19 of C-peptide, or randomly scrambled C-peptide. Furthermore, red blood cells from 7 patients were incubated with C-peptide, penta- and hexapeptides with/without addition of ouabain, EDTA, or pertussis toxin. Erythrocyte deformability was measured using a laser diffractoscope in the shear stress range 0.3–60 Pa. Results. Erythrocyte deformability was impaired by 18–25% in type 1 diabetic patients compared to matched controls in the physiological shear stress range 0.6–12 Pa (P<.01–.001. C-peptide, penta- and hexapeptide all significantly improved the impaired erythrocyte deformability of type 1 diabetic patients, while the middle fragment and scrambled C-peptide had no detectable effect. Treatment of erythrocytes with ouabain or EDTA completely abolished the C-peptide, penta- and hexapeptide effects. Pertussis toxin in itself significantly increased erythrocyte deformability. Conclusion/interpretation. C-peptide and its C-terminal fragments are equally effective in improving erythrocyte deformability in type 1 diabetes. The C-terminal residues of C-peptide are causally involved in this effect. The signal transduction pathway is Ca2+-dependent and involves activation of red blood cell Na+,K+-ATPase.

  10. Pivotal Role of the C-terminal DW-motif in Mediating Inhibition of Pyruvate Dehydrogenase Kinase 2 by Dichloroacetate*

    OpenAIRE

    Li, Jun; Kato, Masato; Chuang, David T.

    2009-01-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) is down-regulated by phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) isoforms 1–4. Overexpression of PDK isoforms and therefore reduced PDC activity prevails in cancer and diabetes. In the present study, we investigated the role of the invariant C-terminal DW-motif in inhibition of human PDK2 by dichloroacetate (DCA). Substitutions were made in the DW-motif (Asp-382 and Trp-383) and its interacting residues (Tyr-145 and A...

  11. C-terminal Binding Proteins are Essential Pro-survival Factors that Undergo Caspase-dependent Downregulation during Neuronal Apoptosis

    OpenAIRE

    Stankiewicz, Trisha R.; Schroeder, Emily K.; Kelsey, Natalie A.; Bouchard, Ron J.; Linseman, Daniel A.

    2013-01-01

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficie...

  12. A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter

    OpenAIRE

    Rickhag, Mattias; Hansen, Freja Herborg; Sørensen, Gunnar; Strandfelt, Kristine Nørgaard; Andresen, Bjørn; Gotfryd, Kamil; Madsen, Kenneth L; Vestergaard-Klewe, Ib; Ammendrup-Johnsen, Ina; Eriksen, Jacob; Füchtbauer, Ernst-Martin; Gomeza, Jesus; Woldbye, David P.D.; Wörtwein, Gitta; Gether, Ulrik

    2013-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dr...

  13. Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC.

    Science.gov (United States)

    Slootweg, Jack C; van der Wal, Steffen; Quarles van Ufford, H C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-12-18

    Functionalization of the lantibiotic nisin with fluorescent reporter molecules is highly important for the understanding of its mode of action as a potent antimicrobial peptide. In addition to this, multimerization of nisin to obtain multivalent peptide constructs and conjugation of nisin to bioactive molecules or grafting it on surfaces can be attractive methods for interference with bacterial growth. Here, we report a convenient method for the synthesis of such nisin conjugates and show that these nisin derivatives retain both their antimicrobial activity and their membrane permeabilizing properties. The synthesis is based on the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) as a bioorthogonal ligation method for large and unprotected peptides in which nisin was C-terminally modified with propargylamine and subsequently efficiently conjugated to a series of functionalized azides. Two fluorescently labeled nisin conjugates together with a dimeric nisin construct were prepared while membrane insertion as well as antimicrobial activity were unaffected by these modifications. This study shows that C-terminal modification of nisin does not deteriorate biological activity in sharp contrast to N-terminal modification and therefore C-terminally modified nisin analogues are valuable tools to study the antibacterial mode of action of nisin. Furthermore, the ability to use stoichiometric amounts of the azide containing molecule opens up possibilities for surface tethering and more complex multivalent structures.

  14. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    Science.gov (United States)

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified.

  15. Activity of the HMGB1-Derived Immunostimulatory Peptide Hp91 Resides in the Helical C-terminal Portion and is Enhanced by Dimerization

    Science.gov (United States)

    Saenz, R.; Messmer, B.; Futalan, D.; Tor, Y.; Larsson, M.; Daniels, G.; Esener, S.; Messmer, D.

    2013-01-01

    We have previously shown that an 18 amino acid long peptide, named Hp91, whose sequence corresponds to a region within the endogenous protein HMGB1, activates dendritic cells (DCs) and acts as adjuvant in vivo by potentiating Th1-type antigen-specific immune responses. We analyzed the structure-function relationship of the Hp91 peptide to investigate the amino acids and structure responsible for immune responses. We found that the cysteine at position 16 of Hp91 enabled formation of reversible peptide dimmers, monomer and dimmer were compared for DC binding and activation. Stable monomers and dimers were generated using a maleimide conjugation reaction. The dimer showed enhanced ability to bind to and activate DCs. Furthermore, the C-terminal 9 amino acids of Hp91, named UC1018 were sufficient for DC binding and Circular dichroism showed that UC1018 assumes an alpha-helical structure. The ninemer peptide UC1018 induced more potent antigen-specific CTL responses in vivo as compared to Hp91 and it protected mice from tumor development when used in a prophylactic vaccine setting. We have identified a short alpha helical peptide that acts as potent adjuvant inducing protective immune responses in vivo. PMID:24172222

  16. Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo.

    Directory of Open Access Journals (Sweden)

    Sebastien Lageix

    2015-02-01

    Full Text Available The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α. Gcn2 is activated in amino acid-deprived cells by binding of uncharged tRNA to the regulatory domain related to histidyl-tRNA synthetase, but the molecular mechanism of activation is unclear. We used a genetic approach to identify a key regulatory surface in Gcn2 that is proximal to the predicted active site of the HisRS domain and likely remodeled by tRNA binding. Mutations leading to amino acid substitutions on this surface were identified that activate Gcn2 at low levels of tRNA binding (Gcd- phenotype, while other substitutions block kinase activation (Gcn- phenotype, in some cases without altering tRNA binding by Gcn2 in vitro. Remarkably, the Gcn- substitutions increase affinity of the HisRS domain for the C-terminal domain (CTD, previously implicated as a kinase autoinhibitory segment, in a manner dampened by HisRS domain Gcd- substitutions and by amino acid starvation in vivo. Moreover, tRNA specifically antagonizes HisRS/CTD association in vitro. These findings support a model wherein HisRS-CTD interaction facilitates the autoinhibitory function of the CTD in nonstarvation conditions, with tRNA binding eliciting kinase activation by weakening HisRS-CTD association with attendant disruption of the autoinhibitory KD-CTD interaction.

  17. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4......, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2V/cm.The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20V using approximately 1.8kg mine tailing on dry basis....... In addition, experiments with acidic tailing show that the copper removal is proportional with time....

  18. Prokaryotic expression and purification of fibronectin leucine rich transmembrane protein 3 C-terminal domain proteins in rats

    Institute of Scientific and Technical Information of China (English)

    Yan Cai; Jing Yang; He Huang; Fang Li; Ganqiu Wu; Jing Yang; Xuegang Luo

    2009-01-01

    BACKGROUND: Studies have suggested that fibronectin leucine-rich transmembrane protein 3 (FLRT3) is related to injury and regeneration of the nervous system. However, the expression and biological characteristics of these proteins remain poorly understood.OBJECTIVE: To obtain FLRT3 C-terminal gene fragments, to effectively express and purify the target proteins.DESIGN, TIME AND SETTING: An observational study of cellular and molecular biology was performed at the laboratory of Histology and Embryology in Xiangya School of Medicine, Central South University between October 2007 and June 2008.MATERIALS: Three Sprague Dawley adult rats were used to extract total RNA from rat brains. The pGEX4T3 and Escherichia coli (E. Coli) JM109 were purchased from Promega. E. Coil BL21 was provided by Novagen.METHODS: FLRT3 protein coding C-terminal DNA fragments, at a length of 786 bp, were amplified using RT-PCR technique from rat total RNA. The amplified products were cloned into the expression vector pGEX4T3. A recombinant expression vector was then constructed and introduced into E. Coli BL21. IsopropyI-D-thiogalactopyranoside was applied to induce expression of recombinant GST fusion proteins, followed by isolation, purification, and renaturation of inclusion bodies that comprised recombinant proteins. Finally, the purified recombinant protein was obtained.MAIN OUTCOME MEASURES: Determination of FLRT3 C-terminal DNA sequence; expression of target proteins was assayed by SDS-PAGE electrophoresis; purified recombinant protein was identified with Western blot methods.RESULTS: FLRT3 protein coding C-terminal DNA fragments, at a length of 786 bp, were successfully harvested through RT-PCR amplification, and were then cloned into the prokaryotic expression vector pGEX4T3. The results of the sequence were consistent with the known gene sequence. SDS-PAGE analysis demonstrated that there was a specific protein band in the recombinant GST fusion proteins at a relative molecular mass

  19. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody*

    Directory of Open Access Journals (Sweden)

    Merkel George

    2006-06-01

    Full Text Available Abstract Background To further our understanding of the structure and function of HIV-1 integrase (IN we developed and characterized a library of monoclonal antibodies (mAbs directed against this protein. One of these antibodies, mAb33, which is specific for the C-terminal domain, was found to inhibit HIV-1 IN processing activity in vitro; a corresponding Fv fragment was able to inhibit HIV-1 integration in vivo. Our subsequent studies, using heteronuclear nuclear magnetic resonance spectroscopy, identified six solvent accessible residues on the surface of the C-terminal domain that were immobilized upon binding of the antibody, which were proposed to comprise the epitope. Here we test this hypothesis by measuring the affinity of mAb33 to HIV-1 proteins that contain Ala substitutions in each of these positions. To gain additional insight into the mode of inhibition we also measured the DNA binding capacity and enzymatic activities of the Ala substituted proteins. Results We found that Ala substitution of any one of five of the putative epitope residues, F223, R224, Y226, I267, and I268, caused a decrease in the affinity of the mAb33 for HIV-1 IN, confirming the prediction from NMR data. Although IN derivatives with Ala substitutions in or near the mAb33 epitope exhibited decreased enzymatic activity, none of the epitope substitutions compromised DNA binding to full length HIV-1 IN, as measured by surface plasmon resonance spectroscopy. Two of these derivatives, IN (I276A and IN (I267A/I268A, exhibited both increased DNA binding affinity and uncharacteristic dissociation kinetics; these proteins also exhibited non-specific nuclease activity. Results from these investigations are discussed in the context of current models for how the C-terminal domain interacts with substrate DNA. Conclusion It is unlikely that inhibition of HIV-1 IN activity by mAb33 is caused by direct interaction with residues that are essential for substrate binding. Rather

  20. Cytoplasmic location of α1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death.

    Science.gov (United States)

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  1. Cytoplasmic location of α1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF aggregate is sufficient to cause cell death.

    Directory of Open Access Journals (Sweden)

    Makoto Takahashi

    Full Text Available The human α1A voltage-dependent calcium channel (Cav2.1 is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C-tail contains a small poly-glutamine (Q tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6. A recent study has shown that a 75-kDa C-terminal fragment (CTF containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (rCTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12 cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range than with Q13 (normal-length. Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB and phosphorylated-CREB (p-CREB in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei.

  2. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis

    Science.gov (United States)

    Yang, Yun-Wen; Zhang, Chun-Mei; Huang, Xian-Jie; Zhang, Xiao-Xin; Zhang, Lin-Kai; Li, Jia-Huang; Hua, Zi-Chun

    2016-01-01

    Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182–205 aa) named N-FADD (m-FADD, 1–181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma. PMID:27767039

  3. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  4. Solution and crystal structures of a C-terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB

    Directory of Open Access Journals (Sweden)

    Amar Joshi

    2014-03-01

    Full Text Available The eukaryotic polypyrimidine tract binding protein (PTB serves primarily as a regulator of alternative splicing of messenger RNA, but is also co-opted to other roles such as RNA localisation and translation initiation from internal ribosome entry sites. The neuronal paralogue of PTB (nPTB is 75% identical in amino acid sequence with PTB. Although the two proteins have broadly similar RNA binding specificities and effects on RNA splicing, differential expression of PTB and nPTB can lead to the generation of alternatively spliced mRNAs. RNA binding by PTB and nPTB is mediated by four RNA recognition motifs (RRMs. We present here the crystal and solution structures of the C-terminal domain of nPTB (nPTB34 which contains RRMs 3 and 4. As expected the structures are similar to each other and to the solution structure of the equivalent fragment from PTB (PTB34. The result confirms that, as found for PTB, RRMs 3 and 4 of nPTB interact with one another to form a stable unit that presents the RNA-binding surfaces of the component RRMs on opposite sides that face away from each other. The major differences between PTB34 and nPTB34 arise from amino acid side chain substitutions on the exposed β-sheet surfaces and adjoining loops of each RRM, which are likely to modulate interactions with RNA.

  5. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication.

    Science.gov (United States)

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V; Mintaev, Ramil R; Alexeevski, Andrei V; Veit, Michael

    2015-12-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  6. Hydrophobic profiles of the tail anchors in SLMAP dictate subcellular targeting

    Directory of Open Access Journals (Sweden)

    Salih Maysoon

    2009-06-01

    Full Text Available Abstract Background Tail anchored (TA membrane proteins target subcellular structures via a C-terminal transmembrane domain and serve prominent roles in membrane fusion and vesicle transport. Sarcolemmal Membrane Associated Protein (SLMAP possesses two alternatively spliced tail anchors (TA1 or TA2 but their specificity of subcellular targeting remains unknown. Results TA1 or TA2 can direct SLMAP to reticular structures including the endoplasmic reticulum (ER, whilst TA2 directs SLMAP additionally to the mitochondria. Despite the general structural similarity of SLMAP to other vesicle trafficking proteins, we found no evidence for its localization with the vesicle transport machinery or a role in vesicle transport. The predicted transmembrane region of TA2 is flanked on either side by a positively charged amino acid and is itself less hydrophobic than the transmembrane helix present in TA1. Substitution of the positively charged amino acids, in the regions flanking the transmembrane helix of TA2, with leucine did not alter its subcellular targeting. The targeting of SLMAP to the mitochondria was dependent on the hydrophobic nature of TA2 since targeting of SLMAP-TA2 was prevented by the substitution of leucine (L for moderately hydrophobic amino acid residues within the transmembrane region. The SLMAP-TA2-4L mutant had a hydrophobic profile that was comparable to that of SLMAP-TA1 and had identical targeting properties to SLMAP-TA1. Conclusion Thus the overall hydrophobicity of the two alternatively spliced TAs in SLMAP determines its subcellular targeting and TA2 predominantly directs SLMAP to the mitochondira where it may serve roles in the function of this organelle.

  7. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part I. Importance of hydrophobic interactions in stabilization of β-hairpin structure

    OpenAIRE

    Skwierawska, Agnieszka; Makowska, Joanna; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    We previously studied a 16-amino acid-residue fragment of the C-terminal β-hairpin (residues 46–61), [IG(46–61)], of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG(46–61) by systematically shortening the peptide by one residue at a time from bo...

  8. Application of new type catalytic method desulfurization technology in sulfuric acid tail gas treatment engineering%新型催化法脱硫技术在硫酸尾气处理工程上的应用

    Institute of Scientific and Technical Information of China (English)

    李新; 李月丽; 李建军; 尹华强

    2012-01-01

    Based on the analysis of the present situation of sulfuric acid tail gas treatment and the existing problems of commonly used technology, a new type catalytic desulfurization technology including the basic principle, the process and engineering project for the treatment of sulfuric acid tail gas and recovery sulfur resources is introduced. Compared with the traditional ammonia-acid method, activated char method, limestone-gypsum method, the new type catalytic method uses low temperature non-vanadium catalyst, can effectively remove the SO2 in sulfuric acid tail gas, to ensure p(SO2) 〈 50 mg/m3, meeting the new standards, the technology has broad application prospect in sulfuric acid tail gas treatment.%分析目前硫酸尾气治理现状及常用技术存在的问题,介绍一种新型催化脱硫技术处理硫酸尾气并回收硫资源的基本原理、工艺流程和工程实例。与传统的氨-酸法、活性焦法、石灰石-石膏法对比,新型催化法技术采用低温非钒系催化剂可有效脱除硫酸尾气中的SO2,保证ρ(SO2)〈50mg/m^3,达到新标准所规定的限值。该方法处理硫酸尾气具有广阔的应用前景。

  9. A perspective of stepwise utilisation of Bayer red mud: Step two--Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation.

    Science.gov (United States)

    Huang, Yanfang; Chai, Wencui; Han, Guihong; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-04-15

    The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation. PMID:26799223

  10. The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain.

    Science.gov (United States)

    Phongsak, Thanawat; Sucharitakul, Jeerus; Thotsaporn, Kittisak; Oonanant, Worrapoj; Yuvaniyama, Jirundon; Svasti, Jisnuson; Ballou, David P; Chaiyen, Pimchai

    2012-07-27

    p-Hydroxyphenylacetate (HPA) 3-hydroxylase from Acinetobacter baumannii consists of a reductase component (C(1)) and an oxygenase component (C(2)). C(1) catalyzes the reduction of FMN by NADH to provide FMNH(-) as a substrate for C(2). The rate of reduction of flavin is enhanced ∼20-fold by binding HPA. The N-terminal domain of C(1) is homologous to other flavin reductases, whereas the C-terminal domain (residues 192-315) is similar to MarR, a repressor protein involved in bacterial antibiotic resistance. In this study, three forms of truncated C(1) variants and single site mutation variants of residues Arg-21, Phe-216, Arg-217, Ile-246, and Arg-247 were constructed to investigate the role of the C-terminal domain in regulating C(1). In the absence of HPA, the C(1) variant in which residues 179-315 were removed (t178C(1)) was reduced by NADH and released FMNH(-) at the same rates as wild-type enzyme carries out these functions in the presence of HPA. In contrast, variants with residues 231-315 removed behaved similarly to the wild-type enzyme. Thus, residues 179-230 are involved in repressing the production of FMNH(-) in the absence of HPA. These results are consistent with the C-terminal domain in the wild-type enzyme being an autoinhibitory domain that upon binding the effector HPA undergoes conformational changes to allow faster flavin reduction and release. Most of the single site variants investigated had catalytic properties similar to those of the wild-type enzyme except for the F216A variant, which had a rate of reduction that was not stimulated by HPA. F216A could be involved with HPA binding or in the required conformational change for stimulation of flavin reduction by HPA. PMID:22661720

  11. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  12. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Directory of Open Access Journals (Sweden)

    Britta Hansmann

    2015-09-01

    Full Text Available Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2, a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  13. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    1996-01-01

    with larger peptides, amino acid homopolymers, and proteins. These observations suggest that alpha-carbon alkoxyl radicals may be key intermediates in the fragmentation of proteins in the presence of oxygen. The radicals released in these processes may react further to form O2.-, or redox cycle metal ions....... These reactions may be propagating processes during protein chain oxidation....

  14. Downstream signaling mechanism of the C-terminal activation domain of transcriptional coactivator CoCoA

    OpenAIRE

    Kim, Jeong Hoon; Yang, Catherine K.; Stallcup, Michael R.

    2006-01-01

    The coiled-coil coactivator (CoCoA) is a transcriptional coactivator for nuclear receptors and enhances nuclear receptor function by the interaction with the bHLH-PAS domain (AD3) of p160 coactivators. The C-terminal activation domain (AD) of CoCoA possesses strong transactivation activity and is required for the coactivator function of CoCoA with nuclear receptors. To understand how CoCoA AD transmits its activating signal to the transcription machinery, we defined specific subregions, amino...

  15. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II.

    OpenAIRE

    Li, Y.; Kornberg, R D

    1994-01-01

    RNA polymerase II lacking a C-terminal domain (CTD) was active in transcription with purified proteins from yeast but failed to support transcription in a yeast extract. CTD dependence could be reconstituted in the purified system by addition of two fractions from the extract. An inhibitory fraction abolished transcription by both wild-type and CTD-less RNA polymerases; a stimulatory fraction restored activity of the wild-type polymerase but had a much lesser effect on the CTD-less enzyme. Pa...

  16. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA

    OpenAIRE

    Dwivedi, Gajendradhar R.; Kolluru D Srikanth; Praveen Anand; Javed Naikoo; Srilatha, N. S.; Rao, Desirazu N.

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been ...

  17. CDKL5 Expression Is Modulated during Neuronal Development and Its Subcellular Distribution Is Tightly Regulated by the C-terminal Tail*

    OpenAIRE

    Rusconi, Laura; Salvatoni, Lisa; Giudici, Laura; Bertani, Ilaria; Kilstrup-Nielsen, Charlotte; Broccoli, Vania; Landsberger, Nicoletta

    2008-01-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome (RTT), West syndrome, and X-linked infantile spasms, sharing the common feature of mental retardation and early seizures. CDKL5 is a rather uncharacterized kinase, but its involvement in RTT seems to be explained by the fact that it works upstream of MeCP2, the main cause of Rett syndrome. To understand the role of this kinase for nervous syst...

  18. The C-terminal tail of CRTH2 is a key molecular determinant that constrains GalphaI- and downstream-signaling cascade activation

    DEFF Research Database (Denmark)

    Schroeder, Ralf; Merten, Nicole; Mathiesen, Jesper Mosolff;

    2009-01-01

    Prostaglandin D(2) activation of the seven transmembrane receptor CRTH2 regulates numerous cell functions that are important in inflammatory diseases such as asthma. Despite its disease implication, no studies to date aimed at identifying receptor domains governing signaling and surface expressio...

  19. The C-terminal region controls correct folding of genus Trametes pyranose 2-oxidases.

    Science.gov (United States)

    Maresová, Helena; Palyzová, Andrea; Kyslík, Pavel

    2007-06-30

    The pyranose 2-oxidases from Trametes ochracea and Trametes pubescens share markedly similar amino acid sequences with identity of 93.4%. When expressed from the recombinant plasmids based on the same vector in the Escherichia coli host strain BL21(DE3) at higher growth temperatures, they differ strikingly in the formation of the inclusion bodies. Upon overexpression in the cultures performed at 28 degrees C, the specific activity of pyranose 2-oxidase from T. pubescens was eight times higher than that from T. ochracea: 93% of pyranose 2-oxidase from T. ochracea and only 15% of that from T. pubescens was present in the form of inclusion bodies. To ascertain the cause of this difference, both cloned genes were shuffled. Site-directed recombination of p2o cDNAs revealed that DNA constructs ending with 3' end of p2o cDNA from T. pubescens code for proteins that are folded into an active form to the greater extent, regardless of the gene expression level. "In silicio" analysis of physico-chemical properties of the protein sequences of pyranose 2-oxidases revealed that the sequence of amino acid residues 368-430, constituting the small, head domain of pyranose 2-oxidase from T. pubescens, affects positively the enzyme folding at higher cultivation temperatures. The domain differs in six amino acid residues from that of T. ochracea.

  20. Tail gut cyst.

    Science.gov (United States)

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  1. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Tomoyuki; Kitano, Ken; Terawaki, Shin-ichi; Maesaki, Ryoko; Hakoshima, Toshio, E-mail: hakosima@bs.naist.jp [Structural Biology Laboratory, Nara Institute of Science and Technology, Keihanna Science City, Nara 630-0192 (Japan)

    2007-10-01

    The radixin FERM domain complexed with the CD44 cytoplasmic tail peptide has been crystallized. A diffraction data set from the complex was collected to 2.1 Å. CD44 is an important adhesion molecule that specifically binds hyaluronic acid and regulates cell–cell and cell–matrix interactions. Increasing evidence has indicated that CD44 is assembled in a regulated manner into the membrane–cytoskeletal junction, a process that is mediated by ERM (ezrin/radixin/moesin) proteins. Crystals of a complex between the radixin FERM domain and the C-terminal cytoplasmic region of CD44 have been obtained. The crystal of the radixin FERM domain bound to the CD44 cytoplasmic tail peptide belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.70, b = 66.18, c = 86.22 Å, and contain one complex in the crystallographic asymmetric unit. An intensity data set was collected to a resolution of 2.1 Å.

  2. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44

    International Nuclear Information System (INIS)

    The radixin FERM domain complexed with the CD44 cytoplasmic tail peptide has been crystallized. A diffraction data set from the complex was collected to 2.1 Å. CD44 is an important adhesion molecule that specifically binds hyaluronic acid and regulates cell–cell and cell–matrix interactions. Increasing evidence has indicated that CD44 is assembled in a regulated manner into the membrane–cytoskeletal junction, a process that is mediated by ERM (ezrin/radixin/moesin) proteins. Crystals of a complex between the radixin FERM domain and the C-terminal cytoplasmic region of CD44 have been obtained. The crystal of the radixin FERM domain bound to the CD44 cytoplasmic tail peptide belongs to space group P212121, with unit-cell parameters a = 62.70, b = 66.18, c = 86.22 Å, and contain one complex in the crystallographic asymmetric unit. An intensity data set was collected to a resolution of 2.1 Å

  3. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage.

    Science.gov (United States)

    Sağlam, Emine Selva; Akçay, Miğraç

    2016-04-01

    Being one of the largest copper-producing resources in Turkey, the Murgul deposit has been a source of environmental pollution for very long time. Operated through four open pits with an annual production of about 3 million tons of ore at an average grade of about 0.5 % Cu, the deposit to date has produced an enormous pile of waste (exceeding 100 million tons) with tailings composed of 36 % SiO2, 39 % Fe2O3 and 32 % S, mainly in the form of pyrite and quartz. Waters in the vicinity of the deposit vary from high acid-acid (2.71-3.85) and high-extremely metal rich (34.48-348.12 mg/l in total) in the open pits to near neutral (6.51-7.83) and low metal (14.39-973.52 μg/l in total) in downstream environments. Despite low metal contents and near neutral pH levels of the latter, their suspended particle loads are extremely high and composed mainly of quartz and clay minerals with highly elevated levels of Fe (3.5 to 24.5 % Fe2O3; 11 % on average) and S (0.5 to 20.6 % S; 7 % on average), showing that Fe is mainly in the form of pyrite and lesser hematite. They also contain high concentrations of As, Au, Ba, Cu, Pb, and Zn. Waters collected along the course of polluted drainages are supersaturated with respect to Fe phases such as goethite, hematite, maghemite, magnetite, schwertmannite and ferrihydrite. Secondary phases such as Fe-sulphates are only found near the pits, but not along the streams due to neutral pH conditions, where pebbles are covered and cemented by Fe-oxides and hydroxides indicating that oxidation of pyrite has taken place especially at times of low water load. It follows, then, that the pyrite-rich sediment load of streams fed by the waste of the Murgul deposit is currently a big threat to the aquatic life and environment and will continue to be so even after the closure of the deposit. In fact, the oxidation will be enhanced and acidity increased due to natural conditions, which necessitates strong remedial actions to be taken. PMID:26637995

  4. Evaluation of Heavy-Chain C-Terminal Deletion on Product Quality and Pharmacokinetics of Monoclonal Antibodies.

    Science.gov (United States)

    Jiang, Guoying; Yu, Christopher; Yadav, Daniela B; Hu, Zhilan; Amurao, Annamarie; Duenas, Eileen; Wong, Marc; Iverson, Mark; Zheng, Kai; Lam, Xanthe; Chen, Jia; Vega, Roxanne; Ulufatu, Sheila; Leddy, Cecilia; Davis, Helen; Shen, Amy; Wong, Pin Y; Harris, Reed; Wang, Y John; Li, Dongwei

    2016-07-01

    Due to their potential influence on stability, pharmacokinetics, and product consistency, antibody charge variants have attracted considerable attention in the biotechnology industry. Subtle to significant differences in the level of charge variants and new charge variants under various cell culture conditions are often observed during routine manufacturing or process changes and pose a challenge when demonstrating product comparability. To explore potential solutions to control charge heterogeneity, monoclonal antibodies (mAbs) with native, wild-type C-termini, and mutants with C-terminal deletions of either lysine or lysine and glycine were constructed, expressed, purified, and characterized in vitro and in vivo. Analytical and physiological characterization demonstrated that the mAb mutants had greatly reduced levels of basic variants without decreasing antibody biologic activity, structural stability, pharmacokinetics, or subcutaneous bioavailability in rats. This study provides a possible solution to mitigate mAb heterogeneity in C-terminal processing, improve batch-to-batch consistency, and facilitate the comparability study during process changes. PMID:27262204

  5. Purification and application of C-terminally truncated hepatitis C virus E1 proteins expressed in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Li-Xin Zhu; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2005-01-01

    AIM: To explore the possibility of expressing hepatitis C virus (HCV) envelope protein 1 (E1) in Escherichia coli(E.coli)and to test the purified recombinant E1 proteins for clinical and research applications. METHODS: C-terminally trunczated E1 fragments were expressed in E. coli as hexa-histidine-tagged fusion proteins. The expression products were purified under denaturing conditions using immobilized-metal affinity chromatography. Purified E1 proteins were used to immunize rabbits. Rabbit anti-sera thus obtained were reacted with both E. coli- and mammalian cell-expressed E1 glycoproteins as detected by Western blot.RESULTS: Full-length E1 protein proved difficult to express in E. coli. C-terminally truncated E1 was successfully expressed in E. coli as hexa-histidine-tagged recombinant fusion protein and was purified under denaturing conditions on Ni2+-NTA agarose. Rabbit anti-sera raised against purified recombinant E1 specifically reacted with mammalian cell-expressed E1 giycoproteins in Western blot. Furthermore, E. coli-derived E1 protein was able to detect animal antibodies elicited by E1-based DNA immunization.CONCLUSION: These results demonstrate that the prokaryotically expressed E1 proteins share identical epitopes with eukaryotically expressed E1 glycoprotein. The E. coli-derived E1 proteins and corresponding antisera can become useful tools in anti-HCV vaccine research.

  6. Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?

    Directory of Open Access Journals (Sweden)

    Marijke De Bock

    2015-01-01

    Full Text Available The coordination of tissue function is mediated by gap junctions (GJs that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury.

  7. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Science.gov (United States)

    Scharinger, Anja; Eckrich, Stephanie; Vandael, David H.; Schönig, Kai; Koschak, Alexandra; Hecker, Dietmar; Kaur, Gurjot; Lee, Amy; Sah, Anupam; Bartsch, Dusan; Benedetti, Bruno; Lieb, Andreas; Schick, Bernhard; Singewald, Nicolas; Sinnegger-Brauns, Martina J.; Carbone, Emilio; Engel, Jutta; Striessnig, Jörg

    2015-01-01

    Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability. PMID:26379493

  8. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Directory of Open Access Journals (Sweden)

    Anja eScharinger

    2015-08-01

    Full Text Available Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM. It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA. Using these mice we provide biochemical evidence for the existence of long (CTM-containing and short (CTM-deficient Cav1.3 α1-subunits in brain. The long (HA-labeled Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It is required to stabilize gating properties of Cav1.3 channels required for normal electrical excitability.

  9. C-Terminal to Intact Fibroblast Growth Factor 23 Ratio in Relation to Estimated Glomerular Filtration Rate in Elderly Population

    Directory of Open Access Journals (Sweden)

    Maria Bożentowicz-Wikarek

    2016-08-01

    Full Text Available Background/Aims: An analytical equivalence between intact fibroblasts growth factor(iFGF23 and C-terminal(cFGF23 assays is logically expected, however, numerous studies demonstrate lack of a strong association between them. Previously, we have demonstrated the increase in cFGF23 slightly precedes the increase of iFGF23 with the impairment of kidney excretory function; without actually analyzing the ratio between both assays, which are postulated to be affected by declining kidney function. Therefore, the aim of this study was to analyze the ratio between C and iFGF23 in relation to the estimated glomerular filtration rate (eGFR in an elderly population. Methods: We analysed the variability of c/iFGF23 ratio in the population of 3264 elderly PolSenior study participants (≥ 65years in the relation to eGFR calculated according full Modification of Diet in Renal Disease, serum levels of C-reactive protein (hs-CRP, and iron. Results: The log10(c/i FGF23 ratio increased in the subsequent CKD stages. Serum iron and CRP levels reduced the log10 and increased it with age in multivariate regression analysis. Conclusions: Our results suggest impairment in the cleavage of the C-terminal FGF23 fragments with the deterioration of kidney excretory function and age in the elderly population. Inflammation and low serum iron level seems to diminish degradation capacity of FGF23 fragments.

  10. Chaperone-like effect of the linker on the isolated C-terminal domain of rabbit muscle creatine kinase.

    Science.gov (United States)

    Chen, Zhe; Chen, Xiang-Jun; Xia, Mengdie; He, Hua-Wei; Wang, Sha; Liu, Huihui; Gong, Haipeng; Yan, Yong-Bin

    2012-08-01

    Intramolecular chaperones (IMCs), which are specific domains/segments encoded in the primary structure of proteins, exhibit chaperone-like activity against the aggregation of the other domains in the same molecule. In this research, we found that the truncation of the linker greatly promoted the thermal aggregation of the isolated C-terminal domain (CTD) of rabbit muscle creatine kinase (RMCK). Either the existence of the linker covalently linked to CTD or the supply of the synthetic linker peptide additionally could successfully protect the CTD of RMCK against aggregation in a concentration-dependent manner. Truncated fragments of the linker also behaved as a chaperone-like effect with lower efficiency, revealing the importance of its C-terminal half in the IMC function of the linker. The aggregation sites in the CTD of RMCK were identified by molecular dynamics simulations. Mutational analysis of the three key hydrophobic residues resulted in opposing effects on the thermal aggregation between the CTD with intact or partial linker, confirming the role of linker as a lid to protect the hydrophobic residues against exposure to solvent. These observations suggested that the linkers in multidomain proteins could act as IMCs to facilitate the correct folding of the aggregation-prone domains. Furthermore, the intactness of the IMC linker after proteolysis modulates the production of off-pathway aggregates, which may be important to the onset of some diseases caused by the toxic effects of aggregated proteolytic fragments.

  11. Tail biting in pigs.

    Science.gov (United States)

    Schrøder-Petersen, D L; Simonsen, H B

    2001-11-01

    One of the costly and welfare-reducing problems in modern pig production is tail biting. Tail biting is an abnormal behaviour, characterized by one pig's dental manipulation of another pig's tail. Tail biting can be classified into two groups: the pre-injury stage, before any wound on the tail is present, and the injury stage, where the tail is wounded and bleeding. Tail biting in the injury stage will reduce welfare of the bitten pig and the possible spread of infection is a health as well as welfare problem. The pigs that become tail biters may also suffer, because they are frustrated due to living in a stressful environment. This frustration may result in an excessive motivation for biting the tails of pen mates. This review aims to summarize recent research and theories in relation to tail biting. PMID:11681870

  12. Cloning of C-Terminal of Opioid μ-Receptor and Construction of Its Expression Plasmid for Yeast Two Hybrid System

    Institute of Scientific and Technical Information of China (English)

    YANHui; GONGZe-hui

    2004-01-01

    Aim: To obtain the C-terminal DNA and construct the expression plasmid in yeast two-hybrid. Methods: About 177bp DNA fragment was amplified from the complete sequence of ( receptor by PCR. After being sequenced, the C-terminal fragment was ligased into EcoR I-BamH I site of pGBKT7 vector to form recombinants. The recombinant plasmid

  13. A C-terminal Hydrophobic, Solvent-protected Core and a Flexible N-terminus are Potentially Required for Human Papillomavirus 18 E7 Protein Functionality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Tian, Y; Greenaway, F; Sun, M

    2010-01-01

    The oncogenic potential of the high-risk human papillomavirus (HPV) relies on the expression of genes specifying the E7 and E6 proteins. To investigate further the variation in oligomeric structure that has been reported for different E7 proteins, an HPV-18 E7 cloned from a Hispanic woman with cervical intraepithelial neoplasia was purified to homogeneity most probably as a stable monomeric protein in aqueous solution. We determined that one zinc ion is present per HPV-18 E7 monomer by amino acid and inductively coupled plasma-atomic emission spectroscopy analysis. Intrinsic fluorescence and circular dichroism spectroscopic results indicate that the zinc ion is important for the correct folding and thermal stability of HPV-18 E7. Hydroxyl radical mediated protein footprinting coupled to mass spectrometry and other biochemical and biophysical data indicate that near the C-terminus, the four cysteines of the two Cys-X{sub 2}-Cys motifs that are coordinated to the zinc ion form a solvent inaccessible core. The N-terminal LXCXE pRb binding motif region is hydroxyl radical accessible and conformationally flexible. Both factors, the relative flexibility of the pRb binding motif at the N-terminus and the C-terminal metal-binding hydrophobic solvent-protected core, combine together and facilitate the biological functions of HPV-18 E7.

  14. Ral GTPase interacts with the N-terminal in addition to the C-terminal region of PLC-delta1.

    Science.gov (United States)

    Grujic, Ognjen; Bhullar, Rajinder P

    2009-06-12

    Previously, we have shown that RalA, a calmodulin (CaM)-binding protein, binds to the C2 region in the C-terminal of PLC-delta1, and increases its enzymatic activity. Since PLC-delta1 contains a CaM-like region in its N-terminus, we have investigated if RalA can also bind to the N-terminus of PLC-delta1. Therefore, we created a GST-PLC-delta1 construct consisting of the first 294 amino acids of PLC-delta1 (GST-PLC-delta1(1-294)). In vitro binding experiments confirmed that PLC-delta1(1-294) was capable of binding directly to RalA. W-7 coupled to polyacrylamide beads bound pure PLC-delta1, demonstrating that PLC-delta1 contains a CaM-like region. Competition assays with W-7, peptides representing RalA and the newly identified RalB CaM-binding regions, or the IQ peptide from PLC-delta1 were able to inhibit RalA binding to PLC-delta1(1-294). This study demonstrates that there are two binding sites for RalA in PLC-delta1 and provides further insight into the role of Ral GTPase in the regulation of PLC-delta1 function.

  15. C-terminal binding protein (CtBP activates the expression of E-box clock genes with CLOCK/CYCLE in Drosophila.

    Directory of Open Access Journals (Sweden)

    Taichi Q Itoh

    Full Text Available In Drosophila, CLOCK/CYCLE heterodimer (CLK/CYC is the primary activator of circadian clock genes that contain the E-box sequence in their promoter regions (hereafter referred to as "E-box clock genes". Although extensive studies have investigated the feedback regulation of clock genes, little is known regarding other factors acting with CLK/CYC. Here we show that Drosophila C-terminal binding protein (dCtBP, a transcriptional co-factor, is involved in the regulation of the E-box clock genes. In vivo overexpression of dCtBP in clock cells lengthened or abolished circadian locomotor rhythm with up-regulation of a subset of the E-box clock genes, period (per, vrille (vri, and PAR domain protein 1ε (Pdp1ε. Co-expression of dCtBP with CLK in vitro also increased the promoter activity of per, vri, Pdp1ε and cwo depending on the amount of dCtBP expression, whereas no effect was observed without CLK. The activation of these clock genes in vitro was not observed when we used mutated dCtBP which carries amino acid substitutions in NAD+ domain. These results suggest that dCtBP generally acts as a putative co-activator of CLK/CYC through the E-box sequence.

  16. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells

    International Nuclear Information System (INIS)

    The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5

  17. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  18. The arginine residue within the C-terminal active core of Bombyx mori pheromone biosynthesis-activating neuropeptide (PBAN is essential for receptor binding and activation

    Directory of Open Access Journals (Sweden)

    Takeshi eKawai

    2012-03-01

    Full Text Available In most lepidopteran insects, the biosynthesis of sex pheromones is regulated by pheromone biosynthesis activating neuropeptide (PBAN. Bombyx mori PBAN (BomPBAN consists of 33 amino acid residues and contains a C-terminus FSPRLamide motif as the active core. Among neuropeptides containing the FXPRLamide motif, the arginine (Arg, R residue two positions from the C-terminus is highly conserved across several neuropeptides, which can be designated as RXamide peptides. The purpose of this study was to reveal the role of the Arg residue in the BomPBAN active core. We synthesized a ten-residue peptide corresponding to the C-terminal part of BomPBAN with a series of point mutants at the 2nd position (ie, Arg from the C-terminus, termed the C2 position, and measured their efficacy in stimulating Ca2+ influx in insect cells concomitantly expressing a fluorescent PBAN receptor chimera (PBANR-EGFP and loaded with the fluorescent Ca2+ indicator, Fura Red-AM. PBAN analogs with the C2 position replaced with alanine (Ala, A, aspartic acid (Asp, D, serine (Ser, S or L-2-aminooctanoic acid (Aoc decreased PBAN-like activity. RC2A (SKTRYFSPALamide and RC2D (SKTRYFSPDLamide had the lowest activity and could not inhibit the activity of PBAN C10 (SKTRYFSPRLamide. We also prepared Rhodamine Red-labeled PBAN analogs of the mutants and examined their ability to bind PBANR. In contrast to 100 nM Rhodamine Red-PBAN C10, none of the mutants at the same concentration exhibited PBANR binding. Taken together, our results demonstrate that the C2 Arg residue in BomPBAN is essential for PBANR binding and activation.

  19. Tyrosine kinase activity of a chimeric insulin-like-growth-factor-1 receptor containing the insulin receptor C-terminal domain. Comparison with the tyrosine kinase activities of the insulin and insulin-like-growth-factor-1 receptors using a cell-free system.

    Science.gov (United States)

    Mothe, I; Tartare, S; Kowalski-Chauvel, A; Kaliman, P; Van Obberghen, E; Ballotti, R

    1995-03-15

    In a previous study, we showed that a chimeric insulin-like-growth-factor-1 (IGF-1) receptor, with the beta subunit C-terminal part of the insulin receptor was more efficient in stimulating glycogen synthesis and p44mapk activity compared to the wild-type IFG-1 receptor [Tartare, S., Mothe, I., Kowalski-Chauvel, A., Breittmayer, J.-P., Ballotti, R. & Van Obberghen, E. (1994) J. Biol. Chem. 269, 11449-11455]. These data indicate that the receptor C-terminal domain plays an important role in the transmission of biological effects. To understand the molecular basis of the differences in receptor specificity, we studied the characteristics of insulin, IGF-1 and chimeric receptor tyrosine kinase activities in a cell-free system. We found that, compared to wild-type insulin and IGF-1 receptors, the chimeric receptor showed a decrease in (a) autophosphorylation, (b) tyrosine kinase activity towards insulin receptor substrate-1 and the insulin receptor-(1142-1158)-peptide, and (c) the ability to activate phosphatidylinositol 3-kinase. However, for all the effects measured in a cell-free system, the chimeric receptor displayed an increased response to IGF-1 compared to the native IGF-1 receptor. Concerning the cation dependence of the tyrosine kinase activity, we showed that, at 10 mM Mg2+, the ligand-stimulated phosphorylation of poly(Glu80Tyr20) by both insulin receptor and chimeric receptor was increased by Mn2+. Conversely at 50 mM Mg2+, the chimeric receptor behaved like the IGF-1 receptor, since the presence of Mn2+ decreased the stimulatory effect of IGF-1 on their kinase activity. Furthermore, the Km of the chimeric receptor for ATP was increased compared to the wild-type receptors. These data demonstrate that the replacement of the C-terminal tail of the IGF-1 receptor by that of the insulin receptor has changed the receptor characteristics studied in a cell-free system. Our findings indicate that the C-terminal domain of the insulin receptor beta subunit plays a

  20. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    OpenAIRE

    Ma D; Guo M; Zhang M

    2013-01-01

    Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC), a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate...

  1. Environmental Factors Influencing the Structural Dynamics of Soil Microbial Communities During Assisted Phytostabilization of Acid-Generating Mine Tailings: a Mesocosm Experiment

    Science.gov (United States)

    Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  2. Konsentrasi Asam Lemak Terbang dan Glukosa Darah Domba Ekor Tipis yang Diberi Bungkil Kedelai Terproteksi Tanin (VOLATILE FATTY ACID CONCENTRATION AND BLOOD GLUCOSE ON THIN-TAILED SHEEP GIVEN WITH TANINE-PROTECTED SOYBEAN MEAL

    Directory of Open Access Journals (Sweden)

    Siti Nuraliah

    2015-10-01

    Full Text Available This study aims to analyze the influence of tannin-protected protein source feed to livestock productivitybased on its influence on methane production, Volatile fatty acids (VFA production, and blood glucose inthe use of tannin-protected protein on complete feed in thin-tailed ram. The study uses thin-tailed ramaged about 8 months, as many as 16 rams with body weight of 11.81±1.65 kg. The researchusesa completerandomized design(CRD withfour treatmentsandfourreplications. The treatments areP0:15% soybeanmeals without tannin protection in complete feed, P1:15% soybean meals with 0.5% tannin protection incomplete feed, P2:15% soybean meals with 1% tannin protection in complete feed and P3:15% soybeanmeals with 1.5% tannin protection in complete feed. The results indicates that administration of tanninsin soybean meal in complete feed showed significant effect (P <0.05 on blood glucose, the production ofpropionic acid in the 3rd hour, but the VFA production at hour 0, hour 6, as well as methane productionshowed no significant effect (P> 0.05. The conclusion is that 15% protected soybean meal with 1% oftannin in the complete feed is able to contribute to the proportion of propionate and contribute to increasedblood glucose on a thin-tailed ram but can not to reduce methane production.

  3. Heavy tails of OLS

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; de Vries, Casper

    2013-01-01

    Suppose the tails of the noise distribution in a regression exhibit power law behavior. Then the distribution of the OLS regression estimator inherits this tail behavior. This is relevant for regressions involving financial data. We derive explicit finite sample expressions for the tail probabili...... variable cross country estimates of the expectations coefficient in yield curve regressions.......Suppose the tails of the noise distribution in a regression exhibit power law behavior. Then the distribution of the OLS regression estimator inherits this tail behavior. This is relevant for regressions involving financial data. We derive explicit finite sample expressions for the tail...

  4. Spin transport in epitaxial graphene on the C-terminated ( 000 1 ¯ )-face of silicon carbide

    Science.gov (United States)

    van den Berg, J. J.; Yakimova, R.; van Wees, B. J.

    2016-07-01

    We performed a temperature dependent study of the charge and spin transport properties of epitaxial graphene on the C-terminated ( 000 1 ¯ ) face of silicon carbide (SiC), a system without a carbon buffer layer between the graphene and the SiC. Using spin Hanle precession in the nonlocal geometry, we measured a spin relaxation length of λS = 0.7 μm at room temperature, lower than in exfoliated graphene. We show that the charge and spin diffusion coefficient, DC and DS, respectively, increasingly deviate from each other during electrical measurements up to a difference of a factor 4. Thus, we show that a model of localized states that was previously used to explain DC ≠ DS, can also be applied to epitaxial graphene systems without a carbon buffer layer. We attribute the effect to charge trap states in the interface between the graphene and the SiC.

  5. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2.

    Science.gov (United States)

    Karlsson, Göran; Persson, Cecilia; Mayzel, Maxim; Hedenström, Mattias; Backman, Lars

    2016-04-01

    Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker. PMID:26800385

  6. The effect of C-terminal fragment of JNK2 on the stability of p53 and cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The basal activity of JNK is low in normal growing cells and inactivated JNK targets p53 for ubiquitination. To elucidate if the C-terminal part of JNK is responsible for its binding to p53, the low background tet-off inducible NIH3T3 cell line was selected by luciferase reporter gene and a double stable C-JNK Aa (203-424) cell line was established. After withdrawing tetracycline, the C-JNK fragment expression was induced and cell growth was dramatically inhibited 24 h later. However, the expresion of p53 was found to be increased after the induction of C-JNK fragment, evaluated by transfecting p21waf-luciferase reporter genes. Our further studies showed that C-JNK fragment could form complex with p53 both in vivo and in vitro. Induction of C-JNK fragment in vivo can increase p53 stability by inhibiting p53 ubiquitination.

  7. α-Helical to β-Helical Conformation Change in the C-Terminal of the Mammalian Prion Protein

    Science.gov (United States)

    Singh, Jesse; Whitford, Paul; Hayre, Natha; Cox, Daniel; Onuchic, José.

    2011-03-01

    We employ all-atom structure-based models with mixed basis contact maps to explore whether there are any significant geometric or energetic constraints limiting conjectured conformational transitions between the alpha-helical (α H) and the left handed beta helical (LHBH) conformations for the C-terminal (residues 166-226) of the mammalian prion protein. The LHBH structure has been proposed to describe infectious oligomers and one class of in vitro grown fibrils, as well as possibly self- templating the conversion of normal cellular prion protein to the infectious form. Our results confirm that the kinetics of the conformation change are not strongely limited by large scale geometry modification and there exists an overall preference for the LHBH conformation.

  8. Graphene on C-terminated face of 4H-SiC observed by noncontact scanning nonlinear dielectric potentiometry

    Science.gov (United States)

    Yamasue, Kohei; Fukidome, Hirokazu; Tashima, Keiichiro; Suemitsu, Maki; Cho, Yasuo

    2016-08-01

    We studied graphene synthesized on the C-terminated face (C-face) of a 4H-SiC substrate by noncontact scanning nonlinear dielectric potentiometry. As already reported by other researchers, multilayer graphene sheets with moiré patterns were observed in our sample, which indicates the existence of rotational disorder between adjacent layers. We found that the potentials of graphene on the C-face are almost neutral and significantly smaller than those observed on the Si-terminated face (Si-face). In addition, the neutrality of potentials is not affected by various topographic features underlying the multilayer graphene sheets. These results indicate that graphene on the C-face of SiC is decoupled or screened from the underlying structures and substrate, unlike graphene on the Si-face.

  9. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein.

    Science.gov (United States)

    Burakova, Ludmila P; Natashin, Pavel V; Markova, Svetlana V; Eremeeva, Elena V; Malikova, Natalia P; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  10. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability.

    Science.gov (United States)

    Zebda, Noureddine; Tian, Yufeng; Tian, Xinyong; Gawlak, Grzegorz; Higginbotham, Katherine; Reynolds, Albert B; Birukova, Anna A; Birukov, Konstantin G

    2013-06-21

    p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820-843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation. PMID:23653363

  11. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein.

    Science.gov (United States)

    Burakova, Ludmila P; Natashin, Pavel V; Markova, Svetlana V; Eremeeva, Elena V; Malikova, Natalia P; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties. PMID:27395792

  12. Interaction of a C-terminal Truncated Hepatitis C Virus Core Protein with Plasmid DNA Vaccine Leads to in vitro Assembly of Heterogeneous Virus-like Particles

    Directory of Open Access Journals (Sweden)

    Nelson Acosta-Rivero

    2005-01-01

    Full Text Available Recently, it has been shown that HCV core proteins (HCcAg with C-terminal deletions assemble in vitro into virus-like particles (VLPs in the presence of structured RNA molecules. Results presented in this work showed that a truncated HCcAg variant covering the first 120 aa (HCcAg.120 with a 32 aa N-terminal fusion peptide (6xHistag-XpressTMepitope interacts with plasmid DNA vaccine. Interestingly, the buoyant density of VLPs containing HCcAg.120 in CsCl gradients changed from 1.15-1,17 g mLˉ1 to 1.30-1.34 g mLˉ1 after addition of plasmid DNA to assembly reactions. In addition, a delay in electrophoretic mobility of HCcAg.120-plasmid samples on agarose gels was observed indicating a direct interaction between VLPs and nucleic acids. Remarkably, addition of either plasmid DNA or tRNA to assembly reactions leaded to heterogeneous and larger VLPs formation than those observed in HCcAg.120 assembly reactions. VLPs containing HCcAg.120 induced a specific IgG antibodies in mice that reacted with hepatocytes from HCV-infected patients. VLPs obtained in this work would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure. Besides, the capacity of particles containing HCcAg.120 to interact with nucleic acids could be used in the development of DNA vaccines and viral vectors based on these particles.

  13. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Burakova, Ludmila P.; Natashin, Pavel V.; Markova, Svetlana V.; Eremeeva, Elena V.; Malikova, Natalia P.; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S.

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  14. NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein.

    Science.gov (United States)

    Haba, Noam Y; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H

    2013-07-16

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIP(C), a C-terminal domain fragment of WIP that includes residues 407-503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIP(C) and the high occurrence (25%) of proline residues, we employed 5D-NMR(13)C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, (15)N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446-456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468-478. The (13)C-detected approach allows chemical-shift assignment in the WIP(C) polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIP(C). Thus, we conclude that the disordered WIP(C) fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function.

  15. Antibodies against the C-terminal peptide of rabbit oviductin inhibit mouse early embryo development to pass 2-cell stage

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A full-length rabbit oviductin cDNA(1909bp) was cloned. It consists of a 5'-UTR of 52bp, an open reading frame (ORF) of 1374bp and a 3'-UTR of 483bp and has more than 80% homology with that of other mammal oviductins. N-terminal peptide (NTP) (384 residues) and C-terminal peptide (CTP)(73 residues) of deduced protein precursor has about 80% and 50% identity with that of other mammals respectively. Fusion proteins GST-NTP 368(1R-368N)and GST-CTP73 (369F-441A) were expressed and purified. NH2-terminal of CTP sequencing reveals that the purified protein is consistent with the deduced one. In order to study the function of NTP and CTP the mouse anti-NTP and rabbit anti-CTP antisera were prepared. Tissue-specific (skeleton muscle, oviduct, uterus, ovary, liver, heart and brain) analysis indicated that rabbit oviductin was only found in oviduct. The conditioned medium derived from the rabbit oviduct mucosa epithelial cells has a function of overcoming the early embryonic development block of Kunming mouse cultured in vitro. Anti-CTP antiserum could totally inhibit the early embryo development at 2-cell stage cultured in the conditioned culture medium, but anti-NTP antiserum couldn't. There was a positive relationship between the ratio of early embryos at development block and the dosage of anti-CTP antiserum added in the conditioned culture medium. These results suggest that oviductin has a function not only on fertilization, but also on the release of early embryonic development block, and the later function domain of rabbit oviductin may be situate in its C-terminal.

  16. In vitro pharmacological evaluation of the radiolabeled C-terminal substance P analogue Lys-Phe-Phe-Gly-Leu-Met-NH2: Does a specific binding site exist?

    Science.gov (United States)

    Tomczyszyn, Aleksandra; Csibrany, Balazs; Keresztes, Attila; Mallareddy, Jayapal Reddy; Dyniewicz, Jolanta; Misicka, Aleksandra; Toth, Geza; Lipkowski, Andrzej W

    2014-01-01

    In the present paper, we report the synthesis, radiolabeling and comprehensive pharmacological evaluation of a C-terminally truncated tachykinin derivative, 3H-KFFGLM-NH2. The C-terminal fragments of endogenous tachykinins are pharmacophores responsible for interaction with the tachykinin receptors NK1, NK2 and NK3. The N-terminal fragments are responsible for modulation of receptor selectivity and interactions with other receptor systems. To evaluate and separate the function of an NK-pharmacophore from the activity of its parent neurokinin, KFFGLM-NH2 was synthesized in both tritiated and unlabeled forms. It has been proposed that the obtained NK-binding profiles of specific reference ligands and KFFGLM-NH2 differentiate monomeric and dimeric forms of NK receptors. We hypothesize that dimers of NK receptors could be specific receptor(s) for C-terminal fragments of all neurokinins as well as their C-terminal fragments, including H-KFFGLM-NH2. Dissociation of dimers into monomers opens access to additional allosteric binding sites. Fully elongated undecapeptide substance P interacts with both the "tachykinin pocket" and the "allosteric pocket" on the monomeric NK1 receptor, resulting in high and selective activation. However, C-terminal hexapeptide fragment analogues, recognizing only the "tachykinin pocket", may have less specific interactions with all tachykinin receptors in both monomeric and dimeric forms. PMID:25574743

  17. The tailings technology suite

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, Deborah

    2011-10-15

    Oilsands tailing ponds contain leftover bitumen and asphaltenes, which are dangerous to local wildlife. The Oil Sands Tailings Consortium (OSTCS) was founded by all major mining players and aims to prompt collaboration within the oilsands industry to reclaim the tailings area. Each company has hitherto worked on different tailings management technologies, often duplicating efforts. Some technologies proposed by these oilsands miners were introduced in this article.

  18. Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: Mapping of residues that when altered give rise to an activated enzyme

    DEFF Research Database (Denmark)

    Axelsen, K.B.; Venema, K.; Jah, T.;

    1999-01-01

    The plasma membrane H+-ATPase is a proton pump belonging to the P-type ATPase superfamily and is important for nutrient acquisition in plants, The H+-ATPase is controlled by an autoinhibitory C-terminal regulatory domain and is activated by 14-3-3 proteins which bind to this part of the enzyme....... Alanine-scanning mutagenesis through 87 consecutive amino acid residues was used to evaluate the role of the C-terminus in autoinhibition of the plasma membrane H+-ATPase AHA2 from Arabidopsis thaliana. Mutant enzymes were expressed in a strain of Saccharomyces cerevisiae with a defective endogenous H......+-ATPase. The enzymes were characterized by their ability to promote growth in acidic conditions and to promote H+ extrusion from intact cells, both of which are measures of plasma membrane H+-ATPase activity, and were also characterized with respect to kinetic properties such as affinity for H+ and ATP...

  19. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2

    Energy Technology Data Exchange (ETDEWEB)

    Ozorowski, Gabriel [University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697-3900 (United States); Milton, Saskia [University of California, Irvine, Irvine, CA 92697-3900 (United States); Luecke, Hartmut, E-mail: hudel@uci.edu [University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States)

    2013-01-01

    Structure of a 20-amino-acid peptide of AHNAK bound asymmetrically to the AnxA2–S100A10A heterotetramer (1:2:2 symmetry) provides insights into the atomic level interactions that govern this membrane-repair scaffolding complex. AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2–S100A10 heterotetramer [(p11){sub 2}(AnxA2){sub 2})] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11){sub 2}(AnxA2){sub 2} is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca{sup 2+}-dependent manner. The binding of AHNAK to (p11){sub 2}(AnxA2){sub 2} has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654–5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2–S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11){sub 2}(AnxA2){sub 2}. Binding of AHNAK to the surface of (p11){sub 2}(AnxA2){sub 2} is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11){sub 2}(AnxA2){sub 2} most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various

  20. The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor.

    Science.gov (United States)

    Filippelli-Silva, Rafael; Martin, Renan P; Rodrigues, Eliete S; Nakaie, Clovis R; Oliveira, Laerte; Pesquero, João B; Shimuta, Suma I

    2016-04-01

    Bradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.35(226) and Asp6.58(298), our study aims at clarifying the BK interaction profile with the B2 receptor [receptor residue numbers are normalized according to Ballesteros and Weinstein, Methods Neurosci. 25 (1995), pp. 366-428) followed by receptor sequence numbering in brackets]. N- and C-terminal analogs of BK (-A1, -G1, -K1, -E1 and BK-A9) were tested against wild type B2, Glu5.35(226)Ala and Asp6.58(298)Ala B2 mutant receptors for their affinity and capability to elicit responses by mechanical recordings of isolated mice stomach fundus, measuring intracellular calcium mobilization, and competitive fluorimetric binding assays. BK showed 2- and 15-fold decreased potency for Glu5.35(226) and Asp6.58(298) B2 mutant receptors, respectively. In B2-Glu5.35(226)Ala BK analogs showed milder reduction in evaluated parameters. On the other hand, in the B2-Asp6.58(298)Ala mutant, no N-terminal analog was able to elicit any response. However, the BK-A9 analog presented higher affinity parameters than BK in the latter mutant. These findings provide enough support for defining a novel interaction role of BK-R9 and Asp6.58(298) receptor residues. PMID:26584354

  1. Osteopontin and the C-terminal peptide of thrombospondin-4 compete for CD44 binding and have opposite effects on CD133+ cell colony formation

    Directory of Open Access Journals (Sweden)

    Dobocan Monica C

    2009-10-01

    Full Text Available Abstract Background C21, the C-terminal peptide of thrombospondin-4, has growth promoting activity and was discovered as one of several erythropoietin-dependent endothelial proteins. C21 stimulates red cell formation in anemic mice and is a growth factor for CD34+ and CD36+ hematopoietic cells, skin fibroblasts and kidney epithelial cells. ROD1 has been identified as an intracellular mediator. Nothing is known about the existence of putative C21 receptors on plasma membranes of target cells. Findings We analyzed the nature of C21-binding proteins in cell lysates of skin fibroblasts using C21 affinity columns. The membrane receptor CD44 was identified as C21-binding protein by mass spectrometry. We were unable to demonstrate any direct involvement of CD44 on cell growth or the effect of C21 on cell proliferation. A soluble form of CD44 was synthesized in insect cells and purified from culture supernatants with a combination of PVDF filtration in the presence of ammonium sulphate and HPLC. Both osteopontin and hyaluronic acid competitively displaced Biotin-C21 binding to CD44. In a colony-forming assay using primitive CD133+ hematopoietic stem cells from cord blood, osteopontin and C21 had opposite effects and C21 reduced the inhibitory action of osteopontin. Conclusion CD44 is a C21-binding membrane protein. We could not demonstrate an involvement of CD44 in the proliferative action of C21. Nevertheless, based on the antagonism of C21 and osteopontin in hematopoietic precursors, we speculate that C21 could indirectly have a major impact on hematopoietic stem cell proliferation, by hindering osteopontin membrane binding at the level of the bone marrow niche.

  2. Effects of a mixture of fatty acids from sugar cane (Saccharum officinarum L.) wax oil in two models of inflammation: zymosan-induced arthritis and mice tail test of psoriasis.

    Science.gov (United States)

    Ledón, N; Casacó, A; Remirez, D; González, A; Cruz, J; González, R; Capote, A; Tolón, Z; Rojas, E; Rodríguez, V J; Merino, N; Rodríguez, S; Ancheta, O; Cano, M C

    2007-10-01

    A mixture of fatty acids obtained from sugar cane (Saccharum officinarum L.) wax oil (FAM), in which the main constituents are palmitic, oleic, linoleic, and linolenic acids, was evaluated in two models of inflammation: zymosan-induced arthritis and in the tail test for psoriasis, both on mice. In the first model, FAM significantly reduced zymozan-induced increase of beta glucuronidase (DE(50) 90+/-7 mg/kg). Histopathological studies showed inhibition in cellular infiltration and reduction of synovial hyperplasia and synovitis, whereas in the second test, histopathological and ultrastructural studies showed that topical application of FAM induced orthokeratosis with the presence of keratohyalin granules in the previously parakeratotic adult mouse tail, and without effects on epidermal thickness. The ED(50) of FAM in this model was 155+/-10 mg. The results of our studies showed that topical application of FAM exerts an important anti-inflammatory activity in both tests without evidence of irritant effects. The anti-inflamatory effects exerted by FAM may be due to its inhibitory effects on arachidonic acid metabolism. To our knowledge, this is the first report on the anti-inflammatory effect of sugar cane by-products in experimental models of arthritis and psoriasis.

  3. Cross-sectional association between urinary type II collagen. C-terminal telopeptide concentration and radiographic spinal disc degeneration

    International Nuclear Information System (INIS)

    When degraded, type II collagen, which is contained in large quantities in the cartilage and intervertebral discs, produces a C-terminal peptide (type II collagen C terminal telopeptide, CTX-II), which is excreted in the urine. It has been reported that CTX-II is useful for evaluating the severity of cartilage degeneration and abrasion in the hip and knee joints, but shows no correlation with the severity of degeneration of intervertebral discs, which are mostly composed of type II collagen. The present study was performed to clarify whether urinary CTX-II was correlated with intervertebral X-ray findings. A cross-sectional study was performed to clarify correlations between urinary CTX-II and the progression of degeneration of each intervertebral disc on lumbar X-P films. The subjects of this study were 100 patients (400 intervertebral discs) aged≥40 years. They visited this hospital for the first time because of low backache. Intervertebral disc height, osteophyte length and Kellgren-Lawrence classification were measured to evaluate the degree of lumbar disc degeneration on X-ray films. The second freshly voided urine was used for measuring urinary CTX-II. The measurement results were investigated for correlations with disc height, osteophyte length, age, sex, body mass index (BMI), and lumbar MRI findings by cross-sectional analysis. The t-test and Kruskal-Wallis-test were used for statistical analysis of data. Urinary CTX-II was not correlated with age or BMI but was significantly higher in females than in males. It was only correlated with the degeneration of L2/3 and 3/4 discs and showed a significant difference between lower, medium, and higher disc groups. It was not correlated with osteophyte length or lumbar MRI findings. Urinary CTX-II was only correlated with L2/3 and 3/4 disc degeneration. This was presumably ascribable to the focus and distance during radiography. Osteophyte formation is a phenomenon secondary to intervertebral disc degeneration

  4. Structure determination of Murine Norovirus NS6 proteases with C-terminal extensions designed to probe protease–substrate interactions

    Directory of Open Access Journals (Sweden)

    Humberto Fernandes

    2015-02-01

    Full Text Available Noroviruses are positive-sense single-stranded RNA viruses. They encode an NS6 protease that cleaves a viral polyprotein at specific sites to produce mature viral proteins. In an earlier study we obtained crystals of murine norovirus (MNV NS6 protease in which crystal contacts were mediated by specific insertion of the C-terminus of one protein (which contains residues P5-P1 of the NS6-7 cleavage junction into the peptide binding site of an adjacent molecule, forming an adventitious protease-product complex. We sought to reproduce this crystal form to investigate protease–substrate complexes by extending the C-terminus of NS6 construct to include residues on the C-terminal (P′ side of the cleavage junction. We report the crystallization and crystal structure determination of inactive mutants of murine norovirus NS6 protease with C-terminal extensions of one, two and four residues from the N-terminus of the adjacent NS7 protein (NS6 1′, NS6 2′, NS6 4′. We also determined the structure of a chimeric extended NS6 protease in which the P4-P4′ sequence of the NS6-7 cleavage site was replaced with the corresponding sequence from the NS2-3 cleavage junction (NS6 4′ 2|3.The constructs NS6 1′ and NS6 2′ yielded crystals that diffracted anisotropically. We found that, although the uncorrected data could be phased by molecular replacement, refinement of the structures stalled unless the data were ellipsoidally truncated and corrected with anisotropic B-factors. These corrections significantly improved phasing by molecular replacement and subsequent refinement.The refined structures of all four extended NS6 proteases are very similar in structure to the mature MNV NS6—and in one case reveal additional details of a surface loop. Although the packing arrangement observed showed some similarities to those observed in the adventitious protease-product crystals reported previously, in no case were specific protease–substrate interactions

  5. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer.

    Directory of Open Access Journals (Sweden)

    Sivakumar Namadurai

    Full Text Available The mismatch repair (MMR pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD of the MutL homolog of Neisseria gonorrhoeae (NgoL determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.

  6. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer.

    Science.gov (United States)

    Namadurai, Sivakumar; Jain, Deepti; Kulkarni, Dhananjay S; Tabib, Chaitanya R; Friedhoff, Peter; Rao, Desirazu N; Nair, Deepak T

    2010-01-01

    The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage. PMID:21060849

  7. Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair

    OpenAIRE

    Guarné, Alba; Ramon-Maiques, Santiago; Wolff, Erika M.; Ghirlando, Rodolfo; Hu, Xiaojian; Miller, Jeffrey H.; Yang, Wei

    2004-01-01

    MutL assists the mismatch recognition protein MutS to initiate and coordinate mismatch repair in species ranging from bacteria to humans. The MutL N-terminal ATPase domain is highly conserved, but the C-terminal region shares little sequence similarity among MutL homologs. We report here the crystal structure of the Escherichia coli MutL C-terminal dimerization domain and the likelihood of its conservation among MutL homologs. A 100-residue proline-rich linker between the ATPase and dimerizat...

  8. Sequence and modified group analysis on C-terminal modified analogs of endomorphin-2 using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a series of C-terminal modified analogs of endomorphin-2 is investigated using ESI-FT-ICR-MS. Some b, y″, a, and internal ions are found in the CID spectra and slight mass differ- ences between the calculated and observed results are obtained. Moreover, if the C-terminal modified group is t-butyloxy, it can lose butene through McLafferty rearrangement. FT-ICR MS shows its power in peptide sequencing successfully helping us obtain the structure of peptide analogs.

  9. Sequence and modified group analysis on C-terminal modified analogs of endomorphin-2 using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,a series of C-terminal modified analogs of endomorphin-2 is investigated using ESI-FT-ICR-MS. Some b, y", a, and internal ions are found in the CID spectra and slight mass differences between the calculated and observed results are obtained. Moreover, if the C-terminal modified group is t-butyloxy, it can lose butene through McLafferty rearrangement. FT-ICR MS shows its power in peptide sequencing successfully helping us obtain the structure of peptide analogs.

  10. The C-terminal region of Rad52 is essential for Rad52 nuclear and nucleolar localization, and accumulation at DNA damage sites immediately after irradiation

    International Nuclear Information System (INIS)

    Highlights: •Rad52 might play a key role in the repair of DSB immediately after irradiation. •EYFP-Rad52 accumulates rapidly at DSB sites and colocalizes with Ku80. •Accumulation of Rad52 at DSB sites is independent of the core NHEJ factors. •Localization and recruitment of Rad52 to DSB sites are dependent on the Rad52 CTR. •Basic amino acids in Rad52 CTR are highly conserved among vertebrate species. -- Abstract: Rad52 plays essential roles in homologous recombination (HR) and repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. However, in vertebrates, knockouts of the Rad52 gene show no hypersensitivity to agents that induce DSBs. Rad52 localizes in the nucleus and forms foci at a late stage following irradiation. Ku70 and Ku80, which play an essential role in nonhomologous DNA-end-joining (NHEJ), are essential for the accumulation of other core NHEJ factors, e.g., XRCC4, and a HR-related factor, e.g., BRCA1. Here, we show that the subcellular localization of EYFP-Rad52(1–418) changes dynamically during the cell cycle. In addition, EYFP-Rad52(1–418) accumulates rapidly at microirradiated sites and colocalizes with the DSB sensor protein Ku80. Moreover, the accumulation of EYFP-Rad52(1–418) at DSB sites is independent of the core NHEJ factors, i.e., Ku80 and XRCC4. Furthermore, we observed that EYFP-Rad52(1–418) localizes in nucleoli in CHO-K1 cells and XRCC4-deficient cells, but not in Ku80-deficient cells. We also found that Rad52 nuclear localization, nucleolar localization, and accumulation at DSB sites are dependent on eight amino acids (411–418) at the end of the C-terminal region of Rad52 (Rad52 CTR). Furthermore, basic amino acids on Rad52 CTR are highly conserved among mammalian, avian, and fish homologues, suggesting that Rad52 CTR is important for the regulation and function of Rad52 in vertebrates. These findings also suggest that the mechanism underlying the regulation of subcellular localization of Rad52 is

  11. Expression and characterization of Kunitz domain 3 and C-terminal of human tissue factor pathway inhibitor-2

    Institute of Scientific and Technical Information of China (English)

    Lina Zhu; Jiping Wang; Jingui Mu; Huijun Wang; Chenqi Zhang; Jue Wang; Xingang Liu; Xiaomin Yan; Linsen Dai; Duan Ma

    2009-01-01

    Human tissue factor pathway inhibitor-2 (hTFPI-2) is a serine protease inhibitor and its inhibitory activity is enhanced by heparin. The Kunitz domain 3 and C-terminal of hTFPI-2 (bTFPI-2/KD3C), which has the activity toward heparin calcium, have been successfully expressed in Pichia pastoris and purified by SP-Sepharose and heparin-Sepharose chromatography. The Fourier transformed infrared spectroscopy (FTIR),Raman spectroscopy, and circular dichroism (CD)experiment results implied that hTFPI-2/KD3C con-tained small contents of or-helix and β-strand, but large amounts of random coil and two kinds of disulfide bonds, gauche-gauche-gauche (ggg) and trans-gauche-trans (tgt). The interaction of hTFPI-2/KD3C with heparin calcium was investigated by CD. It was found that heparin calcium induced β-strands in hTFPI-2/KD3C to different extents depending on the ratio of hTFPI-2/KD3C and heparin calcium.

  12. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    Science.gov (United States)

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus. PMID:24386845

  13. Synapse associated protein 102 (SAP102 binds the C-terminal part of the scaffolding protein neurobeachin.

    Directory of Open Access Journals (Sweden)

    Juliane Lauks

    Full Text Available Neurobeachin (Nbea is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.

  14. The structure of Abeta42 C-terminal fragments probed by a combined experimental and theoretical study.

    Science.gov (United States)

    Wu, Chun; Murray, Megan M; Bernstein, Summer L; Condron, Margaret M; Bitan, Gal; Shea, Joan-Emma; Bowers, Michael T

    2009-03-27

    The C-terminus of amyloid beta-protein (Abeta) 42 plays an important role in this protein's oligomerization and may therefore be a good therapeutic target for the treatment of Alzheimer's disease. Certain C-terminal fragments (CTFs) of Abeta42 have been shown to disrupt oligomerization and to strongly inhibit Abeta42-induced neurotoxicity. Here we study the structures of selected CTFs [Abeta(x-42); x=29-31, 39] using replica exchange molecular dynamics simulations and ion mobility mass spectrometry. Our simulations in explicit solvent reveal that the CTFs adopt a metastable beta-structure: beta-hairpin for Abeta(x-42) (x=29-31) and extended beta-strand for Abeta(39-42). The beta-hairpin of Abeta(30-42) is converted into a turn-coil conformation when the last two hydrophobic residues are removed, suggesting that I41 and A42 are critical in stabilizing the beta-hairpin in Abeta42-derived CTFs. The importance of solvent in determining the structure of the CTFs is further highlighted in ion mobility mass spectrometry experiments and solvent-free replica exchange molecular dynamics simulations. A comparison between structures with solvent and structures without solvent reveals that hydrophobic interactions are critical for the formation of beta-hairpin. The possible role played by the CTFs in disrupting oligomerization is discussed.

  15. Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90.

    Directory of Open Access Journals (Sweden)

    Emanuele Ciglia

    Full Text Available Human heat shock protein of 90 kDa (hHsp90 is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScore(PPI. Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization.

  16. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    Science.gov (United States)

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus.

  17. Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase.

    Science.gov (United States)

    Wada, Masaru; Hijikata, Nowaki; Aoki, Ryo; Takesue, Nobuchika; Yokota, Atsushi

    2008-11-01

    We have reported increased glutamate production by a mutant of Corynebacterium glutamicum ATCC14067 (strain F172-8) with reduced H(+)-ATPase activity under biotin-limiting culture conditions (Aoki et al. Biosci. Biotechnol. Biochem., 69, 1466-1472 (2005)). In the present study, we examined valine production by an H(+)-ATPase-defective mutant of C. glutamicum. Using the double-crossover chromosome replacement technique, we constructed a newly defined H(+)-ATPase-defective mutant from ATCC13032. After transforming the new strain (A-1) with a C-terminal truncation of acetohydroxyacid synthase gene (ilvBN), valine production increased from 21.7 mM for the wild-type strain to 46.7 mM for the A-1 in shaking flask cultures with 555 mM glucose. Increased production of the valine intermediate acetoin was also observed in A-1, and was reduced by inserting acetohydroxyacid isomeroreductase gene (ilvC) into the ilvBN plasmid. After transformation with this new construct, valine production increased from 38.3 mM for the wild-type strain to 95.7 mM for A-1 strain. To the best of our knowledge, this is the first report indicating that an H(+)-ATPase-defective mutant of C. glutamicum is capable of valine production. Our combined results with glutamate and valine suggest that the H(+)-ATPase defect is also effective in the fermentative production of other practical compounds.

  18. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain

    Science.gov (United States)

    Shi, Hang; Rojas, Raul; Bonifacino, Juan S.; Hurley, James H.

    2006-01-01

    The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29, and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1Å resolution reveals two curvedβ -sandwich domains connected by a polar core and a flexible linker. Vps26 has an unexpected structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235–246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a Gly in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting. PMID:16732284

  19. A Superhelical Spiral in the Escherichia coli DNA Gyrase A C-terminal Domain Imparts Unidirectional Supercoiling Bias

    Energy Technology Data Exchange (ETDEWEB)

    Ruthenburg,A.; Graybosch, D.; Huetsch, J.; Verdine, G.

    2005-01-01

    DNA gyrase is unique among type II topoisomerases in that its DNA supercoiling activity is unidirectional. The C-terminal domain of the gyrase A subunit (GyrA-CTD) is required for this supercoiling bias. We report here the x-ray structure of the Escherichia coli GyrA-CTD (Protein Data Bank code 1ZI0). The E. coli GyrA-CTD adopts a circular-shaped {beta}-pinwheel fold first seen in the Borrelia burgdorferi GyrA-CTD. However, whereas the B. burgdorferi GyrA-CTD is flat, the E. coli GyrA-CTD is spiral. DNA relaxation assays reveal that the E. coli GyrA-CTD wraps DNA inducing substantial (+) superhelicity, while the B. burgdorferi GyrA-CTD introduces a more modest (+) superhelicity. The observation of a superhelical spiral in the present structure and that of the Bacillus stearothermophilus ParC-CTD structure suggests unexpected similarities in substrate selectivity between gyrase and Topo IV enzymes. We propose a model wherein the right-handed ((+) solenoidal) wrapping of DNA around the E. coli GyrA-CTD enforces unidirectional (-) DNA supercoiling.

  20. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants.

    Science.gov (United States)

    Kobayashi, Yusuke; Otani, Takuto; Ishibashi, Kota; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon-helix-helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein. PMID:27189994

  1. Solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP).

    Science.gov (United States)

    Liew, Chu Kong; Crossley, Merlin; Mackay, Joel P; Nicholas, Hannah R

    2007-02-16

    The THAP (Thanatos-associated protein) domain is a recently discovered zinc-binding domain found in proteins involved in transcriptional regulation, cell-cycle control, apoptosis and chromatin modification. It contains a single zinc atom ligated by cysteine and histidine residues within a Cys-X(2-4)-Cys-X(35-53)-Cys-X(2)-His consensus. We have determined the NMR solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP) and show that it adopts a fold containing a treble clef motif, bearing similarity to the zinc finger-associated domain (ZAD) from Drosophila Grauzone. The CtBP THAP domain contains a large, positively charged surface patch and we demonstrate that this domain can bind to double-stranded DNA in an electrophoretic mobility-shift assay. These data, together with existing reports, indicate that THAP domains might exhibit a functional diversity similar to that observed for classical and GATA-type zinc fingers. PMID:17174978

  2. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor

    Directory of Open Access Journals (Sweden)

    Carolin Lübker

    2015-07-01

    Full Text Available Bacillus anthracis adenylyl cyclase toxin edema factor (EF is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH-oxidase, thus reducing production of reactive oxygen species (ROS used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut with Met to leucine (Leu substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils.

  3. Mass spectrometry quantification revealed accumulation of C-terminal fragment of apolipoprotein E in the Alzheimer's frontal cortex.

    Directory of Open Access Journals (Sweden)

    Meiyao Wang

    Full Text Available Polymorphic variation in the apolipoprotein E (apoE gene is the major genetic susceptibility factor for late-onset Alzheimer's disease (AD and likely contributes to neuropathology through various pathways. It is also recognized that apoE undergoes proteolytic cleavage in the brain and the resultant apoE fragments likely have a variety of bioactive properties that regulate neuronal signaling and may promote neurodegeneration. ApoE fragmentation in the human brain has been intensively studied using different immunochemical methods, but has never been analyzed in a quantitative manner to establish preferably accumulated fragments. Here we report quantification using multiple reaction monitoring mass spectrometry (MRM MS with (15N-labeled full-length apoE4 as an internal standard. Measurements were performed on frontal cortex from control and severe AD donors. Our data point to a preferable accumulation of C-terminal apoE fragment in the insoluble fraction of tissue homogenate in the severe AD group versus the control group. Further insight into the biological consequences of this accumulation may lead to a better understanding of the basic mechanism of AD pathology.

  4. NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1

    Energy Technology Data Exchange (ETDEWEB)

    Verdone, Giuliana [Istituto Biochimico Italiano ' G. Lorenzini' (Italy); Corazza, Alessandra [Universita di Udine, Dipartimento di Scienze e Tecnologie Biomediche - MATI Centre of Excellence (Italy); Colebrooke, Simon A. [University of Oxford, Department of Biochemistry (United Kingdom); Cicero, Daniel; Eliseo, Tommaso [Universita di Tor Vergata, Dipartimento di Chimica (Italy); Boyd, Jonathan [University of Oxford, Department of Biochemistry (United Kingdom); Doliana, Roberto [Centro di Riferimento Oncologico di Aviano, Divisione di Oncologia Sperimentale 2 (Italy); Fogolari, Federico; Viglino, Paolo; Colombatti, Alfonso [Universita di Udine, Dipartimento di Scienze e Tecnologie Biomediche - MATI Centre of Excellence (Italy); Campbell, Iain D. [University of Oxford, Department of Biochemistry (United Kingdom); Esposito, Gennaro [Universita di Udine, Dipartimento di Scienze e Tecnologie Biomediche - MATI Centre of Excellence (Italy)], E-mail: gesposito@mail.dstb.uniud.it

    2009-02-15

    EMILIN1 is a glycoprotein of elastic tissues that has been recently linked to the pathogenesis of hypertension. The protein is formed by different independently folded structural domains whose role has been partially elucidated. In this paper the solution structure, inferred from NMR-based homology modelling of the C-terminal trimeric globular C1q domain (gC1q) of EMILIN1, is reported. The high molecular weight and the homotrimeric structure of the protein required the combined use of highly deuterated {sup 15}N, {sup 13}C-labelled samples and TROSY experiments. Starting from a homology model, the protein structure was refined using heteronuclear residual dipolar couplings, chemical shift patterns, NOEs and H-exchange data. Analysis of the gC1q domain structure of EMILIN1 shows that each protomer of the trimer adopts a nine-stranded {beta} sandwich folding topology which is related to the conformation observed for other proteins of the family. Distinguishing features, however, include a missing edge-strand and an unstructured 19-residue loop. Although the current data do not allow this loop to be precisely defined, the available evidence is consistent with a flexible segment that protrudes from each subunit of the globular trimeric assembly and plays a key role in inter-molecular interactions between the EMILIN1 gC1q homotrimer and its integrin receptor {alpha}4{beta}1.

  5. NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1

    International Nuclear Information System (INIS)

    EMILIN1 is a glycoprotein of elastic tissues that has been recently linked to the pathogenesis of hypertension. The protein is formed by different independently folded structural domains whose role has been partially elucidated. In this paper the solution structure, inferred from NMR-based homology modelling of the C-terminal trimeric globular C1q domain (gC1q) of EMILIN1, is reported. The high molecular weight and the homotrimeric structure of the protein required the combined use of highly deuterated 15N, 13C-labelled samples and TROSY experiments. Starting from a homology model, the protein structure was refined using heteronuclear residual dipolar couplings, chemical shift patterns, NOEs and H-exchange data. Analysis of the gC1q domain structure of EMILIN1 shows that each protomer of the trimer adopts a nine-stranded β sandwich folding topology which is related to the conformation observed for other proteins of the family. Distinguishing features, however, include a missing edge-strand and an unstructured 19-residue loop. Although the current data do not allow this loop to be precisely defined, the available evidence is consistent with a flexible segment that protrudes from each subunit of the globular trimeric assembly and plays a key role in inter-molecular interactions between the EMILIN1 gC1q homotrimer and its integrin receptor α4β1

  6. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  7. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity.

    Science.gov (United States)

    Duval, D; Cosette, P; Rebuffat, S; Duclohier, H; Bodo, B; Molle, G

    1998-03-01

    The influences of peptide length, absence of a Glx (Gln/Glu) residue and the C-terminal amino alcohol on liposome permeabilization and ion-channel characteristics in planar lipid bilayers were examined with two 18-residue peptaibols, PA V and PA IX. As compared to the 20-residue alamethicin, both peptides belonging to the newly isolated trichorzin family, lack a proline in the N-terminal part and one of the two Gln/Glu residues in the C-terminal part of the sequence. The two analogues studied here differ among themselves in their C-terminal amino alcohol (tryptophanol for PA V and phenylalaninol for PA IX). These alpha-helical peptaibols modify to a similar extent the permeability of liposomes, as measured by leakage of a previously entrapped fluorescent probe. Monitoring tryptophanol fluorescence, a greater embedment of the peptide PA V is observed in cholesterol-free bilayers. Macroscopic conductance studies for PA V and PA IX display alamethicin-like current-voltage curves, with a similar voltage dependence, but a smaller mean number of monomers per conducting aggregate is estimated for the tryptophanol analogue, PA V. Single-channel recordings indicate faster current fluctuations for PA IX, while amplitude histograms show lower conductance levels for PA V. Apart from underlining the role of the mismatch between helix length and bilayer hydrophobic thickness, these results stress that the C-terminal tryptophanol favours a stabilization of the conducting aggregates. PMID:9518665

  8. Mass spectrometry-based sequencing of protein C-terminal peptide using α-carboxyl group-specific derivatization and COOH capturing.

    Science.gov (United States)

    Nakajima, Chihiro; Kuyama, Hiroki; Tanaka, Koichi

    2012-09-15

    An approach to mass spectrometry (MS)-based sequence analysis of selectively enriched C-terminal peptide from protein is described. This approach employs a combination of the specific derivatization of α-carboxyl group (α-COOH), enzymatic proteolysis using endoproteinase GluC, and enrichment of C-terminal peptide through the use of COOH-capturing material. Highly selective derivatization of α-COOH was achieved by a combination of specific activation of α-COOH through oxazolone chemistry and amidation using 3-aminopropyltris-(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-propylamine). This amine component was used to simplify fragmentation in tandem mass spectrometry (MS/MS) measurement, which facilitated manual sequence interpretation. The peptides produced after GluC digestion were then treated with a COOH scavenger to enrich the C-terminal peptide that is only devoid of COOH groups, and the obtained C-terminal peptide was readily sequenced by matrix-assisted laser desorption/ionization (MALDI)-MS/MS due to the TMPP mass tag.

  9. The C-terminal regions of YidC from Rhodopirellula baltica and Oceanicaulis alexandrii bind to ribosomes and partially substitute for SRP receptor function in Escherichia coli.

    Science.gov (United States)

    Seitl, Ines; Wickles, Stephan; Beckmann, Roland; Kuhn, Andreas; Kiefer, Dorothee

    2014-01-01

    The marine Gram-negative bacteria Rhodopirellula baltica and Oceanicaulis alexandrii have, in contrast to Escherichia coli, membrane insertases with extended positively charged C-terminal regions similar to the YidC homologues in mitochondria and Gram-positive bacteria. We have found that chimeric forms of E. coli YidC fused to the C-terminal YidC regions from the marine bacteria mediate binding of YidC to ribosomes and therefore may have a functional role for targeting a nascent protein to the membrane. Here, we show in E. coli that an extended C-terminal region of YidC can compensate for a loss of SRP-receptor function in vivo. Furthermore, the enhanced affinity of the ribosome to the chimeric YidC allows the isolation of a ribosome nascent chain complex together with the C-terminally elongated YidC chimera. This complex was visualized at 8.6 Å by cryo-electron microscopy and shows a close contact of the ribosome and a YidC monomer. PMID:24261830

  10. Presence and in vivo biosynthesis of fragments of CPP (the C-terminal glycopeptide of the rat vasopressin precursor) in the hypothalamo-neurohypophyseal system

    International Nuclear Information System (INIS)

    The existence and rate of formation of fragments of the 39-residue C-terminal glycopeptide of propressophysin (CPP1-39) was investigated in the hypothalamo-neurohypophyseal system. Newly-prepared antisera to CPP were used to confirm the existence of smaller C-terminal fragments derived from CPP1-39. Radiolabelled fucose was injected into rats in vivo into the area of the supraoptic nucleus, and the labelled peptides formed in the neurohypophysis were examined at various time intervals up to five weeks after the injection. The products derived from the neurohypophyseal hormone precursors were separated by high-performance liquid chromatography. The level of the major immunoreactive C-terminal fragment (CPP22-39) was constant and represented about 5% of the intact CPP1-39 in the neurohypophysis. The appearance of newly-synthesized N-terminal fragment of CPP1-39 occurred only after 3 or 4 days. This fucose labelled fragment increased slowly thereafter until it reached the same level as the CPP C-terminal fragment immunoreactivity between 21 and 28 days after injection. The results suggest that CPP1-39 is extremely stable in the hypothalamo-neurohypophyseal neurons, and that the cleavage at Arg21-Leu22 is a delayed proteolytic event in the magnocellular neurons of the SON

  11. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from coptotermes formosanus and expressed in E. coli

    Science.gov (United States)

    The endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in E.coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrate...

  12. Importance of Reelin C-terminal region in the development and maintenance of the postnatal cerebral cortex and its regulation by specific proteolysis

    DEFF Research Database (Denmark)

    Kohno, Takao; Honda, Takao; Kubo, Ken-Ichiro;

    2015-01-01

    During brain development, Reelin exerts a variety of effects in a context-dependent manner, whereas its underlying molecular mechanisms remain poorly understood. We previously showed that the C-terminal region (CTR) of Reelin is required for efficient induction of phosphorylation of Dab1, an esse...

  13. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.;

    2012-01-01

    a C-terminal hydrated pathway leading to D926, a transmembrane residue proposed to form part of the third sodium ion-binding site (4). Simulations of a S936E mutant form, for which only subtle effects are observed when expressed in Xenopus oocytes and studied with electrophysiology, does not mimic...

  14. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Basseres, Eugene; Coppotelli, Giuseppe; Pfirrmann, Thorsten;

    2010-01-01

    Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria monocyto...

  15. 石棉尾矿酸浸渣填充改性道路沥青的研究%Research on Road Asphalt Filled and Modified with Acid-leaching Residue of Asbestos Tailings

    Institute of Scientific and Technical Information of China (English)

    孙志明; 郑水林; 文明; 吴照洋

    2009-01-01

    The acid-leaching residue of asbestos tailings is silicon slag of asbestos tailings, one kind of solid waste after acid leaching extraction of magnesium. In this experiment, using acid leaching residue of asbestos tailings after calcination as the filler of asphalt modifier, through the test of penetration, ductility, softening point of modified asphalt, the effects of the adding volume and mixing conditions (temperature, time, etc.) of the acid leaching residue on the performance of road asphalt has been studied. The results showed that the appropriate conditions of modified process is that the adding volume of acid leaching residue 6%, mixing temperature 140℃, and heating mixing time 20rain. In this condition, the performance of modified asphalt material, such as high temperature and low temperature performance, temperature sensitivity, and anti-aging property have been significantly improved.%石棉尾矿酸浸渣是石棉尾矿蛇纹石酸浸提取氧化镁后的硅质粉体材料.本实验以煅烧后的石棉尾矿酸浸渣作为道路沥青填充改性剂,通过测定改性沥青的针入度、延度、软化点等指标,研究了酸浸渣填充量、混合控温以及加热混合时间对道路沥青综合性能的影响.结果表明,石棉尾矿酸浸渣填充改性沥青适宜的填充工艺条件为填充量6%,混合控温140℃,加热混合时间20min;在适宜的填充工艺条件下,改性沥青的高温性能、低温性能、高低温稳定性以及抗老化性均得到显著改善或提高.

  16. Uranium tailings bibliography

    International Nuclear Information System (INIS)

    A bibliography containing 1,212 references is presented with its focus on the general problem of reducing human exposure to the radionuclides contained in the tailings from the milling of uranium ore. The references are divided into seven broad categories: uranium tailings pile (problems and perspectives), standards and philosophy, etiology of radiation effects, internal dosimetry and metabolism, environmental transport, background sources of tailings radionuclides, and large-area decontamination

  17. Washery tailings from coal preparation used as aluminium feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, L.; Schieder, T.; Belsky, M.; Lotze, J.; Winkhaus, G.

    1982-06-01

    Kaolinite clays and washery tailings of coal mines are the major feedstocks of the West German aluminium industry. Statistics are given in order to assess the amount of washery tailings available and their suitability as feedstocks for aluminium production. The chemical and mineralogical composition are similar for washery tailings from different mines; accordingly, also their behaviour regarding decomposition by acids will be almost identical. Al/sub 2/O/sub 3/ extraction yields are satisfactory with strongly precalcinated material using concentrated sulphuric acid or azeotropic hydrochloric acid - in the latter case, however, only if fluoride is added to the acid.

  18. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate.

    Science.gov (United States)

    Li, Jun; Kato, Masato; Chuang, David T

    2009-12-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) is down-regulated by phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. Overexpression of PDK isoforms and therefore reduced PDC activity prevails in cancer and diabetes. In the present study, we investigated the role of the invariant C-terminal DW-motif in inhibition of human PDK2 by dichloroacetate (DCA). Substitutions were made in the DW-motif (Asp-382 and Trp-383) and its interacting residues (Tyr-145 and Arg-149) in the other subunit of PDK2 homodimer. Single and double mutants show 20-60% residual activities that are not stimulated by the PDC core. The R149A and Y145F/R149A mutants show drastic increases in apparent IC(50) values for DCA, whereas binding affinities for DCA are comparable with wild-type PDK2. Both R149A and Y145F variants exhibit increased similar affinities for ADP and ATP, mimicking the effects of DCA. The R149A and the DW-motif mutations (D382A/W383A) forestall binding of the lipoyl domain of PDC to these mutants, analogous to wild-type PDK2 in the presence of DCA and ADP. In contrast, the binding of a dihydrolipoamide mimetic AZD7545 is largely unaffected in these PDK2 variants. Our results illuminate the pivotal role of the DW-motif in mediating communications between the DCA-, the nucleotide-, and the lipoyl domain-binding sites. This signaling network locks PDK2 in the inactive closed conformation, which is in equilibrium with the active open conformation without DCA and ADP. These results implicate the DW-motif anchoring site as a drug target for the inhibition of aberrant PDK activity in cancer and diabetes. PMID:19833728

  19. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy.

    Science.gov (United States)

    Bassil, Fares; Fernagut, Pierre-Olivier; Bezard, Erwan; Pruvost, Alain; Leste-Lasserre, Thierry; Hoang, Quyen Q; Ringe, Dagmar; Petsko, Gregory A; Meissner, Wassilios G

    2016-08-23

    Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation. PMID:27482103

  20. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    Directory of Open Access Journals (Sweden)

    Noheon Park

    Full Text Available The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC allele. The homozygous mutant (Bmal1GTΔC/GTΔC mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  1. A constitutive effector region on the C-terminal side of switch I of the Ras protein.

    Science.gov (United States)

    Fujita-Yoshigaki, J; Shirouzu, M; Ito, Y; Hattori, S; Furuyama, S; Nishimura, S; Yokoyama, S

    1995-03-01

    The "switch I" region (Asp30-Asp38) of the Ras protein takes remarkably different conformations between the GDP- and GTP-bound forms and coincides with the so-called "effector region." As for a region on the C-terminal side of switch I, the V45E and G48C mutants of Ras failed to promote neurite outgrowth of PC12 cells (Fujita-Yoshigaki, J., Shirouzu, M., Koide, H., Nishimura, S., and Yokoyama, S. (1991) FEBS Lett. 294, 187-190). In the present study, we performed alanine-scanning mutagenesis within the region Lys42-Ile55 of Ras and found that the K42A, I46A, G48A, E49A, and L53A mutations significantly reduced the neurite-inducing activity. This is an effector region by definition, but its conformation is known to be unaffected by GDP-->GTP exchange. So, this region is referred to as a "constitutive" effector (Ec) region, distinguished from switch I, a "switch" effector (Es) region. The Ec region mutants exhibiting no neurite-inducing activity were found to be correlatably unable to activate mitogen-activated protein (MAP) kinase in PC12 cells. Therefore, the Ec region is essential for the MAP kinase activation in PC12 cells, whereas mutations in this region only negligibly affect the binding of Ras to Raf-1 (Shirouzu, M., Koide, H., Fujita-Yoshigaki, J., Oshio, H., Toyama, Y., Yamasaki, K., Fuhrman, S. A., Villafranca, E., Kaziro, Y., and Yokoyama, S. (1994) Oncogene 9, 2153-2157).

  2. An antibody against the C-terminal domain of PCSK9 lowers LDL cholesterol levels in vivo.

    Science.gov (United States)

    Schiele, Felix; Park, John; Redemann, Norbert; Luippold, Gerd; Nar, Herbert

    2014-02-20

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with autosomal dominant hypercholesterolemia, a state of elevated levels of LDL (low-density lipoprotein) cholesterol. Autosomal dominant hypercholesterolemia can result in severe implications such as stroke and coronary heart disease. The inhibition of PCSK9 function by therapeutic antibodies that block interaction of PCSK9 with the epidermal growth factor-like repeat A domain of LDL receptor (LDLR) was shown to successfully lower LDL cholesterol levels in clinical studies. Here we present data on the identification, structural and biophysical characterization and in vitro and in vivo pharmacology of a PCSK9 antibody (mAb1). The X-ray structure shows that mAb1 binds the module 1 of the C-terminal domain (CTD) of PCSK9. It blocks access to an area bearing several naturally occurring gain-of-function and loss-of-function mutations. Although the antibody does not inhibit binding of PCSK9 to epidermal growth factor-like repeat A, it partially reverses PCSK9-induced reduction of the LDLR and LDL cholesterol uptake in a cellular assay. mAb1 is also effective in lowering serum levels of LDL cholesterol in cynomolgus monkeys in vivo. Complete loss of PCSK9 is associated with insufficient liver regeneration and increased risk of hepatitis C infections. Blocking of the CTD is sufficient to partially inhibit PCSK9 function. Antibodies binding the CTD of PCSK9 may thus be advantageous in patients that do not tolerate complete inhibition of PCSK9.

  3. Two Regions of the Tail Are Necessary for the Isoform-specific Functions of Nonmuscle Myosin IIB

    OpenAIRE

    Sato, Masaaki K.; Takahashi, Masayuki; Yazawa, Michio

    2007-01-01

    To function in the cell, nonmuscle myosin II molecules assemble into filaments through their C-terminal tails. Because myosin II isoforms most likely assemble into homo-filaments in vivo, it seems that some self-recognition mechanisms of individual myosin II isoforms should exist. Exogenous expression of myosin IIB rod fragment is thus expected to prevent the function of myosin IIB specifically. We expected to reveal some self-recognition sites of myosin IIB from the phenotype by expressing a...

  4. Targeting of a Tail-anchored Protein to Endoplasmic Reticulum and Mitochondrial Outer Membrane by Independent but Competing Pathways

    OpenAIRE

    Borgese, Nica; Gazzoni, Ilaria; Barberi, Massimo; Colombo, Sara; Pedrazzini, Emanuela

    2001-01-01

    Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b5, a TA protein existing in two, MOM or ER localized, versions. Substi...

  5. Canadian experience with uranium tailings disposal

    International Nuclear Information System (INIS)

    During the first years of uranium production in Canada uranium tailings were discharged directly into valleys or lakes near the mill. Treatment with barium chloride to precipitate radium began in 1965 at the Nordic Mine at Elliot Lake, Ontario. In the mid-60s and early 70s water quality studies indicated that discharges from uranium tailings areas were causing degradation to the upper part of the Serpent River water system. Studies into acid generation, revegetation, and leaching of radium were initiated by the mining companies and resulted in the construction of treatment plants at a number of sites. Abandoned tailings sites were revegetated. At hearings into the expansion of the Elliot Lake operations the issue of tailings management was a major item for discussion. As a result federal and provincial agencies developed guidelines for the siting and development of urnaium tailings areas prior to issuing operating licences. Western Canadian uranium producers do not have the acid generation problem of the Elliot Lake operations. The Rabbit Lake mill uses settling ponds followed by filtration. High-grade tailings from Cluff Lake are sealed in concrete and buried. Uranium producers feel that the interim criteria developed by the Atomic Energy Control Board, if adopted, would have a harmful effect on the viability of the Canadian uranium industry

  6. Cement mixtures containing copper tailings as an additive: durability properties

    Directory of Open Access Journals (Sweden)

    Obinna Onuaguluchi

    2012-12-01

    Full Text Available The effects of copper tailings as an additive, on some durability properties of cement mixtures were investigated. In each mixture, copper tailings addition levels by mass were 0%, 5% and 10%. Compared to the control samples, copper tailings blended pastes showed superior performance against autoclave expansion while insignificant decreases in sulfate resistance of mortars were observed. Copper tailings increased the water absorption and total permeable voids of concretes slightly. However, the compressive and flexural strengths of blended concretes were higher than those of the control samples. Similarly, improved resistance to acid attack and chloride penetration as the copper tailings content of concretes increased were also observed. Results further showed that the ASTM C 1202 rapid chloride permeability test may not be a valid indicator of chloride migration in mixtures containing conductive copper tailings. These results suggest that copper tailings can potentially enhance the durability properties of cement based materials.

  7. Bar-tailed

    NARCIS (Netherlands)

    Duijns, S.; Hidayati, N.A.; Piersma, T.

    2013-01-01

    Capsule Across the European wintering range Bar-tailed Godwits Limosa lapponica lapponica selected polychaete worms and especially Ragworms Hediste diversicolor, with differences between areas due to variations in prey availability.Aims To determine the diet of Bar-tailed Godwits across their winter

  8. Phytostabilisation : use of wetland plants to treat mine tailings

    OpenAIRE

    Stoltz, Eva

    2004-01-01

    Mine tailings can be rich in sulphide minerals and may form acid mine drainage (AMD) through reaction with atmospheric oxygen and water. AMD contains elevated levels of metals and arsenic (As) that could be harmful to animals and plants. An oxygen-consuming layer of organic material and plants on top of water-covered tailings would probably reduce oxygen penetration into the tailings and thus reduce the formation of AMD. However, wetland plants have the ability to release oxygen through the r...

  9. Analysis of Tb{sup 3+}- and melittin-binding with the C-terminal domain of centrin in Euplotes octocarinatus

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yaqin; Diao Xiuling; Yan Jun; Feng Yanan [Key Laboratory of Chemical Biology and Microcular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006 (China); Wang Zhijun [Chemical Department, Changzhi University, Changzhi 046011 (China); Liang Aihua, E-mail: aliang@sxu.edu.cn [Key Laboratory of Chemical Biology and Microcular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006 (China); Yang Binsheng, E-mail: yangbs@sxu.edu.cn [Key Laboratory of Chemical Biology and Microcular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006 (China)

    2012-04-15

    Centrin is a low molecular mass (20 KDa) protein that belongs to the EF-hand superfamily. In this work, the interaction between the Tb{sup 3+}-saturated C-terminal domain of Euplotes octocarinatus centrin (Tb{sub 2}-C-EoCen) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was investigated using difference UV-vis spectra and the fluorescence spectra methods. In 100 mM N-2-hydroxy-ethylpiperazine-N-2-ethanesulfonic acid (Hepes) at pH 7.4, with the addition of Tb{sub 2}-C-EoCen, four new peaks were observed at 265 nm, 278 nm, 317 nm and 360 nm by absorptivity compared with blank solution of TNS. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence emission of TNS was shifted from 480 nm to 445 nm in the presence of Tb{sub 2}-C-EoCen. Meanwhile, its fluorescence intensity was increased markedly. The 1:1 stoichiometric ratio of C-EoCen to TNS was confirmed by fluorescence titration curves. The conditional binding constants of TNS with C-EoCen and Tb{sub 2}-C-EoCen were calculated to be log K{sub (C-EoCen-TNS)}=5.32{+-}0.04 M{sup -1} and log K{sub (Tb2-C-EoCen-TNS)}=5.58{+-}0.12 M{sup -1}, respectively. In addition, the protein of Tb{sub 2}-C-EoCen binding with melittin was also studied. Based on the fluorescence titration curves, the 1:1 stoichiometric ratio of Tb{sub 2}-C-EoCen to melittin was confirmed. And the conditional binding constant of C-EoCen with melittin was calculated to be log Ka Prime =6.79{+-}0.17 M{sup -1}. - Highlights: Black-Right-Pointing-Pointer Tb{sup 3+} induced conformational changes of protein C-EoCen from closed state to open state. Black-Right-Pointing-Pointer Conformational changes resulted in the exposure of hydrophobic surfaces on C-EoCen. Black-Right-Pointing-Pointer Tb{sub 2}-C-EoCen may bind with target peptide melittin.

  10. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response.

    Science.gov (United States)

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P; Travassos, Luiz R; Palatnik, Marcos; Soares, Irene da Silva; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent

  11. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation.

    Science.gov (United States)

    Leen, Eoin N; Sorgeloos, Frédéric; Correia, Samantha; Chaudhry, Yasmin; Cannac, Fabien; Pastore, Chiara; Xu, Yingqi; Graham, Stephen C; Matthews, Stephen J; Goodfellow, Ian G; Curry, Stephen

    2016-01-01

    Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652-1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.

  12. Adaptive Immunity against Leishmania Nucleoside Hydrolase Maps Its C-Terminal Domain as the Target of the CD4+ T Cell–Driven Protective Response

    Science.gov (United States)

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P.; Travassos, Luiz R.; Palatnik, Marcos; da Silva Soares, Irene; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B.

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for

  13. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation.

    Directory of Open Access Journals (Sweden)

    Eoin N Leen

    2016-01-01

    Full Text Available Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES, adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs in the host cell. For murine norovirus (MNV we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652-1132. Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.

  14. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response.

    Directory of Open Access Journals (Sweden)

    Dirlei Nico

    Full Text Available Nucleoside hydrolases (NHs show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36 responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL. Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314 and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011 that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and

  15. Yeast two-hybrid screening of proteins interacting with plasmin receptor subunit: C-terminal fragment of annexin A2

    Institute of Scientific and Technical Information of China (English)

    Qun LI; Yves LAUMONNIER; Tatiana SYROVETS; Thomas SIMMET

    2011-01-01

    Aim:To identify proteins that interact with the C-terminal fragment of annexin A2 (A21C),generated by plasmin cleavage of the plasmin receptor,a heterotetramer (AA2t) containing annexin A2.Methods:The gene that encodes the A21C fragment was obtained from PCR-amplifled cDNA isolated from human monocytes,and was ligated into the pBTM116 vector using a DNA ligation kit.The resultant plasmid (pBTM116-A21C) was sequenced with an ABI PRISM 310 Genetic Analyzer.The expression of an A21C bait protein fused with a LexA-DNA binding domain (BD) was determined using Western blot analysis.The identification of proteins that interact with A21C and are encoded in a human monocyte cDNA library was performed using yeast two-hybrid screening.The DNA sequences of the relevant cDNAs were determined using an ABI PRISM BigDye terminator cycle sequencing ready reaction kit.Nucleotide sequence databases were searched for homologous sequences using BLAST search analysis (http://www.ncbi.nlm.nih.gov).Confirmation of the interaction between the protein LexA-A21C and each of cathepsin S and SNX17 was conducted using a small-scale yeast transformation and X-gal assay.Results:The yeast transformed with plasmids encoding the bait proteins were screened with a human monocyte cDNA library by reconstituting full-length transcription factors containing the GAL4-active domain (GAL4-AD) as the prey in a yeast two-hybrid approach.After screening 1×107 clones,23 independent β-Gal-positive clones were identified.Sequence analysis and a database search revealed that 15 of these positive clones matched eight different proteins (SNX17,ProCathepsin S,RPS2,ZBTB4,OGDH,CCDC32,PAPD4,and actin which was already known to interact with annexin A2).Conclusion:A21C A21C interacts with various proteins to form protein complexes,which may contribute to the molecular mechanism of monocyte activation induced by plasmin.The yeast two-hybrid system is an efficient approach for investigating protein interactions.

  16. Frost evolution in tailings

    International Nuclear Information System (INIS)

    A review was carried out on the physical and thermal mechanisms of permafrost evaluation in soils and uranium tailings. The primary mechanism controlling permafrost evolution is conductive heat transfer with the latent heat of fusion of water being liberated as phase change occurs. Depending on the soil properties and freezing rate, pore water can be expelled from the frost front or pore water can migrate towards the frost front. Solute redistribution may occur as the frost front penetrates into the soil. The rate of frost penetration is a function of the thermal properties of the tailings and the climatic conditions. Computer modelling programmes capable of modelling permafrost evolution were reviewed. The GEOTHERM programme was selected as being the most appropriate for this study. The GEOTHERM programme uses the finite element method of thermal analysis. The ground surface temperature is determined by solving the energy balance equations a the ground surface. The GEOTHERM programme was used to simulate the permafrost evolution in the Key Lake Mine tailings located in north central Saskatchewan. The analyses indicated that the existing frozen zones in the tailing pond will eventually thaw if an average snow depth covers the tailings. Hundreds of years are required to thaw the tailings. If minimal snow cover is present the extent of the frozen zone in the tailings will increase

  17. Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA.

    Science.gov (United States)

    Worrall, Liam J; Vuckovic, Marija; Strynadka, Natalie C J

    2010-05-01

    InvA is a prominent inner-membrane component of the Salmonella type III secretion system (T3SS) apparatus, which is responsible for regulating virulence protein export in pathogenic bacteria. InvA is made up of an N-terminal integral membrane domain and a C-terminal cytoplasmic domain that is proposed to form part of a docking platform for the soluble export apparatus proteins notably the T3SS ATPase InvC. Here, we report the novel crystal structure of the C-terminal domain of Salmonella InvA which shows a compact structure composed of four subdomains. The overall structure is unique although the first and second subdomains exhibit structural similarity to the peripheral stalk of the A/V-type ATPase and a ring building motif found in other T3SS proteins respectively.

  18. Native chemical ligation between asparagine and valine: application and limitations for the synthesis of tri-phosphorylated C-terminal tau.

    Science.gov (United States)

    Reimann, Oliver; Glanz, Maria; Hackenberger, Christian P R

    2015-06-15

    We present the successful native chemical ligation (NCL) at an Asn-Val site employing β-mercaptovaline and subsequent desulfurization in the synthesis of native phosphorylated C-terminal tau, relevant for Alzheimer's disease related research. Despite recent progress in the field of NCL we illustrate limitations of this ligation site that stem from thioester hydrolysis and predominantly aspartimide formation. We systematically investigated the influence of pH, temperature, peptide concentration and thiol additives on the outcome of this ligation and identified conditions under which the ligation can be driven toward complete conversion, which required the deployment of a high surplus of thioester. Application of the optimized conditions allowed us to gain access to challenging tri-phosphorylated C-terminal tau peptide in practical yields.

  19. Transient viral DNA replication and repression of viral transcription are supported by the C-terminal domain of the bovine papillomavirus type 1 E1 protein.

    Science.gov (United States)

    Ferran, M C; McBride, A A

    1998-01-01

    The bovine papillomavirus type 1 E1 protein is important for viral DNA replication and transcriptional repression. It has been proposed that the full-length E1 protein consists of a small N-terminal and a larger C-terminal domain. In this study, it is shown that an E1 polypeptide containing residues 132 to 605 (which represents the C-terminal domain) is able to support transient viral DNA replication, although at a level lower than that supported by the wild-type protein. This domain can also repress E2-mediated transactivation from the P89 promoter as well as the wild-type E1 protein can. PMID:9420289

  20. The Tail of BPM

    Science.gov (United States)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  1. Role of N-terminal extension of Bacillus stearothermophilus RNase H2 and C-terminal extension of Thermotoga maritima RNase H2.

    Science.gov (United States)

    Permanasari, Etin-Diah; Angkawidjaja, Clement; Koga, Yuichi; Kanaya, Shigenori

    2013-10-01

    Bacillus stearothermophilus RNase H2 (BstRNH2) and Thermotoga maritima RNase H2 (TmaRNH2) have N-terminal and C-terminal extensions, respectively, as compared with Aquifex aeolicus RNase H2 (AaeRNH2). To analyze the role of these extensions, BstRNH2 and TmaRNH2 without these extensions were constructed, and their biochemical properties were compared with those of their intact partners and AaeRNH2. The far-UV CD spectra of all proteins were similar, suggesting that the protein structure is not significantly altered by removal of these extensions. However, both the junction ribonuclease and RNase H activities of BstRNH2 and TmaRNH2, as well as their substrate-binding affinities, were considerably decreased by removal of these extensions. The stability of BstRNH2 and TmaRNH2 was also decreased by removal of these extensions. The activity, substrate binding affinity and stability of TmaRNH2 without the C-terminal 46 residues were partly restored by the attachment of the N-terminal extension of BstRNH2. These results suggest that the N-terminal extension of BstRNH2 functions as a substrate-binding domain and stabilizes the RNase H domain. Because the C-terminal extension of TmaRNH2 assumes a helix hairpin structure and does not make direct contact with the substrate, this extension is probably required to make the conformation of the substrate-binding site functional. AaeRNH2 showed comparable junction ribonuclease activity to those of BstRNH2 and TmaRNH2, and was more stable than these proteins, indicating that bacterial RNases H2 do not always require an N-terminal or C-terminal extension to increase activity, substrate-binding affinity, and/or stability. PMID:23937561

  2. Crystal Structure of the C-terminal Region of Streptococcus mutans Antigen I/II and Characterization of Salivary Agglutinin Adherence Domains

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.; Kelly, Charles; Mitchell, Tim J.; Brady, L. Jeannine; Deivanayagam, Champion (King); (Cornell); (UAB); (Glasgow); (Florida)

    2012-05-29

    The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.

  3. Identification of a Chemical Probe for Bromo and Extra C-Terminal Bromodomain Inhibition through Optimization of a Fragment-Derived Hit

    OpenAIRE

    Fish, Paul V.; Filippakopoulos, Panagis; Bish, Gerwyn; Brennan, Paul E.; Bunnage, Mark E.; Cook, Andrew S.; Federov, Oleg; Gerstenberger, Brian S.; Jones, Hannah; Knapp, Stefan; Marsden, Brian; Nocka, Karl; Owen, Dafydd R.; Philpott, Martin; Picaud, Sarah

    2012-01-01

    The posttranslational modification of chromatin through acetylation at selected histone lysine residues is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The significance of this subset of the epigenetic code is interrogated and interpreted by an acetyllysine-specific protein–protein interaction with bromodomain reader modules. Selective inhibition of the bromo and extra C-terminal domain (BET) family of bromodomains with a small molecule is feasible, and this...

  4. C-TERMINAL FRAGMENT OF TRANSFORMING GROWTH FACTOR BETA-INDUCED PROTEIN (TGFBIp) IS REQUIRED FOR APOPTOSIS IN HUMAN OSTEOSARCOMA CELLS

    OpenAIRE

    Zamilpa, Rogelio; Rupaimoole, Rajesha; Phelix, Clyde F.; Somaraki-Cormier, Maria; Haskins, William; Asmis, Reto; LeBaron, Richard G.

    2009-01-01

    Transforming growth factor beta induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp i...

  5. Interaction of Cytosolic Glutamine Synthetase of Soybean Root Nodules with the C-terminal Domain of the Symbiosome Membrane Nodulin 26 Aquaglyceroporin*♦

    OpenAIRE

    Masalkar, Pintu; Wallace, Ian S.; Hwang, Jin Ha; Roberts, Daniel M.

    2010-01-01

    Nodulin 26 (nod26) is a major intrinsic protein that constitutes the major protein component on the symbiosome membrane (SM) of N2-fixing soybean nodules. Functionally, nod26 forms a low energy transport pathway for water, osmolytes, and NH3 across the SM. Besides their transport functions, emerging evidence suggests that high concentrations of major intrinsic proteins on membranes provide interaction and docking targets for various cytosolic proteins. Here it is shown that the C-terminal dom...

  6. Identification of a novel pentatricopeptide repeat subfamily with a C-terminal domain of bacterial origin acquired via ancient horizontal gene transfer

    OpenAIRE

    Manna, Sam; Barth, Christian

    2013-01-01

    Background Pentatricopeptide repeat (PPR) proteins are a large family of sequence-specific RNA binding proteins involved in organelle RNA metabolism. Very little is known about the origin and evolution of these proteins, particularly outside of plants. Here, we report the identification of a novel subfamily of PPR proteins not found in plants and explore their evolution. Results We identified a novel subfamily of PPR proteins, which all contain a C-terminal tRNA guanine methyltransferase (TGM...

  7. Dual N- and C-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jyun-Liang Lin

    Full Text Available In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases, Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, wine, and sake. Atf1 and Atf2 localize to the endoplasmic reticulum (ER and Atf1 is known to localize to lipid droplets (LDs. The mechanism and function of these localizations are unknown. Here, we investigate potential mechanisms of Atf1 and Atf2 membrane association. Segments of the N- and C-terminal domains of Atf1 (residues 24-41 and 508-525, respectively are predicted to be amphipathic helices. Truncations of these helices revealed that the terminal domains are essential for ER and LD association. Moreover, mutations of the basic or hydrophobic residues in the N-terminal helix and hydrophobic residues in the C-terminal helix disrupted ER association and subsequent sorting from the ER to LDs. Similar amphipathic helices are found at both ends of Atf2, enabling ER and LD association. As was the case with Atf1, mutations to the N- and C-terminal helices of Atf2 prevented membrane association. Sequence comparison of the AATases from Saccharomyces, non-Saccharomyces yeast (K. lactis and P. anomala and fruits species (C. melo and S. lycopersicum showed that only AATases from Saccharomyces evolved terminal amphipathic helices. Heterologous expression of these orthologs in S. cerevisiae revealed that the absence of terminal amphipathic helices eliminates LD association. Combined, the results of this study suggest a common mechanism of membrane association for AATases via dual N- and C-terminal amphipathic helices.

  8. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop

    OpenAIRE

    Sasseville, Louis J.; Michael Morin; Coady, Michael J.; Rikard Blunck; Jean-Yves Lapointe

    2016-01-01

    Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on ...

  9. Injurious tail biting in pigs

    DEFF Research Database (Denmark)

    D'Eath, R.B.; Amott, G.; Turner, S. P.;

    2014-01-01

    risk, it is important to detect and treat tail biting as soon as it occurs. Early warning signs before the first bloody tails appear, such as pigs holding their tails tucked under, could in future be automatically detected using precision livestock farming methods enabling earlier reaction......Tail biting is a serious animal welfare and economic problem in pig production. Tail docking, which reduces but does not eliminate tail biting, remains widespread. However, in the EU tail docking may not be used routinely, and some ‘alternative’ forms of pig production and certain countries do...... not allow tail docking at all. Against this background, using a novel approach focusing on research where tail injuries were quantified, we review the measures that can be used to control tail biting in pigs without tail docking. Using this strict criterion, there was good evidence that manipulable...

  10. Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae

    Energy Technology Data Exchange (ETDEWEB)

    Pazehoski, Kristina O., E-mail: pazehosk@pitt.edu [Division of Natural Sciences, University of Pittsburgh at Greensburg, Greensburg, PA 15601 (United States); Cobine, Paul A., E-mail: pac0006@auburn.edu [Department of Biological Sciences, 101 Rouse Life Science Building, Auburn University, AL 36849 (United States); Winzor, Donald J. [Department of Biochemistry, University of Queensland, Brisbane, Queensland 4072 (Australia); Dameron, Charles T., E-mail: cdameron@francis.edu [Department of Chemistry, Saint Francis University, Loretto, PA 15940 (United States)

    2011-03-11

    Research highlights: {yields} A metal-binding protein domain is directly involved in protein dimerization. {yields} Fusing the metal-binding domain to a monomeric protein induces dimerization. {yields} Frontal size-exclusion chromatography measures the strength of dimer interaction. {yields} Ultracentrifugation studies confirm the influence of metal binding on dimerization. -- Abstract: Metal binding to the C-terminal region of the copper-responsive repressor protein CopY is responsible for homodimerization and the regulation of the copper homeostasis pathway in Enterococcus hirae. Specific involvement of the 38 C-terminal residues of CopY in dimerization is indicated by zonal and frontal (large zone) size-exclusion chromatography studies. The studies demonstrate that the attachment of these CopY residues to the immunoglobulin-binding domain of streptococcal protein G (GB1) promotes dimerization of the monomeric protein. Although sensitivity of dimerization to removal of metal from the fusion protein is smaller than that found for CopY (as measured by ultracentrifugation studies), the demonstration that an unrelated protein (GB1) can be induced to dimerize by extending its sequence with the C-terminal portion of CopY confirms the involvement of this region in CopY homodimerization.

  11. Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N,N'-dimethyltryptamine forming enzyme, indole-N-methyl transferase.

    Science.gov (United States)

    Mavlyutov, T A; Epstein, M L; Liu, P; Verbny, Y I; Ziskind-Conhaim, L; Ruoho, A E

    2012-03-29

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein-coupled receptors (GPCR). In the CNS, the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and S1Rs suggest that DMT is synthesized locally to effectively activate S1R in MN. PMID:22265729

  12. DEVELOPMENT OF THE SIGMA-1 RECEPTOR IN C-TERMINALS OF MOTONEURONS AND COLOCALIZATION WITH THE N,N’-DIMETHYLTRYPTAMINE FORMING ENZYME, INDOLE-N-METHYL TRANSFERASE

    Science.gov (United States)

    Mavlyutov, Timur A.; Epstein, Miles L.; Liu, Patricia; Verbny, Yakov I.; Ziskind-Conhaim, Lea; Ruoho, Arnold E.

    2012-01-01

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein coupled receptors (GPCR). In the CNS the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that Indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and SIRs suggest that DMT is synthesized locally to effectively activate S1R in MN. PMID:22265729

  13. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    Science.gov (United States)

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  14. Solution structure of N-terminal SH3 domain of Vav and the recognition site for Grb2 C-terminal SH3 domain

    International Nuclear Information System (INIS)

    The three-dimensional structure of the N-terminal SH3 domain (residues 583-660) of murine Vav, which contains a tetra-proline sequence (Pro 607-Pro 610), was determined by NMR. The solution structure of the SH3 domain shows a typical SH3 fold, but it exists in two conformations due to cis-trans isomerization at the Gly614-Pro615 bond. The NMR structure of the P615G mutant, where Pro615 is replaced by glycine, reveals that the tetra-proline region is inserted into the RT-loop and binds to its own SH3 structure. The C-terminal SH3 domain of Grb2 specifically binds to the trans form of the N-terminal SH3 domain of Vav. The surface of Vav N-terminal SH3 which binds to Grb2 C-terminal SH3 was elucidated by chemical shift mapping experiments using NMR. The surface does not involve the tetra-proline region but involves the region comprising the n-src loop, the N-terminal and the C-terminal regions. This surface is located opposite to the tetra-proline containing region, consistent with that of our previous mutagenesis studies

  15. C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5.

    Science.gov (United States)

    Irfan, Muhammad; Guler, Halil Ibrahim; Ozer, Aysegul; Sapmaz, Merve Tuncel; Belduz, Ali Osman; Hasan, Fariha; Shah, Aamer Ali

    2016-09-01

    Efficient utilization of hemicellulose entails high catalytic capacity containing xylanases. In this study, proline rich sequence was fused together with a C-terminal of xylanase gene from Geobacillus thermodenitrificans C5 and designated as GthC5ProXyl. Both GthC5Xyl and GthC5ProXyl were expressed in Escherichia coli BL21 host in order to determine effect of this modification. The C-terminal oligopeptide had noteworthy effects and instantaneously extended the optimal temperature and pH ranges and progressed the specific activity of GthC5Xyl. Compared with GthC5Xyl, GthC5ProXyl revealed improved specific activity, a higher temperature (70°C versus 60°C) and pH (8 versus 6) optimum, with broad ranges of temperature and pH (60-80°C and 6.0-9.0 versus 40-60°C and 5.0-8.0, respectively). The modified enzyme retained more than 80% activity after incubating in xylan for 3h at 80°C as compared to wild -type with only 45% residual activity. Our study demonstrated that proper introduction of proline residues on C-terminal surface of xylanase family might be very effective in improvement of enzyme thermostability. Moreover, this study reveals an engineering strategy to improve the catalytic performance of enzymes. PMID:27444327

  16. Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies

    International Nuclear Information System (INIS)

    Laboratory experiments were performed to compare the effectiveness of limestone (CaCO3) and hydrated lime [Ca(OH)2] for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs

  17. Tail posture predicts tail damage among weaned piglets

    NARCIS (Netherlands)

    Zonderland, J.J.; Riel, van J.W.; Bracke, M.B.M.; Kemp, B.; Hartog, den L.A.; Spoolder, H.A.M.

    2009-01-01

    Tail biting in pigs is a widespread behavioural vice with significant animal welfare and economic consequences. All too often, tail biting is not diagnosed nor dealt with until tail damage is present. To effectively reduce the negative effects of tail biting, it must be diagnosed in an early stage.

  18. Reported tailings dam failures

    Energy Technology Data Exchange (ETDEWEB)

    Rico, M. [CSIC - Instituto Pirenaico de Ecologia, Zaragoza (Spain)], E-mail: mayterico@ipe.csic.es; Benito, G. [CSIC - Centro de Ciencias Medioambientales, Madrid (Spain); Salgueiro, A.R. [CERENA - Centro de Recursos Naturais e Ambiente of IST, Lisboa (Portugal); Diez-Herrero, A. [Geological Hazards Unit, Spanish Geological Survey (IGME), Madrid (Spain); Pereira, H.G. [CERENA - Centro de Recursos Naturais e Ambiente of IST, Lisboa (Portugal)

    2008-04-01

    A detailed search and re-evaluation of the known historical cases of tailings dam failure was carried out. A corpus of 147 cases of worldwide tailings dam disasters, from which 26 located in Europe, was compiled in a database. This contains six sections, including dam location, its physical and constructive characteristics, actual and putative failure cause, sludge hydrodynamics, socio-economical consequences and environmental impacts. Europe ranks in second place in reported accidents (18%), more than one third of them in dams 10-20 m high. In Europe, the most common cause of failure is related to unusual rain, whereas there is a lack of occurrences associated with seismic liquefaction, which is the second cause of tailings dam breakage elsewhere in the world. Moreover, over 90% of incidents occurred in active mines, and only 10% refer to abandoned ponds. The results reached by this preliminary analysis show an urgent need for EU regulations regarding technical standards of tailings disposal.

  19. Reported tailings dam failures

    International Nuclear Information System (INIS)

    A detailed search and re-evaluation of the known historical cases of tailings dam failure was carried out. A corpus of 147 cases of worldwide tailings dam disasters, from which 26 located in Europe, was compiled in a database. This contains six sections, including dam location, its physical and constructive characteristics, actual and putative failure cause, sludge hydrodynamics, socio-economical consequences and environmental impacts. Europe ranks in second place in reported accidents (18%), more than one third of them in dams 10-20 m high. In Europe, the most common cause of failure is related to unusual rain, whereas there is a lack of occurrences associated with seismic liquefaction, which is the second cause of tailings dam breakage elsewhere in the world. Moreover, over 90% of incidents occurred in active mines, and only 10% refer to abandoned ponds. The results reached by this preliminary analysis show an urgent need for EU regulations regarding technical standards of tailings disposal

  20. Remediation of tailings dams

    International Nuclear Information System (INIS)

    Environmental effects from mining activities occur in all phases, beginning with exploration, then creation of pits and waste dumps, and finally processing of ore and handling tailings. A tailings dam must ensure physical, radioactive and chemical safety for both the environment and the public during operation and after closure. Three fundamental failure mechanisms of dam stability must be considered to ensure physical stability and adequate containment of the radioactive material

  1. Overweight Tails are Inefficient

    OpenAIRE

    Lockhart, R. A.

    1991-01-01

    Test statistics which are almost determined by $o(n)$ tail order statistics are shown to provide tests of asymptotic relative efficiency 0 against the usual type of contiguous alternative. The result is applied to several goodness-of-fit tests: the variance weighted Kolmogorov-Smirnov statistic, the Kolmogorov-Smirnov statistic in the stabilized probability plot and the correlation coefficient in a $Q - Q$ plot for a variety of distributions with exponential tails.

  2. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  3. Liquefaction of uranium tailings

    International Nuclear Information System (INIS)

    Numerical methods for assessing the liquefaction potential of soils are reviewed with a view to their application to uranium tailings. The method can be divided into two categories: total stress analysis, where changes in pore pressure are not considered in the soil model, and effective stress analysis, where changes in pore pressure are included in the soil model. Effective stress analysis is more realistic, but few computer programs exist for such analysis in two or three dimensions. A simple linearized, two-dimensional, finite element effective stress analysis which incorporates volumetric compaction due to shear motion is described and implemented. The new program is applied to the assessment of liquefaction potential of tailings in the Quirke Mine tailings area near Elliot Lake, Ontario. The results are compared with those of a total stress analysis. Both analyses indicate liquefaction would occur if a magnitude 6.0 earthquake were to occur near the area. However, the extent of liquefaction predicted by the effective stress analysis is much less than that predicted by the total stress analysis. The results of both methods are sensitive to assumed material properties and to the method used to determine the cyclic shear strength of the tailings. Further analysis, incorporating more in situ and/or laboratory data, is recommended before conclusions can be made concerning the dynamic stability of these tailings

  4. Single Amino Acid Substitution N659D in HIV-2 Envelope Glycoprotein (Env) Impairs Viral Release and Hampers BST-2 Antagonism

    Science.gov (United States)

    Dufrasne, François E.; Lombard, Catherine; Goubau, Patrick; Ruelle, Jean

    2016-01-01

    BST-2 or tetherin is a host cell restriction factor that prevents the budding of enveloped viruses at the cell surface, thus impairing the viral spread. Several countermeasures to evade this antiviral factor have been positively selected in retroviruses: the human immunodeficiency virus type 2 (HIV-2) relies on the envelope glycoprotein (Env) to overcome BST-2 restriction. The Env gp36 ectodomain seems involved in this anti-tetherin activity, however residues and regions interacting with BST-2 are not clearly defined. Among 32 HIV-2 ROD Env mutants tested, we demonstrated that the asparagine residue at position 659 located in the gp36 ectodomain is mandatory to exert the anti-tetherin function. Viral release assays in cell lines expressing BST-2 showed a loss of viral release ability for the HIV-2 N659D mutant virus compared to the HIV-2 wild type virus. In bst-2 inactivated H9 cells, those differences were lost. Subtilisin treatment of infected cells demonstrated that the N659D mutant was more tethered at the cell surface. Förster resonance energy transfer (FRET) experiments confirmed a direct molecular link between Env and BST-2 and highlighted an inability of the mutant to bind BST-2. We also tested a virus presenting a truncation of 109 amino acids at the C-terminal part of Env, a cytoplasmic tail partial deletion that is spontaneously selected in vitro. Interestingly, viral release assays and FRET experiments indicated that a full Env cytoplasmic tail was essential in BST-2 antagonism. In HIV-2 infected cells, an efficient Env-mediated antagonism of BST-2 is operated through an intermolecular link involving the asparagine 659 residue as well as the C-terminal part of the cytoplasmic tail. PMID:27754450

  5. The acidic C-terminus of vaccinia virus I3 single-strand binding protein promotes proper assembly of DNA-protein complexes.

    Science.gov (United States)

    Harrison, Melissa L; Desaulniers, Megan A; Noyce, Ryan S; Evans, David H

    2016-02-01

    The vaccinia virus I3L gene encodes a single-stranded DNA binding protein (SSB) that is essential for virus DNA replication and is conserved in all Chordopoxviruses. The I3 protein contains a negatively charged C-terminal tail that is a common feature of SSBs. Such acidic tails are critical for SSB-dependent replication, recombination and repair. We cloned and purified variants of the I3 protein, along with a homolog from molluscum contagiosum virus, and tested how the acidic tail affected DNA-protein interactions. Deleting the C terminus of I3 enhanced the affinity for single-stranded DNA cellulose and gel shift analyses showed that it also altered the migration of I3-DNA complexes in agarose gels. Microinjecting an antibody against I3 into vaccinia-infected cells also selectively inhibited virus replication. We suggest that this domain promotes cooperative binding of I3 to DNA in a way that would maintain an open DNA configuration around a replication site.

  6. Display of cell surface sites for fibronectin assembly is modulated by cell adherence to (1F3 and C-terminal modules of fibronectin.

    Directory of Open Access Journals (Sweden)

    Jielin Xu

    Full Text Available BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7F3-(10F3. Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7F3-(10F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7F3-(10F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2F3-(14F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1F3 or the C-terminal modules to modules (2F3-(14F3 resulted in some activity, and addition of both (1F3 and the C-terminal modules resulted in a construct, (1F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1F3-C V0, (1F3-C V64, and (1F3-C Delta(V(15F3(10F1 were all able to support fibronectin assembly, suggesting that (1F3 through (11F1 and/or (12F1 were important for activity. Coatings in which the active parts of (1F3-C were present in different proteins were much less active than intact (1F3-C. CONCLUSIONS: These results suggest that (1F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.

  7. The Crystal Structure of the C-Terminal Domain of the Salmonella enterica PduO Protein: An Old Fold with a New Heme-Binding Mode.

    Science.gov (United States)

    Ortiz de Orué Lucana, Darío; Hickey, Neal; Hensel, Michael; Klare, Johann P; Geremia, Silvano; Tiufiakova, Tatiana; Torda, Andrew E

    2016-01-01

    The two-domain protein PduO, involved in 1,2-propanediol utilization in the pathogenic Gram-negative bacterium Salmonella enterica is an ATP:Cob(I)alamin adenosyltransferase, but this is a function of the N-terminal domain alone. The role of its C-terminal domain (PduOC) is, however, unknown. In this study, comparative growth assays with a set of Salmonella mutant strains showed that this domain is necessary for effective in vivo catabolism of 1,2-propanediol. It was also shown that isolated, recombinantly-expressed PduOC binds heme in vivo. The structure of PduOC co-crystallized with heme was solved (1.9 Å resolution) showing an octameric assembly with four heme moieities. The four heme groups are highly solvent-exposed and the heme iron is hexa-coordinated with bis-His ligation by histidines from different monomers. Static light scattering confirmed the octameric assembly in solution, but a mutation of the heme-coordinating histidine caused dissociation into dimers. Isothermal titration calorimetry using the PduOC apoprotein showed strong heme binding (K d = 1.6 × 10(-7) M). Biochemical experiments showed that the absence of the C-terminal domain in PduO did not affect adenosyltransferase activity in vitro. The evidence suggests that PduOC:heme plays an important role in the set of cobalamin transformations required for effective catabolism of 1,2-propanediol. Salmonella PduO is one of the rare proteins which binds the redox-active metabolites heme and cobalamin, and the heme-binding mode of the C-terminal domain differs from that in other members of this protein family. PMID:27446048

  8. Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains.

    Science.gov (United States)

    Vitali, Teresa; Maffioli, Elisa; Tedeschi, Gabriella; Vanoni, Maria A

    2016-03-01

    MICAL1 is a cytoplasmic 119 kDa protein participating in cytoskeleton dynamics through the NADPH-dependent oxidase and F-actin depolymerizing activities of its N-terminal flavoprotein domain, which is followed by calponin homology (CH), LIM domains and a C-terminal region with Pro-, Glu-rich and coiled-coil motifs. MICAL1 and truncated forms lacking the C-terminal, LIM and/or CH regions have been produced and characterized. The CH, LIM and C-terminal regions cause an increase of Km,NADPH exhibited by the NADPH oxidase activity of the flavoprotein domain, paralleling changes in the overall protein charge. The C-terminus also determines a ∼ 10-fold decrease of kcat, revealing its role in establishing an inactive/active conformational equilibrium, which is at the heart of the regulation of MICAL1 in cells. F-actin lowers Km,NADPH (10-50 μM) and increases kcat (10-25 s(-1)) to similar values for all MICAL forms. The apparent Km,actin of MICAL1 is ∼ 10-fold higher than that of the other forms (3-5 μM), reflecting the fact that F-actin binds to the flavoprotein domain in the MICAL's active conformation and stabilizes it. Analyses of the reaction in the presence of F-actin indicate that actin depolymerization is mediated by H2O2 produced by the NADPH oxidase reaction, rather than due to direct hydroxylation of actin methionine residues. PMID:26845023

  9. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  10. Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon–helix–helix DNA-binding fold

    OpenAIRE

    Lu, Jun; den Dulk-Ras, Amke; Hooykaas, Paul J. J.; Glover, J. N. Mark

    2009-01-01

    Agrobacterium tumefaciens VirC2 stimulates processing of single-stranded T-DNA that is translocated into plants to induce tumor formation, but how VirC2 functions is unclear. Here, we report the 1.7-Å X-ray crystal structure of its trypsin-resistant C-terminal domain, VirC282–202, which reveals a form of the ribbon-helix-helix (RHH) DNA-binding fold contained within a single polypeptide chain. DNA-binding assays and mutagenesis indicate that VirC2 uses this RHH fold to bind double-stranded DN...

  11. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family

    OpenAIRE

    Bernstein, Douglas A.; Keck, James L.

    2003-01-01

    RecQ DNA helicases function in DNA replication, recombination and repair. Although the precise cellular roles played by this family of enzymes remain elusive, the importance of RecQ proteins is clear; mutations in any of three human RecQ genes lead to genomic instability and cancer. In this report, proteolysis is used to define a two-domain structure for Escherichia coli RecQ, revealing a large (∼59 kDa) N-terminal and a small (∼9 kDa) C-terminal domain. A short N-terminal segment (7 or 21 re...

  12. Peptide inhibitors of CDK2-cyclin A that target the cyclin recruitment-site: structural variants of the C-terminal Phe.

    Science.gov (United States)

    Atkinson, Gail E; Cowan, Angela; McInnes, Campbell; Zheleva, Daniella I; Fischer, Peter M; Chan, Weng C

    2002-09-16

    A focused series of octapeptides based on the lead compound H-His-Ala-Lys-Arg-Arg-Leu-Ile-Phe-NH(2) 1, in which the C-terminal phenylalanine residue was replaced by alpha and/or beta-modified variants, was synthesized using solid-phase chemistry. Both the L-threo-beta-hydroxy-phenylalanine (beta-phenylserine, Pse) and (2S)-phenylalaninol derivatives, as competitive binders at the cyclin-recruitment site, displayed potent inhibitory activity towards the CDK2-cyclin A complex. Unexpectedly, the D-threo-Pse derivatives also showed inhibitory activity. PMID:12182847

  13. Chemical shift assignments and secondary structure prediction of the C-terminal domain of the response regulator BfmR from Acinetobacter baumannii.

    Science.gov (United States)

    Olson, Andrew L; Thompson, Richele J; Melander, Christian; Cavanagh, John

    2014-04-01

    Acinetobacter baumannii is a Gram-negative pathogen responsible for severe nocosomial infections by forming biofilms in healthcare environments. The two-domain response regulator BfmR has been shown to be the master controller for biofilm formation. Inactivation of BfmR resulted in an abolition of pili production and consequently biofilm creation. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the C-terminal domain of BfmR (residues 130-238) from A. baumannii.

  14. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase

    DEFF Research Database (Denmark)

    Jahn, T.; Fuglsang, A.T.; Olsson, A.;

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-AT...... plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase....

  15. DEVELOPMENT OF THE SIGMA-1 RECEPTOR IN C-TERMINALS OF MOTONEURONS AND COLOCALIZATION WITH THE N,N’-DIMETHYLTRYPTAMINE FORMING ENZYME, INDOLE-N-METHYL TRANSFERASE

    OpenAIRE

    Mavlyutov, Timur A.; Epstein, Miles L.; LIU, PATRICIA; Verbny, Yakov I.; Ziskind-Conhaim, Lea; Ruoho, Arnold E.

    2012-01-01

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein coupled receptors (GPCR). In the CNS the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs a...

  16. Characterization of anti-glucagon sera elicited against a C-terminal fragment of pancreatic glucagon and their use in glucagon radioimmunoassay

    International Nuclear Information System (INIS)

    Experimental results indicate that antiserum OAL-123 raised in the rabbit against a C-terminal fragment of pancreatic glucagon possesses immunological properties similar to those of antiserum 30 K and that it is useful for specific measurement of pancreatic glucagon. A radioassay was developed using OAL-123 which showed the highest sensitivity in the assay system used. It utilised human pancreatic monocomponent glucagon as standard and monoradioionated glucagon as tracer. Cross reactivities of extracts from dog jejuunm and stomach mucosa and of glucagen-related peptides and immunoreactivities in dog tissues and human blood were examined. (Auth./C.F.)

  17. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4

    OpenAIRE

    Kim, Hyun Jung; Magesh, Venkataraman; Lee, Jae-Jin; Kim, Sun; Knaus, Ulla G.; Lee, Kong-Joo

    2015-01-01

    This study explored the role of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in the production of ROS and tumor invasion. UCH-L1 was found to increase cellular ROS levels and promote cell invasion. Silencing UCH-L1, as well as inhibition of H2O2 generation by catalase or by DPI, a NOX inhibitor, suppressed the migration potential of B16F10 cells, indicating that UCH-L1 promotes cell migration by up-regulating H2O2 generation. Silencing NOX4, which generates H2O2, with siRNA eliminated the effec...

  18. Practical considerations of pyrite oxidation control in uranium tailings

    International Nuclear Information System (INIS)

    The problems posed by the oxidation of pyrite in uranium tailings include the generation of sulfuric acid and acid sulfate metal salts. These have substantial negative impacts on watercourse biota by themselves, and the lowered pH levels tend to mobilize heavy metals present in the tailings the rate of oxidation of pyrite at lower pH levels is catalyzed by sulfur and iron oxidizing bacteria present in soils. No single clear solution to the problems came from this study. Exclusion of air is a most important preventative of bacterial catalysis of oxidation. Bactericides, chemically breaking the chain of integrated oxidation reactions, maintaining anaerobic conditions, or maintaining a neutral or alkaline pH all reduce the oxidation rate. Removal of pyrite by flotation will reduce but not eliminate the impact of pyrite oxidation. Controlled oxidation of the remaining sulfide in the flotation tails would provide an innocuous tailing so far as acidity generation is concerned

  19. Silver extraction using nitric acid from lead-zinc mine tail slag by response surface design%响应面法优化硝酸浸铅锌矿尾渣回收银工艺研究

    Institute of Scientific and Technical Information of China (English)

    杨彦松

    2011-01-01

    以硝酸浸铅锌矿尾渣回收银工艺进行了研究.以银浸出率为评价指标,探讨了硝酸质量浓度、液固比、浸出时间和浸出温度对回收银工艺的影响.在单因素实验的基础上,利用响应面法对银浸出的条件进行了优化.结果表明,当硝酸质量浓度为33.16%,液固比为16.39:1,在64.62℃的条件下浸出1.3h,该模型预测的最大银浸出率为69.73%.验证实验误差<3%,表明该模型与实际情况拟合良好.%The extraction process using nitric acid leaching silver from lead-zinc mine tail slag was studied. According to silver leaching rate using as an evaluation index, the effect of nitric acid mass concentration, the liquid-solid ratio,leaching time and leaching temperature on silver leaching rate was discussed. Based on single factor experiment, the leaching condition is further optimized by response surface method. The results showed that the largest model silver leaching rate of 69. 73% was obtained under the conditions of the concentration of 33.16% nitric acid quality and the liquid-solid ratio of 16.39:1 at 64.62 ℃ for 1.3 h. The verify error of the model was less than 3% ,and the model was fitted for the actual experiments well.

  20. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis

    OpenAIRE

    Lam, Ping; Xu, Shuhua; Soroka, Carol J.; Boyer, James L.

    2012-01-01

    The liver specific bile salt export pump (BSEP) is crucial for bile-acid dependent bile flow at the apical membrane. BSEP, a member of the family of structurally related ATP-Binding Cassette (ABC) proteins, is composed of 12 transmembrane segments (TMS) and 2 large cytoplasmic nucleotide binding domains (NBD). The regulation of trafficking of BSEP to and from the cell surface is not well understood, but is believed to play an important role in cholestatic liver diseases such as primary famili...

  1. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes ...

  2. Study on a Single-Dose Toxicity Test of D-Amino Acid Oxidase (DAAO Extracts Injected into the Tail Vein of Rats

    Directory of Open Access Journals (Sweden)

    Kang Jungue

    2013-06-01

    Full Text Available Objective: This study was performed to analyze the single-dose toxicity of D-amino acid oxidase (DAAO extracts. Methods: All experiments were conducted at the Korea Testing & Research Institute (KTR, an institution authorized to perform non-clinical studies, under the regulations of Good Laboratory Practice (GLP. Sprague-Dawley rats were chosen for the pilot study. Doses of DAAO extracts, 0.1 to 0.3 cc, were administered to the experimental group, and the same doses of normal saline solution were administered to the control group. This study was conducted under the approval of the Institutional Animal Ethics Committee. Results: In all 4 groups, no deaths occurred, and the LD50 of DAAO extracts administered by IV was over 0.3 ml/kg. No significant changes in the weight between the control group and the experimental group were observed. To check for abnormalities in organs and tissues, we used microscopy to examine representative histological sections of each specified organ, the results showed no significant differences in any organs or tissues. Conclusion: The above findings suggest that treatment with D-amino acid oxidase extracts is relatively safe. Further studies on this subject should be conducted to yield more concrete evidence.

  3. C-Terminal Charge-Reversal Derivatization and Parallel Use of Multiple Proteases Facilitates Identification of Protein C-Termini by C-Terminomics.

    Science.gov (United States)

    Somasundaram, Prasath; Koudelka, Tomas; Linke, Dennis; Tholey, Andreas

    2016-04-01

    The identification of protein C-termini in complex proteomes is challenging due to the poor ionization efficiency of the carboxyl group. Amidating the negatively charged C-termini with ethanolamine (EA) has been suggested to improve the detection of C-terminal peptides and allows for a directed depletion of internal peptides after proteolysis using carboxyl reactive polymers. In the present study, the derivatization with N,N-dimethylethylenediamine (DMEDA) and (4-aminobutyl)guanidine (AG) leading to a positively charged C-terminus was investigated. C-terminal charge-reversed peptides showed improved coverage of b- and y-ion series in the MS/MS spectra compared to their noncharged counterparts. DMEDA-derivatized peptides resulted in many peptides with charge states of 3+, which benefited from ETD fragmentation. This makes the charge-reversal strategy particularly useful for the analysis of protein C-termini, which may also be post-translationally modified. The labeling strategy and the indirect enrichment of C-termini worked with similar efficiency for both DMEDA and EA, and their applicability was demonstrated on an E. coli proteome. Utilizing two proteases and different MS/MS activation mechanisms allowed for the identification of >400 C-termini, encompassing both canonical and truncated C-termini. PMID:26939532

  4. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    Science.gov (United States)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells.

  5. Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion

    International Nuclear Information System (INIS)

    We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly 13C, 15N labeled protein sample, sequential chemical-shift information for 74% of the N, Cα, Cβ triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.

  6. N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c.

    Science.gov (United States)

    Vyas, Payal; Brown, David T

    2012-04-01

    Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.

  7. Characterization of Mycobacterium tuberculosis EsxA membrane insertion: roles of N- and C-terminal flexible arms and central helix-turn-helix motif.

    Science.gov (United States)

    Ma, Yue; Keil, Verena; Sun, Jianjun

    2015-03-13

    EsxA (ESAT-6), an important virulence factor of Mycobacterium tuberculosis, plays an essential role in phagosome rupture and bacterial cytosolic translocation within host macrophages. Our previous study showed that EsxA exhibits a unique membrane-interacting activity that is not found in its ortholog from nonpathogenic Mycobacterium smegmatis. However, the molecular mechanism of EsxA membrane insertion remains unknown. In this study, we generated truncated EsxA proteins with deletions of the N- and/or C-terminal flexible arm. Using a fluorescence-based liposome leakage assay, we found that both the N- and C-terminal arms were required for membrane disruption. Moreover, we found that, upon acidification, EsxA converted into a more organized structure with increased α-helical content, which was evidenced by CD analysis and intrinsic tryptophan fluorescence. Finally, using an environmentally sensitive fluorescent dye, we obtained direct evidence that the central helix-turn-helix motif of EsxA inserted into the membranes and formed a membrane-spanning pore. A model of EsxA membrane insertion is proposed and discussed.

  8. Crystallization and X-ray data analysis of the 10 kDa C-terminal lid subdomain from Caenorhabditis elegans Hsp70

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Liam; Walkinshaw, Malcolm D., E-mail: m.walkinshaw@ed.ac.uk [School of Biological Sciences, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JR,Scotland (United Kingdom)

    2006-09-01

    Crystals of the C-terminal 10 kDa lid subdomain from the C. elegans chaperone Hsp70 have been obtained that diffract X-rays to ∼3.5 Å and belong to space group I2{sub 1}2{sub 1}2{sub 1}. Analysis of X-ray data and initial heavy-atom phasing reveals 24 monomers in the asymmetric unit related by 432 non-crystallographic symmetry. Hsp70 is an important molecular chaperone involved in the regulation of protein folding. Crystals of the C-terminal 10 kDa helical lid domain (residues 542–640) from a Caenorhabditis elegans Hsp70 homologue have been produced that diffract X-rays to ∼3.4 Å. Crystals belong to space group I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = b = 197, c = 200 Å. The Matthews coefficient, self-rotation function and Patterson map indicate 24 monomers in the asymmetric unit, showing non-crystallographic 432 symmetry. Molecular-replacement studies using the corresponding domain from rat, the only eukaryotic homologue with a known structure, failed and a mercury derivative was obtained. Preliminary MAD phasing using SHELXD and SHARP for location and refinement of the heavy-atom substructure and SOLOMON for density modification produced interpretable maps with a clear protein–solvent boundary. Further density-modification, model-building and refinement are currently under way.

  9. Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion

    Energy Technology Data Exchange (ETDEWEB)

    Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Wasmer, Christian [Harvard Medical School (United States); Bousset, Luc; Sourigues, Yannick [UPR 3082 CNRS, Laboratoire d' Enzymologie et Biochimie Structurales (France); Schuetz, Anne [ETH Zurich, Physical Chemistry (Switzerland); Loquet, Antoine [Max Planck Institute for Biophysical Chemistry (Germany); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Melki, Ronald, E-mail: melki@lebs.cnrs-gif.fr [UPR 3082 CNRS, Laboratoire d' Enzymologie et Biochimie Structurales (France); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France)

    2011-11-15

    We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly {sup 13}C, {sup 15}N labeled protein sample, sequential chemical-shift information for 74% of the N, C{alpha}, C{beta} triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.

  10. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    Energy Technology Data Exchange (ETDEWEB)

    González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

    2012-09-05

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

  11. α1-antitrypsin and its C-terminal fragment attenuate effects of degranulated neutrophil-conditioned medium on lung cancer HCC cells, in vitro

    Directory of Open Access Journals (Sweden)

    Westin Ulla

    2004-11-01

    Full Text Available Abstract Background Tumor microenvironment, which is largely affected by inflammatory cells, is a crucial participant in the neoplastic process through promotion of cell proliferation, survival and migration. We measured the effects of polymorphonuclear neutrophil (PMN conditioned medium alone, and supplemented with serine proteinase inhibitor α-1 antitrypsin (AAT or its C-terminal fragment (C-36 peptide, on cultured lung cancer cells. Methods Lung cancer HCC cells were grown in a regular medium or in a PMN-conditioned medium in the presence or absence of AAT (0.5 mg/ml or its C-36 peptide (0.06 mg/ml for 24 h. Cell proliferation, invasiveness and release of IL-8 and VEGF were analyzed by [3H]-thymidine incorporation, Matrigel invasion and ELISA methods, respectively. Results Cells exposed to PMN-conditioned medium show decreased proliferation and IL-8 release by 3.9-fold, p Conclusions Our data provide evidence that neutrophil derived factors decrease lung cancer HCC cell proliferation and IL-8 release, but increase cell invasiveness. These effects were found to be modulated by exogenously present serine proteinase inhibitor, AAT, and its C-terminal fragment, which points to a complexity of the relationships between tumor cell biological activities and local microenvironment.

  12. Crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of the human spliceosomal DExD/H-box protein hPrp22

    International Nuclear Information System (INIS)

    The cloning, purification and crystallization of the C-terminal domain of human hPrp22 are reported. This communication also contains data for the preliminary X-ray diffraction analysis. The Homo sapiens DExD/H-box protein hPrp22 is a crucial component of the eukaryotic pre-mRNA splicing machinery. Within the splicing cycle, it is involved in the ligation of exons and generation of the lariat and it additionally catalyzes the release of mature mRNA from the spliceosomal U5 snRNP. The yeast homologue of this protein, yPrp22, shows ATP-dependent RNA-helicase activity and is capable of unwinding RNA/RNA duplex molecules. A truncated construct coding for residues 950–1183 of human Prp22, comprising the structurally and functionally uncharacterized C-terminal domain, was cloned into an Escherichia coli expression vector. The protein was subsequently overproduced, purified and crystallized. The crystals obtained diffracted to 2.1 Å resolution, belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 78.2, c = 88.4 Å, and contained one molecule in the asymmetric unit

  13. Probing Structural Transitions in the Intrinsically Disordered C-Terminal Domain of the Measles Virus Nucleoprotein by Vibrational Spectroscopy of Cyanylated Cysteines

    Science.gov (United States)

    Bischak, Connor G.; Longhi, Sonia; Snead, David M.; Costanzo, Stéphanie; Terrer, Elodie; Londergan, Casey H.

    2010-01-01

    Four single-cysteine variants of the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) were cyanylated at cysteine and their infrared spectra in the C≡N stretching region were recorded both in the absence and in the presence of one of the physiological partners of NTAIL, namely the C-terminal X domain (XD) of the viral phosphoprotein. Consistent with previous studies showing that XD triggers a disorder-to-order transition within NTAIL, the C≡N stretching bands of the infrared probe were found to be significantly affected by XD, with this effect being position-dependent. When the cyanylated cysteine side chain is solvent-exposed throughout the structural transition, its changing linewidth reflects a local gain of structure. When the probe becomes partially buried due to binding, its frequency reports on the mean hydrophobicity of the microenvironment surrounding the labeled side chain of the bound form. The probe moiety is small compared to other common covalently attached spectroscopic probes, thereby minimizing possible steric hindrance/perturbation at the binding interface. These results show for the first time to our knowledge the suitability of site-specific cysteine mutagenesis followed by cyanylation and infrared spectroscopy to document structural transitions occurring within intrinsically disordered regions, with regions involved in binding and folding being identifiable at the residue level. PMID:20816082

  14. Expanding the Activity of Tissue Inhibitors of Metalloproteinase (TIMP)-1 against Surface-Anchored Metalloproteinases by the Replacement of Its C-Terminal Domain: Implications for Anti-Cancer Effects

    OpenAIRE

    Jing Xian Duan; Magdalini Rapti; Anastasia Tsigkou; Meng Huee Lee

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity. In this study, ...

  15. REUSAGE OF GYPSUM TAILING BINDER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Gypsum tailings, slag, cement, and other additives are used to produce gypsum building material products with simple technological processes and low costs. It provides a new effective approach to reuse gypsum tailings.

  16. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P;

    1991-01-01

    , growth in agar and growth in low serum, mutant receptors display a similar hierarchy of activity. The lower activity is intrinsic in the mutants since they are expressed at similar level as the wild type and bind EGF with similar affinity. Deletion mutants lacking the last 19 or 63 amino acids (Velu et......The epidermal growth factor receptor (EGF-R) C-terminus contains three conserved tyrosines (Y-1068, Y-1148, Y-1173) which are phosphorylated upon EGF activation. To clarify the functional role of these tyrosines, each has been mutated to phenylalanine and studied as single, double and triple...

  17. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    Directory of Open Access Journals (Sweden)

    Belén Mezquita

    2014-02-01

    Full Text Available One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT and a truncated isoform of VEGFR-1 (i21-VEGFR-1, which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.

  18. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure.

    Science.gov (United States)

    Skwierawska, Agnieszka; Makowska, Joanna; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A

    2009-06-01

    We previously studied a 16-amino acid-residue fragment of the C-terminal beta-hairpin of the B3 domain (residues 46-61), [IG(46-61)] of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG (46-61) by systematically shortening the peptide by one residue at a time from both the C- and the N-terminus. To determine the structure and stability of two resulting 12- and 14-amino acid-residue peptides, IG(48-59) and IG(47-60), respectively, we carried out circular dichroism, NMR, and calorimetric studies of these peptides in pure water. Our results show that IG(48-59) possesses organized three-dimensional structure stabilized by hydrophobic interactions (Tyr50-Phe57 and Trp48-Val59) at T = 283 and 305 K. At T = 313 K, the structure breaks down because of increased chain entropy, but the turn region is preserved in the same position observed for the structure of the whole protein. The breakdown of structure occurs near the melting temperature of this peptide (T(m) = 310 K) measured by differential scanning calorimetry (DSC). The melting temperature of IG(47-60) determined by DSC is T(m) = 330 K and its structure is similar to that of the native beta-hairpin at all (lower) temperatures examined (283-313 K). Both of these truncated sequences are conserved in all known amino acid sequences of the B domains of the immunoglobulin binding protein G from bacteria. Thus, this study contributes to an understanding of the mechanism of folding of this whole family of proteins, and provides information about the mechanism of formation and stabilization of a beta-hairpin structural element. PMID:19089955

  19. CSTX-9, a toxic peptide from the spider Cupiennius salei: amino acid sequence, disulphide bridge pattern and comparison with other spider toxins containing the cystine knot structure.

    Science.gov (United States)

    Schalle, J; Kämpfer, U; Schürch, S; Kuhn-Nentwig, L; Haeberli, S; Nentwig, W

    2001-09-01

    CSTX-9 (68 residues, 7530.9 Da) is one of the most abundant toxic polypeptides in the venom of the wandering spider Cupiennius salei. The amino acid sequence was determined by Edman degradation using reduced and alkylated CSTX-9 and peptides generated by cleavages with endoproteinase Asp-N and trypsin, respectively. Sequence comparison with CSTX-1, the most abundant and the most toxic polypeptide in the crude spider venom, revealed a high degree of similarity (53% identity). By means of limited proteolysis with immobilised trypsin and RP-HPLC, the cystine-containing peptides of CSTX-9 were isolated and the disulphide bridges were assigned by amino acid analysis, Edman degradation and nanospray tandem mass spectrometry. The four disulphide bonds present in CSTX-9 are arranged in the following pattern: 1-4, 2-5, 3-8 and 6-7 (Cys6-Cys21, Cys13-Cys30, Cys20-Cys48, Cys32-Cys46). Sequence comparison of CSTX-1 with CSTX-9 clearly indicates the same disulphide bridge pattern, which is also found in other spider polypeptide toxins, e.g. agatoxins (omega-AGA-IVA, omega-AGA-IVB, mu-AGA-I and mu-AGA-VI) from Agelenopsis aperta, SNX-325 from Segestria florentina and curtatoxins (CT-I, CT-II and CT-III) from Hololena curta. CSTX-1/CSTX-9 belong to the family of ion channel toxins containing the inhibitor cystine knot structural motif. CSTX-9, lacking the lysine-rich C-terminal tail of CSTX-1, exhibits a ninefold lower toxicity to Drosophila melanogaster than CSTX-1. This is in accordance with previous observations of CSTX-2a and CSTX-2b, two truncated forms of CSTX-1 which, like CSTX-9, also lack the C-terminal lysine-rich tail. PMID:11693532

  20. Effects of dietary n-3 fatty acids and vitamin C on semen characteristics, lipid composition of sperm and blood metabolites in fat-tailed Moghani rams.

    Science.gov (United States)

    Jafaroghli, M; Abdi-Benemar, H; Zamiri, M J; Khalili, B; Farshad, A; Shadparvar, A A

    2014-06-10

    Sixteen fertile rams were randomly allotted to four groups and fed either of the four diets for 14 weeks: (1) control diet (COD) without fish oil (FO) and vitamin C (VC), (2) diet containing 2.5% FO (FOD), (3) diet containing 300 mg/kg DM VC (VCD), and (4) diet containing 2.5% FO and 300 mg/kg DM VC (FCD). Semen was collected at 14-d intervals from 1 April to 10 July (out of the physiologic breeding season in Iran). Semen volume and percentages of motile and progressively motile sperm were increased by FO and VC feeding. A significant interaction was also found between FOD and VCD on motility and progressive motility percentage (P<0.05). HOS-test and percentage of sperm with normal acrosome improved significantly by FO and VC. Rams fed FCD had better HOS-test and higher proportion of sperm with normal acrosome than rams in other groups (82.4 and 93.6%, respectively). Diets containing FO and FO and VC increased the proportion of docosahexaenoic acid in sperm (P<0.05). The activity of lactate dehydrogenase in the seminal fluid was significantly affected by VC and the interaction between FO and VC (P<0.05). Blood metabolites, except glucose, were affected positively by FO. The results showed that dietary supplementation with FO and VC improved seminal quality and may have beneficial effects on fertility in Moghani rams. PMID:24745668

  1. The solution structure of the C-terminal modular pair from Clostridium perfringens mu-toxin reveals a noncellulosomal dockerin module.

    Science.gov (United States)

    Chitayat, Seth; Adams, Jarrett J; Furness, Heather S T; Bayer, Edward A; Smith, Steven P

    2008-09-19

    The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the mu-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the mu-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the mu-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens. PMID:18602403

  2. Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment.

    Science.gov (United States)

    Shao, Zhifei; Morser, John; Leung, Lawrence L K

    2014-09-26

    Thrombin cleavage alters the function of osteopontin (OPN) by exposing an integrin binding site and releasing a chemotactic C-terminal fragment. Here, we examined thrombin cleavage of OPN in the context of dendritic cell (DC) migration to define its functional domains. Full-length OPN (OPN-FL), thrombin-cleaved N-terminal fragment (OPN-R), thrombin- and carboxypeptidase B2-double-cleaved N-terminal fragment (OPN-L), and C-terminal fragment (OPN-CTF) did not have intrinsic chemotactic activity, but all potentiated CCL21-induced DC migration. OPN-FL possessed the highest potency, whereas OPNRAA-FL had substantially less activity, indicating the importance of RGD. We identified a conserved (168)RSKSKKFRR(176) sequence on OPN-FL that spans the thrombin cleavage site, and it demonstrated potent pro-chemotactic effects on CCL21-induced DC migration. OPN-FLR168A had reduced activity, and the double mutant OPNRAA-FLR168A had even lower activity, indicating that these functional domains accounted for most of the pro-chemotactic activity of OPN-FL. OPN-CTF also possessed substantial pro-chemotactic activity, which was fully expressed upon thrombin cleavage and its release from the intact protein, because OPN-CTF was substantially more active than OPNRAA-FLR168A containing the OPN-CTF sequence within the intact protein. OPN-R and OPN-L possessed similar potency, indicating that the newly exposed C-terminal SVVYGLR sequence in OPN-R was not involved in the pro-chemotactic effect. OPN-FL and OPN-CTF did not directly bind to the CD44 standard form or CD44v6. In conclusion, thrombin cleavage of OPN disrupts a pro-chemotactic sequence in intact OPN, and its loss of pro-chemotactic activity is compensated by the release of OPN-CTF, which assumes a new conformation and possesses substantial activity in enhancing chemokine-induced migration of DCs. PMID:25112870

  3. Purification, crystallization and preliminary X-ray crystallographic analysis of the C-terminal cytoplasmic domain of FlhB from Aquifex aeolicus

    International Nuclear Information System (INIS)

    The cytoplasmic domain of FlhB from A. aeolicus has been purified and crystallized. FlhB is a key protein in the regulation of protein export by the bacterial flagellar secretion system. It is composed of two domains: an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhBc). Here, the crystallization and preliminary crystallographic analysis of FlhBc from Aquifex aeolicus are reported. Purified protein was crystallized using the vapour-diffusion technique. The crystals diffracted to 2.3 Å resolution and belonged to space group C2, with unit-cell parameters a = 114.49, b = 33.89, c = 122.13 Å, β = 107.53°

  4. Salmonella typhimurium InvA expression probed with a monoclonal antibody to the C-terminal peptide of InvA.

    Science.gov (United States)

    Clark, C G; MacDonald, L A; Ginocchio, C C; Galán, J E; Johnson, R P

    1996-03-01

    The Salmonella typhimurium InvA protein is a component of a sec-independent secretion apparatus necessary for full virulence of the bacteria. We generated a monoclonal antibody to the C-terminal portion of the InvA protein that recognized proteins in S. typhimurium and weakly in Y. enterocolitica, but not in several other species of bacteria, including S. flexneri. S. typhimurium grown without agitation produced relatively constant amounts of membrane InvA throughout the growth cycle, whereas bacteria grown with agitation had a sharp increase in the amount of membrane InvA at late exponential phase. Levels of InvA present in Salmonella membranes under some growth conditions do not appear to correlate with levels of invasion under the same conditions.

  5. Yeast Ty retrotransposons assemble into virus-like particles whose T-numbers depend on the C-terminal length of the capsid protein.

    Science.gov (United States)

    AL-Khayat, H A; Bhella, D; Kenney, J M; Roth, J F; Kingsman, A J; Martin-Rendon, E; Saibil, H R

    1999-09-10

    The virus-like particles (VLPs) produced by the yeast Ty retrotransposons are structurally and functionally related to retroviral cores. Using cryo-electron microscopy (cryo-EM) and three-dimensional (3D) reconstruction, we have examined the structures of VLPs assembled from full-length and truncated forms of the capsid structural protein. The VLPs are highly polydisperse in their radius distribution. We have found that the length of the C-terminal region of the capsid structural protein dictates the T -number, and thus the size, of the assembled particles. Each construct studied appears to assemble into at least two or three size classes, with shorter C termini giving rise to smaller particles. This assembly property provides a model for understanding the variable assembly of retroviral core proteins. The particles are assembled from trimer-clustered units and there are holes in the capsid shells. PMID:10493857

  6. A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics.

    Science.gov (United States)

    Kang, NaNa; Koo, JaeHyung; Wang, Sen; Hur, Sun Jin; Bahk, Young Yil

    2016-06-01

    RNA polymerase II C-terminal domain phosphatases are newly emerging family of phosphatases that contain FCPH domain with Mg+2-binding DXDX(T/V) signature motif. Its subfamily includes small CTD phosphatases (SCPs). Recently, we identified several interacting partners of human SCP1 with appearance of dephosphorylation and O-GlcNAcylation. In this study, using an established cell line with inducible CTDSPL2 protein (a member of the new phosphatase family), proteomic screening was conducted to identify binding partners of CTDSPL2 in nuclear extract through immunoprecipitation of CTDSPL2 with its associated. This approach led to the identification of several interacting partners of CTDSPL2. This will provide a better understanding on CTDSPL2. [BMB Reports 2016; 49(6): 319-324]. PMID:26674342

  7. Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vasan, Neil; Hutagalung, Alex; Novick, Peter; Reinisch, Karin M. (Yale); (UCLJ)

    2010-08-13

    The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 {angstrom}. We show that the C terminus consists of two {alpha}-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to three other tethering complexes - Dsl1, conserved oligomeric Golgi, and the exocyst - thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.

  8. The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization.

    Science.gov (United States)

    Cukier, Cyprian D; Maveyraud, Laurent; Saurel, Olivier; Guillet, Valérie; Milon, Alain; Gervais, Virginie

    2016-06-01

    Thanatos associated protein 11 (THAP11) is a cell cycle and cell growth regulator differentially expressed in cancer cells. THAP11 belongs to a distinct family of transcription factors recognizing specific DNA sequences via an atypical zinc finger motif and regulating diverse cellular processes. Outside the extensively characterized DNA-binding domain, THAP proteins vary in size and predicted domains, for which structural data are still lacking. We report here the crystal structure of the C-terminal region of human THAP11 protein, providing the first 3D structure of a coiled-coil motif from a THAP family member. We further investigate the stability, dynamics and oligomeric properties of the determined structure combining molecular dynamics simulations and biophysical experiments. Our results show that the C-ter region of THAP11 forms a left-handed parallel homo-dimeric coiled-coil structure possessing several unusual features. PMID:26975212

  9. Recombinant expression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal DUF490963–1138 domain of TamB from Escherichia coli

    Science.gov (United States)

    Josts, Inokentijs; Grinter, Rhys; Kelly, Sharon M.; Mosbahi, Khedidja; Roszak, Aleksander; Cogdell, Richard; Smith, Brian O.; Byron, Olwyn; Walker, Daniel

    2014-01-01

    TamB is a recently described inner membrane protein that, together with its partner protein TamA, is required for the efficient secretion of a subset of autotransporter proteins in Gram-negative bacteria. In this study, the C-terminal DUF490963–1138 domain of TamB was overexpressed in Escherichia coli K-12, purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the primitive trigonal space group P3121, with unit-cell parameters a = b = 57.34, c = 220.74 Å, and diffracted to 2.1 Å resolution. Preliminary secondary-structure and X-ray diffraction analyses are reported. Two molecules are predicted to be present in the asymmetric unit. Experimental phasing using selenomethionine-labelled protein will be undertaken in the future. PMID:25195908

  10. Lack of a 5.9 kDa peptide C-terminal fragment of fibrinogen α chain precedes fibrosis progression in patients with liver disease.

    Directory of Open Access Journals (Sweden)

    Santiago Marfà

    Full Text Available Early detection of fibrosis progression is of major relevance for the diagnosis and management of patients with liver disease. This study was designed to find non-invasive biomarkers for fibrosis in a clinical context where this process occurs rapidly, HCV-positive patients who underwent liver transplantation (LT. We analyzed 93 LT patients with HCV recurrence, 41 non-LT patients with liver disease showing a fibrosis stage F≥1 and 9 patients without HCV recurrence who received antiviral treatment before LT, as control group. Blood obtained from 16 healthy subjects was also analyzed. Serum samples were fractionated by ion exchange chromatography and their proteomic profile was analyzed by SELDI-TOF-MS. Characterization of the peptide of interest was performed by ion chromatography and electrophoresis, followed by tandem mass spectrometry identification. Marked differences were observed between the serum proteome profile of LT patients with early fibrosis recurrence and non-recurrent LT patients. A robust peak intensity located at 5905 m/z was the distinguishing feature of non-recurrent LT patients. However, the same peak was barely detected in recurrent LT patients. Similar results were found when comparing samples of healthy subjects with those of non-LT fibrotic patients, indicating that our findings were not related to either LT or HCV infection. Using tandem mass-spectrometry, we identified the protein peak as a C-terminal fragment of the fibrinogen α chain. Cell culture experiments demonstrated that TGF-β reduces α-fibrinogen mRNA expression and 5905 m/z peak intensity in HepG2 cells, suggesting that TGF-β activity regulates the circulating levels of this protein fragment. In conclusion, we identified a 5.9 kDa C-terminal fragment of the fibrinogen α chain as an early serum biomarker of fibrogenic processes in patients with liver disease.

  11. Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Eskew Jeffery D

    2011-10-01

    Full Text Available Abstract Background The molecular chaperone, heat shock protein 90 (Hsp90 has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells. Methods PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies. Results KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model. Conclusions Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer.

  12. The solution structure of the C-terminal domain of NfeD reveals a novel membrane-anchored OB-fold.

    Science.gov (United States)

    Kuwahara, Yohta; Ohno, Ayako; Morii, Taichi; Yokoyama, Hideshi; Matsui, Ikuo; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2008-11-01

    Nodulation formation efficiency D (NfeD) is a member of a class of membrane-anchored ClpP-class proteases. There is a second class of NfeD homologs that lack the ClpP domain. The genes of both NfeD classes usually are part of an operon that also contains a gene for a prokaryotic homolog of stomatin. (Stomatin is a major integral-membrane protein of mammalian erythrocytes.) Such NfeD/stomatin homolog gene pairs are present in more than 290 bacterial and archaeal genomes, and their protein products may be part of the machinery used for quality control of membrane proteins. Herein, we report the structure of the isolated C-terminal domain of PH0471, a Pyrococcus horikoshii NfeD homolog, which lacks the ClpP domain. This C-terminal domain (termed NfeDC) contains a five-strand beta-barrel, which is structurally very similar to the OB-fold (oligosaccharide/oligonucleotide-binding fold) domain. However, there is little sequence similarity between it and previously characterized OB-fold domains. The NfeDC domain lacks the conserved surface residues that are necessary for the binding of an OB-fold domain to DNA/RNA, an ion. Instead, its surface is composed of residues that are uniquely conserved in NfeD homologs and that form the structurally conserved surface turns and beta-bulges. There is also a conserved tryptophan present on the surface. We propose that, in general, NfeDC domains may interact with other spatially proximal membrane proteins and thereby regulate their activities. PMID:18687870

  13. Evaluation of the C-Terminal Fragment of Entamoeba histolytica Gal/GalNAc Lectin Intermediate Subunit as a Vaccine Candidate against Amebic Liver Abscess.

    Directory of Open Access Journals (Sweden)

    Xiangyang Min

    2016-01-01

    Full Text Available Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis, including amebic dysentery and liver abscesses. E. histolytica invades host tissues by adhering onto cells and phagocytosing them depending on the adaptation and expression of pathogenic factors, including Gal/GalNAc lectin. We have previously reported that E. histolytica possesses multiple CXXC sequence motifs, with the intermediate subunit of Gal/GalNAc lectin (i.e., Igl as a key factor affecting the amoeba's pathogenicity. The present work showed the effect of immunization with recombinant Igl on amebic liver abscess formation and the corresponding immunological properties.A prokaryotic expression system was used to prepare the full-length Igl and the N-terminal, middle, and C-terminal fragments (C-Igl of Igl. Vaccine efficacy was assessed by challenging hamsters with an intrahepatic injection of E. histolytica trophozoites. Hamsters intramuscularly immunized with full-length Igl and C-Igl were found to be 92% and 96% immune to liver abscess formation, respectively. Immune-response evaluation revealed that C-Igl can generate significant humoral immune responses, with high levels of antibodies in sera from immunized hamsters inhibiting 80% of trophozoites adherence to mammalian cells and inducing 80% more complement-mediated lysis of trophozoites compared with the control. C-Igl was further assessed for its cellular response by cytokine-gene qPCR analysis. The productions of IL-4 (8.4-fold and IL-10 (2-fold in the spleen cells of immunized hamsters were enhanced after in vitro stimulation. IL-4 expression was also supported by increased programmed cell death 1 ligand 1 gene.Immunobiochemical characterization strongly suggests the potential of recombinant Igl, especially the C-terminal fragment, as a vaccine candidate against amoebiasis. Moreover, protection through Th2-cell participation enabled effective humoral immunity against amebic liver abscesses.

  14. The Hepatitis B Virus Core Variants that Expose Foreign C-Terminal Insertions on the Outer Surface of Virus-Like Particles.

    Science.gov (United States)

    Dishlers, Andris; Skrastina, Dace; Renhofa, Regina; Petrovskis, Ivars; Ose, Velta; Lieknina, Ilva; Jansons, Juris; Pumpens, Paul; Sominskaya, Irina

    2015-12-01

    The major immunodominant region (MIR) and N-terminus of the hepatitis B virus (HBV) core (HBc) protein were used to expose foreign insertions on the outer surface of HBc virus-like particles (VLPs). The additions to the HBc positively charged arginine-rich C-terminal (CT) domain are usually not exposed on the VLP surface. Here, we constructed a set of recombinant HBcG vectors in which CT arginine stretches were substituted by glycine residues. In contrast to natural HBc VLPs and recombinant HBc VLP variants carrying native CT domain, the HBcG VLPs demonstrated a lowered capability to pack bacterial RNA during expression in Escherichia coli cells. The C-terminal addition of a model foreign epitope from the HBV preS1 sequence to the HBcG vectors resulted in the exposure of the inserted epitope on the VLP surface, whereas the same preS1 sequences added to the native CT of the natural HBc protein remained buried within the HBc VLPs. Based on the immunisation of mice, the preS1 epitope added to the HBcG vectors as a part of preS1(20-47) and preS1phil sequences demonstrated remarkable immunogenicity. The same epitope added to the original C-terminus of the HBc protein did not induce a notable level of anti-preS1 antibodies. HBcG vectors may contribute to the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26446016

  15. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair.

    Science.gov (United States)

    Manelyte, Laura; Guy, Colin P; Smith, Rachel M; Dillingham, Mark S; McGlynn, Peter; Savery, Nigel J

    2009-11-01

    During nucleotide excision repair (NER) in bacteria the UvrC nuclease and the short oligonucleotide that contains the DNA lesion are removed from the post-incision complex by UvrD, a superfamily 1A helicase. Helicases are frequently regulated by interactions with partner proteins, and immunoprecipitation experiments have previously indicated that UvrD interacts with UvrB, a component of the post-incision complex. We examined this interaction using 2-hybrid analysis and surface plasmon resonance spectroscopy, and found that the N-terminal domain and the unstructured region at the C-terminus of UvrD interact with UvrB. We analysed the properties of a truncated UvrD protein that lacked the unstructured C-terminal region and found that it showed a diminished affinity for single-stranded DNA, but retained the ability to displace both UvrC and the lesion-containing oligonucleotide from a post-incision nucleotide excision repair complex. The interaction of the C-terminal region of UvrD with UvrB is therefore not an essential feature of the mechanism by which UvrD disassembles the post-incision complex during NER. In further experiments we showed that PcrA helicase from Bacillus stearothermophilus can also displace UvrC and the excised oligonucleotide from a post-incision NER complex, which supports the idea that PcrA performs a UvrD-like function during NER in gram-positive organisms. PMID:19762288

  16. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein.

    Science.gov (United States)

    Chinpongpanich, Aumnart; Phean-O-Pas, Srivilai; Thongchuang, Mayura; Qu, Li-Jia; Buaboocha, Teerapong

    2015-11-01

    A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.

  17. The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module.

    Directory of Open Access Journals (Sweden)

    Luke J Alderwick

    2011-02-01

    Full Text Available The D-arabinan-containing polymers arabinogalactan (AG and lipoarabinomannan (LAM are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM. Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985 at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.

  18. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. II. Presence of putative isogenes and a protein equipped with a C-terminal autoinhibitory domain.

    Science.gov (United States)

    Harada, Akiko; Fukuhara, Toshiyuki; Takagi, Shingo

    2002-04-01

    In vitro treatment with trypsin of plasma membrane (PM) vesicles isolated from the leaves of Vallisneria gigantea Graebner, an aquatic monocot, produced a marked decrease in the Km for ATP and an increase in the Vmax of H+-transporting activity. Concomitantly, the removal of 8 kDa of the C-terminal domain from the 94-kDa PM H+-ATPase was confirmed by immunoblotting using different kinds of polyclonal antibody. Three partial clones of putative PM H+-ATPase genes (Vga1, 2, and 3) were isolated from leaves by reverse transcription polymerase chain reaction. Northern blotting analysis revealed that the expression level of Vga3 was high and that of the other two genes was much lower. The H+-transporting activity of PM vesicles was substantially suppressed in the presence of inorganic phosphate (Pi), which has been supposed to be a noncompetitive inhibitor of the PM H+-ATPase, coincident with an increase in the Km for ATP and a decrease in the Vmax. After treatment of the isolated PM vesicles with trypsin, the inhibitory effect of Pi was no longer evident. This result indicates that Pi inhibited the activity through the C-terminal autoinhibitory domain of the PM H+-ATPase. Furthermore, Pi increased the Km for ATP of the H+-transporting activity in the PM vesicles isolated from both dark-adapted and red-light-irradiated leaves. The results suggest that regulation of the Km for ATP through the operation of photosynthesis is independent of regulation through the cytoplasmic level of Pi. PMID:11941463

  19. Stat3 isoforms, alpha and beta, demonstrate distinct intracellular dynamics with prolonged nuclear retention of Stat3beta mapping to its unique C-terminal end.

    Science.gov (United States)

    Huang, Ying; Qiu, Jihui; Dong, Shuo; Redell, Michele S; Poli, Valeria; Mancini, Michael A; Tweardy, David J

    2007-11-30

    Two isoforms of Stat3 (signal transducer and activator of transcription 3) are expressed in cells, alpha (p92) and beta (p83), both derived from a single gene by alternative mRNA splicing. The 55-residue C-terminal transactivation domain of Stat3alpha is deleted in Stat3beta and replaced by seven unique C-terminal residues (CT7) whose function remains uncertain. We subcloned the open reading frames of Stat3alpha and Stat3beta into the C terminus of green fluorescent protein (GFP). Fluorescent microscopic analysis of HEK293T cells transiently transfected with GFP-Stat3alpha or GFP-Stat3beta revealed similar kinetics and cytokine concentration dependence of nuclear accumulation; these findings were confirmed by high throughput microscope analysis of murine embryonic fibroblasts that lacked endogenous Stat3 but stably expressed either GFP-Stat3alpha or GFP-Stat3beta. However, although time to half-maximal cytoplasmic reaccumulation after cytokine withdrawal was 15 min for GFP-Stat3alpha, it was >180 min for GFP-Stat3beta. Furthermore, although the intranuclear mobility of GFP-Stat3alpha was rapid and increased with cytokine stimulation, the intranuclear mobility of GFP-Stat3beta in unstimulated cells was slower than that of GFP-Stat3alpha in unstimulated cells and was slowed further following cytokine stimulation. Deletion of the unique CT7 domain from Stat3beta eliminated prolonged nuclear retention but did not alter its intranuclear mobility. Thus, Stat3alpha and Stat3beta have distinct intracellular dynamics, with Stat3beta exhibiting prolonged nuclear retention and reduced intranuclear mobility especially following ligand stimulation. Prolonged nuclear retention, but not reduced intranuclear mobility, mapped to the CT7 domain of Stat3beta.

  20. A novel COL4A1 frameshift mutation in familial kidney disease: the importance of the C-terminal NC1 domain of type IV collagen

    Science.gov (United States)

    Gale, Daniel P.; Oygar, D. Deren; Lin, Fujun; Oygar, P. Derin; Khan, Nadia; Connor, Thomas M.F.; Lapsley, Marta; Maxwell, Patrick H.; Neild, Guy H.

    2016-01-01

    Background Hereditary microscopic haematuria often segregates with mutations of COL4A3, COL4A4 or COL4A5 but in half of families a gene is not identified. We investigated a Cypriot family with autosomal dominant microscopic haematuria with renal failure and kidney cysts. Methods We used genome-wide linkage analysis, whole exome sequencing and cosegregation analyses. Results We identified a novel frameshift mutation, c.4611_4612insG:p.T1537fs, in exon 49 of COL4A1. This mutation predicts truncation of the protein with disruption of the C-terminal part of the NC1 domain. We confirmed its presence in 20 family members, 17 with confirmed haematuria, 5 of whom also had stage 4 or 5 chronic kidney disease. Eleven family members exhibited kidney cysts (55% of those with the mutation), but muscle cramps or cerebral aneurysms were not observed and serum creatine kinase was normal in all individuals tested. Conclusions Missense mutations of COL4A1 that encode the CB3 [IV] segment of the triple helical domain (exons 24 and 25) are associated with HANAC syndrome (hereditary angiopathy, nephropathy, aneurysms and cramps). Missense mutations of COL4A1 that disrupt the NC1 domain are associated with antenatal cerebral haemorrhage and porencephaly, but not kidney disease. Our findings extend the spectrum of COL4A1 mutations linked with renal disease and demonstrate that the highly conserved C-terminal part of the NC1 domain of the α1 chain of type IV collagen is important in the integrity of glomerular basement membrane in humans. PMID:27190376

  1. The roles of C-terminal residues on the thermal stability and local heme environment of cytochrome c' from the thermophilic purple sulfur bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Kimura, Yukihiro; Kasuga, Sachiko; Unno, Masashi; Furusawa, Takashi; Osoegawa, Shinsuke; Sasaki, Yuko; Ohno, Takashi; Wang-Otomo, Zheng-Yu

    2015-04-01

    A soluble cytochrome (Cyt) c' from thermophilic purple sulfur photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits marked thermal tolerance compared with that from the closely related mesophilic counterpart Allochromatium vinosum. Here, we focused on the difference in the C-terminal region of the two Cyts c' and examined the effects of D131 and R129 mutations on the thermal stability and local heme environment of Cyt c' by differential scanning calorimetry (DSC) and resonance Raman (RR) spectroscopy. In the oxidized forms, D131K and D131G mutants exhibited denaturing temperatures significantly lower than that of the recombinant control Cyt c'. In contrast, R129K and R129A mutants denatured at nearly identical temperatures with the control Cyt c', indicating that the C-terminal D131 is an important residue maintaining the enhanced thermal stability of Tch. tepidum Cyt c'. The control Cyt c' and all of the mutants increased their thermal stability upon the reduction. Interestingly, D131K exhibited narrow DSC curves and unusual thermodynamic parameters in both redox states. The RR spectra of the control Cyt c' exhibited characteristic bands at 1,635 and 1,625 cm(-1), ascribed to intermediate spin (IS) and high spin (HS) states, respectively. The IS/HS distribution was differently affected by the D131 and R129 mutations and pH changes. Furthermore, R129 mutants suggested the lowering of their redox potentials. These results strongly indicate that the D131 and R129 residues play significant roles in maintaining the thermal stability and modulating the local heme environment of Tch. tepidum Cyt c'.

  2. The Kemess Mines Ltd. tailings dam construction using tailings construction sand

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, G.; Hoffert, J.; Tucker, G.; Kinch, J. [Kemess Mine Ltd., Smithers, BC (Canada); Colwell, D. [Outokumpu Technology, Burlington, ON (Canada)

    2004-07-01

    This paper described the engineering and regulatory requirements of the tailings storage facility dam at the Kemess gold mine in north-central British Columbia. Northgate Exploration acquired the mine from receivership in 2000, and has since constructed one of the largest earth filled dam structures for tailings storage. The original construction design called for a 1 km wide rock dam made with 30 million tonnes of non-acid generating waste rock. Kemess saved costs by building the dam from suitable quality tailings sand. In order to meet the neutralizing potential ratio (NPR) specifications for dam construction, the tailings sand was subjected to cycloning and flotation to reduce pyrite concentration. The challenge was to remove the sulphides from the tailings and to obtain an NPR greater than 2:1 while providing a consistent sand product with a fines content of less than 15 per cent passing 200 mesh. The sand plant began operation at the end of 2002 with higher than expected production rates and sand quality. In addition to environmental benefits, the economic benefits of using cycloned sands for dam construction include reduced dam height and reduced construction costs. 2 refs., 7 tabs., 11 figs.

  3. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    Directory of Open Access Journals (Sweden)

    Ma D.

    2013-01-01

    Full Text Available Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC, a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate was used to adjust pH value and the basicity of the pickle liquor, the PAFC was subsequently prepared after the polymerization process. The optimal synthesizing parameters for the preparation of PAFC obtained were as follows: the concentration of hydrochloric acid of 24 wt%, ratio of hydrochloric acid to bauxite tailings of 6:1, temperature of 90ºC, leaching time of 2.5 hours, ration of pickle liquor to calcium aluminate of 12:1, polymerization temperature of 90ºC and polymerization time of about 3 hours. The basicity of PAFC was higher than 68%, the sum concentration of Al2O3 and Fe2O3 was beyond 12.5%. The results of flocculation tests indicate that the PAFC has a better performance of removing the turbidity of wastewater compared to PAC, and PAFC prepared by bauxite tailings is a kind of high quality flocculants.

  4. Floods from tailings dam failures.

    Science.gov (United States)

    Rico, M; Benito, G; Díez-Herrero, A

    2008-06-15

    This paper compiles the available information on historic tailings dam failures with the purpose to establish simple correlations between tailings ponds geometric parameters (e.g., dam height, tailings volume) and the hydraulic characteristics of floods resulting from released tailings. Following the collapse of a mining waste dam, only a part of tailings and polluted water stored at the dam is released, and this outflow volume is difficult to estimate prior the incident. In this study, tailings' volume stored at the time of failure was shown to have a good correlation (r2=0.86) with the tailings outflow volume, and the volume of spilled tailings was correlated with its run-out distance (r2=0.57). An envelope curve was drawn encompassing the majority of data points indicating the potential maximum downstream distance affected by a tailings' spill. The application of the described regression equations for prediction purposes needs to be treated with caution and with support of on-site measurement and observations. However, they may provide a universal baseline approximation on tailing outflow characteristics (even if detailed dam information is unavailable), which is of a great importance for risk analysis purposes. PMID:18096316

  5. Environmental assistance for tailings disposal

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, J.E.S.; Sobkowicz, J.C. [Thurber Engineering, Calgary, AB (Canada)

    2010-07-01

    Increasing solids content and reducing water content prior to deposition has become increasingly important in the development of tailings management. In the treatment of fine tailings, traditional dewatering methods such as thickening, flocculation and centrifugation employed to reduce water content and improve consolidation behaviour, have fallen short of final requirements. A new role has been found for the continued and optimal use of environmental methods especially in improving dewatering of tailings deposits. This paper described the salient environmental techniques and benefits in the management of tailings and discussed the quantification of the improvement required in target solids contents and shear strengths for certain oil sands tailings materials. Specifically, the paper discussed environmental methods of dewatering oil sands tailings, with particular reference to solar evaporation; evaporative desiccation; freeze thaw; and biological methods. A geotechnical perspective on dewatering tailings was also presented. Two issues were addressed from this perspective, notably the desirable end-points in terms of solids content and strength for various tailings products; and the improvements in strength that could be obtained by environmental effects during thin-lift deposition. It was concluded that in the medium term, electro-mechanical or chemical methods may prove successful in dewatering and consolidating oil sands tailings. However, in the longer term, environmental methods will continue to be pursued and employed, in the drive to reduce the cost of tailings placement and reclamation. 12 refs., 4 figs.

  6. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage [psi]29 tail

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.; Bowman, Valorie D.; Anderson, Dwight L.; Rossmann, Michael G. (Purdue); (UMM)

    2009-08-28

    The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal end of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.

  7. A C-terminal segment of the V{sub 1}R vasopressin receptor is unstructured in the crystal structure of its chimera with the maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Adikesavan, Nallini Vijayarangan; Mahmood, Syed Saad; Stanley, Nithianantham; Xu, Zhen; Wu, Nan [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Thibonnier, Marc [Department of Medicine, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Shoham, Menachem, E-mail: mxs10@case.edu [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States)

    2005-04-01

    The 1.8 Å crystal structure of an MBP-fusion protein with the C-terminal cytoplasmic segment of the V1 vasopressin receptor reveals that the receptor segment is unstructured. The V{sub 1} vascular vasopressin receptor (V{sub 1}R) is a G-protein-coupled receptor (GPCR) involved in the regulation of body-fluid osmolality, blood volume and blood pressure. Signal transduction is mediated by the third intracellular loop of this seven-transmembrane protein as well as by the C-terminal cytoplasmic segment. A chimera of the maltose-binding protein (MBP) and the C-terminal segment of V{sub 1}R has been cloned, expressed, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 51.10, b = 66.56, c = 115.72 Å, β = 95.99°. The 1.8 Å crystal structure reveals the conformation of MBP and part of the linker region of this chimera, with the C-terminal segment being unstructured. This may reflect a conformational plasticity in the C-terminal segment that may be necessary for proper function of V{sub 1}R.

  8. An Essential Role for the Proximal but Not the Distal Cytoplasmic Tail of Glycoprotein M in Murid Herpesvirus 4 Infection

    OpenAIRE

    May, Janet S.; Smith, Christopher M.; Michael B Gill; Stevenson, Philip G.

    2008-01-01

    Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to define common, conserved features of gamma-herpesvirus biology. The multi-membrane spanning glycoprotein M (gM) is one of only 4 glycoproteins that are essential for MuHV-4 lytic replication. gM binds to gN and is thought to function mainly secondary envelopment and virion egress, for which several predicted trafficking motifs in its C-terminal cytoplasmic tail could be important. We tested the contribution of the gM cytopl...

  9. Uranium tailings research at the Canada Centre for Mineral and Energy Technology (CANMET)

    International Nuclear Information System (INIS)

    There are over 100 million metric tons of uranium tailings on the surface of Canada, an amount that is expected to increase threefold by the end of the century. Because of their potential hazard to the environment and man, the Canada Centre for Mineral and Energy Technology (CANMET) began a major program ten years ago to examine the problem of uranium tailings management. Vegetation of uranium tailings has been successful using seed mixtures planted on the tailings surface pretreated by lime and fertilizer. Lysimeter tests on uranium tailings have demonstrated that surface treatment and the presence or absence of bacteria have a marked effect on the flow and chemistry of seepage water. Hydrogeochemical studies of the tailings have shown that acid conditions prevail in the upper zone of the tailings (i.e., above the water table) and that both radioactive and other toxic chemicals are concentrated near the bottom of the tailings. Work has been done in cooperation with others on the precipitation and removal of 226Ra from tailings water effluent by BaCl2. Investigation into pre-concentrating the ore prior to acid leaching has demonstrated that virtually all the radionuclides and sulphides can be concentrated into a fraction amounting to from 30 to 40 percent of the original feed, leaving a relatively clean tailing. We are still far from our objective of demonstrating, with reasonable assurance, effective methods for the long-term management of uranium tailings. An accelerated program is outlined

  10. Enhanced Mobilization of Arsenic and Heavy Metals from Mine Tailings by Humic Acid%通过腐植酸增强尾矿中砷和重金属的迁移能力

    Institute of Scientific and Technical Information of China (English)

    Suiling Wang(著); Catherine N. Mulligan(著); 薄纯玉(译)

    2013-01-01

      砷和重金属从尾矿中的迁移是一个令人关注的问题,因为这可能对地下水和生态造成潜在的危害。最近越来越多的关注聚焦到天然有机物对环境中有毒物质迁移行为的影响上。本研究使用柱实验方法来评估利用腐植酸(HA)将砷和重金属(例如Cu、Pb和Zn)从一个氧化Pb-Zn矿尾矿样品中迁移出来的可行性。该样品采自加拿大新不伦瑞克省的巴瑟斯特。毛细管电泳分析表明,砷酸盐[As(V)]是尾矿中唯一可萃取出来的砷的形态,在pH值为11时引入HA不会引起砷的氧化还原反应或甲基化反应。初始pH值调整到11的一个0.1%的HA溶液被选作淋洗液,同时蒸馏水(初始pH调整至11)被用作对照来说明物理混合和pH值对砷和重金属迁移能力的影响。研究发现,H A能够显著地增强砷和重金属在尾矿中的迁移能力。经过一个70孔体积的淋洗,砷、铜、铅和锌的迁移分别达到了97、35、838和224 mg/kg。研究发现,在HA的存在下,砷和重金属的迁移与铁的迁移呈正相关。此外,砷的迁移与重金属的迁移也有很好的相关性。在HA存在的情况下,共存金属通过金属桥接作用机制帮助砷进入可溶的水合有机复合物中,在某种程度上增强了砷的迁移能力。应用HA进行砷和重金属的修复可能会被发展成为一项环保且有效的补救措施,从而降低和避免进一步的污染。%Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic mat-ter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb–Zn mine tailings sample

  11. Tail biting and feather pecking

    OpenAIRE

    Brunberg, Emma

    2011-01-01

    It is well known that abnormal animal behaviour is affected by both environment and genetics. This thesis aimed to use behavioural observations as well as gene expression measurements to explore how animals that perform and receive tail biting (pigs) and feather pecking (laying hens) differ from individuals that are not involved in these behaviours. In study I, the results suggested that tail biting is related to other abnormal behaviours. Pigs performing a high frequency of tail bi...

  12. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  13. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  14. Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis)

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Qing; REN Guan-Ju; AN Shu-Qing; SUN Qing-Ye; LIU Chang-Hong; SHUANG Jing-Lei

    2008-01-01

    Soil samples were collected from both bare and vegetated mine tailings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH = 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable otassium in vegetated mine tailings were significantly higher than those in the bare mine tailings (P < 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P < 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation.

  15. Long-term ecological behaviour of abandoned uranium mill tailings. 1

    International Nuclear Information System (INIS)

    Inactive uranium mill tailings were surveyed in the Province of Ontario to describe their surface characteristics, identify naturally invading biota, and determine essential chemical and physical parameters associated with the tailings. Inactive tailings sites can have wet areas, tailings completely covered with water, and dry areas. In the wet areas of most sites, wetland vegetation stands were found which were dominated by species of cattails (Typhaceae), along with some species of rushes (Juncaceae) and sedges (Cyperceae). Dry areas of the tailings exhibited a variety of surface features which are often a reflection of different amelioration efforts. Most of the indigenous species of vascular plants identified on dry areas of the tailings occurred only sporadically. Invading plants found on most sites were the tree species, trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Elemental concentration and some physical characteristics of the tailings collected from a depth of 0-20 cm were determined. Uptake of heavy metals and radionuclides were evaluated in trees found in the dry areas and in cattails (Typha latifolia) in the wetland areas. Water bodies on tailings and surface water leaving the tailings, before and after treatment, were characterized in this survey. Aquatic bryophytes have invaded some water bodies on the tailings, and acid tolerant algae were evident in most of the water associated with the tailings. Ecological processes occurring on inactive uranium mill tailings which were identified in this survey are essential in evaluating the long-term fate of these waste sites

  16. Leachability of radioactive constituents from uranium mine tailings

    International Nuclear Information System (INIS)

    A series of long-term studies were conducted both to examine the leachability of major constituents (acidity, TDS) and radioisotopes from uranium mining/milling tailings and settling pond sludges, and to assess the effect of two treatment methods (solidification and vegetation) on leachate characteristics. Four bench-scale experiments were conducted to examine the leachability of: 1) old tailings and those containing a large portion of (Ba,Ra)SO4 sludges; 2) untreated and solidified (Ba,Ra)SO4 sludges located at the bottom of settling ponds; 3) new tailings that had been vegetated or solidified; and 4) new tailings subject to varying flow rates. A fifth study was conducted to examine the microbiology of Experiments 2 and 3. In addition, the lysimeter solids remaining in the old tailings at the end of Experiment 1 were characterized through chemical and radionuclide analyses and Scanning Electron Microscope-X-ray Emission and Mossbauer Spectroscopy techniques. This report provides an extensive database of temporal variations in leachate characteristics under both normal and accelerated water application rates. It also presents hypotheses of possible leaching mechanisms in the wastes that could explain the observed data, and conceptual model of tailings leaching processes which integrates the results of all the tailings experiments

  17. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site.

    Science.gov (United States)

    Mendez, Monica O; Neilson, Julia W; Maier, Raina M

    2008-06-01

    Bacterial diversity in mine tailing microbial communities has not been thoroughly investigated despite the correlations that have been observed between the relative microbial diversity and the success of revegetation efforts at tailing sites. This study employed phylogenetic analyses of 16S rRNA genes to compare the bacterial communities present in highly disturbed, extremely (pH 2.7) and moderately (pH 5.7) acidic lead-zinc mine tailing samples from a semiarid environment with those from a vegetated off-site (OS) control sample (pH 8). Phylotype richness in these communities decreased from 42 in the OS control to 24 in the moderately acidic samples and 8 in the extremely acidic tailing samples. The clones in the extremely acidic tailing sample were most closely related to acidophiles, none of which were detected in the OS control sample. The comparison generated by this study between the bacteria present in extremely acidic tailing and that in moderately acidic tailing communities with those in an OS control soil provides a reference point from which to evaluate the successful restoration of mine tailing disposal sites by phytostabilization.

  18. Electrodialytic remediation of copper mine tailings: Comparing different operational conditions

    DEFF Research Database (Denmark)

    Rojo, Adrian; Hansen, Henrik K.; Ottosen, Lisbeth M.

    2006-01-01

    current could remove copper from watery tailings slowly. With addition of sulphuric acid, the process was improved due to a pH decrease from 6.7 to around 4, and the copper by this reason was released in the solution. Moreover, with citric acid addition the process was further improved due to a formation......, adding sulphuric acid total copper removal reached 39%. Adding citric acid, total copper removal was improved in terms of remediation time: after 5h experiment copper removal was 16% instead of 9% obtained after 72h with sulphuric acid addition. Using pulsed electric fields total copper removal was also...... of copper citrate complexes. Using pulsed electric fields the remediation process with sulphuric acid addition was also improved by a decrease in the polarization cell. Main results: considering remediation with watery tailing as the base line, for three weeks experiments no copper removal was observed...

  19. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis.

    Science.gov (United States)

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4-10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species. PMID:27088231

  20. Characterization of the FtsZ C-Terminal Variable (CTV Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis.

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang Huang

    Full Text Available Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4-10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps, also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species.

  1. Transfer of noncovalent chiral information along an optically inactive helical peptide chain: allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site.

    Science.gov (United States)

    Ousaka, Naoki; Inai, Yoshihito

    2009-02-20

    This study aims at demonstrating end-to-end transfer of noncovalent chiral information along a peptide chain. The domino-type induction of helical sense is proven by using achiral peptides 1-m of bis-chromophoric sequence with different chain lengths: H-(Aib-Delta(Z)Phe)(m)-(Aib-Delta(Z)Bip)(2)-Aib-OCH(3) [m = 2, 4, and 6; Aib = alpha-aminoisobutyric acid; Delta(Z)Phe = (Z)-alpha,beta-didehydrophenylalanine; Delta(Z)Bip = (Z)-beta-(4,4'-biphenyl)-alpha,beta-didehydroalanine]. They all showed the tendency to adopt a 3(10)-helix. Whereas peptide 1-m originally shows no circular dichroism (CD) signals, marked CD signals were induced at around 270-320 nm based on both the beta-aryl didehydroresidues by chiral Boc-proline (Boc = tert-butoxycarbonyl). The observed CD spectra were interpreted on the basis of the exciton chirality method and theoretical CD simulation of several helical conformations that were energy-minimized. The experimental and theoretical CD analysis reveals that Boc-l-proline induces the preference for a right-handed helicity in the whole chain of 1-m. Such noncovalent chiral induction was not observed in the corresponding N-terminally protected 1-m. Obviously, helicity induction in 1-m originates from the binding of Boc-proline to the N-terminal site. In the 17-mer (1-6), the information of helix sense reaches the 16th residue from the N-terminus. We have monitored precise transfer of noncovalent chiral stimulus along a helical peptide chain. The present study also proposes a primitive allosteric model of a single protein-mimicking backbone. Here chiral molecule binding the N-terminal site of 1-6 controls the chiroptical signals and helical sense of the C-terminal site about 30 A away.

  2. Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119 exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Flint Beal M

    2009-07-01

    Full Text Available Abstract Background Missense mutations and multiplications of the α-synuclein gene cause autosomal dominant familial Parkinson's disease (PD. α-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, α-synuclein plays an important role in the pathogenesis of familial and sporadic PD. To model α-synuclein-linked disease in vivo, transgenic mouse models have been developed that express wild-type or mutant human α-synuclein from a variety of neuronal-selective heterologous promoter elements. These models exhibit a variety of behavioral and neuropathological features resembling some aspects of PD. However, an important deficiency of these models is the observed lack of robust or progressive nigrostriatal dopaminergic neuronal degeneration that is characteristic of PD. Results We have developed conditional α-synuclein transgenic mice that can express A53T, E46K or C-terminally truncated (1–119 human α-synuclein pathological variants from the endogenous murine ROSA26 promoter in a Cre recombinase-dependent manner. Using these mice, we have evaluated the expression of these α-synuclein variants on the integrity and viability of nigral dopaminergic neurons with age. Expression of A53T α-synuclein or truncated αSyn119 selectively in nigrostriatal pathway dopaminergic neurons for up to 12 months fails to precipitate dopaminergic neuronal loss in these mice. However, αSyn119 expression in nigral dopaminergic neurons for up to 12 months causes a marked reduction in the levels of striatal dopamine and its metabolites together with other subtle neurochemical alterations. Conclusion We have developed and evaluated novel conditional α-synuclein transgenic mice with transgene expression directed selectively to nigrostriatal dopaminergic neurons as a potential new mouse model of PD. Our data support the pathophysiological relevance of C-terminally truncated α-synuclein species in vivo. The

  3. Bound or free: interaction of the C-terminal domain of Escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB.

    Science.gov (United States)

    Su, Xun-Cheng; Wang, Yao; Yagi, Hiromasa; Shishmarev, Dmitry; Mason, Claire E; Smith, Paul J; Vandevenne, Marylène; Dixon, Nicholas E; Otting, Gottfried

    2014-04-01

    Single-stranded DNA (ssDNA)-binding protein (SSB) protects ssDNA from degradation and recruits other proteins for DNA replication and repair. Escherichia coli SSB is the prototypical eubacterial SSB in a family of tetrameric SSBs. It consists of a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain). The eight-residue C-terminal segment of SSB (C-peptide) mediates the binding of SSB to many different SSB-binding proteins. Previously published nuclear magnetic resonance (NMR) data of the monomeric state at pH 3.4 showed that the C-peptide binds to the OB-domain at a site that overlaps with the ssDNA binding site, but investigating the protein at neutral pH is difficult because of the high molecular mass and limited solubility of the tetramer. Here we show that the C-domain is highly mobile in the SSB tetramer at neutral pH and that binding of the C-peptide to the OB-domain is so weak that most of the C-peptides are unbound even in the absence of ssDNA. We address the problem of determining intramolecular binding affinities in the situation of fast exchange between two states, one of which cannot be observed by NMR and cannot be fully populated. The results were confirmed by electron paramagnetic resonance spectroscopy and microscale thermophoresis. The C-peptide-OB-domain interaction is shown to be driven primarily by electrostatic interactions, so that binding of 1 equiv of (dT)35 releases practically all C-peptides from the OB-domain tetramer. The interaction is much more sensitive to NaCl than to potassium glutamate, which is the usual osmolyte in E. coli. As the C-peptide is predominantly in the unbound state irrespective of the presence of ssDNA, long-range electrostatic effects from the C-peptide may contribute more to regulating the activity of SSB than any engagement of the C-peptide by the OB-domain.

  4. Pub1p C-terminal RRM domain interacts with Tif4631p through a conserved region neighbouring the Pab1p binding site.

    Directory of Open Access Journals (Sweden)

    Clara M Santiveri

    Full Text Available Pub1p, a highly abundant poly(A+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3 shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM. Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402 of yeast eIF4G1 (Tif4631p, very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.

  5. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part IV. Implication for the mechanism of folding of the parent protein

    OpenAIRE

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    A 34-residue α/β peptide, [IG(28-61)], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using CD and NMR spectroscopy at various temperatures, and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the β-hairpin in the native structure, forms structure similar to the β-hairpin only at T = 313 K, and the structure is...

  6. Gold extraction from flotation tailings

    International Nuclear Information System (INIS)

    The results of studies on cyanide leaching of gold comprising flotation tailings of antimony ore are given. The possibility to extract 50% of gold by cyanide leaching is shown. The dependence of gold extraction on leaching duration is studied. Influence of kerosine on cyanide leaching of flotation tailings is studied as well.

  7. Consolidation modeling of oilsand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, G. [AMEC Earth and Environmental Ltd., Calgary, AB (Canada)

    2004-07-01

    Sand consolidation was discussed with reference to modeling sand consolidation, its limitations, opportunities and challenges. Consolidation is the process of soil densification where water is squeezed out of the soil matrix because of added load. The added load comes from additional tailings during filling or additional surcharge. Consolidation provides planners with a tool to predict the quantities of solids and water that a tailings pond will ultimately be required to hold. Consolidation modeling is used in mines all over world, in the dredging industry, and where there is loading of very soft soils. This presentation described how to model consolidation, including input planning parameters and tailings parameters. It provided a summary of a Syncrude consolidated tailings (CT) prototype and compared CT versus mature fine tailings (MFT), versus thickened tailings (TT). It was concluded that finite strain consolidation modeling provides a useful tool for tailings pond planning; consolidation modeling provides opportunity for field measurements which calibrate model; consolidation modeling is very useful for determining end product after reclamation loading; and presently CT is easier to model than mature fine tailings. tabs., figs.

  8. Oilsand tailings : solving the issues

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2008-11-15

    Oilsands tailings management is an integral part of oil sands research and development. Studies to decrease land disturbance and to resolve environmental and safety issues are underway at several government agencies and industry groups, including the Alberta Energy Research Institute, the Oil Sands Tailings Research Facility and Natural Resources Canada's CANMET Advanced Separation Technologies division. Fresh tailings that come from the bitumen extraction process are composed of 85 to 90 per cent water and 10 to 15 per cent solids having the consistency of muddy water. The 3 zones that develop following discharge into the tailings ponds are 3 metres of clear water; residual hydrocarbons that float on the surface; and, a 1 metre zone of water and settling clay particles known as mature fine tailings (MFT) which comprise about 90 per cent of the volume of the tailings pond. The tailings ponds must be built in areas where there is no bitumen suitable for surface mining. The impounded area is surrounded by tailings dykes built from local overburden materials. As such, tailings ponds are managed as dams according to Alberta Dam Safety regulation requirements. Dam stability is increased by the installation of internal seepage control measures. This article described the key guidelines and objectives for the construction of tailings ponds. It also described the 3 primary types of reclamation settings, namely aquatic reclamation, wetland reclamation and terrestrial reclamation. Water removed from the MFT can be recycled back to the plant to reduce the amount of water used from the river. Although this contributes to lower energy costs, there are challenges regarding salt levels that builds up in piping and equipment. The presence of water in the tailings also prevents tailings reclamation. In addition to mechanical systems to remove water, researchers are also considering the use of chemicals and natural processes. In the consolidated tailings (CT) process, the

  9. Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon–helix–helix DNA-binding fold

    Science.gov (United States)

    Lu, Jun; den Dulk-Ras, Amke; Hooykaas, Paul J. J.; Glover, J. N. Mark

    2009-01-01

    Agrobacterium tumefaciens VirC2 stimulates processing of single-stranded T-DNA that is translocated into plants to induce tumor formation, but how VirC2 functions is unclear. Here, we report the 1.7-Å X-ray crystal structure of its trypsin-resistant C-terminal domain, VirC282–202, which reveals a form of the ribbon-helix-helix (RHH) DNA-binding fold contained within a single polypeptide chain. DNA-binding assays and mutagenesis indicate that VirC2 uses this RHH fold to bind double-stranded DNA but not single-stranded DNA. Mutations that severely affect VirC2 DNA binding are highly deleterious for both T-DNA transfer into yeast and the virulence of A. tumefaciens in different plants including Nicotiana glauca and Kalanchoe daigremontiana. These data suggest that VirC2 enhances T-DNA transfer and virulence through DNA binding with its RHH fold. The RHH fold of VirC2 is the first crystal structure representing a group of predicted RHH proteins that facilitate endonucleolytic processing of DNA for horizontal gene transfer. PMID:19482939

  10. Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold.

    Science.gov (United States)

    Lu, Jun; den Dulk-Ras, Amke; Hooykaas, Paul J J; Glover, J N Mark

    2009-06-16

    Agrobacterium tumefaciens VirC2 stimulates processing of single-stranded T-DNA that is translocated into plants to induce tumor formation, but how VirC2 functions is unclear. Here, we report the 1.7-A X-ray crystal structure of its trypsin-resistant C-terminal domain, VirC2(82-202), which reveals a form of the ribbon-helix-helix (RHH) DNA-binding fold contained within a single polypeptide chain. DNA-binding assays and mutagenesis indicate that VirC2 uses this RHH fold to bind double-stranded DNA but not single-stranded DNA. Mutations that severely affect VirC2 DNA binding are highly deleterious for both T-DNA transfer into yeast and the virulence of A. tumefaciens in different plants including Nicotiana glauca and Kalanchoe daigremontiana. These data suggest that VirC2 enhances T-DNA transfer and virulence through DNA binding with its RHH fold. The RHH fold of VirC2 is the first crystal structure representing a group of predicted RHH proteins that facilitate endonucleolytic processing of DNA for horizontal gene transfer. PMID:19482939

  11. The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation.

    Science.gov (United States)

    Saint, Malika; Sawhney, Sonal; Sinha, Ishani; Singh, Rana Pratap; Dahiya, Rashmi; Thakur, Anushikha; Siddharthan, Rahul; Natarajan, Krishnamurthy

    2014-05-01

    A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.

  12. Antibacterial activity of peptides derived from the C-terminal region of a hemolytic lectin, CEL-III, from the marine invertebrate Cucumaria echinata.

    Science.gov (United States)

    Hatakeyama, Tomomitsu; Suenaga, Tomoko; Eto, Seiichiro; Niidome, Takuro; Aoyagi, Haruhiko

    2004-01-01

    Several synthetic peptides derived from the C-terminal domain sequence of a hemolytic lectin, CEL-III, were examined as to their action on bacteria and artificial lipid membranes. Peptide P332 (KGVIFAKASVSVKVTASLSK-NH(2)), corresponding to the sequence from residue 332, exhibited strong antibacterial activity toward Gram-positive bacteria. Replacement of each Lys in P332 by Ala markedly decreased the activity. However, when all Lys were replaced by Arg, the antibacterial activity increased, indicating the importance of positively charged residues at these positions. Replacement of Val by Leu also led to higher antibacterial activity, especially toward Gram-negative bacteria. The antibacterial activity of these peptides was correlated with their membrane-permeabilizing activity toward the bacterial inner membrane and artificial lipid vesicles, indicating that the antibacterial action is due to perturbation of bacterial cell membranes, leading to enhancement of their permeability. These results also suggest that the hydrophobic region of CEL-III, from which P332 and its analogs were derived, may play some role in the interaction with target cell membranes to trigger hemolysis. PMID:14999010

  13. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.

    Science.gov (United States)

    Nishino, Kanako; Obara, Keisuke; Kihara, Akio

    2015-12-25

    Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.

  14. Emerging role of N- and C-terminal interactions in stabilizing (β/α8 fold with special emphasis on Family 10 xylanases

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    2012-09-01

    Full Text Available Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in the presence of proteases. Family 10 or glycosyl hydrolase 10 (GH10 xylanases are one of the well characterized and thoroughly studied classes of industrial enzymes. The TIM-barrel fold structure which is ubiquitous in nature is one of the characteristics of family 10 xylanases. Family 10 xylanases have been used as a “model system” due to their TIM-barrel fold to dissect and understand protein stability under various conditions. A better understanding of structure-stability-function relationships of family 10 xylanases allows one to apply these governing molecular rules to engineer other TIM-barrel fold proteins to improve their stability and retain function(s under adverse conditions. In this review, we discuss the implications of N-and C-terminal interactions, observed in family 10 xylanases on protein stability under extreme conditions. The role of metal binding and aromatic clusters in protein stability is also discussed. Studying and understanding family 10 xylanase structure and function, can contribute to our protein engineering knowledge.

  15. Distinct Roles for the N- and C-terminal Regions of M-Sec in Plasma Membrane Deformation during Tunneling Nanotube Formation.

    Science.gov (United States)

    Kimura, Shunsuke; Yamashita, Masami; Yamakami-Kimura, Megumi; Sato, Yusuke; Yamagata, Atsushi; Kobashigawa, Yoshihiro; Inagaki, Fuyuhiko; Amada, Takako; Hase, Koji; Iwanaga, Toshihiko; Ohno, Hiroshi; Fukai, Shuya

    2016-01-01

    The tunneling nanotube (TNT) is a structure used for intercellular communication, and is a thin membrane protrusion mediating transport of various signaling molecules and cellular components. M-Sec has potent membrane deformation ability and induces TNT formation in cooperation with the Ral/exocyst complex. Here, we show that the N-terminal polybasic region of M-Sec directly binds phosphatidylinositol (4,5)-bisphosphate for its localization to the plasma membrane during the initial stage of TNT formation. We further report a crystal structure of M-Sec, which consists of helix bundles arranged in a straight rod-like shape, similar to the membrane tethering complex subunits. A positively charged surface in the C-terminal domains is required for M-Sec interaction with active RalA to extend the plasma membrane protrusions. Our results suggest that the membrane-associated M-Sec recruits active RalA, which directs the exocyst complex to form TNTs. PMID:27629377

  16. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    Science.gov (United States)

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  17. Deficiency of syntrophin, dystroglycan, and merosin in a female infant with a congenital muscular dystrophy phenotype lacking cysteine-rich and C-terminal domains of dystrophin.

    Science.gov (United States)

    Tachi, N; Ohya, K; Chiba, S; Matsuo, M; Patria, S Y; Matsumura, K

    1997-08-01

    Primary deficiency of merosin is the cause of the classic form of congenital muscular dystrophy (CMD) accompanied by brain white matter abnormalities. We report a female infant with dystrophinopathy who was deficient in merosin in skeletal muscle. The patient had a phenotype of typical CMD and white matter abnormalities on brain MRI. Merosin was greatly reduced in the biopsied skeletal muscle. However, the expression of dystroglycan and syntrophin was also greatly reduced, and the immunoreactivity for the antibodies against the cysteine-rich/C-terminal domains of dystrophin was absent in the sarcolemma. Reverse transcriptase polymerase chain reaction analysis of the dystrophin gene revealed a complete lack of exons 71 through 74. In skeletal muscle, only the mutant gene was expressed. These results suggest that the patient is a symptomatic Duchenne muscular dystrophy carrier with skewed X-inactivation. This patient illustrates for the first time that a dystrophin abnormality can cause a secondary deficiency of merosin in dystrophinopathy. The reduction of merosin may account for the clinical phenotype of CMD and correlate with the white matter abnormalities in our patient.

  18. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses.

    Science.gov (United States)

    Zhou, Jie; Wang, Jian; Zheng, Zuyu; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2015-08-01

    Arabidopsis AtWRKY33 plays a critical role in broad plant stress responses. Whether there are evolutionarily conserved homologues of AtWRKY33 in other plants and what make AtWRKY33 such an important protein in plant stress responses are largely unknown. We compared AtWRKY33 with its close homologues to identify AtWRKY33-specific regulatory and structural elements, which were then functionally analysed through complementation. We also performed phylogenetic analysis to identify structural AtWRKY33 homologues in other plants and functionally analysed two tomato homologues through complementation and gene silencing. AtWRKY33 has an extended C-terminal domain (CTD) absent in its close homologue AtWRKY25. Both its CTD and the strong pathogen/stress-responsive expression of AtWRKY33 are necessary to complement the critical phenotypes of atwrky33. Structural AtWRKY33 homologues were identified in both dicot and monocot plants including two (SlWRKY33A and SlWRKY33B) in tomato. Molecular complementation and gene silencing confirmed that the two tomato WRKY genes play a critical role similar to that of AtWRKY33 in plant stress responses. Thus, WRKY33 proteins are evolutionarily conserved with a critical role in broad plant stress responses. Both its CTD and promoter are critical for the uniquely important roles of WRKY33 in plant stress responses.

  19. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone

    Energy Technology Data Exchange (ETDEWEB)

    Baxa, U.; Wall, J.; Keller, P. W.; Cheng, N.; Steven, A. C.

    2011-01-01

    In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter ({approx}8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield -1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.

  20. Comparison of Peritoneal Low-Molecular-Weight-Protein-Removal in CCPD and CAPD Patients Based on C-Terminal Agrin Fragment Clearance

    Directory of Open Access Journals (Sweden)

    Dominik Steubl

    2016-03-01

    Full Text Available Background/Aims: This study compares the peritoneal elimination of the low-molecular-weight-protein (LMWP C-terminal agrin fragment (tCAF, size 22 kDa, a promising biomarker for kidney function, in continuous cycling peritoneal dialysis (CCPD and continuous ambulatory peritoneal dialysis (CAPD. Methods: 103 sets of serum, 24h-urine and dialysate samples were obtained in 15 CCPD (63 sets and 11 CAPD (40 sets patients. Total, renal and peritoneal substrate removals/clearances were measured/calculated for tCAF, creatinine, blood-urea-nitrogen (BUN, cystatin C and albumin and correlated with the peritoneal transport type. Results: Serum und urine concentrations of all biomarkers did not differ between both groups, urinary substrate removal was higher in CAPD patients for all biomarkers due to better residual renal function. Peritoneal substrate removal of tCAF and albumin were significantly higher in CAPD (tCAF: 35.3 vs. 19.3 µg/d, p2 body-surface-area, pConclusions: CAPD was superior to CCPD concerning peritoneal tCAF removal. This finding was pronounced in high-transporters and CAPD patients using icodextrin twice daily.

  1. Ancient interaction between the teneurin C-terminal associated peptides (TCAP and latrophilin ligand-receptor coupling: A role in behaviour

    Directory of Open Access Journals (Sweden)

    Rebecca eWoelfle

    2015-04-01

    Full Text Available Teneurins are multifunctional transmembrane proteins that are found in all multicellular animals and exist as four paralogous forms in vertebrates. They are highly expressed in the central nervous system, where they exert their effects, in part, by high-affinity binding to latrophilin (LPHN, a G-protein coupled receptor (GPCR related to the adhesion and secretin GPCR families. The teneurin C-terminal associated peptides (TCAPs are encoded by the terminal exon of all four teneurins, where TCAPs 1 and 3 are independently transcribed as soluble peptides, and TCAPs 2 and 4 remain tethered to their teneurin proprotein. Synthetic TCAP-1 interacts with LPHN, with an association with β-dystroglycan to induce a tissue-dependent signal cascade to modulate cytoskeletal dynamics. TCAP-1 reduces stress-induced behaviours associated with anxiety, addiction and depression in a variety of models, in part, by regulating synaptic plasticity. Therefore, the TCAP-1-teneurin-LPHN interaction represents a novel receptor-ligand model and may represent a key mechanism underlying the association of behaviour and neurological conditions.

  2. Loss of c-Kit and bone marrow failure upon conditional removal of the GATA-2 C-terminal zinc finger domain in adult mice.

    Science.gov (United States)

    Li, Haiyan S; Jin, Jin; Liang, Xiaoxuan; Matatall, Katie A; Ma, Ying; Zhang, Huiyuan; Ullrich, Stephen E; King, Katherine Y; Sun, Shao-Cong; Watowich, Stephanie S

    2016-09-01

    Heterozygous mutations in the transcriptional regulator GATA-2 associate with multilineage immunodeficiency, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). The majority of these mutations localize in the zinc finger (ZnF) domains, which mediate GATA-2 DNA binding. Deregulated hematopoiesis with GATA-2 mutation frequently develops in adulthood, yet GATA-2 function in the bone marrow remains unresolved. To investigate this, we conditionally deleted the GATA-2 C-terminal ZnF (C-ZnF) coding sequences in adult mice. Upon Gata2 C-ZnF deletion, we observed rapid peripheral cytopenia, bone marrow failure, and decreased c-Kit expression on hematopoietic progenitors. Transplant studies indicated GATA-2 has a cell-autonomous role in bone marrow hematopoiesis. Moreover, myeloid lineage populations were particularly sensitive to Gata2 hemizygosity, while molecular assays indicated GATA-2 regulates c-Kit expression in multilineage progenitor cells. Enforced c-Kit expression in Gata2 C-ZnF-deficient hematopoietic progenitors enhanced myeloid colony activity, suggesting GATA-2 sustains myelopoiesis via a cell intrinsic role involving maintenance of c-Kit expression. Our results provide insight into mechanisms regulating hematopoiesis in bone marrow and may contribute to a better understanding of immunodeficiency and bone marrow failure associated with GATA-2 mutation.

  3. CBF mediates adenovirus Ela trans-activation by interaction at the C-terminal promoter targeting domain of conserved region 3.

    Science.gov (United States)

    Agoff, S N; Wu, B

    1994-12-01

    Genetic and biochemical evidence suggest that conserved region 3 (CR3) of the adenovirus Ela polypeptide can provide two distinct and separable functions: an N-terminal transcriptional activation region and a C-terminal promoter targeting region. It is thought that the promoter targeting region of Ela CR3 interacts with promoter-specific transcription factors, thereby bringing the activation region of Ela CR3 in proximity of the promoter. Here we report that CBF, a CCAAT-box-binding factor that regulates hsp70 gene expression and mediates Ela trans-activation in vivo, interacts with the promoter targeting region of Ela CR3 in vitro. Point mutations in Ela CR3 that are defective in stimulating transcription from the hsp70 promoter are also defective in stimulating transcription directed by a synthetic activator, GAL-CBF, composed of the DNA-binding domain of yeast GAL4 fused to CBF. These mutations fall into two classes with respect to their abilities to interact with CBF in vitro. Mutations in the transcriptional activation region of Ela CR3 do not affect binding to CBF, but mutation of the promoter targeting region of Ela CR3 prevents association with CBF in vitro.

  4. Thrombospondin-1-N-Terminal Domain Induces a Phagocytic State and Thrombospondin-1-C-Terminal Domain Induces a Tolerizing Phenotype in Dendritic Cells

    Science.gov (United States)

    Tabib, Adi; Krispin, Alon; Trahtemberg, Uriel; Verbovetski, Inna; Lebendiker, Mario; Danieli, Tsafi; Mevorach, Dror

    2009-01-01

    In our previous study, we have found that thrombospondin-1 (TSP-1) is synthesized de novo upon monocyte and neutrophil apoptosis, leading to a phagocytic and tolerizing phenotype of dendritic cells (DC), even prior to DC-apoptotic cell interaction. Interestingly, we were able to show that heparin binding domain (HBD), the N-terminal portion of TSP-1, was cleaved and secreted simultaneously in a caspase- and serine protease- dependent manner. In the current study we were interested to examine the role of HBD in the clearance of apoptotic cells, and whether the phagocytic and tolerizing state of DCs is mediated by the HBD itself, or whether the entire TSP-1 is needed. Therefore, we have cloned the human HBD, and compared its interactions with DC to those with TSP-1. Here we show that rHBD by itself is not directly responsible for immune paralysis and tolerizing phenotype of DCs, at least in the monomeric form, but has a significant role in rendering DCs phagocytic. Binding of TSP-1-C-terminal domain on the other hand induces a tolerizing phenotype in dendritic cells. PMID:19721725

  5. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements.

    Science.gov (United States)

    Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele

    2016-01-12

    Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.

  6. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus

    Indian Academy of Sciences (India)

    Helin Li; Pengbo Ning; Zhi Lin; Wulong Liang; Kai Kang; Lei He; Yanming Zhang

    2015-03-01

    The use of adenovirus vector-based vaccines is a promising approach for generating antigen-specific immune responses. Improving vaccine potency is necessary in other approaches to address their inadequate protection for the majority of infectious diseases. This study is the first to reconstruct a recombinant replication-defective human adenovirus co-expressing E2 and invasin C-terminal (InvC) glycoproteins (rAd-E2-InvC). rAd-E2-InvC with 2×106 TCID50 was intramuscularly administered two times to CSFV-free pigs at 14 day intervals. No adverse clinical reactions were observed in any of the pigs after the vaccination. The CSFV E2-specific antibody titer was significantly higher in the rAd-E2-InvC group than that in the rAdV-E2 group as measured by NPLA and blocking ELISA. Pigs immunized with rAd-E2-InvC were completely protected against lethal challenge. Neither CSFV RNA nor pathological changes were detected in the tissues after CSFV challenge. These results demonstrate that rAd-E2-InvC could be an alternative to the existing CSF vaccine. Moreover, InvC that acts as an adjuvant could enhance the immunogenicity of rAdV-E2 and induce high CSFV E2-specific antibody titer and protection level.

  7. Ferric Sulfate Leaching of Pyrrhotite Tailings between 30 to 55 °C

    OpenAIRE

    Nazanin Samadifard; Cheryl E. Devine; Elizabeth Edwards; Krishna Mahadevan; Vladimiros G. Papangelakis

    2015-01-01

    Mine tailings present major environmental issues in the mining industry. However due to the depletion of high-grade sulfide ores for metal recovery, tailings could also be a potential resource for certain valuable metals. The present study investigates the potential to recover nickel from pyrrhotite tailings. Leaching tests were performed in acidic ferric sulfate media with 0.14 wt % solids to keep the ferric concentration essentially constant. The temperature was varied between 30 and 55 °C,...

  8. Preparation of Fe-intercalated Graphite Based on Coal Tailings, Dimensional Structure

    OpenAIRE

    Irfan Gustian; Eka Angasa; Dwi Agustini; Evi Maryanti; Dyiah Fitriani

    2015-01-01

    Intercalated graphite from coal tailings have been modified through the intercalation of iron. Coal tailings which is a byproduct of the destruction process and flakes washing results from mining coal. Intercalation of iron goal is to improve the physical properties of graphite and modifying sizes of crystal lattice structure with thermal method. Modification process begins with the carbonization of coal tailings at 500ºC and activated with phosphoric acid. Activation process has done by pyro...

  9. INCLUSION OF KAPOK SEED OIL IN THE DIET FOR GROWING OF THIN-TAILED SHEEP TO REDUCE CHOLESTEROL AND TO IMPROVE OMEGA-SIX FATTY ACID CONTENTS OF LAMB

    OpenAIRE

    Z. Bachrudin; Surahmanto; H. Hartadi; Soejono, M; Widiyanto

    2012-01-01

    This research was conducted to study the influence of protected kapok seed oil (PKSO) supplementation in its combination with concentrate, in this case was rice bran (RB) on lipid content of thin tailed sheep received field grass as basal feed. A number of 24 heads of male thin-tailed sheep were used as experimental material. These sheep were divided into 8 treatment groups. There were two treatment factors, i.e. : PKSO supplementation (S) as factor I and RB supplementation (K) as factor II. ...

  10. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence.

    Science.gov (United States)

    Fellah, J S; Wiles, M V; Charlemagne, J; Schwager, J

    1992-10-01

    cDNA clones coding for the constant region of the Mexican axolotl (Ambystoma mexicanum) mu heavy immunoglobulin chain were selected from total spleen RNA, using a cDNA polymerase chain reaction technique. The specific 5'-end primer was an oligonucleotide homologous to the JH segment of Xenopus laevis mu chain. One of the clones, JHA/3, corresponded to the complete constant region of the axolotl mu chain, consisting of a 1362-nucleotide sequence coding for a polypeptide of 454 amino acids followed in 3' direction by a 179-nucleotide untranslated region and a polyA+ tail. The axolotl C mu is divided into four typical domains (C mu 1-C mu 4) and can be aligned with the Xenopus C mu with an overall identity of 56% at the nucleotide level. Percent identities were particularly high between C mu 1 (59%) and C mu 4 (71%). The C-terminal 20-amino acid segment which constitutes the secretory part of the mu chain is strongly homologous to the equivalent sequences of chondrichthyans and of other tetrapods, including a conserved N-linked oligosaccharide, the penultimate cysteine and the C-terminal lysine. The four C mu domains of 13 vertebrate species ranging from chondrichthyans to mammals were aligned and compared at the amino acid level. The significant number of mu-specific residues which are conserved into each of the four C mu domains argues for a continuous line of evolution of the vertebrate mu chain. This notion was confirmed by the ability to reconstitute a consistent vertebrate evolution tree based on the phylogenic parsimony analysis of the C mu 4 sequences. PMID:1382992

  11. Consolidation projections for thickened tailings

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, B. [WHS Engineering Inc., Lakewood, OH (United States); Hyndman, A. [Magnus Ltd., Norwich (United Kingdom); Sobkowicz, J. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    Fluid fine tailings (FFT) are produced when tailings segregate upon deposition, and when fines and water are separated from tailings. The FFT are stored in ponds. This PowerPoint presentation discussed issues related to the consolidation of FFT as thickened tailings (TT). Tailings grain sizes from various oil sands operations were discussed, as well as beach and dyke construction methods that can lead to the storage and consolidation of FFT. Fines sequestration methods included conventional beaching, mature fine tailings (MFT) centrifugation; and water-capping in pit lakes. Rates of thickened tailings consolidation were considered, as well as methods of constructing enclosure landscapes. Modelling techniques for simulating the consolidation of TT were reviewed. Details of field tests conducted to determine the material properties of TT at several different sites were presented, as well as the results of finite strain consolidation analyses. The study showed that the strength properties of TT are related to effective stress as well as to solids content. While the TT deposits took several years to achieve sufficient consolidation for reclamation purposes, they required less surface area than other methods. tabs., figs. tabs., figs.

  12. Multiple myeloma: Changes in serum C-terminal telopeptide of collagen type I and bone-specific alkaline phosphatase can be used in daily practice to detect imminent osteolysis

    DEFF Research Database (Denmark)

    Lund, Thomas; Abildgaard, Niels; Andersen, Thomas L;

    2010-01-01

    of collagen type-I (CTX-I), C-terminal crosslinked telopeptide of type-I collagen generated by MMPs (ICTP), N-terminal crosslinked telopeptide of type-I collagen (NTX-I), and the bone formation marker bone-specific alkaline phosphatase (bALP) monthly for two years. Retrospectively, we identified 40 cases...

  13. The binding of lupus-derived autoantibodies to the C-terminal peptide (83-119) of the major SmD1 autoantigen can be mediated by double-stranded DNA and nucleosomes.

    NARCIS (Netherlands)

    Dieker, J.W.C.; Bavel, C.C.A.W. van; Riemekasten, G.; Berden, J.H.M.; Vlag, J. van der

    2006-01-01

    OBJECTIVES: To evaluate the binding of lupus-derived autoantibodies, double-stranded DNA and nucleosomes to the positively charged C-terminal SmD1(residues 83-119) peptide and the full-length SmD protein. METHODS: The binding of lupus-derived monoclonal antibodies, sera from patients with systemic l

  14. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins

    Energy Technology Data Exchange (ETDEWEB)

    Duband-Goulet, Isabelle; Woerner, Stephanie [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Gasparini, Sylvaine [Laboratoire de Biologie Structurale et Radiobiologie, URA CNRS 2096, Commissariat a l' Energie Atomique Saclay, 91190 Gif-sur-Yvette (France); Attanda, Wikayatou [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Konde, Emilie; Tellier-Lebegue, Carine [Laboratoire de Biologie Structurale et Radiobiologie, URA CNRS 2096, Commissariat a l' Energie Atomique Saclay, 91190 Gif-sur-Yvette (France); Craescu, Constantin T. [INSERM U759, Institut Curie/Universite de Paris-Sud, 91405 Orsay Cedex (France); Gombault, Aurelie [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Roussel, Pascal [Institut Jacques Monod, UMR 7592, Universite Paris Diderot-Paris 7, CNRS, 15 rue Helene Brion, 75205 Paris (France); Vadrot, Nathalie; Vicart, Patrick [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Oestlund, Cecilia; Worman, Howard J. [Department of Medicine and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); and others

    2011-12-10

    Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome ( Increment 607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.

  15. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  16. Facile solid-phase synthesis of sulfated tyrosine-containing peptides: Part II. Total synthesis of human big gastrin-II and its C-terminal glycine-extended peptide (G34-Gly sulfate) by the solid-phase segment condensation approach.

    Science.gov (United States)

    Kitagawa, K; Aida, C; Fujiwara, H; Yagami, T; Futaki, S

    2001-08-01

    Application of the fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase segment condensation approach to the preparation of sulfated peptides was investigated through the synthesis of human big gastrin-II, a 34-residue sulfated tyrosine [Tyr(SO3H)]-containing peptide. Highly acid-sensitive 2-chlorotrityl resin (Clt resin) was exclusively employed as an anchor-resin for the preparation of the three peptide segments having the C-terminal Pro residue as well as of the Tyr(SO3H)-containing resin-bound segment. By using the PyBOP-mediated coupling protocol [PyBOP=benzotriazolyloxytris(pyrrolidino)phosphonium hexafluorophosphatel, we successively condensed each segment and constructed the 34-residue peptide-resin without any difficulty. The final acid treatment of the fully protected peptide-resin at low temperature (90% aqueous TFA, 0 degree C for 8 h), which can detach a Tyr(SO3H)-containing peptide from the resin and remove the protecting groups concurrently with minimum deterioration of the sulfate, afforded a crude sulfated peptide. After one-step HPLC purification, a highly homogeneous human big gastrin-II was easily obtained in 14% yield from the protected peptide-resin. The sulfate form of the C-terminal glycine-extended gastrin (G34-Gly sulfate), a posttranslational processing intermediate of gastrin-II, was also successfully prepared with the segment condensation approach (11% yield). These results demonstrated the usefulness of the segment condensation protocol for preparing large Tyr(SO3H)-containing peptides.

  17. Leachability of radioactive constituents from uranium mine tailings

    International Nuclear Information System (INIS)

    A project was carried out using lysimeters to determine the leaching of radioactive constituents and BaRaSO4 from abandoned uranium mine tailings. Lime addition to the surface of acidic abandoned tailings did not reduce the level of radioactive constituents in the leachate. Considerable increases in levels of the radionuclides 230Th, 232Th and 22/8Th, as well as gross alpha and beta activity in the leachate, occurred five months after recycling of BaRaSO4 sediments to the surface layers of abandoned tailings. After nine months of leaching, the levels of 226Ra in the leachate were 30% greater than the tailings plus sediment treatment than from tailings only (control). Another experiment compared the quality of effluent flowing over chemically-fixed (solidified) BaRaSO4 sediments with that of non-fixed (control) in simulated sedimentation ponds. During seven months the release of 226 Ra to water from chemically-fixed BaRaSO4 sediments remained 3 for phosphorus removal) was applied to supply 3 percent organic matter in the top 15 cm of the revegetated lysimeters. Undiluted effluent and leachate from chemically-fixed BaRaSO4 sediments and fresh tailings were 100 percent lethal to Daphnia pulex and rainbow trout (Salmo gairdneri) in static 96-hour bioassay tests. Diluted (50 percent) effluent samples were non-toxic. (auth)

  18. The C-terminal pentapeptide of Nanog tryptophan repeat domain interacts with Nac1 and regulates stem cell proliferation but not pluripotency.

    Science.gov (United States)

    Ma, Tianhua; Wang, Zhe; Guo, Yunqian; Pei, Duanqing

    2009-06-12

    Overexpression of Nanog in mouse embryonic stem (ES) cells has been shown to abrogate the requirement of leukemia inhibitory factor for self-renewal in culture. Little is known about the molecular mechanism of Nanog function. Here we describe the role of the tryptophan repeat (WR) domain, one of the two transactivators at its C terminus, in regulating stem cell proliferation as well as pluripotency. We first created a supertransactivator, W2W3x10, by duplicating repeats W2W3 10 times and discovered that it can functionally substitute for wild type WR at sustaining pluripotency, albeit with a significantly slower cell cycle, phenocopying Nanog(9W) with the C-terminal pentapeptide (WNAAP) of WR deleted. ES cells carrying both W2W3x10 and Nanog(9W) have a longer G1 phase, a shorter S phase in cell cycle distribution and progression analysis, and a lower level of pAkt(Ser473) compared with wild type Nanog, suggesting that both mutants impact the cell cycle machinery via the phosphatidylinositol 3-kinase/Akt pathway. Both mutants remain competent in dimerizing with Nanog but cannot form a complex with Nac1 efficiently, suggesting that WNAAP may be involved in Nac1 binding. By tagging Gal4DBD with WNAAP, we demonstrated that this pentapeptide is sufficient to confer Nac1 binding. Furthermore, we can rescue W2W3x10 by placing WNAAP at the corresponding locations. Finally, we found that Nanog and Nac1 synergistically up-regulate ERas expression and promote the proliferation of ES cells. These results suggest that Nanog interacts with Nac1 through WNAAP to regulate the cell cycle of ES cells via the ERas/phosphatidylinositol 3-kinase/Akt pathway, but not pluripotency, thus decoupling cell cycle control from pluripotency.

  19. Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Jiang

    Full Text Available SmyD2 belongs to a new class of chromatin regulators that control gene expression in heart development and tumorigenesis. Besides methylation of histone H3 K4, SmyD2 can methylate non-histone targets including p53 and the retinoblastoma tumor suppressor. The methyltransferase activity of SmyD proteins has been proposed to be regulated by autoinhibition via the intra- and interdomain bending of the conserved C-terminal domain (CTD. However, there has been no direct evidence of a conformational change in the CTD. Here, we report two crystal structures of SmyD2 bound either to the cofactor product S-adenosylhomocysteine or to the inhibitor sinefungin. SmyD2 has a two-lobed structure with the active site located at the bottom of a deep crevice formed between the CTD and the catalytic domain. By extensive engagement with the methyltransferase domain, the CTD stab